
 Universidade de
Aveiro
2008

Departamento de Electrónica,
Telecomunicações e Informática

Hélder Manuel Lima
Veiga

Sistema Distribuído de Monitorização de Tráfego
com uma Arquitectura Peer-to-Peer

Distributed Traffic Measurement System with a Peer-
to-Peer Architecture

 Universidade de

Aveiro
2008

Departamento de Electrónica,
Telecomunicações e Informática

Hélder Manuel Lima
Veiga

Sistema Distribuído de Monitorização de Tráfego
com uma Arquitectura Peer-to-Peer

Distributed Traffic Measurement System with a Peer-
to-Peer Architecture

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações, realizada sob a orientação científica do Dr.
Rui Valadas, Professor associado com agregação, e do Dr. Paulo Salvador,
Professor auxiliar convidado, ambos professores do Departamento de
Electrónica, Telecomunicações e Informática da Universidade de Aveiro

Dedico este trabalho aos meus pais e ao meu irmão agradecendo a amizade,
o apoio, a dedicação e a maravilhosa família que me presentearam.

o júri

presidente Prof. Dr. Joaquim Arnaldo Carvalho Martins
professor catedrático da Universidade de Aveiro

 Prof. Dr. Manuel Alberto Pereira Ricardo
professor associado do Departamento de Engenharia Electrotécnica e de Computadores da
Faculdade de Engenharia da Universidade do Porto

 Prof. Dr. Rui Jorge Morais Tomaz Valadas
professor associado com agregação da Universidade de Aveiro

 Prof. Dr. Paulo Jorge Salvador Serra Ferreira
professor auxiliar convidado da Universidade de Aveiro

agradecimentos
acknowledgements

First of all I express my sincere thanks to my supervisors, Dr. Rui Valadas and
Dr. Paulo Salvador for their support, patience, guidance and assistance
throughout this research. A considerable part of the DTMS-P2P system is
product of their fertile mind and its transition from idea to reality could not have
happened without their guidance throughout our many intriguing and inspiring
conversations. Moreover, without their suggestions and provoking ideas, this
dissertation would not have become as extensive as it has. Also thank you to
Dr. António Nogueira for his help and support.
With great pleasure and pride, I would like to thank the Institute of
Telecommunications – Aveiro University Pole (IT), for their sponsorship in
pursuing this graduate program.
I would like to express a very special thank you to my parents and to my
brother without whose support and encouragement this work would not have
been possible. Another special thank you goes to my lovely girlfriend, Vanessa
Leite, for her love, friendship, support, understanding and patience. Finally I
would like to thank all my friends for their friendship and support.
I would like to dedicate this thesis to my parents and to my brother. I owe them
a debt that I have no hope of ever repaying.

 Aveiro, July 2008

 Hélder Veiga

palavras-chave

Monitorização de tráfego, peer-to-peer, controlo distribuído, armazenamento
distribuído, acesso distribuído, ponto de medição.

resumo

As características do tráfego na Internet são cada vez mais complexas devido
à crescente diversidade de aplicações, à existência de diferenças drásticas no
comportamento de utilizadores, à mobilidade de utilizadores e equipamentos, à
complexidade dos mecanismos de geração e controlo de tráfego, e à
crescente diversidade dos tipos de acesso e respectivas capacidades. Neste
cenário é inevitável que a gestão da rede seja cada vez mais baseada em
medições de tráfego em tempo real. Devido à elevada quantidade de
informação que é necessário processar e armazenar, é também cada vez
maior a necessidade das plataformas de medição de tráfego assumirem uma
arquitectura distribuída, permitindo o armazenamento distribuído, replicação e
pesquisa dos dados medidos de forma eficiente, possivelmente imitando o
paradigma Peer-to-Peer (P2P).

Esta dissertação descreve a especificação, implementação e teste de um
sistema de medição de tráfego com uma arquitectura distribuída do tipo P2P,
que fornece aos gestores de rede uma ferramenta para configurar
remotamente sistemas de monitorização instalados em diversos pontos da
rede para a realização de medições de tráfego. O sistema pode também ser
usado em redes orientadas à comunidade onde os utilizadores podem partilhar
recursos das suas máquinas para permitir que outros realizem medições e
partilhem os dados obtidos. O sistema é baseado numa rede de overlay com
uma estrutura hierárquica organizada em áreas de medição. A rede de overlay
é composta por dois tipos de nós, denominados de probes e super-probes, que
realizam as medições e armazenam os resultados das mesmas. As super-
probes têm ainda a função de garantir a ligação entre áreas de medição e gerir
a troca de mensagens entre a rede e as probes a elas conectadas. A topologia
da rede de overlay pode mudar dinamicamente, com a inserção de novos nós
e a remoção de outros, e com a promoção de probes a super-probes e vice-
versa, em resposta a alterações dos recursos disponíveis. Os nós armazenam
dois tipos de resultados de medições: Light Data Files (LDFs) e Heavy Data
Files (HDFs). Os LDFs guardam informação relativa ao atraso médio de ida-e-
volta de cada super-probe para todos os elementos a ela ligados e são
replicados em todas as super-probes, fornecendo uma visão simples mas
facilmente acessível do estado da rede. Os HDFs guardam os resultados
detalhados das medições efectuadas a nível do pacote ou do fluxo e podem
ser replicados em alguns nós da rede. As réplicas são distribuídas pela rede
tendo em consideração os recursos disponíveis nos nós, de forma a garantir
resistência a falhas. Os utilizadores podem configurar medições e pesquisar os
resultados através do elemento denominado de cliente. Foram realizados
diversos testes de avaliação do sistema que demonstraram estar o mesmo a
operar correctamente e de forma eficiente.

keywords

Traffic monitoring, peer-to-peer, distributed control, distributed storage,
distributed access, probing.

abstract

The characteristics of Internet traffic are becoming more and more complex
due to the large and growing diversity of applications, the drastic differences in
user behaviours and the mobility of users and devices, the complexity of traffic
generation and control mechanisms, and the increasing diversity of the link
type and quality. In such an environment, it is inevitable that network
management tasks will rely heavily on (real-time) traffic measurements. Due to
the large amounts of data that need to be processed and stored, measurement
platforms have to become more distributed, allowing for scattered storage,
replication and efficient retrieval of measurement data, possibly mimicking the
peer-to-peer (P2P) paradigm.

In this dissertation we describe the specification, development and evaluation
of a distributed traffic measurement system with a P2P architecture, which
provide network managers with a tool to remotely configure third-party
monitoring modules installed at different points of the network in order to
perform test measurements. The system can also be used as a large-scale
measurement infrastructure in a community-oriented network where Internet
users may share some processing power and storage space of their machines
to allow other Internet users (e.g. researchers) to perform measurements, to
retrieve and share the obtained results. The system is based on a hierarchical
overlay network organized in measurement areas. The overlay network is
formed by two types of nodes, called probes and super-probes, which perform
the measurements and store the measurement results. Super-probes have the
specific role of providing connection among measurement areas and manage
the exchange of messages between the network and the probes connected to
them. The topology of the overlay network can change dynamically, with nodes
being inserted and removed on-the-fly, and probes being transformed in super-
probes and vice-versa, in response to changes in the available resources. The
nodes collect two types of measured data: Light Data Files (LDFs) and Heavy
Data Files (HDFs). LDFs store the average round-trip time from each super-
probe to every element it is connected to and are replicated in all super-probes,
providing a coarse but widely available view of the network status. HDFs
contain the results of detailed measurements carried out at the packet or flow
level and can be replicated at some nodes of the overlay network. Replications
are spread over the overlay network taking into account the resources available
at nodes, so as to provide high resilience to failures. Users can configure traffic
measurements and search the overlay network for measurement data through
the so-called client element. The various tests carried out in the system have
shown that it performs correctly and efficiently.

i

Table of Contents

Table of Figures ... vi

Table of Tables ... viii

Chapter 1. Introduction ... 1

1.1 Proposed system and objectives .. 2

1.2 Organization of the dissertation ... 3

Chapter 2. State-of-art of Measurement Systems and Community-Oriented
Networks ... 5

2.1 P2P based measurement systems ... 5

2.1.1 M-coop .. 5

2.1.2 pMeasure ... 5

2.1.3 DEMS .. 6

2.1.4 DipZoom .. 6

2.2 Community-oriented networks .. 7

2.2.1 PlanetLab ... 7

2.2.2 DIMES ... 7

2.2.3 NETI@home ... 8

2.3 Summary .. 8

Chapter 3. Overview of the DTMS-P2P Protocol .. 9

3.1 Overlay network .. 9

3.2 Measurement sessions ... 12

3.3 Types of measured data files and data replication ... 12

3.4 Search and retrieval of measurement files ... 15

3.5 Authentication and/or Encryption ... 15

Chapter 4. DTMS-P2P Protocol Specification ... 17

4.1 Security mechanisms ... 17

4.1.1 Message authentication and encryption ... 17

4.1.2 Key generation and distribution .. 18

4.2 Message flooding and routing ... 19

4.2.1 Messages destined to one node of a given measurement group 21

4.2.2 Messages destined to all nodes of a given measurement group 24

ii

4.2.3 Messages destined to all nodes of the network.. 25

4.2.4 Message flooding vs. security modes .. 26

4.3 Construction and maintenance of the overlay network 28

4.3.1 Initial topology .. 28

4.3.2 Lists of known nodes ... 28

4.3.3 List of active connections .. 31

4.3.4 Network connection process .. 32

4.3.5 Connection set-up .. 34

4.3.5.1 Second phase ... 34

4.3.5.2 Third phase (handshaking) .. 35

4.3.6 Topology maintenance mechanisms .. 37

4.3.6.1 Maintaining the list of known nodes ... 37
4.3.6.1.1 Pong flooding process .. 38

4.3.6.2 Super-probe demotion negotiation process ... 39
4.3.6.2.1 Messages exchanged during a demotion negotiation process 40
4.3.6.2.2 Criteria for demoting a super-probe to probe mode .. 41

4.3.6.3 Load distribution to prevent super-probe overloading 44

4.3.7 Updating the CKN ... 44

4.3.7.1 Overwriting rules ... 46

4.3.7.2 Updating during the connection set-up process 47
4.3.7.2.1 Updating based on the rCKN .. 47
4.3.7.2.2 Updating based on the rAdr .. 48

4.3.7.3 Updating after receiving a Pong flooding.. 50

4.3.7.4 Updating after the demotion negotiation process 51

4.3.7.5 Updating after node disconnect ... 51

4.3.7.6 Updating before the periodic CKN testing phase 51

4.4 Traffic measurements .. 51

4.4.1 Monitoring modules .. 51

4.4.1.1 List of supported monitoring modules .. 51

4.4.1.2 Sending of information regarding supported monitoring modules 53

4.4.2 Measurement tests configuration ... 54

4.4.2.1 Measurement group discovery request .. 55

4.4.2.2 List of nodes retrieval .. 56
4.4.2.2.1 List of all nodes from a specific measurement group that support a specific

monitoring module ... 56
4.4.2.2.2 List of all nodes from a specific measurement group ... 58

iii

4.4.2.2.3 List of all network nodes .. 58
4.4.2.3 List of supported monitoring modules retrieval 58

4.4.2.4 Monitoring module’s help retrieval ... 59

4.4.2.5 Monitoring module’s list of restrictions retrieval 60

4.4.2.6 Test session configuration and execution .. 61
4.4.2.6.1 Messages exchanged during a test session configuration ... 62
4.4.2.6.2 Test session execution .. 63

4.4.3 Storing the measurement results .. 63

4.5 File replication ... 66

4.5.1 Overview ... 66

4.5.2 Replication Table and Replication Record .. 71

4.5.3 Messages exchanged in the file replication process 72

4.5.3.1 First interaction .. 74
4.5.3.1.1 Potential storing nodes discovery ... 74
4.5.3.1.2 How super-probes discover possible locations to replicate a file among the

probes under their control ... 74
4.5.3.1.3 Super-probe behavior after sending a request message to a probe under its control .. 75
4.5.3.1.4 Potential storing node ... 76

4.5.3.2 Second interaction ... 76
4.5.3.2.1 Replication request ... 76
4.5.3.2.2 File replication and replication confirmation .. 77

4.6 Results search .. 78

4.6.1 List of shared files ... 78

4.6.2 Results search mechanism ... 79

4.7 Data download ... 82

4.7.1 Data download between two elements .. 83

4.7.2 Firewalled nodes .. 86

4.7.3 Multi-source download .. 88

4.7.4 Encryption ... 90

4.8 Light Data .. 91

4.8.1 Light Data file format .. 91

4.8.2 Light Data generation and distribution .. 95

4.8.3 Light Data retrieval .. 96

4.8.4 Light Data clean interval ... 97

4.9 Additional client actions .. 98

4.9.1 File action request .. 98

iv

4.9.2 Resources request .. 99

4.9.3 Connect to node request .. 101

4.9.4 Node’s File List ... 102

4.9.4.1 Node’s File List format ... 102

4.9.4.2 Node’s File List retrieval ... 103

4.10 Performance security considerations ... 104

4.10.1 Preventing third-party denial of service .. 104

4.10.2 Resource use limitations .. 104

4.11 Summary .. 104

Chapter 5. DTMS-P2P versus File Sharing Applications 107

5.1 LimeWire ... 107

5.2 BitTorrent .. 109

5.3 Peer-to-peer systems based in Distributed Hash Tables 111

5.3.1 Overlay network and message routing .. 111

5.3.2 File storage and search mechanism ... 114

5.3.3 File replication ... 114

5.4 Summary .. 115

Chapter 6. DTMS-P2P Implementation ... 117

6.1 DTMS-P2P package structure ... 117

6.2 DTMS-P2P implemented classes .. 117

6.2.1 Classes implemented in the dtms_p2p package 117

6.2.1.1 Message level .. 118

6.2.1.2 Entities level .. 118

6.2.1.3 Protocol level ... 119

6.2.2 Classes implemented in the util package ... 122

6.3 Summary .. 123

Chapter 7. Evaluation and Validation of the DTMS-P2P System 125

7.1 Connection set-up .. 126

7.2 Measurement group discovery .. 128

7.3 Retrieval of the list of nodes of a given measurement group 130

7.4 Query-Hits reception ... 132

7.5 Single source versus multiple source download speed 134

v

7.5.1 Single source download ... 134

7.5.2 Multiple source download ... 135

7.6 Download speed comparison ... 137

7.6.1 IE and FlashGet ... 137

7.6.2 LimeWire ... 139

7.7 Summary .. 139

Chapter 8. Conclusions ... 141

8.1 Summary and contributions ... 141

8.2 Open questions and further research ... 143

Appendix ... 147

Bibliography .. 215

vi

Table of Figures

Figure 1. System hierarchy. ... 10
Figure 2. Overlay network. .. 10
Figure 3. Message authentication and encryption. .. 18
Figure 4. File of Username/Passphrase Pairs XML DTD. .. 19
Figure 5. Example of a File of Username/Passphrase Pairs. ... 19
Figure 6. Message flooding process when a message is destined to a given node of a

given MG. ... 23
Figure 7. Message flooding process when a message is destined to all nodes of a

given MG. ... 24
Figure 8. Message flooding process when a message is destined to all nodes of the

network (all MGs). ... 25
Figure 9. Message flooding vs. Authenticated and Encrypted security modes. 27
Figure 10. Structure of the CKN. .. 29
Figure 11. File of Known Nodes XML DTD. ... 30
Figure 12. Example of a File of Known Nodes. .. 31
Figure 13. Messages exchanged during connection set-up. .. 34
Figure 14. Messages exchanged during the demotion negotiation process. 41
Figure 15. File of Supported Monitoring Modules XML DTD. ... 52
Figure 16. Example of a File of Supported Monitoring Modules. 53
Figure 17. Sending of information regarding supported monitoring modules. 54
Figure 18. Messages exchanged during the measurement group discover process............. 56
Figure 19. Messages exchanged during the list of nodes retrieval process. 57
Figure 20. Messages exchanged during the list of supported monitoring modules

request process. ... 59
Figure 21. Messages exchanged during the monitoring module help request process. 60
Figure 22. Messages exchanged during the monitoring module’s list of restrictions

request process. ... 61
Figure 23. Messages exchanged during the command request process. 62
Figure 24. Replication periods. ... 69
Figure 25. Messages exchanged during the replication process. ... 73
Figure 26. List of Shared Files. ... 79
Figure 27. Messages exchanged during the results retrieval process. 80
Figure 28. Data query .. 82
Figure 29. Light Data File XML DTD. ... 91
Figure 30. Light Data. ... 92
Figure 31. Light Data File example. .. 93
Figure 32. Compiled Light Data File example. ... 94
Figure 33. Messages exchanged during the file action request process. 98
Figure 34. Messages exchanged during a resources request process. 100
Figure 35. Messages exchanged during a resources request process (sp and p). 101
Figure 36. Messages exchanged during a connect to node request process. 102
Figure 37. Node’s File List XML DTD. .. 102
Figure 38. Node’s File List example. .. 103
Figure 39. Chord DHT. ... 112
Figure 40. Network used to test the DTMS-P2P system. .. 125
Figure 41. Message header. ... 147

vii

Figure 42. Server Greeting. ... 151
Figure 43. Setup Response. ... 152
Figure 44. Server Start. .. 153
Figure 45. Ping. ... 155
Figure 46. Pong. .. 157
Figure 47. List of Supported Monitoring Modules. .. 159
Figure 48. List of Shared Files. ... 160
Figure 49. Demotion Negotiation. ... 161
Figure 50. Measurement Group Discovery Request. .. 163
Figure 51. Measurement Group Discovery Response. .. 163
Figure 52. List of Nodes Discovery Request. .. 164
Figure 53. List of Nodes Discovery Response. ... 165
Figure 54. List of Supported Monitoring Modules Request. ... 166
Figure 55. List of Supported Monitoring Modules Response. .. 167
Figure 56. Monitoring Module Help Request. .. 168
Figure 57. Monitoring Module Help Response. .. 169
Figure 58. Monitoring Module List of Restrictions Request... 170
Figure 59. Monitoring Module List of Restrictions Response. ... 171
Figure 60. Command. .. 172
Figure 61. Command Response. .. 173
Figure 62. Potential Storing Nodes Discovery Request. ... 175
Figure 63. Potential Storing Nodes Discovery Response. ... 177
Figure 64. Replication Request. .. 179
Figure 65. Replication-Ack. .. 181
Figure 66. Download Replication-Ack. ... 183
Figure 67. Query. ... 185
Figure 68. Query-Hit. .. 186
Figure 69. Push. ... 188
Figure 70. File Action Request. ... 189
Figure 71. File Action Response. .. 190
Figure 72. Resources Request. .. 191
Figure 73. Resources. .. 193
Figure 74. Light Data. ... 196
Figure 75. Connect to Node Request. .. 197
Figure 76. Connect to Node Response. ... 198
Figure 77. Bye. .. 200

viii

Table of Tables

Table 1 – Rules for updating the CKN of the requesting element based on Pong. 48
Table 2 – Rules for updating the CKN of the responding element based on Ping. 48
Table 3 – Machines Characteristics ... 125
Table 4 – Duration of a connection set-up process between two nodes of the same

measurement group (p - probe; sp - super-probe) ... 127
Table 5 – Duration of a connection set-up process between a probe and a super-probe

(connected to 10 probes) .. 127
Table 6 – Super-probe’s measurement group .. 128
Table 7 – Measurement Groups discovery (only 2 super-probes interconnected) 129
Table 8 – Measurement Groups discovery (4 super-probes interconnected) 129
Table 9 – List of nodes of measurement group a and c ... 131
Table 10 – Query hits reception (local search at the client’s measurement group,

Group ID a) ... 132
Table 11 – Query hits reception (global search).. 133
Table 12 – Element’s measurement group and correspondent host machine network

card speed .. 134
Table 13 – Single Source Download Speed .. 134
Table 14 – Multiple Source Download Speed ... 135
Table 15 – Single Source Download Speed Comparison .. 137
Table 16 – Multiple Source Download Speed Comparison (FlashGet) 138
Table 17 – Download Speed Comparison (LimeWire) ... 139
Table 18 – DTMS-P2P download speed: 10 KB file on only 1 source (193.136.92.121) 202
Table 19 – DTMS-P2P download speed: 10 KB file only 1 source (193.136.92.228) 202
Table 20 – DTMS-P2P download speed: 10 KB file on only 1 source (193.136.92.219) 202
Table 21 – DTMS-P2P download speed: 10 KB file on only 1 source (193.136.92.234) 203
Table 22 – DTMS-P2P download speed: 500 KB file on only 1 source

(193.136.92.121).. 203
Table 23 – DTMS-P2P download speed: 500 KB file on only 1 source

(193.136.92.228).. 203
Table 24 – DTMS-P2P download speed: 500 KB file on only 1 source

(193.136.92.219).. 204
Table 25 – DTMS-P2P download speed: 500 KB file on only 1 source

(193.136.92.234).. 204
Table 26 – DTMS-P2P download speed: 500 KB file on only 2 sources

(193.136.92.228 and 193.136.92.219) ... 204
Table 27 – DTMS-P2P download speed: 500 KB file on only 3 sources

(193.136.92.121, 193.136.92.228 and 193.136.92.219) 205
Table 28 – DTMS-P2P download speed: 500 KB file on 4 sources 205
Table 29 – DTMS-P2P download speed: 5120 KB file on only 1 source

(193.136.92.121).. 205
Table 30 – DTMS-P2P download speed: 5120 KB file on only 1 source

(193.136.92.228).. 206
Table 31 – DTMS-P2P download speed: 5120 KB file on only 1 source

(193.136.92.219).. 206

ix

Table 32 – DTMS-P2P download speed: 5120 KB file on only 1 source
(193.136.92.234).. 206

Table 33 – DTMS-P2P download speed: 5120 KB file on only 2 sources
(193.136.92.228 and 193.136.92.219) ... 207

Table 34 – DTMS-P2P download speed: 5120 KB file on only 2 sources
(193.136.92.121 and 193.136.92.219) ... 207

Table 35 – DTMS-P2P download speed: 5120 KB file on only 3 sources
(193.136.92.121, 193.136.92.228 and 193.136.92.219) 207

Table 36 – DTMS-P2P download speed: 5120 KB file on 4 sources 208
Table 37 – DTMS-P2P download speed: 54133 KB file on only 2 sources

(193.136.92.228 and 193.136.92.219) ... 208
Table 38 – DTMS-P2P download speed: 54133 KB file on only 2 sources

(193.136.92.121 and 193.136.92.219) ... 208
Table 39 – DTMS-P2P download speed: 54133 KB file on only 3 sources

(193.136.92.121, 193.136.92.228 and 193.136.92.219) 209
Table 40 – DTMS-P2P download speed: 54133 KB file on 4 sources 209
Table 41 – IE and FlashGet download speed: 5120 KB file on only 1 source

(193.136.92.121).. 209
Table 42 – IE and FlashGet download speed: 5120 KB file on only 1 source

(193.136.92.228).. 210
Table 43 – IE and FlashGet download speed: 5120 KB file on only 1 source

(193.136.92.219).. 210
Table 44 – IE and FlashGet download speed: 5120 KB file on only 1 source

(193.136.92.234).. 210
Table 45 –FlashGet download speed: 5120 KB file on only 2 sources

(193.136.92.228 and 193.136.92.219) ... 211
Table 46 – FlashGet download speed: 5120 KB file on only 2 sources

(193.136.92.121 and 193.136.92.219) ... 211
Table 47 – FlashGet download speed: 5120 KB file on only 3 sources

(193.136.92.121, 193.136.92.228 and 193.136.92.219) 211
Table 48 – FlashGet download speed: 5120 KB file on 4 sources 212
Table 49 – FlashGet download speed: 54133 KB file on only 2 sources

(193.136.92.121 and 193.136.92.219) ... 212
Table 50 – FlashGet download speed: 54133 KB file on 4 sources 212
Table 51 – LimeWire download speed (54133 KB file) ... 213

Chapter 1. Introduction

Page 1 of 220

Chapter 1. Introduction
The complexity of data networks is growing very fast due to the diversity of technologies,
applications and user behaviors. In such environments, a complete and updated knowledge
of the network status is of fundamental importance for network administrators. Traffic
monitoring systems [NMT] provide administrators with a tool to detect and respond to
network events or behaviors that can have a significant impact on the network
performance.

Traffic monitoring systems can be classified as active or passive [Pasztor2001]
[Corral2003] [Grossglauser2001]. Typically passive systems are based in a single client
element that captures the packets being transmitted or received over the network to which
the element is attached. They simply perform the analysis of the traffic that flows through
the network, without changing it. Usually, they are used to identify the type of protocols
involved and to measure one or more characteristics of the traffic that flows through the
measurement point, like the average rate, the mean packet size or the duration of the TCP
connections. These systems involve measurement intervals that can stretch from several
milliseconds to weeks or even months, thus forcing the storage and processing of huge data
quantities. Examples of currently available passive monitoring systems are tcpdump
[TCPdump], NeTraMet [NeTraMet] and NetFlow [NetFlow]. Active systems are usually
based in a requesting element and in a target (responding) element that answers to the
requests. These systems insert a small amount of traffic directly into the network to infer
performance statistics. Usually, they are intended to provide network performance statistics
between two distinct measurement points, like for example mean packet delay and packet
loss ratio. Those statistics can be one-way statistics, when they refer to a single direction of
traffic flow, and round-trip statistics, when they refer to traffic that flows in both
directions. In these systems measurement intervals are in the order of seconds or minutes
and they produce small amount of data quantities because they only process the packets of
the traffic they introduce in the network. Examples of currently available active monitoring
systems are ping [RFC792], J-OWAMP [JOWAMP] and Internet2 OWAMP
implementation [OWAMP].

Traditional traffic monitoring modules either rely on a single probe [TCPdump] [Ethereal]
[NTOP] [MRTG] or in a centralized architecture where a set of probes are controlled by a
single manager [RFC4656] [RFC3917] [RFC1757] [NMT]. The single probe system only
monitors the traffic at one location and, therefore, is not flexible enough for medium and
large size networks. The centralized architecture is able to provide an accurate view of the
network status. However, it relies on a single manager, which makes it vulnerable to
failures. Moreover, it stores measured data at a single collector, which may consume
significant bandwidth when downloading data from probes.

Decentralized architectures, like the ones of P2P file sharing systems, can help overcoming
some of the limitations of the centralized ones. In P2P systems there is no need of
centralized servers which removes the single point of failure. In these systems all nodes
may connect to each other and the resources (storage space, computing power, etc) are
distributed among all connected nodes improving scalability. The nodes can provide
services to other nodes of the network which can be remotely accessed through the P2P
overlay network. Additionally, the stored information can be replicated in different nodes

1.1 Proposed system and objectives

Page 2 of 220

guarantying availability. Some disadvantages of the peer-to-peer technology [Wilson2002]
are the redundant structure; the nondeterministic service requests due to the distributed
form of communications; and the availability of resources is not guaranteed since nodes
can disconnect at any time.

Nowadays, decentralized systems based on P2P architectures are very popular, namely the
file sharing applications such as Kazaa [Kazaa], eMule [eMule] and the ones based on
Gnutella protocol [Gnutella] [BearShare] [Gnucleus] [LimeWire] [Shareaza]. Other
popular peer-to-peer application areas include instant messaging and distributed
computing. Entirely new application areas for peer-to-peer technology are still being
discovered.

Traffic monitoring systems can profit from the advantages provided by models based in
decentralized P2P architectures. This will be the basis of our proposal of a traffic
monitoring system based in a P2P distributed architecture.

1.1 Proposed system and objectives

A traffic monitoring systems with a novel peer-to-peer (P2P) architecture was proposed
within the research team where the author developed his MSc work [Salvador2005]. The
main objective of this work is to complete the specification of this proposal, develop and
test the proposed monitoring system. This work relies on previous experience of the
research team in the development of traffic measurement tools (see, for example,
http://www.av.it.pt/jowamp [JOWAMP]).

The name of the proposed system is Distributed Traffic Measurement System with a Peer-
to-Peer Architecture – DTMS-P2P. This proposal is based on a hierarchical distributed P2P
architecture similar to Gnutella 0.6 [Gnutella]. The adoption of a P2P architecture allows
high tolerance to failures and distributed storage of measured data, and is suited for traffic
monitoring in wide area network environments. Moreover, access and querying of
measured data can be performed using traditional P2P file sharing schemes.

Gnutella is a decentralized file sharing network and it is a fully distributed alternative to
semi-centralized systems such as FastTrack (KaZaA) and centralized systems such as
Napster. Two versions of the Gnutella protocol are commonly used and specifications for
both are publicly available at [Gnutella]. The original version of the protocol (version 0.4)
was proposed in early 2000 [Nullsoft] [Gnutella04]. Later, in 2001, a new version was
introduced and it was named Gnutella protocol version 0.6 [Gnutella06]. In the first
version of the Gnutella protocol all peers had the same functionalities (client and servers)
and were at the same level. In version 0.6 a hierarchical approach was introduced and
instead of treating every peer as client and server, some peers were now treated as ultra-
peers, routing search requests and responses for peers connected to them. This variation of
the protocol introduced an improvement in scalability. For additional details of the two
versions of the Gnutella protocol, the reader is referred to the Gnutella specifications
[Gnutella]. According to Wikipedia [Wikipedia] in the last quarter of 2007 Gnutella was
the most popular file sharing network in the Internet. We have selected the Gnutella
protocol version 0.6 as the basis of our implementation due to several advantageous
characteristics this protocol provides, namely, its hierarchical architecture which improves

1.2 Organization of the dissertation

Page 3 of 220

scalability and reduces the load on the peers due to message routing, redundancy which
allows a peer to be reached from different routes and protocol simplicity.

The proposed traffic monitoring system aims at providing an infrastructure that allows any
monitoring module that can be executed through command line, such as tcpdump
[TCPdump], ping, traceroute, J-OWAMP [JOWAMP], and others [NMT], to be remotely
configured to execute (active or passive) traffic measurements and to allow the retrieval of
the obtained results. The system implements an overlay network where the results of the
configured test measurements can be shared among the elements of the system and can be
retrieved by any user. To improve the system reliability, these results may be replicated at
various locations. The proposed system can also work as an alarm system on which a node
informs another node of a change in the network status, whenever it occurs. Such a system
provides network administrators with a tool to easily monitor large networks.

Moreover, DTMS-P2P can also be used as a large-scale measurement infrastructure in a
community-oriented network where Internet users may share some processing power and
storage space of their machines to allow other Internet users (researchers) to perform
measurements, to retrieve and share the obtained results. However, some issues must be
taken in consideration when using DTMS-P2P as such an infrastructure: for example, the
preservation of the privacy of ISPs and users, the legal and proprietary ownership
concerns, the prevention of measurements that might cause harm to the network or to users
(for example, high rate of traffic could generate significant costs for users who pay for
bandwidth by usage), and the verification of the integrity of data collected from not trusted
sources. In [Claffy2006] some of these issues are identified and some measures that should
be taken in consideration in such infrastructures to guarantee the security of users and
providers are described. Several community-oriented infrastructures are in common use
among researchers. Some provide dedicated hardware (for example, Skitter [Claffy1999],
Ark [Ark], PlanetLab [Peterson2002] [PlanetLab] and RON [Andersen2001]) and others
implement an @home-style distributed measurement network (for example, NETI@home
[Simpson2004] [NETI@home] and DIMES [Shavitt2005] [DIMES]). In the @home-style
approach it is provided a downloadable tool to be installed at the Internet users’ home
machines which allow them to share their resources to other users. Such an infrastructure
can also be implemented with the DTMS-P2P system, which does not require costly
funding since in the @home-style approach the resources are shared among all users not
requiring dedicated hardware.

1.2 Organization of the dissertation

This dissertation is organized as follows. The next chapter presents the state-of-art of
monitoring systems, focusing the study in systems based in peer-to-peer architectures, and
gives an overview about some community-oriented measurement networks. An overview
of the proposed system is given at chapter 3. Chapter 4 describes the proposed DTMS-P2P
protocol. The chapter 5 makes a comparison between the proposed system and some P2P
file sharing applications. The description of our implementation of the proposed system is
given in chapter 6. Chapter 7 presents some evaluation tests performed to validate the
implemented system. A summary of conclusions and some suggestions for possible future
research concludes the dissertation.

1.2 Organization of the dissertation

Page 4 of 220

Chapter 2. State-of-art of Measurement Systems and Community-Oriented Networks

Page 5 of 220

Chapter 2. State-of-art of Measurement Systems and
Community-Oriented Networks

In this chapter we present the state-of-art of measurement systems based on P2P
architectures. For a complete list of measurement systems see [NMT]. We will describe M-
coop (section 2.1.1), pMeasure (section 2.1.2), DEMS (section 2.1.3), and DipZoom
(section 2.1.4). In this chapter, we also present some community-oriented networks. We
will describe PlanetLab (section 2.2.1), DIMES (section 2.2.2) and NETI@home (section
2.2.3). In section 2.3 we will draw some conclusions.

2.1 P2P based measurement systems

2.1.1 M-coop

Srinivasan and Zegura [Srinivasan2002] [Srinivasan2003] proposed a distributed peer-to-
peer system that can be used to obtain network performance information. With the
proposed system, the authors were particularly interested in real-time measurements
(distance metrics such as latency, hop count, etc.). The proposed system was named M-
coop (or Measurement Cooperative).

Architecturally the system is an overlay network of computers running the M-coop
software. For scalability, each node on the network is assigned an “area of responsibility”
(AOR), defining a set of IP addresses for which it can answer queries. Measurements are
taken by the endpoints in two ways, actively, by sending periodic probe packets to each
other, and passively, by monitoring the traffic that traverses the network where they are
attached. The measurements data obtained are stored with meta-information such as time
of measurement, accuracy, etc.

2.1.2 pMeasure

Liu, Boutaba and Hong [Liu2004] [Liu2005] propose the pMeasure tool which is built on
top of the Pastry [Rowstron2001] peer-to-peer network, but the system can be build on top
of any other P2P network.

The pMeasure architecture consists of a set of nodes each running pMeasure both as a
server and as a client. When running as a server, a pMeasure node receives measurement
tasks from other nodes and processes them if resources are available. A pMeasure node
running as a client can submit measurement tasks and retrieve results from the system. A
pMeasure node depends on its P2P substrate for submitting measurement tasks, receiving
measurement results, and locating other nodes when needed. It is the system’s
responsibility to automatically locate necessary and appropriate nodes for measurement
tasks. To provide security in the pMeasure system all nodes must possess a public/private
key used to encrypt and decrypt the messages exchanged between the nodes of the system.

The system can be used to perform both passive and active measurements. The tool
comprises a passive monitoring module, to compute traffic throughput and port activity,
and an active monitoring module to measures One-way Delay, Round-Trip Delay,
Connectivity, and Trace Route. Each pMeasure node is equipped with a build-in passive

2.1 P2P based measurement systems

Page 6 of 220

measurement task, which maintains statistics about the network traffic present on the host
for every 15 min. In each 15 min statistics, a series of detailed counters are maintained, e.g.
the number of packets and bytes from a port, the number of packets and bytes through a
network interface card (NIC), etc. These statistics can be provided to the host users and can
be delivered to other pMeasure nodes when requested.

2.1.3 DEMS

Finkenzeller, Kunzmann, Kirstädter, Schollmeier [Finkenzeller2006] proposed the
Distributed End-System Monitoring Services (DEMS). The system is more focused on
passive measurements. It captures the traffic flowing through the network to which the
node is attached, analyzes it, and publishes the results via a Peer-to-Peer (P2P) framework.
Locally observable data may be everything from packet statistics like throughput and jitter
to detailed information extracted via deep-packet inspection. The level of inspection may
vary: It reaches from simply parsing pairs of source and destination IP addresses for
calculating the throughput up to protocol data at application level.

DEMS does not assume prior topology knowledge but collects this information on-
demand. Based on the network topology information, loss and delay characteristics of
single network elements can be determined by correlating subsequent local measurements
with measurements from remote DEMS peers. To avoid overhead, the only active
monitoring DEM uses are the well known route discovery methods like traceroute or the
ICMP record route option. All other information is gained by passively monitoring
packets.

2.1.4 DipZoom

Rabinovich, Triukose, Wen, and Wang [Rabinovich2006] [Wen2007] [DipZoom]
proposed a system that explores a new approach to provide on-demand measurements.
This approach, named DipZoom (for Deep Internet Performance Zoom), facilitates a peer-
to-peer network of measurement providers and requesters, and it uses ideas from file-
sharing P2P networks in its service discovery. This proposal is a system where anyone can
offer measurements from their computers and other computing devices, and anyone can
request measurements.

The DipZoom system consists of three main entities: the measurement providers who
install DipZoom measurement software on measuring hosts (referred as measuring points,
or MPs) and make these hosts available for measurements; the measurement requesters
who request measurements from the measuring points; and the DipZoom Core, which
matches measurement requesters with providers, processes payments, and enforces
security and trust mechanisms. The DipZoom centralized core is very similar to Napster,
thus it could become a potential bottleneck and a crucial point of failure. If the centralized
core is not available, the entire system cannot be used.

In the proposed system, the measuring points (MPs) advertise to the core their capabilities
(the platform, the offered measurements, the pricing, the maximum rate of measurements
the MP is willing to perform, etc.), announce their coming on-line, and perform
measurements requested by the core on behalf of the clients. The core maintains the
database of the MPs and keeps track of those MPs that are currently on-line. The clients

2.2 Community-oriented networks

Page 7 of 220

query the database for the MPs that fit their requirements (based on such characteristics as
the geographical location, the autonomous system to which the MPs belong, the MP’s
operating system, the MP’s connection bandwidth), submit measurements requests from
selected MPs, and download the results.

The initial proposed DipZoom system supported wget, ping, traceroute, and nslookup as
part of the standard MP. This system required the implementation of a “measurement plug-
in” mechanism that would allow it to incorporate arbitrary new measurement tools.

2.2 Community-oriented networks

2.2.1 PlanetLab

PlanetLab [Peterson2002] [PlanetLab] is a widely infrastructure of machines distributed all
over the world designed and operated to serve as a test bed for overlay networks where
researchers can experiment a variety of new network services, including distributed
storage, network mapping, peer-to-peer systems, distributed hash tables, content
distribution networks, routing and multicast overlays, QoS overlays, scalable object
location, scalable event propagation, anomaly detection mechanisms, and network
measurement tools.

PlanetLab allows the development and deployment of new network technologies in a
controlled environment, incorporating realistic topologies and behavior, by providing
dedicated hardware. Most of the machines are hosted by research institutions, although
some are located in co-location and routing centers and are all connected to the Internet.

Many researchers of different academic institutions and industrial research labs have used
PlanetLab to develop new technologies and there are many other active research projects
running on PlanetLab.

2.2.2 DIMES

DIMES [Shavitt2005] [DIMES] is a scientific research project, aimed to study the
structure, topology and evolution of the Internet with the help of a volunteer community.
The main objective of this project is to map the Internet at several levels of granularity. To
do so, they created a distributed active measurement infrastructure that applies the @home-
style measurement approach. This infrastructure is formed by a collection of machines on
which users have installed a provided downloadable tool (DIMES agent) from the DIMES
project web site [DIMES].

The DIMES agent performs Internet measurements such as traceroute and ping at low
rates. The agent is supposed to not send any information about its host’s activity/personal
data, but only the results of its own measurements. The results of measurement tests are
collect in a central server and then processed and made available to the community.

DIMES is widely used among many Internet users who volunteer to participate in the
project by installing the DIMES agent on their machines.

2.3 Summary

Page 8 of 220

2.2.3 NETI@home

NETI@home [Simpson2004] [NETI@home] is a passive measurement infrastructure that
also uses the @home-style approach. Its software can be freely downloaded and installed
by volunteered users, to collect network performance and workload statistics from their
machines. The basic idea is to sniff packets sent from and received by the host and infer
performance metrics based on these observed packets. The software sends the resulting
data to a server at the Georgia Institute of Technology (Georgia Tech), where they are
aggregated to respect privacy and then made publicly available. NETI@home users are
able to select a privacy level that will determine what types of data will be collected and
reported. NETI@home is designed to run quietly in the background using few resources,
with little or no intervention by the user.

2.3 Summary

This chapter describes existing measurement systems based on a P2P architecture. M-coop,
pMeasure and DEMS are all equipped with built-in measurement modules used to perform
active or passive measurements. Thus, a user is not able to install and use third party
monitoring modules to perform measurements. On the contrary, DipZoom may support
arbitrary monitoring modules, but requires the development of plug-ins to support them.
Moreover, this system is based in a centralized core which is a critical point of failure.

All these systems have rudimentary storage capabilities, which make it difficult to handle
large data files and restrict the type of measurements that can be carried out. The results of
the test measurements are only stored at the nodes where the measurements were carried
out, thus not guarantying availability and the possibility of multiple sources download.
Moreover, the architectures are not hierarchical and, therefore, do not scale well with the
number of measuring nodes.

Our proposal will try to overcome some of the limitations of the presented systems.

In this chapter, we also described some community-oriented networks. These networks are
becoming very popular and they allow users to cooperatively perform measurements in the
Internet and retrieve the obtained results. However, some issues must be taken in
consideration when implementing such an infrastructure: for example, the preservation of
the privacy of ISPs and users, the legal and proprietary ownership concerns, the prevention
of measurements that might cause harm to the network or to users, and the verification of
the integrity of data collected from not trusted sources. Additionally, in the @home-style
measurement networks, researchers must ensure that the distribution sites are secure so that
users do not download software that has been tampered with. In [Claffy2006] some of
these issues are identified and some measures that should be taken in consideration in such
infrastructures to guarantee the security of users and providers are described.

Due to its distributed P2P architecture the DTMS-P2P system can be used as a community-
oriented measurement infrastructure where user allow other users to perform measurement
tests in their machines and share the results among them.

Chapter 3. Overview of the DTMS-P2P Protocol

Page 9 of 220

Chapter 3. Overview of the DTMS-P2P Protocol
In this chapter we provide an overview of the various features of the DTMS-P2P protocol.
The DPMS-P2P protocol creates an overlay network using TCP connections to allow the
remote configuration of measurement sessions in the third-party monitoring modules
installed at the overlay nodes, the replication of measurement files in some of these nodes,
and the search and retrieval of the measurement results.

In section 3.1 we describe the way the overlay network is constructed and maintained. In
section 3.2 we present the mechanism for configuring measurement sessions. In section 3.3
we identify the types of measured data files and we explain how the data files are
replicated. In section 3.4 we describe the way the files can be searched and retrieved.
Finally in section 3.5 we refer briefly to the security features of the protocol.

3.1 Overlay network

The overlay network consists of two main entities: the client and the node, which can be
either in probe or super-probe mode. The client is the interface between the monitoring
system and the user. It is used to configure the system, to configure the measurements and
to retrieve the measured data. Clients do not require large processing or storage capabilities
and, therefore, can run on simple devices such as PDAs or mobile phones. Nodes perform
the measurements and store the results and, therefore, require more processing and storage
capabilities than those required by clients.

To improve the scalability of the system, the nodes are organized in measurement groups,
and each group is responsible for monitoring a particular network area. Measurement
groups are identified by a unique id called measurement group ID or simply Group ID
(appendix A.1). Each group has at least one super-probe, and can also have probes. Super-
probes connect to each other and are responsible for communication with other
measurement groups. Super-probes are identical to Gnutella’s ultra-peers [Gnutella06]. A
probe connects directly to a super-probe of its measurement group. Both probes and super-
probes can perform measurements, but super-probes have also to manage the probes under
its control and connect to other super-probes. Thus, super-probes must be the nodes with
more resources (e.g. CPU usage, free memory and storage capacity) within a measurement
group. A node can alternate dynamically between the two modes of operation, probe or
super-probe, in order to adjust to different network conditions and resource availability.
The node can be administratively configured to start operating as a probe or as a super-
probe.

Figure 1 represents the hierarchical relationship between the system elements.

3.1 Overlay network

Page 10 of 220

Figure 1. System hierarchy.

The overlay network is formed by connections between clients and super-probes, between
probes and super-probes, and between super-probes (Figure 2). All other types of
connections are not allowed, for example, connections between probes or connections
between a probe and a client. Furthermore, clients and probes can be connected to only one
super-probe which must be of the same measurement group. The measurement group of a
node is defined by the node manager. The measurement group of a client is defined by the
user.

Figure 2. Overlay network.

Any node that wants to connect to the network must know at least one node that is already
part of the network. If the node is the first one, it will promote itself to super-probe mode,
if not yet in this mode, and will establish the first measurement group. It can then accept
connections from clients, from probes of its measurement group or from other super-
probes. When a node of a measurement group that still does not exist attempts connection
to the network, it will promote itself to super-probe mode, if not yet in this mode. The
network is dynamically built using this process.

3.1 Overlay network

Page 11 of 220

All network elements maintain a cache of known nodes (CKN) including (hopefully) all
the nodes of the network (probes and super-probes). For each node, the CKN includes
information on its IP address, mode and measurement group. Moreover, each node in the
CKN will have a status of “tested”, if the cache owner was able to test the connection with
that node successfully, or “non-tested”, if a connection is yet to be attempted. Network
elements try to connect to the closest nodes based on measured RTT.

The nodes are assumed to be highly heterogeneous in their processing and storage
capabilities. Thus, it cannot be assumed that each node knows all other nodes in the
overlay network, especially if the network is large. As a result connectivity between all
network nodes is not fully guaranteed, but will be highly probable for reasonable sizes of
the CKN.

The mode of a node (probe or super-probe) may change over time. Thus, in the process of
connecting to the network, any element (client, probe or super-probe) will attempt
connection to any node (probe or super-probe). Clients and probes may try connecting to
probes of their measurement group and super-probes will try connecting to probes of its
measurement group or others, even if these connections will not be completed because the
remote nodes are indeed in the foreseen mode.

Clients and probes only test the nodes in their CKN when trying to connect to the network.
This process ends upon discovery of the first super-probe of their measurement group that
accepts the connection request. Thus, a client or probe that is connected to the network
may have in its CKN both “tested” and “non-tested” nodes.

Super-probes must establish connections with all other super-probes in the network. Thus,
super-probes must test all the nodes in their CKN when trying to connect to the network.
However, a super-probe is considered to be connected to the network right after
establishing the first connection to another super-probe of the overlay network.

The CKN needs to be updated frequently to reflect the most recent network topology.
Towards this end, any element trying to connect to the network will exchange caches with
the nodes it tries to connect to, even if the connection will not be completed. Moreover,
super-probes will test the connections with nodes in its CKN periodically and, afterwards,
will broadcast its cache to all network elements.

During the update process the cache can have some of its nodes removed, information
regarding some of its nodes (mode, measurement group or status) updated or new nodes
inserted. The update of a (local) CKN based on information received from a remote node
must follow a number of rules to assure that the update reflects the most recent topology.

Super-probes will be demoted to probes whenever possible to keep the number of super-
probes in each measurement group at a minimum. Two super-probes of the same
measurement group connected to each other must determine if one of them can be demoted
to the probe mode based on their available resources (memory occupancy and number of
connections that can be accepted) and on the supported security modes. This verification is
carried out in two situations: (i) periodically between each super-probe and all other super-
probes of the same measurement group it is connected to and (ii) immediately after a
successful connection between two super-probes of the same measurement group. The

3.2 Measurement sessions

Page 12 of 220

demotion only occurs if one of the super-probes can accept the connection from all the
elements currently connected to the other one. In case of demotion, the demoting super-
probe must inform all the elements connected to it to connect to the surviving super-probe.

The load that each probe imposes on the super-probe it is connected to can vary over time.
Super-probes can close connections to some of its probes in order to prevent becoming
overloaded. The probes will then try to connect to other (less loaded) super-probes or, if
not possible, promote themselves to the super-probe mode. This mechanism guarantees
load distribution when a super-probe gets overloaded.

3.2 Measurement sessions

The overlay network provides the infrastructure that allows monitoring modules that can
be executed through command line, such as tcpdump [TCPdump], ping, traceroute, J-
OWAMP [JOWAMP], and others [NMT], to be remotely configured to execute (active or
passive) traffic measurements.

In the initial configuration of a node, the node manager must indicate which monitoring
modules the node supports and what the restrictions that must be respected are. One
example of a restriction is to not support the option -t (Ping the specified host until
stopped) when executing the ping command in windows machines. Another example is, in
J-OWAMP, to use only the ports for the Server, Session-Sender and Session-Receiver that
were previously configured by the node’s manager.

The client is used as the normalized interface to configure the monitoring modules.
Through the client, the user may introduce the address and measurement group of the node
and the name of the monitoring module where he wants to perform the measurement. It can
also introduce the configuration parameters of the measurement including, for example, the
start time of the measurement. There are a number of features that can help users when
they are unsure about one or more aspects of the measurements to be performed. For
example, the client may obtain information on all nodes that support a given monitoring
module or on all monitoring modules that a given node supports. The client may also
obtain the usage description of a module. After the selection of the node and monitoring
module, the client shows the user the list of restrictions that apply to that module on that
node. This information can then be used in configuring the measurements.

3.3 Types of measured data files and data replication

There are two types of measured data files: light data and Heavy Data Files.

The Light Data File (LDF) provides a coarse, but updated and fully available, view of the
network status. It stores the round-trip time (RTT) statistics between a super-probe and all
the elements connected to it (clients, probes and super-probes). The LDF is periodically
built by each super-probe and broadcasted to all other super-probes of the overlay network.
Any super-probe will store only the most recent LDFs of all super-probes (including its
own). Since clients download the LDFs using HTTP, they can be used to retrieve the LDFs
stored at the super-probe they connect to or at any other super-probe.

3.3 Types of measured data files and data replication

Page 13 of 220

The Heavy Data File (HDF) stores the results of all scheduled measurements, and can
include detailed packet or flow information, and statistics of packet delays and losses
measured over a period of time, obtained through active or passive monitoring techniques.
Thus, for each configured measurement there will be one HDF storing the measurements.
Moreover, HDFs may also store statistics, or even parameters of traffic models, calculated
over the measured data, if the nodes are configured to do so.

These HDFs are stored at the node that created them and are possibly replicated at other
nodes of the same measurement group (preferably) and/or other measurement groups
(super-probes included). It is given preference for replication of files in the measurement
group that created them since it is more likely that clients search measured data of the
measurement group they are attached to. The replication improves the system reliability,
since data can be retrieved even if the node that made the measurements becomes inactive
or inaccessible. Also, a file can be more efficiently downloaded if simultaneously
downloaded from multiple sources storing it, a process called multi-sources download.

By default a HDF should be replicated at least in one location. The maximum number of
replications is configured by the node manager of the (original) source node, which is also
given the option to define the maximum number of replications as a function of the file
size.

The replication mechanism tries to achieve the following goals:

1. The replications must first be attempted in the measurement group of the (original)
source node; only if there are not enough resources in this group should other
measurement groups be searched for file replication.

2. The replicas must be (geographically) spread as much as possible among the nodes
that have sufficient resources to replicate the file in order to guarantee availability.

In order to control the replication process we define time periods, which are relatively long
(24 hours by default), and will be called replication periods. The (original) source node
must try to create all replicas of the file during a replication period.

To process the required number of replications of a new HDF, the (original) source node
must first search for possible locations where the file can be replicated by flooding a
request to the overlay network. There are two possible scopes for the replication search
process. The search can span over all super-probes (global scope) or only over the nodes of
the (original) source node measurement group (local scope). In order to accomplish goal 1
stated above, the scope of the search process is made local in the first replication periods
(in the first two by default) and only in the remaining ones (the third and the fourth by
default) will be made global. In the search process, each super-probe that matches the
replication search scope, must try to find among its probes a number of them that may
store the file to be replicated and then respond to the request with the obtained list of
probes. Super-probes must only return the number of locations solicited in the request
message. To select the best locations and to speed-up the search process, super-probes can
try to find twice as many the required number of locations among its probes and only
return the ones with more available resources and, in case of a tie, which are faster. The

3.3 Types of measured data files and data replication

Page 14 of 220

super-probe itself can be included in the returned list, when the super-probe has enough
resources to replicate the file and there are not enough probes with available resources.

Whenever a response from a super-probe is received, and if the maximum number of
replications has not been reached (for this purpose, the number of replications equals the
number of replicas successfully created plus the number of replications being processed),
the (original) source node selects a small number of nodes (2 by default) from the list sent
in this message and asks these nodes to initiate the download of the HDF from the
available storing nodes. The available storing nodes are the (original) source node and
other nodes where the HDF was already successfully replicated. When there are two or
more available storing nodes, the HDF can be downloaded simultaneously from those
nodes (multi-source download). The (original) source node will store the addresses of the
potential storing nodes listed in the response message for which a request has not yet been
issued; this information may be used later to complete the required number of replications.

The storing node must send a confirmation to the (original) source node, when the
download is finished or when an error occurred. This confirmation (positive or negative)
will trigger new replication requests, again directed to a (small) number of nodes, if the
maximum number of replications has not been reached and there are still potential storing
nodes for which a replication request has not been issued. If there are not enough potential
storing nodes, the (original) source must flood a new request to the overlay network asking
for (new) potential storing nodes. A confirmation received from a storing node must trigger
new replication requests because it is not possible to determine how many super-probes
will respond to the potential storing nodes search request sent by the (original) source node
and when responses will be received. The address of the storing node from where a
positive confirmation was received is stored as a new storing node by the (original) source
node and may be used as a new source from where the HDF can be downloaded in future
replications.

The procedure of allowing only a small number of replications whenever a new request is
issued to a super-probe, tries to avoid the concentration of many replicas in nodes under
the control of a single super-probe, and spread the replicas in nodes that are geographically
away from each other.

The procedure described above forces the start of new downloads to be dependent on the
reception of response messages from super-probes or confirmation messages from nodes
selected to download a file. Thus, if these messages stop arriving before the replication
process is complete, the process will be halted. However, when a new replication period is
started, the replication process can be resumed. At this time, we discard all requests for
which a confirmation was not yet received. Afterwards, if there are still potential storing
nodes for which a request was not issued, the (original) source asks a (small) number of
these nodes to start the file download; otherwise it floods a new request to the overlay
network for potential storing nodes. Thus the replication period serves two purposes: first it
allows implementing a progressive search for potential storing nodes, starting by the
measurement group of the (original) source node; second it provides a mechanism for
resuming the replication process when it is halted due to unresponsive potential storing
nodes or lack of potential storing nodes.

3.4 Search and retrieval of measurement files

Page 15 of 220

After the first replication period, there should be some more replication periods (one more
by default) where the scope of the replication will still be local. This is because, there still
may be potential storing nodes in the measurement group of the (original) source node
after a replication period, since super-probes only include in its response to a request
issued by the (original) source node a number of probes that is equal or lower than the
maximum number of replications.

The replication period is defined as a long timeout because it is not possible to determine
how long it will take for a file to be downloaded by a given selected node. This is because
the duration of the download process depends on many factors (receiving and storing
nodes speed and load, available network bandwidth, current network traffic, etc.). Still, it is
very likely that a file will be completely downloaded much before the end of a long time
period (e.g. 24 hours).

One alternative to having a global long replication period would be to have an individual
long replication period for each file download. This would allow a better control of the
number of replications to be performed. Recall that at the end of a global replication period
new download requests will be issued, while ignoring on-going downloads, which may
result in a number of replications higher than the maximum, if some of this on-going
downloads get completed successfully. However, it would be much more complex to
determine when to change from a local scope to a global scope replication.

The replication process stops when all replicas are successful produced or the total number
of replication periods has been performed.

3.4 Search and retrieval of measurement files

The search and retrieval of measurement files can be performed through the client element.
The methodologies adopted for these two functions are similar to the ones used in
traditional P2P file sharing applications (e.g. Gnutella 0.6 [Gnutella]).

To initiate a search a client must first send a search request to its super-probe. The request
includes the search criteria used to identify files the client is looking for. The search
criteria may be the name of the file to be searched or a set of keywords. Any receiving
super-probe should forward the request to all nodes connected to them. The nodes sharing
files satisfying the search criteria should answer to the request. After receiving the
responses to the configured request, the user can choose which files should be downloaded.

The data download is performed directly between the requesting element and the nodes
where the files are stored using HTTP, out of the overlay network. This download can be
made from multiple sources when the file is stored in multiple locations.

3.5 Authentication and/or Encryption

The exchange of messages in the overlay network and of data files can be authenticated
and encrypted. There are three security modes: unauthenticated, authenticated and
encrypted. In the unauthenticated mode both control messages and data files are sent as
clear text; in the authenticated mode, data files are sent as clear text and control messages
are both authenticated and encrypted; in the encrypted mode, both control messages and

3.5 Authentication and/or Encryption

Page 16 of 220

data files are authenticated and encrypted. In order to implement the security modes, each
connection between elements must share a secret key.

Chapter 4. DTMS-P2P Protocol Specification

Page 17 of 220

Chapter 4. DTMS-P2P Protocol Specification
In this chapter we present the detailed specification of the DTMS-P2P protocol. In section
4.1 we describe the supported security features. In section 4.2 we present the message
flooding mechanism. In section 4.3 we describe the process of construction and
maintenance of the overlay network. In section 4.4 we explain how monitoring modules
can be remotely configured to process test measurements and how the measurement results
are stored. In section 4.5 we describe how the data files with the measurement results are
replicated. In section 4.6 we explain how these files can be searched. In section 4.7 we
present the proposed download mechanism. In section 4.8 we describe the process to
produce, broadcast and retrieve the information stored in the Light Data Files. In section
4.9 we present some additional functionalities implemented by the DTMS-P2P client. In
section 4.10 we refer briefly to some considerations about additional security issues.
Finally, in section 4.11 we will give a summary of the chapter and present the main
conclusions. The complete description of each control message is provided in appendix
A.2.

4.1 Security mechanisms

In the DTMS-P2P protocol the messages exchanged between network elements may be
sent in their original format or may be authenticated and/or encrypted. The security
features of the DTMS-P2P protocol are similar to those of the One-way Active
Measurement Protocol (OWAMP) [RFC4656]. There are three security modes:
unauthenticated, authenticated and encrypted. An element may support one or more
security modes at the same time. It is up to the element’s administrator to decide which
security modes the element should support.

In the unauthenticated mode all messages are sent in their original format. In the
authenticated and encrypted modes the control messages exchanged between elements of
the system are both authenticated and encrypted. The data messages are not authenticated
in both security modes but are encrypted in the encrypted mode.

The next subsections describe in more detail the authentication and encryption process and
their relationship with the three different modes.

4.1.1 Message authentication and encryption

Message authentication is used to verify if the message was indeed sent by the remote
element and if its content has not been modified. The DTMS-P2P protocol uses HMAC
(keyed-Hash Message Authentication Code) for message authentication [RFC2104]. The
message content (header and payload) together with a secret key (that we will designated
by HMAC key) are applied to the hash function to produce a block of data that is inserted
in the end of the message. In order to verify the authentication of a received message, an
element must compare the HMAC block received in the message with the HMAC block it
computes over the received message content. The two blocks must be equal otherwise the
message authentication has been compromised. It is crucial to check for this before using
the message; otherwise, existential forgery becomes possible. The complete message for
which HMAC verification fails must be discarded and the connection where the message

4.1 Security mechanisms

Page 18 of 220

was received must be dropped. In the DTMS-P2P protocol the hash function is SHA-1, the
HMAC block is truncated to 16 bytes and the HMAC key has 32 bytes.

Message encryption is used to hide the message content. In the DTMS-P2P protocol
messages are encrypted using the Advanced Encryption Standard algorithm in Cipher
Block Chaining mode (AES-CBC). AES-CBC requires a secret key (that we will designate
by AES key) and an initialization vector (IV) of the same size, which in the case of the
DTMS-P2P protocol is 128 bits. In order to decrypt a received message, an element must
know the AES key and the IV used by the sending element. The same key but different
initialization vectors are used in each direction of the communication. To be able to use
AES for stream encryption, all messages must have a size multiple of 16 octets. When
required, a message must be padded to ensure this size, before authentication and
encryption. The message padding must be removed in the receiving side, after the message
decryption and message authentication.

In the DTMS-P2P protocol message encryption always requires message authentication,
and authentication happens before encryption. Therefore, the HMAC block is encrypted
along with the message content. This process is illustrated in Figure 3.

Figure 3. Message authentication and encryption.

In the authenticated and encrypted modes all control messages exchanged between peers
are both authenticated and encrypted. The data messages are not authenticated in both
security modes but are encrypted in the encrypted mode (section 4.7.4).

In the DTMS-P2P system each pair of elements uses different AES and HMAC keys and
different IVs for communication, which are generated and exchanged when they connect to
each other. Thus, an encrypted message that arrives at a node must first be decrypted, using
the key of the connection with the previous element. Only then can the message be sent to
the next element (possibly) encrypted using the key of the connection with that element.

4.1.2 Key generation and distribution

In the DTMS-P2P protocol the requesting element is responsible for generating the HMAC
and AES keys used for authentication and encryption. These keys are then sent to the
remote element as part of the connection set-up process, in a transmission encrypted with
another key derived from a secret shared by both elements (that we will designate by
session key). This encryption uses again AES in CBC mode but with an initialization
vector of zero.

4.2 Message flooding and routing

Page 19 of 220

The secret shared by both elements is a pair of username/passphrase provided by the
element’s administrator. Both the username and passphrase must be a string of alpha
numeric characters and must not contain new lines. Each element may be configured to
support more than one username/passphrase pair. The different pairs of
username/passphrase are provided by the element’s administrator through an XML file
with the Document Type Definition (DTD) represented in Figure 4. This file will be
designated by File of Username/Passphrase Pairs (FUPP).

Figure 4. File of Username/Passphrase Pairs XML DTD.

In this XML DTD the “PassPhrase” element represents a username/passphrase pair. It has
two child elements: the “userName” element which contains the username of the pair and
the “passPhrase” element which stores the correspondent passphrase. The “PassPhrase”
element contains an attribute (“id”) which stores the id of the correspondent
username/passphrase pair.

Figure 5 shows an example of the File of Username/Passphrase Pairs. In this example there
are two username/passphrase pairs. The first one has username “user1” and passphrase
“pass1” and the second one has username “user2” and passphrase “pass2”.

<?xml version="1.0"?>
<PassPhrases>

 <PassPhrase id="pp1">
 <userName>user1</userName>
 <passPhrase>pass1</passPhrase>
 </PassPhrase>

 <PassPhrase id="pp2">
 <userName>user2</userName>
 <passPhrase>pass2</passPhrase>
 </PassPhrase>

</PassPhrases>
Figure 5. Example of a File of Username/Passphrase Pairs.

The session key is derived from a passphrase using the PBKDF2 function [RFC2898]. In
the case of the DTMS-P2P protocol, the PBKDF2 function applies HMAC-SHA1 to the
input passphrase along with a salt value and iterates the process a number of times
designated by count. The salt and the count are generated by the responding element.

4.2 Message flooding and routing

The DTMS-P2P protocol resort to flooding for routing messages from origin to one (or
more) destinations. In the protocol there are two types of messages: request-response
messages and information messages, which are sent one-way only (do not require a

4.2 Message flooding and routing

Page 20 of 220

response). Information and request messages are flooded towards one or more destinations
while response messages are routed back to the source node using the reverse path of the
request message.

The basic flooding rules are the following. Flooding occurs only at the super-probe level,
except in the case of the super-probe directly connected to destinations. Messages are
uniquely identified by a 16 byte random number, called Message ID, and a fragment index
used when the content to be sent is fragmented in different messages (messages should not
be larger than 4 KB – appendix A.2.1). When fragmentation is used all fragments have the
same Message ID. Each super-probe maintains a table, called Route Table, storing for each
message to be flooded it receives, the Message ID, the message’s fragment index and the
identifier of the connection where the message was received. When a message to be
flooded arrives at a super-probe, the super-probe verifies if its Message ID and fragment
index are in the Route Table. If yes, the message is discarded; if not the Message ID, the
message’s fragment index and the identifier of the connection where it was received are
stored in the Route Table and the message is sent to all connections except the one where it
was received.

The basic flooding process has one exception. When the message has a single destination,
each super-probe that is visited by the message verifies if the destination node (super-probe
or probe) is attached to it. If yes, it forwards the message to that node only.

The scope of flooding is constrained by a TTL (Time To Live) mechanism that prevents
messages from being completely flooded in large networks. Specifically, each message has
a TTL and a Hops fields (appendix A.2.1). At the source node the Hops is set to 0 and the
TTL is set to the maximum number of super-probes the message is allowed to cross
(usually 7). When a message is received by a super-probe the TTL is decremented and the
Hops is incremented. If the TTL reaches 0, the message is no longer forwarded. Note that,
in all nodes, TTL + Hops equals the initial TTL.

The routing of response messages back to the source node is performed as follows.
Response messages have the same Message ID of the corresponding requests. When a
response message arrives at a super-probe, its Message ID is searched in the Route Table.
If it is found, the message is sent to the connection associated with the Message ID;
otherwise it is discarded.

In the case of request-response interactions, to assure that the response message will reach
the requesting element, it must have an initial TTL greater or equal to 1 plus the value of
Hops received in the corresponding request message.

In the flooding process, when a message arrives at a super-probe and is to be forwarded to
a probe directly connected to it, the super-probe first verifies if the message will be
rejected by the probe. If yes, the message will not be forwarded to it. Super-probes
maintain information about its probes that enables this type of verification. Consequently,
whenever a probe receives from its super-probe a message not destined to it or a message
with a request it does not support, the probe must reset the connection to its super-probe
and try to connect to another super-probe of the network.

4.2 Message flooding and routing

Page 21 of 220

Whenever a message is received at an element, the element verifies its correctness. If the
message is invalid (e.g. the message has an invalid field) the receiving element must
discard the message and close the connection with sending element.

The size of the Route Table is a configurable parameter that is a tradeoff between memory
occupancy and correctness of the flooding and reverse forwarding processes. Indeed, the
record of a message (Message ID, message fragment index and connection identifier) must
be kept in memory for time enough to assure that flooding is stopped or the response
message in a request-response interaction is routed back to the requesting element. Clearly,
when a new record arrives at a full Route Table, the new record must replace the oldest
one.

Whenever a super-probe is the source of a message to be flooded, before sending the
message to other super-probes, it must save a record of this message into its RouteTable.
This should be done to prevent the super-probe from processing a message it sent.

A client must keep a list with the Message IDs of each message it sends (client’s list of
Messages - CLM). The CLM is used in three situations. First, it is used to verify, when a
response message is received, if it is a response to a request made by the client. If not, the
response message is discarded. Second, it is used to implement a wait mechanism: if the
response is not received within a timeout period the corresponding record is removed from
the list. Third, it is used when there is no timeout but the user may give up waiting for the
response; in this case the client, when prompted by the user, removes the corresponding
record from the list. The size of the CLM is a configurable parameter; when the CLM is
full a new record must replace the oldest one.

The request-response message type of the DTMS-P2P protocol may be split in three
different categories: (i) messages destined to one node of a given measurement group; (ii)
messages destined to all nodes of a given measurement group and (iii) messages destined
to all nodes of the network (all measurement groups). A more detailed description about
how these messages are exchanged between the elements of the system will be presented in
the next sections. At the end, we discuss the influence of the DTMS-P2P modes of security
in the message flooding process.

4.2.1 Messages destined to one node of a given measurement group

When the message is destined to one node of a given measurement group (MG), the
message must have information about the MG and IP address of the destination node.

Therefore, upon reception of a message a node (super-probe or probe) must first verify if
the message is destined to it. The message’s destination IP address must be used to process
this verification. In case of success, the node must also verify if the message’s destination
MG is properly filed. In this case the message’s destination MG must be equal to the
node’s MG. If not, the message must be discarded.

If the message is not destined to a receiving super-probe it must then verify if the message
is destined to another node connected to it. The message’s destination IP address must be
used to process this verification. If the super-probe is directly connected to the destination
node it must then verify the message’s destination MG. However, this verification will

4.2 Message flooding and routing

Page 22 of 220

only be possible if the destination node belongs to the super-probe’s MG. This is because
super-probes do not save the information about the Group ID of super-probes of other MGs
since, for the correct operation of the system, it is not imperative for a super-probe to know
the Group ID of all the nodes connected to it. Saving these Group IDs would unnecessarily
occupy the super-probe’s memory space. Usually, super-probes only store the information
about if the remote element belongs or not to its MG.

Thus, after an element receives a message, four situations may occur:

1. The message is destined to the receiving node’s address, but not to its MG;

2. The message is destined to the receiving node’s MG, but not destined to its address;

3. The message is destined to the receiving node’s address and MG;

4. The message is not destined to the receiving node’s address, neither to its MG.

In case 1, the receiving node must discard the message. In this case, if the receiving node is
a probe or a super-probe of the sending element’s (client or super-probe) MG, it must also
reset the connection to the sending element. A client must not send erroneous messages.
Super-probes must verify a message before forwarding it to a destination node. However,
if the sending and the receiving nodes are both super-probes and of different MGs, the
receiving super-probe must not reset the connection to the sending super-probe because, in
this case, a super-probe is not able to verify if the message’s destination MG is or not the
MG of the destination super-probe.

In case 2, if the node is a probe it must discard the message and close the connection to its
super-probe. If the receiving node is a super-probe four situations may occur: (i) the
message is destined to one of the probes under its control; (ii) the message is destined to a
super-probe of its MG and connected to it; (iii) the message is destined to a super-probe of
another MG and connected to it and (iv) the message is destined to a node not connected to
it.

In case (i) and (ii) the super-probe must forward the message directly to the receiving node
only if it verifies that this node supports the request received in the message. If the
destination node doesn’t support the request, the super-probe must discard the message and
may answer to the requesting element rejecting the request.

In case (iii), the message must be discarded. In this case the super-probe should not reset
the TCP connection to the super-probe from where the message was received because a
super-probe is not able to verify the message’s destination MG if not directly connected to
the destination node. However, if the message was received from a client connect to the
receiving super-probe, the connection should be closed because the client is sending
erroneous messages.

In case (iv), the super-probe must forward the message to all super-probes connected to it
(except to the super-probe from where it received the message) and not only to the super-
probes of the destination MG. This must be done because it may be possible that not all
super-probes of the system are interconnected. This situation may happen because a super-

4.2 Message flooding and routing

Page 23 of 220

probe may be configured to only connect to a given maximum number of nodes of a
DTMS-P2P network to prevent its overloading in very large networks, where the super-
probe would have to process a lot of connections. Thus, forwarding the message to all
super-probes connected to the receiving super-probe may guarantee that the message can
reach the super-probes of the destination MG through another path, whenever necessary.

In case 3, the receiving node must process the message and, whenever required, may send
a response message.

In case 4, if the node is a probe it must discard the message and close the connection to its
super-probe. If the receiving node is a super-probe the same situations described for case 2
may happen. In case (i) and (ii) the super-probe must behave as in situation (iii) of case 2.
In case (iii), the super-probe must forward the message directly to the receiving node. In
case (iv), the super-probe must act as in situation (iv) of case 2.

The Figure 6 illustrates an example of the message flooding process when a message is
destined to a given node of a given MG.

Figure 6. Message flooding process when a message is destined to a given node of a given MG.

In this example a request message is sent by the client 2.1 and is destined to the probe 2.1.
The client 2.1 sends the request message to its super-probe. As the message is not destined
to it and it is not directly connected to the destination node, the super-probe 2.2 should
forward the received message to all super-probes connected to it. Thus, the message could
reach its destination even if the super-probes 2.1 and 2.2 were not directly interconnected,
but were indirectly interconnected through the super-probes of other MGs. Subsequently,
each receiving super-probe should forward the message to all other super-probes connected
to them, except to the one from where they received the request message. If a super-probe
receives a request messages it received before, it should discard the received message.
Because the super-probe 2.1 is directly connected to the node to which the message is
destined, it should forward the message only to that node.

4.2 Message flooding and routing

Page 24 of 220

The probe 2.1 (destination node) upon reception of the request and whenever required,
should process the request and send a response to the requesting element. The response
message must have the same Message ID of the received request message. The response
should be sent to its super-probe (node from which the probe received the request).

Using the information stored in the Route Table (Message ID of the request message and
connection from where it was received), each receiving super-probe (super-probes 2.1 and
2.2) should forward the response only to the same node from where they received the
request message. In this way, the responses follow back along the same path the request
was received.

4.2.2 Messages destined to all nodes of a given measurement group

When a message is destined to all nodes of a given measurement group (MG), it must carry
the Group ID of this MG. Each receiving node should only process the request received in
the message if it belongs to the MG the message is destined.

In this case and for the same reasons described in situation (iv) of case 2 in section 4.2.1, a
receiving super-probe must forward the message to all super-probes connected to it (except
to the super-probe from where it received the message) and not only to the super-probes of
the destination MG. Moreover, only the receiving super-probes of the destination MG and
whenever required, should forward the message to the required probes connected to them
and which will not discard the message.

The Figure 7 illustrates an example of the message flooding process when a message is
destined to all nodes of a given MG.

Figure 7. Message flooding process when a message is destined to all nodes of a given MG.

In this example a request message is sent by the client 2.1 and destined to the all nodes of
the MG Group3. The client 2.1 sends the request message to its super-probe. After
receiving it, the super-probe 2.2 should forward the received message to all super-probes

4.2 Message flooding and routing

Page 25 of 220

connected to it. Subsequently, each receiving super-probe should forward the message to
all other super-probes connected to them, except to the one from where they received the
request. Because the message is only designated to the nodes of the MG Group3, only the
super-probe 3.1 should process the message and forward it to the probes connected to it (in
this case, just the probe 3.1).

The nodes of the destination MG upon reception of the request and whenever required,
should process it and send a response to the requesting element. In this particular case, is
considered that only the super-probe 3.1 responds to the request. The response message
must be routed back to the requesting element as described in the example of section 4.2.1.

4.2.3 Messages destined to all nodes of the network

When a message is destined to all nodes of the network (nodes of all measurement groups)
all the receiving nodes should process the received request.

In this case, all receiving super-probes (independently of their measurement group) and
whenever required, besides forwarding the received message to other super-probes, should
also forward the message to the required probes connected to them that will not discard the
message.

The Figure 8 illustrates an example of the message forwarding process when a message is
destined to all nodes of the network (all measurement groups).

Figure 8. Message flooding process when a message is destined to all nodes of the network (all MGs).

In this example a request message is sent by the client 2.1 and is destined to all nodes of
the network. The client 2.1 sends the request message to its super-probe. After receiving it,
the super-probe 2.2 should process the message and forward it to all super-probes
connected to it. Subsequently, each receiving super-probe should process the message and
forward it to all other super-probes connected to them, except to the one from where they
received the request. Whenever required, a receiving super-probe should also forward the

4.2 Message flooding and routing

Page 26 of 220

message to the probes connected to it. However, it may be possible that the request is only
to be forwarded to super-probes or to both probes and super-probes, depending on the
characteristics of the request message.

Each receiving node upon reception of the request and whenever required, should process
it and send a response to the requesting element. The response message must be routed
back to the requesting element as described in the example of section 4.2.1.

4.2.4 Message flooding vs. security modes

During the message flooding process after a request message is received an element should
have in consideration the security modes supported by the requesting and destination
elements before processing the received request and before forwarding the message to
other node(s). Two situations may occur: (i) the request message can only be processed by
the receiving node or forwarded to another element if the destination and requesting
elements support a common security mode; (ii) the request message can be processed by
the receiving node or forwarded to another element even if the destination and requesting
elements do not support a common security mode. The case (i) occurs whenever the
received request requires a direct connection between the two involved elements.
Remember that two elements can only connect to each other if they support a common
security mode. The case (ii) occurs whenever the received request does not require a direct
connection between the two involved elements. This verification requires that messages
include information about the security modes supported by their generating element
(appendix A.2.1).

In case (i), if the receiving node is a probe it may not respond to the request and may close
the connection to the sending super-probe. This is because in this case, a super-probe
should only forward a message to a given probe, under its control, if it verifies that the
probe will be able to process it, having in consideration the security modes supported by
the probe and the requesting element. Super-probes must have information about the
security modes supported by all nodes connected to them. This information is provided
during the connection set-up process (section 4.3.5). However a super-probe must always
forward a message to another super-probe even if the remote super-probe does not support
a common security mode with the requesting element. This is because the message must
reach all its possible destinations and this is only possible if super-probes perform this
procedure, for the same reason explained in section 4.2.1 for situation (iv) of case 2.

The case (i) may occur in different situations. For example, only the nodes that support a
monitoring module a user wants to use and support a common security mode with the
requesting client, can be used by the user to perform a given test measurement. The
elements should respect this procedure because the client will only be able to connect to
the node and retrieve the results of a configured test session, if both elements support a
common security mode. Another example may be found in the file replication process,
where only nodes that support a common security mode with the (original) source node
should be used to process a file replication. In this case, the (original) source node and the
receiving node can only interconnect to replicate a file, if they support a common security
mode. In these two examples, the receiving element must follow the procedure described
in case (i) because the involved elements are supposed to interconnect to transfer a given

4.2 Message flooding and routing

Page 27 of 220

file between them. Files transference must always be processed outside the DTMS-P2P
network directly between the two involved elements, using HTTP (section 4.7).

The case (ii) may also occur in different situations. For example, if a user wants to get the
information about the available resources at a remote node, the node should answer to the
request even if it does not support a common security mode with the client the user is
using. In this case, the response is forwarded back to the requesting client using the
DTMS-P2P network. The two involved elements are not required to directly connect to
each other.

In the following figure is illustrated an example where different security modes (A –
Authenticated, E – Encrypted and O – Open/Unauthenticated) are supported by the
elements of the system and some elements support two different pairs of
username/passphrase (1 and 2) shared secret. On each connection is depicted the security
mode used between the two involved elements (for example, E(1) – encrypted security
mode using shared secret 1).

O

AEO
(1/2)

Probe 1

Client 1

O

E2

E2

O

E1

O E2

A2O

E2

Super-probe 2

Super-probe 3

E1

Super-probe 1

E (2)

AEO
(1/2)

AE (2)

A (2)O

O

Probe 2Probe 3

Client 2

Client 3

O
E (1)

AEO (2)

Probe 4

O

Super-probe 4

Figure 9. Message flooding vs. Authenticated and Encrypted security modes.

In this example, the client 1 should never be able to configure a test session at the super-
probe 2 because it would not be able to retrieve the results from this node or from another
node, if they are not replicated at a location supporting a common security mode with it.
Also, the super-probe 2 should not consider the probe 2 as a possible location to replicate a
file because it will not be able to interconnect with the probe to replicate the required file,
since they do not support a common security mode. However, because of the reasons
described for the case (ii), for example, if a user wants to get the information about the
available resources at the probe 1, the node should answer to the request even if it does not
support a common security mode with the client the user is using (for example client 1).

However, when the elements support different username/passphrase pairs, it may be
possible that a client is able to configure a test session at a given node, but may not be able
to retrieve the results from the selected node. This situation may happen because, although

4.3 Construction and maintenance of the overlay network

Page 28 of 220

the two elements support a common security mode, they do not support the same
username/passphrase pairs. For example, if the client 2 is used to configure a test session at
the probe 1, it may not be able to retrieve the results of the test session if the results are not
replicated at a node supporting the same security mode and username/passphrase pairs the
client 2 supports. To prevent this problem, the elements of the system should always know
the same username/passphrase pairs.

4.3 Construction and maintenance of the overlay network

In this section we will describe the various mechanisms for the construction and
maintenance of the overlay network. In section 4.3.1 we describe how a network is started.
In section 4.3.2 we present the lists of known nodes and in section 4.3.3 the list of active
connections maintained by each element. In sections 4.3.4 and 4.3.5 we describe how the
elements connect to an already established network and what the protocol for connection
set-up between any two peer elements is. In section 4.3.6 we present the topology
maintenance mechanisms. Finally, in section 4.3.7 we describe the rules for updating the
cache of known nodes.

4.3.1 Initial topology

To initiate a DPMS-P2P network, the network administrator must first start a node in
super-probe mode. If the node is started in probe mode it will promote itself to super-probe
mode; this mechanism will be described in section 4.3.4. The started node will create the
first measurement group of the network. Subsequent network elements should be
configured to connect to nodes already connected to the network. When a probe or client
wants to connect to the network, they must connect to a known super-probe of their
measurement group. A super-probe must connect to all other super-probes of the network,
from the same or other measurement groups. If a started node belongs to a new
measurement group, not yet present in the overlay network, it will be started as a super-
probe (from this new group). In the DTMS-P2P network, both the probe and super-probe
nodes must be always waiting for incoming connection requests. The client only requests
connections. It should not receive connections requests from elements trying to connect to
the network.

4.3.2 Lists of known nodes

Each network element maintains two lists with information about the nodes in the network,
one in memory and another in disk. We will denote the list maintained in disk as the File of
Known Nodes (FKN) and the list maintained in memory as the Cache of Known Nodes
(CKN). In both lists, each entry refers to a node in the network that the list owner knows
about and contains several fields. In the FKN there are four fields in each entry:
measurement group, mode (probe or super-probe), IP address (DTMS-P2P supports both
IPv4 and IPv6 addresses) and listening port. In the CKN there is an additional field in each
entry: the average RTT (between the list owner and the node).

The CKN is structured in several parts according to three attributes: measurement group,
mode (probe or super-probe) and status (tested or not tested). This is represented in Figure
10. First, the CKN is divided in two parts, one gathering nodes of the list owner
measurement group and another gathering nodes of other measurement groups. We will

4.3 Construction and maintenance of the overlay network

Page 29 of 220

refer to the first part as the ownerMG and the second one as the otherMGs. The second part
is further divided in several parts, each gathering nodes of a specific measurement group.
Each of these parts is further divided according to status and mode. Each part
corresponding to a measurement group will include first “tested” super-probes, second
“tested” probes, third “non-tested” super-probes and last “non-tested” probes. Within each
of the smallest parts the nodes are sorted according to RTT. Note that an element may be
unable to compute the RTT to a node that is switched off, behind a firewall or configured
not to answer to ICMP Echo Requests. Thus, nodes for which it was not possible to
measure the RTT are placed in the end. When it is determined that a node must be removed
from a part of the CKN, the last node of this part must be removed. The parts
corresponding to each measurement group are sorted placing first the ownerMG and then
the parts corresponding to other measurement groups sorted according to average RTT,
where the average is computed over all group elements.

Using these rules, the CKN is sorted such that closer elements and closer measurement
groups are placed first. This will enhance the probability that connected elements will be
geographically near to each other and, in this way, improve the latency of the network.

List owner measurement
group - ownerMG

Tested super-probes

Tested probes

Non-tested super-probes

Non-tested probes

Tested super-probes

Tested probes

Non-tested super-probes

Non-tested probes

Tested super-probes

Tested probes

Non-tested super-probes

Non-tested probes

Tested super-probes

Tested probes

Non-tested super-probes

Non-tested probes

Measurement group X

Measurement group Y

...

Other measurement
groups - otherMGs

Figure 10. Structure of the CKN.

The CKN has a (configurable) maximum number of entries (maxNumberOfNodeAddr).
Ideally the CKN should include all nodes in the network. However, this may not be
possible for large networks. In this case, it is important that the CKN contains not only

4.3 Construction and maintenance of the overlay network

Page 30 of 220

nodes from the measurement group of the list owner but also nodes from every other
measurement groups with as many groups as possible represented in the list. In this way
we minimize the probability of having groups of nodes isolated from each other. The CKN
is managed using a complete sharing policy. Under this policy, it may be possible that the
list is completely filled with nodes either from the list owner measurement group or with
nodes from other measurement groups. However, when the list is full, a (configurable)
minimum of entries is assured for each part. This minimum is minOtherMGs for nodes
from other measurement groups and minOwnerMG for nodes of the list owner
measurement group. Note that these minima are correlated such that minOwnerMG =
maxNumberOfNodeAddr - minOtherMGs. Moreover, in the case of nodes from other
measurement groups there are a (configurable) maximum number of entries per group
(maxOtherMGs).

The CKN structure favors assuring connectivity among all nodes. However, in large
networks, it is neither required nor efficient to have full connectivity among super-probes.
The limits described above help managing the connectivity of the overlay network.

When a network element is installed it should be provided with a FKN with at least one
entry. The FKN will then be updated dynamically using information received from the
network nodes that the list owner connects to.

We have adopted XML as the FKN format because of its readability which facilitates the
exchange of files between different implementations of the DTMS-P2P protocol. The
Document Type Definition (DTD) of the FKN is represented in Figure 11.

Figure 11. File of Known Nodes XML DTD.

In this XML DTD the “GroupID” element comprises the information about the nodes of a
given measurement group. It contains two child elements: the “super-probes” element and
the “probes” element. Both elements comprise the “node” element which stores the
information about the IP address (“IP” element) and its version number (“IPVN” element)
and the port number (“port” element) where a given node is running. The “GroupID”
element has one attribute (“id”) which represents the GroupID of the correspondent
measurement group.

Figure 12 shows an example of a FKN. In this example, the list has two measurement
groups, one with Group ID 0 and another with Group ID 1 (appendix A.1). The first
measurement group has one super-probe and two probes. Their IP version number, IP
address and listening port number are given in the IPVN, IP and port fields respectively.
The second measurement group only has one address corresponding to a super-probe.

4.3 Construction and maintenance of the overlay network

Page 31 of 220

<?xml version="1.0"?>
<FileOfKnownNodes>

 <GroupID id="00000000000000000000000000000000">
 <super-probes>
 <node>
 <IPVN>4</IPVN>
 <IP>192.168.0.1</IP>
 <port>22368</port>
 </node>
 </super-probes>
 <probes>
 <node>
 <IPVN>4</IPVN>
 <IP>192.168.0.2</IP>
 <port>22368</port>
 </node>
 <node>
 <IPVN>4</IPVN>
 <IP>192.168.0.3</IP>
 <port>22368</port>
 </node>
 </probes>
 </GroupID>

 <GroupID id="00000000000000000000000000000001">
 <super-probes>
 <node>
 <IPVN>4</IPVN>
 <IP>192.168.1.1</IP>
 <port>22368</port>
 </node>
 </super-probes>
 <probes>
 </probes>
 </GroupID>

</FileOfKnownNodes>
Figure 12. Example of a File of Known Nodes.

4.3.3 List of active connections

An element that has joined the network maintains a List of Active Connections (LAC).
This list is used to store information related with the connections that the element
maintains with other network elements. For each connection the following information is
stored in the LAC: connection socket, time of socket creation, and IP address, port number,
mode of operation and supported security modes of remote element.

Only the information related to active connections should be kept in the LAC. Whenever a
connection to a remote element is closed, it must be removed from the LAC. However, if
an element loses connection to a remote super-probe due to an unknown reason it should
try to connect to it again shortly to verify if the remote super-probe is still active.

Clients and probes connected to the network can only have one active connection, to a
super-probe of their measurement group. If these elements are not connected to the
network the LAC must be empty. Super-probes can have connections to clients, probes and
other super-probes of their measurement group and connections to super-probes of other
measurement groups. There is a (configurable) maximum number of connections that a
super-probe can have active, called maxNumberOfConnections. This comprises

4.3 Construction and maintenance of the overlay network

Page 32 of 220

connections to clients, to probes or to other super-probes of its measurement group or
others. In addition, super-probes are only allowed a (configurable) maximum number of
connections to probes, called maxNumberOfProbeConnections. The limit on the number of
connections to probes a super-probe can accept is defined to reserve some space for
connections to super-probes and clients. Note that the number of probes is likely to be
much larger than the number of super-probes and the number of clients.

4.3.4 Network connection process

When an element is started it will try to connect to the network immediately.

A node can be in super-probe or probe mode if it was in that mode before a system failure
or when set administratively. The measurement group of a node (probe or super-probe) is
set by the node administrator. The measurement group of the client is set by the user. Thus,
the user must select the measurement group close to where the measurements are to be
performed or the measurement results are to be retrieved and must provide one or more
nodes of this measurement group in the FKN.

When an element is started it first populates its CKN based on the FKN. If the element’s
address is in the FKN it must not add it to the CKN. Moreover, a node must not be
duplicated in the FKN. For each entry in the FKN, the element measures the RTT to the
corresponding node. The RTT is measured using the ping command [RFC792]. Note that
an element may be unable to compute the RTT to a node that is switched off, behind a
firewall or configured not to answer to ICMP Echo Requests. These nodes should be
placed in the end of the CKN and will be the last ones to be tested. When a node is inserted
in the CKN it will always be in the right order, which is described in section 4.3.7. If there
is space available, the entry is simply inserted in the CKN. When the CKN becomes full,
the entry may or may not be inserted, depending on the number of addresses in each part of
the CKN and on the measured RTT. Recall that the CKN is split in several parts one for
each measurement group. We will denote the part of the list that gathers nodes from the
measurement group of the list owner by ownerMG and the set of parts of other
measurement groups by otherMGs. When the entry is from a node of the list owner
measurement group, then it will be inserted in the CKN if the number of addresses in part
ownerMG is bellow its threshold or if its above the threshold and the measured RTT is
smaller than the largest one in this part. In the first case, the last entry of the part of other
measurement groups with the largest number of addresses will be removed. In the second
case, the last entry of part ownerMG will be removed (first the element should try to
remove probes, then super-probes). When the entry is from a node that is not from the
measurement group of the list owner, then it will be inserted in the CKN if the number of
addresses in part otherMGs is bellow threshold or if it is above threshold and the measured
RTT is smaller than the largest one in the part of its measurement group. In the first case,
the last entry of part ownerMG will be removed. In the second case, the last entry of the
part of its measurement group will be removed. This process ends by dividing each part of
the list in two additional parts, the first one gathering super-probes and the second one
gathering probes.

The process of establishing initial connections varies according to the type of network
element. Clients and probes must try to establish one connection with a super-probe of its
measurement group. Moreover, a client only requests connections. Super-probes try to

4.3 Construction and maintenance of the overlay network

Page 33 of 220

establish connections with all other super-probes. In this process, a part of the list is always
scanned sequentially, from the first entry (smaller RTT) to the last one. Scanning the CKN
by increasing order of RTT will enhance the probability that the elements will be
geographically near to each other and, in this way, improve the latency of the network.

The entries in the CKN are given an attribute of “tested” or “non-tested”, depending on
whether a connection to them was or not tested by the CKN owner. Only “non-tested”
nodes must be tested when connecting to the network.

The connection set-up process between two elements is described in section 4.3.5.

Clients or probes should first try to connect to a super-probe of its measurement group. If
not successful, then they should try to connect to a probe of its measurement group. This
should be done because the CKN may not reflect the most recent mode of a node, since
nodes can switch dynamically between the probe and super-probe modes. Thus one or
more nodes declared in the CKN as being in the probe mode may (already) be in super-
probe mode. Note that a client or a probe should never try to connect to nodes of other
measurement groups. Clients or probes are considered to have joined the network when
they successfully connect to a super-probe of its measurement group. If this was not
possible for a probe, it promotes itself to super-probe mode and reinitiates the process of
connecting to the network (now as super-probe). If it was not possible for a client, it must
stop operating.

A super-probe must try to connect to all super-probes of the network. It starts by testing the
super-probes of its measurement group and then proceeds with the probes of its
measurement group (for the same reason explained above). After testing all super-probes
and probes of its measurement group listed in the CKN, the super-probe should also try the
nodes (super-probes and probes) of other measurement groups. A super-probe stops the
network connection process when all nodes in the CKN have been tested or when the
maximum number of active connections the super-probe can maintain has been reached.

When an element is in the process of connecting to the network, new nodes or more recent
information related with nodes already in the CKN may be discovered because, when
connecting to a remote element, the element always retrieves its CKN. Thus, the element
will update the CKN according to the criteria explained in 4.3.7. It will then proceed the
scanning of the CKN and try to connect with the next node to be tested in the list. There is
some exceptions to this behavior: (i) when an element is testing probes of its measurement
group and new super-probes of its measurement group are discovered, the new super-
probes must be tested before proceeding with the remaining probes; (ii) when an element is
testing nodes of other measurement groups and new super-probes or probes of its
measurement group are discovered, the new super-probes or probes must be tested before
proceeding with the remaining nodes of the other measurement group and (iii) when an
element is testing probes of a given other measurement group and new super-probes of this
other measurement group are discovered, the new super-probes must be tested before
proceeding with the remaining probes.

When a super-probe is in the process of connecting to the network, before trying to
establish a connection to a remote node identified in the CKN, it must first verify if there is
not a connection to that node in its list of active connections. This situation can happen if

4.3 Construction and maintenance of the overlay network

Page 34 of 220

the remote node was the first one to request the connection. In this case, the connection
status of this node in the list will be changed to “tested” and the super-probe will proceed
to the next node in the list. Note that this situation will not happen in the case of probes,
because probes do not accept connection attempts from other nodes.

4.3.5 Connection set-up

Peer network elements connect to each other using a connection set-up process that will be
described in this section.

The connection set-up process has three phases and is illustrated in Figure 13. In the first
phase the requesting element establishes a TCP connection with the responding element. In
the second phase the network elements negotiate the security mode and parameters that
will be used in subsequent messages. In the third phase, the peer elements exchange
information regarding measurement group, mode, IP address, listening port, and (local)
CKN.

Requesting
Element

Responding
Element

TCP connection

Server Greeting

Set-Up-Response

Server-Start

Ping

Pong

Figure 13. Messages exchanged during connection set-up.

4.3.5.1 Second phase

In the second phase, the responding element sends a Server Greeting message (appendix
A.2.2), indicating its willingness to accept or not the connection request and the security
modes it supports. If the connection request is not accepted the responding element closes
the TCP connection after sending the Server Greeting message. The Server Greeting
message also includes the salt and the count needed to compute the session key (section
4.1). The Server Greeting message includes a challenge used to authenticate the requesting
element. This message is completely transmitted as clear text.

4.3 Construction and maintenance of the overlay network

Page 35 of 220

After receiving a Server Greeting message the requesting element responds with a Setup
Response message (appendix A.2.3). First it must verify if it can support any of the
security modes of the responding element. The strongest security mode must be selected.
The encrypted mode is the strongest mode and the unauthenticated mode is the weakest
one. If there is no agreement on the security mode, the requesting element may close the
TCP connection and does not send the Setup Response message. If the authenticated or
encrypted modes are selected the requesting element computes the AES and HMAC keys
(section 4.1). These keys, together with the challenge received in the Server Greeting
message, are sent encrypted with the session key in the Setup Response message. The
message also includes the username of the username/passphrase pair used to compute the
session key and the IV that will be used by the requesting element, sent as clear text.

The second phase of connection set-up finishes when the responding element sends a
Server-Start message (appendix A.2.4). Communication may proceed if the requesting
element is authenticated. Otherwise, the responding element closes the TCP connection
after sending the Server-Start message. This message also includes the IV that will be used
by the responding element, sent as clear text.

Since the requesting element may have more than one username/passphrase pair, in case of
an authentication failure and if there is a username/passphrase pair in its FUPP that has not
been tried, the requesting element reinitiates the connection set-up process with the same
responding element using the next username/passphrase pair in the FUPP.

4.3.5.2 Third phase (handshaking)

In the third phase (handshaking) the peer elements exchange two control messages, called
Ping and Pong.

Following the completion of the second phase the requesting element must send a Ping
message (appendix A.2.5) to the responding element. This message is used to inform the
responding element about the mode, measurement group, IP address and listening port of
the requesting element. It also provides the responding element with the CKN of the
requesting element. After receiving the Ping message, the responding element must update
its CKN, as described in section 4.3.7.

After sending the Ping message, the requesting element must wait for a response, and if no
response is received within a predefined timeout it must retransmit the Ping message a
(configurable) number of times, called numberOfRetransmissions. When the maximum
number of attempts is reached, the requesting element closes the TCP connection.

The response to a Ping message is a Pong message (appendix A.2.6). The Pong message is
used by the responding element to notify the requesting element whether or not it accepts
the connection and to provide the requesting element with information about its mode,
measurement group, IP address, listening port and CKN. The CKN sent in the Pong
message is the one immediately before the reception of the Ping message; it is not updated
according to the CKN received in the Ping message, because it is useless to transmit back
to the requesting element information that it already contains. After receiving the Pong
message, the requesting element must update its CKN, as described in section 4.3.7.

4.3 Construction and maintenance of the overlay network

Page 36 of 220

The responding element will not accept the connection, and will notify the requesting
element of the cause through the Pong message, in the following cases: (i) protocol failure;
(ii) the responding element is already connected to the requesting element; (iii) the
responding element is a probe; (iv) the responding element is a super-probe but the
requesting element is a probe or a client from another measurement group; (v) the
responding element is a super-probe and its maximum number of active connections has
been reached; (vi) the responding element is a super-probe and the requesting element is a
probe from its measurement group, but the former does not have enough resources (CPU
and memory) or its maximum number of active connections to probes has been reached. In
cases (i) and (ii) the Pong message must not include the CKN of the responding node. A
protocol failure in the responding element will occur if the addresses of the requesting or
responding elements are present in the field that transports the CKN. Recall that both Ping
and Pong messages have separate fields for transporting the address and CKN of the
element that sent the message. A protocol failure may also occur if one or more fields have
invalid values. In case of rejection, the responding element must close the TCP connection
with the requesting element. In case (ii), if the responding element is a super-probe and the
requesting element is a probe or client, then the previous connection must also be closed.
This is because a probe or client having this behavior would be violating the protocol,
since the protocol only allows probes and clients to maintain one connection with a super-
probe (of its measurement group). Otherwise, if the requesting element is a super-probe
(irrespective of responding element) the previous connection is maintained since super-
probes may accept and request connections to remote elements.

If the connection is accepted, it will be added to the LAC of the responding element.

The requesting element will discard the connection in the following cases: (i) the
responding element rejects the connection; (ii) a protocol failure occurs; (iii) the requesting
element is already connected to the responding element and (iv) the requesting element is
now a probe and it is already connected to a remote super-probe. A protocol failure will
occur in the same cases of the responding element; in addition it will occur if the Message
ID of the received Pong message is different from the one of the transmitted Ping. Case
(iii) may occur when the requesting element is a super-probe, since super-probes may
accept and request connections to remote elements. Case (iv) may occur if the requesting
element was initially a super-probe that, while processing the connection to the responding
element, was demoted to a probe in result of a connection to another super-probe. In case
of rejection the requesting element must close the TCP connection to the responding
element.

If the connection is accepted, it will be added to the LAC of the requesting element.

When both nodes accept the connection the connection set-up process ends.

A super-probe involved in the handshaking process, either requesting or responding
element, will always store information on the security modes supported by the remote
element. This will be used in the configuration of measurement tests (section 4.4), in the
file replication process (section 4.5) and in the results search process (section 4.6).

Since a network element may be processing several connection attempts at the same time,
there is the possibility that two (or more) connections are added simultaneously to the

4.3 Construction and maintenance of the overlay network

Page 37 of 220

LAC, making the maximum number of active connections to be exceeded. In order to
avoid this situation, the LAC only allows one access at a time (when a connection attempt
is accessing the LAC the access of other connection attempts must be blocked) and access
requests are queued and served using a FIFO discipline.

Note that the acceptance of a connection is independent of the CKN update process. A
connection may be accepted even if it is not possible to store the address of the remote
element in the local CKN.

While performing the connection setup process it may happen that a super-probe (sp1)
requests a connection to another super-probe (sp2) exactly at the same time the remote
super-probe (sp2) is requesting a connection to it. In this case, if both super-probes accept
the connection request received from the remote one they will not be able to complete their
own connection request since they will not be able to add it to their LAC after receiving
the response from the remote one. This is because they will first add to their LAC the
connection request received from the other one before sending their answer to the received
request and only after receiving the response from the remote one will try to add the
connection they requested to their LAC. But, the LAC can not have two connections to the
same element. Thus, both connection requests will be closed by the requesting super-probe
which is expecting that the connection requested by the remote super-probe will remain
active, which will not be the case. Since an element must retry to connect to a remote
super-probe whenever the connection to it is closed by an unknown reason (section 4.3.3)
sp1 will retry to connect to sp2 after this last one closes the connection it requested to it.
The super-probe sp2 will have the same behavior. Thus, both super-probes will retry to
connect to each other and now, hopefully, at different instants.

4.3.6 Topology maintenance mechanisms

In this section we describe the three mechanisms used to maintain the topology of the
overlay network. The first mechanism tries to assure that each network element has always
an updated view of the set of nodes that are active in the overlay network. The second
mechanism tries to assure that the number of super-probes in the overlay network is kept at
a minimum. The third mechanism tries to assure that the load of super-probes is distributed
such that none gets overloaded. These mechanisms will be described in the following
sections.

4.3.6.1 Maintaining the list of known nodes

In order to assure that network elements maintain an updated view of the set of nodes that
are active in the overlay network the following mechanisms are used:

i. The elements should exchange the information stored in their local CKN when they
connect to each other;

ii. Periodically, a super-probe sends its CKN to all nodes of the overlay network,
using a Pong message (Pong flooding process);

The mechanism of case (i) was described in the connection set-up process (section 4.3.5.2).
The other mechanism will be described in the next section.

4.3 Construction and maintenance of the overlay network

Page 38 of 220

4.3.6.1.1 Pong flooding process

In the Pong flooding process super-probes broadcast their local CKN to all other elements
connected to the network by sending a Pong message (appendix A.2.6). This process is
performed in three different situations: (i) when the super-probe finishes its network
connection process (section 4.3.4), (ii) periodically (short interval, 2 minutes default),
preceded by a test to all “non-tested” addresses in the super-probe’s CKN and (iii)
periodically (large interval, 30 minutes default), preceded by a test to all addresses of both
the CKN and the FKN to which the super-probe is not connected to.

Pong flooding is required, in the first place, to assure that the arrival of new nodes to the
overlay network is made known to all other elements. Moreover, the flooding of Pong
messages is required to have some periodicity, because, due the (assumed) heterogeneity of
network elements, namely in terms of storage capacity, it is not possible to guarantee that
each element knows all the network nodes. Therefore, a new node arriving at the network
may not receive enough information from the nodes it connects to, if these nodes have not
enough capacity to store the addresses of all nodes.

In order to assure that the flooded information is reliable, super-probes are required to
update their CKNs, testing some or all addresses, before sending the Pong flooding
message. This is called the testing phase (section 4.3.4). Recall that super-probes may
receive new addresses from network elements that try to establish connection with it or
from the Pong flooding messages it receive. Instead of testing these addresses as soon as
they are received, super-probes schedule all tests for immediately before broadcasting the
Pong flooding messages. This method is computationally lighter and avoids repeating
some tests. Note that in case (i) the testing phase was performed during the connection set-
up process. Thus, the Pong flooding process can start immediately after the ending of the
network connection phase.

The extent of the CKN update differs in cases (ii) and (iii). In case (ii), which is performed
more frequently, the update comprises testing all “non-tested” addresses in the CKN. In
case (iii), the CKN is first updated based on the FKN and then, all CKN addresses to which
the super-probe is not connected to, whether “tested” or “non-tested”, are tested. The
update of the CKN based on the FKN follows the procedure described in section 4.3.4 and
4.3.7.6. The procedure of case (iii) allows nodes that have become inactive to be removed
from the CKN and nodes of the FKN that have become active to be inserted in the CKN.

After accepting a connection request from a remote node a super-probe may not update its
CKN with the address of the remote node in case the CKN is full (section 4.3.7.2.2). As a
result, super-probes may not have in their CKN all the nodes to which they are connected
to. Due to this, in cases (ii) and (iii) after the testing phase a super-probe should always
verify if its LAC contains connections to nodes that are not stored in its CKN. If this is
verified and there is now free space available in the super-probe’s CKN, it must be filled
with the addresses of the identified nodes before the super-probe floods the Pong message.

The rules for flooding Pong messages in the overlay network are described in section 4.2.3.
Each network element should update its CKN after receiving a valid Pong message, using
the procedure described in section 4.3.7.3.

4.3 Construction and maintenance of the overlay network

Page 39 of 220

4.3.6.2 Super-probe demotion negotiation process

The demotion negotiation process is used to keep the number of super-probes in each
measurement group at a minimum. In this process two super-probes, of the same
measurement group and connected to each other, must determine if both should be
maintained in super-probe mode or if one of them can be demoted to the probe mode,
based on their available resources (memory occupancy and number of connections that can
be accepted) and on the supported security modes. It may be possible that, at a given time,
one super-probe (or both) can support all connections maintained by the remote super-
probe. In this case, if the super-probe supports all security modes of the remote one, then
the remote one can demote itself to the probe mode, after requesting all its elements to
reconnect to the surviving super-probe. Conditioning the demotion negotiation process on
the set of security modes supported by the demoting super-probe is required because a
surviving super-probe can only accept the connections of all elements currently connected
to the demoting super-probe if it supports all its security modes.

In the DTMS-P2P system the demotion negotiation process can be performed in two
different situations: (i) after the connection set-up process when a super-probe successfully
connects to another super-probe of its measurement group or (ii) periodically between a
super-probe and each super-probe of its measurement group it is connected to. Case (i) is
required because the two super-probes become known to each other for the first time and,
therefore, need to verify if one of them has enough resources to support the connections of
the other. In this case, the demotion negotiation process is started by the requesting
element. Case (ii) is required because, since the network topology can vary significantly,
with connections being added and removed frequently, there may be periods of time when
the load of a super-probe decreases, making it possible for one of its peer super-probes to
support all its connections. In this case, the period used in the demotion negotiation process
is configured by the node administrator (numberOfSuperProbeVerificationInterval – 24
hours by default).

In the periodic demotion negotiation process, a super-probe must test only one connection
at a time. After testing a connection to a given super-probe, if the requesting super-probe is
not demoted to the probe mode and there are more connections to be tested, the super-
probe must test the next super-probe of its measurement group. However, in case the
requesting super-probe is demoted to the probe mode it must stop the demotion negotiation
process.

The demotion negotiation process starts by an exchange of messages, described in section
4.3.6.2.1, where each peer super-probe declares its available resources and if demotion is
allowed. Then the super-probes, determine if one of them can be demoted to the probe
mode, using the criteria defined in section 4.3.6.2.2.

In case of demotion, the demoting super-probe must first reassign its connections to the
surviving super-probe by sending a Bye message (appendix A.2.37), with the address of
the surviving super-probe, to all elements connected to it (except to the surviving super-
probe). Upon sending a Bye message to a remote element, the demoting super-probe closes
the corresponding connection and updates its LAC. The remote element also updates its
LAC and tries to connect to the surviving super-probe. After sending all Bye messages, the
super-probe should demote itself to the probe mode. Afterwards, the (new) probe must

4.3 Construction and maintenance of the overlay network

Page 40 of 220

perform the following actions: (i) clean its Route Table; (ii) stop the Light Data File
generation; (iii) stop a network connection process, if it was engaged in one when demoted
to probe; (iv) stop any pending demotion negotiation process; (v) send to its super-probe
the list of monitoring modules it supports, using the List of Supported Monitoring Modules
message (appendix A.2.7) and the list of available Heavy Data Files, using the List of
Shared Files message (appendix A.2.8). The (new) probe should also update its FKN based
on the CKN because it may contain information not yet stored in the FKN (remember that
a super-probe only updates the FKN before processing Pong flooding).

In case of a demotion, the surviving super-probe should update both in its LAC and in its
CKN the mode of the connection with the demoting super-probe (section 4.3.7.4).

The super-probes involved in a demotion negotiation process, must process all pending
messages, before effectively changing state (demote to probe, for the demoting super-
probe, or update the mode of the remote super-probe, for the surviving super-probe). The
messages received from the time instant when there was a decision to change state until the
time instant when the state was changed effectively must not be processed.

A super-probe may be involved in several demotion negotiation processes at the same
time. Thus, before effectively changing to the probe mode, a super-probe must first verify
if it is still connected to the remote node, if it is still a super-probe and if the remote one is
still a super-probe too. If one of these conditions is not verified, the demotion negotiation
process should be stopped. Otherwise, the super-probe initiates a change of state.
Moreover, the super-probe must be blocked to perform any other actions while performing
the various actions associated with a change of state.

4.3.6.2.1 Messages exchanged during a demotion negotiation process

To start a demotion negotiation process a super-probe must send a Demotion Negotiation
Request message (section A.2.9) to a remote super-probe. This message is used to inform
the remote super-probe about the number of connections the sending super-probe currently
has active, the number of new connections it can still accept, the amount of available
memory space the super-probe can still use, the memory space occupied by the sending
super-probe’s process and if the sending super-probe is configured (or not) to be
maintained in super-probe mode. After receiving this message, the remote super-probe
should reply with a Demotion Negotiation Response message (section A.2.9). This
message has the same fields of the Demotion Negotiation Request message. The Demotion
Negotiation Response message must have the same Message ID of the corresponding
Demotion Negotiation Request message. The messages exchanged during this process are
illustrated in Figure 14.

4.3 Construction and maintenance of the overlay network

Page 41 of 220

Requesting
super-probe

Responding
super-probe

Demotion Negotiation Request

Demotion Negotiation Response

Figure 14. Messages exchanged during the demotion negotiation process.

The responding super-probe must abort the demotion negotiation process and close the
connection to the requesting super-probe in the following cases: (i) protocol failure; (ii) the
requesting element is not a super-probe of its measurement group; (iii) the responding
element verifies that the set of security modes supported by one peer (itself or the
requesting element) is not contained in the set of security modes supported by the other. A
protocol failure will occur if one or more fields of the received message have invalid
values.

The requesting super-probe will abort the demotion negotiation process and close the
connection to the remote super-probe in the following cases: (i) protocol failure; (ii) the
remote super-probe does not send a Demotion Negotiation Response message during the
configured timeout. A protocol failure will occur in the same cases of the responding
element; in addition it will occur if the Message ID of the received Demotion Negotiation
Response message is different from the one transmitted in the Demotion Negotiation
Request message.

If the responding node is no longer a super-probe, it must send the Demotion Negotiation
Response message with the mode field of the message header set to “probe”. In this case
the content of the message body is irrelevant. In this case the demotion negotiation process
is aborted.

After exchanging Demotion Negotiation messages, both super-probes should compare its
available resources and decide which super-probe will demote itself to probe mode or if
they will both maintain in super-probe mode. This decision is made based on the criteria
described in section 4.3.6.2.2.

4.3.6.2.2 Criteria for demoting a super-probe to probe mode

In the DTMS-P2P system, during a demotion negotiation process between two super-
probes, the nodes use a unique criterion, known to all nodes, to determine if one can be
demoted to the probe mode. As mentioned before, this decision is based on the super-
probe’s available resources (free memory and number of connections that can be accepted)
and supported security modes.

The demotion of a super-probe will only be considered if one super-probe (or both)
supports all the security modes of the other. Otherwise the demotion process will not be
started. If the super-probes do not support the same security modes, but one supports all

4.3 Construction and maintenance of the overlay network

Page 42 of 220

the security modes of the other, only the later can be considered for demotion. If the super-
probes support the same security modes, both of them can be considered for demotion.

A super-probe will not declare to a remote node its total amount of available resources.
Instead it will keep a percentage of the total available resources free. This percentage is
designated by resourcesFreePercentage (20% default). This margin prevents the super-
probe from becoming overloaded, in case it has to hold all the connections of its peer
super-probe. Thus, the resources declared are the following:

i. number of available connections (numOfAvailableConnections) =
maxNumberOfConnections × (1 - resourcesFreePercentage/100) - number of active
connections;

ii. number of available connections to probes (numOfAvailableProbeConnections) =
maxNumberOfProbeConnections × (1 - resourcesFreePercentage/100) - number of
active probe connections;

iii. amount of available free memory (availableFreeMemory) = maxMemory × (1 -
resourcesFreePercentage/100) - amount of free memory, where maxMemory
represents the maximum amount of memory the super-probe process can use.

In all three cases, if the obtained value is less than zero it must be set to zero.

In addition to the three parameters described above, a super-probe also declares to its
remote node the following parameters:

i. current number of connections to super-probes of the same measurement group
(numOfSuperProbeConnections);

ii. current number of connections to super-probes of other measurement groups
(numOfSuperProbeConnectionsOtherGroup);

iii. current number of connections to clients (numOfClientConnections);

iv. current number of connections to probes (numOfProbeConnections);

v. amount of memory currently occupied by the super-probe process
(occupiedMemory);

vi. if the super-probe is or not configured to maintain the super-probe mode (cannot be
demoted to the probe mode).

A super-probe is considered to have enough resources to support the load of a remote
super-probe (allowing the remote super-probe to be demoted to the probe mode), only if
the three following conditions are verified:

i. the super-probe’s availableFreeMemory is greater than or equal to the
occupiedMemory of the remote super-probe;

4.3 Construction and maintenance of the overlay network

Page 43 of 220

ii. the super-probe’s numOfAvailableProbeConnections is greater than or equal to the
numOfProbeConnections of the remote super-probe plus one (connection to the
remote super-probe if demoted to a probe);

iii. the super-probe’s numOfAvailableConnections is greater than or equal to the
number of new connections to super-probes (of the same and other measurement
groups) it will have to establish plus the number of probe and client connections of
the remote super-probe.

In case (i) we consider that the additional memory required by the super-probe in order to
support the load of the remote one is equal to the amount of memory occupied by the
remote super-probe process.

In case (iii), an approximation is considered for calculating the number of new connections
to super-probes, since a super-probe has no means to know what are the super-probes
connected to the peer super-probe. We consider that the set of super-probes connected to
one super-probe (the one with the lowest number of connections) is contained in the set of
super-probes connected to the other. In fact this may not be true, and the super-probe may
need to establish additional connections, eventually reaching the
maxNumberOfConnections. However, the margin considered in
numOfAvailableConnections helps to minimize this problem.

Several situations may occur:

i. The super-probes do not support the same security modes but one of them supports
all the security modes of the other and the later is configured to be kept in the
super-probe mode. In this case, both super-probes will be maintained in super-
probe mode.

ii. The super-probes do not support the same security modes but one of them supports
all the security modes of the other and the later is not configured to be kept in the
super-probe mode. In this case, only the super-probe that supports the lowest
number of security modes is candidate for demotion. It will be demoted only if the
peer super-probe can support its entire load, based on the criteria defined above.
Note that this verification must be performed by both super-probes, since they both
need to determine what the outcome of the verification is.

iii. The super-probes support the same security modes but one is configured to be kept
in super-probe mode. In this case, only the super-probe not configured to be kept in
the super-probe mode is candidate for demotion. It will be demoted only if the peer
super-probe can support its entire load, based on the criteria defined above. Again,
this verification must be performed by both super-probes, since they both need to
determine what the outcome of the verification is.

iv. The super-probes support the same security modes and both are allowed to be
demoted to the probe mode. In this case, each super-probe must verify (i) if it can
support the entire load of the remote super-probe and (ii) if the remote super-probe
can support its entire load. Here, there are three possible cases:

4.3 Construction and maintenance of the overlay network

Page 44 of 220

i. Both super-probes can support the load of the other. In this case, the super-
probe with the lowest number of active connections will be demoted to the
probe mode. In this way, the number of new connections that the
(surviving) super-probe will have to establish is minimized. In case of a tie,
the responding super-probe will be demoted to the probe mode.

ii. Only one super-probe can support the load of the other. In this case, the
remote super-probe will be demoted to the probe mode.

iii. None of the super-probes can support the load of the other. In this case,
both super-probes are maintained in super-probe mode.

4.3.6.3 Load distribution to prevent super-probe overloading

A super-probe accepts only a number of connections from probes
(maxNumberOfProbeConnections), to prevent it from becoming overloaded. However, the
load that each probe imposes on the super-probe, it is connected to, is not fixed. For
example, the super-probe needs to save information about all the files the probe is sharing
(section 4.6.1) and this varies a lot from probe to probe. An additional mechanism was
introduced in order to cope with this variability.

A super-probe should, after processing each new received message, verify if its free
memory space is not below a threshold. This threshold is a percentage
(freeMemThresholdPercentage, 5% default) of the maximum amount of memory the
super-probe process can use (maxMemory). In case this limit is reached, the super-probe
should close a number of connections to probes, until the occupied memory settles below
the threshold, again a percentage (resourcesFreePercentage, 20% default) of maxMemory.

Before closing the connection to a probe, the super-probe sends it a Bye message
(appendix A.2.37), indicating the cause for closing but without suggesting a new super-
probe. A probe receiving this Bye message, will then try to connect to another super-probe
using the addresses stored in its CKN. If this is not possible, the probe should try
connecting again to the initial super-probe. If this also fails, the probe should promote itself
to super-probe mode and reconnect to the network.

Thus, this mechanism redistributes the load of overloaded super-probes to other super-
probes and, when this is not possible, creates new super-probes capable of accommodating
that load.

4.3.7 Updating the CKN

The updating of the CKN of a network element will be performed in four different
situations: (i) during the connection set-up process between any two elements (section
4.3.5), (ii) after receiving a Pong message in the process of Pong flooding (section
4.3.6.1.1), (iii) after a demotion negotiation process (section 4.3.6.2), (iv) after a node
disconnect and (v) before the periodic CKN testing phase (section 4.3.6.1.1). In the cases
(i) and (ii), the update can be based on the CKN received from the remote element (rCKN)
and on the address of the remote element (rAdr). In the cases (iii) and (iv), the update is

4.3 Construction and maintenance of the overlay network

Page 45 of 220

only based on the address of the remote node (rAdr). In the case (v), the update is based on
the information stored in the FKN.

In cases (i) and (ii), before updating the local CKN, the rCKN is filtered and sorted. The
following nodes will be removed from the rCKN: (i) nodes that are already in the local
CKN with the same mode and the same measurement group, (ii) nodes that are already in
the local CKN with a different mode or measurement group but with a status of “tested”,
except in the case of a client or probe receiving a Pong flooding message and (iii) nodes
from other measurement groups in the case of a client receiving a Pong or a Pong flooding
message. Procedure (i) avoids that the RTT measurement is repeated for these nodes.
Procedure (ii) was adopted because, since these nodes were already tested, this information
is considered to be more reliable than the one of the rCKN. The exception for the case of a
client or probe receiving a Pong flooding message is because these elements will no longer
test the nodes of their CKN after becoming connected to the network and the information
flooded by a super-probe can be trusted since the super-probe always tests all the nodes in
its CKN before sending the Pong flooding message. Procedure (iii) was adopted because
clients do not attempt connection to nodes of other measurement groups. After these
filtering, the RTT is measured for each of the surviving nodes and the rCKN is sorted to
adhere to the structure defined in section 4.3.2.

To describe the update of the CKN we will consider separately (i) if and how new nodes
can be inserted and (ii) if the attributes (mode and measurement group) of old nodes (nodes
already stored in the CKN) can be updated. Regarding the insertion of new nodes there are
three update levels:

 Level n0 – new nodes are not inserted in the CKN

 Level n1 – new nodes are inserted in the CKN only if there is space available

 Level n2 – new nodes are inserted in the CKN possibly replacing old nodes

Regarding the attributes of old nodes there are two update levels:

 Level o0 – the attributes of old nodes are not updated

 Level o1 – the attributes of old nodes are updated

The update of the CKN may last for a long period of time, in case there are a lot of new
nodes to be added to the list. Remember that an element must compute the RTT to all
received node addresses to be able to sort them in order of the measured RTTs. Therefore,
elements cannot be blocked while updating its CKN. They must keep processing the
exchange of messages with remote nodes. Thus, it is possible that, at a given time, an
element has more than one update of its CKN scheduled. This may happen, for example, if
a node receives connection requests from different nodes at the same time. In this case, the
element must process one update at a time, with a FIFO service discipline.

The update of the FKN based on the CKN will be performed in the following situations: (i)
after an element completes the network connection process; (ii) by a super-probe, after the
periodic testing phase (section 4.3.6.1.1), if there were one or more CKN updates since the

4.3 Construction and maintenance of the overlay network

Page 46 of 220

previous period, (iii) by a demoting super-probe, after the demotion negotiation process
(section 4.3.6.2) and (iv) by a probe or client already connected to the network, after a
CKN update. The update of the FKN is performed as follows: (i) first write all entries of
the CKN; (ii) second write the entries of nodes that were in the previous FKN but are not
in the CKN. Note that, in this way, the information relative to nodes that were both in the
CKN and in the previous FKN is updated, namely, the mode and measurement group. The
nodes that were in previous FKN but are not in the CKN must be included again in the
FKN because they may become active in the future. Having the FKN updated frequently
will help the network reconnection process of an element after a system failure.

4.3.7.1 Overwriting rules

In the case of levels n2 and o1 updates, the information regarding nodes already in the
CKN may be updated and new nodes are inserted in the CKN possibly replacing other
nodes.

The attributes of old nodes will only be updated when the node has a status of “non-tested”
in the local CKN or a status of “tested” in the rCKN. This is because the information of a
node should only be replaced by more reliable information.

If there is space available in the CKN, a new node will be inserted without removing an old
node. Otherwise, if the CKN is full, a new node will be inserted replacing the last old node
of a MG selected according to the following procedure:

1. If the MG of the new node is OwnerMG and

a. its current number of nodes is bellow minOwnerMG (section 4.3.2), select
one MG from OtherMGs (see criteria bellow).

b. its current number of nodes is above minOwnerMG, select OwnerMG.

2. If the MG of the new node belongs to OtherMGs and

a. its current number of nodes is bellow minOtherMGs, select OwnerMG.

b. its current number of nodes is above minOtherMGs and

i. the current number of nodes in the MG of the new node is above
maxOtherMGs, select the MG of the new node.

ii. the current number of nodes in the MG of the new node is bellow
maxOtherMGs, select one MG from OtherMGs (see criteria bellow).

To select one MG from OtherMGs, the following criteria is used: first select the largest
MG with at least one non-tested probe; if none, select the largest MG with at least one non-
tested super-probe; if none, select the largest MG with at least one tested probe; if none,
select the largest MG with at least one tested super-probe.

4.3 Construction and maintenance of the overlay network

Page 47 of 220

Note that in this case an old node may be removed even if has a higher precedence than the
new node. This is because a level n2 update is only performed when the information
received from the remote element (rCKN or rAdr) is considered more reliable.

4.3.7.2 Updating during the connection set-up process

During the connection set-up process, in the handshaking phase (section 4.3.5.2), both the
requesting and the responding elements will attempt to update its CKN based on
information sent by the remote node, namely (i) the remote CKN (rCKN) and (ii) the
address of the remote node (rAdr). The requesting element attempts to update its CKN
after receiving a Pong message and the responding element after receiving a Ping message.
The way of updating the CKN depends on the type of element and whether or not the
responding element is already connected to the network. The latter is indicated in the
“Connected” field of the Pong message. The update rules are summarized in Table 1 and in
Table 2.

4.3.7.2.1 Updating based on the rCKN

There are five distinct cases regarding the level of update:

 Cases a and d – Requesting or responding super-probes perform updates of
levels n1 and o0 based on the rCKN. This assures that super-probes will test all
addresses that are in its initial CKN, when the network connection or
reconnection processes start, which improves the network connectivity. One
could argue that updates of levels n2 and o1 would be more appropriate in the
case of super-probes requesting connection to already connected probes or
super-probes, because they have more reliable information. However, the
adopted solution minimizes the probability of missing information regarding
nodes connected to the network: on one side, the super-probe will not lose any
of the nodes in its initial CKN, that may have been inserted by the network
administrator, since it is performing updates of levels n1 and o0 and, on the
other side, the super-probe will have access to the nodes listed in the CKNs of
other super-probes, when receiving later their broadcasted Pong flooding
messages.

 Case b – A probe or client requesting connection to a node already connected to
the network perform updates of levels n2 and o1 based on the rCKN. This is
because these elements want to connect to the network as soon as possible; they
will do so when finding a super-probe of its measurement group. Since the
responding element is already connected the network, it may have more recent
information that allows to speed-up the network connection process.

 Cases c, f and g – Probes and clients requesting connection to non-connected
nodes and non-connected probes responding to any element perform updates of
levels n1 and o0 based on the rCKN. This is because the remote element is not
connected to the network and therefore cannot be considered to have more
reliable information.

4.3 Construction and maintenance of the overlay network

Page 48 of 220

 Case e – When the responding element is a connected probe its CKN is not
updated based on the rCKN (updates of levels n0 and o0). Recall that a probe
will no longer test the nodes of its CKN after completing the network
connection process. Since the requesting element is in the process of testing the
nodes of its CKN, and some of these nodes may not have been tested yet, and if
injected in the connected probe could lead to propagation of unreliable
information to other nodes. Note that probes will have access to the nodes listed
in the CKNs of other super-probes, when receiving later their broadcasted Pong
flooding messages.

Note that updates of levels n2 and o1 based on the rCKN will never be performed at
responding elements since the remote elements are in the process of connecting to the
network and, therefore, do not have more reliable information.

When new nodes are inserted in the CKN they are inserted with a status of “non-tested”.
This is because the received information will be used by the receiving element to connect
to those nodes, whenever necessary, and this information may not be completely reliable
since the remote element may not have tested all nodes in its CKN.

Table 1 – Rules for updating the CKN of the requesting element based on Pong.

Requesting Responding Update Levels / Status
rCKN rAdr

SP any n1 / o0 / nt o1 / t a

P, C c SP, c P n2 / o1 / nt o1 / t b
nc SP, nc P n1 / o0 / nt o1 / t c

SP – super-probe
P – probe
C – client

c – connected
nc – not connected
t – “tested”
nt – “non-tested”

Table 2 – Rules for updating the CKN of the responding element based on Ping.

Responding Requesting
Update Levels / Status

 rCKN rAdr
SP any n1 / o0 / nt n1 / o1 / t d
c P any n0 / o0 n1 / o1 / nt e

nc P SP same MG n1 / o0 / nt n2 / o1 / nt f
other n1 / o0 / nt n1 / o1 / nt g

4.3.7.2.2 Updating based on the rAdr

If the rAdr is already present in the CKN, the information regarding mode and
measurement group is updated when incorrectly set (level o1 update). Otherwise, a level
n1 or level n2 update will be performed. These two types of update will only be performed
at responding nodes, since requesting elements already have the rAdr in their CKN. There
are three distinct cases regarding the update level of nodes not yet present in the CKN:

 Case d – Responding super-probes perform a level n1 update based on the rAdr,
by the same reasons of the update based on the rCKN.

4.3 Construction and maintenance of the overlay network

Page 49 of 220

 Cases e and g – Connected probes receiving a connection request from a probe
or super-probe and non-connected probes receiving a connection request from a
node other than a super-probe of their measurement group perform a level n1
update based on the rAdr. In both cases, the remote node is in the connection
set-up process and, therefore, its mode (probe or super-probe) may still change:
a probe can become a super-probe if it cannot connect to a super-probe of its
measurement group; a super-probe can become a probe if demoted in the end of
the connection set-up process. Note that probes already connected to the
network are only allowed to replace entries of their CKN based on Pong
flooding messages.

 Case f – Non-connected probes receiving a connection request from a super-
probe of their measurement group perform a level n2 update based on the rAdr.
This is because a probe always rejects connection attempts but, when not
connected to the network, will try to do so as soon as possible. Since the remote
node is a super-probe of its measurement group, this means the probe has found
a potential node to connect to. Therefore, the super-probe should be inserted in
its CKN. Note that the super-probe will be inserted in the correct order in the
CKN, which depends on the measured RTT; if the measured RTT is smaller
than the RTTs of other super-probes of the same measurement group already in
the CKN, the new super-probe will be tested immediately; otherwise, it will be
tested later (if necessary). The overwriting rules for the level n2 update are the
same as described in section 4.3.7.1.

Note that, in cases a, b and c, the rAdr must be removed from the CKN of the requesting
element if there is a protocol failure or the remote node does not exist.

There are four distinct cases regarding the status assigned to nodes:

 Case a, b and c – Requesting elements change the status of the remote node to
“tested” after completing the connection set-up phase.

 Case d – A responding super-probe will set the status of the updated or inserted
remote node to “tested” to avoid that the super-probe will test the remote node
later which is not necessary.

 Cases e and g – Connected probes receiving a connection request from a probe
or super-probe and non-connected probes receiving a connection request from a
node other than a super-probe of their measurement group set the status of the
updated or inserted remote node to “non-tested”. This is because probes reject
connection attempts from remote nodes and they must test connections to
remote nodes by their own when trying to connect to the network. Only after
this test a remote address can be considered a “tested” one.

 Case f – Non-connected probes receiving a connection request from a super-
probe of their measurement group set the status of the updated or inserted
remote node to “non-tested”, by the same reason of the rAdr update level.

4.3 Construction and maintenance of the overlay network

Page 50 of 220

If the remote node is a client, its address will not be inserted in the CKN since this list only
includes nodes (probes or super-probes).

4.3.7.3 Updating after receiving a Pong flooding

When a node receives a Pong flooding message it will update its CKN based on the
received rCKN and on the address of the super-probe that originated the message. The
procedure is the same for the two cases.

Given that the Pong flooding message is flooded to all network elements, it may contain
the address of the receiving node. In this case, the node must be removed from the rCKN
prior to updating the CKN.

When the receiving node is a client or a probe updates of levels n2 and o1 are performed.
This is because the information flooded by a super-probe can be trusted since super-probes
always test all nodes in their CKNs before sending the Pong flooding message. Clients and
probes must have this behavior because they can no longer test the nodes of their CKN
after becoming connected to the network. Therefore, they must rely on the information
received in the Pong flooding messages in order to keep their CKN updated.

When the receiving node is a super-probe again a level n2 update is performed but with
overwriting rules that have some exceptions in relation to the ones described in section
4.3.7.1. In particular, only super-probes can be inserted in a full CKN and only “tested”
probes can be removed. Moreover, when the MG to be selected for removal is according to
cases 1.a and 2.b.ii of section 4.3.7.1, then the selected MG must be the one with the
greatest number of “tested” probes. This procedure guarantees that “non-tested” nodes are
never removed, which assures that super-probes will test all addresses that are in its initial
CKN. This should be assured for the same reasons of cases a and d of the update based on
the rCKN (section 4.3.7.2.1). Also, only super-probes can be inserted in the CKN because
in order to maximize the connectivity of the overlay network super-probes must keep in
their CKNs the highest possible number of (other) super-probe addresses. Finally, “tested”
super-probes are never replaced by new super-probes because a super-probe should not
risk losing information about a “tested” super-probe stored in its CKN to add another one
for which it may not be possible to establish a connection.

In this case, when the receiving node is a super-probe, the attributes of old nodes will only
be updated (level o1 update) when the (local) status is “non-tested”. When the (local)
status is “tested” we trust the local information; when it is “non-tested” we do not, but will
force a test soon.

In the case of clients and probes, the status of inserted or updated nodes must be set to
“tested”, because they were indeed tested by the super-probe that originated the message
immediately before sending it. This will assure that the new nodes received in a Pong
flooding message may overwrite the nodes that were tested during the connection set-up
process, preventing these (possibly outdated) nodes to be kept indefinitely in the CKN. If
these nodes were considered as “not-tested” then the nodes tested during the connection
set-up process would never be updated and may never be removed.

4.4 Traffic measurements

Page 51 of 220

In the case of super-probes, the status of inserted or updated nodes must be set to “non-
tested”, because super-probes must test all received nodes. However, in the case of a super-
probe directly connected to the super-probe that originated the Pong flooding message, the
address of the later should be inserted with a status of “tested” in the CKN of the former, if
that address was not yet present in the CKN.

4.3.7.4 Updating after the demotion negotiation process

In the demotion negotiation process a surviving super-probe must set the mode of the
demoted super-probe to “probe” in its CKN (level o1 update).

4.3.7.5 Updating after node disconnect

When a super-probe detects a loss of connection with a remote node it must change the
status of the remote node to “non-tested” in its CKN (level o1 update). This is because the
connection with that node must be tested in the next CKN testing phase to verify if it is still
active.

When a probe or client detects a loss of connection with its super-probe, the status of all
nodes in their CKNs is changed to “non-tested” and the CKN is updated based on the
FKN. These elements will try to reconnect immediately to the network. The update of the
CKN based on the FKN is of levels n1 and o0, so new nodes can be inserted only if there is
space available and attributes of old nodes are not updated. Note that the FKN is not
allowed to overwrite the CKN because the latter has more recent information.

4.3.7.6 Updating before the periodic CKN testing phase

Before the CKN testing phase that occurs at large intervals (30 minutes default), super-
probes update the CKN based on the FKN, as probes and clients in previous section.

4.4 Traffic measurements
This section presents the monitoring modules and the mechanisms used to configure traffic
measurements and store the measurement results.

4.4.1 Monitoring modules

The monitoring modules are the modules responsible for the actual traffic measurements.
Examples are ping, tcpdump [TCPdump], tracert and OWAMP [JOWAMP]. A node of the
DTMS-P2P system may support a variety of monitoring modules. When starting a node,
the node’s administrator must provide it the information about the monitoring modules the
node will support and which restrictions must be respected when configuring test sessions
using those monitoring modules. A DTMS-P2P node must only allow users to configure
test measurements in the monitoring modules it supports.

4.4.1.1 List of supported monitoring modules

In the DTMS-P2P system, a node administrator must configure the monitoring modules the
node should support using a XML file. This file will be designated by File of Supported
Monitoring Modules (FSMM). We have adopted the XML format due to its readability

4.4 Traffic measurements

Page 52 of 220

which facilitates the exchange of files between different implementations of the DTMS-
P2P protocol. The Document Type Definition (DTD) of the FSMM is represented in
Figure 15.

Figure 15. File of Supported Monitoring Modules XML DTD.

In this XML DTD the “monitoringModule” element stores the information about a given
monitoring module. It comprises the “id” attribute and some child elements. The “id”
attribute and the “name” element store the name of the supported monitoring module. The
“commandToGetHelpDescription” element describes the command that should be used to
get the help description (or usage) of the given monitoring module. For example, for the
tcpdump monitoring module the command tcpdump -h should be the command to be used
to get the help description of the tcpdump monitoring module. This information can be
used by the node to inform a requesting user how a supported monitoring module can be
configured (section 4.4.2.4). The “listOfOptionsToSaveToFile” element represents the list
of options, separated by “;”, that can be used to configure the monitoring module to save
the results of a test measurement to a file (for example, the -w option of the tcpdump
monitoring module). This information will be used by the node to identify when a user
configured it to store the results of a test session to a file (section 4.4.3). The “restrictions”
element represents the restrictions that should be respected by a client, when configuring
test sessions to be performed at the respective node. If these restrictions are not followed,
the request should be rejected (section 4.4.2.6). The “restrictions” element is composed by
two sub elements: the “mustUse” element and the “doNotUse” element. The “mustUse”
element is used to define the options, separated by “;”, that must be used by a client, when
configuring a test session using the respective monitoring module. For example, it can be
the option -n (Number of echo requests to send) when executing the ping command in
windows machines. The “doNotUse” element is used to define the options, separated by
“;”, that must not be used by a client, when configuring a test session using the respective
monitoring module. For example, it can be the option -t (Ping the specified host until
stopped) when executing the ping command in Windows machines. The “restrictions” field
must be used to prevent the configuration of measurements that may not preserve the
privacy of ISPs and users or that might cause harm to the network or to users. These
security issues are discussed in [Claffy2006]. Thus, the monitoring modules to be used in
the DTMS-P2P system should guarantee the possibility of configuration of security
parameters that assure the preservation of user privacy and safe measurements when
required. For example, one should be able to define which information can be captured and
reported in passive measurements or limit the number of packets to be sent to the network
in active measurements.

4.4 Traffic measurements

Page 53 of 220

Figure 16 shows an example of a FSMM. In this example, the node is configured to
support four monitoring modules: ping, tracert, owping and tcpdump.

Figure 16. Example of a File of Supported Monitoring Modules.

All the nodes of the DTMS-P2P network should be configured to support, at least, the ping
and Trace Route monitoring modules. The Trace Route monitoring module has different
names in Windows (tracert) and Linux (traceroute) Operating Systems.

4.4.1.2 Sending of information regarding supported monitoring modules

In the DTMS-P2P system, a super-probe must keep the list of monitoring modules that
each probe connected to it supports. This information is centralized in super-probes to save
in signaling messages when clients query the DTMS-P2P system about the nodes that
support a given monitoring module. Thus, a probe must send the information about which
monitoring modules it supports to the super-probe it connects to, right after completing its
network connection process (section 4.3.4). This information is sent in a List of Supported

4.4 Traffic measurements

Page 54 of 220

Monitoring Modules message (appendix A.2.7). In this message the probe sends a list of
the hash codes of the monitoring modules’ names it supports, converted to lower case
(appendix A.3). Using the hash codes of the monitoring module’s name, smaller messages
are generated. Hash codes are also used because the super-probe’s memory will be used
more efficiently since each word hash code only occupies 4 bytes (the name of the
monitoring modules may occupy more bytes).

The List of Supported Monitoring Modules message must only be sent by a probe if it
supports one or more monitoring modules (Figure 17).

Probe Super-probe

Connection set-up

List of Supported Monitoring Modules

Figure 17. Sending of information regarding supported monitoring modules.

After receiving this message a node must verify if it is a super-probe. If not, the message
must be discarded and the connection where the message was received must be closed.
Only super-probes can receive this type of message.

The List of Supported Monitoring Modules message may be received more than once. If
the super-probe verifies that the message was already received before, from the sending
probe, it should replace the list of supported monitoring modules related to the sending
probe with the information received in the new message. This situation may happen
because a running probe may have its configuration changed, to support a new monitoring
module or to not support a given monitoring module anymore. In these cases, the probe
should inform the super-probe to which it is connected of this change, by sending a new
List of Supported Monitoring Modules message to it.

4.4.2 Measurement tests configuration

Performing a measurement in the DTMS-P2P system requires indicating the address and
measurement group of the implicated nodes and the name of the monitoring module. If a
user knows this information in advance, it can enter it manually in the DTMS-P2P client.
For other cases, the client includes several features to help users selecting the nodes and
modules where the measurements will be performed:

1. A user may know the monitoring module but not the measurement nodes. Instead
of maintaining a list of all active network nodes, which could be expensive in terms
of memory occupancy, the client maintains a list of all active measurement groups.
After selecting the measurement group, the user may configure the client to ask for
a list of all nodes from a specific measurement group that support a specific
measurement module. The user is also given the possibility to configure the client
to ask for a list of all network nodes. However, as referred above, it is not advisable
to use this option since it could be very expensive.

4.4 Traffic measurements

Page 55 of 220

2. A user may know the measurement group but neither the address of the
measurement nodes nor the monitoring module. In this case, the user may configure
the client to ask for the list of all nodes from a specific measurement group and,
after receiving this list, to ask for a list of monitoring modules supported by a
specific node.

3. A user may know the measurement nodes (address and measurement group) but not
the monitoring module. In this case, the user may configure the client to ask just for
a list of monitoring modules supported by a specific node.

After the selection of the measurement nodes and of the monitoring module, the client
shows the user the list of restrictions associated with the selected monitoring module. Since
a user may not know exactly how to configure the module, the user may configure the
client to ask for the usage description of that module.

The protocols used by the client to prepare and execute a test session are described in the
following sections.

4.4.2.1 Measurement group discovery request

This section explains how a client obtains a list of all measurement groups in a DTMS-P2P
system. The client must send a Measurement Group Discovery Request message (appendix
A.2.10) to its super-probe (Figure 18). This message should then be flooded among all
super-probes, as described in section 4.2.3. Each super-probe receiving this message, must
reply with a Measurement Group Discovery Response message (appendix A.2.11), where
it indicates the Group ID of its measurement group. This message is forwarded back to the
client using the path taken by the request message, as described in section 4.2.3.

The super-probe to which the client is connected doesn’t need to send a Measurement
Group Discovery Response message, because the client already knows the super-probe and
its Group ID.

4.4 Traffic measurements

Page 56 of 220

Figure 18. Messages exchanged during the measurement group discover process.

With all the Measurement Group Discovery Response messages received in response to the
Measurement Group Discovery Request message, the client can build its list of known
measurement groups of the network. The maximum length of this list should be configured
by the client’s administrator. This list may have two fields: the Group ID of the
measurement group and the number of super-probes of that measurement group.

The request is sent by the client upon completion of the connection set-up process. In
addition, the request is sent whenever the user prompts the client to do so. Recall that the
characteristics of the DPMS-P2P network can vary frequently, with new measurements
groups being added and old measurement groups being removed from the network. Clients
may also be configured to periodically send this request.

4.4.2.2 List of nodes retrieval

A client may request information on a list of nodes. There are three cases: request (i) the
list of all nodes from a specific measurement group that support a specific monitoring
module, (ii) the list of all nodes from a specific measurement group and (iii) the list of all
network nodes. In all cases the information can be retrieved from super-probes.

4.4.2.2.1 List of all nodes from a specific measurement group that support a
specific monitoring module

To obtain the information about all nodes of a specific measurement group that support a
specific monitoring module, the client must send a List of Nodes Discovery Request
message (appendix A.2.12) to its super-probe, indicating the Group ID of the measurement
group and the name of the monitoring module. This message is then flooded among all
super-probes, as described in section 4.2.2. Each super-probe of the measurement group
indicated in the request message (and only those), must reply with a List of Nodes

4.4 Traffic measurements

Page 57 of 220

Discovery Response message (appendix A.2.13) (Figure 19). In this message the
responding super-probe identifies all its probes that support the requested monitoring
module. It can also include itself if it also supports the requested monitoring module. This
message should only include nodes that support a common security mode with the client.
This is because only in this case will the client be able to connect to the node and retrieve
the results of a configured test session (section 4.2.4). The security modes supported by the
client are indicated in the request message (as in any message). A super-probe receiving a
request message does not need to forward it to its probes, because super-probes maintain
information on the monitoring modules and security modes supported by all its probes. The
List of Nodes Discovery Response message should be forward back to the client using the
path followed by the request message, as described in section 4.2.2. A response message
should not be sent when the super-probe has no positive answer to the request.

Requesting
client

Responding
super-probe

List of Nodes Discovery Request

Other super-
probes

List of Nodes Discovery Response

List of Nodes Discovery Response sp i

List of Nodes Discovery Request to all sp

List of Nodes Discovery Response sp i

(...)

List of Nodes Discovery Response sp k

List of Nodes Discovery Response sp k

(...)

Figure 19. Messages exchanged during the list of nodes retrieval process.

After receiving a List of Nodes Discovery Response message, the client should present to
the user the received information and this information should be updated each time a new
List of Nodes Discovery Response message is received. The user can then choose the
nodes to be used in the test session. If the client does not receive the first response message
within a configured timeout (section 4.2), then it should inform the user about this event.
All List of Nodes Discovery Response messages, received after the user has chosen the
nodes to be involved in the test session should be discarded. To do so the client must
remove the record corresponding to the request from its list of sent messages (CLM –
section 4.2).

The information received in the List of Nodes Discovery Response messages should be
stored in a temporary file and not in the client’s device memory because a lot of nodes may
support the requested monitoring module. The content of the file should be the information
presented to the user.

4.4 Traffic measurements

Page 58 of 220

4.4.2.2.2 List of all nodes from a specific measurement group

To obtain the information about all nodes of a specific measurement group, the client must
send a List of Nodes Discovery Request message (appendix A.2.12) to its super-probe,
indicating the Group ID of the required measurement group. This message must not
contain the name of a monitoring module as in the case described in section 4.4.2.2.1. This
message is then flooded among all super-probes, as described in section 4.2.2. Each super-
probe of the measurement group indicated in the request message (and only those), must
reply with a List of Nodes Discovery Response message (appendix A.2.13) (Figure 19). In
this message the responding super-probe identifies itself and all its probes. The List of
Nodes Discovery Response message should be forward back to the client using the path
followed by the request message, as described in section 4.2.2.

After sending the List of Nodes Discovery Request message, the client must wait for
responses and process them as described in section 4.4.2.2.1.

4.4.2.2.3 List of all network nodes

To obtain the information about all network nodes, the client must send a List of Nodes
Discovery Request message (appendix A.2.12) to its super-probe. This message must not
comprise a measurement group ID neither the name of a monitoring module as in the case
described in section 4.4.2.2.1. This message is then flooded among all super-probes, as
described in section 4.2.3. Each receiving super-probe must reply with a List of Nodes
Discovery Response message (appendix A.2.13) (Figure 19). In this message the
responding super-probe identifies itself and all its probes. The List of Nodes Discovery
Response message should be forward back to the client using the path followed by the
request message, as described in section 4.2.3.

After sending the List of Nodes Discovery Request message, the client must wait for
responses and process them as described in section 4.4.2.2.1.

4.4.2.3 List of supported monitoring modules retrieval

To obtain the list of monitoring modules a given node supports, the client must send a List
of Supported Monitoring Modules Request message (appendix A.2.14) to its super-probe,
indicating the Group ID of the node’s measurement group and the node’s address (Figure
20). Then, the message should be flooded to the destination node, as described in section
4.2.1. After receiving this message, the destination node must reply with a List of
Supported Monitoring Modules Response message (appendix A.2.15). In this message the
responding node must include the information about all the monitoring modules it is
configured to support and the restrictions that must be respected when configuring test
sessions with them, as was configured by its administrator (section 4.4.1.1). This message
is forwarded back to the client using the path taken by the request message, as described in
section 4.2.1.

4.4 Traffic measurements

Page 59 of 220

Figure 20. Messages exchanged during the list of supported monitoring modules request process.

After receiving the List of Supported Monitoring Modules Response message, the client
should provide the user with the list of monitoring modules the remote node supports. The
user can then choose the module he wants to use to configure the test session among the
monitoring modules the remote node is configured to support. If the client does not receive
a response message within a configured timeout (section 4.2), it should stop waiting for the
response and should inform the user about this event.

4.4.2.4 Monitoring module’s help retrieval

To retrieve the help or usage description related to a given monitoring module a remote
node supports, the client must send a Monitoring Module Help Request message (appendix
A.2.16) to its super-probe, indicating the node’s measurement group and address and the
name of the required monitoring module (Figure 21). This message should be flooded to
the destination node, as described in section 4.2.1.

If the node receiving the Monitoring Module Help Request message is a super-probe and it
verifies that the message is destined to a node (probe or super-probe) connected to it, it
should forward the message to the destination node even if it verifies that the remote node
does not support a common security mode with the requesting client (section 4.2.4). In this
case, the receiving super-probe could be configured to not forward the request to the
destination node, since the requesting client does not support a common security mode
with the destination node (section 4.2.4). However, the super-probe should forward the
message anyway because the user may only want to get the help or usage description of the
required monitoring module and is not willing to configure test measurements at the
remote node. But, if the destination node is a probe connected to it, before forwarding the
Monitoring Module Help Request message, the receiving super-probe should first verify if
the probe supports the required monitoring module. In case this condition is not verified
the super-probe should reject the request (Monitoring Module Help Response message –
appendix A.2.17). In this case, the receiving super-probe does not need to forward the
Monitoring Module Help Request message to the probe because it will reject the request
too. Note that the security modes supported by the client are indicated in the request
message (as in any message) and super-probes maintain information on security modes

4.4 Traffic measurements

Page 60 of 220

supported by all elements connected to them and information on the monitoring modules
supported by all its probes.

After receiving the Monitoring Module Help Request message, the destination node must
respond with a Monitoring Module Help Response message (appendix A.2.17). In this
message, and if it supports the required monitoring module, the responding node must
include the help or usage description related to the requested monitoring module. If the
node does not support the required monitoring module, it should reject the request. The
Monitoring Module Help Response message must be forward back to the client using the
path followed by the request message, as described in section 4.2.1.

Figure 21. Messages exchanged during the monitoring module help request process.

After receiving the Monitoring Module Help Response message, the client should present
to the user the received help or usage description related to the required monitoring
module. Using this information, the user is able to configure the test measurements he is
willing to execute. If the client does not receive a response message within a configured
timeout (section 4.2), it should stop waiting for the response and it should inform the user
about this event.

4.4.2.5 Monitoring module’s list of restrictions retrieval

To get the list of restrictions of a monitoring module from a specific node the client must
send a Monitoring Module List of Restrictions Request message (appendix A.2.18) to its
super-probe. This message should then be flooded to the destination node, as described in
section 4.2.1. After receiving this message a super-probe must verify if the message is
destined to a node (probe or super-probe) connected to it. If this is the case, the super-
probe should verify if the remote node supports a common security mode with the
requesting client (section 4.2.4), before forwarding the received message to it. In case this
condition is not verified the super-probe should reject the client’s request. In addition, if
the destination node is a probe under the control of the receiving super-probe, the super-
probe should also verify if the remote probe supports the required monitoring module. In
case this condition is not verified the request must be rejected too. In case of rejection, the
receiving super-probe should send a Monitoring Module List of Restrictions Response

4.4 Traffic measurements

Page 61 of 220

message (appendix A.2.19) to the requesting client, rejecting the request. In this case, the
receiving super-probe does not need to forward the Monitoring Module List of Restrictions
Request message to the destination node connected to it because it will reject the request
too.

After receiving the Monitoring Module List of Restrictions Request message, the node to
which the message is destined must verify if it supports the monitoring module in the
message and if it has a common security mode with the requesting client (section 4.2.4).
Then, it should send a Monitoring Module List of Restrictions Response message
informing the requesting client if it accepts or not the request (Figure 22). A node only
accepts the request if it supports the monitoring module in the message and if it has a
common security mode with the requesting client (section 4.2.4). If the node accepts the
request, the Monitoring Module List of Restrictions Response message must comprise the
list of restriction the node is configured for the given monitoring module. This message
should be forward back to the client using the path followed by the request message, as
described in section 4.2.1.

Figure 22. Messages exchanged during the monitoring module’s list of restrictions request process.

After receiving the Monitoring Module List of Restrictions Response message and if the
request was accepted, the client must present to the user the information about the
restrictions that must be respected, when configuring test sessions at the node he chose. If
the client does not receive a response message within a configured timeout (section 4.2), it
should stop waiting for the response message and it should inform the user about this
event. The test session configuration must also be aborted, if the receiving node rejects the
request.

4.4.2.6 Test session configuration and execution

After choosing a node where a test session should be processed and with the information
about the restrictions that apply to the selected monitoring module, the user is able to
configure a test session using the DTMS-P2P client.

4.4 Traffic measurements

Page 62 of 220

4.4.2.6.1 Messages exchanged during a test session configuration

The configuration of measurement tests is accomplished by sending a Command message
(appendix A.2.20) destined to the node where the measurement test should be performed.
In this message the client indicates the node’s measurement group and address plus the
monitoring module and all configurations parameters that should be used to configure the
test session (command line with the required options, e.g. ping –n 10 www.ua.pt for a node
running in a Windows machine). The client sends the Command message to its super-
probe. This message is then flooded among all super-probes, as described in section 4.2.1.

After processing a received Command message, the destination node may send a response
to the requesting client (Figure 23). The response to the Command message is the
Command Response message (appendix A.2.21). With the Command Response message
the node can inform the client, if it accepted and successfully processed or not the
command received in the Command message. If the command was successfully processed,
the Command Response message should comprise the name of the file where the results of
the test session were stored. Otherwise, the Command Response message should comprise
the description of the error (a descriptive text) occurred while processing the command. It
is up to the user to determine if the remote node should send the Command Response
message or not. Thus, after the user introduces the command line to be executed at the
remote node, the client must ask him if he wants to wait or not for the response to the
requested command. The Command message to be sent to the remote node must be
configured according to the user willingness. The destination node will only send the
Command Response message, if the user chose to wait for this message.

Figure 23. Messages exchanged during the command request process.

After sending the Command message to its super-probe and if the user chose to wait for the
response to this request, the client must wait for the response until the response is received
or the user chooses to stop waiting for it. Thus, in this case, the waiting time is not
determined by the timeout associated with request-response interactions because, if the
remote node accepts the request, it will only send the response after the end of the
configured test session and some test sessions may last longer than this timeout.

4.4 Traffic measurements

Page 63 of 220

If the user didn’t choose to wait for the response to its request, he should be able to
configure new test sessions, while the previous one is being processed.

After receiving a Command message destined to a node connected to it, a super-probe
must process the same verifications relative to the supported security modes and required
monitoring module as described for the case of a Monitoring Module List of Restrictions
Request message (section 4.4.2.5). In case of rejection, the super-probe should send a
Command Response message to the requesting client, if the user configured the client to
wait for a response.

The test session configuration must be aborted, if the receiving node rejects the request.
This may happen, (i) if the destination node does not support the requested monitoring
module, or (ii) does not support a common security mode with the requesting client
(section 4.2.4), or (iii) the user did not respect all the restrictions configured for the
required monitoring module at that node, or (iv) the destination node has no more space to
store the results of new test sessions and or (v) an error occurred while executing the
requested command.

The case (iii) occurs if the user did not use a required option or if the user used an option
that shouldn’t be used.

The case (iv) may happen if the node’s results directory has reached its maximum size or if
there is no more free space in the node’s local machine storage unit. The node’s results
directory is the directory where all test results of test sessions processed by the node must
be saved. The location of this directory and the maximum size that this directory can reach
should be defined by the node’s administrator, when starting the node. The node’s
administrator may not define a size limit for this directory, in which case the node can
store information in it as along there is free space in the node’s storage unit.

4.4.2.6.2 Test session execution

After receiving a Command message and if the node is able to process the requested
command, it must execute it in a separate process. The node must not be blocked while
processing the command because it should always be listening for incoming messages and
for incoming connections.

The selected node must only start processing the requested command at the startime
configured by the requesting user. This information is received in the Command message.
A startime in the past means that the node must immediately start processing the requested
command. This is another advantage of the DPMS-P2P system because it allows a network
administrator to define which monitoring module to be used to configure a test
measurement, where the measurement should be performed and additionally when the
measurement should be carry out.

4.4.3 Storing the measurement results

The results of all test sessions processed by a node must be saved to the results directory
defined by the node’s administrator. In the DTMS-P2P system, the file with the results of a
test session (Heavy Data File – HDF) must have a name composed by the Group ID of the

4.4 Traffic measurements

Page 64 of 220

measurement group of the client from where the request was received, the client’s IP
address and port number, the Group ID of the measurement group of the node where the
test measurement was performed, the IP address and port number of the respective node,
the timestamp corresponding to the time when the test was started (measured in
milliseconds since 0h on 1 January 1970) and the command line used to configure the test
session. The extension of the file should be “.res”. Thus, the following format must be
used:

Client Group ID_Client IP Address.port_Node Group ID_Node IP
Address.port_timestamp_Command Line.res

In case the numeric representation of the IP address version 6 is used, all “:”characters
should be replaced with the “.” character. File names should not include the “:” character.
Thus, an example of the results file name may be
00000000000000000000000000000000_192.168.0.4.21164_000000000000000000000000
00000000_192.168.0.1.22368_1175895448445_ping 192.168.0.2 -n 200.res.

Some monitoring modules may have options to save the results directly to a file. For
example, tcpdump may be configured to save the results to a file, using the option -w.
Thus, before processing the command, the node must verify if an option to save the results
to a file is in the requested command. Therefore, for each supported monitoring module,
the system local administrator must provide the node the information of all options to save
results to a file the monitoring module provides (section 4.4.1.1). If an option to save the
results to a file is found in the requested command, the node must redirect it to its DTMS-
P2P results directory and use the file name format described above. Thus, an example of
the results file name of a test session configured using the tcpdump monitoring module
may be
00000000000000000000000000000000_192.168.0.4.21164_000000000000000000000000
00000000_192.168.0.2.22368_1175895498746_tcpdump -c 10 -i 2 -w tcpDump.cap.res, if
the user chose the string “tcpDump.cap” as the name of the file were the results should be
stored. To redirect the results of the configured test measurement to the DTMS-P2P results
file presented above the node must execute the following command: tcpdump -c 10 -i 2 -w
<path to DTMS-P2P results file>, where <path to DTMS-P2P results file> is the complete
path to the DTMS-P2P results file.

If no option to save the results to a file is used in the received command, it means that the
output of the command execution must be saved to the DTMSP2P result’s file.

While executing the requested command, the node must always verify if the maximum size
configured for the result’s directory has not been reached. If yes, the node must stop the
test session execution. In this case, the current results in the result’s file must be kept.

A user may configure a node to start executing more than one test at the same monitoring
module and at the same time in the future. For example, a user may configure twice the
same node to process a ping to a given IP address starting at the same instant in the future.
Due to this fact, the name of the files, where the results of the configured commands will
be stored, will be exactly the same. To prevent this situation, a node must never start
executing the required commands exactly at the same time. The node should wait for a few
milliseconds between start executing the respective command lines. Having this behavior

4.4 Traffic measurements

Page 65 of 220

the node will guarantee that the files with the results of the requested commands will have
different names due to the time instant it starts executing them.

If an error occurs while executing a requested command, the node must store the output of
the command execution, which should describe the occurred error. Thus, it is supposed that
all monitoring modules a node may support, should output the description of errors that
may occur during the execution of the monitoring module. This description should be
stored into a file in the error directory. This directory should be, by default, inside the
results directory defined by the node’s administrator. The file where the description of the
error is saved, should have the same name the result file would have, but with the “.err”
extension. This file should be created because the node should send it to a requesting
client, whenever the remote client requests for the results of the test session that originated
it. In this case too, if the node is supposed to send a Command Response message to the
requesting client, the node must add to the message the error description of the occurred
error. In this way, the user will be able to get the information about the error that occurred
during the execution of the requested command. An error may occur in the following
situations:

i. The monitoring module is not installed or not accessible. This may happen when
the node’s administrator configured a node to support a given monitoring module,
but it is not installed or not accessible;

ii. There is an error in the requested command. For example a bad option is in the list
of arguments of the requested command. For example, if a user requests the
following command to a node: ping -d www.ua.pt. The ping command in Windows
does not support the option -d. For instance, the following error description should
be send in the Command Response message and stored in the error file:

Bad option -d.
Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS] [-r count] [-s count] [[-j
host-list] | [-k host-list]] [-w timeout] target_name
Options:
-t Ping the specified host until stopped. To see statistics and continue - type

Control-Break; To stop - type Control-C.
-a Resolve addresses to hostnames.
-n count Number of echo requests to send.
-l size Send buffer size.
-f Set Don’t Fragment flag in packet.
-i TTL Time To Live.
-v TOS Type Of Service.
-r count Record route for count hops.
-s count Timestamp for count hops.
-j host-list Loose source route along host-list.
-k host-list Strict source route along host-list.
-w timeout Timeout in milliseconds to wait for each reply.

At the end of the command execution, if the node is a probe and it successfully generated a
Heavy Data File, it must send to its super-probe the information of the new Heavy Data
File using the List of Shared Files message (appendix A.2.8). This message should be sent
to the probe’s super-probe even if the new Heavy Data File contains the description of an
error occurred during the execution of a requested command.

4.5 File replication

Page 66 of 220

If the node successfully performed the requested test session and is configured to replicate
the Heavy Data Files it generates, it should start the file replication process to replicate the
new HDF (section 4.5).

4.5 File replication

4.5.1 Overview

The DTMS-P2P system uses a distributed data archive system. The nodes store locally the
results of their measurements in the Heavy Data Files, but may also replicate these files in
other nodes of the same (preferably) or other measurement groups. This approach stands
between two major archive philosophies: centralized and completely distributed.
Replicating the data in some nodes guarantees that data remains available even if the node
that made the measurements becomes inactive. Having multiple data sources also allows a
faster and more reliable data retrieval using multi-source download techniques.

Replication will take longer and will occupy more disk space for larger files. By default a
Heavy Data File should be replicated at least in one location. The node’s administrator
may be given the option to decide if the maximum number of replications
(maxNumOfReplications) (i) should be or (ii) should not be defined as a function of the
file size. Moreover, in case (i), the node’s administrator may define the number of
replications for each range of file sizes. For example, replicate files greater than 1 GB only
once, files between 500 MB and 1 GB twice, files between 100 MB and 500 MB 5 times
and files smaller than 100 MB 10 times. In case (ii), the node’s administrator only needs to
define the maximum number of replications to be performed.

The process of replicating a file from a source node to a receiving node is performed using
HTTP. Thus a TCP connection must be established between these two nodes. The TCP
connection may fail if the node that waits for the TCP connection request (TCP SYN) is
behind a firewall. This node is called a firewalled node. In order to circumvent this
problem, the DTMS-P2P includes a feature that allows the TCP connection to be started on
either the source node or the receiving node. There are four cases:

i. None of the two nodes is firewalled – in this case the receiving node opens the TCP
connection and sends the request for file download;

ii. The source node is firewalled but the receiving node is not – in this case the source
node opens the TCP connection and asks the receiving node to use the TCP
connection for file download;

iii. The receiving node is firewalled but the source node is not – same as case (i).

iv. Both nodes are firewalled – in this case replication is not possible.

To process the required number of replications of a new Heavy Data File, the (original)
source node must first search for possible locations where the file can be replicated. There
are two possible scopes for the replication search process. The search can span over all
super-probes (global scope) or only over the nodes of the (original) source node
measurement group (local scope).

4.5 File replication

Page 67 of 220

The procedure used in file replication is the following:

1. In order to search for potential storing nodes where a Heavy Data File can be
replicated, the (original) source node (probe or super-probe) sends a request
message indicating the file name, the file size, the maximum number of potential
storing nodes to be returned (maxNumOfStoringNodes), the scope of the
replication process, if firewalled nodes should or not be returned and if it is or not
firewalled. The maximum number of potential storing nodes to be returned should
be equal to the maximum number of replications that still need to be performed.
When the replication process is started, this number is equal to
maxNumOfReplications. This is because the (original) source node is not able to
determine a priori if it will or not receive more than one response. The request
message is flooded to all super-probes. If the (original) source node is a probe the
request message is sent to its super-probe and, afterwards, is flooded to all super-
probes.

2. Upon receiving a request message, each super-probe that match the replication
search scope, try to find among its probes a number maxNumOfStoringNodes of
probes that match the criteria for file replication, using the procedure of section
4.5.3.1.2. The super-probe will then respond to the request message with the list of
probes where the file can be replicated. The super-probe itself can also be included
in this list, if the number of identified probes is less than maxNumOfStoringNodes
and it matches the criteria for file replication (section 4.5.3.1.4). For each node in
the list the following information is supplied: download speed, available disk space,
and if the node is firewalled or not. The (original) source node will sort this list
according to download speed first, available disk space second and if node is
firewalled or not third. If the (original) source node is a super-probe, while sending
the request message, it will also try to find among its probes a (small) number
(numOfReplications, 2 by default) of probes that match the criteria for file
replication, using the procedure of section 4.5.3.1.2. This limit should be defined to
guarantee that the super-probe does not replicate the file only at the probes under its
control, in case there are other possible locations where the file can also be
replicated.

3. When a response from a super-probe is received and if the maximum number of
replication requests has not been reached, a (small) number of replications requests
(numOfReplications) to nodes listed in this message is started; the nodes selected
are the first ones from the sorted list. After this, the content of the response
message (with the selected nodes removed from the list of potential storing nodes)
is placed in a circular list together with the response messages from other super-
probes. The message must be placed in the end of this list. However, if the
message’s list of potential storing nodes becomes empty, the message must be
discarded.

4. When a response from a super-probe is received and if the maximum number of
replication requests has been reached, the content of the response message is placed
in the beginning of the circular list together with the response messages from other
super-probes.

4.5 File replication

Page 68 of 220

5. After completing a file replication, a receiving node must send a confirmation to
the (original) source node. When a confirmation is received (positive or negative),
if the maximum number of replications requests has not been reached and there are
still potential storing nodes, again a (small) number of replication requests is
started. The selected nodes are the first ones from the sorted list of the first
response message in the list of response messages. If there are not enough potential
storing nodes in the first message, then the subsequent ones will be used. After this,
the selected nodes are removed from their lists of potential storing nodes. If a list is
not empty, the associated response message is placed in the end of the list of
response messages; otherwise it is discarded.

6. When a confirmation regarding the replication of a file at a receiving node (positive
or negative) is received, if the maximum number of replications has not been
reached but there are not enough potential storing nodes, then a new request for
potential storing nodes is flooded to all super-probes.

7. When a positive confirmation is received and if the maximum number of file
replications is reached, the file replications process must be stopped.

8. In order to control the replication process we define time periods, which are
relatively long (24 hours by default), and will be called replication periods. The
(original) source node must try to create all replicas of the file during a replication
period. If it is not able to complete the replication of a file during a replication
period, then new replication periods should be started. There is a maximum number
of replication periods (maxNumOfReplicationPeriods, 4 by default). When a new
replication period starts, all the requests made in the previous period and for which
a confirmation was not yet received must be discarded. After this, the (original)
source node starts a (small) number of replication requests if there are potential
storing nodes in the list of response messages or sends a request for potential
storing nodes otherwise. Within a sequence of replication periods, the first half will
have a local scope while the second half will have a global scope; within a
replication period all request messages have the same scope.

In Figure 24 we give an example of a file replication process. We will assume that the
original source node was configured to create seven replicas of each file in a maximum of
four replication periods. To simplify the example we will consider that each replication
request will trigger only one replication (numOfReplications equal to one). At time t0 the
original source node floods a search request to the overlay network with local scope, trying
to find potential nodes where the file could be replicated. Latter, at times t1 and t2 it
receives responses from two super-probes, SP1 and SP2, respectively. We will assume that
SP1 and SP2 listed in their search response messages three and two potential storing nodes,
respectively. Thus, at times t1 and t2 the original source node will send replication requests
to the first potential storing nodes indicated by SP1 and SP2. At time t3, the confirmation
of the request issued at time t1 is received, which drives a new replication request, now sent
to the second potential storing node indicated by SP1. The confirmation of this request is
received at time t4, which again drives a new replication request sent to the last potential
storing node indicated by SP1. During this replication period no more confirmations are
received, in particular those in response to requests issued at times t2 and t4. Thus, at the
end of the first replication period, at time t5, only two replicas where successfully

4.5 File replication

Page 69 of 220

performed (2 replicas in the network). At this time, the original source node still has
potential storing nodes for which replication request was not issued, namely the last node
indicated by SP2. This request is now sent and its confirmation is received at time t6. Since
all known potential storing nodes have been tried, the original source node floods a new
search request, with local scope. A response is received at time t7, say from super-probe
SP1, and a replication request is immediately issued. We will assume that this response
only listed one potential storing node. The confirmation to this request is received at
instant t8 and a new potential storing nodes search request, with local scope, is flooded to
the overlay network. However, no responses are received until the end of the second
replication period, at time t9. Thus, at the end of the second replication period only two
more replicas where successfully performed (4 replicas in the network). At this time, a new
search request is flooded to the overlay network, but now with global scope. Latter, at
times t10, t11 and t12 the original source node receives responses from three super-probes,
SP4, SP5 and SP6, respectively. We will assume that all super-probes listed in their search
response messages only one potential storing node. Thus, at times t10, t11 and t12 the
original source node sends replication requests to the potential storing nodes indicated by
the three super-probes, respectively. At times t13 and t14, the confirmations of the requests
issued at times t10 and t11 are received. Both drive to two new potential storing nodes
search requests. At time t15 the original source node receives a response from SP7 to the
request sent at time t14. We will also assume that SP7 listed in its search response message
only one potential storing node. This response drives a new replication request. No
responses were received for the request issued at time t13. During this replication period no
more confirmations are received, in particular those in response to requests issued at times
t12 and t15. Thus, at the end of the third replication period, at time t16, only more two
replicas where successfully performed (6 replicas in the network). At this time, a new
search request is flooded to the overlay network, again with global scope. Latter, at time t17
the original source node receives a response from super-probe SP8. With the information
received in this response the original source node sends the last replication request which
confirmation is received at time t18. Thus, the replication process only completes at the
fourth replication period, at instant t18, when the last confirmation is received.

Figure 24. Replication periods.

An exception to procedure 1 occurs in the following case. If the source node is a probe and
requests only for not firewalled locations to replicate a file (because it is behind a firewall),
its super-probe will not forward this message and will not try to find possible locations
where the file can be replicated among the probes under its control, if it is not firewalled
and it is a possible location to replicate the file. In this case, the super-probe should return
only its own address in the response message. The requesting probe will first replicate the

4.5 File replication

Page 70 of 220

file in its super-probe and only then will restart the replication search process for new
potential storing nodes. In this new process, the probe can now search for firewalled nodes
too, since these nodes will be able to download the file from the replica already stored in
the super-probe. This must be done to speed-up the file replication process and to
guarantee that the file may be replicate at firewalled locations even when the (original)
source node is firewalled. This exception is not mandatory since it does not compromise
the protocol interoperability.

In the procedure 2, when a super-probe is to be included itself in the list of potential storing
nodes, it should do so even if it is busy (all its slots are taken – section 4.7.1). This will
allow replicating the file at a later time when the super-probe becomes available. Note that
a file will not be replicated at a busy probe; therefore, when all probes under the control a
super-probe are not potential storing nodes (section 4.5.3.1.2), this procedure represents a
last opportunity to replicate a file within that network zone.

Procedures 1 to 6 aim at spreading the replicas by nodes that are geographically away from
each other, trying to avoid the concentration of many replicas in nodes under the control of
a single super-probe. If replicas were all concentrated in nodes under the control of a single
super-probe, and the network zone where the super-probe is located becomes inaccessible,
then the measurement results would become completely unavailable. Recall that probes
always try to connect to the closest super-probe; thus it is likely that probes under the
control of the same super-probe are geographically near to each other, while super-probes
are likely to be geographically away from each other. In order to spread the replicas
geographically, the (original) source node should try to distribute them by nodes under the
control of as many super-probes as possible. However, since the (original) source node
cannot determine in advance how many responses it will receive and when they will be
received, (a few) replications must be started as soon as a new response (from a new super-
probe) or a new confirmation regarding a replication is received.

According to procedure 8 a number of replication periods is allowed. This has several
advantages. First, it allows the scope of the search to be enlarged from local to global if it
is not possible to place all the replicas in the measurement group of the (original) source
node. Second, it allows recovering from situations where the state of the (original) source
node changes during the replication process, e.g., when the (original) source node is a
probe and loses connection with its super-probe or when the (original) source node is a
super-probe and is demoted to the probe mode. If these cases occur, the responses to
requests will not be received by the (original) source node. Giving the opportunity to have
new replication periods will allow the (original) source node to perform the remaining
replications. In the case of a probe that lost connection with its super-probe, if the probe
gets connected to a new super-probe before the end of the replication period is reached
then the replication process should proceed as usual; otherwise, the number of replication
period will not be incremented until the probe gets connected to a new super-probe.

According to procedure 8 the first replication periods will have a local scope whereas the
last ones will have a global scope. This is because it is preferable that files are replicated in
the measurement group of the (original) source node, since this speeds-up the file search
and download processes by a client connected to the (original) source node’s measurement
group (local search – section 4.6).

4.5 File replication

Page 71 of 220

When a file is successfully replicated at a node, this node can be used later as a new source
from where the file can be retrieved. The (original) source node maintains a list of nodes
where the file was successfully replicated (storingNodesTable) and this list is supplied
when a replication request is sent to a replicating node. Based on this list, the replicating
node will try to retrieve the file from multiple sources (multi-source download – section
4.7.3). The following restrictions apply: (i) when both the (original) source node and the
replicating node are firewalled, only non-firewalled nodes will be selected for multi-source
download; (ii) if the file has already been replicated in one or more nodes belonging to the
measurement group of the replicating node then, whenever possible, the file should only be
retrieved from these nodes; otherwise, the file should be retrieved from all available source
nodes. Note that there are other strategies that can be implemented without compromising
the interoperability between nodes, e.g., retrieve from all nodes where the file is replicated
irrespective of measurement group. Our strategy has the advantage of concentrating the
load in one measurement group (alleviating other parts of the network), but may not be
optimal in terms of download time (from multiple sources).

4.5.2 Replication Table and Replication Record

A node should be able to replicate more than one file at the same time. To be able to
control this process, the (original) source node should maintain a table, called Replication
Table, with some information related to each individual file replication process
(Replication Record).

Each Replication Record must have a unique ID (Record ID), used to identify the record in
the Replication Table. This unique ID should be equal to the hash code (appendix A.3) of
the name of the file to be replicated. This unique ID will also be used to identify received
messages related to the replication of a given file. The length of the Replication Table
should be configurable and the addition of new records to it should be circular – when the
maximum number of records that can be saved in the Replication Table is reached, the
older record must be replaced with the new one. Before starting the replication process of a
new Heavy Data File, the source node must create a Replication Record to be used during
the file replication process.

The Replication Record comprises the following fields:

 The name and size in bytes of the file to be replicated;

 The Replication Record’s ID (Record ID);

 A flag indicating if firewalled locations can be chosen for file replication. If the
(original) source node is not firewalled or the file has been successfully
replicated in a not firewalled location, firewalled locations can be chosen as
possible locations for file replication. Otherwise, only not firewalled locations
should be chosen;

 The maximum number of replications (maxNumOfReplications) to be
performed (section 4.5.1);

4.5 File replication

Page 72 of 220

 The number of replication requests that have been sent and for which a negative
confirmation was not received (numOfReplicationRequests). When a negative
confirmation is received this number should be decremented. Additional
replications can only be requested when this number is lower than
maxNumOfReplications.

 The total number of replicas that have been successfully completed
(totalNumOfReplications). When this number equals to the configured
maxNumOfReplications, the replication process should be stopped;

 A list of the received response messages with information about possible
locations where the file can be replicated
(listOfPotentialStoringNodesDiscoveryResponses – section 4.5.1). This list
should not be greater than maxNumOfReplications, to prevent from
overloading the memory in case too many response messages are received.

 The number of replication periods which stores information about in which
replication period the replication process is (numOfReplicationPeriods – section
4.5.1);

 A list with the information about other nodes from where the file can be
retrieved, besides the (original) source node (storingNodesTable). These nodes
are nodes where the file has been successfully replicated before (section 4.5.1).
This is a list of lists, indexed first by measurement group and second by node.
For each node, the list includes information on its IP address, firewalled state
and upload speed.

4.5.3 Messages exchanged in the file replication process

The messages exchanged between a (original) source node and the other nodes of the
network, to try to produce the required number of replicas of a given Heavy Data File, are
illustrated in Figure 25.

4.5 File replication

Page 73 of 220

Figure 25. Messages exchanged during the replication process.

4.5 File replication

Page 74 of 220

As can be verified in Figure 25, there are two types of interactions in the file replication
process, one for searching possible locations for file replication and another for replicating
a file at a node. Both interactions will be detailed in the next sections.

4.5.3.1 First interaction

4.5.3.1.1 Potential storing nodes discovery

To initiate a search process, the (original) source node (probe or super-probe) sends a
Potential Storing Nodes Discovery Request message (appendix A.2.22) that should be
flooded to all super-probes, as described in section 4.2.3.

After receiving a Potential Storing Nodes Discovery Request message, a super-probe that
matches the search scope of the message should try to find, among the probes under its
control, the required number of locations for file replication, as described in section
4.5.3.1.2. If a super-probe finds one or more possible locations, it should answer to the
requesting node with a Potential Storing Nodes Discovery Response message (appendix
A.2.23) identifying these locations. This message must be forwarded back to the source
node using the path taken by the request message, as described in section 4.2.3.

A node receiving a Potential Storing Nodes Discovery Response message must first
confirm if it has a record in its Replication Table with an ID equal to the Record ID field of
the received message (section 4.5.2). If a match is found, the information received in this
message should be used to complete the file replication process. If a match is not found the
message must be discarded; it may be a response message related to a replication process
already finished. However, in case the node is a super-probe and has been a transit node for
the corresponding request message, then the response message must be forwarded back to
the source node as described section 4.2.3. In this last case the super-probe must have a
record correspondent to the Message ID of the request message in its Route Table (section
4.2).

4.5.3.1.2 How super-probes discover possible locations to replicate a file among
the probes under their control

A super-probe needs to discover possible locations for file replication among its probes,
when it is the (original) source node or when it receives a Potential Storing Nodes
Discovery Request and it matches the message replication search scope.

In order to discover possible locations for file replication among its probes, a super-probe
will send them, one by one, Potential Storing Nodes Discovery Request messages. After
sending one Potential Storing Nodes Discovery Request message the super-probe will wait
during a configured timeout interval for a Potential Storing Nodes Discovery Response
(section 4.5.3.1.3). This process is repeated until the super-probe identifies a number of
locations where the file can be replicated, equal to two times the number of locations that
the super-probe needs to find. In order to assure that the set of tested probes is not always
the same, to avoid overloading some probes, the list of probes (taken from the LAC) is
scanned circularly and the first probe to be tested is selected randomly. The best among the
probes that were identified as possible locations for file replication will be selected; this is
accomplished by sorting the list of selected probes according to download speed first,

4.5 File replication

Page 75 of 220

available disk space second and firewalled state third (not firewalled probes will be
selected first).

A super-probe should only test probes that support a common security mode with the
(original) source node. This should be done because if both nodes do not support a
common security mode, they will not be able to interconnect to process the file replication
(section 4.2.4).

If the probe (i) does not share a common security mode with the (original) source node or
(ii) does not match the requested replication search scope as indicated in the Potential
Storing Nodes Discovery Request message, then there was a protocol failure and the probe
should close the connection with the super-probe.

A probe is considered to be a possible location for replicating a file if (i) it is not busy (a
probe is busy when all its slots are taken – section 4.7.1) and (ii) it matches the criteria for
file replication (section 4.5.3.1.4). In case (i), the probe should not accept the request
because it is not possible to determine for how long it will remain busy. Thus, in these
cases, the file should be replicated at other nodes not currently busy, which may improve
the replication process.

In order to accept a replication request, a probe should add information about its available
resources to the Potential Storing Nodes Discovery Response message. An empty Potential
Storing Nodes Discovery Response message means that the probe does not accept the
replication of the file in its storage space.

If the super-probe receives a response message accepting the replication of the file but
indicating the probe is in a firewalled state that does not match the requested one, then
there was a protocol failure and the connection with the probe should be closed.

To determine the best locations to replicate a file, a super-probe will not test all probes
under its control; it will only test twice the number of locations where the file needs to be
replicated. We believe that this is a good trade-off between time to find file locations and
optimally in selecting file locations. However, this criterion may vary among different
implementations without compromising interoperability.

4.5.3.1.3 Super-probe behavior after sending a request message to a probe under
its control

After sending one of the possible request messages used in the replication process to a
probe under its control, a super-probe must not send any other messages to the probe until
it receives the required response message from it. In case the expected response message is
not received after a configured timeout, the super-probe must close the connection to the
remote probe. While waiting to receive the response message, the super-probe must
process any other messages received from the remote probe or from any other element
connected to it. These messages must be processed in parallel. A super-probe must have
this behavior because, before the probe sends the response message to it, other messages
may be sent by the probe whenever a change occurs (e.g. List of Shared Files, List of
Supported Monitoring Modules, etc) and, it is also possible that, during this waiting
interval, the super-probe receives messages from other elements connected to it.

4.5 File replication

Page 76 of 220

4.5.3.1.4 Potential storing node

A node is considered to be a possible location for replicating a file if (i) it matches the
requested firewalled state, (ii) it supports a common security mode with the (original)
source node, (iii) it has enough free storage space to store the file, (iv) it is not already
sharing a file with the same name of the file to be replicated (a previous replication of the
file may already have been processed) and (v) it has not the temporary file used to store the
file to be replicated (to download a file, a node should first reserve the needed storage
space in a temporary file, which will be used to save the file to be downloaded – section
4.7.1).

While calculating its free storage space in (iii), the node, if configured to do so, must
account for the percentage of storage space that should be kept free (20%, default). This
percentage should be calculated over the (configured) maximum size of the node’s results
directory; however if no maximum size is configured, then the percentage should not be
reserved. Reserving a percentage of storage space to be kept free will prevent the node to
enter in a state where all the storage space of its results directory is used by file
replications.

4.5.3.2 Second interaction

4.5.3.2.1 Replication request

After selecting one or more nodes for file replication, the source node starts the actual
replication process by sending a Replication Request message (section 4.5.3 and appendix
A.2.24), indicating the addresses of all nodes where file replication should be performed. If
the source node is a super-probe then the destination of a request message may be a probe
under its control or another super-probe, from where a Potential Storing Nodes Discovery
Response message was received. Otherwise, if the source node is a probe then the
destination for the request message is a super-probe, from where a Potential Storing Nodes
Discovery Response message was received. The request messages are forwarded in the
overlay network as described in section 4.2.1.

After receiving a Replication Request message, a node must first verify again if it is still a
possible location for replicating the file (section 4.5.3.1.4). If not, the request must be
rejected. If yes, the node should reserve the required space to store the file in a temporary
file, until the actual download is performed. The name of this temporary file may be, for
example, equal to the name of the file to be replicated, including extension, but with the
extension “.tmp”. The download process will overwrite the temporary file with the file to
be replicated. After completing the download, the file must be renamed to the (original)
file name.

Nodes that receive a Replication Request message should reply with a Replication-Ack
message. This message indicates how many replication requests were accepted by the
replying node. A (original) source node verifies that a Replication-Ack message is in
response to a Replication Request message that it has sent based on the Record ID of the
Replication-Ack message which should match one of the Replication Record IDs in the
Replication Table.

4.5 File replication

Page 77 of 220

A super-probe which is an (original) source node will send the request message to its
selected probes one-by-one: it sends a Replication Request message to one probe, waits for
a Replication-Ack or a timeout (section 4.5.3.1.3), and only after that proceeds to the next
probe. When the Replication-Ack message is received indicating that the replication
request was accepted, the numOfReplicationRequests field of the Replication Record is
incremented by one. In case one (or more) probes do not accept to replicate the file, the
super-probe must determine how many more replications request are needed to complete
the maxNumOfReplications. Then, the super-probe must perform these additional requests
(section 4.5.1).

An (original) source node, must update the numOfReplicationRequests field of the
Replication Record immediately after sending a Replication Request message to a remote
super-probe; it is incremented with the number of nodes for file replication indicated in the
request message. If, upon receiving the corresponding Replication-Ack message the source
node verifies that not all replication requests were accepted then it decrements the
numOfReplicationRequests field accordingly; it must then determine how many more
replication requests are needed to complete the total number of replications
(maxNumOfReplications) and perform the additional requests, using the procedure
described in section 4.5.1.

When a Replication Request message is destined to a super-probe (i) it may have addresses
of probes under the control of the destination super-probe and/or (ii) it may have the
address of the super-probe itself. In case (i) the receiving super-probe must then send a
Replication Request message to the required probes, in the same way described above for
the (original) source super-probe case. These messages are essentially a copy of the
Replication Request message, except that they are destined to the replicating probe and
should not include the list of replicating nodes (which is irrelevant in this case). The
messages include the address and Group ID of the (original) source node, which is required
for sending the Download Replication-Ack message (section 4.5.3 and appendix A.2.26) to
the (original) source node, which notifies if the file replication at the node was successful
or not. The super-probe should construct the Replication-Ack message to be sent to the
(original) source node based on the information received in the Replication-Ack messages
received from the various probes under its control and based on its own potential for
becoming a storing node, if prompted to do so. Then, this message should be forwarded
back to the (original) source node using the same path of Replication Request message, as
described in section 4.2.1.

4.5.3.2.2 File replication and replication confirmation

If a node accepts the replication request received in a Replication Request message, it must
download the Heavy Data File from one or more locations where the file is stored. To
choose the nodes from where the file should be downloaded, the receiving node must use
the information about the nodes storing it, received from the (original) source node in the
Replication Request message. Using its measurement group ID and knowing if it is
firewalled or not, the node is able to determine where is/are the best location(s) from where
the file can be downloaded (section 4.5.1).

Before starting the file download, the node must increment by one the number of download
slots in use. If all the node’s download slots are in use, it should wait until it has a free slot

4.6 Results search

Page 78 of 220

to download the file to be replicated. The file download is processed using HTTP, as
explained in section 4.7.

After the file download process, the node must send a Download Replication-Ack message
(appendix A.2.26) to the (original) source node to inform it if the node successfully
replicated or not the file. This message is flooded back to the (original) source node, as
described in section 4.2.1.

After sending the Download Replication-Ack message, if the sending node is a probe and
it successfully replicated the file, it must also send to its super-probe the information about
the new file using the List of Shared Files message (section 4.6.1 and appendix A.2.8).

After receiving a Download Replication-Ack message destined to it, the (original) source
node must verify if it has, in its Replication Table, a record corresponding to the file
indicated in the received message. If a record is not found, the node should discard the
received message: it may be related to an already finished replication process. If a record is
found, the node must verify from the received message if the file was successfully
replicated. If yes, the node must update the Replication Record’s storingNodesTable and
the totalNumOfReplications field (section 4.7.1.2). If the total number of replications that
should be made (maxNumOfReplications) has been reached, the node must remove the
Replication Record from its Replication Table and stop the replication process. However,
if the file was not successfully replicated, the number of replication requests made
(numOfReplicationRequests – section 4.7.1.2) must be decremented.

As described in section 4.5.1, in case the (original) source node is a probe and it is
firewalled but its super-probe is a possible location to replicate the file and it is not
firewalled, then the file should be first replicated at the probe’s super-probe. In this case,
after receiving the Download Replication-Ack message and if the file is successfully
replicated at the remote super-probe, the probe must restart the replication search process
to find other possible locations (firewalled or not) where the file can be replicated to
perform the remaining needed number of replications.

After processing the received Download Replication-Ack message, if the
maxNumOfReplications was not reached yet, the node should start another (small) number
of replication requests as described in section 4.5.1. If the file was successfully replicated
in a not firewalled node, nodes behind a firewall may now be used as possible locations to
replicate the file.

4.6 Results search

In this section we will describe how the test measurements results can be searched in the
network. But first we will describe how the probes inform their super-probes which files
they are sharing to the network since this information is used in the results search
mechanism.

4.6.1 List of shared files

In the DTMS-P2P system, a super-probe must keep information about the Heavy Data
Files (HDFs) stored in each probe connected to it. This information is centralized in super-

4.6 Results search

Page 79 of 220

probes to save in signaling messages when clients query the DTMS-P2P network about
existing HDFs. It is kept in the list designated by probeListOfSharedFiles. It is used when
a client searches the results of configured test measurements or requests the replication
and/or deletion of a HDF (sections 4.6.2 and 4.9.1). A probe must send to its super-probe
information about its HDFs (i) after completing its network connection process (if one or
more files are available at this time) and (ii) after assembling a new HDF.

The information is sent by probes in a List of Shared Files message (appendix A.2.8) and
relates to the names of the HDFs (Figure 26). More specifically, each HDF is represented
by a number of hash codes from the keywords that make up the file name. Before
computing the hash codes the keywords are converted to lower case. The use of hash codes
helps saving memory since each word only occupies 4 bytes. The keywords are obtained
by breaking up the name of the file on any non-alphanumeric characters (anything but
letters and numbers). A space is the standard separator between words. But the separator
between words may also be the following characters: “_” and “-“. In case there are
repeated keywords to be sent in a List of Shared Files message, only one of them is
actually sent.

Probe Super-probe

List of Shared Files

Figure 26. List of Shared Files.

After receiving a List of Shared Files message a node must verify if it is a super-probe. If
not, the message must be discarded and the connection where the message was received
must be closed. Only super-probes can receive this type of message.

Based on the information received in the List of Shared Files message the super-probe
must update its probeListOfSharedFiles. The update is such that repeated keywords are not
kept in the list. In this way, the amount of stored information can be much less, when
compared with the case of storing the complete name of all files, since many files may
have the same keywords in their names. This of course comes at the price of lower
efficiency in the query process, since a probe may not have a HDF that matches
simultaneously all the keywords indicated by a user.

4.6.2 Results search mechanism

In the DTMS-P2P system, the results of configured test measurements are stored at the
node where the test was performed in a so-called Heavy Data File (HDF) which is possibly
replicated at other nodes of the network. The HDFs can be searched using a mechanism
similar to the one used in Gnutella 0.6 [Gnutella].

Two kind of results search can be performed in the DTMS-P2P overlay network. A client
connected to a super-probe of a particular group can perform global and local searches. A

4.6 Results search

Page 80 of 220

global search is performed in all groups of the monitoring system while a local search is
restricted to a given measurement group chosen by the user.

A client initiates a search by sending a Query message (appendix A.2.27) to its super-
probe. Each receiving super-probe should process the message and forward it to the other
nodes of the network, as described in section 4.2.3. After processing the message, a
receiving node may answer with a Query-Hit message (appendix A.2.28) with information
about files that satisfy the query. The messages exchanged during the results search
process are illustrated in Figure 27.

Figure 27. Messages exchanged during the results retrieval process.

The Query message includes the search criterion used to identify files the client is looking
for. The search criterion may be the name of the file to be searched or a set of keywords.
The Query message has also information about the minimum upload speed the receiving
node should support in order to respond to the request. A node receiving a Query message,
requesting a minimum speed of N Kbits/s, should only respond with a Query-Hit message,
if it satisfies the search criterion and it is able to communicate at a speed greater or equal to
N Kbits/s.

After receiving a Query message a node must verify if the Query message search scope is
global or local. If the Query message search scope is global the node should process it. If
the Query message search scope is local the node must first verify if the message is

4.6 Results search

Page 81 of 220

designated to its measurement group, and only in this case should the message be
processed.

Before processing a Query message, a super-probe should forward the message to other
nodes connected to it. This improves the response process by reducing the time the user
has to wait for responses, because all nodes quickly receive the Query message.

When a super-probe matches the search scope of a Query message, it will also forward the
message to its probes that may be sharing the files that satisfy the message’s search
criterion. For each one of its probes, the super-probe has a list of hash codes of all the
words present in the name of the stored files (section 4.6.1). Upon receiving the Query
message, a super-probe must first break up the words contained in the message’s search
criterion on any non-alphanumeric characters (anything but letters and numbers); a space is
the standard separator between words but the characters: “_” and “-“ may also be used.
Remember that the message’s search criterion may be the name of the file to be searched.
After that, the super-probe must determine, for each probe, if the hash code (appendix A.3)
of each obtained word (lower case) is present in the list of hash codes associated with the
probe. Only when a match is found for all obtained words will the Query message be
forwarded to the probe.

A node receiving a Query message should only respond with a Query-Hit message if it
supports a common security mode with the requesting client. The security modes
supported by the client are indicated in the Query message. The nodes should have this
behavior because the client will only be able to connect to the node and retrieve the results
of a configured test session if both elements support a common security mode (section
4.2.4). Moreover, a super-probe should only forward a Query message to a probe if the
probe supports a common security mode with the requesting client. The super-probe has
the information of the security modes supported by each probe connected to it (section
4.3.5.2).

A probe must reset the TCP connection to its super-probe and try to connect to another
super-probe of its measurement group in case it receives a Query message it cannot
process. This is because the super-probe should not have sent this message in the first
place.

In case a node is supposed to process a Query message, it must verify if it is sharing files
that satisfy the message’s search criterion. Both probes and super-probes process this
criterion in the same way, as described next:

i. If the search criterion has the name of the file to be searched, the node must verify
if it is sharing that file. In this search, the file name extension should be ignored.
Note that the measurement process may have produced a file with extension “.res”
in case there were no errors during the measurements or a file with extension “.err”
otherwise (section 4.4.3). Files with extension “.res” are stored in the results
directory and files with extension “.err” in the error directory. Ignoring the
extension will allow the search process to discover both “.res” and “.err” files. The
node will send to the client the complete file name, and the client, in case of an
error file, may decide to download the file to obtain additional information on the
type of error that occurred;

4.7 Data download

Page 82 of 220

ii. If the search criterion is a set of keywords, it is recommended that the node break
up the words on any non-alphanumeric characters (anything but letters and
numbers). Only the files which names match all the keywords should be included in
the Query-Hit message. All Files stored in the results and error directories should
be analyzed.

If a node is sharing files that satisfy the search criterion of the received Query message, the
node must send a Query-Hit message to the requesting client. The Query-Hit messages
must only be sent along the same path that carried the incoming Query message, as
described in the section 4.2.3.

In Figure 28 is given an example of a Heavy Data File search.

Figure 28. Data query

After sending a Query message to its super-probe, a client should wait for the first Query-
Hit message to be received for a given timeout. The client must discard any Query-Hit
messages, sent in response to the Query message, if the first Query-Hit message is not
received before the timeout occurs. To do so the client must remove the record
corresponding to the Query message from its CLM (section 4.2). However, if the first
Query-Hit message is received before the configured timeout, all subsequent Query-Hits
should be considered until the user looses interest in this information.

After receiving the first Query-Hit message, the client shows to the user the set of files that
matches the search criterion. Upon receiving subsequent Query-Hit messages, additional
files that match the search criterion and additional nodes that may be sharing the files may
be identified, and this information is also updated to the user. With this information the
user can choose which files he wants to download. Also if the file is available from
multiple sources, the client may use the multi-source download feature to speed up the
download process. The file download is accomplished outside the DTMS-P2P network, as
described in section 4.7.

4.7 Data download

There are many situations where there is transference of data (data download) between two
elements of the network. This transference occurs, for example, in the file replication
process (section 4.5) and in the results retrieval process (section 4.6). But there are more
situations where there is transference of data between the elements of the DTMS-P2P
network and they will be described later (sections 4.8.3 and 4.9.4.2).

4.7 Data download

Page 83 of 220

In the DTMS-P2P system the data download is performed directly between the requesting
element and the node where the file is stored using HTTP, outside the DTMS-P2P
network. A direct TCP connection between the two involved elements must be established
and the file transference should be performed through the established connection. To open
a connection to a remote node an element should proceed as described in section 4.3.5.1.

Moreover, the data download can be made from multiple sources when the file is stored in
multiple locations.

Also, each file download process must be processed in a different thread because the
elements involved in the file transfer process should not block while
uploading/downloading a file.

The overall file transfer process will be described in the next sections.

4.7.1 Data download between two elements

Before starting a file download process the requesting node should reserve the required
space to store the file to be downloaded. Having this behavior the node can guarantee that
this storage space will be available to store the required file. To reserve it, the node should
create a temporary file with the same size of the file to be downloaded. Then the content of
the required file can be stored into the temporary file. After the end of the file download
process, the node should rename the temporary file to the name of the downloaded file.

As described before, the DTMS-P2P system uses HTTP as the file download protocol.
Implementations should support HTTP 1.1 [RFC2616]. The full specification of this
version of the protocol is available in [RFC2616]. In this description we will only focus on
the basic issues.

After being connected to the source element, the request to download a file is initiated by
sending an HTTP GET message with the following contents:

GET /get/<File Name> HTTP/1.1<cr><lf>

User-Agent: DTMS-P2P client<cr><lf>

Host: x.y.z.n:p<cr><lf>

Connection: Keep-Alive<cr><lf>

Range: bytes=0-<cr><lf>

<cr><lf>

where <File Name> is the name of the file the requesting element wants to download. For
example, if the requesting element wants to download the file which name is
00000000000000000000000000000000_192.168.0.4.21164_000000000000000000000000
00000000_192.168.0.1.22368_1175895448445_ping 192.168.0.2 -n 200.res and is stored
at the source node with IP address 192.168.0.1:22368, a download request would be
initiated as follows:

4.7 Data download

Page 84 of 220

GET
/get/00000000000000000000000000000000_192.168.0.4.21164_00000000000000
000000000000000000_192.168.0.1.22368_1175895448445_ping 192.168.0.2 -n
200.res HTTP/1.1<cr><lf>

User-Agent: DTMS-P2P client<cr><lf>

Host: 192.168.0.1:22368<cr><lf>

Connection: Keep-Alive<cr><lf>

Range: bytes=0-<cr><lf>

<cr><lf>

The User-Agent string may be any name chosen by the developer. For example, it may be
assumed that the User-Agent header should contain the name of the DTMS-P2P element
sending the message (e.g. DTMS-P2P probe, DTMS-P2P super-probe or DTMS-P2P
client).

The Host header is required in HTTP 1.1 and specifies the address of the remote node (in
this case the source node). It is usually not used by the receiving node, but its presence is
required by the protocol.

The Connection header tells the remote host if the connection should be closed when the
transfer is finished or not. “Connection: close” means that the connection must be closed
after the transfer. “Connection: Keep-Alive” or no Connection header means the
connection must be kept open. The requesting element may then issue another request for
another range of a file or another file. The request may be sent before the previous transfer
is finished. This is called a Persistent Connection, and it is described in section 8.1 of RFC
2616.

In the DTMS-P2P system, if the requesting node demands a source node to keep the
connection active (Keep-Alive), the node should only keep it active for a configured
timeout (say 24 hours). If no messages are received within the timeout period, the
connection should be closed.

The Range header is used to request the complete file content when defined as “bytes=0-“
or the range of bytes to be downloaded, for example, “bytes=766-10083”. Note that the
Range header does not have to specify both start and end positions.

The node receiving this download request should verify if it is sharing the required file. If
not, the node should verify if a file with the same name but an extension “.err” is stored.
This file describes the errors that may have occurred during the measurement process
(section 4.4.3). In this case, the “.err” file should be downloaded in place of the “.res” one.

In case the responding node is sharing the required file or the corresponding error file, it
should respond with HTTP 1.1 compliant headers such as:

4.7 Data download

Page 85 of 220

HTTP/1.1 200 OK<cr><lf>

Server: DTMS-P2P probe<cr><lf>

Content-Type: result/res<cr><lf>

Content-Length: 11278<cr><lf>

<cr><lf>

With this response, the source node accepts the received request. Afterwards, the file is
sent and should be read up to, and including, the number of bytes specified in the Content-
Length provided in the node’s HTTP response message.

In the HTTP response message, the Server header, as the User-Agent header, may contain
the name of the node sending the message. For example it may be DTMS-P2P probe or
DTMS-P2P super-probe.

The Content-Type header should be used to specify the type of the file to be downloaded.
For example, in case the file contains the results of a test session, the Content-Type header
should be equal to “result/res”. If the requested file contains the description of the error
that occurred during a measurement process, the Content-Type header should be equal to
“error/err”.

The Content-Length header is used to specify the length in bytes of the content of the file
to be downloaded.

However, in case the remote node verifies that is not sharing the requested file it should
reply with a file not found message:

HTTP/1.1 206<cr><lf>

<cr><lf>

In this case, both elements should close the established connection.

When the GET message requests for a range of the file to be downloaded, e.g., with Range:
bytes=766-10083<cr><lf>, the response is a Partial Content message:

HTTP/1.1 206 Partial Content<cr><lf>

Server: DTMS-P2P probe<cr><lf>

Content-Type: result/res<cr><lf>

Content-Length: 9318<cr><lf>

Content-Range: bytes 766-10083/11278<cr><lf>

<cr><lf>

4.7 Data download

Page 86 of 220

The Content-Range header is used to specify the range of bytes to be downloaded and the
file size in bytes.

Implementations should allow the node’s administrator to configure the maximum number
of file transfers a node should handle at the same time. This number is represented by a
number of slots. The start of a file transfer (download or upload) requires a free slot. If all
slots are taken, the node is said to be busy. If this is the case, the node should answer with
the following message when receiving a download request:

HTTP/1.1 503<cr><lf>

<cr><lf>

When a storing node is busy, if the requesting node demanded it to keep the connection
active (Keep-Alive), the requesting node should periodically (30 seconds by default)
request the file download again until the remote node is able to upload the file.

In addition, if the requesting element is a node (probe or super-probe), before requesting
the download of a given file, it should also verify if it has a free slot to download the file. If
all slots are taken, the node should wait until it gets a free one to process the request and
download the required file.

During the download process, headers unknown to the DTMS-P2P elements must be
ignored.

The HTTP messages used during the file transfer process must be transmitted in ASCII
format, using the ISO-8859-1 character encoding variant.

DTMS-P2P elements should not attempt to download multiple files from the same source
at once. Files should be locally queued instead.

The implementation should allow the local administrator to configure the maximum speed
at which a file should be downloaded by a remote node.

After the end of a successful download or upload process, a node should use the average
transfer rate of the file transfer to determine the highest average transfer rate of the last 10
downloads or uploads, respectively. The node’s download and upload speed should be
consider to be equal to the highest average transfer rate of the last 10 downloads or
uploads, respectively.

4.7.2 Firewalled nodes

Before starting the file transfer process, the involved nodes should establish a connection
to each other to be used during the download process. When the storing node (source node)
is not firewalled, the requesting node (node where the file will be replicated) can directly
open a connection to it (section 4.3.5). However, the storing node may be behind a firewall
or may not accept incoming connection requests. In these cases, the download process is
only possible if the requesting node can accept incoming connection requests (file upload).
Therefore, because a firewalled element cannot accept incoming connection requests, the

4.7 Data download

Page 87 of 220

file transference process is only possible when one of the involved elements is not
firewalled.

When the storing node is behind a firewall or for any other reason cannot accept incoming
connection requests, the requesting element must send a Push request message (appendix
A.2.29) to the storing node through the DTMS-P2P network, asking it to establish the
connection for data download. After sending this message, the requesting node should wait
a configured timeout for the connection establishment. If the connection is not opened
during this timeout, the requesting element should stop the download process. The Push
message should be forwarded to the storing node as described in section 4.2.1.

After receiving a Push message, a super-probe should first verify if it is directly connected
to the destination node. If so, it verifies also if the destination node and the requesting node
support a common security mode. If not, the super-probe discards the message since the
destination node and the requesting node will not be able to establish a connection for data
download (section 4.2.4). Otherwise, the message must be forwarded to the destination
node.

After receiving a Push message, the storing node must first verify if it can accept the
request for file upload. If the node is not sharing the required file (results file or error file)
or the shared file does not have the same size as requested in the Push message, the node
should not accept the request. Otherwise, if the node is sharing the file, it must open a
connection to the requesting element (section 4.3.5) and send it a HTTP GIV message.
This message prompts the remote node to download the required file using the established
connection. This message must be transmitted in ASCII format, using the ISO-8859-1
character encoding variant, in the following form:

GIV <file name>:<file size><cr><lf>

User-Agent: <the name of the sending node><cr><lf>

Server: <IP Addr:port><cr><lf>

<cr><lf>

where <file name> is the name of the file to be downloaded and <file size> is its size in
bytes. The User-Agent field may have the name of the node sending the message. For
example it may be DTMS-P2P probe or DTMS-P2P super-probe. The Server field must
have the IP address and port number where the node sending the message is running.

After sending the HTTP GIV message, the storing node must wait to receive an HTTP
GET request message from the requesting element, during a configured timeout. The GET
request and the remaining file download process is identical to the one described in section
4.7.1.

The requesting element should ignore the <file name> field in the received HTTP GIV
message, and request the file it wants to download. The storing node must allow the
requesting element to request any file, and not just the one specified in the Push message.
Next we give one example of an HTTP GIV message.

4.7 Data download

Page 88 of 220

GIV
00000000000000000000000000000000_192.168.0.4.21164_000000000000000000
00000000000000_192.168.0.1.22368_1175895448445_ping 192.168.0.2 -n
200.res:11278<cr><lf>

User-Agent: DTMS-P2P probe<cr><lf>

Server: 192.168.0.1:22368<cr><lf>

<cr><lf>

If the TCP connection is lost during a Push initiated file transfer, it is strongly
recommended that the storing node attempts to re-connect. This is important, since the
requesting element may not be able to send another Push message to the storing node.

To be able to download files from firewalled nodes, a client must be able to accept
incoming connection requests. Thus, the client should not be firewalled and should be
listening for incoming requests in a given IP address and port number. But the client
element should only accept an incoming connection request if it is to be used to download
a file from a remote firewalled node. The client element should never accept incoming
connection requests from elements trying to connect to the network.

4.7.3 Multi-source download

When the file to be downloaded is stored in more than one source, the requesting node
should retrieve the file from multiple locations. The multi-source download may be
advantageous because the requesting element can download different sections of the file at
the same time from different locations. This behavior may decrease the time an element
will need to download a given file. There will be an advantage when the download speed
from multiple sources is higher than the download speed from the fastest individual source.

The node should at least download a given portion of the content of the file (minimum
download size – minDownloadSize), say 1 MB = 1048576 bytes, from each remote node.
Using the minDownloadSize value, the node may determine the maximum number of node
sources (maxNumberOfSources) it can use to download the overall content of the file. This
value can be computed by dividing the file size by the minDownloadSize. If this value is
greater than the number of available sources (numAvailableSources), the node should use
all the available sources. Otherwise, the node should only use the required
maxNumberOfSources. In this last case, the node should sort the list of sources using their
upload speed. The faster sources should be preferred. If an error occurs while downloading
from a given source, one of the remaining free sources should be used to continue the file
download.

After computing the number of sources to be used (numOfSourcesToBeUsed), the
requesting node should divide the total file length in sections of equal size. The number of
sections should be equal to the numOfSourcesToBeUsed. Each section should be
downloaded from a different download source in parallel. Because the
numAvailableSources may be less than the maxNumberOfSources required to download

4.7 Data download

Page 89 of 220

the minDownloadSize from each source, the length of a section may be greater than the
minDownloadSize.

Whenever a section is completely downloaded from a given source or the requesting
element gets a new download source, the requesting element should use the new free
source to improve the file download process. A requesting element may receive the
information of a new download source, for example, if a new Query-Hit message is
received during a search process (section 4.6.2). In both cases, the element should use the
new free source because, if the file is downloaded in parallel from all the available sources,
the download process may be faster.

To be able to use a new free download source, an element should identify the slower
download source currently being used. If this source has to download yet more than, say
the minDownloadSize, the remaining bytes of the section to be downloaded may be
divided between this source and the free one (a process called split/steal). Then, portions of
the remaining bytes can be simultaneously downloaded from both sources.

In this situation, it is very likely that one of the download sources to be used is faster than
the other one. Thus, to improve the download process, the faster download source should
be used to download a larger portion of the remaining bytes. To determine the number of
bytes to be downloaded from one source and from the other one, we should consider that
the time required to download the two parts of the remaining bytes from both sources
should be equal. Using this, we prevent the faster download source to download the
required number of bytes in less time, which would lead to the overall process to be
repeated again.

Let the speed and number of bytes to be downloaded from source i be denoted by vi and bi
respectively, and let the time required to download bi bytes from source i be denoted by Ti.
Then, the number of bytes to be downloaded from the faster and slower sources is given by

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+
=

+
=

⇔
⎪⎩

⎪
⎨

⎧

+=

=
⇔

⎩
⎨
⎧

+=
=

1

1

2

1
2

2

1

2

1

1

21

2

2

1

1

21

21

v
v

bb

v
v

b
v
v

b

bbb
v
b

v
b

bbb
TT

The download speed vi is set initially to the value declared by the source but is
progressively corrected based on measurements carried out by the requesting element as it
downloads the data.

After computing the number of bytes to be downloaded from each source, the element
should use the free download source to download the last bytes of the divided section. The
source currently in use should be used to continue receiving the first bytes of the divided
section. Thus, the process currently downloading the section must continue downloading
the required portion of the remaining bytes and not all the section as it was initially

4.7 Data download

Page 90 of 220

scheduled. When this required number of bytes is downloaded, this process should close
the connection to the storing node to not receive more data from it. The storing node
should also stop sending data and close the connection because the requesting element will
not use this data anymore since it is being downloaded from another source. Doing this, it
is guaranteed that the remaining bytes of the divided section are downloaded from the two
remote sources in parallel.

The requesting element should not use a new free source when (i) the number of bytes that
remain to be downloaded is lower than minDownloadSize or (ii) the source is slower than
the source being tested and the number of bytes it should download is smaller than
minDownloadSize. This is to avoid spending the overhead of the splitting process when the
data to be downloaded is small.

In this case, the new free source should be tested against all other sources, by increasing
order of download speed, until a source that can split data download with it is found or the
fastest source has been tested. Although these sources provide faster downloads they may
be downloading larger portions of data which may bring the splitting process to an
advantage. Using this process, it is guaranteed that, whenever possible, the requesting
element is always downloading different sections of the file and from different sources at
the same time, which improves the overall download process.

When the element finishes downloading a given section of the file from a remote source, it
should verify if the section was or not successfully downloaded. In case an error occurred
during the section download and no bytes were downloaded from the remote source, the
element should not use the source any more. If no more sources are available to download
the required file, the element should stop the download process and remove the temporary
file from its storage space.

While downloading from multiple sources the requesting element should keep all
connections opened until the file is completely downloaded, since a source can used to
download several parts of the file. Also, the source node should relay to the requesting
element the task of closing connections.

For each download section the transfer process should be performed as described in section
4.7.1. The element should store each file section at the correct position of the temporary
file used to store the content of the file. When all the sections of the file are downloaded
the node should rename the temporary file to the original file name.

4.7.4 Encryption

After the connection set-up process and if the elements chose to use the authenticated or
the encrypted security modes, all HTTP control messages (GET, GIV, etc) must be
encrypted using AES and authenticated using HMAC as described in section 4.1.
However, the data messages (used to transfer the content of a file during file download) are
never authenticated but are encrypted in the encrypted mode. Authenticating data messages
would increase significantly the load of the download process when downloading large
files.

4.8 Light Data

Page 91 of 220

4.8 Light Data

The Light Data Files (LDFs) are one of the types of measured data files used in the DTMS-
P2P protocol. A LDF stores the round-trip time (RTT) statistics between a super-probe and
all the elements connected to it (probes, super-probes and clients of its measurement group
and super-probes of other measurement groups). The information stored in a LDF is called
light data. Any super-probe will store the most recent LDFs of all super-probes (including
its own). The complete set of LDFs is called the Compiled Light Data File (CLDF). Each
super-probe must periodically build its LDF and broadcast it to all other super-probes of
the network.

A node’s administrator must configure the parameters that the node must use to
periodically generate its LDF, when operating in super-probe mode. These parameters are:
(i) the interval time between LDFs generation (lightDataUpdateInterval – 30 minutes by
default), (ii) the number of echo requests to be send for RTT calculation (4 by default) and
(iii) the interval time between these echo requests (1 second by default).

At any time, a user may use a client element to obtain a CLDF directly from the super-
probe to which the client is connected to or from any other super-probe of the network.

Because CLDFs only contain the RTT statistics between super-probes and the elements
connected to them, they provide a coarse, but updated and fully available, view of the
network status.

4.8.1 Light Data file format

We have adopted XML as the LDF and CLDF formats because of its readability which
facilitates the exchange of these files between the elements of different implementations of
the DTMS-P2P protocol. Both files use exactly the same formats with the Document Type
Definition (DTD) represented in Figure 29.

Figure 29. Light Data File XML DTD.

In this XML DTD the “SuperProbe” element comprises the light data of a given super-
probe. A LDF comprises only one “SuperProbe” element. A CLDF may contain different

4.8 Light Data

Page 92 of 220

“SuperProbe” elements, each one related to a given super-probe. Each “SuperProbe”
element has different “DTMS_P2P_Element” child elements. These last ones contain their
own child elements, which are: “address”, “mode”, “date” and “rtt”. The “address” element
represents the address of the remote DTMS-P2P element connected to the super-probe
generating the respective light data. The “mode” element should be the code of the mode
of the element: 0 – probe, 1 – super-probe of the measurement group of the generating
super-probe, 2 – client and 3 – super-probe of another measurement group. The “date”
element should be equal to the difference, measured in milliseconds, between the time the
RTT calculation was started and midnight, January 1, 1970 UTC. The “rtt” element
comprises the computed RTT statistics to the respective element. These statistics are
represented by the child elements “min”, “avg” and “max” which represents the obtained
minimum, average and maximum RTT statistics, respectively. The RTT statistics (“rtt”
child elements) should be defined in milliseconds. If the generating node is not able to
compute the RTTs to a given DTMS-P2P element the “rtt” child elements must be set to “-
1”. This situation may happen if the remote element is firewalled or for any other reason
does not respond to ICMP echo requests. The “SuperProbe” element has some attributes.
The “address” attribute represents the address of the generating super-probe, and the
“groupID” attribute is the Group ID of the super-probe’s measurement group. The
“lightDataUpdateInterval” and “intervalBetweenEchoRequests” attributes should be
defined in milliseconds. They represent the interval time the super-probe is configured to
wait between successive light data generation and the interval time between the echo
requests sent to compute the RTTs, respectively. The “numOfEchoRequests” attribute is
the number of echo requests the generating super-probe is configured to send, when
computing RTTs.

Considering the network of Figure 30, an example of a LDF produced by the super-probe
192.168.1.1 is depicted in Figure 31. An example of a CLDF obtained from the same
super-probe is depicted in Figure 32.

Figure 30. Light Data.

4.8 Light Data

Page 93 of 220

Figure 31. Light Data File example.

4.8 Light Data

Page 94 of 220

Figure 32. Compiled Light Data File example.

4.8 Light Data

Page 95 of 220

4.8.2 Light Data generation and distribution

After starting a node in super-probe mode or if the node is promoted to a super-probe, it
should periodically (lightDataUpdateInterval) build a new LDF by computing the RTTs to
each element it is connected to.

A new LDF will replace an older one. A new LDF should be broadcasted to all other
super-probes over the DTMS-P2P network using a Light Data message (appendix A.2.34).
This process could also be performed using HTTP between each pair of super-probes.
However, due to network constraints regarding firewalls, not all super-probes may be able
to directly connect to a generating super-probe and request its LDF using HTTP.
Moreover, due to the limit constraints of a super-probe’s LAC and CKN, it is not possible
to guarantee that a super-probe knows all other super-probes of the network. Flooding the
LDF using the DTMS-P2P overlay network is a faster process and it guarantees that a LDF
of a generating super-probe is received by all super-probes at a maximum distance of TTL
hops from it.

The content of a LDF may be larger than the payload of a Light Data message (messages
should not be larger than 4 KB – appendix A.2.1). In this case, the LDF must be
fragmented. As all messages, to support the fragmentation process each Light Data
message includes a Message ID, equal for all fragments of the same LDF, and uses the
Cont. Frag. Index (Content Fragment Index) and M (More Fragments) fields of the
message header (appendix A.2.1). Fragments should be of maximum size, whenever
possible.

When a super-probe is connected to more than one super-probe, it first sends one fragment
to all super-probes, and only after this starts sending the next fragment. Another alternative
would be to send all fragments to one super-probe, and only after this start sending to the
next-super-probe.

When a Light Data message is received for the first time by a super-probe and the message
includes a full LDF, the LDF is stored at the super-probe, replacing an older one if it exists
(with a different Message ID). The LDF is stored with the name IP
Address.Port_MessageID.xml where IP Address is the IP address of the generating super-
probe, Port is the port number where the super-probe is listening for incoming connection
requests and MessageID is the Message ID of the Light Data message that transported the
LDF. The Message ID should be used to control the flooding process in support to the one
described in section 4.2: if a Light Data message with a Message ID already present in a
file name is received, then the message must be discarded; otherwise, it is the first time that
the message is received by the super-probe, and the super-probe must flood the message,
after storing the corresponding LDF.

The case of fragments is handled in a different way. The first fragment of a LDF arriving at
super-probe will force the creation of a temporary folder, where all other fragments (with
the same Message ID) will be stored, with name IP Address.Port_MessageID. Each
fragment will be stored in a temporary file with name IP
Address.Port_FragmentIndex.tmp, where FragmentIndex is the fragment number
(message’s header Cont. Frag. Index field - appendix A.2.1). When all fragments have
been received, the various fragment files are merged into a file with name IP

4.8 Light Data

Page 96 of 220

Address.Port_MessageID.xml, replacing an older one if it exists, and the temporary folder
is destroyed. If at least one fragment is not received within a time interval, counted from
the reception of the first received fragment, then the super-probe must destroy all
temporary files and the temporary folder. This timeout may be equal to, say, number of
fragments times the configured timeout to receive a message from a remote node. In
support to the flooding mechanism described in section 4.2, the flooding of fragments is
controlled in the following way: if a Light Data message with a Message ID present in a
file name is received, then the message must be discarded (this means that the LDF was
already reassembled at the super-probe); else if the Message ID is present in a temporary
folder name and the fragment number is present in one of the file names of this folder, then
the message must also be discarded; otherwise, the super-probe must flood the message,
after storing the corresponding LDF fragment.

In both cases, a message to be flooded is sent to all (super-probe) neighbors except the
super-probe that sent the message and the super-probe that generated the message (if
directly connected to the super-probe).

4.8.3 Light Data retrieval

As mentioned before, any client connected to any super-probe can retrieve the information
stored in a Compiled Light Data File (CLDF) directly from its super-probe or from any
other super-probe of the network. Due to the fact that the LDFs of a super-probe are
periodically updated, a super-probe should only produce the CLDF when a client requests
to download it.

The CLDF is requested using HTTP. To request the file, the client opens a new TCP
connection to the required super-probe (section 4.3.5.1) and requests the download of the
LightData.xml file, which contains the CLDF. This request is performed as described in
section 4.7.1. Since a client does not know the size of the remote super-probe’s CLDF, it
must request the download of the complete LightData.xml file content; to do so, the client
uses the HTTP GET request message with a Range header defined as “bytes=0-“.

When a super-probe receives a request for downloading the LightData.xml file, it starts by
building the CLDF with the information of its own LDF and of the LDFs received from
other super-probes. This file is built using the XML DTD presented in section 4.8.1. After
building the CLDF, the super-probe responds with an HTTP response message accepting
the download request. The HTTP response message’s Content-Type header must be equal
to “lightData/xml”. Using the Content-Length header of the received HTTP response
message the client can determine the length of the super-probe’s CLDF. After completing
the CLDF upload to the requesting client, the super-probe must remove the LightData.xml
file from its storage space. However, because a super-probe may receive simultaneous
requests for downloading the Light Data File, implementations must control the creation
and deletion of the super-probe’s CLDFs.

A node receiving a LightData.xml file download request must only accept to process the
request if it is a super-probe. If it is not a super-probe, it should reject the request and close
the connection to the requesting client.

4.8 Light Data

Page 97 of 220

Usually a client should be used to obtain the CLDF directly from the super-probe to which
it is connected, but a user may also configure a client to obtain the file from any other
super-probe of the network. To do so the client can be configured to obtain the list of nodes
of a given measurement group, using the mechanism described in section 4.4.2.2.2, and the
super-probe selected among the nodes of the required measurement group. The user can
also enter manually the address of a super-probe from where he wants the CLDF to be
downloaded.

In case the selected super-probe is not the super-probe to which the client is directly
connected, it may be possible that the client cannot open a direct connection to the selected
super-probe to request the HTTP CLDF download. This situation may happen if the
selected super-probe is behind a firewall or for any other reason cannot accept connection
requests from the client. When trying to request the CLDF from the selected super-probe,
the client must first try a direct connection; in case an answer is not received within a
configured timeout, the client must send a Push message (appendix A.2.29) to the selected
super-probe, using the DTMS-P2P network. This message directs the selected super-probe
to open a connection to the requesting client in order to upload the LightData.xml file. This
download is performed in a similar way as the one described in section 4.7.2. In this case
and because the client does not know the size of the remote’s super-probe CLDF, the file
size field of the Push message must be set to zero. In case the receiving node is not a super-
probe it must not process the request: this node may be a super-probe that was demoted to
a probe.

After completely downloading the super-probe’s CLDF, the client must store it in its
download directory with a different name. The name of the CLDF may be “IP
Address.Port_LightData_<time>.xml”, where IP Address and Port represent the IP address
and port number of the remote super-probe and <time> field should be equal to the
difference, measured in milliseconds, between the time the CLDF was downloaded and
midnight, January 1, 1970 UTC. Remember that a client may be used to download the
CLDFs of different super-probes and may be used to request the download of the CLDF of
a given super-probe several times.

4.8.4 Light Data clean interval

After a certain interval a super-probe may be storing LDFs of super-probes that are no
longer connected to the network or that were demoted to probes. These LDFs should be
deleted, as soon as possible, from the storage space of the super-probe. However, it is not
always possible for a super-probe to verify if a remote super-probe is not a super-probe
anymore or if it was disconnected from the network. Moreover, even knowing the light
data update interval of a remote super-probe, it is difficult to predict when a new LDF
should be received from it, because the construction of LDFs takes a variable amount of
time that depends strongly on the number of nodes it is connected to. In order to
circumvent this problem, the super-probe’s administrator should define an interval time,
called light data clean interval (default 24 hours), to delete the LDFs of all super-probes
that are not directly connected to it. This allows for periodically removing LDFs from
super-probes that no longer exist.

4.9 Additional client actions

Page 98 of 220

4.9 Additional client actions

4.9.1 File action request

A user can request the replication and/or deletion of Heavy Data Files that were generated
by measurements he configured. To do so the user client sends a File Action Request
message (appendix A.2.30), that contains the client IP address and measurement group, the
name of the Heavy Data File and the type of action (replicate and/or delete). The
destination node (probe or super-probe) upon receiving this message performs the
requested action and afterwards sends a File Action Response message (appendix A.2.31)
to inform the client. This is illustrated in (Figure 33).

Figure 33. Messages exchanged during the file action request process.

A user should only request the replication and/or deletion of a Heavy Data File through the
same client used to configure the corresponding measurements. This should be done to
prevent users to delete the files produced by test sessions configured by other users. To do
so, the client checks if its IP address and measurement group match the corresponding
information contained in the name of the Heavy Data File, as inserted by the user (section
4.4.2.6.2).

This verification is also performed by all nodes traversed by the File Action Request
message, which verifies if, inside the message, the client IP address and measurement
group match the corresponding information contained in the name of the Heavy Data File.
If not, the message should be discarded and, if the message was received from a super-
probe, the receiving node must close the connection with it, since super-probes must not
flood invalid messages. In case of rejection from the super-probe directly connected to the
client, the super-probe must respond with a File Action Response message to inform the
client that the request was not accepted.

In addition, the super-probe that is directly connected to the client verifies if the client IP
address contained in the message matches the IP address read from the socket connection
with the client. It also verifies if the client measurement group contained in the message
equals its own. If one or both verifications fail, the super-probe must close the connection

4.9 Additional client actions

Page 99 of 220

to the client. This verification must be performed to prevent a user to try to hide the
identification of the client he is using, to be able to request the replication and/or the
deletion of files produced in test measurements not configured using the respective client.

When the File Action Request message reaches the destination node, it must verify if it is
sharing the required file. If not, the node must send a File Action Response message back
to the requesting client informing it that the request was rejected.

If the remote client is requesting the node to replicate the file, the node should replicate it
as described in section 4.5 to produce the required number of replicas. The number of
replicas is indicated in the File Action Request message. If the node is already in the
process of replicating the file, the requested actions (replication and/or deletion) must be
rejected.

If the remote client requested replication and deletion, the file should not be deleted in case
the node was not able to perform all the required replications.

If the node is a probe, after deleting the file from its storage space, it verifies for all words
present in the deleted file name, if there is no other file being shared with that word in the
file name. If yes, the probe should send a List of Shared Files message (appendix A.2.8) to
its super-probe with the hash codes of the words that are no longer present in any of the
files it is sharing. The super-probe must remove these words from the
probeListOfSharedFiles related to the sending probe (section 4.6.1). In this way, the super-
probe maintains updated information regarding the files being shared by its probes.

4.9.2 Resources request

Whenever a user wants to known the available resources at a given node of the network he
should use a client to send it a Resources Request message (appendix A.2.32). This
message should be forwarded to the destination node as described in section 4.2.1. The
Resources Request message may be used to get the available resources at a given super-
probe and all probes under its control.

After receiving a Resources Request message, the receiving node should respond with a
Resources message (appendix A.2.33) with information about the node’s available
resources (Figure 34). This message should be routed back to the requesting client as
described in section 4.2.1.

4.9 Additional client actions

Page 100 of 220

Figure 34. Messages exchanged during a resources request process.

When the user prompts the client to obtain information about the available resources at a
super-probe and all its probes, the Resources Request should be forwarded to each probe in
turns when it arrives at the super-probe. After sending the Resources Request message to a
probe, the super-probe must not send to the probe any more messages until it receives a
Resources message from it. The super-probe must only wait to receive the Resources
message for a configured timeout. In case the message is not received within this timeout,
the super-probe must close the connection to the remote probe. While waiting to receive
the Resources message, a super-probe must process any other message received from the
probe or from other elements connected to it. Remember that a probe may send some
messages to its super-probe whenever a change occurs (e.g. List of Shared Files (sections
4.4.3, 4.6.1 and 4.9.1), List of Supported Monitoring Modules (section 4.4.1.2), etc). A
super-probe only sends a Resources Request Message to a probe after receiving the
Resources message from the previous one or a timeout has occurred. The Resources
Message sent by the super-probe carries information about the super-probe and all probes
that have answered to the request. This process is illustrated in Figure 35.

4.9 Additional client actions

Page 101 of 220

Requesting
client

Responding
super-probe

Resources Request

Resources p i

Resources Request

Destined
super-probe probes

Resources Request to p i

(...)

Resources p j

Resources Request to p j

Resources

Other super-
probes

Resources Request

Figure 35. Messages exchanged during a resources request process (sp and p).

4.9.3 Connect to node request

A user may want to actively request a given node of the network to connect to another
node. This possibility is advantageous because the user will be able to interconnect two
measurement groups which are not interconnected, possibly because the nodes of both
measurement groups do not know each other; also he will be able to integrate to the
network a node not connect to it.

To request a node (the first node) of the network to connect to another node (the second
node), a client must send a Connect to Node Request message (appendix A.2.35) to it. This
message should be forwarded to the destination node as described in section 4.2.1.

After receiving the Connect to Node Request message, the first node should try to connect
to the second node. But before doing it, the node should verify if the second node is not
itself or if it is not already connected to it. If one of these situations is verified, the first
node should reject the request.

If the first node is a probe and it is not connected to the second node, it should send a Bye
message (appendix A.2.37) to its super-probe informing that it will close the connection.
Then it should close the connection and try to connect to the second node. However, if the
probe is not able to connect to the second node, it should reconnect to the previous super-
probe. If the first node is a super-probe the request will not be accepted if its maximum
number of connections has been reached.

After trying to connect to the second node, the first node should send a Connect to Node
Response message (appendix A.2.36) to the client that issued the request (Figure 36). This
message is used to inform the client if the first node accepted to process the request and if

4.9 Additional client actions

Page 102 of 220

it was or not successfully performed. Opposite to all response messages, the Connect to
Node Response message is not routed through the reverse path, but must be flooded
towards the client using a different Message ID than the one used by the corresponding
request (a process similar to the one described in section 4.2.1). This must be done because
the first node may be a probe that has connected to a super-probe which didn’t receive the
Connect to Node Request message sent by the requesting client. Note however that the
Connect to Node Response message must include the Message ID of the Connect to Node
Request message so that the client can correlate the response with the request it sent.

Figure 36. Messages exchanged during a connect to node request process.

4.9.4 Node’s File List

Implementations of the DTMS-P2P protocol must allow a user to obtain the information
about all the files a remote node is sharing to the network. This information should be
provided in a file containing the name and the size in bytes of the files the node is sharing.
This file will be called Node’s File List (NFL). At any time, a user may use a client
element to obtain the NFL directly from the required node.

4.9.4.1 Node’s File List format

We have adopted XML as the NFL format because of its readability which facilitates the
exchange of this file between the elements of different implementations of the DTMS-P2P
protocol. This file must be defined using the following Document Type Definition (DTD):

<!DOCTYPE FileListing [
 <!ELEMENT FileListing (Directory*)>
 <!ELEMENT Directory (Directory*, File*)>
 <!ATTLIST FileListing nodeAddress CDATA #REQUIRED>
 <!ATTLIST FileListing groupID CDATA #REQUIRED>
 <!ATTLIST FileListing mode CDATA #REQUIRED>
 <!ATTLIST Directory name CDATA #REQUIRED>
 <!ATTLIST File name CDATA #REQUIRED>
 <!ATTLIST File size CDATA #REQUIRED>
]>

Figure 37. Node’s File List XML DTD.

4.9 Additional client actions

Page 103 of 220

In this XML DTD the “FileListing” element comprise the information about the files a
node is sharing to the network. The “Directory” element represents a directory with other
directories and/or files being shared by the generating node. The “File” element represents
a shared file. The “FileListing” element comprises three attributes used to identify the
generating node. They are the “nodeAddress” (the IP address of the generating node), the
“groupID” (the node’s measurement group ID) and “mode” (the node’s operating mode –
probe or super-probe). The “Directory” element has an attribute which represents the name
of the shared directory (“name”). The “File” element has two attributes, one represents the
name of the shared file (“name”) and the other represents its size in bytes (“size”).

Figure 38 illustrates an example of a NFL.

<FileListing nodeAddress="193.136.92.234:22360" groupID="00000000000000000000000000000000"
mode="super-probe">

 <Directory name="results">

 <Directory name="error">
 <File
name="00000000000000000000000000000000_193.136.92.234.21164_00000000000000000000000000000000_
193.136.92.234.22361_1182274244918_ping 193.136.92.234 -d.err" size="787" />
 </Directory>

 <File
name="00000000000000000000000000000000_193.136.92.234.21164_00000000000000000000000000000000_
193.136.92.234.22360_1182251089911_ping 193.136.92.234 -n 10.res" size="787" />
 <File
name="00000000000000000000000000000000_193.136.92.234.21164_00000000000000000000000000000000_
193.136.92.234.22360_1182260883321_ping 193.136.92.234 -n 10.res" size="787" />
 <File
name="00000000000000000000000000000000_193.136.92.234.21164_00000000000000000000000000000000_
193.136.92.234.22360_1182273636063_ping 193.136.92.234 -n 10.res" size="787" />

 </Directory>

</FileListing>
Figure 38. Node’s File List example.

4.9.4.2 Node’s File List retrieval

A user must be able to configure a client to obtain a NFL from any node of the network.
For this purpose, a client may be configured to obtain the list of nodes of a given
measurement group using the mechanism described in section 4.4.2.2.2. A user can also
enter manually the address of the node whose NFL he wants to download.

A client must connect directly to the selected node to request the download of the NFL.
This file must be downloaded using HTTP using the same process as the one described for
the retrieval of a super-probe’s Compiled Light Data File (section 4.8.3). But in this case
the client should request for the download of the FileList.xml file instead of requesting for
the LightData.xml file. The FileList.xml file name must be used to allow the remote node
to identify that the requesting client wants to download its NFL.

A NFL must only be build after a user request its download and must be deleted from the
node’s local storage after the file is completely uploaded. Using this procedure, a user will
always receive the most recent information about the files the node is sharing to the

4.10 Performance security considerations

Page 104 of 220

network. Due to the fact that a node may receive different NFL download requests at the
same time, implementations must control the creation and deletion of the NFL.

After receiving a HTTP GET request message requesting for the node’s FileList.xml file,
the receiving node must build its XML NFL with the information about all the files it is
currently sharing and send an HTTP response message to the requesting client. Using the
Content-Length header of the received HTTP response message the client is able to
determine the length of the NFL. The HTTP response message’s Content-Type header
must be equal to “fileList/xml”.

After the completion of the NFL download, the client must store it in its download
directory with a different name. The name of the NFL may be “IP
Address.Port_FileList.xml”, where IP Address and Port represent the IP address and port
number of the generating node. Remember that a client may be used to download the NFL
of different nodes. Whenever a client request again the NFL of a node which NFL was
already downloaded before, the previous NFL must be replaced with the new one.

4.10 Performance security considerations

Besides the security constraints described in section 4.1, implementations of the DTMS-
P2P protocol must implement other mechanism to guarantee the best performance of the
system. In this section are described some of these mechanisms.

4.10.1 Preventing third-party denial of service

A lot of DTMS-P2P control messages directed from an unsuspecting party or a lot of
connections requests could be used for denial of service (DoS) attacks. Thus, unless
configured otherwise, super-probes should limit the number of connections they can accept
from other elements. In addition, elements should only process messages received from
another element, if they didn’t receive a lot of messages from the remote element in a short
period of time.

4.10.2 Resource use limitations

A DTMS-P2P node can consume resources of various kinds. The three most important
kinds of resources are storage space capacity for storing test results, memory and network
capacity. Any implementation of DTMS-P2P node must include technical mechanisms to
limit the use of storage and memory capacity and to limit the use of network capacity. The
default configuration of an implementation must enable these mechanisms and set the
resource use limits to conservatively low values.

4.11 Summary

In this chapter we described the DTMS-P2P protocol and how the messages are exchanged
between the elements of the system.

As described in this chapter, the DTMS-P2P protocol supports three security modes:
unauthenticated, authenticated and encrypted. To guarantee the secrecy of exchange and in
the authenticated and encrypted security modes, all the messages should be encrypted

4.11 Summary

Page 105 of 220

using AES-CBC and authenticated using HMAC-SHA1. The security features should be
used to prohibit theft of service and to provide secrecy of exchange.

The messages exchanged between the elements of the system must be forwarded, by the
super-probes of the system, to other nodes connected to them. Each receiving node should
only process the message if it is destined to it, to its measurement group or to all nodes of
the system. The destination nodes should answer to the received requests and these
responses must be routed back to the requesting element, using the same path the requests
were received.

To connect to the network the elements of the system must try to connect to another node
already connected to the network. This information is initially provided by the element’s
administrator but the elements should also exchange the information about known nodes in
the process of connecting to each other. This information is used during connection set-up
process.

When a user wants to configure a test session at a remote note, he must use a client to
obtain the required information from the node where the test session is to be performed.
After the end of a test session the user may retrieve the results of the test session by ending
a query to the network.

After generating a new Heavy Data File, with the results of a performed measurement test,
the generating node may replicate the file at other nodes of the network. To do so, the node
must try to find possible locations where the file can be replicated and then request these
nodes to download the file from its storage space or from other nodes where the file was
previously replicated.

In this chapter we also described the overall download process used in the DTMS-P2P
protocol. The file download process is performed using HTTP directly between the storing
node and the receiving node, outside the DTMS-P2P network. Thus, the two involved
elements must open a TCP connection between them and then process the file transference,
from the storing node to the receiving element. During the file transference process the
involved nodes must have attention to the fact that one of them may be firewalled. Only
not firewalled nodes can receive connections requests from other nodes. Thus, case the
node storing the file is behind a firewall and the receiving node isn’t, this last one should
send the remote node a request to “push” the file to it. When the file is stored in multiple
nodes of the system, the DTMS-P2P should allow an element to download it from multiple
sources. This operation may improve the download process.

The super-probes of the system should periodically generate a Light Data File (LDF), with
the RTT statistics to each node connected to them, and forward the file to all super-probes
of the overlay network. This process should be accomplished using the DTMS-P2P
network to guarantee that this information can reach the majority of the super-probes of the
network. Whenever required, a client can obtain, from any super-probe of the network, the
compiled Light Data File (CLDF) with the information stored in the most recent super-
probe’s LDF plus the information stored in the latest LDFs of other super-probes.

As described in this chapter, a user may use a client to end different types of requests to
remote nodes of the overlay network. Among these requests the user can configure the

4.11 Summary

Page 106 of 220

client: to obtain the available resources at a remote node; to request a node to connect to
another node of the network; to request a node to replicate and/or delete a given file; or to
request a node for the information about all files the node is sharing to the network.

In this chapter we also described some security issues related to the performance of the
DTMS-P2P protocol. The DTMS-P2P implementations should prevent the denial of
services (DoS) attacks and must include mechanisms to limit the use of resources capacity
(mainly storage space, memory and network capacity).

Chapter 5. DTMS-P2P versus File Sharing Applications

Page 107 of 220

Chapter 5. DTMS-P2P versus File Sharing Applications
In this chapter we will compare the similarities and differences of the file search and
download mechanisms proposed in this dissertation with the ones used by some file
sharing applications. We will also compare DTMS-P2P with the P2P systems based in the
Distributed Hash Table (DHT) method. In this last case we will pay special attention in the
comparison between the overlay network construction, message routing, file storage,
search and replication mechanisms implemented by these last systems and the ones we
propose in this work.

Because there are a lot of file sharing applications and each one implementing different
approaches we decide to only compare the DTMS-P2P system with an application that
implements a similar approach in comparison to the one we use, the LimeWire file sharing
application [LimeWire], and with the applications implementing the BitTorrent protocol
which uses a totally different approach. We compare DTMS-P2P with the P2P systems
implementing the DHT method in general.

In section 5.1 we will compare the DTMS-P2P and the LimeWire systems and in section
5.2 we will compare the DTMS-P2P and the BitTorrent systems. Then in section 5.3 we
will compare the DTMS-P2P system with the P2P systems based in the DHT method.
Finally, in section 5.4 we will give a summary of the chapter and present the main
conclusions.

5.1 LimeWire

The LimeWire [LimeWire] file sharing application runs over the Gnutella network and, as
DTMS-P2P (section 4.6), implements the same file search mechanism of the Gnutella
protocol. Moreover, it implements multi-source downloads too, but with some differences
in relation to the DTMS-P2P system.

To process multi-source downloads the LimeWire P2P application splits the content of the
file to be downloaded in a set of regions of three different main categories
[LimeWire2002]:

 Black regions: regions that have already been downloaded to disk;

 Grey regions: regions that are currently being downloaded;

 White regions: regions that have not been assigned to be downloaded yet.

As DTMS-P2P (section 4.7), the LimeWire application uses a split/steal algorithm as will
be described next. For each available source is assigned a process (called downloader)
responsible to download from the respective source. Each downloader executes the
following actions:

i. Establishes a TCP connection to the respective source, using a PUSH message
whenever required (as in DTMS-P2P – section 4.7.2). In case of failure the

5.1 LimeWire

Page 108 of 220

downloader aborts and terminates; the correspondent source is not used
anymore;

ii. Chooses a region of the file to download. If there is a white region, the
downloader tries to download it. Otherwise it tries to steal, from another
downloader, part of a not downloaded segment of a grey region. In case, there
aren’t other regions to be downloaded the downloader aborts. If this last
situation is verified, the correspondent source may be used later whenever
required;

iii. In case the downloader is able to get a region to be downloaded it sends an
HTTP request for the given region and downloads the file. If the download
terminates prematurely the downloader updates the list of regions to be
downloaded accordingly. If the request fails, it aborts and terminates. In this last
case, the source is not used anymore.

LimeWire uses two different approaches to choose the region of the file to download (grey
or white region), depending on the version of the HTTP protocol being used. For
HTTP/1.0 each request requires a new HTTP connection. Thus, in this case, to minimize
the number of requests needed, a downloader assigns to itself an entire white region if
available or half a grey region otherwise. Only one downloader at a time can execute the
action (ii) above. When a downloader steals half a grey region from another one, the first
downloader will close the connection when it gets halfway through the respective grey
region. On the contrary, for HTTP/1.1 the LimeWire application defines a small fragment
of N bytes to be downloaded at a time. In this case, a downloader chooses the first N bytes
of a white region if available or the last N bytes of a grey region otherwise. Thus, if a file is
being downloaded from two sources A and B, at the same speed, the file will be
downloaded in the following order ABABAB… This approach has two major advantages:
(i) it improves the file preview functionality, as the file is typically downloaded from
beginning to end; and (ii) it reduces the delay provoked by slower sources.

In both cases described above, the split/steal process is performed whenever a downloader
completes before the other ones.

At the split/steal process LimeWire, as DTMS-P2P, has a provision where a faster
downloader can steal an entire region from a stalled downloader.

As DTMS-P2P, at the LimeWire P2P application different downloaders write the content
of the file to be downloaded to the same temporary file which avoids having to reassemble
fragments at the end of the download.

When comparing the download mechanism proposed in this dissertation (section 4.7) with
the one implemented by the LimeWire P2P application we can notice that, although very
similar, they differ in some aspects as will be described next.

DTMS-P2P initially computes the length of the fragments of the file to be downloaded
from the available sources based in the number of available sources. The file is initially
divided in a number of fragments equal to the number of available sources and with equal
size. Each fragment is downloaded from one of the available sources. Thus, the overhead

5.2 BitTorrent

Page 109 of 220

required to download these fragments will be, in most cases, less than the overhead
obtained in LimeWire. Moreover, DTMS-P2P defines the minimum size of a fragment to
be downloaded from each source (minDownloadSize – default 1 MB). This allows the
selection of faster sources when the size of the fragments, computed based in the number
of available sources, is less or equal to minDownloadSize. Due to this, the file download
will be faster.

As LimeWire, at DTMS-P2P whenever there is a free source, it should be used. However,
unlike LimeWire, to be able to use the free source the downloader element should identify
the slower source currently being used. If the element has to download yet more than the
minDownloadSize from this source, the remaining bytes to be downloaded may be divided
between this source and the free one. When splitting the remaining bytes to be
downloaded, DTMS-P2P has in consideration the time required to download the bytes
from both sources. To improve the download process, it divides the remaining bytes to
both sources in a way that they will spend the same time to download them. This behavior
prevents the element to perform the split/steal process many times, which improves the
overall download process. This behavior is not verified in LimeWire.

5.2 BitTorrent

Let’s now compare the applications implementing the BitTorrent peer-to-peer file sharing
protocol [BitTorrent2007] [Cohen2003] with the proposed system. There are a lot of
applications, called BitTorrent clients, implementing the BitTorrent protocol. Using a
BitTorrent client, users are capable of preparing, downloading and sharing files to the
network.

In the BitTorrent protocol any computer running an instance of a BitTorrent client is called
a peer. For a given file, peers can generally be classified into downloaders and seeds. Seeds
are peers who have the complete copy of the file (may be the original peer or other peers
that successfully downloaded the file). Downloaders are peers who are downloading
fragments of the file from other peers and may be sharing some fragments too
(downloaded from other downloaders or seeds). After downloading a complete copy of the
file, downloaders are upgraded to seed status.

Another element of the BitTorrent protocol is the tracker. This entity is responsible to
coordinate the file distribution by maintaining a list of the clients currently participating in
the file sharing. These clients are peers who are currently sharing the file or one of its
fragments. The tracker only manages connections, it does not have any knowledge of the
contents of the files being distributed, and therefore a large number of users can be
supported with relatively limited tracker bandwidth.

To share a file, a peer must first split the file into fragments and compute a hash on each
one. These hashes are used by clients to verify the integrity of the data they receive. After
computing the hashes, a peer creates a file called “torrent” file. This file is a small file
which contains metadata about the file to be shared (file name, file length, fragments
length and fragment hashes), and about the tracker responsible to manage the distribution
of the shared file.

5.2 BitTorrent

Page 110 of 220

The original peer must place the “torrent” file in a web server and publish a link to it in a
website or elsewhere. Peers that want to download the file must first obtain the “torrent”
file for it using the published link, and then open it using a BitTorrent client. With the
information stored in this file, the client must connect to the required tracker to obtain the
information about the peers from where the fragments of the file can be downloaded (the
original seed or other peers that have already retrieved the file or some of its fragments).
After downloading a given fragment and after they have checked the correspondent hash
stored in the “torrent” file, peers report it to the tracker to start sharing it to the network
too.

As described above, in the BitTorrent protocol, a file is not shared only by the original
peer, receiving peers also supply data to newer recipients. Therefore there is a distribution
of the costs of hardware, storage and bandwidth resources among all storing peers. This
significantly reduces the load of the original peer and dependence upon any given
individual source as well as provides redundancy against system problems.

During a file download, when selecting which fragment to start downloading next, peers
generally first chooses fragments shared by fewest peers. This technique is called “rarest
first”. It ensures the replication of the rarest fragments as quickly as possible thus reducing
the risk of them getting completely lost if the peers originally sharing them stop sharing. A
random fragment selection approach may also be used. This last approach increases the
opportunity to exchange data, which is only possible if two peers have different pieces of
the file.

The BitTorrent protocol uses HTTP for file downloads, however the BitTorrent download
differs from the standard HTTP download, used by many web browsers, in several aspects:

i. BitTorrent makes many small P2P requests over different TCP sockets, while in
a standard HTTP download typically is made a single HTTP GET request over
a single TCP socket.

ii. BitTorrent downloads in a random or “rarest first” approach that ensures high
availability, while in the standard HTTP files are downloaded in a contiguous
way.

The BitTorrent protocol presents some inherent limitations:

i. the tracker is a single point of failure in the network. If a tracker fails, it is no
longer possible for new peers to join the network or for existing peers to
discover each other;

ii. the tracker is a bottleneck because the scalability of a BitTorrent network
largely depends on the network capacity of the tracker.

When comparing the BitTorrent protocol with the DTMS-P2P protocol the main first
difference that we observe is that BitTorrent protocol does not implement the file search
mechanism. To share a file or group of files, a peer uses the “torrent” file. Peers that want
to download the file must first obtain the “torrent” file for it, to get the information needed
to download the file. When comparing the download mechanism implemented by the

5.3 Peer-to-peer systems based in Distributed Hash Tables

Page 111 of 220

BitTorrent protocol with the one implemented by DTMS-P2P (section 4.7), we can verify
that both mechanisms are completely different. Moreover, BitTorrent deals well with files
that are in high demand and newer files (files only shared from a few number of peers).
The applications implementing the BitTorrent protocol have this advantage because the file
is cut into fragments of fixed size and each fragment can be shared by the peers that
previously downloaded them. On the contrary, the nodes of the DTMS-P2P protocol only
share a file after it is completely downloaded.

Alternatively to the method described above, in a BitTorrent trackerless system
(decentralized tracking) every peer acts as a tracker. This alternative scheme is
implemented by the BitTorrent [BitTorrent], µTorrent [µTorrent], BitComet [BitComet]
and KTorrent [KTorrent] clients through the distributed hash table (DHT) method
[Balakrishnan2003] [Tanenbaum2007]. Azureus [Azureus] also supports a trackerless
method but it is incompatible with the DHT offered by all other supporting clients.

5.3 Peer-to-peer systems based in Distributed Hash Tables

P2P systems based in the Distributed Hash Table (DHT) method [Tanenbaum2007]
comprise many differences when compared with the traditional first-generation peer-to-
peer architectures. In the first P2P systems the file search mechanism was based in a
database maintained in a central server and which mapped file names to sources storing the
files. This approach had inherent scalability problems and the central server was a single
point of failure. In succeeding P2P systems (for example Gnutella protocol version 0.4
[Gnutella04]) the central server was removed to avoid the single point of failure problem.
In these systems, all nodes share files in the network and act as a server. To search for a
file, a query message is flooded to all nodes of the network and only the nodes sharing the
required file answer to the request. Still, this approach doesn’t scale well due to the large
bandwidth consumed by broadcast messages and due to the load consumed at the many
nodes that must handle these messages. To minimize this problem, a hierarchical approach
was introduced in which some nodes are selected to act as an ultrapeer which are nodes
that manage the exchange of messages between the nodes connected to them and other
nodes of the network (for example, Gnutella version 0.6 [Gnutella06], which was used as
the basis for our implementation). As will be described next, the DHT introduced a
different approach to find files in a P2P system in a scalable manner without any
centralized servers or hierarchy.

5.3.1 Overlay network and message routing

The DHT overlay network is build by assigning a unique node ID to each participating
node and by the connections between nodes with consecutives IDs. The node IDs are k-bit
identifiers belonging to an abstract large identifier key space, such as the set of 128-bit or
160-bit identifiers. The nodes are arranged by their IDs in a particular manner as, for
example, in a ring where the IDs are in increasing order clockwise around the ring (Figure
39). The connections between nodes of the system are usually UDP based connections. To
join the system a node must first contact with a node already connected to the overlay
network to negotiate its node ID and to find its place in the network. Node IDs are chosen
randomly and uniformly so peers who are adjacent in node ID can be geographically away
from each other. After the selection of the node ID the new node can connect to the nodes
which IDs are closer to its own to inform them that it is a new node. Nodes of the network

5.3 Peer-to-peer systems based in Distributed Hash Tables

Page 112 of 220

must keep a table with the information about their closest neighbors in terms of the key
space (route table). This information must be updated whenever a new node connects to
the network.

The route table is used to forward messages to destinations. Messages are usually destined
to a node with a given node ID and must be sent, by the original node and all receiving
ones, to the node in the route table with the closer ID (smallest ID greater or equal to the
ID sent in the message). The message is forwarded from node to node through the overlay
network until it reaches the single living node with smallest ID greater or equal to the ID
carried in the message (Figure 39). This last node must process the request received in the
message. This style of routing is sometimes called key based routing.

To maintain the overlay network and keep their route tables updated, the nodes
periodically send messages to their neighbors to verify if they are still active. If a node
does not respond the requesting node updates its route table and tries to connect to the node
which ID is the succeeding ID in comparison to the ID of the node that left the system.

The key space partitioning, message routing schema and overlay network components
described above are the principal ideas common to most DHTs. However many designs
differ in the details. The first DHTs implementations where CAN [Ratnasamy2001], Chord
[Stoica2001], Pastry [Rowstron2001] and Tapestry [Zhao2004]. In the Figure 39 we
present an example of the DHT method implemented in Chord.

Figure 39. Chord DHT.

In the Chord and Pastry DHT implementations the nodes in the network are arranged in a
circular identifier space and have similar characteristics as the ones described above.
However, Pastry introduces some differences in the routing procedure.

To route messages a Pastry node first try to find a node ID that shares with its message ID
a prefix that is at least one digit (or b digits) longer than the prefix shared with the ID of
the current node. To do so, each node maintains three tables: routing table, leaf table and
neighborhood table. To attempt to minimize the distance traveled by messages, each entry
in the routing table points to one of potentially many nodes close to the present node
according to a scalar proximity metric (for example, the number of IP routing hops or the
round-trip time delay) instead of the key space proximity (numeric ID difference). The leaf

5.3 Peer-to-peer systems based in Distributed Hash Tables

Page 113 of 220

table consists of the n closest peers by node ID in each direction around the circle and is
the first table used to find a match when forwarding a message. The routing table is only
used if a match is not found in the leaf table. The neighborhood table is a set of x nodes
that are near the present node, according to the proximity metric. It is not usually used in
routing, but is useful for routing table updates when the state of the system changes (node
addition or recovery). If a match in terms of the configured number of prefix is not found
in both the leaf and routing tables, the message is forwarded to a node which ID, stored in
one of the three tables, shares a prefix with the message ID at least as long as the local
node, and is numerically closer to the message ID than the present node’s ID.

In the Content Addressable Network (CAN) the peer nodes are placed in a virtual, d-
dimensional Cartesian coordinate space.

The main differences that we can identify when comparing the DTMS-P2P system with the
P2P systems based in the DHT method, in terms of the overlay network and message
routing, are:

 The DTMS-P2P system is based in a hierarchical architecture (section 4.3)
totally unlike the architecture assembled by the DHT based P2P systems. Due
to its hierarchical structure more complex mechanisms are required to maintain
the DTMS-P2P overlay network;

 When a node tries to connect to a DTMS-P2P network it first tries to connect to
nodes that are geographical near to its location. This is not a main concern in
most DHT systems which may lead to situations where messages unnecessarily
travel long distances to reach their destination. To prevent this problem Pastry
resorts to routing tables that account for the distance among nodes;

 The DTMS-P2P overlay network is based in TCP connections, thus the nodes
are able to immediately identify when a node connected to them leaves the
network. As a consequence, the DTMS-P2P nodes do not need to periodically
send messages to their neighbors to verify if they are still alive as is usually
required in DHT based systems;

 The nodes of the P2P systems based in the DHT method usually maintain a
routing table with the addresses of some nodes to which messages can be sent
to reach their destination. In the DTMS-P2P system nodes do not keep a routing
table (unless to root response messages back to the requesting element – section
4.2) since messages are usually flooded to the network. The flooding process
may be disadvantageous because it may occupy large bandwidth since
messages are flooded to a lot of unnecessary nodes and these nodes are required
to process messages not destined to them. However, messages are more likely
to reach their destination even if the topology of the network changes during the
flooding process. This is not guaranteed in the DHT method because a node,
supposed to forward a given message, may leave the network at any time
without previous alert and without being noticed. In case of failure, the
originating node must resend the message. The routing mechanism
implemented in the DHT method is faster than the flooding mechanism.

5.3 Peer-to-peer systems based in Distributed Hash Tables

Page 114 of 220

5.3.2 File storage and search mechanism

In DHT networks, the filenames are hashed to a k-bit key (where k is the key space size in
bits) and stored at the node with ID closer and greater or equal to this key value.
Alternatively, instead of storing the file at the node, a pointer to the node where the file is
originally located can be placed. To search a file, again the filename is hashed to a k-bit
key and routed towards the node with ID closer and greater or equal to the key value,
where the file is stored. The messages to put a file on a node and to retrieve a file from a
node are routed as described in previous section.

Whenever a new node connects to the DTH network, it must be checked if this node
should be the one to store one or more files presently stored in its neighbor with closest
higher ID. If so the file or files should be transferred to the new node. This is a bandwidth-
intensive task that can occur frequently if the network has high rates of nodes arrivals and
failures. The DTMS-P2P system has not this problem since the storage and retrieval is not
based in a key space partitioning scheme as it is in the DHT method.

DHTs only directly support exact-match search, rather than keyword search, although this
functionality can be layered on top of the DHT. The DTMS-P2P data search mechanism
provides both exact-match search and keyword search.

Due to the key based search mechanism implemented by the DHT method queries are
likely to be routed through the network without needing to visit many peers resulting in
faster queries. The DTMS-P2P system uses a flooding search mechanism which may
require that queries have to travel a lot of nodes to reach their destination. In addition, this
mechanism may lead to poor network performance since a lot of nodes receive and have to
process messages not destined to them.

5.3.3 File replication

The DHT method also allows P2P systems to replicate the files at different nodes
connected to the overlay network. DHT based P2P systems supporting replication have
been proposed in [Druschel2001] and [Plavec2004]. Here, if n replicas are required, they
will be stored in the n consecutive nodes with IDs greater or equal to the ID of the file to
be replicated. Thus, the replication mechanism implemented by the DHT method does not
have in consideration the load and resources available at the nodes where the replicas are
to be created. These nodes are selected having in consideration the key ID of the file to be
replicated and the node ID. On the contrary, in the DTMS-P2P system the locations where
a file should be replicated are selected having in consideration their available storage
resources and network speed.

The DHT P2P distributed system proposed in [Plavec2004] tries to guarantee that the
number of replicas in the network is kept constant. This is not possible in the DTMS-P2P
system since nodes are not aware of the nodes where the replicas are created and are not
able to identify when a node leaves the network if was not directly connected to the
disconnecting node.

5.4 Summary

Page 115 of 220

5.4 Summary

There are different approaches used by different file sharing applications to share files
among peers. In this chapter were compared the similarities and differences of the file
search and download mechanisms proposed in this dissertation, with the ones used by the
LimeWire file sharing application and with the ones used by the applications implementing
the BitTorrent protocol. It is also made a comparison between the DTMS-P2P system with
the P2P systems implementing the Distributed Hash Table (DHT) method.

The file search mechanism implemented in the LimeWire application is the same
implemented in DTMS-P2P. This mechanism is described by the Gnutella protocol.

The download process used by the LimeWire application is very similar to the one
proposed in this dissertation. The main difference resides in the fact that LimeWire does
not have in consideration the number of sources from where it can download a file, to
compute the size of each block of information (fragments) to be downloaded from the
available sources. For HTTP/1.0, a downloader tries to download the entire file.
Subsequent downloaders use the split/steal algorithm to download other fragments of the
file. For HTTP/1.1, small blocks (of fixed size) of the file content are downloaded from
different sources, from the beginning to the end of the file. The LimeWire has this
behavior to improve file previews, since the file is almost continuously downloaded from
the beginning to the end.

When splitting a fragment being downloaded by a given downloader, to be divided
between this downloader and a free one, to improve the download process, DTMS-P2P
divides the remaining bytes to both sources in a way that they will spend the same time to
download their piece of the fragment. This behavior prevents the elements to perform the
split/steal process a lot of times. This behavior is not verified in the LimeWire. LimeWire
divides the section in two equal pieces instead.

The download mechanism implemented by the DTMS-P2P system is completely different
from the one implemented by the BitTorrent protocol. Moreover, the traditional BitTorrent
protocol does not implement the file search mechanism. In this protocol, to share a file or
group of files, a peer first creates a “torrent” file and places a link to this file on a website
or elsewhere. Peers that want to download the file first obtain a “torrent” file for it, and
connect to the specified tracker (the computer that coordinates the file distribution) which
tells them from which other peers to download the fragments of the file. After
downloading a given fragment a peer may start sharing it to other peers. On the contrary of
the BitTorrent protocol, the nodes of the DTMS-P2P protocol only share a file when it is
completely downloaded.

The P2P systems based in the DHT method implement a completely different approach to
build the overlay network, share and retrieve files from the network and the implemented
replication method has many differences in comparison to the one implemented by DTMS-
P2P. The file search mechanism of the P2P systems based in the DHT method provides a
lookup service very similar to a hash table. It is based on the storage of (key, data) pairs
and you can look up the data if you have the correspondent key. The implemented
replication mechanism is based in the IDs attributed to the nodes and the file keys in the
key space and does not have in consideration the available resources at the storing nodes.

5.4 Summary

Page 116 of 220

Chapter 6. DTMS-P2P Implementation

Page 117 of 220

Chapter 6. DTMS-P2P Implementation
In this chapter we present a versatile and easily manageable implementation of the DTMS-
P2P system described in Chapter 3 and Chapter 4, which was also designated by DTMS-
P2P. The DTMS-P2P system was implemented in Java language using Eclipse IDE
[Eclipse]. This language was used because it presents a set of favorable characteristics, like
semantic simplicity, portability and a set of classes that greatly simplify the construction of
distributed applications.

In section 6.1 is presented the package structure of the implemented system and in section
6.2 we will list and describe the implemented classes. Finally, in section 6.3 we will give a
summary of the chapter and present the main conclusions.

6.1 DTMS-P2P package structure

To implement the system the following 2 packages were built: dtms_p2p and util packages;
and the following 4 sub-packages of package util were built: aes, hmac, pbkdf2 and xml
packages. Below there is a representation of this structure:

• dtms_p2p
• util

 aes
 hmac
 pdkdf2
 xml

In the dtms_p2p package are implemented all the classes directly related to the DTMS-P2P
protocol implementation. In the util package are implemented some auxiliary classes used
by the classes of the dtms_p2p package. The description of the classes implemented in both
packages will be presented in the next section. In the aes package is implemented the class
AES_CBC used to perform data encryption using AES (Advanced Encryption Standard) in
Cipher Block Chaining (CBC) mode [AES]. In the hmac package is implemented the class
HMAC_SHA1 used to implement the HMAC-SHA1 [RFC2104], a mechanism for message
authentication using cryptographic hash functions. In the pbkdf2 package is implemented
the class PBKDF2 used to implement the Password-Based Key Derivation Function
PBKDF2 (PKCS #5) as described in [RFC2898]. In the xml package is implemented the
class XMLParser used to access XML documents using Document Object Model (DOM)
API (appendix A.4).

6.2 DTMS-P2P implemented classes

In this section we will present a basic description of the Java classes developed to
implement the proposed protocol.

6.2.1 Classes implemented in the dtms_p2p package

The structure of the system implemented in the dtms_p2p package, is based on three levels:
Messages level, Entities level and Protocol level. At the Messages level, a set of classes

6.2 DTMS-P2P implemented classes

Page 118 of 220

corresponding to each message that is exchanged in the DTMS-P2P protocol and some
auxiliary classes were developed. At the Entities level, a set of classes was developed in
order to implement the two elements (node and client) of the DTMS-P2P architecture. At
the Protocol level a set of classes where build to implemented the protocol and to
implement auxiliary functions and objects.

Bellow we give a more detailed description of the classes implemented in the dtms_p2p
package for the levels identified above.

6.2.1.1 Message level

At the message level, the main class Message is the basis of the implementation of all the
messages exchanged between the elements of the system, excepting the Server Greeting,
the Server Start and the Setup Response messages. Thus, this class contains all methods
(basic functions) for manipulating and formatting the different messages involved in the
protocol. For each one of these messages we developed a class that derives from the
Message class and which name corresponds to the name of the respective message. The
Server Greeting, the Server Start and the Setup Response messages were also implemented
in classes that have the same name of the respective messages.

Sending a message always implies transferring all its bytes to a buffer and send it through a
socket, so all the classes implementing the messages of the protocol include a constructor
to build the message and a method to transfer all its bytes to a buffer (messageToBuffer). In
the same way, the reception of a message implies its reception through a socket and
transferring information from the reception buffer to the respective message format. All
these classes include a constructor that implements this functionality.

6.2.1.2 Entities level

At the Entities level, the main class DTMS_P2P_Element is the basis for the derived
classes DTMS_P2P_Node and DTMS_P2P_Client used to implement the node (probe and
super-probe) and the client elements, respectively. It was defined in order to group in the
same class all objects and methods that are common to the two classes that implement the
different elements of the DTMS-P2P architecture.

The DTMS_P2P_Node class is a subclass of the DTMS_P2P_Element class and
implements the command line version of the node element of the protocol. It is used to
represent the probe and super-probe elements of the DTMS-P2P architecture. This class
includes all the objects and methods that are necessary to manage communications with
other elements of the network. It includes, among others, a method to control the number
of connections the node can make or accept and a method to control the process to receive
messages from the network. The node’s configuration can be done from the command line
using a set of possible options.

The DTMS_P2P_NodeGUI class implements the graphical user interface (GUI) of the
DTMS-P2P node element. It is a simple graphical interface that users may use to configure
and run a DTMS-P2P node. Using this interface, a user can change a set of options of the
node’s configuration at any time while the node is running. This is not possible using the
command line implementation of the DTMS-P2P node (DTMS_P2P_Node). Moreover,

6.2 DTMS-P2P implemented classes

Page 119 of 220

this GUI provides to the user the information about the current node’s status; a set of
information about all the connections the node currently has active (node’s LAC – section
4.3.3); the information currently stored in the node’s Cache Of Known Nodes (node’s
CKN – section 4.3.2); the list of files the node is sharing to the network (measurement test
results); in case the node is a super-probe, the list of stored Light Data Files (section 4.8);
and a console where is printed all log messages. All these information are updated at run
time. In addition, the GUI allows a user to configure the node to connect to a remote node
or to remove any existent connection, which allows a user to configure the topology of the
network. The user may also open any file (Heavy Data Files or Light Data Files) directly
using the GUI.

The DTMS_P2P_Client class is a subclass of the DTMS_P2P_Element class and
implements the command line version of the client element of the protocol. With this
element a user may configure test sessions and retrieve the results produced by these tests.
This class includes all the objects and methods that are necessary to establish the
communication to the network, to configure test sessions at remote nodes and to retrieve
the produced results. It includes, among others, a method to obtain information about the
existent measurement groups and nodes at the network, methods to obtain information
about a given monitoring module a remote node supports, a method to obtain information
about all the monitoring modules a remote node supports, a method to allow a local
administrator to configure a remote node to process a given test session, a method to
retrieve the results and methods to configure remote nodes to process a required action (file
replication or deletion, available resources request, connection request, etc). The client
configuration can be done from the command line using a set of possible options.

6.2.1.3 Protocol level

At the Protocol level, the main class DTMS_P2P_Protocol class is the most important
class of the system. It implements the main functionalities of the DTMS-P2P protocol and
is used to process all messages received by an element. It also includes all the required
objects and methods used to handle the exchange of messages between all the elements of
the system. Each message received should be processed in a separate process because the
node should be able to process different messages at the same time. Thus, this class
extends the Thread class.

The Authentication class is used to process the encryption/decryption of messages
sent/received in an established connection, using the AES (Advanced Encryption Standard)
in Cipher Block Chaining (CBC) mode. It is also used to process the message content
authentication using HMAC-SHA1. Moreover, it is used to store the required information
exchanged during connection set-up, between two elements wishing to use the
authenticated or the encrypted security modes. This information will be used to process the
encryption and authentication of messages exchanged between these elements (section
4.1).

The ByteArrayList class is used to store the history of the messages sent by a client
(client’s message list – section 4.2). It is a circular list. When the maximum number of
records that can be saved in this list is reached, the older record is replaced with the new
one. This class extends the ObjectTable class.

6.2 DTMS-P2P implemented classes

Page 120 of 220

The CacheOfKnownNodes class implements the Cache of Known Nodes (CKN) of a
DTMS-P2P element. This class includes all the objects and methods required to store and
manage the CKN of a given element of the system. This list can comprise the addresses of
the known probes and super-probes of the same measurement group of the respective
element, or the addresses of the known super-probes and probes of other measurement
groups of the system. This class extends the DefaultHandler class because it is used to
parse the content of the element’s File of Known Nodes XML file (section 4.3.2) using the
SAX API (appendix A.4).

The Connection class implements the socket connection between two elements of the
system. It contains a method to request a TCP socket connection to a remote IP address
and methods that are needed to receive and send messages through the socket. The class
also contains a set of methods and objects used to manage the connection to the remote
element.

The ConnectionList class is used to implement the object used to store and manage the list
of connections of a given element (section 4.3.3).

The ConnectionManager class was defined in order to group in a same class all objects
and methods that are common to the two classes that implement an element outgoing
connection process and incoming connection process, OutgoingConnectionManager and
IncomingConnectionManager classes respectively.

The DownloadDescriptor class describes a particular file/NodeHit pair that together
contains all the information needed to initiate and control a download of a given file from a
remote node.

The Downloader class defines an auxiliary object used to download a specific section of a
file from a particular host, and save the downloaded data to a specific file on disk (section
4.7.3). This class extends the Thread class and is used to process the file download in a
new thread. An element downloading the content of a given file should not be blocked
while processing the file download.

The FileHit class defines an auxiliary object used to store information of a given file,
usually returned as a hit of a Query message (Query-Hit message, appendix A.2.28). It is
used to store the information about the file name, file size and information about all nodes
that are sharing the file. This class is used by an element to identify all the nodes sharing a
given file at the network and from where the file can be downloaded.

The IncomingConnectionManager class is used to handle the incoming connection
requests of a given DTMS-P2P element. It extends the ConnectionManager class and is
used to control and process the connection requests a given element receives in a separate
thread. A node and a client element of the system should always be listening for incoming
connection requests. They may be incoming connection request received from remote
elements trying to connect to them and or incoming connection requests to be used in file
download processes (section 4.7). Clients must only accept incoming connection requests
if they are to be used in a file download process when the storing node is firewalled or, for
any other reason, cannot accept the client connection requests (section 4.7.2).

6.2 DTMS-P2P implemented classes

Page 121 of 220

The LightDataGenerator class implements the node’s light data generator. It is used to
generate the light data of a given super-probe connected to the network (section 4.8). This
process should be periodically performed in a separate thread. Thus, the class extends the
Thread class. It includes all the required objects and methods to generate a super-probe’s
light data and forward it to all super-probes connected to the generating super-probe.

The ListOfNodeAddr class implements the list of node addresses of the Ping and Pong
messages (appendix A.2.5 and A.2.6, respectively).

The MonitoringModuleDescription class implements an object, used to store the
description of a given monitoring module supported by a given node (section 4.4.1). It
stores the information about the supported monitoring module as, for example, the name of
the monitoring module, the command to get the monitoring module’s help or usage
description, the list of option to save to a file and the list of restrictions the local
administrator configured the node to require for the respective monitoring module.

The MultiSourceDownloader class is used to implement the multi-source download, when
a file to be downloaded is stored in multiple sources at the network (section 4.7.3). This
class includes all the objects and methods that are necessary to handle the overall
download process, to download different sections of the file from different sources and to
build the entire downloaded file. This class uses instantiations of the Downloader class to
download the different sections of the file from the available sources.

The NodeHit class defines an auxiliary object used to store information of a given node
that is sharing a given file to be downloaded. It is used to store the information about the
node’s IP address, upload speed and some other information.

The ObjectTable class was defined in order to group in a same class all objects and
methods that are common to the classes that implement elements used to store a set of
objects. The classes ByteArrayList, ReplicationTable and RouteTable extend this class.

The OutgoingConnectionManager class implements the outgoing connection process
when an element is trying to connect to the network (section 4.3.4). This class includes all
the objects and methods that are necessary to process the element’s File of Known Nodes,
in order to connect to a remote node of the network. This class extends the
ConnectionManager class because the outgoing connection set-up process should be
processed in parallel, in a different thread. An element should not be blocked during this
process.

The RemoteNodeAddr class represents an object used to store the IP address of a remote
node (IP_Addr class) and the average RRT obtained to the respective node. This class is
used in the CacheOfKnownNodes class to sort an element’s CKN using the RTT statistics
obtained to the remote nodes.

The ReplicationRecord class implements the object used to store, in the node’s Replication
Table, all the information relative to a replication of a given file (section 4.5.2). Among the
information it stores, it comprises the information about the number of replications
requests made, the number of successful replications made and the information about other

6.2 DTMS-P2P implemented classes

Page 122 of 220

nodes where the file has being successfully replicated. It is only used during the replication
of a given file.

The ReplicationTable class defines the object used to store the information
(ReplicationRecord) of all files the node is replicating (section 4.5.2). A node should be
able to replicate more than one file at the same time. This class extends the ObjectTable
class.

The ResourcesInformation class implements the object used to represent the information
about the available resources at a given node. Some of the information stored in this object
are the available free memory space, available free storage space and information about the
transfer rates supported by the node. It is used to represent the objects of the list of
resources information of the Resources message (appendix A.2.33).

The RouteTable class implements the object used to store the history of the messages a
super-probe received and on which connections they were received (section 4.2). This is
used to route back the responses to messages received and forwarded by a super-probe.
Each record of the RouteTable is used to map the Message ID of a message to the
connection where it was received. When the maximum number of records that can be
saved in this table is reached, the older record must be replaced with the new one. This
class extends the ObjectTable class.

The Section class implements the object used to represent a particular section of a file that
should be downloaded from a given source (section 4.7.3). It includes all the required
information to describe the required file’s section.

6.2.2 Classes implemented in the util package

Bellow is given a more detailed description of the developed classes of the util package.
The classes implemented in the util sub-packages were described in section 6.1.

The IP_Addr class implements the object used to represent the IP address and port number
where an element is waiting for incoming connections in the DTMS-P2P network. It is
used to represent both IPv4 and IPv6 addresses.

The Log class implements an object used to write the system log messages to a file and/or
to the screen.

The Timestamp class implements the object used to obtain and process the information
time of the system. It implements the timestamp object format as in [RFC1305]. A
Timestamp object should comprises two values: an unsigned integer number representing
the seconds elapsed since 0h on 1 January 1900 and an unsigned integer number
representing the fractional part of a second that has elapsed since then. This class
comprises the required objects and methods to compute the value of the timestamp based
on these two unsigned integer values and the opposite situation.

The Util class defines the base methods used by all classes of the DTMS-P2P protocol. It
implements some methods as the method to compute the free disk space, the method to get
a node’s local IP address, the method to convert a string to a byte array, the method to

6.3 Summary

Page 123 of 220

convert an unsigned integer to long, a method to obtain the ping RTT statistics to a remote
IP address, etc.

6.3 Summary

In this chapter was described the DTMS-P2P implementation used to test the proposed
system. This implementation was developed in Java language using the Eclipse IDE.

Descriptions of the set of packages and of the set of classes build to implement the overall
DTMS-P2P system were presented.

The implementation is based in two main packages: the dtms_p2p and the util packages. In
the dtms_p2p package are implemented the main classes of the system. The structure of
this package is based on three levels: Messages, Entities and Protocol. At the Messages
level, a set of classes corresponding to the messages that are exchanged in the DTMS-P2P
protocol and some auxiliary classes were developed. At the Entities level, a set of classes
was developed in order to implement the two elements (node and client) of the DTMS-P2P
architecture. At the Protocol level a set of classes where build to implemented the protocol
and to implement auxiliary functions and objects. In the util packages are implemented
some auxiliary classes and some sub-packages with other auxiliary classes used by the
classes of the dtms_p2p package.

6.3 Summary

Page 124 of 220

Chapter 7. Evaluation and Validation of the DTMS-P2P System

Page 125 of 220

Chapter 7. Evaluation and Validation of the DTMS-P2P
System

In this chapter we present the results of a set of experiments carried out in the command
line version of our implementation of the DTMS-P2P system. The network used in the
experiments is shown in Figure 40. The machine with IP 193.136.92.107 was running the
client element and all the other machines were used to run a super-probe or a probe
element, depending on the experiment being performed. All the elements used during the
experiments were configured to support only the unauthenticated security mode. The RTT
between the machines represented in Figure 40 was about 0.6 ms. The characteristics of the
machines are presented in Table 3.

Figure 40. Network used to test the DTMS-P2P system.

Table 3 – Machines Characteristics

IP OS Network Card speed
(Mbps)

Processor
(GHz) Memory (MB)

193.136.92.107 Windows XP 100 PM 1.8 1024
193.136.92.121 Linux 10 P4 2.4 512
193.136.92.234 Windows XP 100 P4 3.19 1024
193.136.92.228 Windows XP 100 P4 3.20 1024
193.136.92.219 Windows 2000 10 P3 0.300 256

Several experiments were performed. The first experiment measures the duration of a
connection set-up process, when a node is trying to connect to the network (section 7.1).
The second experiment measures the delay to receive the information about the Group ID
of all existing measurement groups when a client is trying to discover which measurement
groups exist in the network (section 7.2). The third experiment measures the delay to
receive the list of nodes of a given measurement group (section 7.3). The fourth
experiment measures the delay to receive the hits sent in response to a requested query
(section 7.4). The fifth experiment measures the download speed of a file (section 7.5).
This experiment was also performed to compare the behavior of a multi-source download
and single source download. The sixth experiment (section 7.6) compares the download

7.1 Connection set-up

Page 126 of 220

speed obtained using the DTMS-P2P system with the download speed obtained directly
from a web server using Internet Explorer (IE) and a download manager (FlashGet
[FlashGet]) and the download speed obtained with the LimeWire application [LimeWire].

7.1 Connection set-up

To measure the duration of a connection set-up process (section 4.3.5) two experiments
were performed:

1. The first experiment was performed to compare the set-up time obtained (i) when a
probe connects to a super-probe of its measurement group with the one obtained (ii)
when a super-probe connects to another super-probe of the same measurement
group. Only two machines of the network of Figure 40 were used. In case (i) we
executed a super-probe in one machine and a probe in the other one and in case (ii)
we executed a super-probe in both machines. In both cases the responding super-
probe was not connected to any other element and its Cache of Known Nodes
(CKN – section 4.3.2) was empty.

2. The second experiment was performed to study the influence of the number of
nodes in the connection set-up time experienced by a new node. In this experiment
only three machines of the network of Figure 40 were used. Two machines
simulated the overlay network, one running a super-probe and the other running 10
probes (in different ports) that were connected to the super-probe. The third
machine was running the probe that attempts connection to the overlay network and
for which the connection set-up time is to be measured. This probe only had the
address of the remote super-probe in its File of Known Nodes (FKN – section
4.3.2) and didn’t know the addresses of the other probes. All nodes were configured
to belong to the same measurement group. The connection set-up time obtained in
this case is compared with the one obtained in the first experiment, when a probe
connects to a super-probe not connected to any other element.

In both experiments the connection set-up time is consider being the difference between
the times at which the node trying to connect to the network starts and ends testing the
addresses stored in its CKN. Thus, the connection set-up time does not include the delay
observed while the node is reading the addresses provided in its FKN. Remember that an
element must compute the RTT (round-trip time) to each address read from its FKN, to
sort the provided list of node addresses in order of the obtained RTTs (section 4.3.2). Note
that, in the case of a super-probe, the testing of the CKN includes the demotion negotiation
process with each super-probe of its measurement group with which a connection is
established (section 4.3.6.2).

For both experiments 10 test runs were performed and the obtained results and average
values are presented in Table 4 and in Table 5, respectively.

7.1 Connection set-up

Page 127 of 220

Table 4 – Duration of a connection set-up process between two nodes of the same measurement group
(p - probe; sp - super-probe)

Test Run p-sp
(delay in sec)

sp-sp
(delay in sec)

1 0.125 0.187
2 0.125 0.157
3 0.125 0.156
4 0.141 0.203
5 0.125 0.157
6 0.187 0.172
7 0.140 0.172
8 0.156 0.157
9 0.157 0.156

10 0.125 0.172
Average 0.1406 0.169

Table 5 – Duration of a connection set-up process between a probe and a super-probe (connected to 10
probes)

Test Run p-sp
(delay in sec)

1 30.891
2 30.562
3 30.578
4 30.562
5 30.594
6 30.625
7 30.610
8 30.562
9 30.532

10 30.563
Average 30.608

From the analysis of the results in Table 4, it is possible to verify that the connection set-up
between two super-probes of the same measurement group lasts longer than the connection
set-up between a probe and a super-probe. This difference occurs because, in the case of a
connection between two super-probes, due to the demotion negotiation process, there are
more messages exchanged between the involved nodes. Remember that, as described in
section 4.3.6.2, when two super-probes of the same measurement group connect to each
other they must exchange information about their available resources. This information is
then used to determine which super-probe(s) should maintain in super-probe mode.

The results in Table 5, in comparison to the results in Table 4, shows that the delay in the
connection set-up process depends on the number of elements connected to the network.
This can be explained by the fact that the connecting element will have to process a larger
number of node addresses received from the node to which it is connecting to. As
described in section 4.3.5, when an element connects to a remote element this last one
sends to the requesting element a list with the addresses of nodes that exists in the network
(information stored in the responding element’s CKN). The bigger is this list the longer
will take to process the node addresses in it. The requesting element must update its CKN
with the received information (section 4.3.7). To do so, the element must compute the RTT
to each new node address received from the remote node to be able to sort its CKN in order
of the obtained RTTs. As can be verified in Table 5, the obtained delays are very similar to

7.2 Measurement group discovery

Page 128 of 220

the time needed to compute the RTT to 10 IP addresses. This delay is approximately equal
to 30 seconds because, to compute RTTs, the node trying to connect to the network was
configured to send 4 ICMP echo requests in intervals of one second. The first ICMP echo
request is immediately sent, thus for each address the requesting node spends 3 seconds to
compute the RTT. As there are 10 new node addresses to be added to the requesting node’s
CKN, it spends approximately 30 seconds to complete the CKN update. Therefore, the
greater is the number of nodes connected to the network the bigger will be the delay for a
new node to complete the connection set-up process. This delay is not an issue to the
correct operation of the system because right after a node receives a Pong message from a
remote node and this last one is accepting the connection request, the requesting node will
be able to interact to the network while updating its CKN with the information received
from the remote one.

7.2 Measurement group discovery

Two experiments were performed to measure the delay to receive the information about
the Group ID of all existing measurement groups when a client is trying to discover which
measurement groups exist in the network (section 4.4.2.1), after it connects to a super-
probe. In the first experiment, besides the machine where the client was running, only two
machines were used and they were running a super-probe. The super-probe in machine
193.136.92.121 was configured with Group ID a and the super-probe in machine
193.136.92.219 was configured with Group ID d. These super-probes were interconnected
to each other. In the second experiment, the machine where the client was running and all
the other 4 machines were used. These last ones were running a super-probe. All super-
probes were interconnected to each other and were from different measurement groups
(Table 6). In both experiments, the client was configured to connect to the super-probe at
machine 193.136.92.121 (Group ID a). These experiments were configured to compare the
delays obtained to receive the responses with the information about the Group ID of the
measurement group of each super-probe and to verify if the delay to receive these
responses does or not depend on the number of existing super-probes.

Table 6 – Super-probe’s measurement group

Super-probe Host
Machine IP

Measurement
Group ID

193.136.92.121 a
193.136.92.234 b
193.136.92.228 c
193.136.92.219 d

For both experiments 10 test runs were performed and the obtained results and average
values are presented in Table 7 and in Table 8, respectively.

7.2 Measurement group discovery

Page 129 of 220

Table 7 – Measurement Groups discovery (only 2 super-probes interconnected)

Test Run Delay (sec)
1 0.091
2 0.084
3 0.095
4 0.099
5 0.093
6 0.093
7 0.101
8 0.096
9 0.090

10 0.099
Average 0.094

Table 8 – Measurement Groups discovery (4 super-probes interconnected)

Test Run Response Receiving Order Delay (sec) Group ID

1
1st 0.089 b
2nd 0.182 c
3rd 0.193 d

2
1st 0.095 b
2nd 0.180 d
3rd 0.183 c

3
1st 0.108 b
2nd 0.153 d
3rd 0.155 c

4
1st 0.112 b
2nd 0.158 d
3rd 0.162 c

5
1st 0.109 b
2nd 0.134 d
3rd 0.138 c

6
1st 0.094 b
2nd 0.132 d
3rd 0.135 c

7
1st 0.100 b
2nd 0.207 d
3rd 0.209 c

8
1st 0.094 b
2nd 0.132 d
3rd 0.135 c

9
1st 0.104 b
2nd 0.193 d
3rd 0.196 c

10
1st 0.094 b
2nd 0.132 d
3rd 0.135 c

Average
1st 0.0999
2nd 0.1603
3rd 0.1641

In Table 8 we give delays for the first, second and third responses that arrive at the
requesting client. Note that both in Table 7 and Table 8 we do not include the delay on
receiving information about the client’s own measurement group. This is because upon
reception of the client’s request, the super-probe the client connects to, doesn’t need to

7.3 Retrieval of the list of nodes of a given measurement group

Page 130 of 220

inform the client what is its measurement group since the client knows the Group ID of its
own measurement group.

When comparing the delay obtained to receive the response from the first super-probe in
Table 8 with the one obtained in Table 7, we can verify that they are almost equal. Given
this result, and taking into account the operation of the protocol, it is possible to anticipate
that the delay to receive the information of the first n measurement groups of the system is
independent of the number of super-probes in the system. This behavior was expected
because the super-probe, to which the client is connecting to, must flood the client’s
request to all super-probes to which it is connected to in the same way, no matter the
number of super-probes connected to it. This request is forwarded to all super-probes, one
by one, until it is flooded to all super-probes. Each super-probe, upon reception of the
client’s request will send the information of its measurement group ID in response. Each
receiving super-probe will also flood the received request message to the other super-
probes connected to them.

From the Table 8 it is possible to verify that the responses are not always received in the
same order (see, for example, Group ID column of test run number 1 in comparison to test
run number 2). This is due to the flooding process and the differences in processing times
of each super-probe in each test run, which does not guarantee that the first request arrives
at a super-probe always in the same connection and that the requests arrives at the super-
probes always in the same order.

7.3 Retrieval of the list of nodes of a given measurement group

A user can configure a client to obtain the list of nodes of a given measurement group that
support a monitoring module he wants to use (section 4.4.2.2). This experiment was
performed to measure the delay to receive this list of nodes and to compare the delays
obtained from different measurement groups.

In this experiment, besides the machine where the client was running, only two more
machines were used and they were running a super-probe. The super-probe in machine
193.136.92.121 was configured with Group ID a and the super-probe in machine
193.136.92.228 was configured with Group ID c. These super-probes were interconnected
to each other. The client was directly connected to the super-probe at machine
193.136.92.121 (Group ID a).

For each measurement group 10 test runs were performed. In Table 9, we present the delay
to receive the list of nodes of the measurement groups with Group ID equal to a and c.

7.3 Retrieval of the list of nodes of a given measurement group

Page 131 of 220

Table 9 – List of nodes of measurement group a and c

Test Run Delay (sec)
Measurement Group a

Delay (sec)
Measurement Group c

1 0.006 0.022
2 0.012 0.019
3 0.009 0.017
4 0.007 0.018
5 0.007 0.015
6 0.007 0.017
7 0.006 0.017
8 0.012 0.016
9 0.006 0.016

10 0.006 0.019
Average 0.008 0.018

From the analysis of the results in Table 9 it is possible to verify that the delay to receive
the list of nodes increase with the number of hops needed to reach the super-probe of a
given measurement group (the delay obtained for the measurement group c is greater than
the one obtained for the measurement group a). This behavior is expected because upon
reception of the request, the client’s super-probe will first answer with its list of nodes
supporting the required monitoring module. Then, it forwards the request to all super-
probes connected to it and each receiving super-probe will have the same behavior. Thus,
the more hops the request has to travel the higher will be the delay to receive the response.

7.4 Query-Hits reception

Page 132 of 220

7.4 Query-Hits reception

In this section we describe experiments performed to measure the delay to receive the hits
of a query in a results search process (section 4.6). In this experiment, the machine where
the client was running and all the other 4 machines were used. These last ones were
running super-probes. All super-probes were interconnected to each other and were from
different measurement groups (Table 6). The client was directly connected to the super-
probe at machine 193.136.92.121 (Group ID a). To perform this experiment a copy of the
same file was placed in all super-probes of the network.

Two experiments were performed. In the first experiment we configured local searches of
the file at the client’s measurement group (Group ID a). In the second experiment, we
configured global searches for the file (all measurement groups (Table 6) of the network in
Figure 40). These experiments were configured to compare the delays obtained to receive
the hits of each super-probe and to verify if the delay to receive these hits depend on the
number of existing super-probes.

For both experiments 10 test runs were performed and the obtained results and average
values are presented in Table 10 and Table 11, respectively.

Table 10 – Query hits reception (local search at the client’s measurement group, Group ID a)

Test Run Delay (sec)
1 0.038
2 0.020
3 0.018
4 0.033
5 0.022
6 0.011
7 0.020
8 0.011
9 0.014

10 0.016
Average 0.020

7.4 Query-Hits reception

Page 133 of 220

Table 11 – Query hits reception (global search)

Test Run Response Receiving
Order

Delay
(sec) Group ID

1

1st 0.043 a
2nd 0.154 b
3rd 0.354 d
4th 0.359 c

2

1st 0.030 a
2nd 0.173 b
3rd 0.181 d
4th 0.373 c

3

1st 0.026 a
2nd 0.211 b
3rd 0.221 d
4th 0.411 c

4

1st 0.017 a
2nd 0.142 b
3rd 0.145 d
4th 0.342 c

5

1st 0.025 a
2nd 0.199 b
3rd 0.202 d
4th 0.399 c

6

1st 0.016 a
2nd 0.183 b
3rd 0.186 d
4th 0.382 c

7

1st 0.019 a
2nd 0.214 d
3rd 0.216 b
4th 0.219 c

8

1st 0.020 a
2nd 0.217 d
3rd 0.220 b
4th 0.231 c

9

1st 0.017 a
2nd 0.180 b
3rd 0.183 d
4th 0.381 c

10

1st 0.018 a
2nd 0.218 d
3rd 0.222 b
4th 0.233 c

Average

1st 0.023
2nd 0.189
3rd 0.213
4th 0.333

From the analysis of the results in Table 10 and Table 11 it is possible to verify that in our
experiments the delay to receive the first query hit, the query hit of the super-probe to
which the client is directly connected to, is independent of the type of search used (local or
global). This is only verified because we have only a few nodes connected to the overlay
network. This may not be the case when there are a lot of nodes connected to the network
since each super-probe first forwards a received query to all nodes connected to them and

7.5 Single source versus multiple source download speed

Page 134 of 220

only after verifies if they are sharing files that match the search criteria. This procedure is
used to minimize the response delay of other elements in case a super-probe is sharing a lot
of files. In the case of a global search, as in the experiment of section 7.2, and due to the
same reasons, the responses are not received in the same order (see, for example, Group ID
column of test run number 7 in comparison to the test run number 6). Note that the number
of files a node is sharing may also influence the order of responses. In our test this is not
the case since all super-probes were sharing the same amount of files (only 1 in this case).

7.5 Single source versus multiple source download speed

In this section we describe the experiments performed to measure the download speed
(section 4.7) of the implemented system. The same configuration of section 7.4 was used.
In Table 12 we present the measurement group of each machine (Figure 2) and the speed
of its network card, classified as “fast” (100 Mbps) and “slow” (10 Mbps). To perform the
experiments copies of 4 files with different sizes were stored in some or in all super-probes
of the network of Figure 40. The client element was used to request their download. Two
experiments were performed. The first experiment was performed to study the download
speed from a single source. The second one was used to study the multi-source download,
with the files being shared by more than one super-probe of the network.

Table 12 – Element’s measurement group and correspondent host machine network card speed

Host Machine IP Element Mode Measurement
Group ID

Network Card speed
Mbps KB/s

193.136.92.107 Client a 100 (fast) 12500
193.136.92.121 Super-probe a 10 (slow) 1250
193.136.92.234 Super-probe b 100 (fast) 12500
193.136.92.228 Super-probe c 100 (fast) 12500
193.136.92.219 Super-probe d 10 (slow) 1250

7.5.1 Single source download

In this section we describe the experiment performed to study the behavior of the single-
source download process. To do so, we configured local searches on each super-probe of
the network for 3 files with different sizes. For each super-probe and for each file, 10
downloads were configured. The average speeds of the 10 downloads are presented in
Table 13 (the complete results are presented in the tables in appendix A.5).

Table 13 – Single Source Download Speed

File Size (KB) Super-probe Group ID Speed (KB/s) Delay (sec)

10

193.136.92.121 (slow) a 291.327 0.035
193.136.92.219 (slow) d 78.052 0.129
193.136.92.234 (fast) b 256.109 0.040
193.136.92.228 (fast) c 246.785 0.045

500

193.136.92.121 (slow) a 992.301 0.504
193.136.92.219 (slow) d 856.243 0.584
193.136.92.234 (fast) b 4903.229 0.104
193.136.92.228 (fast) c 5773.052 0.088

5120

193.136.92.121 (slow) a 926.742 5.596
193.136.92.219 (slow) d 972.740 5.287
193.136.92.234 (fast) b 9068.546 0.565
193.136.92.228 (fast) c 9116.439 0.562

7.5 Single source versus multiple source download speed

Page 135 of 220

As can be verified in Table 13 and for files with larger sizes (500 and 5120 KB), the
download speed from a given node approaches the maximum transfer rate the node
supports (Table 12). For smaller files (10 KB), the download speed diverges from its real
value. This may happen because smaller files are downloaded faster. Thus, the delay due to
the exchange of the HTTP request and response messages and the processing delay will
affect more the download speed.

As expected, the super-probes in the machines with IP addresses 193.136.92.121 (slow)
and 193.136.92.219 (slow) have approximately the same download speeds. Also, the
machines with IP addresses 193.136.92.234 (fast) and 193.136.92.228 (fast) have
approximately the same download speeds, and these speeds are higher than the ones of the
slower machines. This can be directly explained by the speeds of the network cards (Table
12). Note that the client element was running in the machine 193.136.92.107, which has a
fast network card.

7.5.2 Multiple source download

As described in section 4.7.3, when the file to be downloaded is stored in more than one
source, it can be downloaded simultaneously from multiple sources. In this section we
present some experiments performed to test the multi-source download process. To do so,
we configured downloads from 2, 3 and 4 sources for 3 different files. For the case of 2
sources two experiments were performed. In the first experiment, the files were stored at
the machines 193.136.92.228 (fast – Group ID c) and 193.136.92.219 (slow – Group ID d).
In the second experiment, the files were stored at the machines 193.136.92.121 (slow –
Group ID a) and 193.136.92.219 (slow – Group ID d). The machines 193.136.92.228 (fast
– Group ID c), 193.136.92.219 (slow – Group ID d) and 193.136.92.121 (slow – Group ID
a) were used in the 3 sources case. All the machines of the network in Figure 40 were used
in the 4 sources case. For each case 10 downloads were performed and in Table 14 we
present the average speeds and delays of these 10 downloads (the complete results are
presented in the tables in appendix A.5).

Table 14 – Multiple Source Download Speed

File Size
(KB)

Number of Download
Sources Group ID Speed (KB/s) Delay (sec)

500
2 c (fast) and d (slow) 6059.869 0.083
3 a (slow), c (fast) and d (slow) 5798.623 0.087
4 a, b, c, and d 4813.871 0.106

5120

2 c (fast) and d (slow) 7062.387 0.742
2 a (slow) and d (slow) 1041.235 4.918
3 a (slow), c (fast) and d (slow) 6257.745 0.838
4 a, b, c, and d 5257.203 1.137

54133

2 c (fast) and d (slow) 6486.916 8.775
2 a (slow) and d (slow) 1076.713 50.276
3 a (slow), c (fast) and d (slow) 6668.692 8.268
4 a, b, c, and d 6503.348 8.925

As can be verified in Table 14 for the 500 KB file case, the download speeds are close to
the ones obtained with a single source (Table 13). This is because, as described in section
4.7.3, in a multi-source download process the requesting node should at least download 1

7.5 Single source versus multiple source download speed

Page 136 of 220

MB (minDownloadSize) from each remote node and when the file is smaller than 1 MB it
should only be downloaded from a single source (the faster one).

For files bigger than 1 MB (5120 and 54133 KB in this case), the download speed depends
on the number of download sources, on the speed of the network card of each source
machine and on the download speed of the requesting element. As described in section
4.7.3, in these cases first the requesting element computes the maximum number of sources
required to download at least say 1 MB (minDownloadSize) from each source. If the
number of available sources is less than the required maximum, which is the case, all
sources should be used. In these cases, the requesting element first divides the file content
in equal sections to be downloaded from all available sources. Each section should be
downloaded from different sources. In case one source finishes downloading, the
requesting element should verify if there are more sections being downloaded. The section
being downloaded by the slower source should be divided between the free source and the
source currently downloading it, in a way that both sources lasts the same time to
download their part of the section. This split is only performed if the remaining bytes to be
downloaded are greater than 1 MB.

From now on we will refer to the download sources using the corresponding super-probe
measurement group.

Table 14 one can verify that when there was only two download sources, one quite faster
than the other one (c (fast) and d (slow)), the files were downloaded faster than the case
where only the slower source was used (d (slow)) and slower than the case where only the
faster source was used (c (fast)) (Table 13 results). Note that the client was running in a
machine supporting the same speed supported by the faster source (Table 12). Due to our
method of multiple source download, the fragment of the file to be downloaded from the
faster source will be larger than the one to be downloaded from the slower source. This is
the reason why the download speed is closer to the download speed obtained when only
the faster source was sharing the file.

When there are only two download sources with almost the same speed and which speed is
smaller than the requesting client speed (a (slow) and d (slow)), the file is downloaded
faster than if only one of them was used (Table 14 and Table 13). This situation occurs
because almost the same amount of the file content is downloaded simultaneously from
both sources at the maximum speed data can be transferred from them.

As can be noticed in the results obtained when the file is downloaded from the
measurement groups a (slow), c (fast) and d (slow), the obtained download speed
approaches the speed of the faster available download source (c (fast)). In this case, the
system has the same behavior described in the situation where the file was downloaded
from a source quite faster than the other one (c (fast) and d (slow)).

For the same reason described for the situations where the file is simultaneously
downloaded from different sources and one of the sources is faster than the other ones (c
(fast) and d (slow); a (slow), c (fast) and d (slow)), in the situation where the file is
downloaded from all the four existent nodes (a, b, c, and d), the obtained results
approaches the results obtained when only the faster source is used. However, the obtained
speed is smaller than the speed of the faster sources because a section of the file is also

7.6 Download speed comparison

Page 137 of 220

downloaded from the slower sources. In this case too, the obtained download seep is
smaller than the speed achieved when only 3 nodes were sharing the files (a (slow), c (fast)
and d (slow)). This is verified because when there are four sources there will be more
HTTP requests and responses messages used to request the required sections from each
source and there will be more overhead associated with the download process. Thus, there
will be larger delays.

7.6 Download speed comparison

In this section we describe some experiments performed to compare the download speed of
the implemented system with the download speed obtained by other applications. The
Internet Explorer (IE), FlashGet download manager and the LimeWire file sharing
application were used to carry out this comparison.

7.6.1 IE and FlashGet

In this section we describe the experiments carried out to compare the download speeds
obtained with the DTMS-P2P system with the ones obtained when using Internet Explorer
(IE version 6) and FlashGet download manager (version 1.72). Two experiments were
configured and to perform them copies of a file with 5120 KB and of a file with 54133 KB
were placed in web servers installed in all machines of the network of Figure 40.

The first experiment was performed to compare the download speed obtained from each
node using the DTMS-P2P system (single source download – results presented in section
7.5.1) with the ones obtained using IE and FlashGet applications. For each experiment, we
performed 10 downloads from each node using the file with 5120 KB. The average speed
of the 10 downloads are presented in Table 15 (the complete results are presented in the
tables in the appendix A.5).

Table 15 – Single Source Download Speed Comparison

File Size (KB) Web Server Host Machine
IP

Speed (KB/s)
IE FlashGet

5120

193.136.92.121 (slow) 981.4 870.397
193.136.92.219 (slow) 994.7 938.665
193.136.92.234 (fast) 5120 1280
193.136.92.228 (fast) 5120 1280

The obtained results, presented in Table 15, indicate that the download speed obtained
using IE is greater than the download speed obtained using FlashGet. For the slower
machines, the results are only slightly better, but for the faster machines they are
significantly better.

When comparing the results obtained with IE (Table 15) with those obtained with the
DTMS-P2P system (Table 13), one verifies that, for the slower machines, the download
speeds are approximately the same but, for the faster machines, the DTMS-P2P system
performs much better, achieving almost twice the download speed of IE.

The second experiment was configured to compare the multi-source download process
proposed in the DTMS-P2P system with the one implemented by the FlashGet download
manager. To perform this experiment, the download manager was configured to

7.6 Download speed comparison

Page 138 of 220

simultaneously download the same file from 2, 3 and 4 sources. For each case, the average
speed of 10 downloads are presented in Table 16 (the complete results are presented in the
tables in the appendix A.5).

Table 16 – Multiple Source Download Speed Comparison (FlashGet)

File Size
(KB) Number of Download Sources Group ID Speed (KB/s)

5120

2 c (fast) and d (slow) 1706.67
2 a (slow) and d (slow) 1024
3 a (slow), c (fast) and d (slow) 1621.336
4 a, b, c, and d 1877.336

54133 2 a (slow) and d (slow) 998.876
4 a, b, c, and d 2533.427

From the results in Table 16 it is possible to verify that, for the FlashGet download
manager, both when (i) the file was stored in a faster and in a slower download source (c
(fast) and d (slow)) and when (ii) was only stored at the slower sources (a (slow) and d
(slow)), the obtained download speed is greater than the one obtained when only one of the
sources is used (Table 15). This result from the fact that FlashGet is not able to download
files from a single source at the maximum rate the FlashGet host machine can support
(Table 15), which is not the case of the DTMS-P2P system as described in section 7.5.2.
Thus when FlashGet uses multiple sources higher speeds are obtained in relation to the
single source case, by exploring the speed left available at the FlashGet host machine.

In the multi-source download process, the FlashGet manager splits the file to be
downloaded in equal sections to be downloaded from each source. When the requesting
element ends downloading a section from a faster source, this source can be used to
download half the remaining section of a slower source. Due to this behavior, when
comparing the download speeds obtained for the two files used in these experiments (file
with 5120 KB and file with 54133 KB) when they are stored in 4 sources, it is verified that
a greater download speed is obtained for the larger file. This situation happens because the
larger the file the larger will be the percentage of the file content that will be downloaded
from the faster source(s). Thus, in these cases, the larger the files the greater will be their
download speed.

When comparing the results of the multi-source download using the DTMS-P2P system
(Table 14) and using FlashGet (Table 16), it is possible to verify that similar download
speeds are obtained when using only the two slower download sources (a (slow) and d
(slow)). However, when using one of the faster sources, better results were obtained using
DTMS-P2P implementation. This situation is verified due to the fact that the DTMS-P2P
system try to download the files at the maximum speed supported by the involved elements
and a greater section of a file is downloaded from the faster sources. FlashGet uses a
different approach that will force the faster sources to download smaller sections of a file
when compared with the proposed system. The approach used by FlashGet leads to smaller
download speeds because it does not have in consideration the speed of the involved nodes
(free source and slower source), when splitting the remaining bytes of a section being
downloaded by a slower source.

7.7 Summary

Page 139 of 220

7.6.2 LimeWire

In this section we describe the experiments performed to compare the download speeds of
the DTMS-P2P system and of the LimeWire file sharing application (LimeWire Basic –
version 4.12.11). To perform these experiments the LimeWire application was installed at
the Windows machines of the network in Figure 40 and all the machines were
interconnected. The LimeWire applications running at the machines that acted as super-
probes in previous experiments were configured to share copies of a file with 54133 KB.
The machine that hosted the client in previous experiments was used to download the file
from the nodes sharing it using the LimeWire application.

In this case two experiments were configured. The first experiment was performed to
compare the download speed obtained with the DTMS-P2P system (single source
download – Table 13) with the one obtained with LimeWire. In the second experiment,
LimeWire was used to download the file from multiple sources, with the purpose of
comparing its performance with the one of the multi-source download approach proposed
in this work. For each experiment 10 test runs were performed and the average values are
presented in Table 17 (the complete results are presented in the tables in the appendix A.5).

Table 17 – Download Speed Comparison (LimeWire)

File Size
(KB) Number of Download Sources Group ID Speed (KB/s)

54133 1 b 2431.2
3 b, c, and d 2662.1

When comparing the results obtained using the LimeWire application (Table 17) with
those obtained with the DTMS-P2P system (Table 13 and Table 14) one notices that better
results are achieved when using the proposed system, both when downloading from a
single source or from multiple sources. In the case of multiple sources download, this
behavior is verified because, as the in FlashGet application, the LimeWire application does
not have in consideration from which source it should download a larger section of the file.
For LimeWire (section 5.1) using HTTP 1.1 the application divides initially the file to be
downloaded in equal regions (with a fixed small size) and starts the downloading the first
regions from the available source. When a region is completely downloaded from a source,
a pending region starts being downloaded from the same source and this process is
repeated until all regions of the file are downloaded. Thus LimeWire thus not directly
accounts for the download speeds of the sources, and spends a lot of time with the requests
for downloads of the (small) regions, which is not incurred in the DTMS-P2P system.

7.7 Summary

In this chapter a set of experiments to evaluate and to validate the implemented DTMS-
P2P system were performed. These experiments were performed to analyze the
performance of the implemented system in terms of the time spent by an element to
connect to an established system, to configure test sessions and to retrieve the results of
test sessions.

A set of experiments to study the behavior of the system when downloading files from
single and multiple sources were also performed. The results obtained are very satisfactory

7.7 Summary

Page 140 of 220

when compared to the results obtained using other systems to process HTTP download (IE
and FlashGet) or in comparison to the results obtained using the LimeWire file sharing
application. In all cases, better results were obtained when using the proposed system.

Chapter 8. Conclusions

Page 141 of 220

Chapter 8. Conclusions
In this chapter we present the summary of this dissertation and we identify the main
contributions of the present work. Moreover, we provide some guidelines for future work.

In section 8.1 we present the summary of this dissertation and we identify the main
contributions of this work. Then, in section 8.2 we present the open questions and provide
some guidelines for further research.

8.1 Summary and contributions

Currently there is a growing necessity to monitor Internet traffic. Traffic monitoring
systems provide administrators with a tool to detect and respond to network events or
behaviors that can have a significant impact on the network performance. There is a large
variety of monitoring systems that can be used by network administrators, to study the
behavior of the networks under their control [NMT].

Traditional traffic monitoring systems either rely on a single probe [TCPdump] [Ethereal]
[NTOP] [MRTG] or in a centralized architecture where a set of probes are controlled by a
single manager [RFC4656] [RFC3917] [RFC1757] [NMT]. The single probe system only
monitors the traffic at one location and, therefore, is not flexible enough for medium and
large size networks. The centralized architecture is able to provide an accurate view of the
network status. However, it relies on a single manager, which makes it vulnerable to
failures. Moreover, it stores measured data at a single collector, which may consume
significant bandwidth when downloading data from probes.

To solve the problems related to the traditional traffic monitoring tools, some monitoring
systems based on peer-to-peer (P2P) architectures have been proposed by some
researchers. These type of monitoring systems have been proposed by Srinivasan and
Zegura [Srinivasan2002] [Srinivasan2003]; by Liu, Boutaba and Hong [Liu2004]
[Liu2005]; by Finkenzeller, Kunzmann, Kirstädter, Schollmeier [Finkenzeller2006]; and
by Rabinovich, Triukose, Wen, and Wang [Rabinovich2006] [Wen2007] [DipZoom].

The three first P2P based monitoring systems mentioned above are equipped with built-in
measurement modules used to perform active and passive measurements. This is
disadvantageous because a user is not able to install and use other monitoring modules to
perform measurement tests. On the contrary, the last system [DipZoom] may support any
monitoring module but requires the development of plug-ins to support them. All these
systems have rudimentary storage capabilities, which make it difficult to handle large data
files and restrict the type of measurements that can be carried out. This is because the
results of the test measurements are only stored at the nodes where the measurements were
carried out and are not replicated at other nodes. Moreover, their architectures are not
hierarchical and, therefore, do not scale well with the number of measuring nodes.

To overcome some limitations of the monitoring systems mentioned above, in this
dissertation we propose a versatile, scalable and easily manageable traffic monitoring
system based on a P2P hierarchical architecture (DTMS-P2P).

8.1 Summary and contributions

Page 142 of 220

The DPMS-P2P system creates an overlay network to allow remote configuration of test
sessions at the nodes of the network and the retrieval of the obtained results. The adoption
of a P2P architecture allows high tolerance to failures and distributed storage of measured
data. This architecture is also advantageous for traffic monitoring in wide area network
environments. Moreover, access and querying of measured data can be performed using
traditional P2P file sharing schemes. The system supports both IPv4 and IPv6 IP addresses
and it allows the configuration of a set of parameters to guarantee its scalability.

DTMS-P2P can be used to perform both active and passive measurements since it supports
any monitoring module that can be executed from command line, as long these modules
are installed at the nodes of the network and these nodes are configured to permit their
utilization. The results of the test sessions are stored at the nodes where they were
produced and, to guarantee availability, may be replicated at other nodes of the system.
The system uses traditional P2P file sharing schemas, to find and download these results
(possibly from multiple sources using the new download mechanism proposed by us).
Besides these functions, the system also allows network administrators to remotely request
nodes of the network to process some other actions. For example, perform a file replication
and/or deletion; provide the information about the available resources; connect to another
node; provide the list of files the node is sharing; etc. Additionally, the system allows
network administrators to obtain a full view of the network status under their control, by
providing them the information about the existent elements and the round-trip time
statistics between them.

The proposed system comprises some security features that should be used to prohibit theft
of service and to provide secrecy of exchange. The system supports three security modes:
unauthenticated, authenticated and encrypted. In the first security mode messages are sent
in clear text. In the two other security modes the control messages are authenticated and
encrypted. These two security modes only differ in the file transference process where the
file blocks used to transfer the files are only encrypted in the encrypted security mode.

DTMS-P2P can be used as a large-scale measurement infrastructure in a community-
oriented network where Internet users may share some processing power and storage space
of their machines to allow other Internet users (researchers) to perform measurements, to
retrieve and share the obtained results. Several community-oriented infrastructures are in
common use among researchers. Some provide dedicated hardware (Skitter [Claffy1999],
Ark [Ark], PlanetLab [Peterson2002] [PlanetLab], RON [Andersen2001]) and others
implement an @home-style distributed measurement network (NETI@home
[Simpson2004] [NETI@home] and DIMES [Shavitt2005] [DIMES]). In the @home-style
approach it is provided a downloadable tool to be installed at the Internet users’ home
machines which allow them to share their resources to other users.

The proposed system can also work as an alarm system on which a node informs another
node of a change in the network status, whenever it occurs.

In this dissertation we also compared the similarities and differences of the file search and
download mechanisms of the proposed system with the ones used by the LimeWire file
sharing application and the ones used by applications implementing the BitTorrent
protocol. The file search mechanism implemented in LimeWire, which is based on the
Gnutella protocol, is similar to the one used in DTMS-P2P. The file search mechanism is

8.2 Open questions and further research

Page 143 of 220

not necessary in applications implementing the traditional BitTorrent protocol since the
information about the files shared in the network are provided using the “torrent” file. The
proposed download mechanism is similar to the one used in the LimeWire application, but
it has some improvements which allows faster downloads. This mechanism is completely
different from the one used in the BitTorrent protocol.

We also compared DTMS-P2P with the P2P systems based in the Distributed Hash Table
(DHT) method. These last ones implement a completely different approach to build the
overlay network, to share, retrieve and replicate files. In particular they are not well
adapted to networks where the nodes may have insufficient storage capacity.

In order to create a platform that can represent a basis for the development and test of the
proposed system, an implementation of the system was built. The DTMS-P2P system was
developed in Java language because this language presents a set of favorable
characteristics, like semantic simplicity, portability and a set of classes that greatly
simplify the construction of distributed applications.

A set of tests to validate the implemented DTMS-P2P system were performed. These tests
evaluated the performance of the implemented system in terms of the time spent by an
element to connect to an established system, to configure test sessions and to retrieve the
results of test session.

By the analysis of the obtained results, one may conclude that the implemented system has
a good performance and is a good platform to assist network administrator in the
configuration of tests session at the elements of the network under their control.

8.2 Open questions and further research

In this work we proposed the DTMS-P2P system and we defined a set of functionalities the
system should support. In this section we will suggest some new functionalities that should
be analyzed to be included in the future.

A new functionality that may be added to the proposed system is the possibility to
remotely install a given monitoring module at a node connected to the network. This may
be advantageous in the sense that a user may use a client to request a remote node to
download and install a given monitoring module he wants to use. Then, the user will be
able to configure test sessions at the selected node, using the respective monitoring
module.

To prevent the overloading of the system elements, they should be configured to only
maintain a given number of node addresses at their Cache of Known Nodes, and they
should be configured to only establish a given number of connections when in super-probe
mode. Due to this behavior, it may be possible that not all the nodes of the system are
interconnected. To prevent this situation, an algorithm to guarantee the connectivity
between all the elements of the system should be researched.

The proposed method to guarantee the security of the system only provides secrecy of
message exchange. A method to guarantee controlled user access to the nodes can be
proposed in the future. One may define different users and different groups of users. For

8.2 Open questions and further research

Page 144 of 220

each group of users one may define different levels of permissions. For example,
permission to configure test sessions, permission to request the download of test results,
permission to install new monitoring modules, etc.

At the moment the proposed system only allows the configuration of test sessions and
results retrieval. A new functionality that may be included is the possibility to incorporate
statistical analysis tools at the nodes of the system. These tools may be used to compute the
required statistical data over the results of configured test sessions. A user may only
retrieve the statistical data instead of the large files with the obtained results. This is very
advantageous because the user can obtain the statistical data directly from a node without
needing to process the test session results at the client side, thus reducing the required
processing capabilities of the equipments running a client element.

The length of the Heavy Data Files may be very large and the statistical analysis on their
content may be an expensive process. Thus, it may not be advantageous to replicate these
files or to download them to process their content at the client side. Using the procedure
described above, nodes may compute and only replicate the files with the statistical data
obtained from the Heavy Data Files they produce. The files with statistical information are
smaller than the files with the results of a test session. Thus, less storage space will be
occupied at the nodes where they are replicated, faster downloads will be achieved and less
bandwidth will be occupied during data transfers.

The system may also allow a user to request a given node to download a result’s file from
another element (its client or another node) and request it to compute the statistical data
over the results in the respective file. This is very advantageous because a user may request
a node, running in a machine with more processing capacity than the node where a Heavy
Data File was produced or the client he is using, to download a Heavy Data File and then
request it to process the results of the configured test session.

All the processes described above are very advantageous because for example, a user may
run a client in a device with low processing capabilities, such as a mobile phone, and
request test sessions at any node of the system. Then, the user can only retrieve the
statistical information computed over the obtained results.

Additionally, a data compression module can be included in the nodes of the DTMS-P2P
system to be used to compress the Heavy Data Files before replication or download.
Compressing these files will result in smaller files which will be downloaded faster and
which transference will occupy less network bandwidth. At the client side these files can
then be decompressed to be read.

Another useful functionality that may be included is the possibility to get statistical
information about how many files a node is sharing, how many bytes it is sharing, how
many measurements it performed, etc. This information can be used to build the history of
all configured measurements.

In the proposed system the nodes consider that they are firewalled or not as configured by
the node’s local administrator. However, it may be possible that the node’s administrator
does not know if the node is or not firewalled. Thus, it may be useful to capacitate the
nodes to determine on their own if they are or not firewalled right after the connection set-

8.2 Open questions and further research

Page 145 of 220

up. To do so, a node may request a remote node to open a connection to it, to be able to
determine if it can or not accept connection requests.

Another functionality that may be included to the proposed system is a module to draw the
network topology based on the information of the Light Data File.

A mechanism to allow the system to work as an alarm system on which nodes may inform
other nodes of a change in the network status, whenever it occurs, should also be matter of
study.

In the proposed replication mechanism the number of replicas existent in the network
decreases if a node with file replicas leaves the system. A mechanism to try to maintain
constant the number of replicas in the network should be studied in the future.

Finally, another functionality to be implemented in the future is the possibility to request a
given node to replicate a file at another specific node. Using this functionality a user may
request a node behind a firewall to replicate a given file at a not firewalled location, from
where the user can download the required file.

8.2 Open questions and further research

Page 146 of 220

Appendix

Page 147 of 220

Appendix

A.1 Measurement group identification (Group ID)
In the DTMS-P2P protocol the Group ID of the measurement groups must be represented
by a sequence of 16 pairs of hexadecimal characters uniquely identifying the measurement
group at the network. An element’s measurement group ID must be provided by its
administrator and indicates to which measurement group the element belongs. The
hexadecimal sequence to be provided should have at least a pair of hexadecimal characters
and at maximum 16 pairs of hexadecimal characters. If the provided sequence has less than
16 pairs of hexadecimal characters, the sequence must be completed by adding the
necessary number of 00 hexadecimal characters to the beginning of the sequence. A Group
ID must not have the initial 0x character commonly used when representing hexadecimal
characters. Each hexadecimal character should be written using the symbols 0-9 and A-F,
or a-f. By default an element’s Group ID is equal to
“00000000000000000000000000000000”. The Group ID can also be represented as any
sequence with a maximum of 16 characters which will then be converted to a sequence of
16 pairs of hexadecimal characters to be used in the protocol.

A.2 Format of the messages of the DTMS-P2P protocol
All multi-octet quantities defined in this document are represented as unsigned integers in
network byte order unless specified otherwise.

A.2.1 Message Header

As described in Chapter 4, all elements of the network communicate with each other by
exchanging a set of control messages. Not all the messages have a fixed size, but all
messages (except the three first messages used in connection set-up process – section
4.3.5) have a common header with 40 bytes. The message header is divided into the
following fields:

Figure 41. Message header.

The first byte of the message header is used to define the type of the message:

0x00 Ping

Appendix

Page 148 of 220

0x01 Pong

0x02 List Of Supported Monitoring Modules

0x03 List Of Shared Files

0x04 Demotion Negotiation

0x05 Measurement Group Discovery Request

0x06 Measurement Group Discovery Response

0x07 List of Nodes Discovery Request

0x08 List of Nodes Discovery Response

0x09 List of Supported Monitoring Modules Request

0x0A List of Supported Monitoring Modules Response

0x0B Monitoring Module Help Request

0x0C Monitoring Module Help Response

0x0D Monitoring Module List of Restrictions Request

0x0E Monitoring Module List of Restrictions Response

0x0F Command

0x10 Command Response

0x11 Potential Storing Nodes Discovery Request

0x12 Potential Storing Nodes Discovery Response

0x13 Replication Request

0x14 Replication-Ack

0x15 Download Replication-Ack

0x16 Push

0x17 Query

0x18 Query-Hit

0x19 File Action Request

0x1A File Action Response

Appendix

Page 149 of 220

0x1B Resources Request

0x1C Resources

0x1D Light Data

0x1E Connect To Node Request

0x1F Connect To Node Response

0x20 Bye

The second byte of the message header is divided in two sets of 4 bits: SSM (Supported
Security Modes) and MD (mode). The SSM field is used to identify the security modes the
sending element supports. The following modes values are meaningful: 1 for
unauthenticated, 2 for authenticated and 4 for encrypted. The value of the SSM field sent is
the bit-wise OR of the security mode values that the sending element is willing to support.
Thus, the last three bits of the SSM 4-bit value are used. The first bit must be zero. The
receiving element must ignore the values in the first bit of the SSM value. This way, this
bit is available for future protocol extensions. This is the only intended extension
mechanism. Therefore if an element is configured to support the three security modes, the
last three bits of the SSM field must be set (equal to 1). The MD field is used to code the
type of the system element that is sending the message: 0 for probe, 1 for super-probe and
2 for client.

The TTL (Time To Live) field is the number of times the message will be forwarded by
super-probes before it is removed from the network. Each super-probe will decrement the
TTL before passing it on to another super-probe. When the TTL reaches 0, the message
will no longer be forwarded (and must not).

The Hops field is the number of times the message has been forwarded. As a message is
passed from super-probe to super-probe, the TTL and Hops fields of the header must
satisfy the following condition:

TTL(0) = TTL(i) + Hops(i)

Where TTL(i) and Hops(i) are the value of the TTL and Hops fields of the message, and
TTL(0) is maximum number of hops a message will travel (usually 7).

The next two bytes represent the message Payload Length. It is the payload length in bytes
of the message immediately following this header. The next message header is located
exactly this number of bytes from the end of this header i.e. there are no gaps or pad bytes
in the DTMS-P2P data stream. The Payload Length field is the only reliable way for a
node to find the beginning of the next message in the input stream. Therefore, elements
should rigorously validate the Payload Length field for each message received. If an
element becomes out of synch with its input stream, it should close the connection
associated with the stream since the upstream element is either generating or forwarding
invalid messages.

Appendix

Page 150 of 220

Messages should not be larger than 4 KB. If the information to be sent in a message
(message payload) will force the message to exceed this size, it must be fragmented to be
sent in messages not larger than 4 KB. The sending element should send these messages,
one by one, until the overall information to be sent is completely dispatched. The
message’s header Cont. Frag. Index (Content Fragment Index) and M (More Fragments)
fields are used to verify if the content to be received was subdivided in more than one
fragment. The Cont. Frag. Index field is used to store the index of the fragment being sent
in the message. Its value must be between zero (first fragment) and number of fragments
less 1 (last fragment). The M field must be set to 1 if the content of the message is not the
last fragment. When set to zero, the message contains the last fragment. A destination
element receiving a message with this field set to one must wait to receive all the
fragments before using the received information. Transit super-probes are not required to
wait to receive all the fragments before forwarding the received messages. After receiving
the last fragment (M field set to zero) the destination element is able to compute the
number of fragments to be received which will be equal to the Cont. Frag. Index field of
the message with the last fragment plus one. Thus, using these two fields an element is able
to determine the number of fragments to be received and then use the Cont. Frag. Index
fields of each received message to rebuild the original content information sent by the
sending element.

When the information to be sent is subdivided in different fragments to be sent in different
messages, all these messages must have the same Message ID. Moreover, whenever
possible, the content of the information to be sent must be divided in such a way that one
fragment should not depend on the other fragments. Thus, if the content to be sent is a
string, fragments should be of maximum size, whenever possible. Otherwise, a fragment
must only contains the maximum number of objects (e.g. IP address, hash codes, etc) that
will not make the message exceeds 4 KB.

The MBZ (Must Be Zero) field must be set to zero. Here and hereafter this field have the
same semantics: the party that sends the message must set the field to a string of zero bits
and the party that receives the message must ignore it. This way this field could be used for
future extensions.

The Message ID field (16 bytes) is a string uniquely identifying the message in the
network. It should be constructed by concatenation of the 4-octet IPv4 IP number
belonging to the generating machine, an 8-octet timestamp, and a 4-octet random value. To
reduce the probability of collisions, if the generating machine has any IPv4 addresses (with
the exception of loopback), one of them should be used for Message ID generation, even if
all communications are IPv6-based. If it has no IPv4 addresses at all, the last four octets of
an IPv6 address may be used instead. If truly random values are not available, it is
important that the Message ID be made unpredictable.

The last 16 bytes of the message’s header (Group ID field) are used to identify the
measurement group of the element where the message was generated (appendix A.1). The
element’s measurement group ID is a 16 byte string uniquely identifying the group in the
network. To build the message’s header Group ID field, each pair of hexadecimal character
of the element’s Group ID should be converted to a byte of the message’s header Group ID
field. This field should not be changed by the nodes that are flooding a received message.

Appendix

Page 151 of 220

A.2.2 Server Greeting

The Server Greeting message comprises the following fields:

Figure 42. Server Greeting.

The first 12 octets of this message should be ignored.

The Modes field indicates the modes of security the sending element supports. The
following Modes values are meaningful: 1 for unauthenticated, 2 for authenticated and 4
for encrypted. The value of the Modes field sent is the bit-wise OR of the security mode
values that the sending node is willing to support in the requested connection. Thus, the
last three bits of the Modes 32-bit value are used. The first 29 bits must be zero. The
requesting element must ignore the values in the first 29 bits of the Modes value. This way,
the bits are available for future protocol extensions. Therefore if an element is configured
to support the three security modes, the last three bits of the Modes field must be set (equal
to 1). If the Modes value is zero, the responding element does not wish to communicate
with the requesting element and may close the connection immediately. The requesting
element should close the connection if it receives a greeting with Modes equal to zero. The
requesting element may also close the connection if its desired mode is unavailable.

The Challenge field is a random sequence of octets generated by the sending element; it is
used subsequently by the requesting element to prove possession of a shared secret in a
manner prescribed in appendix A.2.3.

The Salt and Count fields are parameters used in deriving a key from a shared secret using
a password-based key derivation function PBKDF2 (PKCS #5) [RFC2898], as described in
section 4.1.2. Salt must be generated pseudo-randomly. Count must be a power of 2. Count
must be at least 1024. Count should be increased as more computing power becomes
common.

Appendix

Page 152 of 220

A.2.3 Setup Response

The Setup Response message comprises the following fields:

Figure 43. Setup Response.

The Mode field of the Setup Response message is the security mode that the requesting
element chooses to be used in the new connection. In Mode, one or zero bits must be set
within last three bits. If it is one bit that is set within the last three bits, this bit must
indicate a security mode that the remote element agreed to use (i.e., the same bit must have
been set by the remote element in the Server Greeting message). The first 29 bits of Mode
must be zero. The remote element must ignore the values of the first 29 bits. If zero Mode
bits are set by the requesting element, it indicates that it will not continue with the
connection request; in this case, the requesting element and the remote element should
close the TCP connection associated with the request.

In unauthenticated security mode, KeyID, Token, and Client-IV are unused. Otherwise,
KeyID is a UTF-8 string, up to 80 octets in length (if the string is shorter, it is padded with
zero octets), that tells the remote element which shared secret the requesting element
wishes to use to authenticate or encrypt; while Token is the concatenation of the 16-octet
challenge received in the Server Greeting message, a 16-octet AES key used for
encryption, and a 32-octet HMAC-SHA1 key used for authentication. The token itself is
encrypted using the AES (Advanced Encryption Standard) [AES] in Cipher Block
Chaining (CBC). Encryption must be performed using an Initialization Vector (IV) of zero
and a key derived from the shared secret associated with KeyID. (Both the remote element
and the requesting element use the same mappings from KeyIDs to shared secrets. The
remote element, being prepared to connect to more than one element, uses KeyIDs to
choose the appropriate secret key; an element would typically have different secret keys
for different elements. The situation is analogous to that with passwords.)

The shared secret is a passphrase; it must not contain new lines. The secret key is derived
from the passphrase using a password-based key derivation function PBKDF2 (PKCS #5)
[RFC2898] as described in section 4.1.2. The PBKDF2 function requires several

Appendix

Page 153 of 220

parameters: the PRF (underlying pseudorandom function) is HMAC-SHA1 [RFC2104];
the salt and count are as transmitted by the responding element (Server Greeting message).

AES Session-key, HMAC Session-key and Client-IV are generated randomly by the
requesting element. AES Session-key and HMAC Session-key must be generated with
sufficient entropy not to reduce the security of the underlying cipher [RFC4086]. Client-IV
merely needs to be unique (i.e., it must never be repeated for different connections using
the same secret key; a simple way to achieve that without the use of cumbersome state is to
generate the Client-IV values using a cryptographically secure pseudo-random number
source: if this is done, the first repetition is unlikely to occur before 642 connections with
the same secret key are conducted).

A.2.4 Server Start

The Server-Start message comprises the following fields:

Figure 44. Server Start.

The Accept field indicates the sending element’s willingness to continue communication.
A zero value in the Accept field means that the sending element accepts the authentication
and is willing to conduct further transactions. Non-zero values indicate that the sending
element does not accept the authentication or, for some other reason, is not willing to
conduct further transactions in this connection.

If a negative (non-zero) response is sent, the sending element may (and the requesting
element should) close the connection after this message.

Server-IV is generated randomly by the sending element. In unauthenticated security
mode, Server-IV is unused.

Start-Time is a timestamp representing the time when the current instantiation of the
sending element started operating. (For example, in a multi-user general purpose operating
system, it could be the time when the element process was started.) If Accept is non-zero,
Start-Time should be set so that all of its bits are zeros. In authenticated and encrypted
modes, Start-Time is encrypted as described in section 4.1.1, unless Accept is non-zero.

Appendix

Page 154 of 220

The format of the timestamp is the same as in [RFC1305] and is as follows: the first 32 bits
represent the unsigned integer number of seconds elapsed since 0h on 1 January 1900; the
next 32 bits represent the fractional part of a second that has elapsed since then.

The same instantiation of the node should report the same exact Start-Time value to each
requesting element in each connection request.

Appendix

Page 155 of 220

A.2.5 Ping

The Ping message comprises the following fields:

Figure 45. Ping.

Appendix

Page 156 of 220

The Sending element IP Address and Port fields represent the IP address and port number
where the sending element is listening for new connections. IPVN is the IP version number
to be used in the IP Address field. When the IP version number is 4 a 4-octet IPv4 address
is stored in the IP Address field and the 12-octets IP Address cont. field is not sent. In the
case the IP version number is 6 (IPv6), all the 16 octets of the IP Address field (IP Address
+ IP Address cont.) should be filled with the IPv6 element address. Currently meaningful
IPVN values are 4 and 6. The IP Address and IPVN fields here and hereafter have the
same semantics.

If possible, this message should have a list of addresses and port numbers of all super-
probes and probes of the sending element’s measurement group and a list of addresses and
port numbers of all known nodes (super-probes and probes) of other measurement groups.
These addresses are the addresses of the nodes the sending element is sure or believes that
they exist in the network. This list represents the element’s current list of known nodes in
the network (this information is stored in the element’s Cache of Known Nodes (CKN) –
section 4.3.2). This list should not comprise the address of the receiving element neither
the address of the sending element. Notwithstanding the fact that a node address is in this
list, it may be possible that this node doesn’t exist in the network. This may happen
because the sending element didn’t try a connection to that node yet.

The Number of SP Addresses is the number of super-probe addresses of the sending
element’s measurement group that will follow in the list of node addresses. The Number of
probe Addresses is the number of probe addresses of the sending element’s measurement
group that will follow in the list of node addresses. The Number of Other Groups is the
number of sub lists of known node addresses of nodes of other measurement groups that
will follow in the list of node addresses. These sub lists comprise the Group ID of the
respective measurement group (Group ID i), the number of super-probe addresses (Number
of SP Addresses i) and the number of probe addresses (Number of probe Addresses i) that
will follow, for the respective sub list. These node addresses are the known nodes of the
corresponding measurement group. These sub lists must be placed sequentially after the
list of known nodes of the sending element’s measurement group.

All IP addresses and port numbers should be presented in the following order: super-probe
addresses first then probe addresses.

For all node addresses in the list of node addresses:

 The IPVN field has the same meaning as explained before;

 The IP Address and Port fields have the IP address and port number where the
probe/super-probe is waiting for incoming connections.

The list of node addresses is always sent in the Ping message. Since messages must not be
larger than 4 KB (appendix A.2.1) the content of an element CKN must be fragmented to
be sent in different Ping messages when it cannot be sent in only one message. When this
happens, each Ping message must only contain the maximum number of address that will
not make it exceeds 4 KB. Moreover, the information related to another measurement
group should only be sent in a message if at least one address of that measurement group is
going to be sent.

Appendix

Page 157 of 220

A.2.6 Pong

The Pong message comprises the following fields:

Figure 46. Pong.

Appendix

Page 158 of 220

The Message ID field of the Pong message must be equal to the Message ID of the Ping
message it is sent in reply to in the connection set-up process (section 4.3.5). In the Pong
flooding process (section 4.3.6.1.1) the Pong Message ID must be computed as described
in appendix A.2.1.

The Sending element IP Address and Port fields represent the IP address and port number
where the sending element is listening for new connections.

The Accept field indicates if the element (super-probe or probe) accepts or not the
connection request. A zero value in the Accept field means that the element is willing to
conduct further transactions. Non-zero values indicate that the element does not accept the
connection request.

The element sending the request should disconnect if receiving any response with a non-
zero value in the Accept field.

When the Accept field has a non-zero value it represents the code of the reason the sending
element is rejecting the connection request. The following codes values are meaningful:

1 Failure, reason unspecified;

2 Internal error;

3 The responding element is already connected to the requesting element. This code
is sent in case the responding element detects that a previous connection was
already made to the requesting element. Thus, after receiving a Ping message the
receiving element must always verify if a previous connection with the requesting
element was already made. If yes, the connection request must be rejected;

4 The mean CPU usage is above a threshold;

5 The mean memory usage is above a threshold;

6 The free storage space is bellow a threshold;

7 The maximum number of connections allowed for this super-probe has been
reached;

8 The maximum number of connections to probes allowed for this super-probe has
been reached;

9 The network where the element is located is congested;

10 The responding element is a probe. This code is sent in the Pong message when a
probe receives a Ping from a client or another probe or from a super-probe. This
can happen in system startup or when the system is trying to recover from a failure;

11 The super-probe belongs to another measurement group. This code is sent in the
Pong message when a super-probe receives a connection request from a
probe/client of another measurement group;

Appendix

Page 159 of 220

12 Invalid Ping message. The Ping message received has the element’s address or the
address of the sending element in its list of known node addresses;

13 This code should not be used in the handshaking process. It is used when a super-
probe is sending the Pong message, with its list of known nodes, to be flooded to all
elements connected to the network in the process called Pong flooding (section
4.3.6.1.1).

As for the Ping message, the Pong message should comprise the list of node addresses the
sending element believes exist at the network (this information is stored in the element’s
Cache of Known Nodes – section 4.3.2). This list should not comprise the address of the
receiving element neither the address of the sending element. Also, it should not have the
new addresses received in the Ping message. Thus, it should comprise only the known
node addresses, before the Ping message was received. The Number of SP Addresses, the
Number of probe Addresses, the Number of Other Groups and all the fields associated with
the list of known node addresses have the same meaning as in the Ping message. Also, the
message must not exceed 4 KB and, when required, the content of the element’s CKN
must be fragmented to be sent in different Pong messages, as in Ping message.

The Connected field is used to inform the receiving element if the sending element is or
not connected to the network. If equal to zero the element is connected to the network.

A.2.7 List of Supported Monitoring Modules

The List of Supported Monitoring Modules message comprises the following fields:

Figure 47. List of Supported Monitoring Modules.

The List of Supported Monitoring Modules field of this message represents the list of hash
codes (appendix A.3) of the names of the monitoring modules the sending probe supports
(converted to lower case). Using the hash codes of the monitoring module’s names will
generate smaller messages. The hash codes of the monitoring module’s names are also
used because the memory of the destination super-probe element will be used more
efficiently since each word hash code only occupies 4 bytes (the name of the monitoring

Appendix

Page 160 of 220

modules may occupy more than 4 bytes). Remember that the receiving super-probe must
store the received information to be able to determine which probes connected to it support
a given monitoring module (section 4.4.1.2). As each hash code occupies only 4 bytes,
with the message payload length it is possible to determine the number of hash codes in the
List of Supported Monitoring Modules field.

A.2.8 List of Shared Files

The List of Shared Files message comprises the following fields:

Figure 48. List of Shared Files.

The List of Shared Files message is sent in three different situations. It may be sent by a
probe to inform its super-probe which files it is sharing (section 4.6.1). In this case the List
of Hash Codes (appendix A.3) of this message has the hash codes of all words (all lower
case) found in the names of the files the probe is sharing. The message is also used by a
probe to send the information of new shared files to its super-probe (sections 4.4.3 and
4.5.3.2.2). In this last case the List of Hash Codes of this message only has the hash codes
of all words (all lower case) found in the names of the new files the element is sharing.
And the message is also sent by a probe to inform its super-probe that it is not sharing
anymore files which names has the words which hash codes are sent in the message’s List
of Hash Codes (section 4.9.1). This last situation may happen when the probe is configured
to delete a given Heavy Data File it was sharing. In this case, it may be possible that the
probe is not sharing anymore any more files which names has one of the words present in
the name of the deleted file. Thus, the probe must request its super-probe to remove these
hash codes from the list of hash codes related to the files the probe is sharing. The List of
Shared Files message’s LSF Type (List of Shared Files Type) field is used to identify the
type of this message. In the first situation the LSF Type field should be set to zero, in the
second situation it should be set to 1 and in the third situation it should be set to 2.

To compute the hash codes of the words present in the name of a file, these words are
obtained by breaking up the file name on any non-alphanumeric characters (anything but
letters and numbers). A space is the standard separator between words. But the separator
between words may also be the following characters: “_” and “-“. Each hash code occupies

Appendix

Page 161 of 220

4 bytes. Thus, with the message payload length is possible to determine the number of hash
codes of the message’s List of Hash Codes field.

A.2.9 Demotion Negotiation

The Demotion Negotiation message comprises the following fields:

Figure 49. Demotion Negotiation.

In the demotion negotiation process (section 4.3.6.2), the Demotion Negotiation message
sent by the responding super-probe must have the same Message ID of the Demotion
Negotiation message sent by another super-probe to start the process.

The Num. of Super-Probe Connections field represents the number of connections to
super-probes of its measurement group the sending super-probe currently has active.

The Num. of Probe Connections field is the number of connections to probes that the
sending super-probe currently has active.

The Num. of Client Connections field is the number of connections to clients that the
sending super-probe currently has active.

The Num. of SP Connections Other Groups field represents the number of connections to
super-probes of other measurement groups the sending super-probe currently has active.

The Num. of Available Connections field represents the current number of connections the
sending super-probe can accept from the elements connected to the remote super-probe. A
super-probe can be configured to only make a given maximum amount of connections.
During the demotion negotiation process, a super-probe must reserve an amount of the
currently available connections to maintain free. This amount must be equal to the
configured percentage (as set by the element’s administrator) of the maximum number of
connections the super-probe is configured to make. Thus, the Num. of Available
Connections field must be equal to the current available number of connections the super-

Appendix

Page 162 of 220

probe can accept less the amount of connections to maintain free. If the obtained value is
less than zero, the Num. of Available Connections field must be equal to zero.

The Num. of Available Probe Connections field represents the current number of probe
connections the sending super-probe can accept from the probes connected to the remote
super-probe. A super-probe can be configured to only make a given amount of probe
connections. During the demotion negotiation process, a super-probe must reserve an
amount of the currently available probe connections to maintain free. This amount must be
equal to the configured percentage (as set by the element’s administrator) of the maximum
number of probe connections the super-probe is configured to make. Thus, the Num. of
Available Probe Connections field must be equal to the current available number of probe
connections the super-probe can accept less the amount of connections to maintain free. If
the obtained value is less than zero, the Num. of Available Probe Connections field must
be equal to zero.

The Occupied Memory field represents the amount of memory the super-probe’s process is
currently occupying (measured in MBytes).

The Available Free Memory field represents the current amount of available free memory,
measured in MBytes, the sending super-probe can use to store the information about the
elements connected to the remote super-probe that will connect to it in case the remote one
is demoted to a probe. During the demotion negotiation process, a super-probe must
reserve an amount of the currently available free memory to maintain free. This amount
must be equal to the configured percentage (as set by the element’s administrator) of the
maximum amount of memory the super-probe process can use. Thus, the Available Free
Memory field must be equal to the current available memory the super-probe can use less
the amount of free memory to maintain free. If the obtained value is less than zero, the
Available Free Memory field must be equal to zero.

Case the sending super-probe is configured to maintain the super-probe mode, the Force
SP mode message’s field should be equal to 0. Otherwise, it must be equal to 1.

Appendix

Page 163 of 220

A.2.10 Measurement Group Discovery Request

The Measurement Group Discovery Request message comprises the following fields:

Figure 50. Measurement Group Discovery Request.

The Measurement Group Discovery Request message only comprises the same fields as
the common header to all messages. As all the other messages, the message’s Type header
field is used to identify the message.

A.2.11 Measurement Group Discovery Response

The Measurement Group Discovery Response message comprises the following fields:

Figure 51. Measurement Group Discovery Response.

The Message ID field of the Measurement Group Discovery Response message must be
equal to the Message ID of the Measurement Group Discovery Request message it is sent
in reply to.

The Measurement Group Discovery Response message only comprises the same fields as
the common header to all messages. In this case, the receiving client will only need to use
the information received in the message’s header Group ID field (section 4.4.2.1).

Appendix

Page 164 of 220

A.2.12 List of Nodes Discovery Request

The List of Nodes Discovery Request message comprises the following fields:

Figure 52. List of Nodes Discovery Request.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group in the
network.

The Monitoring Module field represents the name of the monitoring module the user wants
to use (section 4.4.2.2.1). Only the nodes that support this monitoring module should be
included in the response to this message. This field is transmitted in ASCII format, using
the ISO-8859-1 (ISO Latin Alphabet No. 1, a.k.a. ISO-LATIN-1) character encoding
variant. With the message’s payload length field it is possible to determine the length of
the Monitoring Module field.

This message may not comprise the Monitoring Module field. This situation happens in
case the sending client wants to obtain all known nodes of a given measurement group
(section 4.4.2.2.2).

In case the sending client wants to obtain the list of all known nodes of the network (from
all measurement groups), the message will not comprise the Destination Measurement
Group ID and Monitoring Module fields (section 4.4.2.2.3).

Appendix

Page 165 of 220

A.2.13 List of Nodes Discovery Response

The List of Nodes Discovery Response message comprises the following fields:

Figure 53. List of Nodes Discovery Response.

The Message ID field of the List of Nodes Discovery Response message must be equal to
the Message ID of the List of Nodes Discovery Request message it is sent in reply to.

The List of Nodes Discovery Request message is used by a client to obtain the information
about the addresses of the nodes that supports a given monitoring module, or about the
addresses of all the nodes connected to a given measurement group, or about the addresses
of all the nodes connected to the network (section 4.4.2.2). After receiving a List of Nodes
Discovery Request message and whenever required, each receiving super-probe must send
to the requesting client the requested information about itself and about the probes
connected to it. The List of Nodes Discovery Response message’s Number of SP
Addresses field is only equal to one when the sending super-probe includes its own address
in the message’s list of node addresses (should be the first address of the list, if added to
it). Otherwise, the Number of SP Addresses field must be set to zero.

The Number of Probe Addresses is the number of probe addresses of the sending super-
probe’s that will follow in the list of node addresses.

The IPVN, Port and IP Addresses fields comprises the message’s list of node addresses.
They have the same semantics as in the Ping message.

Appendix

Page 166 of 220

A.2.14 List of Supported Monitoring Modules Request

The List of Supported Monitoring Modules Request message comprises the following
fields:

Figure 54. List of Supported Monitoring Modules Request.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group at the
network.

The IPVN, Port and Destination IP Address fields has the same semantics of the IPVN,
Port and IP Address of the Ping message. They represent the IP address of the node to
which this message is destined. It is the node, from which the client wants to get the list of
monitoring modules the node is configured to support (section 4.4.2.3).

Appendix

Page 167 of 220

A.2.15 List of Supported Monitoring Modules Response

The List of Supported Monitoring Modules Response message comprises the following
fields:

Figure 55. List of Supported Monitoring Modules Response.

The Message ID field of the List of Supported Monitoring Modules Response message
must be equal to the Message ID of the List of Supported Monitoring Modules Request
message it is sent in reply to.

The List of Supported Monitoring Modules field must comprise the information about the
monitoring modules the sending node is configured to support. This field must comprise
the content of the File of Supported Monitoring Modules provided by the node’s
administrator as described in the section 4.4.1.1. For example, it may comprise the
following string for a node supporting only the ping monitoring module:

<SupportedMonitoringModules>

 <monitoringModule id="ping">
 <name>ping</name>
 <commandToGetHelpDescription>ping</commandToGetHelpDescription>
 <listOfOptionsToSaveToFile></listOfOptionsToSaveToFile>
 <restrictions>
 <mustUse></mustUse>
 <doNotUse>-t</doNotUse>
 </restrictions>
 </monitoringModule>

</SupportedMonitoringModules>

This field is transmitted in ASCII format, using the ISO-8859-1 character encoding variant.
With the message’s payload length field it is possible to determine the length of the List of
Supported Monitoring Modules field.

Appendix

Page 168 of 220

A.2.16 Monitoring Module Help Request

The Monitoring Module Help Request message comprises the following fields:

Figure 56. Monitoring Module Help Request.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group in the
network.

The IPVN, Port and Destination IP Address fields has the same semantics of the IPVN,
Port and IP Address of the Ping message. They represent the IP address of the node to
which this message is destined.

The Monitoring Module represents the name of the monitoring module the user wants to
get the help or usage description from the destination node (section 4.4.2.4). It is
transmitted in ASCII format, using the ISO-8859-1 character encoding variant. With the
message’s payload length field it is possible to determine the length of the Monitoring
Module field.

Appendix

Page 169 of 220

A.2.17 Monitoring Module Help Response

The Monitoring Module Help Response message comprises the following fields:

Figure 57. Monitoring Module Help Response.

The Message ID field of the Monitoring Module Help Response message must be equal to
the Message ID of the Monitoring Module Help Request message it is sent in reply to.

The message’s Accept field is used to identify if the node (probe or super-probe) accepted
or not the request. A zero value in the Accept field means that the node accepted the
request. Non-zero values indicate that the node does not accept the request.

When the Accept field has a non-zero value it represents the code of the reason the sending
node is rejecting the request. The following codes values are meaningful:

1 The node does not support the requested monitoring module;

2 An error occurred while getting the monitoring module’s help description.

If the sending node accepts the request, the Monitoring Module Help Description field
must comprise the help description or usage for the requested monitoring module (section
4.4.2.4). This field must comprise the information obtained after running the command
provided in the File of Supported Monitoring Modules to be used to obtain the help
description of the required monitoring module as described in the section 4.4.1.1
(commandToGetHelpDescription tag of the File of Supported Monitoring Modules XML
file). This field is transmitted in ASCII format, using the ISO-8859-1 character encoding
variant. If the node does not accept the request, the message’s Monitoring Module Help
Description field must not be sent. With the message’s payload length field it is possible to
determine the length of the Monitoring Module Help Description field.

Appendix

Page 170 of 220

A.2.18 Monitoring Module List of Restrictions Request

The Monitoring Module List of Restrictions Request message comprises the following
fields:

Figure 58. Monitoring Module List of Restrictions Request.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group in the
network.

The IPVN, Port and Destination IP Address fields has the same semantics of the IPVN,
Port and IP Address of the Ping message. They represent the IP address of the node to
which this message is destined.

The Monitoring Module represents the name of the monitoring module the user wants to
get the list of restrictions the node is configured for (section 4.4.2.5). It is transmitted in
ASCII format, using the ISO-8859-1 character encoding variant. With the message’s
payload length field it is possible to determine the length of the Monitoring module field.

Appendix

Page 171 of 220

A.2.19 Monitoring Module List of Restrictions Response

The Monitoring Module List of Restrictions Response message comprises the following
fields:

Figure 59. Monitoring Module List of Restrictions Response.

The Message ID field of the Monitoring Module List of Restrictions Response message
must be equal to the Message ID of the Monitoring Module List of Restrictions Request
message it is sent in reply to.

The message’s Accept field is used to identify if the node accepted or not the request. A
zero value in the Accept field means that the element accepted the request. Non-zero
values indicate that the element does not accept the request.

When the Accept field has a non-zero value it represents the code of the reason the sending
element is rejecting the request. The following codes values are meaningful:

1 The node does not support the requested monitoring module;

2 The node does not support a common security mode with the requesting element.

In case the node accepts the request, the Monitoring Module’s List of Restrictions field
will have the list of restrictions the node is configured for the monitoring module received
in the Monitoring Module List of Restrictions Request message. The monitoring module’s
restrictions are sent as read from the File of Supported Monitoring Modules provided by
the node’s administrator (section 4.4.1.1). Thus, this field should comprise the string
between the XML tag “restrictions”
(“<mustUse></mustUse><doNotUse></doNotUse>”) of the supported monitoring
modules XML file. This field is transmitted in ASCII format, using the ISO-8859-1
character encoding variant. If the node does not accept the request, the message’s
Monitoring Module’s List of Restrictions field must not be sent. With the message’s
payload length field it is possible to determine the length of the Monitoring Module’s List
of Restrictions field.

Appendix

Page 172 of 220

A.2.20 Command

The Command message comprises the following fields:

Figure 60. Command.

The IPVN, Client Port and Client IP Address fields has the same semantics of the IPVN,
Port and IP Address of the Ping message. They represent the IP address of the client
sending this message.

The Destination Measurement Group ID field is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group at the
network.

The IPVN, Port and Destination IP Address fields has the same semantics of the IPVN,
Port and IP Address of the Ping message. They represent the IP address of the node to
which this message is destined.

Appendix

Page 173 of 220

Start-Time is a timestamp representing the time when the receiving node must start
executing the requested command. A Start-Time in the past means that the destination
node must immediately start executing the command. The format of the timestamp is the
same as in [RFC1305] and is as follows: the first 32 bits represent the unsigned integer
number of seconds elapsed since 0h on 1 January 1900; the next 32 bits represent the
fractional part of a second that has elapsed since then.

The Response field indicates if the node (super-probe or probe) to which the message is
destined should send a response (Command Response message – appendix A.2.21) to the
requesting client, after processing the command in this message. With the response
message the node can inform the client, if it accepted and successfully processed or not the
command received in the Command message. In case the receiving node should send a
response to this message, the response field must be set to zero. Any non zero values
indicates that no response should be sent.

The Command Line field represents the command line to be used to configure the
active/passive measurement test (section 4.4.2.6). It is transmitted in ASCII format, using
the ISO-8859-1 character encoding variant. With this information the node is informed
which measurement tool should be used to process the measurement and also the
configurations to be used. For example, a possible configuration to a node could be the
ping command to a given IP address, let’s say to the IP www.ua.pt, with 10 echo requests.
Thus, in the Command Line field must be placed the command line “ping -n 10
www.ua.pt” for a node running in a Windows machine. With the message’s payload length
field it is possible to determine the length of the Command Line field.

A.2.21 Command Response

The Command Response message comprises the following fields:

Figure 61. Command Response.

The Message ID field of the Command Response message must be equal to the Message
ID of the Command message it is sent in reply to.

Appendix

Page 174 of 220

The Accept field indicates if the node (super-probe or probe) accepted and successfully
processed or not the command received in the Command message. A zero value in the
Accept field means that the node accepted and successfully executed the requested
command. Any non zero values indicates that the request was rejected.

The Command Response field is the response to the Command message. If the node
accepted and successfully processed the command in the received Command message, it
has the name of the file where the results of the configured test measurements were saved.
If the node rejected the command, it has the reason why the command was rejected. It is
transmitted in ASCII format, using the ISO-8859-1 character encoding variant. With the
message’s payload length field it is possible to determine the length of the Command
Response field.

If an error occurs while trying to process the requested command, and the node is supposed
to send a Command response message to the requesting client, the node must add to the
message the error description of the error occurred. The error description is a string
describing why the error occurred. An error may occur in the following situations:

i. The node doesn’t support the requested monitoring module or does not support a
common security mode with the requesting client;

ii. The received command does not respect the restrictions the node is configured for
the requested monitoring module. This error may happen if a required option is not
used or the user used an option that should not be used. A user must always follow
the restrictions the node is configured for a given monitoring module (section
4.4.1.1);

iii. The node’s result directory has reached its maximum size or there is no more free
space in the node’s storage to store new results file;

iv. Error in the requested command. For example a bad option is in the list of
arguments of the requested command. In this case, the output of the execution of
the command (the error description) must be sent in the Command Response field
of the Command Response message. For example, if a user requests the following
command to a node: ping -d www.ua.pt. In Windows operating system, the ping
command doesn’t support the option -d. In this case, the error output of this
command execution, is sent in the Command Response field. For instance, the
following error description is sent:

Bad option -d.
Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS] [-r count] [-s count] [[-j
host-list] | [-k host-list]] [-w timeout] target_name
Options:
-t Ping the specified host until stopped. To see statistics and continue - type

Control-Break; To stop - type Control-C.
-a Resolve addresses to hostnames.
-n count Number of echo requests to send.
-l size Send buffer size.
-f Set Don’t Fragment flag in packet.
-i TTL Time To Live.
-v TOS Type Of Service.

Appendix

Page 175 of 220

-r count Record route for count hops.
-s count Timestamp for count hops.
-j host-list Loose source route along host-list.
-k host-list Strict source route along host-list.
-w timeout Timeout in milliseconds to wait for each reply.

v. The monitoring module is not available. This may happen when the node’s
administrator configured a node to support a given monitoring module, but it is not
available.

Sending the description of the error occurred while trying to process a required command
is very useful to inform the requesting user why the command was not processed.
Otherwise, the user would not be able to determine why a requested command was not
processed by the remote node.

A.2.22 Potential Storing Nodes Discovery Request

The Potential Storing Nodes Discovery Request message comprises the following fields:

Figure 62. Potential Storing Nodes Discovery Request.

A node may be configured to replicate more than once the Heavy Data Files it generates
(section 4.5). The Num. of locations field must have the number of possible locations
where the file can be replicated (potential storing nodes) that should be returned.

This message has a one byte field (flags) with the following layout and in the specified
order:

bit: Description:

7..3 MBZ (Reserved for future use)

2 flagScope

Appendix

Page 176 of 220

1 flagPotencialStoringNodesFirewall

0 flagOriginalSourceNodeFirewall

The flagScope field is used to identify the scope of the replication search process. If equal
to zero, only nodes of the same measurement group of the (original) source node should
answer to the request (local scope). Otherwise, all the nodes receiving the message should
answer to the request (global scope).

The flagPotencialStoringNodesFirewall field is used to verify if firewalled locations should
or not be returned as potential storing nodes. If equal to zero, firewalled locations can be
returned as possible location to replicate the file. When set to 1, it means that only not
firewalled locations should be returned. Remember that firewalled nodes can only
download from not firewalled locations. Therefore, if the (original) source node is not
firewalled or the file has successfully been replicated in a not firewalled location,
firewalled locations can be returned as possible location to replicate the file. Otherwise,
only not firewalled locations should be returned.

The flagOriginalSourceNodeFirewall field is set (!= 0) if and only if the (original) source
node is behind a firewall.

The File Size field is the size of the file to be replicated in bytes.

The File Name field should contain the name of the Heavy Data File to be replicated. It is
transmitted in ASCII format, using the ISO-8859-1 character encoding variant. With the
message’s payload length field it is possible to determine the length of the File Name field.

Appendix

Page 177 of 220

A.2.23 Potential Storing Nodes Discovery Response

The Potential Storing Nodes Discovery Response message comprises the following fields:

Figure 63. Potential Storing Nodes Discovery Response.

The Message ID of the Potential Storing Nodes Discovery Response message should be
equal to the Message ID of the Potential Storing Nodes Discovery Request message it is
sent in response to.

The IPVN, Sending Node Port and IP Address fields have the same semantics of the IPVN,
Port and IP Address fields of the Ping message. They represent the IP address and port
number where the sending node (probe or super-probe) is running.

Appendix

Page 178 of 220

The Record ID field must be used by the destination (original) source node to identify to
which file replication process the message is related to. It is equal to the hash code
(appendix A.3) of the name of the file to be replicated (all lower case). Remember that the
Replication Record related to the replication of a given file has a unique ID equal to the
file’s name hash code (section 4.5.2).

This message may be sent by a probe to inform its super-probe if it is a possible location
where a requested file can be replicated, or it is sent by a super-probe to a requesting
(original) source node to inform it about the available resources at the probes under its
control, that may be possible locations where the requested file can be replicated. The
super-probe’s available resources may also be included in the Potential Storing Nodes
Discovery Response message if it is itself a potential storing node. The Number of
Resources Information field is the number of node’s Resources Information of potential
storing nodes that will follow.

Each node’s Resources Information has the following fields:

 flags: is a one byte field with the following layout and in the specified order:

bit: Description:

7..2 MBZ (Reserved for future use)

1 flagDownloadSpeed

0 flagPush

The flagDownloadSpeed is set (!= 0) if and only if the Average Available
Bandwidth (downstream) field contains the highest average transfer rate (in
Kbps) of the last 10 downloads. Otherwise, the Average Available Bandwidth
(downstream) field contains the node’s total download speed as set by the user,
and therefore less reliable.

The flagPush is set (!= 0) if and only if the node is firewalled or cannot accept
incoming TCP connections for any other reason.

 IPVN: has the same meaning as in the Ping message.

 Port: is the port where the corresponding node (probe or super-probe) is waiting
for connections.

 IP Address: is the IP address of the corresponding node (probe or super-probe).
It must be filled as described in the Ping message.

 Free Storage Space (MBytes): is the node’s free storage space that can be used
to replicate the file.

 Average Available Downstream Bandwidth (Kbps): is the node’s maximum
average available downstream network bandwidth.

Appendix

Page 179 of 220

A.2.24 Replication Request

The Replication Request message comprises the following fields:

Figure 64. Replication Request.

Appendix

Page 180 of 220

The Replication Request message must have the information of the node to which it should
be forwarded by the super-probes receiving it. The Destination Measurement Group ID
represents the Group ID of the measurement group of the node to where the message is
destined. It should be used to forward the message to the correspondent measurement
group.

The IPVN, Destination Node Port and IP Address fields have the same semantics of the
IPVN, Port and IP Address fields of the Ping message. They represent the IP address and
port number of the node to which the message is destined. They should be used to forward
the message to the correspondent node.

The IPVN, Original Source Node Port and IP Address fields have the same semantics of
the IPVN, Port and IP Address fields of the Ping message. They represent the IP address
and port number of the (original) source node (node requesting the file replication).

The Replication Request message must comprise a list with the information about other
nodes from where the file can be retrieved, besides the (original) source node. These nodes
are nodes where the file has been successfully replicated before. This is a list of lists,
indexed first by measurement group and second by node. This list must contain the
information stored in the storingNodesTable of the Replication Record related to the
replication of the required file (section 4.5.2). The Number Of Storing Nodes Groups
message’s field has the number of lists indexed by measurement groups that will follow.
Each one of these lists have the information of nodes of a given measurement group. Note:
The address of the (original) source node must be in the list related to its measurement
group. These lists will have the following fields:

 A Group ID field which represents the Group ID of the measurement group of
the nodes which information will follow;

 A Number Of Storing Nodes field which represents the number of nodes storing
the file to be replicate at the given measurement group and which information
will follow;

 A list of the nodes field with the information of nodes of the given
measurement group that are storing the file. This list comprises the following
fields:

 flags: is a one byte field with the following layout and in the specified
order:

bit: Description:

7..2 MBZ (Reserved for future use)

1 flagUploadSpeed

0 flagPush

The flagUploadSpeed is set (!= 0) if and only if the Average Available
Bandwidth (upstream) field contains the highest average transfer rate (in

Appendix

Page 181 of 220

Kbps) of the node’s last 10 uploads. Otherwise, the Average Available
Bandwidth (upstream) field contains the node’s total upload speed as set
by the user, and therefore less reliable.

The flagPush is set (!= 0) if and only if the node is firewalled or cannot
accept incoming TCP connections for any other reason.

 IPVN: has the same meaning as in the Ping message.

 Storing Node Port: is the port where the corresponding node (probe or
super-probe) is waiting for connections.

 Storing Node IP Address: is the IP address of the corresponding node
(probe or super-probe). Must be filled as described in the Ping message.

 Average Available Upstream Bandwidth (Kbps): is the node’s maximum
average available upstream network bandwidth.

The message must also comprise a list with the IP address of the nodes where the file
should be replicated. The Number Of Receiving Nodes field represents the number of IP
addresses of nodes that are included in this list. This list must be placed right after the list
of lists with the information about the nodes storing the file. The IPVN, Receiving Node
Port and IP Address fields of the list of receiving nodes have the same semantics of the
IPVN, Port and IP Address fields of the Ping message.

The File Size field has the size in bytes of the file to be replicated.

The File Name field has the name of the Heavy Data File to be replicated. It is transmitted
in ASCII format, using the ISO-8859-1 character encoding variant. With the message’s
payload length field it is possible to determine the length of the File Name field.

A.2.25 Replication-Ack

The Replication-Ack message comprises the following fields:

Figure 65. Replication-Ack.

Appendix

Page 182 of 220

The Message ID of this message should be equal to the Message ID of the Replication
Request message sent to initialize the file replication.

The Record ID field must be used by the destination (original) source node to identify to
which file replication process the message is related to. It is equal to the hash code
(appendix A.3) of the name of the file to be replicated (all lower case). Remember that the
Replication Record related to the replication of a given file has a unique ID equal to the
file’s name hash code (section 4.5.2).

The Replications Req. field represents the number of replications that was requested to the
sending node. If the node sending the message is a super-probe, the Replications Req. field
has the number of locations where the file should be replicated received in the Replication
Request message. If the node sending the message is a probe, the Replications Req. field
must be equal to one.

The Num. Replications field stores the number of replications requests that have been
accepted.

Appendix

Page 183 of 220

A.2.26 Download Replication-Ack

The Download Replication-Ack message comprises the following fields:

Figure 66. Download Replication-Ack.

The Destination Measurement Group ID field is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group at the
network. It must be equal to the Group ID of the (original) source node (node that
requested the file replication – section 4.5.3.2.2).

The IPVN, Destination Node Port and IP Address fields have the same semantics of the
IPVN, Port and IP Address fields of the Ping message. They represent the IP address of the
node to which this message is destined. It must be equal to the IP address of the (original)
source node.

This message has a one byte field (flags) with the following layout and in the specified
order:

bit: Description:

7..3 MBZ (Reserved for future use)

Appendix

Page 184 of 220

2 flagAck

1 flagUploadSpeed

0 flagPush

The flagAck field is set (!= 0) if and only if the sending node successfully downloaded the
file to be replicated.

The flagUploadSpeed is set (!= 0) if and only if the Average Available Bandwidth
(upstream) field contains the highest average transfer rate (in Kbps) of the last 10 uploads.
Otherwise, the Average Available Bandwidth (upstream) field contains the node’s total
upload speed as set by the user, and therefore less reliable.

The flagPush field is set (!= 0) if and only if the sending node is firewalled or cannot
accept incoming TCP connections for any other reason.

The IPVN, Sending Node Port and IP Address fields have the same semantics of the IPVN,
Port and IP Address fields of the Ping message. They represent the IP address of the node
sending the message.

The Average Available Bandwidth Upstream (Kbps) is the maximum average available
network bandwidth (upstream) at the machine where the correspondent element is running.

The Record ID field must be used by the destination (original) source node to identify to
which file replication process the message is related to. It is equal to the hash code
(appendix A.3) of the name of the file to be replicated (all lower case). Remember that the
Replication Record related to the replication of a given file has a unique ID equal to the
file’s name hash code (section 4.5.2).

Appendix

Page 185 of 220

A.2.27 Query

The Query message comprises the following fields:

Figure 67. Query.

Minimum Speed is the minimum speed (upload speed in Kbps) of nodes that should be
included in the Query-Hit message to be sent in response to this message. A node receiving
a Query message, with a Minimum Speed field of n Kbps, should only respond with a
Query-Hit message, if it satisfies the Search Criteria and it is able to communicate at a
speed >= n Kbps. If this field is set to zero it should be ignored.

Search Scope indicates if a global or a local search should be executed (section 4.6.2). On
a global search all super-probes of the system should process the Query message, to
determine if they or one of the probes under their control is sharing file(s) that match the
search criteria. On a local search, only the super-probes of the measurement group with the
same Group ID of the one in the message’s Destination Measurement Group ID field,
should process the Query message. When the Search Scope is equal to zero a local search
is being requested. Any non-zero value in the Search Scope field must be interpreted as a
global search request.

The Destination Measurement Group ID field is used to identify the measurement group to
which the Query is designated. It is a 16 byte string uniquely identifying the group at the
network. It is only meaningful when the Search Scope is equal to 0 (local search).

Search Criteria stores the search criteria. It is transmitted in ASCII format, using the ISO-
8859-1 character encoding variant. The Search Criteria is a string of keywords. A node
should only respond with files that has all the keywords. It is recommended to break up the
words on any non-alphanumeric characters (anything but letters and numbers). A space is

Appendix

Page 186 of 220

the standard separator between words. But the complete name of a file may be defined as
the Search Criteria. In this last case the “_” and “-”characters are the separator between
words. Empty queries or queries containing only 1 letter words should be ignored. Thus,
the Search Criteria should contain at least a word, which length is greater than 1 character.
With the message’s payload length field it is possible to determine the length of the Search
Criteria field.

A.2.28 Query-Hit

The Query-Hit message comprises the following fields:

Figure 68. Query-Hit.

The Message ID field of the Query-Hit header should have the same value of the Message
ID of the Query message it is send in response to.

This message has a one byte field (flags) with the following layout and in the specified
order:

bit: Description:

7..4 MBZ (Reserved for future use)

3 flagUploadSpeed

Appendix

Page 187 of 220

2 flagHaveUploaded

1 flagBusy

0 flagPush

The flagUploadSpeed is set (!= 0) if and only if the Upload Speed field of the Query-Hit
message contains the highest average transfer rate (in Kbps) of the last 10 uploads.
Otherwise Upload Speed field contains the node’s total upload speed as set by the user, and
therefore less reliable.

The flagHaveUploaded is set (!= 0) if and only if the node has successfully uploaded at
least one file.

The flagBusy is set (!= 0) if and only if all of the node’s upload/download slots are
currently in use (section 4.7).

The flagPush is set (!= 0) if and only if the node is firewalled or cannot accept incoming
TCP connection requests.

The IPVN field has the same meaning as in the Ping message.

The Sending Node Port field is the port number on which the responding node can accept
incoming HTTP file requests. This is usually the same port as is used for network traffic,
but any other port may be used.

The Sending Node IP Address field is the IP Address of the responding node. It must be
filled as in the Ping message.

The Upload Speed field is the upload speed (in Kbps) of the responding node.

The Number of Hits field is the number of files the sending node is sharing and that satisfy
the search criteria on the received Query message. It represents the number of file hits that
will follow in the list of hits field.

Each hit in the list of hits has the following fields:

 File Name Size – this field has the size in bytes of the next field (File Name);

 File Name – this field has the name of a file that satisfies the search criteria of
the received Query message. It is transmitted in ASCII format, using the ISO-
8859-1 character encoding variant;

 File Size – this field represents the size (in bytes) of the respective file.

Appendix

Page 188 of 220

A.2.29 Push

The Push message comprises the following fields:

Figure 69. Push.

The IPVN field has the same meaning as in the Ping message.

The Sending Element Port field is the port number on which the sending element can
accept incoming connection requests for HTTP file transference. This is usually the same
port as is used for network traffic, but any other port may be used.

The Sending Element IP Address field is the IP Address of the sending element. It must be
filled as in Ping message.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined (section 4.7.2). It is a 16 byte string uniquely identifying the
group at the network.

Appendix

Page 189 of 220

The IPVN, Destination Node Port and IP Address fields have the same semantics of the
IPVN, Port and IP Address fields of the Ping message. They represent the IP address of the
node to which this message is destined.

The File Size field represents the size (in bytes) of the file the sending element wants to
download.

The File Name field has the name of the file the sending element wants to download. It is
transmitted in ASCII format, using the ISO-8859-1 character encoding variant. With the
message’s payload length field it is possible to determine the length of the File Name field.

A.2.30 File Action Request

The File Action Request message comprises the following fields:

Figure 70. File Action Request.

The IPVN, Client Port and Client IP Address fields have the same semantics of the IPVN,
Port and IP Address fields of the Ping message. They represent the IP address of the client
which is sending this message.

Appendix

Page 190 of 220

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group at the
network.

The IPVN, Destination Port and Node IP Address fields have the same semantics of the
IPVN, Port and IP Address fields of the Ping message. They represent the IP address of the
node to which this message is destined.

The N. Of Replications field is used by the client to request the replication of the file which
name is in the File Name field (section 4.9.1). If different than zero it specifies the number
of replications that should be performed. Otherwise, the receiving node should not
replicate the file.

The Delete field is set (!= 0) if and only if the client is requesting the deletion of the file
which name is in the File Name field.

The File Name field has the name of the file to be replicated and/or deleted. It is
transmitted in ASCII format, using the ISO-8859-1 character encoding variant. With the
message’s payload length field it is possible to determine the length of the File Name field.

A.2.31 File Action Response

The File Action Response message comprises the following fields:

Figure 71. File Action Response.

The Message ID field of the File Action Response message must be equal to the Message
ID of the File Action Request message it is sent in reply to.

The Accept field is used to notify the requesting client if the request was or not accepted. If
equal to zero it means that the request has been accepted and successfully performed.
When the Accept field has a non-zero value it represents the code of the reason the sending
element is rejecting the requested action. The following codes values are meaningful:

1 The File Action Request was rejected because a client can only request the deletion
or replication of files of test sessions that it configured;

Appendix

Page 191 of 220

2 The node is not sharing the requested file;

3 The node is already replicating the file;

4 Not all requested replications where successfully performed;

5 Error deleting the requested file.

In case the node was requested to replicate a given file, the N. Of Replications field
contains the number of successful replications performed.

A.2.32 Resources Request

The Resources Request message comprises the following fields:

Figure 72. Resources Request.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group at the
network.

The IPVN, Destination Node Port and IP Address fields have the same semantics of the
IPVN, Port and IP Address fields of the Ping message. They represent the IP address of the
node to which this message is destined.

The RR Type field is used to identify the type of the Resources Request message (section
4.9.2). The following types are meaningful:

Appendix

Page 192 of 220

0 When the RR Type field is set to zero, the receiving super-probe should send a
Resources message (appendix A.2.33) to the requesting element. It should not
forward the received Resources Request message to the probes under its control. In
this case, the Resources message, to be sent in response to the received request,
should only include the information about the super-probe’s available resources;

1 If the RR Type field is equal to one the receiving super-probe should forward this
message to all probes under its control. Each probe should reply with a Resources
message. Then, with the information received in the Resources messages of each
probe, the super-probe should build the Resources messages to be sent to the
requesting element. Thus, the Resources message, to be sent in response to the
received request, should include the information about the super-probe’s available
resources and the information of the available resources at the probes under its
control.

In the meantime, if the receiving element is a probe, the RR Type field should be ignored.
A probe should always send the Resources message case it receives a Resources Request
message.

Appendix

Page 193 of 220

A.2.33 Resources

The Resources message comprises the following fields:

Figure 73. Resources.

The Message ID field of the Resources message must be equal to the Message ID of the
Resources Request message it is sent in reply to.

The Max. Num. of Connections field represents the maximum number of connections the
sending node can accept, as configured by the node’s administrator.

Appendix

Page 194 of 220

The Max. Num. of Connections to Probes field represents the maximum number of
connections to probes of the sending node’s measurement group the node can accept, as
configured by the node’s administrator.

The Num. of Super-Probe Connections field represents the current sending node’s number
of connections to super-probes of its measurement group.

The Num. of Probe Connections field is the number of connections to probes that the
sending node currently has active.

The Num. of Client Connections field is the number of connections to clients that the
sending node currently has active.

The Num. of SP Connections Other Groups field represents the current sending node’s
number of connections to super-probes of other measurement groups.

The Number of Resources Information field is the number of node’s Resources
Information that will follow. The first Resources Information is always the Resources
Information of the sending node. When the sending node is a super-probe and it is
supposed to include in the message, the information about the available resources at the
probes under its control, the next Resources Information contain information about these
probes.

Each node’s Resources Information has the following fields:

 flags: is a one byte field with the following layout and in the specified order:

bit: Description:

7..3 MBZ (Reserved for future use)

2 flagUploadSpeed

1 flagDownloadSpeed

0 flagPush

The flagUploadSpeed is set (!= 0) if and only if the Average Available
Bandwidth (upstream) field contains the highest average transfer rate (in Kbps)
of the last 10 uploads. Otherwise, the Average Available Bandwidth (upstream)
field contains the node’s total upload speed as set by the node’s administrator,
and therefore less reliable.

The flagDownloadSpeed is set (!= 0) if and only if the Average Available
Bandwidth (downstream) field contains the highest average transfer rate (in
Kbps) of the last 10 downloads. Otherwise, the Average Available Bandwidth
(downstream) field contains the node’s total download speed as set by the
node’s administrator, and therefore less reliable.

Appendix

Page 195 of 220

The flagPush is set (!= 0) if and only if the node is firewalled or cannot accept
incoming TCP connections for any other reason.

 The SSM field is used to identify the security modes the sending node supports
(supported security modes). The following security mode values are
meaningful: 1 for unauthenticated, 2 for authenticated and 4 for encrypted. The
value of the SSM field sent is the bit-wise OR of the security mode values that
the sending node is willing to support. Thus, the last three bits of the SSM 4-bit
value are used. The first bit must be zero. The receiving element must ignore
the values in the first bit of the SSM value. This way, this bit is available for
future protocol extensions.

 IPVN: has the same meaning as in the Ping message.

 Port: is the port where the corresponding node (probe or super-probe) is waiting
for incoming connection requests.

 IP Address: is the IP address of the corresponding node (probe or super-probe).
It must be filled as in the Ping message.

 Free Memory (MBytes): is the current node’s total available free memory
measured in Mbytes.

 Occupied Memory (MBytes): is the amount of memory the node’s process is
occupying (measured in Mbytes).

 Free Storage Space (MBytes): is the current value of the free storage space (the
sending node can use) at the machine where the correspondent node is running.

 Average Available Bandwidth (Kbps): is the maximum average available
network bandwidth (upstream/downstream) at the machine where the
correspondent node is running.

Appendix

Page 196 of 220

A.2.34 Light Data

The Light Data message comprises the following fields:

Figure 74. Light Data.

The IPVN, Generating Super-Probe Port and IP Address fields have the same semantics of
the IPVN, Port and IP Address fields of the Ping message. They represent the IP address of
the super-probe where the Light Data message was generated.

The Light Data field will have the content of the super-probe’s Light Data File to be sent
(section 4.8). It is transmitted in ASCII format, using the ISO-8859-1 character encoding
variant. With the message’s payload length field it is possible to determine the length of
the Light Data field.

Appendix

Page 197 of 220

A.2.35 Connect to Node Request

The Connect to Node Request message comprises the following fields:

Figure 75. Connect to Node Request.

The IPVN, Client Port and Client IP Address fields have the same semantics of the IPVN,
Port and IP Address fields of the Ping message. They represent the IP address of the client
which is sending this message.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group at the
network.

The IPVN, Destination Port and Node IP Address fields have the same semantics of the
IPVN, Port and IP Address fields of the Ping message. They represent the IP address of the
node to which this message is destined.

Appendix

Page 198 of 220

The IPVN, Node Port and IP Address fields have the same semantics of the IPVN, Port
and IP Address fields of the Ping message. They represent the IP address of the node to
which the destination node should try to connect to (section 4.9.3).

A.2.36 Connect To Node Response

The Connect to Node Response message comprises the following fields:

Figure 76. Connect to Node Response.

The Destination Measurement Group ID is used to identify the measurement group to
which this message is destined. It is a 16 byte string uniquely identifying the group at the
network. It should be equal to the Group ID of the measurement group of the client to
which this message is destined.

The IPVN, Destination Client Port and IP Address fields have the same semantics of the
IPVN, Port and IP Address fields of the Ping message. They represent the IP address of the
client to which this message is destined.

The Connect to Node Response message should be forwarded to the requesting client using
the client’s IP address and measurement group. This is because it is not always possible to
send the message using the same path the Connect to Node Request message was received
since the node may be a probe that was requested to connect to another super-probe.
Therefore the message should not have the same Message ID of the Connect to Node

Appendix

Page 199 of 220

Request message it is sent in response to. If it does, it will not be forwarded by the
receiving super-probes that previously received the Connect to Node Request message
from a different connection (section 4.2.1) because they will detect that they previously
received a message with the same Message ID. However this message must still comprise
the Message ID of the Connect to Node Request message it is send in response to because
the destination client will only process the message if it is the response to the last request it
made. The client has this behavior because it may receive a delayed response relative to
another Connect to Node Request it made before. This Message ID is sent in the message’s
Connect To Node Request Message ID field.

The Accept field is used to notify the requesting client if the request was accepted or not. If
equal to zero it means that the request has been accepted and successfully performed.
When the Accept field has a non-zero value it represents the code of the reason the sending
element is rejecting the requested action or the code of the occurred error. The following
codes values are meaningful:

1 The node rejected the request because it is already connected to the requested node;

2 The node was not able to connect to the requested node;

3 The node rejected the request because the maximum number of connections, that
can be stored in the node’s list of connections (LAC – section 4.3.3), has been
reached.

Appendix

Page 200 of 220

A.2.37 Bye

The Bye message is an optional message sent by a probe or super-probe to a node it is
directly connected to, to inform of the intention to close the connection and the reason
why. A node receiving a Bye message must close the connection immediately. The node
that sent the message must wait a few seconds for the remote host to close the connection
before closing it. Other data must not be sent after the Bye message.

The Bye message comprises the following fields:

Figure 77. Bye.

The Code field of the Bye message represents the reason the sending element is closing the
connection. The following codes are meaningful:

0 The receiving element did nothing wrong, but the sending element chose to close
the connection: it is either exiting normally, or the element’s administrator
requested an explicit close of the connection;

1 This code is used to inform the receiving element that the sending super-probe is
demoting itself to a probe (section 4.3.6.2). When this happens, the super-probe
must fill the message’s IP Address and Port fields with the IP address and port
number of the new super-probe to which the receiving element is being assigned;

2 The sending super-probe is overloaded;

3 The receiving element did something wrong, as far as the sending node is
concerned: it sent packets deemed too big;

4 The receiving element did something wrong, as far as the sending node is
concerned: too many duplicate messages;

Appendix

Page 201 of 220

5 The receiving element did something wrong, as far as the sending node is
concerned: relay improper queries;

6 The receiving element did something wrong, as far as the sending node is
concerned: send too many unknown messages;

7 The node noticed an error, but it is an “internal” one: an I/O error or other bad error
occurred;

8 The node noticed an error, but it is an “internal” one: a protocol desynchronization;

9 The node noticed an error, but it is an “internal” one: the send queue became full.

The IPVN field has the same meaning of the IPVN field of the Ping message.

The Port field is the port number of the new super-probe to which the receiving element
should try to connect to.

IP Address is the IP address of the new super-probe to which the receiving element should
try to connect to. It has the same semantics as in the Ping message.

The IPVN, Port and IP address fields are only meaningful if the code 1 is being used.
Otherwise, they should not be sent.

A.3 Computing hash codes
In the DTMS-P2P protocol some messages comprise the hash codes of strings to be send
over the network. The use of hash codes is advantageous in the sense that smaller messages
can be produced because a string hash code only occupies 4 bytes.

In the DTMS-P2P protocol, the hash code for a string object is computed as:

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

using integer arithmetic, where s[i] is the ith character of the string, n is the length of the
string, and ^ indicates exponentiation.

A.4 XML DOM API and SAX API
There are two possible ways to access XML documents: using DOM API or using the
SAX API. The DOM API is based on an entirely different model of document processing
than the SAX API. Instead of reading a document one piece at a time (as with SAX), a
DOM parser reads an entire document. It then makes the tree for the entire document
available to program code for reading and updating. Simply put, the difference between
SAX and DOM is the difference between sequential, read-only access, and random, read-
write access.

Appendix

Page 202 of 220

A.5 Test results
Table 18 – DTMS-P2P download speed: 10 KB file on only 1 source (193.136.92.121)

Test Speed (KB/s) Delay (sec)
1 268.185 0.037
2 302.245 0.033
3 316.488 0.032
4 319.252 0.031
5 299.526 0.033
6 318.513 0.031
7 277.893 0.036
8 218.712 0.046
9 300.119 0.033

10 292.334 0.034
Average 291.327 0.0346

Table 19 – DTMS-P2P download speed: 10 KB file only 1 source (193.136.92.228)

Test Speed (KB/s) Delay (sec)
1 122.459 0.082
2 286.777 0.035
3 283.134 0.035
4 289.156 0.035
5 279.943 0.036
6 302.125 0.033
7 130.035 0.077
8 253.315 0.039
9 295.366 0.034

10 225.544 0.044
Average 246.785 0.045

Table 20 – DTMS-P2P download speed: 10 KB file on only 1 source (193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 77.637 0.129
2 82.211 0.122
3 80.442 0.124
4 79.429 0.126
5 62.229 0.161
6 75.990 0.132
7 79.301 0.126
8 73.343 0.136
9 92.139 0.109

10 77.803 0.129
Average 78.052 0.1294

Appendix

Page 203 of 220

Table 21 – DTMS-P2P download speed: 10 KB file on only 1 source (193.136.92.234)

Test Speed (KB/s) Delay (sec)
1 229.573 0.044
2 198.548 0.050
3 280.529 0.036
4 266.782 0.037
5 269.287 0.037
6 285.475 0.035
7 282.343 0.035
8 248.744 0.040
9 280.059 0.036

10 219.750 0.046
Average 256.109 0.0396

Table 22 – DTMS-P2P download speed: 500 KB file on only 1 source (193.136.92.121)

Test Speed (KB/s) Delay (sec)
1 978.659 0.511
2 978.121 0.511
3 988.719 0.506
4 1013.317 0.493
5 980.610 0.510
6 1009.911 0.495
7 1000.363 0.500
8 992.441 0.504
9 991.449 0.504

10 989.424 0.505
Average 992.301 0.5039

Table 23 – DTMS-P2P download speed: 500 KB file on only 1 source (193.136.92.228)

Test Speed (KB/s) Delay (sec)
1 4690.192 0.107
2 5553.867 0.090
3 4187.484 0.119
4 5976.567 0.084
5 6196.715 0.081
6 6120.219 0.082
7 6285.638 0.080
8 6309.214 0.079
9 6125.058 0.082

10 6285.572 0.080
Average 5773.053 0.0884

Appendix

Page 204 of 220

Table 24 – DTMS-P2P download speed: 500 KB file on only 1 source (193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 870.697 0.574
2 821.005 0.609
3 841.783 0.594
4 857.909 0.583
5 863.120 0.579
6 861.680 0.580
7 860.887 0.581
8 863.472 0.579
9 856.039 0.584

10 865.837 0.577
Average 856.243 0.584

Table 25 – DTMS-P2P download speed: 500 KB file on only 1 source (193.136.92.234)

Test Speed (KB/s) Delay (sec)
1 5790.233 0.086
2 5868.588 0.085
3 4375.490 0.114
4 5636.653 0.089
5 4668.720 0.107
6 4405.995 0.113
7 4332.236 0.115
8 4283.341 0.117
9 5526.616 0.090

10 4144.421 0.121
Average 4903.229 0.1037

Table 26 – DTMS-P2P download speed: 500 KB file on only 2 sources (193.136.92.228 and
193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 6281.645 0.080
2 6181.498 0.081
3 6138.566 0.081
4 6229.109 0.080
5 5342.652 0.094
6 6060.944 0.082
7 5629.614 0.089
8 6242.013 0.080
9 6224.928 0.080

10 6267.720 0.080
Average 6059.869 0.0827

Appendix

Page 205 of 220

Table 27 – DTMS-P2P download speed: 500 KB file on only 3 sources (193.136.92.121, 193.136.92.228
and 193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 4669.792 0.107
2 6200.923 0.081
3 6209.938 0.081
4 6193.049 0.081
5 6224.278 0.080
6 6213.862 0.080
7 6061.375 0.082
8 6247.155 0.080
9 4604.284 0.109

10 5361.570 0.093
Average 5798.623 0.0874

Table 28 – DTMS-P2P download speed: 500 KB file on 4 sources

Test Speed (KB/s) Delay (sec)
1 5673.496 0.088
2 5237.526 0.095
3 6100.132 0.082
4 4471.949 0.112
5 3780.829 0.132
6 5098.965 0.098
7 5291.788 0.094
8 4407.786 0.113
9 4227.333 0.118

10 3848.907 0.130
Average 4813.871 0.1062

Table 29 – DTMS-P2P download speed: 5120 KB file on only 1 source (193.136.92.121)

Test Speed (KB/s) Delay (sec)
1 908.354 5.637
2 908.163 5.638
3 971.532 5.270
4 737.792 6.940
5 973.072 5.262
6 1038.430 4.931
7 1004.477 5.097
8 758.335 6.752
9 1028.979 4.976

10 938.283 5.457
Average 926.742 5.596

Appendix

Page 206 of 220

Table 30 – DTMS-P2P download speed: 5120 KB file on only 1 source (193.136.92.228)

Test Speed (KB/s) Delay (sec)
1 9255.762 0.553
2 9253.365 0.553
3 8736.041 0.586
4 9231.845 0.555
5 9129.814 0.561
6 8861.112 0.578
7 9292.598 0.551
8 9114.979 0.562
9 9059.151 0.565

10 9229.725 0.555
Average 9116.439 0.5619

Table 31 – DTMS-P2P download speed: 5120 KB file on only 1 source (193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 995.732 5.142
2 1001.925 5.110
3 938.779 5.454
4 1031.903 4.962
5 987.428 5.185
6 988.277 5.181
7 976.278 5.244
8 1033.147 4.956
9 966.707 5.296

10 807.229 6.343
Average 972.741 5.2873

Table 32 – DTMS-P2P download speed: 5120 KB file on only 1 source (193.136.92.234)

Test Speed (KB/s) Delay (sec)
1 8939.003 0.573
2 9206.630 0.556
3 8853.172 0.578
4 9071.923 0.564
5 8914.957 0.574
6 9051.018 0.566
7 9243.760 0.554
8 9187.850 0.557
9 9075.054 0.564

10 9142.096 0.560
Average 9068.546 0.5646

Appendix

Page 207 of 220

Table 33 – DTMS-P2P download speed: 5120 KB file on only 2 sources (193.136.92.228 and
193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 7058.115 0.725
2 7593.630 0.674
3 7780.156 0.658
4 7222.288 0.709
5 7586.425 0.675
6 7919.327 0.647
7 7009.728 0.730
8 4549.420 1.125
9 7199.393 0.711

10 6705.394 0.764
Average 7062.388 0.7418

Table 34 – DTMS-P2P download speed: 5120 KB file on only 2 sources (193.136.92.121 and
193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 1052.989 4.862
2 1021.936 5.010
3 1053.214 4.861
4 1036.389 4.940
5 1034.595 4.949
6 1039.132 4.927
7 1042.833 4.910
8 1033.398 4.955
9 1050.585 4.873

10 1047.278 4.889
Average 1041.235 4.9176

Table 35 – DTMS-P2P download speed: 5120 KB file on only 3 sources (193.136.92.121, 193.136.92.228
and 193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 6771.896 0.756
2 4368.898 1.172
3 6564.721 0.780
4 6650.481 0.770
5 6951.013 0.737
6 6583.246 0.778
7 6469.748 0.791
8 6811.838 0.752
9 4739.963 1.080

10 6665.645 0.768
Average 6257.745 0.8384

Appendix

Page 208 of 220

Table 36 – DTMS-P2P download speed: 5120 KB file on 4 sources

Test Speed (KB/s) Delay (sec)
1 3318.110 1.543
2 6888.421 0.743
3 3537.893 1.447
4 7138.736 0.717
5 7488.040 0.684
6 3432.130 1.492
7 7042.333 0.727
8 2855.291 1.793
9 3310.444 1.547

10 7560.637 0.677
Average 5257.204 1.137

Table 37 – DTMS-P2P download speed: 54133 KB file on only 2 sources (193.136.92.228 and
193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 5916.315 9.150
2 4213.428 12.848
3 7561.603 7.159
4 7193.978 7.525
5 4208.765 12.862
6 7184.979 7.534
7 8433.032 6.419
8 6218.033 8.706
9 7163.308 7.557

10 6775.720 7.989
Average 6486.916 8.7749

Table 38 – DTMS-P2P download speed: 54133 KB file on only 2 sources (193.136.92.121 and
193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 1075.800 50.318
2 1076.578 50.282
3 1075.296 50.342
4 1077.054 50.260
5 1077.395 50.244
6 1076.964 50.264
7 1077.784 50.226
8 1077.411 50.243
9 1077.102 50.257

10 1075.745 50.321
Average 1076.713 50.2757

Appendix

Page 209 of 220

Table 39 – DTMS-P2P download speed: 54133 KB file on only 3 sources (193.136.92.121,
193.136.92.228 and 193.136.92.219)

Test Speed (KB/s) Delay (sec)
1 5614.777 9.641
2 5262.804 10.286
3 7892.106 6.859
4 6658.678 8.130
5 6797.417 7.964
6 7793.247 6.946
7 6536.454 8.282
8 7508.831 7.209
9 7009.694 7.723

10 5612.908 9.644
Average 6668.692 8.2684

Table 40 – DTMS-P2P download speed: 54133 KB file on 4 sources

Test Speed (KB/s) Delay (sec)
1 4960.368 10.913
2 3560.736 15.203
3 6489.959 8.341
4 5114.981 10.583
5 7979.760 6.784
6 7501.987 7.216
7 6267.033 8.638
8 8615.117 6.283
9 6100.478 8.873

10 8443.066 6.411
Average 6503.349 8.9245

Table 41 – IE and FlashGet download speed: 5120 KB file on only 1 source (193.136.92.121)

Test Speed (KB/s)
IE FlashGet

1 940 1024
2 853 853.33
3 1024 853.33
4 1024 853.33
5 1024 853.33
6 853 853.33
7 1024 853.33
8 1024 853.33
9 1024 853.33

10 1024 853.33
Average 981.4 870.397

Appendix

Page 210 of 220

Table 42 – IE and FlashGet download speed: 5120 KB file on only 1 source (193.136.92.228)

Test Speed (KB/s)
IE FlashGet

1 5120 1280
2 5120 1280
3 5120 1280
4 5120 1280
5 5120 1280
6 5120 1280
7 5120 1280
8 5120 1280
9 5120 1280

10 5120 1280
Average 5120 1280

Table 43 – IE and FlashGet download speed: 5120 KB file on only 1 source (193.136.92.219)

Test Speed (KB/s)
IE FlashGet

1 731 1024
2 1024 853.33
3 1024 1024
4 1024 1024
5 1024 853.33
6 1024 853.33
7 1024 1024
8 1024 1024
9 1024 853.33

10 1024 853.33
Average 994.7 938.665

Table 44 – IE and FlashGet download speed: 5120 KB file on only 1 source (193.136.92.234)

Test Speed (KB/s)
IE FlashGet

1 5120 1280
2 5120 1280
3 5120 1280
4 5120 1280
5 5120 1280
6 5120 1280
7 5120 1280
8 5120 1280
9 5120 1280

10 5120 1280
Average 5120 1280

Appendix

Page 211 of 220

Table 45 –FlashGet download speed: 5120 KB file on only 2 sources (193.136.92.228 and
193.136.92.219)

Test FlashGet (KB/s)
1 1706.67
2 1706.67
3 1706.67
4 1706.67
5 1706.67
6 1706.67
7 1706.67
8 1706.67
9 1706.67

10 1706.67
Average 1706.67

Table 46 – FlashGet download speed: 5120 KB file on only 2 sources (193.136.92.121 and
193.136.92.219)

Test FlashGet (KB/s)
1 1024
2 1024
3 1024
4 1024
5 1024
6 1024
7 1024
8 1024
9 1024

10 1024
Average 1024

Table 47 – FlashGet download speed: 5120 KB file on only 3 sources (193.136.92.121, 193.136.92.228
and 193.136.92.219)

Test FlashGet (KB/s)
1 1706.67
2 1706.67
3 1706.67
4 1280
5 1280
6 1706.67
7 1706.67
8 1706.67
9 1706.67

10 1706.67
Average 1621.336

Appendix

Page 212 of 220

Table 48 – FlashGet download speed: 5120 KB file on 4 sources

Test FlashGet (KB/s)
1 1706.67
2 1706.67
3 1706.67
4 1706.67
5 1706.67
6 1706.67
7 1706.67
8 1706.67
9 2560

10 2560
Average 1877.336

Table 49 – FlashGet download speed: 54133 KB file on only 2 sources (193.136.92.121 and
193.136.92.219)

Test FlashGet (KB/s)
1 1002.45
2 1002.45
3 984.23
4 1002.45
5 1002.45
6 1002.45
7 984.23
8 1021.37
9 1002.45

10 984.23
Average 998.876

Table 50 – FlashGet download speed: 54133 KB file on 4 sources

Test FlashGet (KB/s)
1 2706.62
2 2849.08
3 2004.9
4 2165.3
5 2165.3
6 2849.08
7 2577.73
8 2460.56
9 2706.62

10 2849.08
Average 2533.427

Appendix

Page 213 of 220

Table 51 – LimeWire download speed (54133 KB file)

Test
Download Source Group ID/speed in KB/s
b b and c c and d b, c and d

1 2453 2662 2983 3024
2 2704 2562 2632 2356
3 2463 2602 2199 2917
4 2430 2259 2489 2563
5 2084 2502 3024 2752
6 2708 2326 2514 3001
7 1961 2296 2514 2812
8 2115 2156 2547 2669
9 2768 2463 3023 2728

10 2626 2542 2436 1799
Average 2431.2 2437.0 2636.1 2662.1

Appendix

Page 214 of 220

Bibliography

Page 215 of 220

Bibliography
Books

[Eckel2002] B. Eckel, Thinking in Java, 3rd ed., Prentice-Hall, 2002. Available at
http://www.mindview.net/Books/TIJ/ [April 26, 2007].

[Tanenbaum2007] A. S. Tanenbaum, and M. V. Steen, Distributed Systems Principles and
Paradigms, 2nd ed., Pearson Prentice Hall, 2007.

[Wilson2002] B. J. Wilson, JXTA, 1st ed., New Riders Publishing, 2002. Available at
http://www.brendonwilson.com/resources/projects/jxta-book/jxta-pdf.zip [April 26, 2007].

Articles and Documents

[AES] “Advanced Encryption Standard (AES).” Available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, November 26, 2001 [April 26,
2007].

[AES_CBC] “Advanced Encryption Standard (AES) in Cipher Block Chaining mode
(CBC).” Available at http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf,
December 2001 [April 26, 2007].

[Andersen2001] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proc. of the ACM Symposium on Operating Systems
Principles (SOSP), pages 131-145, Banff, Alberta, Canada, October 2001.

[Balakrishnan2003] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Looking Up Data in P2P Systems,” in Communications of the ACM, February 2003, Vol.
46, No. 2.

[BitTorrent2007] “BitTorrent.” Available at http://www.bittorrent.org/protocol.html, [April
26, 2007].

[Claffy1999] K. Claffy, T. E. Monk, and D. McRobb, “Internet tomography,” in Nature,
Web Matters, January 1999.

[Claffy2006] K. Claffy, M. Crovella, T. Friedman, C. Shannon, and N. Spring,
“Community-Oriented Network Measurement Infrastructure (CONMI) Workshop Report,”
in ACM SIGCOMM Computer Communications Review (CCR), vol. 36 No 2, Apr 2006,
pp. 41-48, Apr 2006.

[Cohen2003] B. Cohen, “Incentives Build Robustness in BitTorrent”, in Workshop on
Economics of Peer-to-Peer Systems, Berkeley, USA, May 2003.

[Corral2003] J. Corral, G. Texier, and L. Toutain, “End-to-end active measurement
architecture in ip networks (saturne),” in Proceedings of Passive and Active Measurement
Workshop PAM’03, 2003.

Bibliography

Page 216 of 220

[Druschel2001] P. Druschel, and A. Rowstron, “Past: A large-scale, persistent peer-to-peer
storage utility,” in Proc. of the Eighth IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Schoss Elmau, Germany, May 2001.

[Finkenzeller2006] M. Finkenzeller, G. Kunzmann, R. Schollmeier, and A. Kirstädter,
“Critical-Mass of a Distributed End-System Monitoring Service,” in The 2006 World
Congress in Computer Science Computer Engineering, and Applied Computing, Las
Vegas, USA, June 2006.

[Gnutella] “Gnutella protocol.” Available at http://rfc-gnutella.sourceforge.net/ [April 26,
2007].

[Gnutella04] “The Annotated Gnutella Protocol Specification v0.4”, Available at http://rfc-
gnutella.sourceforge.net/developer/stable/index.html [April 26, 2007].

[Gnutella06] T. Klingberg, and R. Manfredi, “Gnutella 0.6.” Available at http://rfc-
gnutella.sourceforge.net/src/rfc-0_6-draft.html, June 2002 [April 26, 2007].

[Grossglauser2001] M. Grossglauser and B. Krishnamurthy, “Looking for science in the
art of network measurement,” in Proc. of IWDC Workshop, 2001.

[LimeWire2002] C. Rohrs, “LimeWire Download Code.” Available at
http://www.limewire.org/techdocs/downloads.htm, 13 November, 2002 [April 26, 2007].

[Lindroos2003] J. Lindroos, “Peer-to-Peer Content Distribution,” M.S. thesis, Dep. of
Computer Science, Åbo Akademi University, Turku, Finland, 2003.

[Liu2004] W. Liu, R. Boutaba, and J. W. Hong, “pMeasure: A tool for measuring the
internet,” in Proc. of the 2nd Workshop on End-to-End Monitoring Techniques and Services
(E2EMON), San Diego, California, USA, October 2004.

[Liu2005] W. Liu, and R. Boutaba, “pMeasure: A Peer-to-Peer Measurement Infrastructure
For the Internet,” in Computer Communications Journal, Special Issue on Monitoring and
Measurements of IP Networks, 2005.

[Menezes1997] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, “Handbook of
Applied Cryptography,” in CRC Press, 1997.

[NetFlow] White Paper: “Introduction to Cisco IOS NetFlow – A Technical Overview.”
Available at
http://www.cisco.com/en/US/products/ps6601/products_white_paper0900aecd80406232.s
html, February, 2006 [April 26, 2007].

[Pasztor2001] A. Pasztor, and D. Veitch, “High precision active probing for internet
measurement,” in Proc. of INET’2001, 2001.

[Peterson2002] Larry Peterson, Thomas Anderson, David Culler, and Timothy Roscoe, “A
blueprint for introducing disruptive technology into the Internet,” in Proc. of the ACM
Workshop on Hot Topics in Networks (HotNets), pages 59-64, Princeton, NJ, October
2002.

Bibliography

Page 217 of 220

[Plavec2004] F. Plavec, T. S. Czajkowski. “Distributed Replicated File System Based on
FreePastry DHT,” Course Project Report, University of Toronto, 2004. Available at:
www.eecg.utoronto.ca/~plavec/pub/pastry.pdf [May 15, 2008].

[Rabinovich2006] M. Rabinovich, S. Triukose, Z. Wen, and L. Wang, “DipZoom: The
Internet Measurements Marketplace,” in IEEE Global Internet Symposium, 2006.

[Ratnasamy2001] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker “A
Scalable Content-Addressable Network,” in Proc. of ACM SIGCOMM, 2001.

[Rocha2007] E. Rocha, H. Veiga, R. Valadas, P. Salvador, and A. Nogueira, “Module for
Identifying Internet Applications and its integration in a Peer-to-Peer Measurement Tool,”
in Proc. of IADIS International Conference Telecommunications, Networks and Systems,
MCCSIS 2007, Lisbon, Portugal, July 3-5, 2007.

[RFC1305] D. L. Mills, “RFC 1305 – Network Time Protocol (Version 3): Specification,
Implementation and Analysis.” Available at http://www.ietf.org/rfc/rfc1305.txt, March
1992 [April 26, 2007].

[RFC1757] S. Waldbusser, “RFC 1757 – Remote Network Monitoring Management
Information Base.” Available at http://www.ietf.org/rfc/rfc1757.txt, February 1995 [April
26, 2007].

[RFC2104] H. Krawczyk, M. Bellare, and R. Canetti, “RFC 2104 – HMAC: Keyed-
Hashing for Message Authentication.” Available at http://www.ietf.org/rfc/rfc2104.txt,
February 1997 [April 26, 2007].

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee, “RFC 2616 – Hypertext Transfer Protocol – HTTP/1.1.” Available at
http://www.ietf.org/rfc/rfc2616.txt, June 1999 [April 26, 2007].

[RFC2898] B. Kaliski, “RFC 2898 – PKCS #5: Password-Based Cryptography
Specification Version 2.0.” Available at http://www.ietf.org/rfc/rfc2898.txt, September
2000 [April 26, 2007].

[RFC3917] J. Quittek, T. Zseby, B. Claise, and S. Zander, “RFC 3917 – Requirements for
IP Flow Information Export (IPFIX).” Available at http://www.ietf.org/rfc/rfc3917.txt,
October 2004 [April 26, 2007].

[RFC4086] D. Eastlake, J. Schiller, and S. Crocker, “RFC 4086 – Randomness
Requirements for Security.” Available at http://www.rfc-archive.org/getrfc.php?rfc=4086,
June 2005 [April 26, 2007].

[RFC4656] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas, “RFC 4656
– A One-way Active Measurement Protocol (OWAMP).” Available at http://www.rfc-
editor.org/rfc/rfc4656.txt, September 2006 [April 26, 2007].

[RFC792] J. Postel, “RFC 792 – Internet Control Message Protocol.” Available at
http://www.ietf.org/rfc/rfc792.txt, September 1981 [April 26, 2007].

Bibliography

Page 218 of 220

[Rowstron2001] A. Rowstron, and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany: 329-
350, Nov 2001.

[Rowstron2001] A. Rowstron, and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), November 2001.

[Salvador2005] P. Salvador, and R. Valadas, “A Network Monitoring System with a Peer-
to-Peer Architecture,” in 3rd International Workshop on Internet Performance, Simulation,
Monitoring and Measurements, 14-15 March 2005, Warsaw, Poland.

[Shavitt2005] Y. Shavitt, and E. Shir, “DIMES: Let the internet measure itself,” in
SIGCOMM Computer Communication Review, 35(5): 71-74, 2005.

[Simpson2004] C. R. Simpson Jr., and G. F. Riley, “NETI@home: A distributed approach
to collecting end-to-end networks performance measurements,” in Proc. of Passive &
Active Measurement (PAM), Antibes Juan-les-Pins, France, April 2004.

[Srinivasan2002] S. Srinivasan, and E. Zegura, “Network measurement as a cooperative
enterprise,” in Lecture Notes In Computer Science, vol. 2429, pp. 166–177, March 2002.

[Srinivasan2003] S. Srinivasan, and E. Zegura, “M-coop:A Scalable Infrastructure for
Network Measurement,” in Third IEEE Workshop on Internet Applications (WIAPP ‘03),
San Jose, CA, June 2003.

[Stoica2001] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications,” in SIGCOMM’01, San
Diego, California, USA, August 27-31, 2001.

[Veiga2004] H. Veiga, T. Pinho, J. Oliveira, R. Valadas, P. Salvador, and A. Nogueira,
“Active Traffic Monitoring for Heterogeneous Environments,” in Proc. of 4th
International Conference on Networking, ICN 2005, Reunion Island, France, April 17-21,
2005, Lecture Notes in Computer Science, Springer-Verlag, Vol. 3420 / 2004, ISBN 3-
540-25339-4, pp. 603-610.

[Veiga2006] H. Veiga, R. Valadas, P. Salvador, A. Nogueira, T. Pfeiffenberger, and F.
Strohmeier, “OWAMP Performance and Interoperability Tests,” in Proc. of 4th
International Workshop on Internet Performance, Simulation, Monitoring and
Measurement, IPS-MoMe 2006, Salzburg, Austria, February 27-28, 2006.

[Wen2007] Z. Wen, S. Triukose, and M. Rabinovich, “Facilitating Focused Internet
Measurements,” in ACM SIGMETRICS, 2007.

[Wikipedia] Wikipedia, “Gnutella.” Available at http://en.wikipedia.org/wiki/Gnutella,
April 24, 2007 [April 26, 2007].

Bibliography

Page 219 of 220

[Zhao2004] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay for Service Deployment,” in
IEEE Journal on Selected Areas in Communications, vol. 22, no. 1, January 2004.

Applications

[Azureus] “Azureus”, Available at http://azureus.sourceforge.net/ [April 26, 2007].

[BearShare] “BearShare”, Available at http://www.bearshare.com/ [April 26, 2007].

[BitComet] “BitComet”, Available at http://www.bitcomet.com/ [April 26, 2007].

[BitTorrent] “BitTorrent”, Available at http://www.bittorrent.com/ [April 26, 2007].

[DipZoom] “DipZoom”, Available at http://dipzoom.case.edu/ [April 26, 2007].

[Eclipse] “Eclipse”, Available at http://www.eclipse.org/ [April 26, 2007].

[eMule] “eMule”, Available at http://sourceforge.net/projects/emule/ [April 26, 2007].

[Ethereal] “Ethereal – A Network Protocol Analyzer”, Available at
http://www.ethereal.com/ [April 26, 2007].

[FlashGet] “FlashGet”, Available at http://www.flashget.com/index_en.htm [May 17,
2008].

[Gnucleus] “Gnucleus”, Available at http://www.gnucleus.com/Gnucleus/ [April 26,
2007].

[JOWAMP] “J-OWAMP”, Available at http://www.av.it.pt/jowamp/ [April 26, 2007].

[Kazaa] “Kazaa”, Available at http://www.kazaa.com/ [April 26, 2007].

[KTorrent] “KTorrent”, Available at http://ktorrent.org/ [April 26, 2007].

[LimeWire] “LimeWire”, Available at http://www.limewire.com/ [April 26, 2007].

[MRTG] “MRTG – Multi Router Traffic Grapher”, Available at http://mrtg.hdl.com/
[April 26, 2007].

[NeTraMet] “NeTraMet”, Available at http://www.caida.org/tools/measurement/netramet/
[April 26, 2007].

[NTOP] “NTOP – Network TOP”, Available at http://www.ntop.org/ [April 26, 2007].

[OWAMP] “Internet2 OWAMP”, Available at http://e2epi.internet2.edu/owamp/ [April
26, 2007].

[Shareaza] “Shareaza”, Available at http://www.shareaza.com/ [April 26, 2007].

[TCPdump] “tcpdump”, Available at http://www.tcpdump.org/ [April 26, 2007].

Bibliography

Page 220 of 220

[µTorrent] “µTorrent”, Available at http://www.utorrent.com/ [April 26, 2007].

Others

[Ark] “Ark” Archipelago Measurement Infrastructure. Available at
http://www.caida.org/projects/ark/ [May 2008].

[DIMES] The DIMES project. Available at http://www.netdimes.org/new/ [May 2008]

[NETI@home] NETI@home. Available at http://www.neti.gatech.edu/ [May 2008]

[NMT] “Network Monitoring Tools.” Available at
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html, April 26, 2007 [April 26, 2007].

[Nullsoft] “Nullsoft”, Available at http://www.nullsoft.com, [April 26, 2007].

[PlanetLab] “PlanetLab”, Available at http://www.planet-lab.org/ [May 2008].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

