

 Universidade de Aveiro
2007

Departamento de Electrónica, Telecomunicações e
Informática

Eduardo Oliveira
Estanqueiro Rocha

Desenvolvimento de um módulo para identificação
de aplicações Internet e de uma interface para a
plataforma DTMS-P2P

Development of a module for identification of
Internet applications and of an interface for the
DTMS-P2P platform

 Universidade de Aveiro

2007
Departamento de Electrónica, Telecomunicações e
Informática

Eduardo Oliveira
Estanqueiro Rocha

Desenvolvimento de um módulo para identificação
de aplicações Internet e de uma interface para a
plataforma DTMS-P2P

Development of a module for identification of
Internet applications and of an interface for the
DTMS-P2P platform

 dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações, realizada sob a orientação científica do
Doutor Paulo Salvador, Professor Auxiliar convidado e do Doutor António
Nogueira, Professor Auxiliar, ambos do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro.

Dedico este trabalho aos meus pais e irmão por todo o seu incansável e
incondicional apoio e por me guiarem sempre na direcção correcta.

o júri

presidente Prof. Dr. José Luís Guimarães Oliveira
Professor Associado da Universidade de Aveiro

 Prof. Dr. Joel José Puga Coelho Rodrigues
Professor Auxiliar da Universidade da Beira Interior

 Prof. Dr. Paulo Jorge Salvador Serra Ferreira
Professor Auxiliar Convidado da Universidade de Aveiro

 Prof. Dr. António Manuel Duarte Nogueira
Professor Auxiliar da Universidade de Aveiro

agradecimentos

I’d like to begin by expressing my most sincere gratitude to Doutor Rui Valadas
and to my supervisors, Doutor Paulo Salvador and Doutor António Nogueira for
the great opportunity they gave me. Also for their immense and incredible
support, assistance and for their inspiring minds and suggestions, which have
always challenged me to cross new barriers and improve myself.
With great joy and pride, I would like to thank the Institute of
Telecommunications – Aveiro University Polo, for their great support. Also, to
all the great friends I made in this Institute.
I would also like to express my gratitude to all my friends, who I have met in
Portugal and in other countries, for all their support, joy, understanding,
adventures and great moments. A very particular bow of gratitude goes to my
parents and brother, without whom and without their support and
encouragement I would not have completed any of the challenges that I have
proposed to myself. It is such a huge debt that it will never be able to
compensate it. A special gratitude expression goes to Pedro Braumann, Miguel
Pinheiro, Hélder Veiga, Maria Coelho, Joana Margarida, Ana Rita. Finnally, to
the most recent surprise in my life and for bringing so many good things to it:
Conni Rinn.
This work was part of the project POSC/EIA/60061/2004 “Internet Traffic
Measurements, Modelling and Statistical Analysis”, funded by Fundação para a
Ciência e Tecnologia, Portugal.

palavras-chave

Análise de portos, análise estatística, análise de payload, plataforma
distribuída, interface gráfico

resumo

Nos últimos anos tem-se registrado um enorme crescimento no número e
variedade de aplicações IP. De entre estes numerosos protocolos, há alguns
cujas características é importante estudar para conhecer o seu comportamento
na rede. Por isso, conseguir efectuar uma exacta correspondência entre
tráfego e aplicações reveste-se de grande importância num enorme número de
tarefas relacionadas com a gestão de redes e de medições. Estas podem
incluir engenharia de tráfego, diferenciação de serviços, monitorização de
desempenho e segurança. Várias metodologias têm sido usadas e testadas. A
metodologia baseada na análise dos portos utilizados tem-se tornado
progressivamente ineficaz pois muitas destas novas aplicações usam portos
que não são standard ou são utilizados por outros protocolos.
Consequentemente, têm sido utilizados novos métodos para identificar estas
aplicações, consistindo nomeadamente na análise das características
estatísticas ou na análise do campo de dados dos pacotes. A primeira
aproximação apresenta, no entanto, algumas limitações em fornecer a exacta
identificação dos diferentes tipos de tráfego IP. Portanto, uma análise mais
precisa exige a inspecção do payload dos pacotes. Esta dissertação propõe
um módulo de software baseado nesta técnica. Este módulo pode funcionar de
forma autónoma ou ser inserido numa plataforma de monitorização de tráfego
com uma arquitectura peer-to-peer. Tirando partido da arquitectura distribuída
da plataforma de monitorização, o módulo de identificação de tráfego poderá
ainda melhorar o seu desempenho.
A segunda parte desta dissertação propõe a implementação de uma Interface
de Programação de Aplicações (API) para estabelecer a comunicação com a
plataforma de monitorização de tráfego. Pretende-se que diferentes módulos
consigam, deste modo, executar os diversos comandos na plataforma
recorrendo à API para estabelecer a comunicação.
Esta dissertação termina com a proposta de um interface gráfico para a
mencionada plataforma como um meio de teste da API implementada. Deste
modo, criou-se por um interface intuitivo que permite a execução das várias
medições possíveis recorrendo à API para comunicar com a plataforma de
medição. Também se pretende substituir o uso da linha de comandos,
permitindo um uso mais simplificado dos vários comandos que o sistema de
monitorização permite. O interface também fornece mensagens de erro para
indicar ao utilizador como executar os comandos correctamente. O interface e
a API foram desenvolvido na linguagem Java de modo a permitir uma maior
portabilidade para outras plataformas computacionais.

keywords

Port-based analysis, statistical analysis, payload analysis, ddistributed
measurement tool, graphical interface

abstract

In the last years we have witnessed a major increase in the number and variety
of IP applications. There are some applications whose characteristics are
important to study in order to gain a complete knowledge about their behavior
in the network. Therefore, an accurate mapping of traffic to applications is of a
noticeable importance in a wide range of network management and
measurement tasks. These can include traffic engineering, service
differentiation, performance/failure monitoring and security. Several
approaches have been used. Port-based identification approaches have
become inaccurate as many of these emerging applications use non-standard
or ephemeral ports or use ports associated to other applications. Thus, new
methodologies have been used to identify these applications: analysis based
on the traffic statistical properties and analysis based on packet payload
inspection. The first approach also presents several severe limitations in
providing an exact identification of the different types of traffic. Therefore a
more exact identification demands the examination of the user’s payload. This
thesis proposes an identification software module based on the payload
analysis approach to complete traffic classification. This module will be inserted
in a monitoring network system with a peer-to-peer architecture (although it can
also be used autonomously) and will take advantage of this distributed
architecture.
The second part of this thesis provides the implementation of an Application
Programming Interface (API) to establish the communication with the traffic
monitoring platform. It is intended to allow different modules to execute the
various commands in the platform through the use of the API for the
establishment of the communication.
This dissertation concludes with the proposal of a graphical interface to the
peer-to-peer monitoring system as a means for testing the implemented API.
Therefore, an intuitive interface was created which allows the execution of the
various commands based on the API for the establishment of the
communication with the platform. This interface is also intended to replace
command line interfaces, allowing for a more intuitive, simpler, faster and more
straightforward deployment of all facilities provided by the monitoring system. It
also provides feedback messages that will show how to execute these
commands in a correct way. The interface and the API are developed in the
Java language to provide more portability to other computational platforms.

i

LIST OF FIGURES... III

LIST OF TABLES ... V

1 INTRODUCTION...1

1.1 Identification of Internet applications ...1

1.2 Application Programming Interface and Graphical Interface of the DTMS-
P2P platform ..4

1.3 Structure of the dissertation ..4

2 STATE OF THE ART...7

2.1 Identification of Internet Applications ..7

2.2 Graphical Interfaces...10

3 THE DISTRIBUTED TRAFFIC MONITORING SYSTEM.............13

3.1 System Elements...13

3.2 Measurement Commands ..15

3.3 Types of measured data ...15

3.4 Data Retrieval...16

4 MODULE FOR IDENTIFICATION OF INTERNET APPLICATIONS
 17

4.1 Tool Implementation ..17
4.1.1 Methodology Overview ..18
4.1.2 Parsing the rules ...23
4.1.3 Configuring the capture ..24
4.1.4 Capturing and storing the packet...25
4.1.5 Classifying the flows ..28

4.2 Results...31

4.3 Conclusions...35

5 API IMPLEMENTATION..37

ii

5.1 Introduction..37

5.2 API Functionalities...38
5.2.1 Change of the status of the client ..38
5.2.2 Visualization and changing of the client’s settings ..39
5.2.3 Command execution functionality ..39
5.2.4 Search and retrieval of results file ...41
5.2.5 Listing of files of the client or of a node..43

5.3 Conclusions...43

6 GRAPHICAL INTERFACE OF THE DTMS-P2P TOOL45

6.1 The rules of user interface design ..45

6.2 Graphical Interface ..46
6.2.1 Interface presentation..49

6.3 Conclusion ..68

7 FINAL REMARKS ...69

APPENDIX I – API METHODS..71

APPENDIX 2 – INTERFACE METHODS...83

BIBLIOGRAPHY..95

iii

List of figures

Figure 1 - Hierarchical relationship between the system elements14

Figure 2 - File of signatures and related parameters..24

Figure 3 - Capture parameters ..25

Figure 4 - Flow diagram of the capture process ..28

Figure 5 - Flow diagram of the classification procedure ...30

Figure 6 - Flow diagram of the classification process ...31

Figure 7 - Hierarchy of the API and the calling application ..37

Figure 8 - Use Cases diagram...38

Figure 9 - Flow diagram of the method value_changed()..42

Figure 10 – Communication Hierarchy ..47

Figure 11 - Main Frame of the interface ...49

Figure 12 - Block diagram of the interface’s tabs ...50

Figure 13 - Block diagram of the Menu bar..51

Figure 14 - Message box indicating that the client has been disconnected from the network

...52

Figure 15 - Window showing the various client parameters..53

Figure 16 - Selection of the node to execute a command ..54

Figure 17 - List of restrictions associated to the ping command..55

Figure 18 - Message indicating that the node does not support the command55

Figure 19 - Message indicating the conclusion of the download of the results file57

Figure 20 - Message illustrating the usage of the command..57

Figure 21 - Selection of the type of search to perform ..58

Figure 22 - Table presenting the search results ...59

iv

Figure 23 - Message indicating that the client has already downloaded the file.................59

Figure 24 - List of files the client owns. ...59

Figure 25 - List of files of a node ...61

Figure 26 - Frame showing the network representation ..62

Figure 27 - Flow diagram of the process of the XML file ...64

Figure 28 - Flow diagram of the procedure for the representation of the network66

Figure 29 - Representation of a network with various elements connected67

Figure 30 - Representation of a second network with fewer elements connected67

v

List of Tables

Table 1 - Characteristic signatures of the different protocols ..23

Table 2 - Dimension of the captured traces...31

Table 3 - Classification results obtained ...32

Table 4 - Statistical information about correctly classified flows......................................33

Table 5 - Statistical information about misclassified or unclassified flows........................33

Table 6 - Number of packets needed to classify flows ..35

vi

Chapter I - Introduction

Page 1 of 98

1 Introduction

The emergence of new protocols raised the need for an exact study of the

characteristics of these new kinds of traffic. New methodologies were created to identify

these applications, since the previously used techniques (namely port-based analysis,

which was the most used one) became no longer accurate: statistical analysis of the

properties of the generated flows and inspection of the packets payloads. This thesis

presents a module for identification of Internet traffic based on packet payload inspection,

since we believe this technique presents some advantages over statistical analysis. Section

1.1 will present an introduction to all the above mentioned methodologies, along with an

explanation of their advantages and disadvantages.

The identification module will be integrated in a measurement network with a peer-

to-peer architecture (called DTMS-P2P platform: Distributed Traffic Monitoring System

with a Peer-to-Peer architecture) that is being developed at our research group

[Salvador2005], [Veiga2007], [IT2007].

The second part of the dissertation consisted on the development of an Application

Programming Interface (API) for the DTMS-P2P platform that is intended to allow

multiple modules to interact with the mentioned platform. As a means for testing this

implementation, a graphical interface was created which uses the mentioned API to

communicate with the monitoring system. This interface was also proposed for replacing

the command line interface. It is also intended to represent an intuitive and simple interface

that can perform all the different measurement tasks the platform is able to execute in a

faster and more intuitive way. The interface will also display general messages in order to

advise the user on how to execute each chosen command in the most appropriate way.

1.1 Identification of Internet applications

Over the last few years we have witnessed a major increase in the number and

variety of Internet applications. From a set of few and known protocols, we have evolved

to a very large number of unknown applications and unidentified traffic. Therefore, an

exact analysis and identification of Internet traffic is essential to acquire a precise

knowledge of these emerging applications and is also vital to several network related

activities, such as security and Quality of Service provision. Traffic studies can be also

Chapter I - Introduction

Page 2 of 98

very useful to Internet service providers that can use the obtained results to supply better

service levels to their costumers and propose new tariffing plans. Besides, some

applications are bandwidth-expensive and can lead to congestion problems that will result

in unsatisfied clients. Therefore, ISPs and enterprises must have the possibility to block or

provide less bandwidth to a certain type of traffic. Knowing which applications are

generating traffic and occupying bandwidth and other network resources is of inestimable

interest for network administrators that can use such information to plan network

resources. From a social point of view, this study can also identify new emerging

applications, mainly peer-to-peer and multimedia streaming applications, and communities

of users.

All the above mentioned tasks require the ability to perform exact traffic

classification. However, there are some obstacles to overcome: some packet headers don’t

include enough information to enable an exact classification and some applications use

arbitrary ports and encryption. Several approaches have been proposed to deal with these

difficulties, like for example port-based analysis, statistical and payload analysis. Each one

of these techniques has its own advantages and disadvantages.

On an early-stage, classification was based on the ports to which packets were sent

to or received from. It is known that some applications use only reserved and well-known

ports to communicate: for example, HTTP uses port 80 and DNS uses port 53. Having this

knowledge in mind, the technique was based on the examination of packet headers,

specially the communicating ports. The next step consisted on associating the traffic of a

determined port to a certain application. However, this process can lead to traffic

misclassification and has proved itself to be untrustworthy because nowadays many

emerging applications, such as peer-to-peer protocols, voice or video transmission over IP

networks, use ephemeral ports. Besides, applications may try to disguise themselves by

using ports that are usually associated to other applications in order to bypass proxies or

firewalls. Thus, nowadays we cannot say that a specific port is associated only with traffic

generated by a certain application.

A second technique was used to overcome the barriers imposed by port based

classification: the study of the statistical properties of each traffic flow. This technique is

based on the fact that different applications generate different traffic patterns. For example,

a HTTP browsing generally does not generate as much traffic as a FTP file transfer.

Chapter I - Introduction

Page 3 of 98

Moreover, applications may also be distinguished based on the traffic direction. As an

example, FTP data traffic is only in one direction, while instant messaging applications

generate traffic in both directions. As this technique is more accurate, it has also its own

disadvantages: it is able to identify the type of application that generated the traffic but not

the exact application/client. Classification can also be erroneous due to applications that

possess similar statistical properties.

The last approach is payload analysis. This technique consists on the analysis of the

packet’s payload and is based on the fact that many applications use particular signatures

in their packets. These signatures distinguish each protocol from the others. Thus,

analysing the packet payload and finding these characteristic strings can lead to a very

precise identification. This method, like all previously mentioned methods, has its

associated disadvantages: access to user’s payload can be very difficult due to privacy and

legal issues and some protocols use traffic encryption, making payload analysis useless. An

additional barrier is the lack of reliable and available protocol specifications for all those

non-standardized and still evolving protocols. Besides, there are several client

implementations for the same protocol and some of them do not follow the specifications

stated in the officially available documents.

This thesis will present a module for Internet traffic identification using payload

inspection. Our methodology involved the investigation of available and reliable

documentation about the different protocols in order to identify their particular

characteristics and behaviour and the examination of several packet traces in order to

confirm the obtained information or discover new relevant information. The main

requirements for this approach to be efficient are:

• The used signatures must be accurate and lead to a low misclassification rate;

• Low overhead, in order to allow for a quick search in real-time captures;

• Allow identification in the first packets.

The proposed module was presented in the MCSIS Conference 2007 [Rocha2007].

Chapter I - Introduction

Page 4 of 98

1.2 Application Programming Interface and Graphical
Interface of the DTMS-P2P platform

The second part of this thesis proposes an Application Programming Interface

(API) for the DTMS-P2P platform and a graphical interface to the mentioned peer-to-peer

measurement network.

The API was implemented to provide a means for communication with the DTMS-

P2P platform. Therefore, modules which may need to interact with the mentioned platform

can use the mentioned API to achieve it.

The graphical interface was implemented as a means for testing the API as it will

send the necessary messages to the platform in order to accomplish a task a user ordered to

the interface. The graphical interface was also triggered by an urgent need to create a

simplified and intuitive interaction framework between the user and the network.

Therefore, we believe this interface constitutes a valuable resource and greatly improves

the capability of the DTMS-P2P network.

Several functionalities are envisaged for the interface. It must show the user the

DTMS-P2P network elements that are connected to the network. The interface must also

allow the execution of the several monitoring actions in any of the system probes and the

immediate retrieval of the measurement data files. A second functionality of this interface

is to allow the search of measurement data files that are stored in the system in a

distributed way, present them to the user in a suitable way manner and, again, allow the

download of the selected file(s). The interface must also display the files the client has

already downloaded. Moreover, changing the client settings and the operations of

connecting and disconnecting from the network should also be enabled and configured

through this interface.

 As a part of the interface, a graphical representation of the network is also

presented. The different monitoring network elements are represented along with the

connections between them.

1.3 Structure of the dissertation

This dissertation is organized as follows: Chapter 2 presents the state of art on

traffic identification tools and graphical user interfaces, which are the two main modules

that have been developed in this Master thesis; Chapter 3 presents some concepts related to

Chapter I - Introduction

Page 5 of 98

the DTMS-P2P platform; Chapter 4 shows the details of the implementation of the

identification module and presents the main results obtained; Chapter 5 introduces the

implemented API and its several methods; Chapter 6 presents the graphical interface of the

DTMS-P2P network, showing its different possibilities of interaction with the user and,

finally, Chapter 7 presents the most relevant conclusions of the developed work.

Chapter II – State of the art

Page 7 of 98

2 State of the Art

This section presents the state of the art regarding traffic identification tools and

graphical user interfaces, which were the two main objectives for this thesis. Basically, we

will list, for each one of these topics, the most recent studies that were made and the

alternatives that could have been used for the implementation of the modules.

2.1 Identification of Internet Applications

A lot of studies have been made in the area of Internet traffic identification,

proposing new methodologies and evaluating their comparative accuracy. In this section,

we enumerate the most significant studies and, at the same time, have tried to understand

the advantages, drawbacks and limitations of each identification approach.

As mentioned above, port-based approach is no longer a secure and reliable

identification method because well-known ports are not associated to a specific application

anymore and modern applications use random ports. A study conducted by Madhukar A.

and Williamson C. [Madhukar2006] tried to confirm that this technique is no longer a

reliable one, by comparing it with other identification methods. Their work used datasets

from the University of Calgary campus network. Based on the port analysis methodology,

the unknown traffic percentage was 40-65% of the total traffic. This study also showed that

unknown traffic was more evident at night periods, which might suggest that this traffic

belongs to P2P applications. On a similar study, Sen et al [Sen2004] refer that the default

port of the Kazaa protocol accounted for only 30% of the total traffic while the remaining

traffic was sent on ephemeral ports. They also proved the above mentioned reasons for this

trend. Another study conduced by Dewes C. et al. [Dewes2003], that analysed Internet chat

systems, evidenced that using a port identification methodology it is impossible to

distinguish HTTP traffic from traffic created by chat applications running on top of the

same protocol. Therefore, a new methodology must be used.

The statistical method provides better results, although it has also raised some new

important questions. Karagiannis T. et al. [Karagiannis2004a] developed a technique to

identify P2P flows based on the connection patterns. Although P2P applications may use

random ports or payload encryption, their traffic patterns will not change, and this

constitutes the main advantage of this technique. The classification method presented by

Chapter II – State of the art

Page 8 of 98

Karagiannis T. et al. was based on two steps. The first one consisted on the identification

of source-destination IP pairs which simultaneously used TCP and UDP protocols and on

the determination of their associated ports. If the used ports were not well-known ports,

then the flows were considered as P2P. The second step was based on the structural

patterns of the transport-layer between nodes. Generally, for P2P traffic the number of

ports used by a host corresponds to the number of connected IP hosts. The results achieved

were very accurate and also provided the identification of unknown P2P protocols.

Although this method is able to identify P2P traffic, its main disadvantage relies on its

incapacity to identify a particular P2P protocol, which is a significant drawback. Madhukar

A. and Williamson C. [Madhukar2006] have also conducted a study using this technique.

Unlike the work by Karagiannis T. et al., their dataset did not contain any UDP traffic and

the TCP traffic only contained the TCP SYN, FIN and RST headers to provide connection-

level information patterns. Their methodology started by removing traffic of known non-

P2P applications. After this removal step, all traffic that used known P2P ports was

considered as P2P flows. Then, the number of distinct IP addresses communicating was

calculated; if it corresponded to the number of ports for each {IP, port} pair, then the {IP,

port} pair was classified as P2P. Their results were promising, however, as they claim, no

proof of the correct classification was made as they did not have any packet payload. New

limitations appeared in this work: port masquerading would not be detected as the

approach used a list of standard ports for filtering purposes. This heuristic is also

ineffective in the case of one IP host that is communicating with another IP host using only

one port. Many applications use this connection pattern. On one of their studies,

Karagiannis T. et al. [Karagiannis2005] presented a different approach to achieve traffic

classification. Their study was based on identifying traffic patterns of host behaviour at the

transport layer. They analyzed these characteristics at three levels: the social, the functional

and the application level. At the first level, the behaviour of a host was captured by

studying its interactions with other hosts. At the functional level, they studied the

behaviour of a host based on its role in the network, which consisted of analysing if it acts

as a provider or a consumer. At the functional level, hosts were examined based on the

transport layer interactions on specific ports. Therefore, hosts were associated with

applications. With this methodology, they suggested that observing the activity of a host

provides more information and can evidence the type of applications the host is running.

Chapter II – State of the art

Page 9 of 98

The results were very precise in classifying the majority of the captured traffic. However,

their work also suffered from the above explained limitations.

Using the statistical properties, it is also possible to distinguish traffic through the

use of clustering techniques. Erman J. et al. [Erman2006] use two unsupervised algorithms,

K-Means and DBSCAN to perform classification. These algorithms use unlabelled data

and group data into clusters based on similarity of behavior. The results indicate that these

algorithms are a useful technique for classification. Despite the ability of grouping traffic,

this method has to rely on other techniques to label the clusters.

Statistical study of traffic patterns can also include the use of Machine Learned

classifiers. Zuev D. and Moore A. [Zuev2005] used the supervised Naive Bayes technique

as a traffic discriminator. The results were generally good, although they were not as

accurate as desirable in some cases. McGregor A. et al [McGregor2004] used machine

learning techniques to create clusters for traffic classification. The results achieved

provided accurate clusters to classify traffic. On the other hand, Bernaille L. et al.

[Bernaille] used unsupervised clustering, as it relies on unlabeled data samples. They

believe that unsupervised clustering is more appropriate as it does not rely on pre-defined

classes. This is an advantage, since a single application can have multiple behaviours that

should be separated. The results were also very accurate, although some new limitations

appeared: traffic with the same statistical behaviour is classified as belonging to the same

application, which is not always true; besides, traffic with unknown behaviour is not

classified. Using unsupervised clustering methods, Zander S. et al. [Zander2005] proposed

an approach to identify an optimal set of flow attributes. The results were also accurate.

A similar study conducted by Haffner P. et al [Haffner2005] used three linear

classifiers: Naïve Bayes models, Maxent and AdaBoost. All these algorithms were used

due to their learning process scalability and their different and efficient implementations.

These classifiers were used to construct signatures that can be used for online

classification. The three classifiers were able to achieve low error rates, with almost 99%

of correctly classified flows.

Regarding the QoS monitoring and intrusion detection areas many tools were

introduced. Cisco’s NBAR (Network-Based Application Recognition) [Cisco2007]

provides application recognition by using port recognition and packet header information

to distinguish traffic. IDSs (Intrusion Detection Systems) are equipped with application

Chapter II – State of the art

Page 10 of 98

recognition modules that operate on a signature recognition basis through the use of

payload analysis.

Based on the same methodology, Karagiannis T. et al [Karagiannis2004b] have

recently developed a study to identify P2P traffic. Their analysis was only based on

examining the user’s payload and the results were very precise. On the first mentioned

work, Karagiannis T. et al also used payload analysis as a comparative technique to their

statistical approach and the results obtained proved that this technique achieves better

results although showing also some disadvantages. The accuracy of the results was

measured by the occurrence of false positives and false negatives. False positives relate to

traffic misclassified as P2P, while false negatives refer to P2P traffic that the identifier

failed to classify. Their results had less than 5% of false positives and false negatives,

proving this to be the most correct way of identifying traffic. On a similar study, Haffner et

al. [Haffner2005] developed a technique that is able to automatically determine

applications signatures and the obtained results showed an error rate less than 1%. Sen S.

et al [Sen2004] used on their work application signatures to identify traffic. The obtained

results were also impressive and proved that this technique is the most promising one to

use. Another study that can be mentioned was the study by Dewes C. [Dewes2003], which

consisted on the identification of Internet chat protocols, such as IRC and Messenger. The

technique used was payload analysis and it missed less than 8.3% of all existing chat

connections. A. Moore and K. Papagiannaki [Moore2005] have also used this technique to

identify traffic and the results obtained were also very accurate.

2.2 Graphical Interfaces

Graphical interfaces can be implemented in several programming languages. In the

following lines we will be presented some of these languages.

 GTK+ is a multi-platform toolkit used for the creation of graphical user interfaces.

It offers a set of widgets which are suitable for complete application suites. It is based on

three libraries:

• Glib: it is the low-level core library that forms the basis of GTK+ and GNOME.

It provides data structure handling for C, portability wrappers, and interfaces

for several runtime functionalities.

Chapter II – State of the art

Page 11 of 98

• Pango is a library for layout and rendering of text, with an emphasis on

internationalization.

• The ATK library provides a set of interfaces for accessibility. Through it an

application or toolkit can be used with such tools as screen readers, magnifiers,

and alternative input devices.

GTK+ has been designed to support a range of languages, not only C/C++. Using

GTK+ from languages such as Perl and Python provides an effective method of rapid

application development.

Glade is a user interface-building program. It is used to rapidly prototype GTK+

and GNOME applications. It allows an application author to dynamically add, remove, and

modify widgets and their layout. The interfaces designed are stored in XML format which

allows an easy integration with external tools.

Interfaces can also be implemented using wxWidgets, which is a C++ framework

providing GUI facilities on several platforms. The advantage of its platform-independent

class library cannot be overstated, since GUI application development is very time-

consuming, and sustained popularity of particular GUIs cannot be guaranteed. An interface

can become obsolete if it addresses the wrong platform or audience. wxWidgets helps to

insulate the programmer from these changes. Although wxWidgets may not be suitable for

every application, it provides access to most of the functionalities a GUI program normally

requires and also to network programming, PostScript output, and HTML rendering. It

provides a far cleaner and easier programming interface than the native APIs.

Using Java programming language, the Abstract Window Toolkit (AWT) can be

chosen to create an interface. It is the Java original platform-independent graphics toolkit

and is also part of the Java Foundation Classes (JFC), which is the standard API for

providing a GUI. The AWT provides the connection between the developed application

and the native GUI It offers several layout managers and the interface to input devices. As

its components depend on the native counterparts, AWT components are called

heavyweight components. This dependence brings platform specific limitations.

The Standard Widget Toolkit (SWT) is a toolkit maintained by the Eclipse

Foundation. SWT's implementation has more in common with the heavyweight

components of AWT. This confers benefits such as more fidelity with the underlying

native windowing toolkit but it causes an increased exposure to the native platform in the

Chapter II – State of the art

Page 12 of 98

programming model. SWT is relatively simpler than Swing, which an alternative to the

mentioned toolkits. This has led some people to state that SWT lacks functionality when

compared to Swing. As its components are also heavyweight, SWT suffers from the same

portability limitation of AWT.

Using Java, Swing appears as another alternative. Swing widgets provide more

sophisticated GUI components than the Abstract Window Toolkit. It supports pluggable

look and feel, which means that any supported look and feel on any platform can be

shown. Swing is platform independent in both implementation and expression (Java). It

allows the custom implementation of framework interfaces through which users can

override the default implementations. Swing is a component-based framework and its

objects asynchronously fire events and respond to a well known set of commands specific

to the component. Swing can also respond at runtime to fundamental changes in its

settings. However, its components rely on AWT containers and are often described as

lightweight because they do not require allocation of native resources in the operating

system's windowing toolkit. Much of the Swing API is a complementary extension of the

AWT rather than a direct replacement. In fact, every Swing lightweight interface exists in

an AWT heavyweight component.

 As the DTMS-P2P tool was implemented in Java, this language was chosen for the

accomplishment of the interface because some of the resources and classes of the DTMS-

P2P platform need to be used for a correct interaction between the interface and the

network. For all its advantages, Swing was chosen for this implementation.

Chapter III - The Distributed Traffic Monitoring System

Page 13 of 98

3 The Distributed Traffic Monitoring System

The Distributed Traffic Monitoring System with a Peer-to-Peer Architecture

(DTMS-P2P) is a versatile, scalable and easily manageable traffic monitoring system based

on a P2P hierarchical architecture [Salvador2005]. This system can be used to perform

both active and passive measurements. Given that the monitoring elements may have

different computational resources (e.g. processing capabilities, storage space or network

connections) and the availability of those resources may vary drastically over time, the

DTMS-P2P tool was implemented with a totally distributed hierarchical architecture

similar to Gnutella 0.6. The adoption of a P2P architecture allows high tolerance to failures

and distributed storage of measured data. This architecture is also advantageous for traffic

monitoring in wide area network environments. Moreover, access and querying of

measured data can be performed using traditional P2P file sharing schemes.

3.1 System Elements

The system consists of two main entities: the probe and the client. The probe

performs the measurements and stores the results. The client is the interface between the

monitoring system and the user. It is used to configure the system (e.g. configure the mode

of the probes, request the list of probes in a measurement group, etc), configure the

measurements and retrieve the measured data. Probes can run multiple software modules

and are responsible for their integration in the P2P platform.

To improve the system scalability, probes are organized in groups and each group

is responsible for monitoring a particular network area. Within a group, one or more

probes, called super-probes, are responsible for controlling other probes and

communicating with other groups. The super-probe element has the same definition of the

Ultra-peer element of the Gnutella network. The super-probes are probes with enough

available resources (CPU usage, free memory, storage capacity, etc) that can be used to

control other probes. A monitoring element can alternate between both modes of operation

in order to adjust to different network conditions and resources availability. These

elements can run tests measurements. Figure 1 represents the hierarchical relationship

between the system elements.

Chapter III - The Distributed Traffic Monitoring System

Page 14 of 98

Figure 1 - Hierarchical relationship between the system elements

Groups are identified through the use of a unique ID called Group ID. This value is

assigned to each node before it is initiated.

All network elements (probe, super-probe or client) must keep a list of known

nodes (probes and super-probes) in the network. This list is used in the connection setup,

when a node is trying to connect to the network. Before starting an element, the network

administrator must provide it with this list of node addresses. For example, this list can be

supplied through a file (node cache file).

The system should guarantee connection to any node connected to the network. The

probes keep only one connection active, the connection to a super-probe of its

measurement group. All super-probes should be interconnected. A super-probe acts as a

proxy to the monitored network for the probes that are connected to it. This configuration

guarantees scalability of the network by reducing the number of network nodes that are

involved in message handling and routing, as well as reducing the actual traffic among

them.

A client can connect to any super-probe of any group to obtain information of the

entire monitored network. This information can be used to configure measurements at any

probe and to retrieve their results. Thus, access to the monitoring system is completely

distributed. Besides, a client can connect to a probe to obtain the address of a super-probe

to which it should connect. The addition of a new probe to the monitoring system should

be transparent: the probe connects to a super-probe and is automatically integrated on the

network.

The DTMS-P2P system should support any monitoring system. When running a

node, the network administrator must specify which monitoring systems the node will

Chapter III - The Distributed Traffic Monitoring System

Page 15 of 98

support and with which restrictions. Different monitoring systems may have different

restrictions regarding their running mode or ports.

Nodes must store the results of all scheduled measurements in a file (heavy data

file). Thus, for each configured measurement session there is a heavy data file with the

measurement results. These files are stored at the node that created them and are possibly

replicated at other nodes (super-probes included). The replication improves the system

reliability, since data can be retrieved even if the node that made the measurements

becomes inactive or inaccessible. The search and retrieval methodologies for measured

data that is stored at the nodes are similar to the ones used in P2P file sharing applications.

3.2 Measurement Commands

The DTMS-P2P system is used to configure and execute, at any element of its

network, any monitoring command. These modules must be installed at the remote node

and will be used to perform the measurements.

 In this network, the client is the interface to configure the measurement modules

installed at the nodes. Through it, a user can choose the module he wants to use and which

measurement should be done. Also, the client must illustrate to the user how to configure

the command. To achieve this, the client requests to the remote node the restrictions of the

command.

3.3 Types of measured data

In the network there are two types of measured data files: light data and heavy data

files. The first one stores the system parameters (nodes addresses) and statistics (round trip

time - RTT) related to each group. This file is generated periodically by each super-probe

and is broadcasted to all super-probes of the network. The file comprises the RTT statistics

between a super-probe and all the other elements of its measurement group and all the

other measurement groups connected to it. As the file only contains the RTT statistics, it

provides a coarse view of the network. Any client connected to a measurement group can

request the file to its super-probe.

The heavy data file stores the results of all measurements and can include packet or

flow information, and various statistics related to the command. Therefore, for each

configured command there will be a heavy data file with its results. The file is stored at the

Chapter III - The Distributed Traffic Monitoring System

Page 16 of 98

node which generated it and can be replicated at other nodes of the same measurement

group or other measurement groups. This replication improves the system’s scalability as

the heavy data file can be downloaded even if the node which generated it becomes

inactive or inaccessible. A download can also be more efficient if it is simultaneously

made from multiple sources that store the file.

3.4 Data Retrieval

A user running a client element is able to retrieve the results of previously

configured test measurements. A user is also able to get the results of previously performed

test sessions that are shared between any elements of the DTMS-P2P network. To gain

access to these results the user must perform a search in the network to discover where

they are stored.

To perform a search a client must first send a request to its super-probe. This super-

probe will then broadcast the received message to all super-probes connected to it, in the

case of a global search. Any super-probe receiving this request must forward the message

to all nodes they are connected to. In the case of a local search, which is only performed on

the node’s measurement group, the super-probe sends the request to all connected nodes.

In both cases, the nodes sharing files which satisfy the search criteria must answer to the

request. After receiving the responses to the search command, the client presents the

results to the user and then he can choose which files to download.

Chapter IV - Module for Identification of Internet Applications

Page 17 of 98

4 Module for identification of Internet Application s

This chapter presents and explains the implemented module for capturing and

identifying traffic using the payload analysis method. This technique was adopted as we

believe it is the most accurate methodology. The developed tool attempts to identify traffic

only through payload analysis, does not look at the used ports and also does not pay any

attention to the statistical properties of the captured flows. With this methodology, we can

reach very accurate results.

The identification tool relies on a database of characteristic signatures that will

permit the identification of the various protocols. It also allows users to write their own

rules for traffic detection, which makes it adaptable to new emerging protocols.

The proposed methodology has some advantages over the others, such as:

• It can identify applications that use ephemeral ports or try to disguise

themselves through the use of reserved ports;

• It allows the identification of flows with similar characteristics;

• It permits the identification of the client that generates the traffic;

• It identifies traffic based only on the first packets of the flow.

An important advantage of this tool is its scalability, as there is no limit for the

traffic identification capability as new rules can be easily added, thus adapting to new

protocols. The rules are written in a simple format, with a set of parameters that are vital

for the payload inspection: the rules enable inspection within a chosen range of the payload

and also allow for the search of characteristic strings in hexadecimal format.

The tool is intended to identify all kinds of traffic, provided that the corresponding

rules are available. It was not designed to identify a restricted set of protocols, but all

applications a user may wish to identify. The developed module can also be incorporated at

any probe of a totally distributed monitoring platform that is being developed at our

research centre.

4.1 Tool Implementation

The implementation of the classifier involved many phases. The first is the rules’

processing which are passed to the program in a file. The second phase is the session

Chapter IV - Module for Identification of Internet Applications

Page 18 of 98

configuration, which consists in processing some parameters selected by the user (these

parameters will be described later). The next phase comprises the initialization of all

structures that are needed to capture packets and the initialization of the capture itself. The

next stage is the classification of flows, which is based on the pre-established rules. This

sub-section will provide an overview of the methodology and the subsequent explanation

of all the phases.

4.1.1 Methodology Overview

The proposed tool captures traffic and groups it into flows using the five-tuple:

Source IP Address, Source Port, Destination IP Address, Destination Port and Higher-layer

Protocol. Flows are saved into a hash table for later analysis. This hash table will contain

several informations about the flows:

• number of packets;

• minimum, average and maximum packet size;

• minimum, average and maximum packet inter-arrival time;

• source and destination IP addresses;

• source and destination ports.

The inter-arrival time is defined as the period of time elapsed between the sending

of two consecutive packets in the same direction. However, these values will not be used

for flow classification.

The classification process is implemented during the capture. The identification of

the underlying protocol and application is achieved through the use of a database of

distinctive strings that are passed through a list of rules. This list is created when the

program begins. These are the characteristic strings related to a protocol, which are usually

carried in the beginning of the payload and distinguishes it from all the others. As an

example, most Gnutella packets carry in their payload the string “Gnutella”, differentiating

undoubtedly this protocol from all others. This fact compelled us to investigate a set of

protocols and applications in order to determine each particular digital signature. A series

of applications were chosen, followed by a study of their characteristic traffic. Payload

inspection was done and some signatures were determined. In the following paragraphs

some of the studied protocols will be enumerated.

Chapter IV - Module for Identification of Internet Applications

Page 19 of 98

• MSN Messenger

The MSN Messenger network is an instant messaging network created by

Microsoft and is one of the most used messaging services [MSN2007]. A client must first

connect to the server to the get access to the network. A series of packets are sent to

perform registration. After gaining access, the client is able to communicate with other

connected clients. After capturing and studying the traffic generated by this protocol, some

of the identified strings were: “VER”, “CON”,” NLN”, “BYE”, “XFR”, “FLN”, “USR”,

“JOI”, “CAL”, “MSG” and “PNG”.

• Yahoo Messenger

This protocol is used by the Yahoo Messenger instant messaging clients. The

messages of this protocol always begin with the protocol name, “YMSG”. However, if the

application is placed behind a firewall or a proxy server, HTTP routes are used and,

consequently, we will have HTTP requests and responses instead of messages with a string

in the payload. These known requests are used for uploading messages from the client and

for downloading all messages which have been stored in the server. In this case, the client

stays connected until it fails to send a request for a certain period of time. The

identification of this protocol relies on these operational features.

• ICQ/OSCAR

This protocol is used in the instant messaging program with the same name

[OSCAR2007]. ICQ uses the FLAP protocol to facilitate datagram-oriented

communication between clients and servers. The identification of this protocol can be done

when a client sends an “HTTP GET” message to the ICQ's proxy. This message carries the

“login.icq.com” string in the payload, allowing its detection. Besides, flows are identified

through the FLAP ID byte, which takes the value 0x2a and is always placed at the

beginning of the payload.

• RFB

The RFB (Remote Frame Buffer) Protocol is used for remote access to graphical

interfaces [Richardson2006]. Connections in this protocol begin with a handshaking

between both elements in an attempt to agree in the protocol version to use. It starts with

the server sending the highest version it supports, to which the client replies with the

version that should be used. The packets exchanged in this phase have, in their payload, the

string “RFB xxx.yyy\n”, where xxx and yyy are the major and minor version numbers.

Chapter IV - Module for Identification of Internet Applications

Page 20 of 98

• SQL

The SQL (Structured Query Language) Protocol is used for database management

systems communication that takes place between a server and a client. The messages used

for identification are “SELECT DATABASES” and “SHOW DATABASES”.

• SIP

SIP (Session Initiation Protocol) is an application-layer signalling protocol for

creating, modifying and terminating multimedia sessions over an IP network [SIP2007].

SIP packets carry, in their payload, some strings that can be used for identification

purposes: “OPTIONS”, “REGISTER” and “SIP”.

• H.323

This is a standard protocol for multimedia communications that was designed to

support real-time transfer of audio and video data over packet networks, like IP [IEC2007]

[Javvin2007]. The standard involves several different protocols covering specific aspects

of Internet telephony: H.225 RAS is intended to provide registration and authentication

services between clients and gatekeepers (entities that are responsible for managing a

group of terminals and gateways); H.225 call control is used for establishing and

configuring connections between endpoints and creates a reliable TCP channel for

multimedia sessions; H.245 provides end-to-end control messages between endpoints.

Both H.225 and H.245 have, in their payload, a field called Protocol Identifier that will be

used for identification.

• HTTP

Hypertext Transfer Protocol (HTTP) is the network protocol used to transfer

information on the World Wide Web (WWW). It is based on a client-server architecture

and follows a request-response model. The “HTTP/1.1 200 OK” message was the only one

used for identification because, as we will see later, many applications use HTTP

messages. So, our methodology first analyzes all HTTP-like messages in order to verify if

they belong to any application different from HTTP; if this is not the case, the flow is

classified as web browsing.

• NetBIOS

NetBIOS protocol allows applications running on different computers to

communicate with each other. Detection of this protocol is based on the NameQuery field

Chapter IV - Module for Identification of Internet Applications

Page 21 of 98

of the UDP packets. This field is located on the third byte of the payload and takes always

one of two possible values: 0x0110 and 0x110a.

• eDonkey

The eDonkey network is populated with servers and clients. Clients connect to one

server to get network services and this connection operates as long as the client is in the

system. Servers do not communicate with each other and perform general indexing

services. A client uses one TCP connection to a server in order to get information from it

regarding desired files and other connected clients. As servers do not store files and files

are broken into chunks, clients can use several connections to other clients to upload and

download. This means that a client can download different pieces of the same file from

different clients [Kulbak2005]. After analyzing eDonkey packets, we have discovered that

every packet includes a characteristic string equal to 0xe3 immediately after the TCP

header.

• Gnutella

The Gnutella network follows a P2P decentralized model, where every client can

be simultaneously client and server [Gnutella2007]. These are called servents, or gnodes,

and can perform both client and server tasks: they provide interfaces through which clients

can issue queries and view search results and also accept queries from other servents. As a

result of its distributed nature, the network will not stop working if one or more servents go

offline. A session begins when a servent connects to another by sending the following

message to advise its presence and requesting connection:

GNUTELLA CONNECT/<protocol version string>\n\n

The receiver of this message then replies with the next message accepting the

connection and returning a list of currently active servents:

GNUTELLA OK\n\n

Once a servent is connected to the network, it communicates with all other

connected servents, sending the first message all over the network. The servents reply to

this message sending a Gnutella packet about them. When a file is found and chosen for

download, a separate HTTP session is established between the client and the host of the

resource. The servent that wishes to download the file sends a HTTP packet:

Chapter IV - Module for Identification of Internet Applications

Page 22 of 98

GET /get/<File Index>/<File Name>

/HTTP/1.0 \r \n

Connection: Keep-Alive\r\n

Range: byte=0-\r\n

User-Agent: <Name>\r\n

\r\n

A note should be made: if the UserAgent field is captured, an identification of the

client is also possible.

Our methodology for identifying of the messages of this protocol was based on the

fact that the TCP payload should begin with the string “GNUTELLA”. When receiving

HTTP messages, the UserAgent field should also have the same string or the name of the

used client.

• Direct Connect

In the network created by this protocol there are hubs, clients and a HubListServer.

Hubs are central servers to which clients connect, thus, implying a centralized network.

Hubs also facilitate communication between clients and give information about them while

responding to file searching queries. All hubs are registered on the HubListServer, which

then acts as a name service. Clients discover hubs by asking the HubListServer. Clients

also store files and respond to search queries for those files. When a file is requested for

download, communication is established directly between the involved clients in a true

P2P fashion. In our study, we have noticed that the TCP commands always have the

format:

$command_type field1 field2 ...|

The command type field can be one of the following: “Logedin”, “Key”,

“MyNick”, “Lock”, “Direction”, “FileLength”, “HubName”, “Send”, “Get”, “Canceled”,

“Validate”, “GetPass”, “MyPass”, “Hello”, “MyINFO”, “GetINFO”, “GetNick”, “Nick”,

“OpList”, “MultiConnect”, “Connect”, “Rev”, “Kick”, “SR”, “Search”, “OPForce”,

“ForceMove”, “GetListLen”, “ListLen” and “MaxedOut”.

• Bit Torrent

The network created by this protocol comprises clients and a central server that

coordinates actions from all clients and does not have any knowledge about the files’

contents [BitTorrent2007]. Servers do not search for files; clients browse the Web

searching for a torrent file that contains the metadata about the file. The philosophy of Bit

Chapter IV - Module for Identification of Internet Applications

Page 23 of 98

Torrent also relies on breaking files into chunks and distributing them among users. Users

who download a torrent file are also uploading it to the remaining clients [Bit T., 2007].

The signature used by this protocol is:

<0x13><BitTorrent protocol>

 Table 1 resumes all the gathered characteristic signatures that were enumerated

above.

Protocol

Signature Transport
protocol

MSN Messenger “VER”, “CON”,” NLN”, “BYE”, “XFR”, “FLN”,

“USR”, “JOI”, “CAL”, “MSG”, “PNG”
TCP

Yahoo Messenger “YMSG” TCP
ICQ 0x2a TCP
RFB “RFB xxx.yyy\n” TCP
SQL “SELECT DATABASES”, “SHOW DATABASES” TCP
SIP “OPTIONS”, “REGISTER”, “SIP” TCP/UDP
HTTP “HTTP/1.1 Get” TCP
NetBIOS 0x0110, 0x110a UDP
eDonkey 0xe3 TCP
Gnutella “Gnutella” TCP
Direct Connect “$Logedin”, “”Key”, “$MyNick”, “$Lock”,

“$Direction”, “$FileLength”, “$HubName”, “$Send”,
“$Get”, “$Canceled”, “$Validate”, “$GetPass”,
“$MyPass”, “$Hello”, “$MyINFO”, “$GetINFO”

TCP

Bit Torrent “0x13BitTorrent protocol” TCP

Table 1 - Characteristic signatures of the different protocols

4.1.2 Parsing the rules

As mentioned above, a database of strings is supplied to the application. This

consists of a file with all signatures that must be identified and a series of related

parameters that will determine the way the packet’s payload should be observed. The file

and some of the rules are shown in Figure 2.

Chapter IV - Module for Identification of Internet Applications

Page 24 of 98

Figure 2 - File of signatures and related parameters

 The parameters are:

• Protocol: the transport layer protocol used in the IP communication (TCP or

UDP). Search is only performed in the packets that match the selected protocol.

• Offset: from where to start the search in the payload. This value is written in

bytes.

• Depth: defines until which byte the search will be performed. This parameter,

together with the offset, allows the examination of the payload within a chosen

range of bytes. This will lead to a quicker and more accurate examination of the

payload.

• Content: the characteristic string to search for. This can be written in ASCII

format or in hexadecimal, since some signatures are only in this format.

• The last parameter is the message to print when identification is achieved.

A structure is created to store all the information regarding the rule and all rules are

parsed together to form a linked list. This list will be used each time a new packet arrives

and a continuous search is made in its payload according to the parameters that are stored

on each element of the list.

4.1.3 Configuring the capture

The user is urged to configure certain parameters of the capture. This configuration

is made through a file. Figure 3 shows the capture parameters.

Chapter IV - Module for Identification of Internet Applications

Page 25 of 98

Figure 3 - Capture parameters

These parameters include:

• The interval of time for a flow expiration,

• The number of payload bytes that must be captured,

• The time instants for starting and ending the collection of relative statistics for

each flow, in milliseconds. These statistics are related to the chosen time

interval.

4.1.4 Capturing and storing the packet

As previously mentioned, each time a new packet arrives its payload is examined.

Besides, packets are grouped into flows and this is done by using a hash table. Elements

are saved in this table using a key that identifies them and allows for the search of a

particular flow in the list. This table stores elements of the flow structure type. Each

element saves the following information:

• Statistics concerning the incoming and the outgoing packets. This information

contains the number of packets sent, the maximum, minimum and average

packet size, the maximum, minimum and average inter-arrival time and the

time the first and the last packet arrived;

• Information concerning the five-tuple (Source IP Address, Source Port,

Destination IP Address, Destination Port, Higher-layer Protocol);

Chapter IV - Module for Identification of Internet Applications

Page 26 of 98

• A string containing the name of the file where the captured payload was saved;

• Flags indicating if the FIN flag of the TCP connection flow has already been

seen, if the flow can be erased and if the flow has been classified;

• A pointer to the list of rules;

• Integers indicating the number of packets with payload which have been

captured and the number of packets analysed.

A second linked list of elements of the type structure flow is constructed and

elements are inserted each time a new flow arrives, which occurs when no match in the

hash table is found. The reason for maintaining this second list is to have an exclusive list

the program will examine and consequently will insert or erase elements according to the

results of the classification process. It should also be noted that the hash table stores all the

information concerning the flows statistics, information that will be presented at the end of

the capture. Therefore, no element can be removed.

The linked list is constructed as follows: the first arrived flow will be located at the

head of the list and each time a new flow arrives it is placed on the next position. When the

first element is classified, this flow is erased from the second list to avoid being processed

again, and a new head of the list is found in the next element. This process finishes when

all the flows are classified. In the case of having flows which were not classified, the

application finishes the process when all flows expire.

The capture process starts by performing a search in the hash table each time a

packet is captured. If no match is found in this list, meaning that a packet from a new flow

has arrived, a new element is created and inserted in both lists mentioned above. The

variable in the structure that stores the starting time of the flow registers the capturing

instant time of this packet and the remaining elements are initialized. The file where each

captured payload will be saved to is created with the following name:

SourceIPAddress SourcePort<->DestinationIPAddress DestinationPort

Besides, the structures where the statistics of incoming and outgoing packets will

be saved are created and initialized.

For the case of a packet that belongs to a flow that has been already instantiated,

the corresponding statistics are actualized with the payload size and inter-arrival time

values.

Chapter IV - Module for Identification of Internet Applications

Page 27 of 98

The following step consists of saving the payload to the corresponding file. This

only occurs if the maximum number of packets with payload has not been captured yet.

This is done since only a limited number of packets needs to be saved to achieve

classification. Moreover, saving all packets with payload from a flow would be very

expensive in terms of time and resources and, as we will see later, most of the saved data

will not be read due to the fact that classification is achieved using only the first packets.

Also, only a limited number of bytes, chosen by the user, are saved to the file. At this

stage, we perform an examination of the payload before deciding how many bytes will be

saved. If the packet corresponds to an HTTP Get message, then 200 bytes of the payload

are saved. This amount of bytes was chosen since many P2P protocols request downloads

of files using this message. Therefore, this packet can be misclassified as an HTTP flow

when it is associated to a P2P flow. In this case, a bigger number of bytes must be saved in

order to identify the client that made the request. This will allow a differentiation between

the indicated protocols. If the packet does not correspond to the stated message, the

number of bytes indicated by the user is saved. This procedure continues until the

maximum number of packets with payload has been captured, the flow has been classified

or the flow has expired. This occurs after the period of time defined in the configuration

process passes. When capturing packets, the time elapsed since the starting instant of the

related flow is determined and if this value is within the values chosen by the user the

related statistics are updated. The state diagram shown in Figure 4 illustrates the capture

process.

Chapter IV - Module for Identification of Internet Applications

Page 28 of 98

Capture the new packet

Search in the hashtable and in the list of flows

Does the
packet belong
to a new flow?

Create element and insert it in the hashtable and in the list of flows

Update the statistics relative to the flow

Does the
packet have

payload?

Save payload to the corresponding file

Update elements in the structure

Update the statistics relative to the flow

Wait for a new packet

Yes

Yes

No

No

Figure 4 - Flow diagram of the capture process

4.1.5 Classifying the flows

After processing all rules and configuring the session, the capture of packets

begins. At the same time, a thread is launched to classify the captured flows. The address

of the head of the list of flows is passed to this thread. Then, the thread waits until enough

packets with payload have been captured and starts the classification process.

The process initiates by verifying if the analysed flow has already been classified, if

the FIN flag of the TCP flows has been captured and if all captured packets with payload

have been read. In this case, the flow is erased from the linked list and the new head is put

on the next element or simply a connection between the preceding element and the next is

performed. Otherwise, the flow will be analyzed. This analysis starts by checking if there

is any packet from the flow that has not been examined yet. In the structure that stores

Chapter IV - Module for Identification of Internet Applications

Page 29 of 98

information related to flows, there are fields that indicate how many packets have been

captured and how many have been processed. If this is the case, the corresponding payload

will be evaluated. The integer that contains the number of packets read from the flow is

updated to avoid a second processing of this string. Then, the file with the name of the

flow, contained in the structure, is opened and the string of the related packet is read.

Subsequently, a new function is invoked and will perform a comparison between the

payload that is read from the file and the strings that are passed in the rules. This

comparison respects the limits imposed in each rule concerning the range of payload to

inspect. As soon as a correspondence between the payload and one of the rules happens,

the flow is considered to be classified. A pointer (belonging to the structure) that will

contain the message to be printed is updated with the message field present in the rules and

all flags, needed to indicate that the flow is classified, are actualized. The message

indicating the type of flow is saved to the file as well as all related statistics data. The

relative statistics are also printed to the file: these statistics are calculated based on the time

interval the user has chosen. The flow is removed from the list and the program moves to

the next element. If the end of the list is reached, the application moves back to the

beginning and processes the whole list again. In this way, we are continuously inspecting

for expired flows and decreasing the size of the list. This allows for a quicker

classification. The flow diagram shown in Figure 5 summarizes these steps.

Chapter IV - Module for Identification of Internet Applications

Page 30 of 98

Start classification

Has the flow
sufficient
payload?

Process the captured payload

Is the flow
classified?

Update elements of the structure

Erase element from the list of flows not yet classified

Has the flow
expired?

Has a packet
from a new

flow arrived?
Process flows not yet classified

Move to the new flow

Save to the corresponding file the results of classification and the statistics

Is there new
payload to be

read?

Read elements of the structure related to the flow

Yes

Yes

Yes

Yes

No

No

No No

Yes

No

Figure 5 - Flow diagram of the classification procedure

As shown in the previous diagram, the list of flows is continuously processed. Each

time a packet is classified or processed, the program waits for the arrival of a new flow.

Until this occurs and sufficient payload has been captured, the program passes through the

stated list and if a flow is considered as expired it is erased from the list and the process

repeats itself.

Figure 6 shows the classification process.

Chapter IV - Module for Identification of Internet Applications

Page 31 of 98

Read the number of packets already processed

Is there a new
packet?

Process the packet

Is the flow
classified?

Pass to the next rule
Is this the last

rule?

Update the elements in the structure

Pass to the next flow

No

Yes

Yes

No

No

Yes

Figure 6 - Flow diagram of the classification process

4.2 Results

To test the developed application, we have generated traffic belonging to the

applications identified above. Each application was run individually in order to obtain

completely known and identified traces, each one related to a specific application. Traces

were captured using Ethereal and, for each packet, we have stored the full header and the

first 180 bytes of payload. Table 2 shows the dimension of the captured traces.

Type of application Number of captured flows

P2P 512
Web browsing 90

Instant messaging 128
VoIP 35
Other 115

Table 2 - Dimension of the captured traces

Chapter IV - Module for Identification of Internet Applications

Page 32 of 98

After being captured, the traces were analyzed by the application and the

classification results were examined. The application was able to distinguish and identify

all protocols and, when required, it was also able to identify the client related to the

captured flow. Table 3 presents the results achieved.

Protocols Number of
Analyzed

Flows

Correctly
classified flows

Incorrectly
classified flows

% of correctly
classified flows

e-Donkey 158 156 2 98.73%
Gnutella 150 146 4 97.4%
Direct Connect 41 40 1 97.5%
Bit Torrent 163 157 6 96.32%
HTTP 55 51 4 92.72%
HTTPS 40 40 0 100%
NetBios 85 81 4 95.3%
Messenger 78 68 10 87.18%
ICQ 40 40 0 100%
Yahoo Messenger 10 10 0 100%
RFB 20 20 0 100%
H.323 25 17 8 68%
SIP 10 10 0 100%
SQL 10 10 0 100%

Table 3 - Classification results obtained

From the above table, it can be concluded that the obtained results are very

accurate. For P2P traffic, the average percentage of correctly classified flows was about

97%. For web browsing applications, the average percentage of correctly identified flows

reached 92.72%. This also included the identification of all clients. For instant messaging

protocols, the average value was of 95.72%. In the case of VoIP applications, the average

classification efficiency was equal to 84%. An explanation for the misclassified flows will

be provided later in this section. Table 4 shows some statistical values related to the

correctly identified flows. As can be seen, the correctly identified flows have high numbers

of packets per flow and bytes per packet. For P2P protocols these flows correspond to file

transfers and to message exchanges between peers, while for instant messaging protocols

they are related to conversations between clients. For all other cases, these flows are

related to successful connection establishments between the different elements of the

protocol and to traffic that was exchanged between them, leading to a high number of bytes

in the payload.

Chapter IV - Module for Identification of Internet Applications

Page 33 of 98

Protocols Average number of
packets

Average number of
bytes per packet

e-Donkey 5 77
Gnutella 17 96
Direct Connect 478 94
Bit Torrent 16 78
HTTP 18 94
HTTPS 20 114
NetBios 3 174
Messenger 60 87
ICQ 23 105
Yahoo Messenger 11 75
RFB 510 57
H.323 16 107
SIP 5 76
SQL 43 99

Table 4 - Statistical information about correctly classified flows

Table 5 shows some of the statistical properties of the misclassified or unclassified

flows. An explanation for this misclassification will also be provided in the next

paragraphs.

Protocols Average number
of packets

Average number of
bytes per packet

e-Donkey 2 32
Gnutella 6 88
Direct Connect 6 40
Bit Torrent 7 43
H.323 8 320
NetBios 5 720
Messenger 76 68

Table 5 - Statistical information about misclassified or unclassified flows

For the e-Donkey case, it can be observed that the average number of packets is

low, as well as the number of bytes per packet. These may indicate that the flows are due

to Acknowledge or KeepAlive messages exchanged between client and server. These

messages are usually composed by packets with no payload and the respective flows have

few packets. Comparing the values obtained for this protocol in the last two tables, a

difference can be easily seen.

For the Gnutella protocol, misclassified or unclassified flows have a similar number

of bytes per packet as the classified ones. The reason for the misclassification lies on the

Chapter IV - Module for Identification of Internet Applications

Page 34 of 98

fact that these flows were originated by an HTTP Get message that was issued to download

a file. These messages didn’t carry the UserAgent field inside the captured payload.

Therefore, these flows were classified as HTTP, but this problem can be easily solved if a

higher number of payload bytes are captured. When these flows carried the mentioned field

correct identification was achieved, as well as identification of the client that issued the

request.

For the Direct Connect protocol, the misclassified packets have no payload at all or

a small number of payload bytes, indicating that these can be Acknowledge flows. They

can be also related to file transfers that were automatically stopped by the client and then

restarted.

The lowest efficiency occurred for the H.323 protocol. Identification of its

messages was based on searching for a particular field within the payload: the

ProtocolIdentifier field. Some flows, related to OpenLogicalChannel and LocationRequest

messages, do not carry this identifier which prevents identification.

The misclassified NetBIOS flows were due to an unexpected NameQuery flag.

For the Messenger protocol, misclassified flows can be related to file transfers

made in binary and without any signature. This agrees with the values shown in the

previous table: these packets have an average of 76 packets per flow and an average of 68

bytes per packet.

To illustrate the efficiency of the methodology, Table 6 presents the number of

packets that were read in order to perform the identification. As shown, the technique is

very effective. For almost all cases, it was able to accomplish protocol identification in the

first captured stream. When this situation did not occur, it was able to identify based on the

subsequent packets. However, it should be noted that in these cases it is not necessary to

examine a high number of packets. This demonstrates the efficiency of payload analysis

and that it can achieve very accurate identification while saving computational and

memory resources. It also proves that the gathered signatures respected the main

requirement of accuracy. The results obtained also prove that the developed tool can be

used at high-speed links.

Chapter IV - Module for Identification of Internet Applications

Page 35 of 98

Protocol Identification in the first
packet

Identification in the following
packets/ Number of packets

read
e-Donkey 100%
Gnutella 100%

Direct Connect 100%
Bit Torrent 100%

HTTP 50% 38.89% - 2 packets
11.11% - 3 packets
5.55% - 4 packets
5.55% – 5 packets

HTTPS 100%
NetBIOS 100%

Messenger 100%
ICQ 100%

Yahoo Messenger 100%
RFB 100%

H.323 100%
SIP 66.67% 33.33% - 2 packets
SQL 100%

Table 6 - Number of packets needed to classify flows

4.3 Conclusions

As shown in the previous section, the developed module achieved very accurate

identification results. All chosen protocols were identified with a very high percentage of

correctly identified flows. Besides identifying the protocol that generated a given flow, in

some cases the module was also able to identify the client. This consists of very interesting

information and proves the capability of the module for identifying applications.

Moreover, all the flows were identified in the first packets which also proves the efficiency

of the used methodology.

Chapter V – API Implementation

Page 37 of 98

5 API Implementation

5.1 Introduction

The second part of this thesis consists on the implementation of an API to establish

the communication with the DTMS-P2P platform. In this chapter it will be presented and

shown how it establishes the communication between application level modules and the

DTMS-P2P platform. These application level modules may consist of graphical interfaces

or statistical traffic monitoring tools which may execute several management actions on

the platform using the API.

The API consists of a class which, through its different methods, sends messages to

the monitoring network and its elements, retrieving also information from them. The role

the API performs is illustrated in Figure 7. The concepts related to the mentioned platform

were already described in Chapter 3.

Application level

API

DTMS-P2P Network

Figure 7 - Hierarchy of the API and the calling application

Chapter V – API Implementation

Page 38 of 98

5.2 API Functionalities

The API must allow the calling applications to perform all the tasks that any client

of the DTMS-P2P network performs: these tasks are listed in the diagram of Figure 8.

Therefore, the API must, for each task an application may request to it, send the proper

message to the network with the necessary parameters for a correct performance of the

chosen command. In this way, the API has, for each command, a method that sends the

respective message to the network and retrieves its results. Application level modules can

use these methods to communicate with the DTMS-P2P network and its nodes. In the

following sub-sections, will be listed the several methods of the API according to the

functionality they belong to. For each method, the model of use cases can be consulted in

Appendix A.1.1.

Connect and disconnect
from the network

Ask for the restrictions of a
command

Provide a list of connected
nodes

Execute a command

Download the results file of
a command

Perform the search for a
file in the network

Download files from the
search operation

View and change the
settings of the client

Request the list of files a
node owns

Calling Application

Figure 8 - Use Cases diagram

5.2.1 Change of the status of the client

In the following sub-sections will be explained the two methods which perform the

connection and disconnection of the client from the network.

Chapter V – API Implementation

Page 39 of 98

5.2.1.1 Disconnect method

To disconnect the client from the network, the disconnect() method can be used.

This shuts down the connection of the client to its super-probe and, therefore, from the

network [Veiga2007].

5.2.1.2 Connect method

After disconnecting the client from the network, the connection can be performed

through the API. The method connect() starts the OutgoingConnectionManager that

connects the client to the network [Veiga2007]. A variable will then indicate that the client

is connected to the network.

5.2.2 Visualization and changing of the client’s settings

The API must enable the retrieval of the client’s settings as well as their

modification. Therefore, it holds methods which list the settings and change their values.

Moreover, a method was also created to change the settings to their default value. These

are listed and explained below.

5.2.2.1 Show_settings method

This method returns some of the client settings in order to allow its presentation to

the user by the upper-layers.

5.2.2.2 Listener_settings method

This method applies the new settings to the client which are passed as parameters to

it. It subsequently changes each of the settings that were displayed by the show_settings()

method.

5.2.2.3 Listener_default method

This method applies the default settings to the client. These are obtained from the

client.

5.2.3 Command execution functionality

This sub-section lists all the methods of the API which allow the execution of the

various steps that are involved in the performance of the several monitoring commands in

Chapter V – API Implementation

Page 40 of 98

the DTMS-P2P platform. These steps are: the request of the restrictions of a command, the

execution of the chosen command and the retrieval of the file which saves the achieved

results. The methods which enable these operations are explained below.

5.2.3.1 Get_restrictions method

This method is used to retrieve, from a node, the restrictions associated to a

command. It starts by verifying that a node has been selected to execute the command. If a

node was selected, the message requestListOfCommandRestrictions will be sent to it

[Veiga2007]. This message requests the selected element to send the restrictions of the

command that the user selected. These are rules that must be respected by the user in order

to achieve a correct performance of the command and indicate which parameters must and

must not be used. After sending this message, the API locks in the resource used by the

client to signalize it has received the restrictions. Subsequently, it constructs the messages

that will be used by the upper-classes. If a node wasn’t selected, the method urges for the

need of the selection of a network element.

5.2.3.2 Execute_command method

This method executes the command selected by the user, with all the respective

parameters. When calling applications ask the API to execute a command, this method will

read the typed command along with the typed parameters. It will then construct the

message processCommandRequest which will comprise the measurement group in which

the command will be performed along with the IP address of the node which will execute it

[Veiga2007]. The method also provides messages that indicate the state of the command

execution and any error that may have occurred during its execution. In this manner, the

user is taught how to correctly execute a command and is always aware of its state of

execution.

5.2.3.3 Download_results_file method

In the case of a correct execution of the command, the name of the file where the

results were saved is presented to the upper-layer modules and the possibility of

downloading it is also provided. To complete this task, the method download_results_file()

was implemented. It starts by searching for the node which has the chosen file and

subsequently sends a message to the node indicating the intention of downloading it.

Chapter V – API Implementation

Page 41 of 98

Afterwards, an instance of the MultiSourceDownloader is created, with all the necessary

parameters and the download of the file is executed [Veiga2007]. When the download is

finished, a variable of the API is updated indicating that the download is finished.

5.2.4 Search and retrieval of results file

As previously mentioned, the API must enable the search and retrieval of

measurement files. Therefore the API holds two methods which allow the performance of

the mentioned tasks: one for retrieving the list of files which satisfy a search criterion

while the second performs the download of these files.

5.2.4.1 Show_search_results method

As previously mentioned, one of the operations the application layer modules can

request is the search of a file in the network using a search criterion. To perform this task,

the method show_search_table() was created. This function receives as parameters a string

with the criterion to be used in the search and the measurement group where the search will

be performed. Subsequently, it verifies if the introduced criterion is valid. Then, it selects

the measurement group in which the search will be performed, according to the value

received as a parameter, and sends a resultsSearch message to the nodes of the selected

group with the inserted parameter [Veiga2007]. In response to this message, the nodes

which own files matching the selected criterion send QueryHit messages to the client

indicating that they own those files. When the client receives these messages, this method

processes the name of the indicated files in order to present some characteristics, which

include:

• The measurement group of the client;

• The IP address of the client;

• The measurement group of the node;

• The IP address of the node;

• The date of execution of the command;

• The command itself.

Subsequently, all these characteristics are inserted in a data array which can be used

by the upper-layer modules.

Chapter V – API Implementation

Page 42 of 98

5.2.4.2 Value_changed method

This method enables the download of files resulting from the search operation. It

receives the name of the selected file and subsequently starts its download. Then, an

instance of the MultiSourceDownloader class is created which before starting the

download, tests if it has already been downloaded [Veiga2007]. If this is the case, the

variables of this method are updated and indicate this situation. Otherwise, when the

download is complete, the variables are updated so that they indicate the completion of the

download. The operation of this method is shown in Figure 9.

Process the chosen file and create the necessary variables

Create a new instance of the MultiSourceDownloader()

Has the client
already

downloaded
the file?

Update variables indicating the download has already been performed

Start the download of the file

Has the
download
finished?

Update variables indicating the completion of the download

No

No

Yes

Yes

Figure 9 - Flow diagram of the method value_changed()

Chapter V – API Implementation

Page 43 of 98

5.2.5 Listing of files of the client or of a node

In the following will be listed the methods which allow the user to visualize the

files a client and a node of the DTMS-P2P platform hold.

5.2.5.1 Show_files method

A functionality the API must support is the presentation of the files the client owns.

The method show_files() was implemented to provide this information to the upper-layer

modules and it uses a variable of the client that contains the list of all files [Veiga2007].

The method creates two data arrays, one for each type of file (heavy-data and light-data

files). These arrays contain various informations about the files, as mentioned in Section

5.2.4.1

Each file is placed in the corresponding array and both can be used by the upper-

layer modules which can make use of the information provided to present the files.

5.2.5.2 Get_file_list method

The API may retrieve the list of files owns. This method receives the element

selected and consequently downloads its list of files which is present in a file named

IPAddresOfTheNode_FileList.xml. After the download, the method parses the XML file

and adds all the file’s names to a data array. This array can be subsequently used by the

calling applications.

5.3 Conclusions

This section presented the API, a module that is in charge of the communication

between modules needing to interact with the DTMS-P2P platform and the platform itself.

The different functionalities of this API were introduced and their functions were

explained. The API consists of several methods that can be used by modules needing to

communicate with the network and retrieve information from it. It sends the required

messages to the nodes of the DTMS-P2P platform and retrieves their responses.

Subsequently, these are sent to the modules which use the API for communicating with

mentioned platform. In the following chapter will be explained a graphical interface which

was implemented in order to test the API.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 45 of 98

6 GRAPHICAL INTERFACE OF THE DTMS-P2P TOOL

This chapter explains the implementation of the graphical interface implemented for

testing the API. This interface was implemented to test the API explained in the previous

section and allows the user to accomplish the several tasks that can be performed through

the DTMS-P2P client. It uses the previously explained API for communicating with the

DTMS-P2P platform. All concepts that are necessary to understand the interaction between

the interface and the mentioned platform were explained in chapters 3 and 5.

The following section enunciates some principles that should be taken into account

when implementing an interface. The remaining sections explain its implementation and its

various functionalities.

6.1 The rules of user interface design

In the past, computer programs were designed having in mind that the user had to

adapt somehow to the system. This approach is not appropriate nowadays, where the

system has to adapt itself to the user [Mandel1997].

Users should have a successful interaction with systems in order to gain confidence

on themselves. Well-designed interfaces should guide users to learn and enjoy what they

are doing. They can also challenge the user to explore the interface behind their normal

usage.

To achieve this level of interaction, several studies have been made and several

principles have been discussed and agreed. The three main principles are:

• Place users in control of the interface;

• Reduce user’s memory load;

• Make the user interface consistent.

The first rule indicates that the user should be provided with the ability of controlling

the interface and performing all the operations he intends to in a simple manner. The

interface should also:

• Allow users to change focus;

• Display descriptive messages;

• Provide reversible paths and exits.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 46 of 98

The second rule explains that the interface should avoid users from having to

remember information while interacting with it. Therefore the interface should:

• Provide visual clues;

• Provide shortcuts;

• Use real-world metaphors;

• Provide visual clarity.

The third rule illustrates that consistency is a key aspect of interfaces. The interface

must teach users how to perform a command so that it can be applied to other situations. It

also means that users should see information in the same logical and visual way.

6.2 Graphical Interface

As mentioned above, the main goals of the user graphical interface are to test the

API explained in Chapter 5 and to present the measurement tool in an easily usable way to

the user.

As previously mentioned, the interface will use the API for the communication

with the DTMS-P2P network in order to allow the user to perform the several tasks

allowed by the client of the monitoring platform. This is illustrated in Figure 10.

A fourth module was also implemented to create a graphical representation of the

network. This module communicates with the application layer that instructs it to present

the network representation and communicates with the API to get the necessary

information from the network. The implementation of this module will be explained in

sub-section 6.2.1.6.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 47 of 98

Graphical Interface

API

DTMS-P2P Network

Representation module

Figure 10 – Communication Hierarchy

Prior to the presentation of the interface, the client must connect itself to a super-

probe in the network. This is done using the XML file ClientCache that contains a list of

super-probes to which it must connect. Also as a probe can promote itself to a super-probe,

all their addresses must be provided to assure that the client gains connection to the

network. Consequently, the file contains all connected probes since there is no guarantee

that the super-probes exist. The client will attempt to connect to the super-probes in the

order that they appear in the ClientCache file. If no attempt is successful, it will try to

connect to the probes.

As previously explained, when the client is connected it will download the

LightData file in order to know the existing network nodes that will permit its

representation.

The interface was developed using Swing components. For displaying or receiving

parameters from the user, the most suitable components were used. For the insertion of

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 48 of 98

parameters for the various commands, text fields were chosen. For presenting various

elements to the user and enable the choice of a particular element, combo-boxes were used.

These components can be inserted into panels that can contain more components, such as

buttons, tabs and many more [Eckel2002], [Zukowsky2005], [Walrath2004]. Each panel

uses a layout manager responsible for positioning its several components regardless of the

screen size and platform. Layout managers discover the space a component needs by

calling the component’s getMinimumSize(), getPreferredSize() and getMaximumSize()

methods. These report the minimum, preferred and maximum sizes a component requires

to be properly displayed. Therefore, each component must know the space requirements it

needs. The layout manager will then use the component’s space requirements to resize the

components and arrange them on the panel. A layout manager was attached to each created

panel where components were placed.

Each of the Swing components has the property to report all events that may

happen and also report each kind of event separately. Therefore, event listeners were

attached to the several components of the interface in order to allow it to know which

operation the user has executed and act accordingly. In the next sections the

implementation of the interface and the various operations a user can perform will be

presented and explained.

The main frame of the interface, illustrated in Figure 11, presents all the previously

mentioned components necessary to accomplish the various operations. The main frame

consists of three tabs, each one responsible for a task, and a menu that presents to the user

additional functionalities of the interface. To create the main frame, an object of the class

JFrame was used. Using some methods of this class, the close operation, the content panes

and the size parameters are set. The method to set the frame visible is also set. A frame can

contain several components such as panels, tabs, etc. The frame also allows the exhibition

of menus. The block diagram of the constructor of the class that creates and places all the

components is shown in appendix A.2.1.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 49 of 98

Figure 11 - Main Frame of the interface

6.2.1 Interface presentation

In this section will be explained the interaction between the user and the interface.

The communication between the interface and the API will also be mentioned. This section

provides sub-sections with the explanation of each of the interface functionalities, the way

it allows the execution of the various tasks and the way it indicates to the user how to

perform them. Figure 12 shows the block diagram of the implemented interface. The

following sub-sections will list and explain the various functionalities the interface

implements and how to correctly execute them.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 50 of 98

Wait for the user actions

Has the user
pressed the

button
“Restrictions”?

Call get_restrictions() method

Has the user
pressed the

button
“Execute

Command”?

Present the restrictions to the user

Call execute_command() method

Present the results to the user and allow the download of the file

Has the user
selected the
search of a

file?

Call show_search_table() method

Present the results and allow the download of the files

No

No

No

Yes

Yes

Yes

Has the user
pressed the

button
“Download”?

Call download_results_file() method()

No

Yes

Has the user
pressed the

button “Get the
list of files”?

Call get_file_list() method

Present the list to the user

No

Yes

Figure 12 - Block diagram of the interface’s tabs

 Figure 13 shows the block diagram of the interface menu bar. The bar includes

various items that allow a more organized and perceptive presentation of the information.

The menu bar has also several event listeners connected and each item invokes the

appropriated method from the API.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 51 of 98

Wait for the user actions

Has the user
pressed the

menu
“Network”?

Is the client
connected? Call disconnect() method

Call connect() method

Has the user
pressed the

menu
“Settings”?

Call show_settings() method

Show the settings to the user

Has the user
pressed the

menu
“Visualization”?

Call representation module

Present the representation to the user

No

No

No

Yes

Yes

Yes

No

Yes

Has the user
pressed the

button “Apply
Changes”?

Call listener_settings() method

No

Has the user
pressed the

button “Apply
Default”?

Call listener_default() method

No

Yes

Yes

Figure 13 - Block diagram of the Menu bar

6.2.1.1 Change of the status of the client connection

As previously explained, the API has methods that perform the connection and

disconnection of the client from the network. These are the disconnect() and connect()

methods, which were explained in sub-sections 5.2.1.1 and 5.2.1.2.

 To complete the connection or disconnection from the network, a menu is

presented to the user with the title “Network”. If the client is connected this menu presents

the possibility of disconnecting and if the client is disconnected the option of connecting is

shown. The item the user must press is in the following menu: Menu � Network �

Disconnect/Connect.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 52 of 98

 If the user chooses to disconnect, a message box appears after the client completes

the task indicating that the client is no longer active, as shown in Figure 14. Subsequently,

the menu presents the possibility of connection. If the user chooses to connect, a window

message appears indicating that the operation will be executed.

Figure 14 - Message box indicating that the client has been disconnected from the network

6.2.1.2 Change of the client settings

 The view and change of the client settings is enabled through the use of the menu

“Settings” that allows the user to change the client parameters. When the user presses the

menu, a new window appears showing the current client parameters. This window consists

of several text fields, one for each client’s setting, and a button indicating that the new

settings can be applied to the client. A second button is presented to indicate that the user

pretends to apply the default settings to the client. This is shown in Figure 15. The method

that shows the client’s information is the method show_settings() mentioned in sub-section

5.2.2.1.

 After changing one or various parameters, the user can indicate that these

parameters can be applied to the client by pressing the previously mentioned button. The

event listener will then invoke the method listener_settings() explained in Section 5.2.2.2

and when this operation is concluded a message will appear pointing out this fact.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 53 of 98

Figure 15 - Window showing the various client parameters

If the user wishes to apply the default settings to the client, the button “Apply

Default” can be pressed. The method listener_default(), explained in section 5.2.2.3, is

then invoked and these settings are applied to the client and a message appears indicating

the appliance of the settings.

If the user places the mouse pointer in a text field, a tooltip text will appear

indicating the function of the setting and its default value.

6.2.1.3 Command execution functionality

The performance of a command can be achieved through the use of a proper tab

dedicated only to this functionality. The method from the API that performs the command

inserted by the user is the execute_command(), depicted in sub-section 5.2.3.2.

The tab contains numerous components that allow the user to complete a command

and interact with the network. This tab is divided in two panels. The first panel contains

two text fields that allow the user to execute the command he wishes: the first allows the

user to choose the command while the second lets the user insert the parameters necessary

for the command to be executed as intended. Two buttons were also inserted in this panel:

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 54 of 98

one for asking the restrictions associated to a command and the other to execute it. The

second panel contains a combo-box with the list of all elements connected to the network

and allows the user to choose the node where the measurement is to be executed. Figure 16

shows how a node can be selected.

Figure 16 - Selection of the node to execute a command

 After the user selects the node, all the elements that are necessary to establish the

connection to the element are created and the connection is performed. However, if the

user types a command without previously choosing the element, an error message should

be presented in order to alert to the fact that the user must first choose a node to execute

the command. The message will present the following instruction: “Please select the node

where you want to execute the command”. If the client is disconnected from the network,

the interface asks the user to perform the connection.

 After the user selects a node and inserts the command to execute, and if the button

“Restrictions” is pressed, the corresponding event listener calls the method

get_restrictions(), referred in sub-section 5.2.3.1, that in turn sends a

requestListOfCommandRestrictions message to the indicated element. When the interface

obtains the response of the API, the received restrictions will be presented in the

“Commands” tab in the form of a new table that is also inserted inside a tab. The

restrictions are sent to the get_restrictions() function using the following format:

<mustUse></mustUse><doNotUse></doNotUse>.

 The parameters that the user must insert for a correct execution of the command are

listed between the tags <mustUse> and </mustUse>. The parameters the user must not

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 55 of 98

insert for the execution of the task are shown inside the tags <doNotUse> and

</doNotUse>. The interface then processes the received restrictions and presents them in a

table with two columns that indicate the mentioned rules.

 For each command the user selects, there will be a tab with the associated

restrictions and related messages concerning the command execution. Figure 17 presents

the interface with a tab that is related to the ping command and its restrictions.

Figure 17 - List of restrictions associated to the ping command

If the node does not support the chosen command, a message is printed in the tab

indicating this fact to the user. This is shown in Figure 18.

 Figure 18 - Message indicating that the node does not support the command

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 56 of 98

 However if the user does not want to see the restrictions, the button “Execute

Command” can be pressed to execute the command with the parameters that are set in the

text field labelled “Parameters”. Although, if the user pressed the first button, he can

execute the command by inserting the parameters in the appropriated text field and press

the second button. The interface will then call the execute_command() method explained in

sub-section 5.2.3.2 that will construct a message with the inserted preferences and send it

to the corresponding node. Afterwards, when the interface receives the response from the

API, it will indicate that the command has been executed. While the command is not

completed, the interface indicates that the node is executing the command.

 If the command was successfully executed, the interface will present a message to

the user with the name of the file where the achieved results were saved. The name of the

file follows the following format:

MeasurementGroupOfTheClient_IPAddressOfTheClient_MeasurementGroupOfTheNod
e_ IPAddressOfTheNode_DateOfExecution_Command.res

 The message is presented inside the tab that is related to the command. Also, in the

“Commands” panel a new button is shown in order to give the user the possibility of

downloading the file.

 If the user presses the download button, indicating that he intends to download the

file, a message stating that the file will be downloaded is written in the tab. The event

listener that is attached to the button calls the method download_results_file(), depicted in

sub-section 5.2.3.3, that sends a message to the node where the file is located, indicating

the intention of downloading it. When the download is finished, a new message is also

written in the same tab. This situation is shown in Figure 19. The download of the results

file is always related to the command that is represented in the tab and was selected by the

user. In this way, if the user chooses to download the results file of a command which has

not been executed yet, an error message appears.

 The user can insert a new command and a new tab will appear indicating the

restrictions and all the above explained messages. In the case the user does not enter any

parameter and the command needs at least one to be executed, the interface displays an

error message together with the usage of the command. This case is shown in Figure 20. If

the user does not respect the restrictions imposed by the command or the inserted

parameters are incorrect, a message is displayed indicating that the node refused to execute

the command.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 57 of 98

Figure 19 - Message indicating the conclusion of the download of the results file

Figure 20 - Message illustrating the usage of the command

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 58 of 98

6.2.1.4 Search Functionality

The search for a file that is stored at some network node is allowed by the interface.

A tab named “Search” shows the user all the necessary fields to execute this task. The

search can be performed locally, only in the measurement group where the client is

connected, or globally, in the entire network [Veiga2007]. Therefore, this choice must be

presented to the user and this is achieved through the use of a combo-box that lists all the

measurement groups connected in the network and a last option of global search. Figure 21

illustrates this.

Figure 21 - Selection of the type of search to perform

 After choosing the type of search that will be executed, the criterion must be typed

in the text field presented in the tab. After inserting it, the user presses the Enter key a first

search is executed with a small list of files matching the criterion. If the user wants to see

with more results, the same key must be pressed again and a more extensive search is

realized. The results are exhibited in this tab in a table format. This table includes six

columns that indicate several parameters related to the command, such as: the

measurement group of the client that executed the command, the IP address of the client,

the measurement group of the node, the IP address of the node, the date of the command

execution and the name of the command. The last column indicates if the client has

downloaded the file. Each table is enclosed within a tab. As an example, Figure 22 presents

a frame showing the results of a search with the ping criteria. The function that performs

the search is the show_search_results(), presented in sub-section 5.2.4.1.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 59 of 98

Figure 22 - Table presenting the search results

If the user intends to download one of the files of the presented results, a click must

be done in the row corresponding to the file, indicating the file to download. An event

listener attached to the table will then invoke the method value_changed(), explained in

Section 5.2.4.2, which in turn sends a message to the node where the file is located,

indicating the intention of downloading the file [Veiga2007]. If the client has already

downloaded it, a message alerting the user is displayed, as shown in Figure 23.

If the client has not downloaded the file yet, the download is started and once it is

concluded a message is presented. The item in the sixth column, which indicates if the file

has been downloaded, is set to true.

Figure 23 - Message indicating that the client has already downloaded the file

6.2.1.5 List of files functionality

 The files that the client owns are presented to the user using two tables there are

shown inside a tab, named “List of Files of the Client”. In this tab, the two types of data

files are shown and each one is placed in the corresponding table. To present this

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 60 of 98

information, the interface calls the method show_files(), mentioned in Section 5.2.5.1, and

retrieves the tables with the files the client owns. Each file’s name is divided in six fields,

in the case of a results file, or in three fields when it is a LightData file. This is illustrated

in Figure 24.

Figure 24 - List of files the client owns

6.2.1.6 List of files of a node

The client can request to a node of the files it owns. To enable this operation to the

user, the interface presents a tab with the name “List of files of a node”. In this tab are

presented a combo-box, which lists all the elements connected to the network that the user

can select to retrieve the list of files, and a button which allows the user to indicate he

wishes to execute the mentioned task. The event listener attached to the button calls the

method get_file_list() from the API, which was explained in Section 5.2.5.2. When the

interface receives the results from the API, these are presented in the form of a table as

shown in Figure 25.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 61 of 98

Figure 25 - List of files of a node

6.2.1.7 Visualization of the Network

To visualize the representation of the network, the user can press the menu

“Visualization” that will display an item. This item will make the interface present the

mentioned illustration. It is located in the following menu: Menu � Visualization �

Visualize Network.

If the user presses the referred menu item, a frame with the network representation

will be exhibited. This frame shows the different components and the respective

connections. For each type of element a different image is displayed in order to allow the

distinction between the different types of nodes. Each super-probe’s IP address is written

just above its icon. Figure 26 shows a representation of a network with some connected

nodes. The next section will explain how to accomplish this representation.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 62 of 98

Figure 26 - Frame showing the network representation

6.2.1.8 Graphical representation of the DTMS-P2P network

To graphically represent the DTMS-P2P network, the client must first download

the LightData file. This file, written in XML format, contains the list of all the active

super-probes, probes and clients. It also evidences to which super-probe a node is

connected to. The XML format allows for a more precise insertion of contents and retrieval

of significant search results.

 The SAXParser_class is used to process the downloaded file and begins by

searching elements in the file which begin with the string “SuperProbe”. When this string

is found, a new element is created and all the associated information is saved into the

respective class. An element of the class Attributes is used to search for information

relative to the element, such as the IP address and the group number. These are called the

attributes of the root element and provide all the information relative to a super-probe. It

also creates the necessary structures to save the mentioned information.

All nodes connected to a super-probe are saved in the XML file as child elements

and their attributes as sub-childs. ”. This allows for a hierarchical structure of information.

The function subsequently searches for the string “DTMS_P2P_Element” and when it is

found in the file, the corresponding characteristics are saved to the corresponding class.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 63 of 98

A super-probe’s information is saved in an element of the SProbe class. This class

contains the following:

• A string saving the IP address;

• A string saving the group ID;

• Integers saving the position where the super-probe will be represented in the

screen;

• A list of elements of the class node containing all the elements connected to it.

Information concerning to a node is saved on an element of the Node class. This

class contains the next fields:

• A string saving the IP address;

• An integer saving the mode of the element: probe or client;

• A string containing the group ID;

• An integer saving the RTT parameter

Two lists were created to store the elements of each class. Each list has an iterator

and elements can be added as information is found.

When an element beginning with the string “SuperProbe” is found, the instantiated

object is added to the list of super-probes. If an element starting with

“DTMS_P2P_Element” is found, the function fills the GroupID field of the corresponding

node with the value of the similar field of the super-probe to which it is connected.

Subsequently, the loading of the IP address of the probe or client is performed and this

attribute is saved as a sub-child of the child element node. The object will then be added to

the list of nodes of the related super-probe. The fields mode (that indicates if the node is a

probe or a client) and RTT (round-trip-time) are also filled. When this process ends, all the

necessary information about all the elements of the existing network is located on the

created lists.

The diagram in Figure 27 illustrates this implementation.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 64 of 98

Read the xml file

Read the root element and save its information

Process the child elements

Is the element
a probe or a

client?

Add the element to the list of nodes connected to this super-probe

Is this the last
element

connected?

Pass to the next element

Pass to the next root element

Yes

No

No

Yes

Figure 27 - Flow diagram of the process of the XML file

After having all the needed information, the graphical representation can be made.

The methodology used was to display the super-probes in a circle, with the distance

between them depending on how many elements must be presented. Around each one of

these super-probes, the connected probes and clients, if any, are represented. For drawing

this representation, the class ImageApplet was created. The class receives, as parameters,

the lists that were constructed during the parsing of the XML file and uses their

information. In the following lines the implementation of the graphical representation of

the network will be explained.

 A frame was used to display the representation of the network. A frame is a top-

level window with a title and a border. The size of the frame includes all the area assigned

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 65 of 98

to the border. The dimensions of the border can be obtained using the getInsets method.

The frame, which is an instance of the class JFrame, has decorations elements such as a

border, a title and buttons for closing the window.

The function that draws the network iterates through the lists of super-probes and

probes/clients (these are saved in the same list) and displays them according to their

connections. The function begins by calculating the angle of separation between each

super-probe. This depends on their number and an appropriate value is found in this

manner. Then the function loads a variable with an image which will stand for the super-

probes and draws the first one in the XML file. Afterwards, the function iterates through

the child elements of the super-probe and chooses the image to load according to their

mode of operation. If the element is a super-probe, the list of connected super-probes is run

through to discover if it has already been represented. In this case, a simple connection

between these two elements is performed. To find this element, the function must iterate

through the list of existing super-probes and find the element with the same IP address.

When it is found and if its coordinates are not zero, indicating that the element is already

represented, a line connecting these two coordinates is represented. Otherwise, no action is

performed and the second super-probe will be represented when the corresponding element

in the list is found. If the child element of the super-probe is a client or a probe, the

corresponding image is loaded and represented. The element will be placed near the

corresponding super-probe. Its position will depend on the zone of the image where the

super-probe is represented. A line representing the connection between the super-probe and

its child element is also shaded. The flow diagram represented in Figure 28 shows this

process.

The entire plane of representation is divided into four regions. The region where the

super-probe is represented will determine where the connected nodes will be illustrated.

With this, it is intended to provide a simple means to avoid different probes and clients to

be superposed. Probes and clients will be shown below the super-probe, if it is placed in an

angle higher than 180º, or above if the value of the angle is lesser, i.e., they will always be

placed on the outer side of the circle created by the super-probes. Besides, their position

relative to the super-probe depends on the number of elements which are connected to it,

i.e., the node will be farther from the root element according on how many probes/clients

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 66 of 98

are already illustrated and on their distance to the super-probe. This last value is the RTT

(round-trip time).

Read the list of elements connected to the super-probe

Is the element
a probe or a

client?

Load the corresponding image

Represent the element near the corresponding super-probe

Is the super-
probe already
represented?

Draw a connection between the super-probes

Represent a connection betwenn the two elemtens

Read the element connected to the super-probe
Is this the last

element
connected?

Pass to the next element

Yes

No

No

Yes

No

Yes

Pass to the next super-probeRead information about the super-probe and represent it

Figure 28 - Flow diagram of the procedure for the representation of the network

After all these procedures and all images represented, the super-probes must be

repainted. This is due to the fact that the lines connecting these components will overlap

the images that have been placed. Therefore, a refresh of the image must be done. This is

achieved by simply iterating through the list of super-probes, consulting their coordinates

and repositioning the correspondent image in the place that is indicated by the coordinates.

After concluding the explained steps, the representation is ready. The following

images will show some illustrations of networks with different number of super-probes and

probes/clients. Figure 29 shows a representation of a network with eight super-probes with

several clients and probes. Figure 30 illustrates a network with three super-probes and their

related nodes.

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 67 of 98

Figure 29 - Representation of a network with various elements connected

Figure 30 - Representation of a second network with fewer elements connected

Chapter VI – Graphical Interface of the DTMS-P2P Tool

Page 68 of 98

6.3 Conclusion

The previous sections have shown all operations an interface can perform and the

results that were obtained with the user’s interaction. In this chapter was also demonstrated

that the API explained in Chapter 5 can implement the communication between modules in

upper-layers and the DTMS-P2P platform.

The interface allows a user to complete all the tasks a client of the network is

supposed to conclude and provides intuitive responses to the user so that he can have an

insight about what the network is executing. It also warns the user about incorrect tasks he

requests the network to do and shows how these can be correctly executed. The interface

also displays messages indicating the conclusion of the tasks that have been ordered by the

user.

 The frames displayed by the interface are intuitive, with all necessary fields

properly identified, and provide visual clues to guide the user in the execution of a given

command.

 The results obtained from the execution of the different commands are presented in

an efficient manner and many operations can be carried out over them.

 The advantage of using this interface is that users that don’t have an extensive

knowledge on how the network and clients interact can obtain the desired results based on

fast and intuitive steps and without the need of having a deep insight into how they operate

together.

Chapter VII – Final Remarks

Page 69 of 98

7 FINAL REMARKS

This dissertation proposed a module for identification of Internet applications based

on the analysis of the packets payload. The results presented proved that this methodology

constitutes a very accurate one, with very efficient results. The module was able to identify

all the protocols it was proposed to and that identification was achieved after analyzing

very few packets of the corresponding flows.

 The second part of the thesis presented an API implemented in order to establish

the communication of the peer-to-peer measurement platform with other modules. In the

corresponding chapter was shown how the API establishes the communication and the

several messages it sends to the platform and how it retrieves the obtained results. The

various methods it uses were explained and it was also shown how these can be used by

calling applications.

In the Chapter 6 was introduced a graphical interface for the DTMS-P2P platform.

The aim of this implementation was to test the performance of the API and also to provide

a simple means of interaction between the user and the client of the DTMS-P2P platform.

This interface communicates with the DTMS-P2P network through the API whose

methods perform the different tasks a user may demand from the interface. The API

returns the results of such commands and, in this manner, the interaction between user and

network is achieved.

In the mentioned chapter, the interaction between the API and the module

presenting the interface was proved to be a successful one. As the user orders tasks in the

interface, it invokes the corresponding method from the API, retrieving information and

results from it. This testing proved that the API is able to interact successfully both with

the monitoring platform and, in this case, with the graphical interface.

As a conclusion, the implemented interface also successfully replaces the command

line interface as it provides various visual clues to show the user how to execute the

command he intends to and also shows messages indicating the correct or incorrect

performance of the commands.

Appendix

Page 71 of 98

Appendix I – API Methods

A.1.1 - Method connect()

Name connect()

Purpose Connect the client to the network

Requisites The client is disconnected

Syntax boolean connect()

Input Parameters

Output Parameters Boolean variable indicating that the client is connected

 API

 1. API starts the OutgoingConnectionManager()

Event Sequence

 2. API updates the Boolean variable indicating that the client

is connected

Appendix

Page 72 of 98

A.1.2 - Method disconnect()

Name disconnect()

Purpose Disconnect the client from the network

Requisites The client is connected

Syntax boolean disconnect()

Input Parameters

Output Parameters boolean variable indicating that the client is disconnected

 API

 1. API shuts down the connection of the client to the super-

probe

Event Sequence

 2. API updates the Boolean variable indicating that the client

is disconnected

Appendix

Page 73 of 98

A.1.3 - Method show_settings()

Name show_settings()

Purpose Present the current settings of the client

Requisites

Syntax String[] show_settings()

Input Parameters

Output Parameters A string array with the parameters of the client

 API

 1. API reads the settings of the client

Event Sequence

 2. API processes the settings and places them in a data array

Appendix

Page 74 of 98

A.1.4 - Method listener_settings()

Name listener_settings()

Purpose Apply the new settings to the client

Requisites

Syntax boolean listener_settings(String[] settings)

Input Parameters String[] settings – array containing the new settings of the client

Output Parameters A boolean variable indicating the appliance of the new settings

 API

 1. API reads the settings of the client

 2. API applies the new settings to the client

 3. API writes the new settings to the conf_client file

Event Sequence

 4. API updates the Boolean variable indicating the appliance

of the new settings

Appendix

Page 75 of 98

A.1.5 - Method listener_default()

Name listener_default()

Purpose Apply the default settings to the client

Requisites

Syntax boolean listener_default()

Input Parameters

Output Parameters A boolean variable indicating the appliance of the default

settings

 API

 1. API reads the default settings of the client.

 2. API applies the default settings to the client.

 3. API writes the default settings to the conf_client file.

Event Sequence

 4. API updates the Boolean variable indicating the appliance

of the default settings.

Appendix

Page 76 of 98

A.1.6 - Method get_restrictions()

Name get_restrictions

Purpose Ask to the node which will execute the command the restrictions.

Requisites User has entered a command and pressed the button “Restrictions”.

Syntax boolean get_restrictions (String[] array, String command)

Input Parameters String[] array – array[0]: IP address of the node

 array[1]: the measurement group of the node

String command: the command to be performed

Output Parameters A boolean variable indicating that the API has received the response

from the node

 API

 1. API tests if a node was selected to execute the command.

 3. API sends a ListOfCommandRestrictionsRequest message to

the node.

Event Sequence

 3. API waits for the response of the node and updates variable

indicating it has received the restrictions.

Appendix

Page 77 of 98

A.1.7 - Method execute_command()

Name execute_command()

Purpose Execute the command the user typed

Requisites The restrictions have been requested

Syntax boolean execute_command(String args, String command)

Input Parameters String[] args – args[0]: IP address of the node

 args[1]: the measurement group of the node

String command: the command to be performed

Output Parameters A boolean variable indicating the API has received a response

from the node.

 API

 1. API tests if a node was selected.

 2. API tests if a command was inserted.

 3. Send a processCommandRequest message to the node

Event Sequence

 4. API waits for the response of the node and updates variable

indicating it has received the response from the node.

Appendix

Page 78 of 98

A.1.8 - Method download_results_file()

Name Download_results_file()

Purpose Download the file with the results

Requisites The command has been executed

Syntax boolean download_results_file(String file)

Input Parameters String file – a string containing the name of the file to download

Output Parameters A boolean variable indicating if the download has finished

 API

 1. API tests if a file was selected for download and processes

its name.

 3. API creates an instance of the MultiSourceDownloader to

perform the download of the file

Event Sequence

 4. API runs the MultiSourceDownloader to initiate the

download of the file

 5. API updates the boolean variable indicating the completion

of the download or throws an exception if the client has

already downloaded the file

Appendix

Page 79 of 98

A.1.9 - Method show_search_results()

Name show_search_results()

Purpose Present the list of files which satisfy a search criterion

Requisites

Syntax boolean show_search_results (String criterion, String group)

Input Parameters String criterion – the criterion to perform the search

String group – the measurement group where to perform the

search for files

Output Parameters A boolean variable indicating it the completed the processing of

the search results.

 API

 1. API sends a resultsSearch message to the nodes of the

selected measurement group

 2. The API processes the QueryHit messages sent by the

nodes

 3. The API processes the names of the files in the QueryHit

messages and places them in a data array according to the

parameters.

Event Sequence

 4. API updates variable indicating it has completed the

processing of the search results.

Appendix

Page 80 of 98

A.1.10 - Method value_changed

Name value_changed()

Purpose Download the file the user selected in the calling application

Requisites

Syntax boolean value_changed (String file)

Input Parameters String file – the name of the file to download

Output Parameters A boolean variable indicating the completion of the download.

Throws an exception if the client has already downloaded the

file.

 API

 1. API processes the name of the file to download.

 2. API creates an instance of the MultiSourceDownloader

which will perform the download of the file.

Event Sequence

 3. API starts the MultiSourceDownloader to initiate the

download of the file.

 4. API updates the boolean variable to indicate the

completion of the download of the file or throws an exception

if the client has already downloaded the file.

Appendix

Page 81 of 98

A.1.11 - Method show_files()

Name show_files()

Purpose Present the list of files the client owns

Requisites

Syntax boolean show_files()

Input Parameters

Output Parameters A boolean variable indicating the completion of the process of

the list of files

 API

 1. API requests the list of files the client owns

 2. API processes the list of files and places each file on the

corresponding data array.

Event Sequence

 3. API updates variable indicating it has completed the

process.

Appendix

Page 82 of 98

A.1.12 - Method get_file_list()

Name get_file_list()

Purpose Present the list of files a node owns.

Requisites

Syntax boolean get_file_list(String IP_address)

Input Parameters String: the IP address of the node.

Output Parameters A boolean variable indicating it has processed the list of files of

a node.

 API

 1. API processes the IP address of the node.

 2. API downloads the file with list of files the node owns.

 3. API parses the file.

 4. API places the name of the files in the data array.

Event Sequence

 5. API updates boolean variable.

Appendix

Page 83 of 98

Appendix 2 – Interface Methods

A.2.1 - Constructor

Create text fields for the insertion of commands and parameters

Create buttons "Restrictions" and "Execute Command" and attach event listeners

Create a combo-box for the selection of the nodes

Insert the components in a tab named "Commands"

Create a text field for the insertion of a criterion for the search

Attach an event listener to the text field

Create a combo-box for the selection of the type of search

Insert the components in a tab named "Search"

Create tables with the lists of files the client owns

Insert the tables in a tab named "List of Files of the Client"

Create a combo-box for the selection of the node to present the list of files

Create button to order the presentation and attach event listener

Insert the components in a tab named "List of Files of a node"

Appendix

Page 84 of 98

A.2.2 - Method notify_disconnect()

Name notify_disconnect()

Purpose Notify the API to disconnect the client from the network.

Requisites The client is connected.

User Interface

1. User presses the menu item

“Disconnect”.

 2. Interface calls the method

disconnect() from the API.

Event Sequence

 3. Interface presents a

message to the user

indicating that the client is

disconnected.

Appendix

Page 85 of 98

A.2.3 - Method notify_connect()

Name notify_connect()

Purpose Notify the API to connect the client to the network.

Requisites The client is disconnected.

User Interface

1. User presses the menu item

“Connect”.

 2. Interface calls the method

connect() from the API.

Event Sequence

 3. Interface presents a

message to the user

indicating that the client is

connected.

Appendix

Page 86 of 98

A.2.4 - Method get_settings()

Name get_settings()

Purpose Notify the API to get the settings of the client.

Requisites The client is connected.

User Interface

1. User presses the menu item

“Show Settings”.

 2. Interface calls the method

show_settings() from the

API.

Event Sequence

 3. Interface presents the

settings to the user.

Appendix

Page 87 of 98

A.2.5 - Method apply_settings()

Name apply_settings()

Purpose Notify the API to apply the new settings to the client.

Requisites The client is connected.

User Interface

1. User presses the button

“Apply Settings”.

 2. Interface calls the method

listener_settings() from the

API.

Event Sequence

 3. Interface presents a

message to the user

indicating that the settings

have been applied.

Appendix

Page 88 of 98

A.2.6 - Method apply_default()

Name apply_default()

Purpose Notify the API to apply the default settings to the client.

Requisites The client is connected

User Interface

1. User presses the button

“Apply Default”.

 2. Interface calls the method

listener_default() from the

API.

Event Sequence

 3. Interface presents a

message to the user

indicating that the default

settings have been applied.

Appendix

Page 89 of 98

A.2.7 - Method listener_restrictions()

Name listener_restrictions()

Purpose Notify the API to show the restrictions associated to a command.

Requisites User has selected a node to execute the command and inserted a

command

User Interface

1. User selects a node

2. User enters a command to

view its restrictions

3. User presses the button

“Restrictions”

 4. Interface calls the method

get_restrictions()

Event Sequence

 5. Interface presents the

restrictions

Appendix

Page 90 of 98

A.2.8 - Method listener_command()

Name listener_command()

Purpose Notify the API to execute a command

Requisites User has selected a node to execute the command, typed the

command and viewed the restrictions associated.

User Interface

1. User enters the parameters of

the command.

2. User presses the button

“Execute Command”.

 3. Interface calls the method

execute_command().

Event Sequence

 4. Interface presents the

results.

Appendix

Page 91 of 98

A.2.9 - Method listener_button()

Name listener_button()

Purpose Notify the API to download the results file.

Requisites The command has been executed.

User Interface

1. User presses the button to

download the file.

 2. Interface tests if the user

has executed the command.

 3. Interface calls the method

download_results_file().

Event Sequence

 4. Interface presents a

message to the user

indicating the end of the

download.

Appendix

Page 92 of 98

A.2.10 - Method actionPerformed()

Name actionPerformed()

Purpose Notify the API to perform the search of a file.

Requisites User entered a search criteria and the type of search to be

performed.

User Interface

1. User enters a search criterion

and selects the type of search to

perform.

 2. Interface calls the method

show_search_results().

Event Sequence

 3. Interface presents the

results to the user.

Appendix

Page 93 of 98

A.2.11 - Method notify_download_file()

Name notify_download()

Purpose Notify the API to perform the download of a file resulting from

a search operation.

Requisites User performed the search of files.

User Interface

1. User selects a file for

download from the table

containing the search results.

 2. Interface calls the method

value_changed().

Event Sequence

 3. Interface presents a

message to the user.

Appendix

Page 94 of 98

A.2.12 - Method listener_button_list()

Name listener_button_list()

Purpose Notify the API to perform the download of the list of files of a

node.

Requisites The user has selected a node to retrieve the list of files.

User Interface

1. User selects a node to get its

list of files.

2. User presses the button “Get

the list of files”.

 3. Interface calls the method

get_file_list().

Event Sequence

 4. Interface presents the list

of files.

Bibliography

Page 95 of 98

Bibliography

Books:

[Eckel2002] B. Eckel, Thinking in Java, 3rd ed., Prentice-Hall, 2002.

[Mandel1997] T. Mandel. The Elements of User Interface Design, John Wiley & Sons,

1997.

[Walrath2004] K. Walrath, M. Campione, A. Huml, and S. Zakhour. JFC Swing Tutorial:

A Guide to Constructing GUIs, 2nd ed, Addison Wesley, 2004.

[Zukowski2005] J. Zukowski. The Definitive Guide to Java Swing, 3rd ed., Appress, 2005.

Articles and Documents:

[Bernaille] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, K. Slamatian, “Traffic

Classification On The Fly”, In ACM SIGCOMM Computer Communication Review,

Vol. 36, Nº 2, pp. 23-26, 2006.

[BitTorrent2007] Bit Torrent, http://www.bittorrent.com, 2007.

[Cisco2007] Cisco NBAR. http://www.cisco.codwiwarpipublic/732~ecldqos/nbar/.

[Dewes2003] C. Dewes, A. Wichmann, and A. Feldmann. “An analysis of Internet chat

systems”. In Proceedings of ACM SIGCOMM Internet Measurement Conference, Oct

2003.

[Erman2006] J. Erman, M. Arlitt, and A. Mahanti. “Traffic Classification Using Clustering

Algorithms”, In Proceedings of ACM SIGCOMM Minenet Workshop, Pisa, Italy,

September 2006.

Bibliography

Page 96 of 98

[Gnutella2007] Gnutella2. http://www.gnutella2.com

[Haffner2005] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: Automated

Construction of Application Signatures”, In SIGCOMM’ 05 MineNet Workshop,

Philadelphia, USA, August 22-26, 2005.

[IEC2007] IEC, 2007. International Engineering Consortium,

http://www.iec.org/online/tutorials/h323

[IT2007] Institute of Telecommunications – Networks and Multimedia.

http://www.it.pt/area_p_3.asp, 2007.

[Javvin2007] Javvin. H.323: ITU-T VOIP Protocols Overview,

http://www.javvin.com/protocolH323.html, 2007.

[Karagiannis2004a] T.Karagiannis, A.Broido, N.Brownlee, kc claffy, and M.Faloutsos.

“Transport Layer Identification of P2P Traffic”, In Proceedings of the 4th ACM

SIGCOMM Conference on Internet Measurement (IMC 2004), pp. 121-134, 2004.

[Karagiannis2004b] T. Karagiannis, A.Broido, N.Brownlee, kc claffy, and M.Faloutsos.

“Is P2P dying or just hiding?”, Proceedings of the IEEE Globecom 2004 - Global

Internet and Next Generation Networks, 2004.

[Karagiannis2005] T. Karagiannis, D. Papagiannaki, and M. Faloutsos. “BLINC:

Multilevel Traffic Classification in the Dark”, Technical report, 2005.

http://www.cs.ucr.edu/_tkarag/papers/BLINC TR.pdf, 2005.

[Kulbak2005] Y. Kulbak and D. Bickson. The eMule Protocol Specification, University of

Jerusalem, Israel, 2005.

[McGregor2004] A. McGregor, M. Hall, P. Lorier, and Brunskill J. “Flow Clustering

Using Machine Learning Techniques”, In Passive & Active Measurement Workshop,

2004, France, April, 2004.

Bibliography

Page 97 of 98

[Madhukar2006] A. Madhukar and C. Williamson. “A Longitudinal Study of P2P Traffic

Classification”, In Proceedings of the 14th IEEE International Symposium on Modeling,

Analysis, and Simulation, pp. 179 – 188, 2006.

[Moore2005] Moore A. W. and Papagiannaki K. “Toward the accurate identification of

network applications”, In Passive & Active Measurement Workshop, Boston, USA,

March 2005

[MSN2007] MSN. MSN Messenger Protocol,

http://www.hypothetic.org/docs/msn/general/overview.php, 2007

[OSCAR2007] OSCAR. OSCAR (ICQ v7/v8/v9) Protocol Documentation,

http://iserverd.khstu.ru/oscar, 2007.

[Richarson2006] T. Richardson. The RFB Protocol,

http://www.realvnc.com/docs/rfbproto.pdf, 2006

[Rocha2007] E. Rocha, H. Veiga, R. Valadas, P. Salvador, and A. Nogueira. “Module for

identifying Internet Applications and its integration in a peer-to-peer measurement

tool”, In MCCSIS 2007, Lisbon, Portugal, 2007

[Salvador2005] P. Salvador and R. Valadas. “A Network Monitoring System with a Peer-

to-Peer Architecture”, In Proceedings of the Third International Workshop on Internet

Performance, Simulation, Monitoring and Measurements, Warsaw, Poland, pp. 115-

122, 2005.

[Sen2004] S. Sen, O. Spatscheck, and D. Wang. “Accurate, Scalable In-Network

Identification of P2P Traffic using Application Signatures”, In Proceedings of the 13th

International World Wide Web Conference, NY, USA, pp. 512-521, 2004.

Bibliography

Page 98 of 98

[SIP2007] SIP C. “SIP Center”,

http://www.sipcenter.com/sip.nsf/html/What+Is+SIP+Introduction, 2007.

[Veiga2007] H. Veiga. “Distributed Traffic Measurement System with a Peer-to-Peer

Architecture”, 2007.

[Zander2005] S. Zander, T. Nguyen, and G. Armitage. “Automated Traffic Classification

and Application Identification using Machine Learning”. In LCN’05, Sydney, Australia,

Nov 15-17, 2005.

[Zuev2005] D. Zuev and A. Moore. “Traffic Classification using a statistical approach”, In

Passive & Active Measurement Workshop, Boston, USA, March 2005.

