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Resumo As redes móveis ad hoc (ou auto-organizadas) são um assunto que nos últimos
anos tem ganho muita atenção da comunidade científica. Os problemas asso-
ciados a este tipo de redes foram amplamente estudados e expostos, foram
propostas soluções, e algumas até foram tornadas um padrão da indústria.
No entanto, a grande maioria do trabalho realizado, é dedicado a resolver só
um problema de cada vez. Da mesma forma, as soluções que são testadas
por forma a verificar a sua validade, muitas das vezes, são testadas recor-
rendo a trabalho de simulação. Uma parte do trabalho que é apresentado
nesta dissertação de mestrado, junta uma série de protocolos desenvolvidos
para redes ad hoc, os quais providenciam funcionalidades como: auto config-
uração, encaminhamento unicast e multicast, qualidade de serviço e taxação
com incentivos numa única solução integrada que interliga as redes ad hoc
a redes infra-estruturadas funcionando como uma extensão das mesmas. O
demonstrador criado é avaliado de forma experimental, e os resultados obtidos
são apresentados e discutidos. Uma vez que a rede ad hoc está interligada à
rede infra-estruturada, num ambiente de quarta geração, é também apresen-
tada uma arquitectura que suporta mobilidade de nós entre redes ad hoc e as
redes infra-estuturadas que fazem parte do ambiente heterogéneo, e de este
para as redes ad hoc é apresentada. A rede geral onde a rede ad hoc é in-
tegrada suporta novas tecnologias e tendências em gestão de mobilidade, tais
como o protocolo em desenvolvimento IEEE 802.21 Media Independent Han-
dover e gestão de mobilidade baseada em Domínios de Mobilidade Local. A
forma como a rede ad hoc se integra com as tecnologias presentes na rede
infra-estruturada, e como as especificidades da rede ad hoc são escondidas, é
descrita e explicada.





Keywords Mobility, MANET, experimental evaluation, mobility architectures, ad hoc net-
works

Abstract Mobile Ad hoc network is a subject that has gained lots of attention from the
research community in recent years. The problems inherent to this types of net-
works have been studied and exposed, solutions have been created and even
standardized. However, the vast majority of the work performed is dedicated to
only one problem at the time. In addition, the tests performed to validate the
produced solutions are, most of the times, obtained through simulation work.
The work presented in this thesis gathers together a set of ad hoc protocols,
providing functionalities such as auto-configuration, unicast and multicast rout-
ing, quality of service and charging and rewarding in one integrated testbed,
serving as a stub network in a hotspot scenario. A experimental evaluation is
performed, and results are presented and discussed. Additionally, since the
network belongs to a hotspot of fourth generation, a architecture that supports
mobility of nodes between the ad hoc network and infrastructure networks is
presented. The general network that includes ad hoc network integrates and
supports the new technologies and tendencies in mobility management, such
as the IEEE 802.21 Media Independent Handover and mobility management
based on Local Mobility Domains. The way the MANET fully integrates with the
infrastructure network, and how the ad hoc networks specific characteristics
are hidden, is also presented and explained.
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Chapter 1

Introduction

1.1 Self organized networks

Ad hoc is a Latin term which means ”for this purpose”. It is generally used to refer to a

solution that has been designed for a specific problem, non-generalizable, and can not be

adapted for other purposes. It is commonly used to describe ahandcrafted work, a makeshift

solution that appears to solve an inspected problem that requires a improvised resolution.

In computer networks, ad hoc is used to refer to spontaneous wireless network, that

surges to establish a connection only valid for the durationof one session and requires no pre-

established infrastructure. Instead, the participant devices discover each other within range

of transmission to form a network for those computers. The vast majority of the networks

referred to as ad hoc, uses the IEEE 802.11 standard operating in an Independent Basic

Service Set (IBSS) mode.

Infrastructure networks rely on organization to accomplish communications. In these

networks each element has a well defined role, and all elements are organized into complex

architectures. The roles of the elements follow the client-server model, in where one element

provides a service, and other(s) utilize that service. The entire architecture is designed and

planned by engineers, and each element plays a well defined task on the architecture. The

advantage of this level of organization is that the network administrator always knows the

architecture and the role played by each of its constitutingelements, easing the process of

finding and correcting problems. If in small, low complex systems, this approach is good,

when the size and complexity of the systems starts to grow (such as an large operator net-

work), the management of the overall system starts to becomea burden.
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Ad hoc networks are self-organized, meaning that the roles of the elements of the net-

work are not defineda priori, and that there is no need for or place to perform management

task (apart from fixing hardware malfunctions). Current ad hoc networks already can per-

form many tasks independently: addressing can be performeddynamically and automati-

cally; routing is capable of determine nodes location in thenetwork, and react upon topol-

ogy changes; network policies are automatically distributed to each node; service discovery

mechanism aids nodes to detect available services in the network. However, self-organized

networks are still very primitive and there are many situations in where more intelligence

and automatic capabilities are desirable. The goal of self organized networks is to provide an

intelligent network that can perform its task at the same time that promotes the management

overhead to its bare minimum.

Ad hoc networks is a topic that has attracted much research from the academic commu-

nity. This is due to the potential presented by the intrinsicconcepts of self-organization and

mutual cooperation towards a common goal. Although ad hoc concepts go back to 1972 in the

Packet Radio Network (PRNET) project of the USA Department of Defense, it was only in

the late 90s, when the IEEE gained interest in the concept andreleased the IEEE 802.11 [34]

standard, which includes support for wireless ad hoc networks. A few years later, many hard-

ware 802.11 capable was available in the market, allowing that more and more researchers

could study and experiment the concepts of self organized networks. Nowadays, there is a

plenitude of projects and research groups that include ad hoc networks as a topic of study.

The IST founded European project like DAIDALOS [60], AMBIENTNETWORKS [59] and

WIP [61] are examples of this kind of projects.

Despite all effort dedicated to ad hoc networks, there is still no clear definition to

uniquely characterize this kind of networks. There are, however, four main types of networks

that fall into the umbrella of ad hoc networks: Mobile, Hybrid, Vehicular and Sensor ad hoc

networks.

Mobile Ad hoc Network (MANET) is the most common term associated with self-

organized networks, being also the one that has the most commonly accepted definition. An

Hybrid Ad hoc Network is an evolution from a MANET, and considers that the network con-

tain special devices with special functionalities. These special nodes are used to interconnect

the network to the internet. Another evolution from a MANET is a Vehicular Ad hoc Net-

work. This type of network is characterized by the nodes being automobiles cruising a road

that are able to communicate by means of MANET mechanisms. Finally a Sensor Network

is a variety of an ad hoc network, where nodes (mobile or not),are very limited in terms of
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computational power, battery life and radio range. This type of networks rarely use 802.11

as transport, but instead use ZigBee or Bluetooth.

1.2 Motivation

Nowadays users require to be connected to the Internet, accessing any type of service, any-

time and anywhere. This requires that the access networks are always available, indepen-

dently of the user’s location, providing also the best access at every time. Currently deployed

wireless access networks have limited coverage area, focusing mostly on high population

areas. In this scenario, mobile ad hoc networks may provide the desired extension of the

coverage areas, providing a more ubiquitous network environment. Also the MANET self-

organization capabilities can be of great value for reducing the management overhead needed

to maintain the network.

In these scenarios MANETs will be regarded as hotspot extensions, since they will

extent, not only the area, but the availability of the hotspot. In these scenarios, MANETS

need to be prepared to support the full set of services that the users can obtain from other

access technologies. Users need to reach, and be reachable from, the Internet. They need

to be able to communicate between them and with users across the Internet. In addition,

users need the network to support quality of service to ensure that they get the contracted

characteristics from the network. Operators providing access also need to be able to perform

accounting and charge the users usage of the network.

Another functionality that mobile ad hoc networks, servingas hotspot extensions, need

to support is the ability for the user to roam into, and out of,the network any time they need

without loosing global connectivity or disrupting the active users sessions with its peers.

These scenarios, of ubiquitous and pervasive networks, frequently referred to as Fourth

Generation networks (4G), applied to ad hoc networks, raiseseveral research problems. Cur-

rently there is not a definitive solution for providing all the mentioned services in a reliably

and effective manner, thus leaving many space for new solutions and architectures.

1.3 Objectives

The work to be performed for this thesis can be divided in two major parts. The experimental

evaluation of an MANET demonstrator, and the development ofa solution for integrate a

3
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MANET in an heterogeneous mobility architecture.

In order to accomplish the experimental evaluation, a physical testbed has to be de-

veloped. Using the software developed during the DAIDALOS Iproject, a fully functional

testbed will be constructed. The next step will be to design aseries of test that are suitable to

evaluate the performance of the testbed, according with thetarget scenario: a MANET func-

tioning as a hotspot extension. The obtained results will beevaluated and discussed, from the

point of view complete multiservice MANET.

The second part of the work will be to study the current trendsin mobility in IP net-

works, and the way they are used in the DAIDALOS II project mobility architecture. The

issues related to the inclusion of an MANET in the general mobility architecture of DAIDA-

LOS II will be identified and a solution will be presented. Thedeveloped MANET architec-

ture will be detailed and explained. Finally the remaining issues with the architecture will be

identified, and classified for further research.

Summarizing, this thesis has the following objectives:

1. Study concepts associated with Mobile Ad hoc Networks, and its integration with in-

frastructure networks.

2. Construct and evaluate a demonstrator for the integrationof the MANET.

3. Study IP networks mobility mechanism.

4. Study new paradigms for mobility in IP networks.

5. Develop a solution that provides the integration of ad hocenvironments with the new

paradigms in IP mobility.

1.4 Contributions

The following papers have been produced during the work performed for this thesis:

• Susana Sargento, Rafael Sarrô, Patrick Supar, Francisco Gallera, Marek Natkaniec,

Jõao Paulo Vilela, and João Barros.Ubiquitous Access through the Integration of Mo-

bile Ad hoc Networks. 16th IST Mobile & Wireless Communications Summit, July

2007.
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• Susana Sargento, Rafael Sarrô, Ricardo Duarte, Patrick Stupar,Mobility in the Integra-

tion of Mobile Ad-hoc Networks, STREP ENABLE and IP Daidalos MWCS Workshop

- Research and Deployment Possibilities based on MIPv6, July2007, Budapest, Hun-

gary.
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1.5 Disposition

This thesis is organized as follows:

Chapter 2 presents the mobile ad hoc networks, highlighting its special characteristics

and requirements. In this chapter an overview of the solutions provided for ad hoc networks is

presented. Unicast and multicast routing, auto-configuration, quality of service and charging

and rewarding are briefly analyzed. In addition, this chapter analyzes these solutions and

outlines the requirements for the MANET to operate as a hotspot extension.

Chapter 3 provides the experimental evaluation of the developed demonstrator. Among

the various solutions proposed for ad hoc networks, the chosen solutions for integration into

the demonstrator are presented. The developed testbed is described along with the set of tests

performed for its evaluation. Finally, the obtained results are presented and analyzed.

In Chapter 4, the traditional mobility solution of IP based networks is presented an

analyzed. The concept of Localized Mobility Management is introduced and described. The

reminder of the chapter describes the mobility architecture (of the mobile node, ad hoc gate-

way and network) developed to support the inclusion of the MANET in a general mobility
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architecture, that has support for new mobility protocols and paradigms. The MANET sup-

port for the used technologies is discussed an a final solution is presented. Finally, open

issues are also presented.

Chapter 5 presents the main conclusions of this thesis.

6



Chapter 2

Mobile Ad Hoc Networks

Mobile Ad Hoc Networks (MANET), (along with vehicular, hybrid and sensor networks) are

the most common types of self organized networks in present times. MANET however, is the

most common term associated with self organization in today’s literature, and is often used

to refer to any kind of wireless ad hoc network. The IETF MANETWorking Group [69],

once defined a MANET as: ”an autonomous system of mobile routers (and associated hosts)

connected by wireless links — the union of which form an arbitrary graph. The routers

are free to move randomly and organize themselves arbitrarily; thus, the network’s wireless

topology may change rapidly and unpredictably. Such a network may operate in a standalone

fashion, or may be connected to the larger Internet”. This definition was once part of the WG

problem statement [26].

Research groups have focused their attention on MANET over the past years, and under

the umbrella of the IETF MANET WG (in operation since 1997), several protocols have been

proposed for solving the MANET problems (see next section).This momentum in research is

due in part to the widespread usage and presence of personal computers equipped with IEEE

802.11 [34] compatible networks interfaces, which are capable of create, and participate in,

ad hoc networks.

In this chapter the ad hoc networks specific characteristics(section 2.1) and special

requirements (section 2.2), including a description of thevarious protocols that support them,

will be presented. Finally section 2.3 describe the scenarios and requirements for an ad hoc

network to serve as an hotspot extension.
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2.1 Specific characteristics

Mobile Ad hoc Networks have several characteristics [32] that distinguish them from tradi-

tional networks. The most prominent characteristic is the lack of pre-established organization

– MANETs are self-organized networks. The nodes inside the network must cooperate be-

tween them to achieve the basic services needed by the network.

The participants on a MANET are commonly referred to as mobile routers or nodes;

a node is a host that integrates any wireless communication device. The nodes composing a

MANET can be located anywhere, from airplanes to cars, and even on people or very small

devices. A MANET can be regarded as an autonomous system of mobile nodes. This system

may lay isolated, or may have gateways to a fixed network, so itcan interface with it. When

interconnected, the MANET operates as astub1 network connecting to a fixed network.

Depending on the nodes position and of their wireless devicecoverage area, nodes in

the MANET form a random, multihop graph or ”ad hoc” network. This topology may change

with time, depending of the movement of nodes. This multihopnature brings some side

effects: Manets have highly dynamic topologies and are bandwidth and energy constrained

and have limited physical security.

Dynamic topologies exist because nodes are free to move arbitrarily: as a consequence,

the multihop network topology changes randomly and rapidlyat undefined times. Also,

nodes can have both bidirectional and unidirectional links. Due to the usage of wireless

links, MANETs tend to have a limited bandwidth, significantly lower than wired networks.

In addition, the characteristics of wireless communications (multiple access, fading, noise,

interference, etc.) cause lower throughput than the maximum transmission rate. Energy

constrain is also a problem for nodes in the MANET, since mostof current mobile nodes

are battery operated (PDA, cellphones, laptops, etc.) and power saving is becoming more

and more an issue to be taken into consideration. Finally, mobile ad hoc networks are more

prone to attacks to their security, than fixed wired networks. Since every node with a wireless

network card can participate in the network, threats like eavesdropping, spoofing and denial-

of-service attacks are more easily performed on MANETs.

1A stub network carries traffic originated at and/or destined to internal nodes, but does not permit traffic to transit through
the network.
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2.2 Specific requirements

There is a set of functionalities that need to exist in a MANETto enable it to function as a

network, either dependent or independent of an infrastructure network. In order to be part of

an ad hoc network, a node has to:

• Be identifiable. Each MANET participant must have an identifier so that other nodes

can refer to it when they need to communicate. This identifieris usually an IP address

of local or global scope. Global scope IP addresses are usually obtained by means of

auto-configuration protocols.

• Be able to reach other nodes following an arbitrary path through the MANET. Nodes

participating in a MANET must be able to route traffic sent by other nodes. This re-

quirement is fulfilled by routing protocols (both unicast and multicast).

• Provide support for quality of service. The MANET network should be capable of

differentiating between traffic flows, so that higher priority traffic can reach the desired

destination according to the specified metrics (e.g. delay/jitter).

• Operate as a stub network. The MANET should be able to integrate with the services

offered by the infrastructure network. The protocols used in the MANET need to inter-

operate with similar protocols in the infrastructure (see section 2.3).

The main requirement however, is that nodes must freely cooperate with its neighbors

so that the MANET can function properly.

Each of these requirements will be satisfied by a dedicated protocol, or a combination

of various protocols. Inside the MANET, the various protocols promote the interoperation

between the nodes. Each protocol provides a service (or set of services) that will enhance

the capabilities of the overall network. The solutions thatfulfill the outlined requirements are

described in the next sections.

2.2.1 Routing

In a multipath network, such as the Internet, the route that apacket must follow to travel

to its destination is provided by the routing function of thenetwork. Just like in the graph

theory, a route is a path that describes the sequence of nodesthat a packet must follow from
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a starting point in the network (source) to a finishing point (destination). After the protocol

has determined the route to the desired destination, the forwarding mechanisms process the

packets according to the information in the routing tables,hop by hop.

MANETs differ from traditional routing in the fixed networks(of which the internet is

a superset) because of its dynamic nature. In fixed networks the protocols determine a route

during the protocol bootstrap, and then little or no changesneed to be made to the routing

tables. In a mobile environment, where the nodes change location frequently, the routes need

to be constantly recalculated. Also, mobile ad hoc environments must cope with failures of

the underlining IEEE 802.11 medium, unidirectional links,disruptive action or simply with

selfish behavior perpetrated by malicious users. The topology of the network, and thus the

route, may change during the lifetime of a session, requiring the routing protocol to update

the routing tables between the end-points.

In the development of protocols that support the routing in the ad hoc networks, many

different strategies and algorithms may be chosen. The routing protocols tend to be classified

in different categories according to the solution chosen. This categorization helps choosing

the best protocol for the target environment, including itsweakness and strengths. Between

the many categories that classify the routing protocols, the strategy used to determine best

route between two end points is one of the most important. Other classification categories

are the algorithm used to determine the route (link state or distance vector), the type of traffic

to forward (unicast or multicast), how (or if) they handle geographical information, the effort

they make in reducing the power consumption or if they create(or not) a hierarchical structure

inside the network. The strategy used to determine routes can be separated in proactive or

reactive. Proactive routing protocols, or table driven, constantly monitor network changes

and update routes automatically. Reactive routing protocols, or on-demand, only maintain

routes when some flow requires it. Additionally, there are some protocols that use both

strategies, and therefore are denominated hybrids.

The proactive routing protocols maintain a distributed routing table among a set or

all nodes in the network. This is accomplished by exchangingperiodic messages between

nodes. Using these messages, each node is able to build a representation of all, or part of, the

network. The criteria to establish a route can be just the number of hops that keep apart two

end points, or can be enriched with delay, jitter, security or even price information. The main

drawback of the proactive routing protocols is the amount ofcontrol overhead produced due

to the constant message exchange, even when there is no data to be delivered. This overhead

usually increases with the number of nodes participating inthe network. Since more control
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messages will consume more resources (CPU time, wireless resources and battery time),

proactive routing protocols tend to be inadequate for sensor networks, where nodes have low

capabilities. In networks where routes have to be provided with low delay and constantly

maintained, proactive routing protocols tend to be the bestchoice.

The main difference between proactive and reactive routingprotocols, is that in the

later, routes are not pre-calculated. When no packets are being routed, nodes have no in-

formation about the topology of the network or about any route towards any destination.

Neighbors information is the only information gathered, since it can be obtained from the

lower layer technology (IEEE 802.11). Routes are only established when there is data to be

sent. At that time, the node floods the network searching for aroute towards the destina-

tion. After the route is established, it is maintained as long as there are packets to be sent.

When the data flow stops, and a given timeout expires, routes are dropped. Reactive proto-

cols are more efficient in terms of network resources consumed. The computations needed

to establish routes are simple, and only a minimal amount of information is kept. The con-

trol overhead only depends on the number of nodes in the network, their mobility and in the

number of flows being forwarded. When no flows are present, control overhead is almost

non-existent. The main drawbacks of these protocols are a longer latency establishing routes

and lower route redundancy.

Following the separation based on the type of traffic to be routed, unicast an multicast

routing protocols will be described in the next sections.

2.2.1.1 Unicast Routing

In the routing context, unicast refers to delivering packets to a single destination. By def-

inition, unicast traffic is always sent from a single source to a single destination. Unicast

traffic forms a point-to-point connection between two end hosts and in most cases represents

a bidirectional data exchange. Unicast routing representsthe vast majority of traffic delivered

over today networks, in where a server and a client communicate directly using a dedicated

(logical, not shared) connection.

Many ad hoc routing protocols were already proposed in the literature for unicast rout-

ing, commonly divided in proactive routing protocols, suchas OLSR [31] and TBRPF [48],

and reactive routing protocols, such as AODV [50], DSR [42] and DYMO [30].
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AODV The Ad hoc On-demand Distance Vector [50] routing protocol belongs to the family

of reactive routing protocols, meaning that it only provides routes when they are needed.

AODV algorithm provides dynamic, self-starting, multihoprouting between nodes par-

ticipating in an ad hoc network. It allows nodes to acquire routes quickly for new destinations,

not requiring that nodes maintain routes to destinations that are not in active communication.

Routes created by AODV are loop free and quickly restored uponlink breakage. When a

route breaks, AODV notifies the affected set of nodes so that they invalidate and repair the

route quickly.

When a route to a destination is needed, AODV propagates through the network a

Route Request (RREQ) message. The node that sends a RREQ is known as the originator.

This request is efficiently forwarded in the network, avoiding loops (and retransmission)

through the usage of a distinct sequence number in each request. When a node receives a

RREQ message and has knowledge of a route to the destination, itissues aRoute Replay

(RREP) message to the origin of the RREQ. In order for the RREP can be sent in unicast

to the originator, each router that propagates a RREQ caches a route back, registering the

neighbor address from which the RREQ was sent. RREP are then forwarded hop by hop

to the originator, making the route active in each node that forwards it. The originator can

receive multiple RREP messages, when there are multiple pathsto the destination, and is

capable of choosing the most suitable route based on the decision metrics (usually the number

of hops). Routes are valid only when packets for that route arebeing forwarded. If no packets

are forwarded after a timeout, the route is discarded. This mechanism helps reducing the old

(and often incorrect) route information in the routing tables. After a route is established, all

nodes monitor their link with the neighbors in the path, using driver information, or recurring

to special RREP messages calledHello (HELLO). When a link breaks, due to topology

changes or node malfunction, the node detecting the break will issue aRoute Error (RERR)

message towards the sender. This message will invalidate the current route in all nodes that

receive it. After the originator receives a RERR message, it must repeat a route discovery

process to determine a new route.

There are several public implementations for the AODV protocol [63], both for simula-

tion environments as for real-life experimentation, supporting different operating systems, ar-

chitecture and IP versions. Also, inter-operation betweenthese versions have bewn tested [3]

with success.
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OLSR The Optimized Link State (OLSR) routing protocol is a proactive routing protocol.

OLSR is one of the most mature and popular routing protocols for MANET. It was first devel-

oped at INRIA and first proposed in [7]. Later it was developed inside the IETF MANET [69]

charter, being proposed as an experimental RFC status in RFC 3626 [31]. As AODV, there

are many public implementations of OLSR, many of which conform with RFC 3626 and

support most operating systems.

Various OLSR messages can be encapsulated and transported in one packet, optimizing

the network resources required for protocol operation. Each message starts with a header

identifying the message type, so that nodes can identify quickly if they can process, and

forward the messages. This behavior is useful, since not allnodes support all messages. In

addition, OLSR gains flexibility, since new functionalities can be introduced not requiring

that old nodes have support for it.

OLSR operation is divided in 3 main functions: neighbor sensing, optimized flooding

and forwarding, and link-state messaging and route calculation. The neighbor sensing func-

tion provides information about the status of links betweennodes. It is implemented by the

exchange of periodicHELLO messages. This procedure can determine, and use, both unidi-

rectional and bidirectional links, and is of great importance to determine and maintain routes

during topology changes.

The optimized flooding and forwarding function is used to efficiently spread the mes-

sages across the network and to the determination of a forwarding route. OLSR employs

the method of Multi Point Relays (MPR), in order to reduce overhead by avoiding retrans-

missions. With MPR, the flooding process is directed through adistribution tree. MPR tree

varies with the topology of the network and the number of nodes. In addition, nodes may

choose not to participate in the forwarding tree and can choose to participate in the tree of

other MPRs. To chose the MPR, each node calculates the best neighbor which allows reach-

ing any node two hops away. Redundant nodes are detected and removed resulting in a tree

that provides close to optimal routes.

The link state messages are only sent by MPRs, and only MPRs are included in the

messages. This characteristic allows an efficient reduction in the complexity of route com-

putation and the overhead of the routing protocol.

By design, OLSR has native support for multi-homed nodes, anddisseminates interface

information to other nodes in the network. This facilitatesthe process of interconnecting the

ad hoc network with other kinds of networks.
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As a consequence of being a proactive protocol, OLSR has a high overhead in networks

with high number of nodes, much larger than the overhead of reactive solutions, which makes

it unsuitable for low power environments such as sensor network. However, OLSR tends to

perform better in large ad hoc networks. Contrary to reactiverouting protocols, that signifi-

cantly increase the overhead with the number os nodes, OLSR maintains a constant grow of

the overhead, causing it to have less overhead.

2.2.1.2 Multicast Routing

Multicast is the delivery of packets to a group of destinations simultaneously. To accomplish

that, it uses efficient forwarding techniques that only require that each packet travels over

each link only once. Multicast routing creates a distribution tree, rooted at the sender, and

with the leafs on the receivers. In order for a node to receivea multicast data flow, it needs

to explicitly join the distribution tree, so that traffic canbe delivered to it.

Multicast is most useful for multimedia services, such as IPTelevision. These services

are normally based on membership rules, and the same contentis distributed to a large num-

ber of clients. Multicast routing is able to deliver the samecontent to multiple clients upon

proper service subscription. The cost to the network is someadditional signaling required

to maintain the distribution tree and client subscriptions. However, the load on the network

as the number of clients increase is close to O(1), instead ofthe typical O(N) presented by

unicast.

For MANET there are several protocols that provide efficientmulticast routing. MAODV

[52] and MOLSR [36] are, respectively, the multicast versions of AODV and OLSR. On-

demand Multicast Routing Protocol (ODMRP) [57] and Adaptive Demand-Driven Multicast

Routing (ADMR) [40] are multicast ad-hoc routing proposals that reduce the overhead of

maintenance of the multicast tree in the ad-hoc network. TheMulticast MAnet Routing

Protocol (MMARP) [17] provides a proper integration with infrastructure networks, besides

multicast routing inside the MANET.

MMARP The Multicast MAnet Routing Protocol (MMARP) is especially designed for

MANETs, and is fully compatible with the standard IP multicast model. Since MMARP

supports the IGMP [29] and MLD [54] protocols, as a means to interoperate with standard

Access Routers, it allows that any standard IP nodes take partin multicast communications

without any change.
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Interoperation with the access routers is performed by the Multicast Internet Gateways

(MIG). A MIG is every ad hoc node that lays one hop away from theMANET access router

(the fixed network, so any node may become a MIG at any time). The only difference be-

tween a MIG and a standard MMARP node, is that MIGs are responsible for notifying the

access routers about the group memberships that are requested inside the ad-hoc network.

The communications held between a MIG and the access router,are performed recurring to

the same protocols and in the same way than in infrastructurenetworks. This provides inde-

pendence of the MANET from the multicasts protocols runningin the core network, hiding

at the same time, the MANET operation. MMARP also allows that aMANET node can be a

multicast source, distributing multicast traffic in the MANET.

MMARP operates by creating a distribution mesh similar to theone created in ODMRP.

The mesh is created using a hybrid approach: multicast routes between MANET nodes are

created on-demand, and multicast routes towards the multicast sources in the fixed network

are created proactively.

As any reactive protocol, the reactive part of MMARP relies onrequest and reply phase.

The request phase is performed when a node has multicast traffic to send. In this situation it

issues aMMARP SOURCE message that is flooded to the network in a controlled way (with

the inclusion of a sequence number). This message will serveto request the network if there

is interest in the multicast traffic available. When a mobile node has interest in the multicast

traffic just announced, it needs to join the session. It issues aMMARP JOIN message. This

message is propagated hop-by-hop towards the multicast source. With this process, a shortest

multicast path is constructed between the source and the destination. If only one multicast

source is available, the resulting multicast routes will resemble a tree; however, if multiple

multicast sources exits for the same destination, the created routes will form a mesh.

The proactive part of the MMARP protocol has the objective of advertising the MIG as

a default route for any multicast source not in the ad hoc network. MIG periodically sends a

MMARP DFL ROUTE towards the MANET, that is propagated just like a MMARPSOURCE

message. This message informs the nodes about the path towards the multicast sources in the

fixed network. MIGs are also responsible for translating MMARP JOIN messages into IGMP

reports, that are send towards the fixed network multicast router, so that multicast traffic can

enter the ad hoc network.
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2.2.2 Address Auto-configuration

In order to effectively communicate in a given network, nodes must have valid and unique

identifiers for that network. In an IP network, the identifiers are IP addresses, and usually

have a common prefix they belong to, constituting the network. Only when a node has one,

or more, address configure in its ad hoc interface, is that therouting protocols, and other IP

dependent services, function properly.

Auto-configuration issues are out of scope of routing protocols. However, they de-

pend on the existence of mechanisms responsible for dissemination of network information

and configuration of nodes. The IETF MANET Working Group created the Autoconf Char-

ter [62]. Autoconf WG soon started developing efforts to evaluate the requirements to address

auto-configuration in MANET. Work inside Autoconf WG is stillrecent and no RFC was yet

proposed.

The IP addresses inside the ad hoc networks does not need to betopologically cor-

rect [12]. Most ad hoc routing protocols do not perform routing based on an aggregate of

networks, but just based on the complete IP address. However, for the MANET nodes to be

able to participate in the infrastructure network services, they need to have a topologically

correct (according with the fixed network that provides access). Auto-configuration protocols

are useful exactly to provide IP addresses to the nodes, thatare topologically correct and glob-

ally routable in the internet. Apart from the address configuration itself, auto-configuration

protocols can deliver various information about the network, such as dedicated servers that

provide specific services.

Although the infrastructure network already supports functionalities the configuration

of nodes addresses such as DHCPv6 [28], a node entering the ad-hoc network usually has

several nodes around, and probably several independent networks to use; it needs to choose

one of them (either by traffic or cost considerations). Auto-configuration protocol may pro-

vide sufficient information about the network to facilitatethis decision process. Moreover,

DHCP protocol does not support multihop networks, like ad hocnetworks commonly are.

There are several proposals that present some of the possible methods used to dissem-

inate network configuration in MANETs. Perkins [51] proposes a simple mechanism for

auto-configuration where nodes simply choose a random address and perform duplicate ad-

dress detection based on a given network prefix. Jeong [39] propose a solution that differs

from the previous by specifying mechanisms more suited to AODV, both for IPv4 and IPv6; it

supports the existence and mergers of different network partitions. Laouiti [24] describes an
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auto-configuration mechanism for isolated networks with OLSR. Wakikawa [55] proposes a

method to propagate the network prefix inside the network by means of an Internet Gateway

Discovery process similar to the router discovery process of IPv6, and includes the integra-

tion of MANET routing protocols with Mobile IPv6.

Jelger [38] proposes a method where the gateway providing connectivity to the Internet

periodically broadcasts a message (GWINFO), which is then forwarded by all nodes in the

ad-hoc network. As the message is forwarded through the network, a hop count field present

on the message is incremented. This field will be used by nodesto choose the neighbor which

is closer to the gateway. This neighbor is denominatedupstream neighbor. The Jelger auto-

configuration protocol (GWINFO) flooding mechanism will create a directed tree, rooted at

each gateway. GWINFO has native support for multiple gateways in the same ad-hoc, and

the ability to choose one of them based on specific metrics, such as the number of hops to the

infrastructure.

Secure operation of these protocols is very important in commercial environments, es-

pecially when dealing with self-configuration solutions. This prevents the advertisement of

any node as a gateway, disrupting the network or increasing the chances of an eavesdropping

or black hole attack. Jelger proposal has been further extended in [5], adding support for se-

curity and integration with handover mechanisms. The information on GWINFO messages

are signed by the operator and nodes are able to verify this signature using the public key

infrastructure.

2.2.3 Quality of Service

Networks are build and maintained to provide services. A service can be something simple,

such as e-mail and file transfer, or can be something more complex such as audio-video

streaming. In todays environments, several customers use and access various services every

day. Normal Internet and access networks are best effort networks. Best effort networks

try its best to deliver the information to its destination; however, losses and delays can still

happen. Also, best effort networks will not differentiate between high priority traffic and

normal, background traffic.

The concept of Quality of Service (QoS) in IP networks provide a series of mecha-

nisms that enable the network to provide delivery guaranties for a specified traffic, as well

as differentiation between different priority flows. In a QoS enabled network, multimedia

traffic, such as VoIP or IPTV, can have delay, jitter and deliver guaranties that provide the
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best service possible. QoS can also help in the separation oftraffic between customers with

higher contracts from the ones with basic contracts, givingthe former priority over the later.

When integrating an ad-hoc network with an existing commercial network, operators

expect to apply the same QoS levels to users of ad hoc networks. Traditional hotspots can

perform this easily by a set of rules at the access point. However, since the ad-hoc stub is a

distributed and unstable environment, QoS has to be sustained in a distributed manner inside

the ad hoc network.

Several protocols have already been proposed to support thedelivery of adaptive ser-

vices in mobile ad hoc networks. INSIGNA [16], one of the bestknown, uses a soft state

resource management mechanism to enhance network usage. Packets transport an extra field

for QoS information, which is used as an in-band signaling. The protocol supports Best Ef-

fort services and services requiring reservation with per-flow QoS support. QOLSR [1][25]

is a QoS routing protocol defined to enhance OLSR. Each node gathers information related to

QoS parameters such as available bandwidth, delay, jitter or loss probability. These param-

eters are reported to OLSR, based upon which, the MPRs create orchange routes. However

QOLSR is not able to limit the traffic in the network.

SWAN [9] is a QoS model that provided stateless QoS differentiation to ad hoc net-

works. The complete QoS solution provided by SWAN is a junction of several different

mechanisms. These mechanisms are: Admission Control; Rate Control; Traffic Classifica-

tion and Shaping; and MAC feedback.

The admission control mechanisms work at the source node. This mechanism controls

wether the UDP traffic is allowed to enter the network or if it is blocked. This decision is

dependent of the feedback given by the other mechanisms of the model. The active proving is

the mechanism that provided the nodes a way to calculate the available bandwidth of a certain

path. It work by sending proves from the origin to the the nexthop. This packet if forwarded

hop by hop to the destination. Each hop of the path evaluates the available bandwidth it has

and changes the available bandwidth of the probe to the minimum acceptable. The destination

node will then send a probe reply, directly to the source node, with the amount of available

bandwidth on the network. The rate control mechanism is usedto shape the best effort

traffic class. This shaping is performed in a distributed manner in each node. The algorithm

used to adjust the shapers is the Additive Increase, Multiplicative Decrease (AIMD). with

this algorithm, best effort traffic will see its rate gradually increased up to the maximum

bandwidth left by the real time class. MAC feedback is used tomonitor the surrounding

medium in order to determine the existence of congestion, and also to calculate the available
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bandwidth. If the congestion is detected, MAC feedback willalso mar the packets that is

forwarding. When this packets arrive at the destination, a regulation process will take place

to re-adjust the available bandwidth in the selected path. The classification of packets is

performed at the source node. Packets are marked using the DSCP field (in IPv6). By default

SWAN only supports two traffic classes, best effort and real time. In [8] an extension of

SWAN was proposed to make it interoperable with the infrastructure and to support four

classes of traffic.

2.2.4 Charging and Rewarding

Operators must be able to obtain profit from the development of the network and services.

Profit is only obtained by charging the user for the usage of the network and their underlay-

ing services. Charging in ad hoc networks makes most sense when the ad hoc network is

interconnected with an infrastructure network. However, even when a MANET is isolated,

and stand alone, there may by a need for charging users, for example, when some user has to

offer to the network a distinct service. Infrastructure networks are driven by operator busi-

ness models, in consequence, it is mandatory to provide support for charging the users in the

ad hoc network.

The multi-hop and distributed nature (and dynamics) of ad-hoc networks requires the

existence of distributed trust mechanisms, able to provideadequate information for charging

and traffic authorization. Most important, these mechanisms need to be compatible and inte-

grated with existing network authorization and charging architectures. Furthermore, ad-hoc

networks also require incentives for users to participate in the forwarding process, otherwise,

nodes may not forward others traffic without any benefit. Suchincentives can be provided in

many forms, like, for example, credit or service discounts.

The solutions proposed by the research community envision scenarios where ad-hoc

networks are integrated with an infrastructure supportingauthentication, authorization and

charging mechanisms. Salem [4] envisions ad-hoc extended cellular networks, where base

stations are capable of charging, rewarding and enforcing profile policies on packets gener-

ated. In order to achieve this level of control, it proposes all traffic to cross the base station,

independently of its origin and destination. SCP [14],[13],[11] proposes the creation of a

distributed mechanism, actively marking packets with a proof that is updated at each for-

warding node and then reported to the network operator, withintrinsic class differentiation.

The proofs are built and updated using a defined set of rules and supported by cryptographic
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signing and verification primitives. SPRITE [23] assumes that nodes have enough storage

capacity to store traffic proofs. These proofs are later traded at a bank for credit when the

node is connected to a high bandwidth medium. PACP [2] improves many of SCP deficien-

cies (overhead, variable packet size) by encoding the routein a polynomial included in the

packets, and securely updated at every node. Upon receptionof the charging information on

the infrastructure network, the appropriate charging and rewarding actions may be applied.

These actions can take in consideration many individual parameters, like individual user pro-

file, service description, QoS parameters, route length, time frame or data amount. Also,

PACP supports distributed access control, allowing the operator to control which flows are

allowed between each nodes, without sacrificing routing.

2.3 Ad-hoc networks as hotspot extensions

Enabling a mobile ad-hoc network to be a hotspot extension and integrating it into a 4G

scenario [18], [20], [19], implies interconnecting it withthe infrastructure network and sup-

porting basic its mechanisms. This interconnection will provide the MANET to be a valid

extension of the overall operator architecture.

The previous sections presented and discussed the MANET special characteristics (2.1)

and its special requirements (2.2). From those discussionsits was made clear what are the

functionalities that need to be available in the mobile ad hoc network so that it can provide a

good set of services.

For a MANET to participate as stub network in a larger networkinfrastructure, is has

to meet some of the requirements of the larger network it integrates to. Figure 2.1 shows the

core network functionalities that the MANET needs to support.

Figure 2.1 shows the basin layout of the network. The networkis divided in the Core

Network and the various Access Networks. This two networks form and Administrative

Domain, that can be compared to an operators network. In the core network are located

the servers that control and aid all the operations performed by the mobile nodes operations

inside the administrative domain. In the Access Networks are located the mobile nodes, and

is through this networks that the mobile nodes (and its users) access the subscribed services.

The Authorization, Authentication, Accounting, Audit andCharging (A4C) server con-

trols the admission of nodes in the network, and monitors thenetwork operation, so that the

network can enforce the contract that the mobile node user has purchased. This server is
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Figure 2.1: Core network and access network diagram

contacted each time a node joins the network, and each time a node stars using any of the

network offered services. The Core Network QoS Broker (CNQoSBroker) is the server re-

sponsible for controlling the resources of the core network, for managing the inter-domain

signaling messages and for the multicast support. The Mobility Manager is the server re-

sponsible for managing mobility inside the administrativedomain, and for aiding the mobile

nodes to move to other administrative domains. Finally, theAccess Network QoS Broker is

responsible for managing the resources of the access network. It also helps in the mobility

management, in the admission control and in the in the admission control (serving as a proxy

to A4C).

The MANET needs to interoperate with all of these servers in the core network, and

support their functinalities, so it can properly operate inthe extended hotspot scenario as a

stub network.

2.3.1 Scenarios for hotspot networks

Ad hoc networks as hotspot extensions are not supposed to be used as a primary mean for

accessing normal networks services. As shown in chapter 3, the performance of a multi-

function and multi-service mobile ad hoc network does not permit the usage of the services

that nowadays have most demand on the internet, namely heavymultimedia services and

alike, that tend to be very bandwidth hungry. However, most traditional internet services

such as light web browsing, basic email services and InstantMessaging are better suited for
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low bandwidth networks.

One key factor of every hotspot network is its coverage area.Although the number of

wireless access points is increasing rapidly, with more developed cities having a large area

of coverage that provides internet access, coverage area tend to be scarce. In this scenario,

ad hoc networks have an window of opportunity. The MANET multihop nature has the

ability to extend and spread the network for large geographic areas, requiring less points of

interconnection with the core network. Moreover, not all ofthe devices in a MANET will not

have significant mobility (inside the network), which will permit the network to have more

stable routes towards the gateways.

Typical deployment scenario for a ad hoc network as hotspot extension can be as a

complement for traditional wifi hotspots, in where the ad hocwill be used to give network

access to nodes that move outside the coverage are of WiFi access point (AP), either because

of a node’s movement to the far side of the AP coverage, or in the transition from one AP to

another. In this scenario, the nodes and the network have to support the movement of nodes

from a wifi network (infrastructure) to a ad hoc network, and vice versa, without loosing

connectivity or its current open sessions.

Other type of scenarios that justify the usage of mobile ad hoc networks as hotspot

extension can be the in a road. MANET can be used to provide access to the vehicles, and

its passengers, to the core network services. Due to the large geographical area that a road

(highways for example) has to cover, it is more easily to deploy several, far away from each

other, MANET gateways, than a set of WiFi access points.

2.3.2 Auto-configuration

When interconnected with an infrastructure network, a MANETneeds to provide a mech-

anism that allows nodes outside the MANET to reach the nodes belonging to the MANET.

This mechanism implies the usage of nodes identifiers that can be valid outside the MNAET.

IP networks rely on the IP address to both, locate the nodes and identify them, so the MANET

mobile node identifies have to bee IPv6 addresses of global scope. Auto-configuration pro-

tocols provide a mean for nodes to obtain IP addresses that are globally reachable, and topo-

logically correct in relation the the Internet.

In the extended hotspot scenario, the auto-configuration protocol has to be configured

by, or communicate with, the core network, so it can distribute and announce prefixes that

are topologically correct with the outside of the MANET. Auto-configuration protocols have
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to operate much like the Dynamic Hosts Configuration Protocolin traditional IP networks.

After a node is configured with an valid and globally routableIP address, it is able to establish

sessions with nodes outside the MANET.

2.3.3 Unicast and Multicast Routing

When two MANET nodes have a on-going communication, the routing protocols that operate

in the MANET permit that they can communicate between then. Traffic is forwarded between

communication peers, with the help of the other nodes in the MANET. Moreover, routing

protocols permit that routes towards any node in the networkcan be found (as long as there

is a path that lead to that node).

When operating in a hotspot scenario, the routing protocol inuse must be able to dif-

ferentiate which nodes are inside the MANE and which nodes are outside of the MANET.

This distinction can be made by looking to the target node address prefix. When a route is

requested to a node that is located outside the MANET, the routing protocol will forward

the request to the gateway. Gateways have to operate as routers between the two networks,

and convert MANET route requests into traditional infrastructure networks route discovery

mechanisms. In the same way, the gateways must be capable of translating the infrastructure

network’s route discovery mechanisms into MANET mechanisms, so that outside-MANET

nodes can communicate with nodes inside the MANET.

Multicast routing must support the same requirements made to unicast routing. The

multicast routing protocol in use must by able to identity multicast sessions that are been

generated outside the MANET. The multicast session join request for those sessions must be

forwarded to the MANET gateway. The gateway must interoperate with the multicast router

in the core network, so that the multicast traffic can be directed to the MANET.

2.3.4 Quality of Service

Albeit, quality of service (QoS) can be provided only insidethe MANET, its is most useful

when it enables interoperation with the infrastructure network in a hotspot scenario. This

way, MANET nodes can perform reservations for acquire service with more quality and

guaranties.

The MANET gateway will have to translate QoS reservations requests coming from

the MANET to reservations in the core network. In order to do that, the gateway will have to
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interoperate with the QoS infrastructure present in the core network (ANQoSBroker). When

reservations are performed, the gateway will have to enforce them both, in the MANET side

as well as in the infrastructure network.

2.4 Summary

This chapter has introduced the ad hoc network, and the Mobile Ad hoc Networks in par-

ticular. The specific characteristics of ad hoc networks were presented, and based on them,

the special requirements and the protocols that fulfill themwere presented and described.

Namely, solution were presented for auto-configuration, for routing, both unicast and multi-

cast and for quality of service. The necessary extension needed so that MANET can partici-

pate in a hotspot scenario as a stub network were also presented, along with the changes that

need to be done to interoperate with the core network servers.
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Experimental Evaluation

The previous chapter described the ad hoc network concept and the most common protocols

used to provide to it a variety of functionalities. In section 2.3 the necessary extensions

that the protocols need to support in order to make the ad hoc network function like and

hotspot extension were described. The primary objective ofthis chapter is to present the

experimental evaluation of an ad hoc network used as a hotspot extension. In order to perform

the experimental evaluation, a testbed was built. This testbed is constituted with different

personal computers and has all the main features required for a complete hostspot extension.

Auto-configuration, unicast routing, multicast routing, quality of service and charging and

rewarding support are the services that are part of the testbed and which were evaluated. The

results of the evaluation are also presented, as well as an analysis of the obtained results.

This chapter is organized as follows: section 3.1 describesthe Mobile Node archi-

tecture, describing also the services offered and correspondent protocols that provide each

service. Section 3.2 describes the ad hoc gateway architecture in a similar manner to the

mobile node’s architecture. The software environment in were the chosen protocols where

developed and tested is described in section 3.3. In section3.4 the testbed description is

presented, in this section the hardware used for the tests and the selected network topologies

are presented and explained. Section 3.5 presents the obtained results during the evaluation,

presenting also the methodology developed for performing the tests. The discussion of the

obtained results from a point of view of a the full service network is presented in chapter 3.6.

Finally, in section 3.7 a conclusion for this chapter is elaborated.

The developed and tested testbed is part of the network demonstrator of the IST Project

DAIDALOS [60].
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3.1 Mobile Node Architecture

The main functionalities that need to be present in the mobile node, in order to benefit from

the operators hotspot are: auto-configuration, unicast andmulticast routing, quality of service

and charging. With these functionalities present, the MN can participate in the operator

hotspot, while using services such as real-time voice and video, mixed with the rest of the

network’s bulk traffic.

The auto-configuration mechanism is required in order to enable nodes to discover

hotspots and auto-configure their addresses correctly. After successful configuration, unicast

and multicast routing is used to provided basic network functionality. The mentioned mul-

timedia services (voice and video traffic), require that their traffic is differentiated from the

network bulk traffic; in order to do that, the network needs quality of service support. Finally,

operators must be able to account and record each user’s network usage, in order to apply

contracted profiles agreed with each user. The QoS and Charging mechanisms are performed

in a distributed manner, but without disclosing the user profile, so that traffic must not be

forced to cross the gateway.

Figure 3.1: Functional architecture for the mobile node

Figure 3.1 shows the functional architecture of the mobile node, showing for each

functionality, the chosen solution. The next subsections will better detail each protocol.

The general architecture for the mobile node and the gatewayis show in figure 3.2.
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This figure represents the principal elements of the architecture and their interaction with

infrastructure elements presented in the left side of the picture.

Figure 3.2: Mobile Node general architecture

3.1.1 Auto-configuration and Gateway Awareness - GW_INFO

The chosen solution to provide auto-configuration is the proposal presented in [37] and later

extended in [5]. This was the most appropriate solution to the deployment environment, as

the others lacked in security [56] - [46], dependence of the routing protocol [51] - [46], or

adequacy to hybrid scenarios [51] - [46].

Whit the protocol described in [5], named GWINFO (for GateWay INFOrmation)

the nodes are able to choose which gateway to use, based on different criteria, not just the

distance, and also change between gateways, provided that they support Mobile IPv6 [41] in

order to maintain global connectivity.
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3.1.2 Unicast Routing - AODV

The chosen protocol to perform unicast routing is the AODV protocol [50]. The reasons for

this choice are based on the type of scenario envisioned (seesection 2.3.1) and the availability

of the implementations at the time the decision was taken. This will guarantee a better service

and less integration problems. The AODV implementation from Upsala University, AODV-

UU [73], in its 0.50 version, is the chosen implementation. Some changes were performed to

thevanilla version in order to support the address auto-configuration and dynamic change of

IPv6 address. Moreover, some modules, such as the QoS modules and the charging modules,

needed to get information about the routing tables, more specifically, the next hop node for

a given route. Albeit this kind of information can be retrieved directly from the operative

system routing tables, AODV is able to provide a set of more useful information, such as

alternative routes. One more change was made in order for AODV to wait for authorization

modules to verify that a given route is valid (authorized).

All the changes made did not alter the basic algorithm of the routing protocol, so no

performance penalties are expected, especially in low mobility scenarios.

3.1.3 Multicast Routing - MMARP

After evaluating the various proposals for a multicast routing protocol, only one can offer

multicast traffic to the ad hoc network maintaining compatibility with the rest of the internet,

which typically run IGMP [29] and/or MLD [54]. That protocolis MMARP [17], which

allows to provision to the ad hoc cloud the same multicast services provided to infrastruc-

ture nodes without any changes to the existing architectureand with the addition of security

mechanism [10].

This transparent functionality is obtained with the creation of Multicast Internet Gate-

ways (MIG), which are ad hoc nodes directly connected to the gateway. These nodes are

responsible for translating MMARP signaling into IGMPv6 signaling. The MIG performs a

dual role, it communicates with the gateway in order to communicate the interest revealed by

other MMARP enabled nodes at the same time that announces itself to the ad hoc nodes as

the default multicast gateway, and informing about the pathtowards multicast sources in the

fixed network.

Albeit special in their operation, a MIG is not a dedicated node, any ad hoc node

MMARP enabled can become a MIG at any time, and does so when directly connected to
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the gateway. Apart from this proactive behavior, MMARP also has a reactive component

to create and maintain the distribution tree over the ad hoc network, usingJoin messages

towards the source to create a multicast shortest path.

3.1.4 Quality of Service - SWAN

Among the multiple well-known protocols to deliver QoS in adhoc networks, SWAN [9]

proves to be one of the best choices [22]: it has lower overhead than INSIGNIA[16] and is

the QoS protocol that performs better with AODV. In order to allow QoS inter-operations

between the ad hoc and infrastructure networks, the base SWAN signaling was adapted and

extended [8]. These extensions provide SWAN with QoS signaling based admission control

and support for multipath probing. The differentiation model was also extended to support

several service classes as well as congestion feedback between then. The extended differen-

tiation model considers four different traffic classes: critical real-time traffic, less demanding

real-time traffic, non-real time traffic and regular best-effort traffic. Each of these classes will

have assigned a certain amount of bandwidth, except of course the best-effort, that uses the

remaining bandwidth.

In Figure 3.3 is depicted the differentiation model composed by a classifier and by

a cascade of priority schedulers, shapers and queues associated to each traffic class. The

delays are applied to each packet through a leaky bucket shaper, whose rate is controlled by

an AIMD algorithm having the lower level classes delay as feedback.

Figure 3.3: SWAN differentiation model

The implementation used follows this extended model supporting four traffic classes.

This software also provides extended session admission andintegration with external authen-

tication and authorization servers.
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3.1.5 Charging and Rewarding - PACP

PACP [2] revels itself as the best choice for a charging protocol, given the integration require-

ments of the scenario. PACP is also the best choice when no ideal rewarding is required, that

is, when rewarding for 100% of the traffic is not the main concern. The other considered

proposals fail to comply with some of the main requirements of the used scenario: not pro-

viding proper integration with the infrastructure network[23], large overhead, as the number

of nodes increase [15] or even the usage of non-optimal routes [4]. The features PACP pro-

vides are: correct charging and rewarding information, secure process of proof creation and

delivery, usage of optimal routes, small network overhead and small processing requirements

in all modes. This in conjunction with the ability to interoperate with the infrastructure net-

works makes PACP the best choice.

The operation of PACP is as follows; the identification of the route followed by a data

packet is implicitly included in a fixed size field inside eachdata packet. This identification

will be updated in each node in the ad hoc network, as the packet flows to the destination.

These fields are cryptographically secure (to prevent attacks from malicious nodes), so when

this information is corrupted the packet will be dropped (bythe node forwarding it). The last

node in the data flow’s path, just after the destination, denoted ”last forwarding node”, is the

node responsible for sending the proofs to the gateway. These proofs contain information

about the packet travelled path. The gateway collects the proofs and sends then to the au-

thentication and accounting server, so that the truthfulness of the information can be verified,

recurring to the cryptographic information contained in the proofs. With the proofs informa-

tion the authorization and accounting server knows what nodes have sent and received traffic,

and what nodes have forwarded a specific packet, these nodes will then receive rewards for

the forwarding performed.

PACP in conjunction with proper gateway control processes can provide the tools re-

quired to check the behavior of nodes inside the ad hoc network, eventually leading to credi-

tation/reputation schemes, developed with the aid of the network operator.

3.2 Gateway Architecture

The architecture of the ad hoc gateway (GW) is very similar to the one of the mobile node

(MN), since it is the gateway that provides most of the services that the mobile node will

access. The gateway is an element belonging to the operatorsnetworks, so it is up to the
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operator the proper configurations of the gateway and of the services that it offers. Some

services can be suppressed completely (multicast for example) or be offered only to some

extent (reduced QoS traffic classes). In the presented testbed however, all the services will

be available, and fully operational.

In terms of software modules, much is shared between the MN and the GW, changing

only the behavior of the modules and existing only a few exceptions. The auto-configuration

and unicast routing mechanisms are present so that the ad hocnetwork can be created; the

QoS modules will be present in order to establish the bridge between the ad hoc and the

infrastructure networks; charging and multicast modules will also be present, in order to

provide the desired functionality.

The gateway general architecture is presented in figure 3.4.This figure is similar to the

one presented for the mobile node general architecture. Thead hoc elements and their in-

teraction with the infrastructure specific elements are also show. The infrastructure elements

are on the left of the image.

Figure 3.4: Gateway general architecture

It should be noticed that no choices needed to be done regarding the software or pro-

tocols running in the gateway; the same choices for the MN apply in the gateway. Instead
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the support for a gateway was also one of the requirements considered when choosing final

solutions.

3.2.1 Auto-configuration - GW_INFO

The auto-configuration function in the gateway has only the task of periodically send the

GW INFO messages announcing the gateway. Each message contains the IPv6 address of

the gateway, the network prefix and the network mask that willbe used by the MN’s to

configure their IPv6 address.

Additional functionalities of the auto-configuration module in the gateway are only re-

lated to the type of algorithm used to distribute the messages (proactive and reactive) and

with the type of method used to solve ties when multiple upstream neighbors were present

(distance based and prefix based tie solving algorithms). However, any change made in the

parameters of the auto-configuration algorithm need to be propagated to the mobile nodes

manually, since the available implementation does not havedynamic parameters configura-

tion via network messages.

3.2.2 Unicast Routing - AODV

The AODV module in the MN is responsible for finding routes to/from other nodes in the

network, and also perform the forward of the actual packets.In the GW it is responsible for

forwarding the packets between the infrastructure networkand the ad hoc network, acting

more like an Access Router. The AODV software module will listen for route request mes-

sages (RREQ) coming from the ad hoc network and analyze the destination address. In case

the address does not belong to the addresses present in the adhoc network, it then triggers

a search in the infrastructure network, recurring to the standard IPv6 mechanism. In a simi-

lar way, when the infrastructure network is looking for nodes whose address belongs to the

address space of the ad hoc network, then it needs to translate them into a route discovery

process inside the ad hoc network, in order to find the node.

Equally to the MN, the gateway version of AODV also has interfaces with the modules

supporting the other functionalities, in order to offer theinformation needed by them.
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3.2.3 Multicast Routing - MRD6

The multicast function of the gateway is not performed by theMMARP protocol, not because

of the usage of a different protocol, but because the MMARP protocol was designed to not

run on the ad hoc gateway, but relying is the gateway’s natural ability to route packets. Since

the target platform (see section 3.4) does not natively support routing of multicast traffic, the

Multicast Routing Daemon (MRD6) [70] software was used.

MRD6 provides the desired interoperability with the infrastructure network, listening

to MLD[54] protocol on the ad hoc network, and then translating to the protocol used in

the infrastructure network. The ad hoc gateway is then a different entity from the multicast

internet gateway (MIG). The MIG is the last node in the network, before the gateway, that

is running MMARP. The MIG listens to MMARP protocol from the ad hoc network and

then sends MLD protocol messages towards the GW, in where MRD6in turn will pull the

multicast traffic to the ad hoc network.

3.2.4 Quality of Service - SWAN

The QoS modules present in the gateway are very similar to theones in the mobile node

(see section 3.1.4) both in their architecture and in the functionality. The most important

difference is that, being the gateway also the access routerfor the network, it will not generate

traffic, only will forward traffic; consequently, the QoS client present in the mobile node

(responsible for interacting with the applications to obtain QoS requirements) is replaced in

the gateway by the QoS Manager.

The QoS Manager will interact with the Access Router Manager Software (ARM) and

with the QoS Broker in the infrastructure in the same way all other Access Router’s QoS

Manager do, enabling that the reservations request coming from ad hoc nodes can be trans-

lated and propagated in the infrastructure.

3.2.5 Charging and Rewarding - PACP

Regarding PACP implementation [58], the MN and the GW are not very different in terms

of the running software, most of the code is shared among them. The main difference is the

main protocol logic. Mobile Node logic is implemented by theCharging Agent and the Gate-

way code (called Access Router in the PACP context) is implemented by the Internetwork
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Adapter. The main functionality of these modules is described in section 2.2.4

3.3 Software Environment

All software used was developed and/or modified under aGNU/Linux environment. The

official distribution of the Testbed was Mandrake 10.1 Official [67] (now discontinued), but

recurring to a vanilla 2.6.8.1 Linux kernel, enhanced with modifications required by some of

the testbed modules. There are several patches applied to the vanilla kernel, namely:

• Support for DSCP marking using Netfilter [71]: Used by the QoS modules to mark all

packets for posterior identification and differentiation.

• Support for Token Bucket Queue.

• Host AP wireless driver [65]: the driver of the wireless chipset used.

• Netlink Multiplexer.

• A IP6 QUEUE multiplexer: Standard kernels only support one client (local client) at

a time in the IP6QUEUE netfilter table. This patch provides the support for multiple

clients simultaneously.

• The MACKILL [64] network topology emulator (custom version).

With exception of (parts of) the AODV-UU and Host AP driver, all other patches were de-

veloped and tested inside the Daidalos project [60]. Figure3.5 shows a partial vision of the

software modules used, mostly focusing on the customized functions described above, and

in the functional modules described in the earlier sections.

Apart from the already mentioned software, several custom scripts were also devel-

oped, in order to easy the management of the overall software. The integrated system proven

difficult to manage, following the development phase; the integration of all the software was

a demanding task. The level of integration achieved was sufficient for running small, short-

duration, trials.
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Figure 3.5: Software architecture

3.4 Testbed Description

3.4.1 Hardware description

The testbed is composed with various types of PC’s ranging from the most simpler laptop

with a 1.2 GHz CPU and 256MB of RAM to the more powerful Edge Routerwith an AMD

AthlonTM 64 Processor 3000+ (1.8MHz) with 1GB of RAM. All PC’s have plenty of storage

space.

The lower limit in terms of hardware requirements was established by the ad hoc nodes,

since using PC’s with (even) lower capabilities will cause too much slowness in the system

altering the results. These specifications do not reflect typical, resource limited, (current)

ad hoc nodes, but are only suited to the extensive testing possible in a lab, or to yet-to-be-

developed small form factor PDAs.

All terminal (MN and GW) machines are equipped with two network interfaces: one

wireless and one wired. The wired interface is used to provide remote access during the tests

and for administrative tasks. The communications performed for the test are restrained to the

wireless interface in ad hoc mode.

The wireless interfaces used were Prism2.5 802.11b cards with the following config-

uration parameters: channel 12, rate fixed to 11Mbits and RTS/CTS threshold of 1 byte.
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The bit-rate limitation was used to increase reliability, avoiding bit-rate changes and sup-

port a channel with bit-rates easily handled by the mobile nodes. Channel 12 was selected

for interference minimization. Regarding the ad hoc networktopology, and since the tests

were performed in the lab, the MACKILL [64] was used to create the desired (and emulated)

topology (as mentioned is section3.3).

3.4.2 Network Topologies

Since the evaluation of the testbed is focused on the performance, the network topologies

used were chosen in order to evaluate the influence that the number of nodes has. Due to our

limited number of computers, the chosen topology is astring topology where the nodes are

connected sequentially to only two neighbors, thus maximizing the number of hops.

Figure 3.6 shows a representation of the topology used, where six machines show the

linear topology used. Node1 is the gateway of the Ad hoc network and Node6 is the last

hop. Using this topology, without interfering traffic, we can show a bound to the maximum

achievable performance of the network.

Figure 3.6: String topology used in the tests

This topology was used in two different locations, indoors and outdoors. The indoor

topology was deployed in one of the rooms of the IT-Aveiro [66] building, which is a roughly

square building with around 1300 m2, and normal office/lab divisions. Since there is not

enough physical space inside the building to create the desired topology without the nodes

interfering with each other, the MACKILL [64] tool was used. MACKILL filters the pack-

ets, in kernel, based on the source MAC address. With the right configuration, MACKILL

provides the desired string topology, at a logical level (radio interference still exist however).

A final note to refer that all the nearby Access Points where turned off when the test were

performed.

The outdoor topology is represented in Figure 3.7; as can be seen, the nodes are spread

across a wide space, creating the desired topology naturally, without the aid of special soft-
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ware. With this topology the objective was to evaluate the influence of the radio interference

present in the indoor test and also the stability of the ad hocnetwork when used in more

real-life network arrangements.

Figure 3.7: Outdoor topology

3.5 Experimental Results

This section will present the results of the performed tests. The aim is to measure delay, jitter

and overhead, for a specific set o traffic profiles, specially targeting multimedia applications.

Three UDP traffic profiles were defined, according to different bit rates, 64kbps, 128kps and

256kbps, in order to evaluate the network without being in stressful situations. These traffic

profiles model close enough voice and video applications.

The experiments were designed and performed with the intention of measuring the

incremental addition of nodes to the network and also the incremental addition of function-

alities to the nodes. The experiences are divided in variousgroups, and each group is divided

in various steps.

The group division is performed according to the functionalities to be evaluated. In the

first group only the auto-configuration modules are running in the nodes; in the second group,

the auto-configuration module is added to the unicast routing module; In the third group the

QoS functionality is added, hence three functionalities are evaluated simultaneously; to the
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functionalities present in the third group, the charging and rewarding functionality is added,

constituting the fourth group. Finally, the fifth group contains only the auto-configuration

and multicast routing modules.

Inside each group, various steps are performed. What defines astep is the number

of nodes that are participating in the experience. Hence thefirst step is always considering

two nodes: the gateway (Node1 in figure 3.6) and the first mobile node (Node2), with traffic

flowing from the node to the gateway. For the next step anothernode is added, and so forth

until the last step which involves all the nodes with traffic also flowing from the last node to

the gateway. The throughput is calculated differently, since it aims to measure the maximum

bit rate that can be sent in the network, without loosing packets and without taking into

consideration delay or jitter. For measuring the throughput it was used a method of trial and

error: starting in the one hop connection (Node2 to Node1) with a theoretical estimation

for the bandwidth, the throughput is adjusted to the maximumone with no losses. For the

next hop, the previous value for throughput was divided by half, and later adjusted. This

procedure was repeated for all hops, achieving a final figure for the throughput in all hops.

The MGEN tool [68] was used to generate the constant bit rate (CBR) traffic flows. This tool

is very versatile, and has facilitated the process of automating the experiments. For each step,

5 runs were made, with 300 seconds for each run.

In Section 3.5.3 a comparison between the performance of unicast routing for both the

indoor and outdoor scenarios is used to determine the difference of one scenario over the

other. Based on the results obtained, which have no main differences between each other, it

was decided that the remaining results were obtained only inthe indoor scenario.

3.5.1 Auto-configuration

The functionality provided by the auto-configuration module is the configuration of the IPv6

address, so no traffic can be sent in the network, because no routing can be performed. The

measured metrics were the overhead caused by the protocol inthe network and the time

needed for the address to be configured.

Measured overhead was 992 bps per link, which, for a 64 Kbps bit rate, represents

1.44% of the data. Since for each link, each node sends a GWINFO message per second,

and the GWINFO messages are of constant size, the overhead of the auto-configuration

module tends to be constant, only depending on the number of nodes present in the link.

Auto-configuration time takes an average of 2 seconds and represents the time since
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the reception of the first GWINFO message and the transmission of the first GWINFO

message to other nodes, that is, when the node is fully configured. Each node sends a new

message once each second so, when a node moves inside the ad hoc network, it receives

a new GWINFO message, from a potential new upstream neighbor, after1 second, in the

worst case scenario. Generally, auto-configuration was seen not to have a large impact in

network performance.

3.5.2 Multicast Routing

As was said earlier, the multicast experiments were performed only with GWINFO and

MMARP running, no more software was needed. Also in the multicast experiments, the

source for the flows is Node1 (see figure 3.6). In the first step Node2 sends aJoin message to

start receiving the multicast traffic, then in the second step, Node3 sends also aJoin message.

When Node2 receives this join, it automatically becomes a MIGfor that network. In the

remaining steps all other nodes send a join message and startreceiving the traffic. Each step

is repeated several times (several runs per step).

The first of the metrics evaluated is the throughput of the network. The Table 3.1 shows

the variation of the throughput with the addition of nodes tothe network. It is observed that

the throughput in a direct link connection between two hops is 1223 Kbps, which corresponds

to the effective user data transmission. The real throughput in the network is slightly higher

due to additional headers and RTS/CTS mechanism. When the five hops are considered

the throughput available to the last hop is diminished to 76 Kbps. Since these tests were

performed in the indoor topology, the results are affected by the radio interference. It is

worth notice that, by its nature, MMARP does not need special protocol messages between

the gateway and the first hop (direct neighbor of the gateway), only standard IPv6/MLD

mechanisms are necessary. This reduces the overhead in the network, improving also the

overall throughput.

Hops multicast (Kbps) unicast (Kbps)

1 1223 1222
2 672 559
3 291 322
4 191 204
5 76 122

Table 3.1: Throughput: routing and auto-configuration

The delay and Jitter were the next metrics measured in the testbed. The objective of
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this test is to evaluate the impact of multicast routing in the traffic for different configurations

of the testbed when the network is not fully congested. Tables 3.2 and 3.3 show the obtained

results. It can be seen that the performance of the multicastrouting for the first hop is very

similar for the tree traffic profiles used, since the available bandwidth is much larger than the

one used. When the number of hops increases, delay also increases for the two lowest bit rate

traffic profiles studied (64 and 128 Kbps). The third flow (256 kbps) shows large delays for

hop count larger than 3, when the maximum throughput is achieved. It can also be observed

that the delay value for a direct connection is smaller than the delay increase with the number

of hops. For 256 Kbps flows, delay reaches values larger that 100 ms, which is not acceptable

for voice; however, video streaming can still be supported.

Delay (ms) 64 Kbps 128 Kbps 256 Kbps

1 Hop 3.527 4.184 4.809
2 Hops 8.910 9.912 31.642
3 Hops 13.194 45.474 113.267
4 Hops 16.941 67.027 194.941
5 Hops 21.619 82.823 252.608

Table 3.2: Delay: multicast routing and auto-configuration

Jitter (ms) 64 Kbps 128 Kbps 256 Kbps

1 Hop 0.227 0.224 0.221
2 Hops 1.669 1.930 10.586
3 Hops 0.841 25.286 20.306
4 Hops 1.142 25.119 22.246
5 Hops 1.374 21.743 23.683

Table 3.3: Jitter: multicast routing and auto-configuration

Table 3.4 shows the packet loss results. As can be observed the losses reach values

higher than 10% for communications of 256 Kbps traversing more than two hops. This

tendency can also be observed with the 128 Kbps traffic profilebeyond 3 hops.

A final metric measured was the overhead introduced by the MMARP and GWINFO

protocol. This overhead is 3.94% in 64 Kbps of traffic, which indicates that the overhead

added by MMARP alone is almost twice the one introduced by the auto-configuration proto-

col.
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Loss (%) 64 Kbps 128 Kbps 256 Kbps

1 Hop 0.24 0.35 0.54
2 Hops 3.13 2.39 3.40
3 Hops 2.06 8.00 11.85
4 Hops 2.38 8.04 22.89
5 Hops 2.82 11.72 33.03

Table 3.4: Packet loss: multicast routing and auto-configuration

3.5.3 Unicast Routing

Unicast routing, along with address auto-configuration, isone of the key functionalities

needed in the network; without it no other functionality canbe used (except from multicast

routing).

The first measurements taken were related to the maximum network throughput, as a

function of the number of hops present between the sender andthe receiver. Table 3.1 shows

these results. As expected, the throughput decreases with the numbers of hops. Further, it can

be seen that for the one and two-hop counts the achieved throughput is bellow the maximum

achieved by MMARP. This effect is due to the lower overhead presented by MMARP in the

first hops. However, as the number of hops increases, the maximum throughput of AODV is

higher that the one of MMARP, due to the increase of MMARP overhead.

The second measurements are from the packet delay (table 3.5) and jitter (table 3.6)

for the different studied traffic profiles. As can be observed, both delay and jitter slightly

increase with the increase of flows’ bandwidth and with the number of hops. In the fifth hop,

with the traffic profile of 256 Kbps, the delay introduced by AODV is higher that the one

introduced by MMARP, which is due to the way the protocols work. AODV tries its best to

deliver the packets to its destination, so when no more traffic can be sent to the network, it

is buffered and sent later, hence introducing delay. MMARP discards the packets that cannot

be delivered, increasing then the packet loss count.

Delay (ms) 64 Kbps 128 Kbps 256 Kbps

1 Hop 4.474 4.606 4.535
2 Hops 9.058 9.242 9.045
3 Hops 13.968 15.036 17.691
4 Hops 19.578 20.924 97.502
5 Hops 23.619 24.248 1333.563

Table 3.5: Delay: unicast routing and auto-configuration

The overhead introduced by AODV and auto-configuration protocols is of 2.38% per
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Jitter (ms) 64 Kbps 128 Kbps 256 Kbps

1 Hop 0.560 0.741 0.697
2 Hops 1.254 1.236 0.997
3 Hops 1.248 1.434 1.835
4 Hops 2.205 1.975 13.456
5 Hops 1.452 2.228 21.474

Table 3.6: Jitter: unicast routing and auto-configuration

hop with 64 Kbps of traffic flowing in the network, which is similar to the one introduced by

MMARP. The additional overhead introduced by AODV alone is of0.94%.

Hops Outdoor (Kbps) Indoor (Kbps)

1 Hop 1223 1222
2 Hops 432 559
3 Hops 258 322

Table 3.7: Unicast routing and auto-configuration: indoor and outdoor throughput

Unicast routing was also evaluated in the outdoor scenario.The results were used to

determine the impact of using one scenario over the other. InTable 3.7 the throughput results

for the outdoor topology are presented. It can be noticed that there is no large difference

between the indoor or outdoor scenario, except a throughputdecrease with the increase of the

number of hops. This results seems to contradict the expected behavior, since in the outdoor

scenario there is no radio interference between all the nodes (only between neighbors), but

in fact in the outdoor scenario the distance between nodes increases, and so do the number

of transmission errors, causing also a decrease in the throughput. Similar results were also

obtained for the delay and jitter values (not presented here). Based on these results, it was

decided that the remaining test would be conducted only in the indoor scenario.

3.5.4 QoS

Continuing with the incremental evaluation of the modules when working together, Quality

of Service (traffic control and service differentiation) isnow evaluated. In terms of traffic

control, the maximum achievable throughput and the influence of the number of nodes was

evaluated. The maximum throughput decreases with the number of hops, from 1.2Mbps

(one hop) to 120 Kbps (5 hops), similar to previous results. These values were expected,

since when the traffic is marked real-time, there is no actiontaken by the QoS modules, and

processing time is virtually inexistent.
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Figure 3.8: "Less demanding real-time" rate variation

Advancing further, Figure 3.8 shows the influence of the number of hops in the dif-

ferentiation time for the lest demanding real-time class (class with priority just bellow the

real-time class). In all cases the flow bandwidth is 256 kbps,the transmission always starts at

time 0 seconds, and immediately at the maximum bit rate. First it is noticed, in all cases, that

the requested rate is achieved only after a significant amount of time (between 30 to 40 sec-

onds). This behavior is introduced by the AIMD shaper that linearly increases the maximal

transfer rate when no congestion is noticed in the network. This behavior will cause several

problems in traditional TCP traffic, due to the TCP slow start algorithm. The second thing

worth noticing is the effect of intermediate shapers, as canbe seen by the variation (decrease)

in the raise of the curve when the throughput is increasing.

In Figure 3.9 the differentiation between classes for the same bit rate (128 Kbps in this

case) can be observed. In order to observe the desired effect, the traffic is flowing from Node4

to Node1 (3 hops). The flows were started all at the same time and to each flow a traffic class

was assigned. What can be observed is that real-time class starts at its maximum rate and

lower classes take longer to reach the required throughput;it is also easily visible that the

time to reach the required throughput increases with the decrease of the priority of the class.

These results are consistent with the extended SWAN model, in where the real-time class

does not have any shaper and initiates it service at the maximum bit rate, since it has absolute
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priority. Best effort classes use the remaining bandwidth, which in this case its almost none.

Figure 3.9: QoS initial setup differentiation for the first hop connection

In terms of delay and jitter values, for the real-time class,they are very similar to the

values shown for Unicast routing in the previous section. For the other classes the delay and

jitter values suffer from the strong influence of the shapingthat is performed in all the nodes

until the traffic reaches its destination.

The cumulative overhead for real time classes is of 2.11%, 1.20% and 0.67%, respec-

tively, for the 64Kbps, 128Kbps and 256Kbps traffic profiles.Again these values are similar

to the ones of multicast and unicast routing.

The presented results show that with the extended SWAN modelit is possible to sup-

port service differentiation and regulation of flows. However, the number of hops in the ad

hoc network has a large influence in both the maximum achievable throughput and in the

time to achieve the requested rate. The system behavior is very dependent of the environ-

ment, frequently producing results that were not easily understandable in terms of service

differentiation. The results also show that the real-time traffic class is the only one that does

not compromise the network performance, for the target multimedia service types to be de-

ployed, so the remaining integration test will only concentrate on the analysis of this traffic

class, even when QoS modules are active.
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3.5.5 Charging and Rewarding

Finally, the performance of charging and rewarding mechanism (PACP [2]), is evaluated.

In this section we will only evaluate the overhead introduced by the charging and rewarding

mechanism. In section 3.6 the measurements achieved with all the modules will be presented.

In the used scenario and performed tests (where the traffic flows from Node5 to Node1)

PACP reports and PACP proofs generate almost the same rates of control bytes. However,

PACP reports are sent in a burst every 37 data packets (each report contains the proof of 37

data packets), while PACP proofs are of constant size in all packets (48 or 88 bytes).

Overhead (%) 64 Kbps 128 Kbps 256 Kbps Average

No ECDSA 10.98 21.96 43.90 17.15
With ECDSA 16.33 32.67 65.33 25.52

Table 3.8: Charging overhead (in Kbits) versus bit rate and usage of cryptographic mechanism

The results of the overhead measurements are present in Table 3.8. These results are

dependent on the packet rate, which is due to the constant proof size and the constant number

of reports issued per data packet forwarded. Another effectof the number of data packets

in the network is the number of control bits introduced by PACP, which increases in a linear

relation. The overhead is presented for two different situations: with and without security

processing. Naturally the inclusion of security mechanismincreases the overhead of the

charging and rewarding protocol.

The elliptic curve digital signature algorithm (ECDSA) is the cryptographic algorithm

used for the provision of the security. It is worth noticing that this choice will only be realistic

if special hardware exists in the (low-power) ad hoc nodes, due to the high computational

requirements of this algorithm.

3.6 Impact on the Usage of Ad hoc as Stubs Networks

In the previous section (3.5) the performance of the severalcomponents were evaluated and

their results presented. In this section, the results are analyzed in the perspective of the

final network arrangement, with all modules present and running. These results will be here

analyzed from the perspective of their impact on the overallnetwork performance, taking

into account that all services are running simultaneously.
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The overhead results presented in the last section for the auto-configuration function-

ality (1.44% in 64 Kbps of data) seems reasonable, since it isa essential feature on a stub

ad hoc network. Further, since the overhead is a constant value, when the amount of data

increases, the figure for the overhead of auto-configurationwill be smaller.

Multicast routing is a feature of great value for a stub network. It permits resource

optimization when delivering typical broadcast services (streaming multimedia contents).

However, the results obtained in the performed tests have shown that ad hoc multicasting

should be carefully considered when deployed in real scenarios. In a five hop network, the

throughput available (Table 3.1) does not permit multimedia contents with high quality, but

is good for low quality video. Albeit the delay values (Table3.2) are of no great concern

for the target multimedia services (a user can wait a little more for a streaming to arrive).

High jitter values will have impact on the size of the cache that must be reserved at the

terminals. The jitter values measured (Table 3.3) bring no worries. The most worrisome

metric is however the packet loss, presented in table 3.4, since even when there is plenty

of bandwidth to use, multicast traffic still show packet losses (even when unicast does not

shown losses). Further search for the root of this problem reveals that it may be connected to

the particular implementation of the MMARP protocol and is not linked directly to multicast

in ad hoc networks in general.

The addition of unicast routing clearly introduces penalties in terms of delay, jitter

(Tables 3.5 and 3.6) and overhead. Considering that voice communications require a jitter

and delay lower than 50 ms and 150 ms, respectively, it is expected that all traffic profiles

could be used, with the exception of 256 Kbps in a five-hop connection. Since unicast routing

is a key feature in the ad hoc network, these results clearly introduce a figure for the maximum

number of hops allowed in a stub ad hoc network. The 2.38% (forthe same traffic profile)

of cumulative overhead introduced by the auto-configuration functionality plus the unicast

routing functionality is still acceptable, as shown in Figure 3.12.

The QoS services were designed to be compatible with multiservice networks, but the

tests performed to evaluate them revealed that they are inefficient unless traffic belongs to the

Real Time class (with no shaping). These results contradict the apparent adequateness of the

proposed QoS solution for a multiservice network. The main reason for the bad performance

outside the real time traffic class is due to the AIMD (Additive Increase Multiplicative De-

crease) shaper. The shaper takes tens of seconds to increasethe non real time classes through-

put to the maximum, raising the delay and/or packet loss to unbearable levels. This problem

is aggravated for the TCP protocol (due to the slow start mechanism), and consequently TCP
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based services such as HTTP, which would not easily live under these conditions. These

results show that only priority traffic (e.g., voice) is ableto be usefully differentiated from

other best effort traffic, with a cost of a little percentage bandwidth.

Figure 3.10: Cumulative delay for the 64 kbits traffic profile

In the complete multiservice network, with auto-configuration, unicast routing, QoS

(only real-time traffic) and charging control active it is expected that the delay and jitter val-

ues would increase. In Table 3.9 and Table 3.10 the final results for the delay and jitter values

are presented. As can be seen, without security methods, thevalues are slightly increased

when compared with the ones using unicast routing, as a consequence of the packet pro-

cessing and inclusion of proofs (as discussed early, real-time QoS impact is negligible). In

addition, because PACP is implemented in user space, an additional context switch must be

performed, as packets flow between kernel and user space. PACPdirectly controls buffer-

ing and queuing mechanisms, hence, when no cryptographic authentication is used, PACP

control lead to more regulated traffic output, which slightly improves the performance of

the network under congestion. The 256 Kbps test for 5 hops (Table 3.9) leads to heavily

congested network (much larger than the available bandwidth), situation where PACP queue

management actually leads to an improvement of performance.

Using the security functionality of PACP causes a negative impact on the one-way

delay measured, significantly increasing it. For each packet that is sent into the network, it

will be signed once by the sender, and then the signature willbe verified in the receiver and in

all nodes that have forwarded it. The ECDSA (Elliptic Curve Digital Signature Algorithm)

signature is not expensive to produce (below 1ms), however the verification is. The test

performed in the testbed show that the signatures verification takes between 3 and 5 ms on
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Delay (ms) 64 Kbps 12 Kbps 256 Kbps

1 Hop 6.27 5.20 5.36
2 Hops 9.15 9.18 10.50
3 Hops 14.92 15.07 18.66
4 Hops 23.28 21.26 246.82
5 Hops 31.71 32.87 1106.62

Delay w/ECDSA (ms) 64 Kbps 128 Kbps 256 Kbps
1 Hop 10.08 10.09 11.16
2 Hops 18.20 18.24 18.39
3 Hops 26.74 27.00 33.37
4 Hops 35.77 35.48 592.29
5 Hops 53.62 67.15 1702.050

Table 3.9: Delay both with and without data authentication. Unicast routing, auto-configuration, QoS
real-time and charging are active

the used hosts. Notice that these values are valid using ECDSA163 bits, other key sizes will

change this processing time. In the used 5 hop scenario, a packet originated in the last node

with destination to the gateway will be verified 5 times and signed once, this gives a figure

for the minimum delay that a packet will suffer when using ECDSA between 20 and 25 ms.

The real value measured in the scenario is of 21.92 ms, which is according to the expected

value (computed by reducing the values obtained without ECDSA to the values obtained with

ECDSA for the five hop corresponding to the 64 Kbps traffic profile; see table 3.9)

Delay (ms) 64 Kbps 12 Kbps 256 Kbps

1 Hop 0.47 0.60 0.74
2 Hops 0.50 0.57 0.83
3 Hops 0.50 0.66 0.92
4 Hops 1.16 0.97 15.68
5 Hops 1.26 2.13 21.22

Delay w/ECDSA (ms) 64 Kbps 128 Kbps 256 Kbps
1 Hop 0.50 0.62 0.95
2 Hops 1.00 1.01 1.09
3 Hops 1.02 0.95 5.79
4 Hops 1.43 1.33 6.90
5 Hops 1.34 7.36 26.62

Table 3.10: Jitter both with and without data authentication. Unicast routing, auto-configuration, QoS
real-time and charging are active

Figures 3.10, 3.11 and 3.12 show the results for delay, jitter and overhead, structured

according to the incremental addition of modules, for some of the traffic profiles. The re-

maining traffic profiles show similar results and all considerations bellow are generally valid

for all the tests performed. The graphics show that the main delay source is the charging
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and rewarding mechanism, more specifically the secure authentication introduced. All other

services do not significantly impact the delay of the packetsin the network. The process-

ing weight introduced by MMARP for multicast routing and by the signature verification

of PACP significantly increases the variation of the delay achieved by the data packets, and

hence, considering jitter, it is concluded that both MMARP and PACP with ECDSA introduce

the higher penalties. The charging and rewarding services,including its security mechanisms,

are also mainly responsible for the increase in the overhead.

Figure 3.11: Cumulative jitter for the 256 kbits traffic profile

Figure 3.12: Cumulative overhead with the increase of functionalities

The inclusion of an ad hoc network in the operator environment requires that some

significant control information is introduced in the network to enable the ”revenue” from the
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ad hoc network deployment. However, the extra overhead introduced may be too much for

the gained services (auto-configuration, routing, QoS and secure charging and rewarding)

and therefore, the operator needs to balance these issues. The results may suggest that a

different charging and control mechanism should be researched for commercial networks.

3.7 Conclusion

In this chapter it was shown, by means of the experimental evaluation of a real test-bed, the

measured effects of introducing several functionalities of ad hoc networks serving as stubs

for multiservice networks. The results obtained, overlaying multiple ad hoc network func-

tionalities in a very simple scenario raise several concerns. For a start, the overall complexity

of the software to be deployed in the nodes, and the number of potential interactions, makes

the system quite prone to errors, and raises some interoperability concerns in a commercial

environment with multiple software providers. Another concern is the large behaviour vari-

ability, mostly when routes are changing and/or QoS mechanisms are trying to regulate the

network. In fact, during the test realization it was hard to obtain a stable, smooth behaviour

of the testbed. Complete restarts between the several runs ofa test were a very frequent prac-

tice. In addition, in small mobility scenarios, the effective usage of ad hoc networks seems

not to go further than a couple of hops, as already seen in studies focusing single features.

The incremental addition of functionalities showed the tradeoffs that an operator needs

to face when adding this kind of extra functions to its network, namely the impact that trust

and QoS have on network performance. Imposing trust in communications rapidly increase

the overhead in the network, and communications are throttled as soon as QoS regulation is

taking place. These results show that a carefully scenario analysis should be developed before

deploying ad hoc stubs in any multiple-service network: notall features will be effective in

complex environments.

Using ad hoc as stub networks, the so-called ”extended hotspot scenario”, introduces an

interesting concept and results show that the operators’ network coverage can be extended for

a few number of hops. This number may vary according to the mechanism that the operator

chooses to deploy, but will nevertheless be small if voice alike services are considered. A

full functional stub network can support all features presented before, and still be able to

maintain an acceptable performance with delays lower than the 50ms and jitters lower that

10ms for a maximum of two hops.
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Mobility Architecture for Ad hoc

Networks

In this chapter it will be introduced and discussed the problem of performing mobility be-

tween an ad hoc network and other kind of network (e.g. Infrastructure, UMTS, etc.). A

proposal for a solution will be described, and later analyzed. This proposed solution will be

developed as a stand alone testbed and also integrated in thelarger mobility testbed of the

IST DAIDALOS II [60] European project.

The Daidalos II project is a research project that is workingto define and validate the

network architecture of future mobile operators. A key requirement for these networks is the

support of ubiquitous access. Due to the current evolution of technologies it is the vision of

the Daidalos II project that, to provide this ubiquitous access, users will have to access to the

the services through a heterogeneous landscape of technologies, and through different types

of networks, including mobile ad hoc networks (MANET) and moving networks (NEMO).

Daidalos II is defining a network architecture to provide ubiquitous access integrating

heterogeneous access networks and providing seamless movement among them. The archi-

tecture will also support: mobility management splitting between local and global domains;

identity based mobility management solution, through the independent and general manage-

ments of identities; integration both MANET and NEMO in the mobility architecture; host

multihoming – the host owns multiple physical network interfaces and concurrently gets ac-

cess through them; integration of ubiquitous and pervasiveconcepts for customized services

to the users.

This chapter will address the support of MANETs integrationdeveloped under the
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framework of Daidalos II. The architecture to be proposed aims at seamlessly support nodes

moving from between infrastructure and ad hoc networks, maintaining its access to the Inter-

net with the same quality. For this purpose the MANET needs tosupport routing integration,

QoS support, security of routing and mobility with multihoming support. This chapter will

focus only in the mobility part of the overall architecture.

The remainder of the chapter is organized as follows. Section 4.1 will introduce the

problem of mobility in IP networks, along with the traditional solutions to solve the mobil-

ity problem. Section 4.2 describes the new approaches to solve the mobility problem. In

section 4.3 the Daidalos project general mobility architecture is introduced and described.

Section 4.5 will introduce the proposed solution for the MANET mobility architecture. Fi-

nally, section 4.6 will discuss the issues that the general architecture and its requirements

could bring to the MANET operation.

4.1 Mobility in IP networks

When the Internet was in its early days (70s and 80s), very few computers and users were

connected and using it. Additionally, in those times, computers were large, heavy and fixed

machines, with a well defined set of users, so security was nota big problem. Mobility was

also a problem not present at a time, so the developed protocols and solutions do not where

engineered to cope with it. A consequence of those early times is that TCP/IP protocol stack,

was made to work best with those conditions, resulting in a IPaddress with dual functionality:

localization and identification of the owner computer. It provides the localization because an

IP address represents the topological localization of the node inside the network, that is,

the path to be followed by packets from another computer to it. The identification function

refers to the fact that back then, an IP address was also associated with the same computer,

identifying it fully.

Time passes, and the internet evolves from an academic research network to a global

network of computers, with commercial interests. The number of computers connected to

the Internet have had an exponential grow, which implies also a grow of the number of

mistrusted users. Mobile communications began to rise (duealso to the appearance of several

wireless communication technologies), with a huge potential number of users and devices

always connected to the Internet. These developments in theinternet landscape began to raise

problems and concerns that do not existed in the days the internet was created. Assuming the

IP address of a computer represents its topological networklocation, and this specific node
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is in a mobility scenario, like changing its point of attachment or performing roaming, the

IP address must change. However, the address is also the identifier of the computer, so it

should not change. The solution to these problems represents a compromise between these

two contradictory concepts.

All the solutions that have been proposed to solve the problems mentioned above rely

on indirection to work. Indirection is a technique that adds an intermediate layer to perform

translation of one thing into the other. It is a technique widely used in the computer landscape,

and also in networking, being DNS (Domain Name System) its widest spread usage.

The normal usage of indirection for mobility consists in theseparation of the semantics

attributed to the IP address into two planes: one plane for identification and the other for

localization. The indirection mechanism then translates the identification of a node into its

localization. Mobility in IP networks is a topic with a broadresearch, hence several solutions

have emerged ([21], [41], [47], [6]). In the next sections two of the mentioned protocols

will be more detailed, since they both will be part of the Daidalos architecture. Then, new

mobility paradigms will be addressed, based on local mobility approaches. The IEEE 802.21

for media independent handovers is also briefly described.

4.1.1 Mobile IPv6

Mobile IPv6 [41] (MIPv6 for short) is based on Mobile IP [49] but takes advantages of the

features of IPv6 addresses. MIPv6 allows that any IPv6 capable mobile node can change its

point of attachment to the internet without requiring changes to the internet routing infras-

tructure, nor to other network entities, nor to the applications running in the mobile node.

Mobile IP introduces several new concepts. For a start, it introduces the concepts of Home

Link and Foreign Link. The Home Link is the link in where the MN’s home subnet prefix is

defined, e.g., the link in where the MN acquires its address; The Foreign Link or visited link,

is the link that the mobile node visits upon movement, it is any link other than the home link.

A consequence of using two different links is that MIPv6 utilizes two (at least) addresses per

MN: one, known as the Home Address (HoA) that is the address ofthe MN in the home link

and serves to identify the MN; the other address, known as Careof Address (CoA), that is

the topological correct address and is used to deliver packets to the MN.

The HoA is an unicast routable address and is permanent to themobile node, so that

the standard IP routing mechanism can deliver packets destined to a MN HoA to its home

link. The CoA is also an unicast routable address, and is attributed to a MN when this is
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visiting a foreign link. Also the node can have several CoAs, but only one is used at a given

time to send packets.

In order to properly function, MIPv6 introduces new networkfunctional entities:

• Mobile Node (MN): Any node that can change its point of attachment to the network,

without changing (and been reachable by) its home address.

• Home Agent (HA): A router belonging to the MN’s home link withwhich the MN has

registered its current care-of address. This router has also the responsibility of re-route

all packets destined to the MN’s HoA, to the MN’s registered CoA.

• Correspondent Node (CN): any host in the internet communicating with the MN. The

CN can also be a mobile node

• Access Router (AR): offers network connectivity and forwarding services to the MN

In figure 4.1 is represented an example network architecturefor mobile IPv6, showing

a MN, some CN, and the HA.

Figure 4.1: Mobile IPv6 example architecture

The basic functioning is as follows: When the mobile node reaches a foreign link, away

from its home, it acquires (using IPv6 standard mechanisms)one or more core-of addresses.

These care-of addresses have the network prefix (subnet prefix) of the foreign link, so as

long as the MN stays in this location, the packets addressed to this care-of address will be
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routed to the mobile node. After the mobile node gets its care-of address, it proceeds with

the registration process, in which the MN register the CoA in its home agent, that is located

in its home link. This operation will create in the HA a ”binding”, that is the association

between a HoA and a CoA. The mobile node performs this binding registration by means

of a ”Binding Update” message to the home agent. Upon reception of this message, the

home agent responds with a ”Binding Acknowledgment” message. After this simple message

exchange, a tunnel is created between the home agent and the mobile node. After this process

is completed, the MN is immediately reachable by its HoA, through the home agent.

The communication between the mobile node and the correspondent node can happen

in two different ways: using bidirectional tunneling or using ”route optimization”. Bidirec-

tional tunneling does not require MIPv6 support in the CN, since the packets to the CN are

naturally routed to the HA (home link) and then tunneled to the mobile node. Packets to

the CN are tunneled from the MN to the HA (”reverse tunneling”)and then routed normally

from the home network to the CN. This tunneling is performed using IPv6 encapsulation. To

perform Route Optimization, the CN needs to have support for MIPv6, and requires that the

MN registers its current binding at the CN, giving its currentlocation. Packets from the CN

can be routed directly to the CoA of the MN. The ability to routepackets directly to the MN

CoA allows that the shortest communication path between the MN and the CN to be used,

allowing also a reduction in the overhead of the MN’s home agent and home link.

Mobile IPv6 solves the mobility problem by using, and identifying the mobile node

with, two different address. One is used as the mobile node identifier and the other is the

mobile node locator. The indirection is then performed at the home agent, which translates

the identifier of the mobile node in its locator, or by the correspondent node itself when using

route optimization.

4.1.2 Host Identity Protocol

The Host Identity Protocol (HIP) [47] provides a method for the separation of the locator and

identifier role of the IP address, by means of the usage of a newcryptographic namespace,

based on public key cryptography. The new namespace is the Host Identity Namespace. A

name in this new namespace is the Host Identifier (HI), that isa statistically globally unique

name, used to name any system with an IP stack. A system can have multiple identities

(multiple HI), and some of them can be private and others public. In addition, a system may

self-assert its own identity or may use a third-party authenticator.
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The usage of the Host Identifier provides a very simple an straightforward way of

providing mobility and multihoming, since upper (transport) layers bind to the host identifier,

instead of binding to the IP address. The locators can then bechanged seamlessly, without

disrupting the ongoing communications. It is also possiblefor a single identity to have and

manage multiple locators.

HIP adds two main features to the internet protocols: the decoupling of the internet-

working and transport layers; and host authentication. Theseparation of the networking and

transport layers are provided thanks to the usage of the HostIdentifier by the transport pro-

tocols, as already explained. The host authentication is provided by the Host Identity, that is

composed by a pair of public and private keys. The public key is the Host Identifier (HI); the

host is only referred by this public component. The possession of the private key defines the

Identity itself, so if the private key is possessed by more than one node, the Identity is consid-

ered a distributed one. Host Identities are never used directly in internet protocols. Instead,

their public parts (Host Identifier) are distributed and stored in DNS and LDAP directories,

so that they can be used in the HIP Base Exchange.

The locator function in HIP is performed by the Host IdentityTag (HIT), or Local

Scope Identifier (LSI), so that the internet protocols can refer to the Host Identifier. A HIT

is a 128-bit representation of the HI, created using a cryptographic hash. The usage of the

HIT over the HI has two main advantages: its fixed length makesit easier for protocols

coding; and it presents the identity in a consistent format to the protocol, independent of the

cryptographic algorithm used. In the HIP packets, the HIT represents the sender and receiver

of the packets, so a HIT should be unique in the hole IP universe, during its life time. The LSI

is a 32 bit equivalent of the HIT, being also a representationof the HI. It has the purpose of

facilitating the usage of HIP in existing APIs and protocols, namely providing compatibility

with IPv4. The LSI advantage is its reduced size over the HIT,but its local scope, presents

its main disadvantage.

The indirection mechanism introduced, by means of the Host Identity, clearly performs

a separation between the location and identification function. The IP addresses, represented

by the HIT/LSI, continue to function as locators, at the sametime, the Host Identifiers serve

the purpose of identify a node or group of nodes. The support for end-host mobility and

multihoming comes naturally with the indirection mechanism introduced. The mechanism

provided by HIP permits that several IP can be linked together, making multiple IP addresses

correspond to the same Host Identity. When one address becomes unusable, or a more pre-

ferred address becomes available, the existing transport associations can be easily moved to
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another address. Address changes during on-going communications are straightforward. The

mobile node must send a HIP re-address packet to inform the peer of the new address(es),

and the peer must verify that the MN is reachable through these addresses.

To ensure that nodes are reachable during, and after mobility, dedicated mechanisms

are needed. HIP has a rendezvous mechanism that enables a mobile node to start a HIP

exchange with another peer [45]. The MN keeps the rendezvousserver continuously updated

about its current IP address(es). Upon a communication start, the initiator must send the first

HIP packet to the rendezvous server (whose address must be obtained from the DNS). The

rendezvous server then forwards the first packet to the correct address, allowing the HIP base

exchange to flow normally afterwards.

4.2 New mobility paradigms

In the previous section, the need to perform mobility was introduced and explained, as well

as the normal approaches to solve it. Both approaches presented follow the philosophy of

host controlled movement, with assistance from the network. These approaches are good

to perform mobility, but require the intervention of the mobile node every time movement

has taken place, which will have a negative impact on the network performance, mostly on

large networks. For example, mobile IP has well-known and widely studied deficiencies in

performance. These issues have been tackled by recent research teams, producing solutions

that favor the optimization of movement by exploiting theirlocal nature. The IETF NetLMM

Working Group [72] is one of the research groups currently studying the localized mobility

management paradigm, converging to achieve a standard protocol.

Another issue currently under research is the handover control. Both of the detailed

techniques in the previous section follow the philosophy ofhost controlled movement, com-

pletely managed by the mobile node. New solutions for detecting the need to handover, con-

trol the handover realization, and all other actions related to handover are being researched.

These approaches tend to completely revoke the mobile node control over the mobility func-

tions, letting the network take care of them, or split the mobility control and decision re-

sponsibility between the network and the mobile node. The IEEE 802.21 Media Independent

Handover [35] in-development standard is one of the solutions proposing that the network

can control the handover functions of the mobile node, amongother things. Next sections

address local mobility management protocols and IEEE 802.21 for media independent han-

dovers.
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4.2.1 Local Mobility Management

All Local Mobility Management protocols rely on the conceptof local and global domains.

The exact definition of local and global vary from protocol toprotocol or architecture to

architecture, mostly on the size of the local. The general purpose, however, is the same for

all protocols and architectures.

A global domain generally is considered to be the Internet. The concept of global

domain is used to express the situation when the global mobility protocol could no longer

work, and then the global mobility protocol (as MIPv6 or HIP)is required to perform the

mobility signaling. A local domain can be either an administrative region or a physical

region on the network. For example, a local domain can be the network zone formed by all

the access routers that use the same core router to reach the internet (see figure 4.2), making

all movements outside the scope of that router global. Another example for a local domain

can be an entire operator network (comprising several access routers and core routers).

Figure 4.2: Local mobility domain examples

Localized Mobility Management protocols are divided in Host Based protocols, where

the host takes care of the signaling, and Network Based protocols, where the terminal does

not require to perform any signaling since is the network that controls mobility.

4.2.1.1 Host Based Localized Mobility Management

Local Mobility Management is not new. The first proposals were host-based, leaving to the

host the task of controlling all the mobility signaling, making them aware of both local and

global signaling protocols. Between the most relevant previous protocols were Hierarchical

Mobile IP and Cellular IP.
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Hierarchical Mobile IP [53] for IPv6 (HMIPv6) introduces a new Mobile IPv6 node,

called the Mobility Anchor Point (MAP), that is used and located at any level in a hierar-

chical network of routes, including the Access Router. Traditional Mobile IPv6 requires that

the mobile node sends a Binding Update to all Correspondent Nodes to which is communi-

cating, and to the Home Agent, every time any movement is performed. Combined with the

authentication mechanism, MIPv6 tens to be very heavy on thenetwork and not very fast,

when there exist several peers and active communications. This issue is more serious when

using wireless links. The usage of the MAP will limit the number of Mobile IPv6 signaling

that travel outside the local domain, providing also a solution to the referred problems. The

mobile node will only send Binding Updates to the MAP (and not to the HA and CNs), and

only one Binding Update message needs to be transmitted before the MN can resume traffic

reception and transmission.

The MAP acts like a local Home Agent, enhancing in way the performance of MIPv6

while minimizing the impact on MIPv6 and other IPv6 protocols. The local domain is com-

posed by all the Access Routers that the MAP controls, making all handovers between that

set of MAPs optimized. Because HMIPv6 is a host based solution, it requires that the mo-

bile controls both the local and global mobility signaling.In addition, HMIPv6 introduces

another tunnel over the air, in case of wireless links, causing the data traffic to be inside two

tunnels. The first tunnel is the original MIPv6 tunnel between the MN and the CN or HA;

The second tunnel is established between the MN and the MAP.

Cellular IP (CIP) is a local mobility management protocol moreclose in its concepts

and operation to real cellular networks, like GSM, than to traditional IP networks. The mobil-

ity in the local domain is handled by CIP, and in the global domain by MIP. In the Cellular IP

architecture, a node called gateway is the node that provides connectivity of the local domain

to the internet, making it the edge router of the domain. Thisgateway periodically broadcast

its address to the local domain. When a MN enters the local domain, it listens these broadcast

messages and then registers itself on its HA and CN with the address of the gateway. Upon

registration of the MN, the CIP network, that can be composed of several routers (special

routers) and switches between the MN and the gateway, learnsthe address of the MN (the

HoA), creating a host route from the gateway towards the MN. This route is updated based

on the uplink traffic sent by the MN, or by special signaling messages. Each router learns

from the uplink traffic which is the next hop to which send the traffic destined to the MN. The

uplink traffic is forwarded hop-by-hop, towards the gateway, regardless of the destination.

Much like cellular networks, Cellular IP has power consumption saving mechanism.
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When a node does not send or receive traffic during a predetermined period of time, the MN

enters an IDLE state. Entering this IDLE state could cause the exact location of the node

to be inaccurate. It is up to the gateway to periodically broadcast paging messages in order

to regain knowledge of the IDLE nodes location, causing alsothe MN to enter an ACTIVE

state.

Cellular IP is a host based solution, since it requires the MN to explicitly register in

the gateway when it arrives to the local mobility domain. This procedure allows the node to

discover which CoA to register in its Home Agent and to the network to gain knowledge of

a new MN to which it has to construct routes.

4.2.1.2 Network Based Localized Mobility management

As referred in the introduction to this section, Network Based Localized Mobility Manage-

ment protocols, are a topic of current research, including also standardization effort in IETF.

The basic philosophy of network mobility management is the relocation of relevant mobility

management functions from the mobile node to the network.

The NetLMM (Network Localized Mobility Management) basic requirements and prob-

lem statement are already defined in the NetLMM WG of IETF by [43] and [44]. The adopted

approach requires that the network learns through standardterminal operation (such as router-

and neighbor discovery or by link-layer support) about the terminal movements inside the

local domain, so that it can coordinate routing state updates without any mobility specific

support from the terminal. Following this approach enablesthe support for hierarchical mo-

bility management, since the mobile node signals is location update to a global mobility

anchor point (such as a Home Agent) when it changes LMD and, inside the LMD, mobility

is supplied by the network to the terminal without any type ofterminal originated signaling.

The basic architecture of NetLMM is presented in Figure 4.3,where it can be observed

the entities involved in the protocol operation. The Local Mobility Anchor (LMA) is the

router that establishes the border between the local (NetLMM) domain and the global (core)

domain. The Mobility Access Gateway (MAG) is the Access Router for the MN. All inter-

mediate nodes between the MAG and LMA are NetLMM unaware, reducing this way the

signaling needed to maintain mobility information, and resource consumption and overhead.

The area between the LMAs and the MAGs is where NetLMM operates. For every

mobile node, a tunnel is created between the corresponding MAG/LMA pair. All traffic

destined to the MN is sent through the tunnel to the MAG, and then the MAG delivers it to
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Figure 4.3: NetLMM basic architecture

the MN. The upstream traffic follows the opposite procedure,the MAG receives the traffic

and sends it through the tunnel to the LMA, which sends it to its destination. These tunnels

are normal IPv6 in IPv6 tunnels.

When the MN moves from one MAG to another, the new MAG detects its presence

and signals the LMA. A new tunnel for the MN is established between the LMA and the new

MAG, and the old tunnel is removed. During this procedure theMN does not know of the

movement, maintaining its IPv6 address (CoA) whenever it is managed by the same LMA.

The basic operations described above are from the first NetLMM WG draft [27]. The

solution presently under discussion and development in theIETF is Proxy Mobile IPv6

(PMIPv6) [33]. PMIPv6 is a network based mobility management protocol based on MIPv6,

reusing some of its functionality, namely the Home Agent function. The operation of PMIPv6

is similar to the already defined, however some differences exist.

In PMIPv6, the Local Mobility Anchor (LMA) is the the home agent for the mobile

node in the PMIPv6 domain. It has all the functionality of a MIPv6 home agent, and also

the required extensions to support PMIPv6 operation. The MAG remains the same, but gains

additional functionality, the Proxy Mobile Agent (PMA). Its responsibility is to track the MN
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in its link, and perform the signaling with the LMA, on its behalf (proxying).

In a PMIPv6 domain, the network will ensure that the Mobile Node will always be in

its home network, ensuring also that the mobile node can always obtain its home address

on the access link, using any of the address configuration procedures. As the mobile node

perceives it, the entire PMIPv6 domain is its home link. PMIPv6 also establishes a tunnel

between the MAG and the LMA, so that traffic is properly routedto and from the mobile

node. Mobility is also handled in a similar way to what was already described.

Proxy Mobile IPv6 has some additional features. Each mobilenode has an identifier,

called MN-Identifier. This identifier is communicated to theLMA upon the MN’s authen-

tication in the network. Using this identifier the LMA can obtain the MN specific policies

recurring to a policy store, such as the Authentication, Authorization and Accounting (AAA)

infrastructure. This policy information is used to emulatethe MN’s home network on the

current access link. Every detail, since which address configuration method is used, to the

IPv4 support, is personalized recurring to the policy information.

The interaction between the MN and the MAG is performed recurring to standard IPv6

operations. These operations are of great importance to theproper operation of PMIPv6.

When a node enters a PMIPv6 domain, it will send a Router Solicitation message, containing

its MN-Identifier. The MAG will then send a Proxy Binding Update request to the LMA,

which will contact the policy infrastructure to obtain the MN’s related information. Next, the

LMA will send a Proxy Binding Update acknowledgment to the MAGindicating a proper

authentication and containing the Proxy Care-of Address. Upon receiving this message,

the MAG will respond to the MN with a Router Advertisement containing the MN Home

Network prefix and, at the same time, establish an IPv6-in-IPv6 tunnel with the LMA, so that

traffic for and from the MN can be properly routed. After this bootstrap operation, the node

can move freely in the PMIPv6 domain, which is presented to the MN as the same link. It

is up to the MAGs to detect the MN movement and update the stateof the LMA and other

MAGs so that traffic can always reach the MN.

4.2.2 IEEE 802.21 Media Independent Handover

The IEEE 802.21 Media Independent Handover standard [35] aims to establish a standard

that provides link layer intelligence and other related network information to upper layers in

order to optimize handovers between heterogeneous networks. This standard is still in devel-

opment inside the IEEE. The IEEE 802.21 standard currently considers the both wired and
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wireless IEEE 802 family of standards, Third Generation (3G) Partnership Project (3GPP)

and 3G Partnership Project 2 (3GPP2),

The main purpose of the IEEE 802.21 standard it to enhance theuser experience of

mobile devices by supporting handovers between heterogeneous networks. Handover support

is provided for both, mobile and stationary users. For the later, handovers may occur due to

several causes, most common causes are sudden change in wireless/radio conditions of the

mobile node; usage of applications that require a higher rate data channel; or also degradation

in a the network performance, that makes it less attractive in comparison to other neighboring

networks. In any case the service continuity has to be maximized during the handover.

Cooperative use of network information is also supported by the 802.21 standard. This

information is available at the mobile node and within the network infrastructure. In the

mobile node, since it is well positioned to detect the available surrounding networks. The

network infrastructure is used to store overall network information, such as neighborhood

cell list, location of mobile nodes and also higher layer service availability. The mobile

node and also the network points on attachment (base stations, access points) may also be

multimodal – support for multiple radio standards and support for simultaneous connections

on more than one radio standard.

The 802.21 standard consists on the following elements:

• A framework that enables seamless service continuity whilea mobile node switches

between heterogeneous link-layer technologies. This framework presents the Media

Independent Handover (MIH) reference models for differentlink layer technologies.

• A set of handover functions below the protocol stack of the network elements, provided

by a new entity called the MIH Function (MIHF). The MIHF provides the following

services:

– The Media Independent Event service that detect events and delivers triggers to

both local and remote interfaces.

– The Media Independent Command service that provides a seriesof commands to

for the MIH Users to control link states that are relevant to handover.

– The Media Independent Information service that provides the information model

for query and response, thus enabling more effective handover decision making

across heterogeneous networks.
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• A media independent handover Service Access Point (MIHSAP) and associated prim-

itives, to provide the MIHUsers with access to the services of the MIHF.

• The definition of new link-layer SAPs and associated primitives for each link-layer

technology. These new primitives will help the MIHF to collect the link information

and control link behavior during handovers.

Figure 4.4 shows the location of the MIHF within the mobilityprotocols stack on a MN

or network entity and the medium layers. In this picture it can be observed how the IEEE

802.21 standard can be media independent. As it is clearly visible, the upper layer protocols

only have to support one interface to interact will all the supported technologies.

Figure 4.4: MIH services and their initiation

The MIHF does not only interface with the lower layers of the equipment it is located,

but also with remote equipments in the network, recurring toL2 or L3 message exchanges.

In figure 4.5 there is the representation of the available SAPs in the IEEE 802.21 standard.

The IEEE 802.21 standard is not a replacement for upper layers mobility protocols

such as Mobile IPv6 or HIP (see section 4.1), but aims to help the work of these protocols.

In addition, current 802 family protocols do not support handover between different types

of networks, nor across different subnets. IEEE 802.21 willprovide traditional mobility

protocols with triggers and information useful to accelerate not only the handover execution,

but also the need to perform handover, all in a media independent way.
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Figure 4.5: MIH Function communication availability

4.3 General Mobility Architecture

The Daidalos [60] mobility architecture, in which the MANETmobility architecture fits and

bases on, is designed to cover the needs of the operators in the future. This architecture is

based on the currently ongoing work of the Standard Development Organizations, such as

the IETF, which split the mobility problem in local and global mobility. As explained in

the previous section, in this concept of mobility separation, the network is divided in several

local domains connected via a core network. Inside each local domain, protocols such as

PMIPv6 are used to handle mobility. The global mobility protocols are only used when the

node moves across local mobility domains.

Recurring to the mobility management split has several advantages. Local mobility do-

mains (LMD) are independent of global mobility domains (GMD), as a result local mobility

protocols (LMP) are also independent of global mobility protocols (GMP). A direct conse-

quence of this independence is that operators are free to chose their preferred LMP or even

skip its usage completely, leaving mobility management inside the LMD to the GMP. The

reduction of signaling gained both outside the local domain, as between the terminal and the

access network (over the air) is also a gained advantage. Another advantage is that a LMD

could be constituted only by a certain access technology, hiding from the rest of the network
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the specificities of that technology mobility management. This transparency helps the inte-

gration of technologies such as WiMAX (IEEE 802.16), 3GPP and also different types of

networks such as NEMO and MANET.

Figure 4.6 shows the general network architecture, with onecloud for each of the sepa-

rated technologies. As can be seen, the mobile terminals arecapable of perform multihoming,

and the network will provide support for it.

Figure 4.6: General network architecture

Mobility architecture was designed in order to provide the best service to the mobile

terminals, providing also service continuity for whateveraccess technology the terminals

use and for whatever technology change (handover) the terminal performs. However, there

are various types of terminals. Terminals with only global mobility protocol support and no

other enhanced mobility function will only be provided withtransparent mobility inside the

local domain, and can equally move between local domains using the GMP, but due to their

lack of extended functionalities, their handovers will notbe optimized, and therefore some

service interruption may occur. When terminals have the enhanced mobility functions, such

as support for IEEE 802.21 and local mobility protocol, support for seamless handover is

more straightforward.
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The enhanced mobility functions are a cross layer interfacederived from the IEEE

802.21 which will be present in non-legacy LMD. This functionality is provided both at the

terminal and at the network side, and provides the LMP with triggers and information such

as movement detection for proactive handovers.

The general mobility architecture was designed taking intoaccount the following re-

quirements:

• R1: Access Network Operators can implement their own mobilitysolution.

• R2: Minimize complexity in the terminal.

• R3: Efficient use of wireless resources.

• R4: Reduce signaling overhead in the network.

• R5: The solution must be security friendly.

• R6: Seamless handover support.

• R7: Multihoming support.

• R8: Scalability for routing.

• R9: Minimize network side notes modifications.

• R10: Support for heterogeneous networking.

• R11: The solution must be QoS friendly.

4.4 MANET support for General Mobility

In the next sections the problems and solutions related to the deployment of a MANET net-

work in the previous general architecture will be presented. The next section will outline the

main issues and problems faced during the development of thearchitecture. In the remaining

sections each issue will be explored in more detail.

4.4.1 Problem statement

The integration of the MANET on the Daidalos general architecture must comply with the

requirements established for the general architecture. The resulting MANET architecture has
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to be fully integrated in the general architecture, making MANET as transparent as possible

to the remaining architecture elements. The key idea is thatthe difference between a termi-

nal that supports infrastructure mode and a terminal that supports MANET will only be a

little more software, allowing an MN to handoff between infrastructure and MANET without

trouble.

The main issue faced is that, although a great deal of concernhas ben taken to develop

a mobility architecture that supports heterogeneous networks, the final result is still oriented

towards infrastructure-based terminals. The MANETs is theonly multihop technology been

integrated in the architecture, so it has to adapt to the others architectures requirements.

Mobile Ad hoc Networks will be integrated in the same local mobility domain as reg-

ular 802.11 infrastructure networks, forming a heterogeneous LMD. In the LMD, the Local

Mobility Protocol is network based, that means that no software or modules are required in

the regular infrastructure Mobile Node to support mobility. In MANET, all the ad hoc net-

work has to cooperate so that the MAG can know when a MN leaves the network and joins a

new one (performs handover), and so the necessary modules have to be created.

Terminals that have the enhanced mobility functionalities, rely on IEEE 802.21 to trig-

ger and signal the movement of nodes inside the network. Since 802.21 is designed to support

only infrastructured networks, the MANET will have to adaptin order to support and comply

with IEEE 802.21 standard (see section 4.4.3)

Before executing the (soft) handover, the MN has to acquire several information about

the available networks, in order to choose the best destination network available. Establishing

a parallel, in the infrastructure mobility solution no L3 (but QoS) information is considered

by the decision logic to determine the best handover destination. In MANET L2 information

is not sufficient to determine the best handover target, since the topology of the destination

ad hoc network has a direct impact on the achievable performance. The information about

topology (and related issues) will have to be obtained from the ad hoc L3 protocols. This

information is then fed to the decision logic so that the besthandover destination can be

calculated. Having this kind of extra information will alsoimprove the choice for the target

technologies of the handover. More details can be found in section 4.4.4.

After handover execution and handover targets selection, multihoming is the next prob-

lem that needs to be considered, with a solution contemplated in the final architecture. In the

Daidalos MANET, multihoming is different from the infrastructure solution: since a MANET

can have multiple gateways, the MN can distribute flows by them. This distribution of flows
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has to take into consideration topology characteristics ofthe network (i.e. the distance, in

hops, of such gateways). In addition, multihoming can be performed with only one gateway,

but recurring to multihop paths towards the only one gateway, which will add some extra

requirements to the multihoming management: multihoming will have to consider the ad hoc

metrics, such as number of hops to the gateway, to perform thebest traffic distribution.

The issues discussed above were the those that have most influence in the design of the

mobility architecture for the MANET. The remaining features (QoS, ad hoc routing) of the

architecture were adapted to the mobility driven solution.However, this remaining aspects

will not be discussed in detail, unless the mobility architecture has a negative impact on them.

4.4.2 Support for the Local Mobility Protocol

As stated in previous sections (section 4.2.1 and 4.3), the localized mobility management

concept envisions that the mobile node can run unchanged andlocal mobility operations are

performed by the network equipments. This requirement implies that it is the responsibility

of the network Access Routers (ARs) to detect the terminals attachment and detachment to

the access networks, in order to trigger the necessary mechanisms to perform the terminal’s

movement management.

In infrastructure networks, the movement detection (attachment/detachment) can easily

be done recurring to the standard mechanisms present in the IPv6 protocol stack (such as the

ICMPv6 neighbor solicitation and neighbor advertisement mechanism). However, in the

multihop environment provided by the MANETs this standard mechanism cannot be used,

and thus has to be replaced for either an explicit signaling performed by the mobile node, or

by the help of explicit signaling done by the terminal’s neighbors in the MANET.

Since the terminal has to perform explicit signaling upon handover to maintain QoS

reservation and to get the needed authorization to perform handover, the most reasonable

solution is that terminal also notifies the MANET Access Router (gateway, GW) every time

it performs an attachment. In this case, the local mobility protocol will be responsible for the

detachment at the old gateway.

In order to support the local mobility protocol operation ina transparent way, the pro-

posed solution has the following characteristics:

• When the node joins a new network (or finds a new gateway at the current network), it

has to register explicitly, in order to configure its addressand also to signal the GW of
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its arrival;

• The local mobility protocol in the core network will run unchanged, and thus, not know-

ing the difference between a MANET terminal and any other terminal;

• It is the local mobility protocol responsibility to notify the old access router of terminals

detachments, so that the network resources can be correctlymanaged.

The crucial part of the support for the local mobility protocol is that the mobile terminal

will have to directly signal the gateway during the address configuration phase, so that the

LMP engine at the access router can be correctly triggered. Altering the MN to support local

mobility is preferred over alter the local mobility management scheme in order to support

MANET.

4.4.3 IEEE 802.21 support in MANET

The IEEE 802.21 standard has not been developed with multihop networks as objective; with-

out adaptations, it will not work or be useful to ad hoc networks. The degree of integration

intended for the MANET network in the overall architecture implies that the mobile node will

not be used exclusive for MANET, instead the same terminal will be used to access regular

infrastructure networks, 3GPP networks, etc. possibly at the same time. This requirement

forbids strong alteration of the MIHF at the mobile node, since it is shared among all other

technologies. The solution is to adapt and hide the MANET to the IEEE 802.21 standard,

making it act like a regular single hop technology.

Another aspect that prevents the direct usage of the IEEE 802.21 standard in MANET

is the information transport. IEEE 802.21 supports remote users that can subscribe to events

that occur on the mobile node. In addition, the commands can travel through the network

from and into the mobile node. In the IEEE 802.11 subfamily oftechnologies, these messages

are transported as L2 messages (recurring to management frames) when in infrastructure

mode. This L2 transport is useful since the MN does not need tohave an IPv6 address to

communicate to the Access Router, which facilitates the communication exchange between

the mobile node and the access router, also, without the needto disrupt the upper layers.

However, L2 messages transport does not work in the MANET, since all the routing and

other basic services are only offered at L3 (i.e. IPv6) layers.

In order to make the less changes to the MIHF and to provide proper transport for

IEEE 802.21 messages, the best solution is to hide the MANET nature from the MIH. This
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is achieved by adding an extra layer between the MIH and the wireless driver. The MIH

layer will see 802.11 mode ad hoc as a different technology of802.11 mode infrastructure.

MANET is a L3-only technology, and it will be presented that way to the MIH layer. All

IEEE 802.21 messages that need to leave the mobile node in order to reach their destination

in the network, will be transported as payload of IP messages, and therefore correctly routed

by the normal ad hoc routing protocol in use.

For a full IEEE 802.21 standard integration in the target MANET there is still an issue

to be solved: internal mobile node link events. In normal operation all events perceived

by the 802.11 driver (access point found/lost, signal increase/decrease, etc.) are fed to the

MIHF recurring to linkevents. When in ad hoc mode, these events have no meaning to

the MIHF (e.g. a new AP can really be a new ad hoc neighbor detected). In addition, the

events are then fed to all MIH users that have subscribed to link status events. In a very

large network this behavior willspam the MIH Users with messages that have no practical

meaning. As discussed previously, the events that are relevant in the MANET are produced

due to L3 protocol operation, such as the ad hoc auto-configuration module and routing

protocols. These L3 events (e.g. a LinkDetected event when anew gateway is found five

hops away) are not possible to be produced by the drivers, so they have to be fed to the MIHF

by other means.

Figure 4.7: Simple MIH architecture in the Mobile Node

The proposed solution, basically sketched in figure 4.7, is to introduce a new entity

71



Chapter 4: Mobility Architecture for Ad hoc Networks

that operates between the 802.11 driver and the media independent function at the mobile

node. This entity will act as a wrapper (its name is MANET Wrapper), hiding the MANET

operations from the MIH, appearing to the MIH as a driver and to the driver as the MIH.

MANET Wrapper will also help presenting the MANET as new technology to the MIHF

and will also have an important function in the multihoming controlling logic. The MANET

controlling modules will be responsible for controlling the MANET Wrapper, and through it

send the important events to the MIHF.

Summarizing, the MANET Wrapper will be the central entity that will provide support

for IEEE 802.21 standard to the MANET and provide MANET support for the IEEE 802.21

standard. MANET will benefit since it will be integrated witha new technology that provides

mobility support in heterogeneous networks. This integration will make MANET one more

option for usage in large networks, along with traditional infrastructure networks. The IEEE

802.21 standard not be aware of the MANET issues (multihop links), and will only receive

from the MANET wrapper meaningful information, as if the node is connected directly to

the gateway.

4.4.4 Handover candidates discovery

Before performing any handover, it is needed to know where to perform the handover. The

handover target can be obtained in two ways: one it that the mobile node is informed by

some entity in the network, recurring, for instance, to the IEEE 802.21 Information Service;

the other method is an active scanning by the mobile node. Forthe first method to work, the

network has to know the exact location of the mobile node in relation to the network’s access

points, which is difficult to achieve in a ad hoc network. Using active scanning the MN will

only consider as handover targets the networks that it can reach, since they are the results

of the scanning. Scanning for surrounding networks are a better option for handover target

discovery.

The proposed candidate discovery process is divided in two phases: in one phase it is

performed an ordinary wireless scan, and in a second phase the scan results that correspond

to ad hoc networks are validated. The scanning performed in the first phase is the same

scanning procedure done to determine the handover candidates for the infrastructure mode.

This process returns a list of available networks; each entry on the list consists on a tuple

(ssid, channel, mode, etc) that holds the necessary information to choose the best PoA for

the handover destination in infrastructure mode. However,the information gathered is not
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sufficient to choose a good ad hoc PoA since it is required to know what kind of routing

protocol is the network running, to what operator belongs the network, if it is possible to

reach at least one gateway, and what is the (IPv6) address of the gateway. All this information

is gathered from the auto-configuration module.

During the validation process, for each ad hoc network, the terminal will have to as-

sociate to it and wait for the periodic auto-configuration message to arrive (it can also be

requested, which is recommended to reduce idle times). After receiving this message, the

terminal will extract the needed information so it can be handled by the decision logic. This

approach has some advantages. First, it is independent of the driver used: it can perform the

scanning and validation with whichever WIFI card the terminal has, and not only the ad hoc

one. Second, it will not require using a special (and possibly non compatible with legacy

nodes, and thus the 802.11 standard itself) ad hoc wifi driver.

The separation of the handover candidates discovery in these two phases also fits bet-

ter in the 802.21 architecture envisioned in the previous subsection (Section 4.4.3). The

MANET Wrapper (MW) (Figure 4.7) is extended to perform two tasks now: support for the

802.21 protocol in order to deliver the correct events to theMIH layer, and to coordinate

the validation phase of the Candidates discovery. There are still some issues to consider in

the candidate discovery scenario. This process will interfere with the normal communica-

tions the node is performing, if for the scanning purposes only one wireless card is used. To

circumvent this problem, the design of the final solution wasmade to not having for require-

ment any specific number of wireless cards; this way we can assure it will work in any given

scenario. If the MN only has one wireless card, all the phasesof the network scanning will

be performed in the physical card, and in consequence, some performance drawbacks will

have to be expected. In the case the ad hoc modules can have to their disposal two (or more)

wireless cards, then only one of them can be used to perform the scanning and management

tasks, and the other for the actual communications the node is carrying. This second ap-

proach may be absurd, but in the not so distant future there will be available wireless cards

that are multi-radio, and thus supplying all the needs established now. For the time being and

for demonstration purposes, a driver can be built in a way that it controls two physical cards

in order to deliver the functionality only present in the future hardware.
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4.4.5 Virtual identities and Virtual interfaces

In Daidalos architecture there are multiple identifiers used at different levels. Like in tradi-

tional IP networks, IP addresses are used (both Home Addressand Care-of Address), SIP

URIs are used in SIP applications, MAC addresses are used at L2, and different other iden-

tifiers are used in multiple system components. The Virtual Identity (VID) concept allows a

binding between all these different identifiers. The architecture will support identifier deriva-

tion schemes and identifiers management schemes, in order tomanage the new identifier

space created. Specifically, mappings between identifiers are essential for the cross-layer

internetworking of various systems components.

A simple, but yet general identifier model is proposed. It is used as a reference for

the design, specification and implementation of interactions between entities and modules

which are part of the MT and the overall network infrastructure. The model can be briefly

represented by a (1-n-m) notation, where ”1” denotes the VID, ”n” denotes the number of

terminals in use by the Virtual User and ”m” denotes the totalnumber of network interfaces

(NIC cards) configured in the terminal. This model permits that a single VID can be used in

multiples terminals, spanning to the various terminals’ configured interfaces. This aspect of

configured interfaces is an essential aspect. The usage of a terminal by a user does not imply

that all the interfaces will be used; it will depend on its profile and on the contracted network

access. Furthermore, multiple VIDs can be using the same terminal at a given time. In this

scenario each VID should be managed independently, due to privacy reasons. Figure 4.8

shows a representation of these concepts.

As represented in figure 4.8, the Virtual Interface Proxy (VIP) abstracts the terminal’

physical interfaces into Virtual Interfaces (VIF) and manages the binding between them. VIF

are usable on a per VID basis, that is, each VIF is bind to the corresponding VID for whom

it was created. The VIP also provides the Virtual MAC infrastructure, based on the VIF

paradigm, which enhances the user’s privacy at the Link Layer. This enhances privacy, since

the Virtual MAC (VMAC) paradigm emulates two different devices from the network’s point

of view. The VMAC will offer to each VIF a different MAC address. Combining the Virtual

Interfaces with the Virtual MAC implies the generation of a VMAC for each VIF.

The usage of Virtual MACs makes the identifier model (1-n-m) dynamic. For this new

dynamic model, a flexible binding is required. The binding between the identity and the

identifiers can happen at several levels. For example, usingtypical identifiers, binding can

occur in:
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Figure 4.8: Virtual Interfaces

1. A single user (physical person) is identified in the systemwith one or more VIDs. A

VID identifier is a permanent representation (is one-to-many relation; permanent).

2. A single MN, under the usage of a specific VID owner, is identified in the system with

a single Home Address (HoA). HoA is a permanent identifier (one-to-one relation;

permanent). Different MNs use different HoA. A MN is identified with the HoA and

it remains constant until deregistration with that MN. Thisbinding is managed at the

Home Agent level.

3. A single network interface (NIC) of a MN is identified with one or more topologically

correct care-of addresses (CoA). The CoA is transient, since it is designed to reflect the

current point of attachment to the network (one-to-many; transient). Different NICs

use different CoA. A single HoA can be associated by the systemto one or more CoAs.

This binding is managed at the mobility domain, during the Mobile IP registration

procedure of a given CoA.

4. Other identifiers are also used for network interfaces, such as, e.g. virtual link local

addresses. These are dynamically set by the MN according to the VID using it.

These binding or mapping between one identity and one identifier are managed at dif-

ferent levels and by different entities. Any change in the transient bindings must be con-

ducted under the control of the appropriate system component and then made available to all

authorized components that may need to use the binding.
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4.5 MANET Mobility Architecture

The solution for the MANET mobility architecture is presented next and is divided in the

mobile node and gateway architecture, where all the modulesthat need to be in place are

represented. The solution is also composed by the mobility signaling diagrams, that explains

how the mobility is executed and how the modules interact between them to perform the

handover.

4.5.1 Mobile Node and Gateway architecture

The MANET general architecture is divided in two main logic units, the Mobile node and

the Access Router or Gateway. These two functional entities are very similar in the way they

operate, but still they have significant differences. The Access Router contains the Local

Mobility Protocol, and thus is also the MAG; the Mobile Node contains the Virtual Interface

Proxy (VIP) for managing the virtual interfaces and providing support for the VID paradigm.

The MANET Modules have to be designed taking into account this little difference – Not

having the Virtual Interface Proxy in the AR.

4.5.1.1 Mobile Node Architecture

The mobile node architecture is represented in figure 4.9. This architecture is derived from

the Daidalos project main mobile node architecture.

For space limitations and to keep the diagram clean, figure 4.10 shows the contents of

the MT MANET MODULES box show in figure 4.9.

The modules that implement the basic mobile node functionalities are also present in

figure 4.9. The IEEE 802.21 MIH function and virtual interface proxy (VIP) are easily identi-

fiable. Also represented are the drivers and driver controllers (RALs) of other technologies, in

order to show that the MN belongs to heterogeneous environment. The MT MTC represents

the mobile terminal controller (MTC), an entity that controls the most sensible parts of the

MN management architecture. Inside MTC are the Virtual Identity Manager (VIDManager)

and the Intelligent Interface Selector (IIS). The MTC also interfaces with upper management

modules, such as User preferences modules, control modulesand context aware modules.

Combining the Upper layers management modules and the Virtual Identities information,

the IIS can chose the best interface that each traffic flow of the terminal should use. Also, IIS
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Figure 4.9: Mobile Node architecture

decides to where and when a certain flow or interface should perform handover. The modules

responsible for handling multihoming and global mobility management (MTMBC MIPv6)

are also represented

All the necessary modules to provide a proper multiservice ad hoc network, similar

to the one evaluated in Chapter 3 (but upgraded to the new architecture) are present in fig-

ure 4.10. The routing protocols AODV (MTAODV), OLSR (MT OLSR) and MMARP

(MT MMARP) are all connected to the Routing Manager (MTRM). RM is the module re-

sponsible for maintaining the ad hoc related routing tables(common to all routing protocols)

and also for control and select the correct routing protocolaccording to the VID preferences

and the current network. The auto-configuration module (MTMAGINFO) is the module re-

sponsible for providing the MANET with auto-configuration capabilities, also participating

in the process of handover candidates discovery, with the validation of the networks found.

In the right side of the picture are the QoS related modules. QoS is provided with the modi-

fied version of the SWAN protocol discussed in the previous Chapter 3 (section 3.1.4). The
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Figure 4.10: MANET mobile node modules in detail

only difference is that the wireless hardware used is QoS capable (IEEE 802.11e), making it

possible to implement the traffic queues in hardware rather than by a software daemon.

4.5.1.2 Gateway Architecture

The MANET gateway (GW) is a derivation of the infrastructure Access Router, the only

difference is the addition of the MANET modules. The MANET gateway is also the Access

Router of the ad hoc network and MAG. The ad hoc modules presentin the GW are the

same modules used in the mobile node, but without the need to support multiple identities.

In addition, the MANET Wrapper at the GW can be much simpler, because it does not need

to support multihoming, only functioning as a IEEE 802.21 wrapper. Figure 4.11 shows the

gateway architecture.

In the GW it is found the Local Mobility Protocol Engine (ARLMP Engine) and the

Load Balancing Module (ARLBM). The Access Router can also manage several networks

at the same time, thus the several drivers and drivers controllers shown in the architecture. It

is worth noticing the absence of the Virtual Interface Proxymodule in the AR simplifying its

operation.

The detailed architecture of the MANET modules at the gateway is present in fig-

ure 4.12. The differences between the gateway and the mobilenode are almost none, except

for the multicast routing modules, which, as explained in section 3.2.3 do not need especial

MANET modules, using regular multicast routing already present in the gateway.
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Figure 4.11: Gateway architecture

4.5.2 Mobility Execution and signaling

The general mobility architecture (see section 4.3) was designed to support all kinds of han-

dover. The handover can be defined by who initiates the handover, since both network ini-

tiated handover (NIHO) and mobile node initiated handover (MIHO) are supported. It also

can be differentiated by when the handover is triggered, if it is after the current link break-

age, making it a make-before-brake soft handover, of after the link breakage, occasioning a

break-before-make hard handover.

The handover process does not only differentiates by when itis prepared or by whom

starts the process, is is also differentiated by what is handed over. The general mobility

architecture and mobility process was designed to not only support traditional mobile node

handover from one access network to another, but also handover of flows from one interface

to another, when the MN is connected to several different networks at the same time. In

addition, since the mobile node supports the virtual identity paradigm (see section 4.4.5) that

makes each VID appear to network as one distinct and independent MN, all of the handover

types are supported inside one VID, independently of another. The only thing not supported,

by design, is the handover of flows between VID.

All these types and methods of handover gives to the architecture a good level of flex-

ibility regarding to node movement, hopefully giving the final user a great experience when
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Figure 4.12: Gateway MANET modules in detail

roaming between networks. The diagrams shown and describedin this section refer to a

MIHO in a make-before-brake situation.

4.5.2.1 Modules involved in MANET mobility

In a way or another all modules are involved in the handover process. However, only a part

of them are involved in the realization of handover or in the handover preparation. One of

the most important modules for this task is the MANET Wrapper,since is this module that

provides the necessary ”glue” allowing that a MANET node canparticipate in a IEEE 802.21

based network.

MANET Wrapper has 3 important tasks related to mobility preparation and execution:

• Performs an abstraction of the MANET to the MIH Function, presenting it as a new

technology, different of regular IEEE 802.11 but similar.

• Collects events (MIH Event Service) from the RALWLAN and Information from both

the auto-configuration module and the routing protocols. Itprocesses this information

and then produces events to the MIHF, that have relevance in the ad hoc context.

• Controls the process of handover candidates validation, coordinating the driver and

auto-configuration protocol.

To provide all these functionalities, the MANET Wrapper (MW) has interfaces to with

the Media Independent Function (MIHF), with the RAL 802.11 (RAL WLAN), the auto-
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configuration module (MAGINFO) and with the routing protocol manager (RM). From the

MIHF/VIP point of view, the MW acts like a RAL, since it implements the MIH-LINK-

SAP (MIH link Service Access Point). A MIH-LINK-SAP is also implemented towards the

RAL WLAN, making it appear like a real MIHF. This way the MW becomestransparent to

both the MIHF and the RAL. The interaction with the RM is only to control the behavior

of routing protocol during handover (activating and deactivating them) and also to enable

the routing protocols to contribute with relevant information that can help to detect networks

breaks of connectivity. From MAGINFO, the MW will obtain information about the available

MANETs and Gateways; information which includes the necessary metrics that characterize

the path to each available gateway.

4.5.2.2 Candidates discovery signaling

Before the handover execution, the MN will have to search for suitable candidates. This

search can happen whether the node is on ad hoc mode or not. Forexample, the node can

be using a 3GPP network and decides to scan all available interfaces for another (better,

cheaper, etc.) type of networks access, this will trigger anad-hoc network scan for handover

candidates.

After the MN has decided that it needs to scan for networks, the MIHF will receive a

command ordering a scan all interfaces and report results (MIH ScanRequest). The MIHF

will then issue a scan command (LinkScanRequest) for each available interface in the MN.

When the VIP forwards the request to the Ad hoc interface, the MANET Wrapper will in-

tercept the request an control the ad hoc scan from there on. First, it will order a standard

scan to the driver and receive the list of networks. Then, it will connect to each one of the

networks found and request the auto-configuration (MAGINFO) module to obtain more de-

tails about the network. When the auto-configuration module has obtained such details, it

transmits them to the MW, who will in turn generate a scan response message, providing not

only the standard information but also the ad hoc specific information too. These new results,

enriched with the ad hoc extra information will then be forwarded to the MIHF in response

the original scan request (MIHScan) by the intelligence in the mobile node (Intelligent In-

terface Selector – IIS). Figure 4.13 shows the internal mobile node messages for handover

candidates discovery described above.

After the IIS has received the results for all the scans requested, it can take decisions

about what interfaces should be used, and what flows should beassigned to each interface.
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Figure 4.13: Handover candidates discovery, simple MSC

4.5.2.3 Handover Signaling

The MANET was developed in order to fully integrate in the general mobility architecture

(see previous section). Therefore, it will use the same messages for mobility signaling pur-

poses. These messages are defined in the IEEE 802.21 MIH Standard. From the point of

view of the MANET there are only two situations of interest; the handover is from any other

technology with destination in the MANET, or the handover isstarted when the node is on the

MANET and moves to any other technology. Since the mobile node uses the MIHF, it is not

important from where the node comes, or goes, only the MIHF and the related technologies

have to know the details.

As stated above, the mobility signaling is performed recurring to the IEEE 802.21 mes-

sages. Figure 4.14 shows the external signaling between themobile node and the networks

elements during a handover from 802.11 WLAN to a MANET.

The Handover process can be separated in three phases: handover preparation, han-

dover execution and handover conclusion. The handover preparation phase starts when the

IIS sends the order to perform handover (from interface A to interface B) to the MIHF, which

will coordinate the rest of the handover process. The MN starts the process by communi-

cating to the core network its intentions to perform handover, using the Handover Initiate

message (HOInitiate.req). This message contains information about the MN, the destination

target for handover (destination AR), and QoS related information. The LMD (by means of

the LMA, the Policy Decision Point and Access Routers) analyses the handover request to
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Figure 4.14: Handover signaling

determine if the handover can be effectuated. In case the core and destination access network

have the necessary resources to accommodate the new terminal/session, the necessary net-

work resources are allocated and the MN receives a response indicating that it can perform

the handover (HOInititate.resp).

After proper authorization, the second phase of the handover process (execution phase)

begins. The MN sends a message to the network (HOCommit.req) to indicate it is perform-

ing handover and that the resources need to be committed (really reserved); after receiving

confirmation of the resources commitment (HOCommit.resp), the handoff to the new net-

work is performed. At this time the Ad Hoc interface must be bootstrapped and fully con-

figured. During the interface setup, the new AR (GW) detects the presence of the MN in its

access network and triggers the Local Mobility Protocol to update the new location of the

MN (LocationRegistration messages).

83



Chapter 4: Mobility Architecture for Ad hoc Networks

The third and final phase of the handover process is the conclusion phase. It is started

when the ad hoc interface finishes the bootstrap. The MN sendsa complete handover request

(HO CompleteResquest) to the network, so that all network elements involved in the han-

dover process can acknowledge a successful handover. During this process, the LMA also

de-registers the location of the MN still present on the old Access Router. The network re-

sponds with a complete handover confirmation to the MN, concluding that way the handover

process.

4.5.2.4 Internal Signaling during Handover

The signaling presented in the previous section is not the only relevant signaling occurring

during the handover process. The Mobile Node is composed by several different modules

(see section 4.5.1.1) that exchange messages internally inorder to coordinate the handover

process. Figure 4.15 shows the MSC of the internal signalingfor the same handover de-

scribed in the previous section (MIHO from infrastructure to ad-hoc).

Not long after the conclusion of ahandover candidate discovery the MTC provides

the IIS with the scan results, the IIS then decides to performa handover. The handover

starts when the IIS gives to the MTC the map of flows and interfaces for each VID; the MTC

compares with the current map and if there are differences, it initiates the handover to comply

with the new allocation map.

The MTC starts the signaling when it sends a HandoverInititateRequest to the MIHF,

which will then send to the Network. The MN then exchanges theother 802.21 messages

until the HandoverCommitResponse arrives to the MIHF from the network. At this time the

MIHF sends a SwitchRequest to the 802.11 driver controller (RAL) causing the L2 handoff

(change from managed mode to ad hoc mode). Until this point the messages exchanged are

common to all handovers performed by the MN and to all technologies supported.

After the 802.11 driver changes to ad hoc, the Manet Wrapper starts its operation.

First it activates the Auto-configuration module, which immediately requests to the network

an AH AUTOCONF message. The MW also starts the Routing protocol (AODV in this

case), so that multihop messages can be sent and correctly routed. Only when both the

Auto-configuration and routing protocol have acknowledge the activation, is the switch con-

firmation (SwitchtConfirm) forwarded by the MW to the MTC. By thistime the MN has

performed the handover and is ready to integrate in the network.

The final step, once again common to all handover processes (MIHO), is the conclusion
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of the handover, done by the MTC and MIHF with the exchange of the handover complete

(HandoverComplete Request and Response) messages with the network.

4.6 Issues in MANET Architecture

The mobility architecture described in the previous section allows the integration of MANET

in an architecture designed, primary, to support single hopaccess networks. One of the key

elements in the design that permits this seamless integration is the MANET Wrapper module.

The location of the MANET Wrapper, just above the 802.11 driver, permits that the MANET

appears as a regular, single hop network, to the Media Independent Handover function in the

terminal, while at the same time, enables the correct functioning of the MANET. However,

this solution only provides a clean integration with the IEEE 802.21 MIH standard.

Another key module in the architecture is the Virtual Interface Proxy (see 4.4.5), which

allows the virtualization of the mobile node physical interfaces. This module will then create

a set of interfaces for each VID, appearing as if each VID is a different and independent

mobile node.

This design of the MANET architecture, focused on the compatibility with the IEEE

802.21 MIH standard, with support for virtual identities and with support for multihoming

has some issues in normal ad hoc operation. These issues, andothers, will be discussed in

the next sections.

4.6.1 Multiple routing protocols

The architecture presented in section 4.5.1 has support fortwo routing protocols: AODV and

OLSR are present in both the gateway and the mobile node. The inclusion of two routing

protocols was performed to give the operators more choices regarding what routing protocol

to use according to the type of access network deployed. In addition, operators can implement

a mechanism that changes the routing protocol dynamically according to network conditions.

This scenario can lead to an access network that is running simultaneously both rout-

ing protocols (with one or more gateways), which is a situation that prevents the efficient

operation of the MANET. Consider the following scenario for abetter explanation of the

issue.
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An operator has one MANET access network in the LMD, and its gateway has the

two routing protocols running, in order to provide better compatibility. Currently in the

network are 6 nodes, arranged in a string topology. From the gateway to the 4th node, the

OLSR protocol is in use and the network operates properly. However, the 5th node, which

has just made roaming from another operator network, only can run AODV protocol, due to

policy restriction, for instance. In this situation, only the four nodes closest to the gateway

have service, although all the other nodes, except from node5 have OLSR available. This

scenario could be prevented if only one routing protocol is allowed for all nodes.

Another example, that proves inefficiency, is when in a network where the gateway

has the two routing protocols running, but where then nodes have only either of then. In

this scenario, instead of only one, more robust and cooperating network, there will be two

overlay networks, one running AODV and other running OLSR, that can only communicate

with each other through the gateway, even if the actual peersare link layer neighbors. In

addition, in this scenario, nodes can get easily get isolated after movement, when they reach

an area that does not have ’routing protocol coverage’.

The fact that the architecture is designed with support for both routing protocols, is not

synonym that all mobile nodes will have both. For instance, an operator can have different

service plans, and only the more expensive supports both protocols simultaneously, whether

other service plans support only routing protocol. Handover choices may also get affected,

since the target network can not have (at least close to the mobile node location) the routing

protocol needed to support the mobile node.

The cleanest way to solve these problems is to enforce all nodes to have both routing

protocols available regardless of the service plan, and also, only permit that only a routing

protocol is used per gateway. This simple measures will mitigate, if not prevent, the problems

presented.

4.6.2 Virtual interfaces

The implementation of the Virtual Identity paradigm is donethrough virtual interfaces. Each

VID active in the terminal will have a set of virtual interfaces, that map to real interfaces,

in the mobile node. The virtual interfaces of one VID are isolated from other VID virtual

interfaces, providing this way the desired privacy for all the VID running in the mobile node.

The virtual interfaces area also present for ad hoc mobile nodes, which may introduce

some problems. One of the problems relates to the routing protocol issues described in the
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previous section (4.6.1). Since a VID is defined by a set of rules and policies, even if the

node has both routing protocols available, a VID can only useone of them. This behavior

increases the routing protocols issues previously described.

Another problem created by the virtualization of interfaces is related the behavior of

the software responsible for implementing the routing protocol functionality. In the presence

of several virtual nodes (one for each active VID), the most natural solution is that each VID

has an instance of the routing protocol running. However, this solution is not optimal, since it

will create more network overhead for each mobile node (which will be seen as several nodes

by the network), and also, upon a routing protocol message reception, it is not clear to which

VID will be delivered. For example when the network is running AODV and a neighbor

sends a RREQ (Route Request) message, it is not clear which instance of the AODV software

running in the mobile node will respond (and possibly forward) to the request. However, two

routing protocols can be running at the same time, provided that one VID runs one (e.g

AODV) and other VID runs the other (e.g. OLSR). This scenario is possible but limits the

number of VID using the MANET to the number of available routing protocols. One routing

protocol can only be shared by more than one VID when the signaling messages’ reception

problem is solved.

Another possibility is that only one instance of the routingprotocol is running at each

time for all VIDs. This solution eliminates the ambiguity present if multiples instances are

running, but has other problems: for start, it will add more complexity to the software, since

it will have to manage several interfaces, each one with one different address; and it will need

that the routing protocol will be identity aware, bringing possible privacy issues.

The second option appears to be better, since it is more easy to implement software to

manage several interfaces than to cope with the ambiguity when receiving multiple messages.

The problems presented and exemplified here for the routing protocols exist also for

all other protocols. From auto-configuration to QoS, passing by multicast, all software will

suffer with this virtualization of interfaces.

4.6.3 Multiple gateways and multihoming

Multihoming at the Global Mobility Domain requires the extension of Mobile IPv6 so that

it supports multiple CoA registration. The registration is performed using Binding Update

messages either to the Home Agent or the Correspondent Node incase of routing optimiza-

tion. In order to handle distribution of flows based on policies, each flow has to be identified
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by a 5-uple (IP source address, IP destination address, source port, destination port and pro-

tocol type). This 5-uple is identified by a Flow ID (FID). FID have to be communicated to

the Home Agent or Correspondent Node. FID are then bound with CoAs. Using this scheme,

each time a packet arrives to the Home Agent marked with certain FID, the HA can chose

the right CoA as the destination. This extension support Mobile Nodes in a MANET with

multiple gateways (each gateway in a different LMD).

When the multiple gateways are present in the same LMD, multihoming has to be

executed at the Local Mobility Domain Level. In the same LMD,multihoming is offered in

a per-gateway basis, that is, for each gateway reachable by the mobile node, a new virtual

interface is created (for each VID). The multihoming aware module (MT LBM) will the be

responsible for taking advantage of the multihoming created.

In a network with two gateways, each VID will have, apart fromthe normal ad hoc

interface, one virtual interface for each gateway. Each of this virtual interface represents a

tunnel (IPv6-over-IPv6) created between the interface andthe gateway. When traffic is sent

through one of these interfaces, the MANET Wrapper will encapsulate it and send it directly

to the respective gateway, which de-encapsulates the traffic and sends it to its destination.

The presence of the interface, not bound to a tunnel, is required to provide better net-

work operation. In the first place, traffic addressed to localnodes (neighbors) do not need to

go through the gateway and then back to the destination mobile node. Also, this ’original’ in-

terface is useful so that traffic not needing multihoming features, can travel in the air without

the tunnel overhead.

Traffic reception is other issue present in multihoming at the LMD level. When a

node has two or more gateways available in the same LMD, the virtual interfaces created

for multihoming will all have the same Care-of Address. This situation brings the issue of

how a correspondent node sends traffic to the mobile node. To solve this issue the LMD has

to be multihoming aware. When a mobile node creates a virtual interface for multihoming,

it has to mark the traffic that uses the new interface with a flowidentifier (FID), and has to

communicate this FID to the gateway. The gateway then will communicate the FID, along

with the associated CoA and the gateway identifier to the LMA. The LMA will construct a

tree-way routing table, so that traffic coming to the local domain, destined to a certain CoA

and marked marked with one FID can be directed to the right gateway.
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4.7 Conclusion

In this chapter the traditional solutions for performing mobility in IP-based networks were

presented, along with the motivation for supporting mobility. New mobility paradigms, such

as the in development standard IEEE 802.21 Media Independent Handover and the Localized

Mobility Management concept being developed inside the IETF, were also presented and de-

scribed. The DAIDALOS general mobility architecture, which combines in a seamless way,

both traditional and new mobility management paradigms wasintroduced and explained.

This architecture integrates several different access technologies, making the network ubiq-

uitous to the user, and provides the ability for a node to handover from one access technology

to another in a seamless way.

After the proper technologies were introduced, the MANET adaptations needed to in-

tegrate in the general mobility architecture were introduced. THe underlining problems that

appear when a MANET is integrated with a network designed to support only single-hop

access technologies were identified. Then each of the presented problems were further ana-

lyzed and a solution presented. The presented solutions were developed with the objective of

maintaining the core network MANET unaware, which originated the MANET to be molded

and changed according to the requirements.

The final MANET architecture supports all the features of thegeneral architecture. a

MANET mobile node will be able to use the MANET in the same way as it uses infrastructure

networks, suffering only of a performance decrease. When a better network is found by the

mobile node, it can seamlessly handover to that better network (completely or partially).

Although the developed architecture is well integrated in the general architecture, there

are some issues that still need a proper solution. These issues were identified and a compro-

mise solution was presented for each one. Further research will be performed so that these

issues can have a solution more adequate to the desired functionality and not limiting the

functioning of the network.
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Figure 4.15: Handover, Internal mobile node signalling
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In general, self-organization in the context of networks isa very attractive concept. Network

solutions that can automatically configure and organize in order to provide the best solu-

tion and performance possible will be of much interest, not only for operators and service

providers, but also for regular users. The leading researchtowards these self-organized net-

works is the research performed in the various types of ad hocnetworks. Current proposals

for ad hoc networks already provide good solutions for individual problems, but there are

still work to do regarding integration of the various solutions.

The testbed presented in this thesis, and developed as a demonstrator for the integration

of mobile ad hoc networks as hotspot networks extensions, have proven that it can be possible

to integrate an ad hoc network, making it part of the infrastructure, and offering the full set

of services needed for a good integration. The tests were envisioned to be conducted in an

incremental way, by adding one functionality on top of another, previously evaluated func-

tionality, was easy to determine the functionalities that were introducing the most penalties

in the network operation.

The obtained results from the complete evaluation have shown that the resulting ad hoc

network has modest performance. The maximum throughput achieved is just a sample of the

networks performance. The obtained results shown that the available throughput decreases

almost by a factor of two, for every hop that is added to the network, thus, imposing a limit

in the number of hops that the network can have. The added protocol overhead, needed to

support the required services, may be too much for the gainedservices.

Assembling a testbed with so many different protocols, computers and other software

has also proven to be a complex task. In addition, the many interactions between the protocols
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makes the complete system very prone to errors and crashes. This experience showed that,

in order for an integrated solution to be resilient to all kinds of users and usage, the quality

of the software has to be very good.

The integrated testbed developed has almost all the pre-established requirements cov-

ered, except for user mobility from and to the ad hoc network.Therefore, there is still work

to be done regarding that problem. The developed tested was part of the phase one of the

DAIDALOS project. The second phase if this project, kickoffin January 2006, has inher-

ited the mobility problem. The overall mobility architecture of the DAIDALOS project was

updated and so it was the ad hoc architecture, in order to integrate whit the new mobility

architecture.

New protocols and paradigms were also included in the new architecture. Among then,

the IEEE 802.21 Media Independent Handover, and the network-based localized mobility

management are some of the most important. Localized mobility management is a good

added value to the network. It separates the mobility management in local and global domain,

promising to reduce handover times at the same time that reduces the network overhead

caused by the mobility support. The IEEE 802.21 protocol allows that the traditional mobility

protocols (such as mobile IP) do not have to know the specificsof each technology used

at the terminal. However, the inclusion of this protocol hasconditioned the design of the

architecture of the MANET in a way that the solution is completely integrated and dependent

of the presence of IEEE 802.21 in the network.

The mobility architecture developed allows the integration of MANET in an archi-

tecture designed, primary, to support single hop access networks. The introduction of the

MANET Wrapper, just above the 802.11 driver, permits that theMANET appears as a regu-

lar, single hop network, to the Media Independent Handover Function in the terminal, while

at the same time, permits that the MANET continues functioning normally. However, this

approach can have performance penalties in the response time to link breakage events.

The MANET Wrapper has also a key role in the way multihoming is handled at the

local mobility domain level. When a mobile node can reach morethan one gateway in the

same network, the MANET Wrapper is responsible, in conjunction with other modules in the

terminal, for the creation of the virtual interface for eachreachable gateway. The multihom-

ing aware modules in the mobile node will then use these new virtual interfaces to perform

the multihoming and load balancing.

This mobility architecture still contains some issues. Many things can cease to work
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properly if no care is taken during the implementation of thesolution. Among the most

problematic modules are the routing protocols. The supportfor two routing protocols in the

network increases the challenges in the ad hoc network architecture. Future developments

and research is still needed to clearly address these challenges.

The near-term future work consist in implementing a new testbed for the demonstration

of the newly engineered architecture. With this new testbedoperational, the tests performed

in the existing testbed should be repeated, so that both solutions can be compared, from the

point of view of the evolution achieved.

Long term future work will be focused on solving the issues presented in section 4.6.

Especially, the case of multiple virtual identities running the same routing protocol, without

causing problems in the message reception, will be one of thekey research topics. Related to

this issue is the possibility of two different routing protocols sharing the same interface. This

scenario will permit that an ad hoc network with only one gateway can have both routing

protocols active.
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