Eduardo Oliveira
Estanqueiro Rocha

Universidade de Aveiro Departamento de Electrénica, Telecomunicagdes e

4] 2007 Informatica

Desenvolvimento de um moédulo para identificacdo
de aplicacdes Internet e de uma interface para a
plataforma DTMS-P2P

Development of a module for identification of
Internet applications and of an interface for the
DTMS-P2P platform

Eduardo Oliveira
Estanqueiro Rocha

Universidade de Aveiro Departamento de Electrénica, Telecomunicagdes e

3] 2007 Informatica

Desenvolvimento de um médulo para identificacdo
de aplicacdes Internet e de uma interface para a
plataforma DTMS-P2P

Development of a module for identification of
Internet applications and of an interface for the
DTMS-P2P platform

dissertacdo apresentada a Universidade de Aveiro para cumprimento dos
requisitos necessarios a obtencao do grau de Mestre em Engenharia
Electrénica e Telecomunicagdes, realizada sob a orientacéo cientifica do
Doutor Paulo Salvador, Professor Auxiliar convidado e do Doutor Ant6nio
Nogueira, Professor Auxiliar, ambos do Departamento de Electrénica,
Telecomunicagdes e Informatica da Universidade de Aveiro.

Dedico este trabalho aos meus pais e irmao por todo o seu incansavel e
incondicional apoio e por me guiarem sempre na direccao correcta.

o juri

presidente

Prof. Dr. José Luis Guimarées Oliveira
Professor Associado da Universidade de Aveiro

Prof. Dr. Joel José Puga Coelho Rodrigues
Professor Auxiliar da Universidade da Beira Interior

Prof. Dr. Paulo Jorge Salvador Serra Ferreira
Professor Auxiliar Convidado da Universidade de Aveiro

Prof. Dr. Anténio Manuel Duarte Nogueira
Professor Auxiliar da Universidade de Aveiro

agradecimentos

I'd like to begin by expressing my most sincere gratitude to Doutor Rui Valadas
and to my supervisors, Doutor Paulo Salvador and Doutor Anténio Nogueira for
the great opportunity they gave me. Also for their immense and incredible
support, assistance and for their inspiring minds and suggestions, which have
always challenged me to cross new barriers and improve myself.

With great joy and pride, | would like to thank the Institute of
Telecommunications — Aveiro University Polo, for their great support. Also, to
all the great friends | made in this Institute.

I would also like to express my gratitude to all my friends, who | have met in
Portugal and in other countries, for all their support, joy, understanding,
adventures and great moments. A very particular bow of gratitude goes to my
parents and brother, without whom and without their support and
encouragement | would not have completed any of the challenges that | have
proposed to myself. It is such a huge debt that it will never be able to
compensate it. A special gratitude expression goes to Pedro Braumann, Miguel
Pinheiro, Hélder Veiga, Maria Coelho, Joana Margarida, Ana Rita. Finnally, to
the most recent surprise in my life and for bringing so many good things to it:
Conni Rinn.

This work was part of the project POSC/EIA/60061/2004 “Internet Traffic
Measurements, Modelling and Statistical Analysis”, funded by Fundacéo para a
Ciéncia e Tecnologia, Portugal.

palavras-chave

resumo

Analise de portos, andlise estatistica, andlise de payload, plataforma
distribuida, interface grafico

Nos Ultimos anos tem-se registrado um enorme crescimento no nimero e
variedade de aplicagfes IP. De entre estes numerosos protocolos, ha alguns
cujas caracteristicas é importante estudar para conhecer o seu comportamento
na rede. Por isso, conseguir efectuar uma exacta correspondéncia entre
trafego e aplicacdes reveste-se de grande importancia num enorme ndmero de
tarefas relacionadas com a gestéo de redes e de medi¢des. Estas podem
incluir engenharia de trafego, diferenciacéo de servi¢os, monitorizacéo de
desempenho e seguranca. Véarias metodologias tém sido usadas e testadas. A
metodologia baseada na andlise dos portos utilizados tem-se tornado
progressivamente ineficaz pois muitas destas novas aplica¢cbes usam portos
gue nao sao standard ou séo utilizados por outros protocolos.
Consequentemente, tém sido utilizados novos métodos para identificar estas
aplicagbes, consistindo nomeadamente na analise das caracteristicas
estatisticas ou na analise do campo de dados dos pacotes. A primeira
aproximacao apresenta, no entanto, algumas limitagdes em fornecer a exacta
identificacdo dos diferentes tipos de trafego IP. Portanto, uma anélise mais
precisa exige a inspecc¢édo do payload dos pacotes. Esta dissertacéo propde
um modulo de software baseado nesta técnica. Este médulo pode funcionar de
forma auténoma ou ser inserido numa plataforma de monitorizacéo de trafego
com uma arquitectura peer-to-peer. Tirando partido da arquitectura distribuida
da plataforma de monitoriza¢éo, o médulo de identificacdo de trafego podera
ainda melhorar o seu desempenho.

A segunda parte desta disserta¢éo propde a implementacédo de uma Interface
de Programacéao de Aplicactes (API) para estabelecer a comunicacdo com a
plataforma de monitorizacéo de trafego. Pretende-se que diferentes médulos
consigam, deste modo, executar os diversos comandos na plataforma
recorrendo a API para estabelecer a comunicacao.

Esta dissertacdo termina com a proposta de um interface gréafico para a
mencionada plataforma como um meio de teste da API implementada. Deste
modo, criou-se por um interface intuitivo que permite a execucao das vérias
medi¢des possiveis recorrendo a API para comunicar com a plataforma de
medicdo. Também se pretende substituir o uso da linha de comandos,
permitindo um uso mais simplificado dos varios comandos que o sistema de
monitorizacao permite. O interface também fornece mensagens de erro para
indicar ao utilizador como executar os comandos correctamente. O interface e
a API foram desenvolvido na linguagem Java de modo a permitir uma maior
portabilidade para outras plataformas computacionais.

keywords

abstract

Port-based analysis, statistical analysis, payload analysis, ddistributed
measurement tool, graphical interface

In the last years we have withessed a major increase in the number and variety
of IP applications. There are some applications whose characteristics are
important to study in order to gain a complete knowledge about their behavior
in the network. Therefore, an accurate mapping of traffic to applications is of a
noticeable importance in a wide range of network management and
measurement tasks. These can include traffic engineering, service
differentiation, performance/failure monitoring and security. Several
approaches have been used. Port-based identification approaches have
become inaccurate as many of these emerging applications use non-standard
or ephemeral ports or use ports associated to other applications. Thus, new
methodologies have been used to identify these applications: analysis based
on the traffic statistical properties and analysis based on packet payload
inspection. The first approach also presents several severe limitations in
providing an exact identification of the different types of traffic. Therefore a
more exact identification demands the examination of the user’s payload. This
thesis proposes an identification software module based on the payload
analysis approach to complete traffic classification. This module will be inserted
in a monitoring network system with a peer-to-peer architecture (although it can
also be used autonomously) and will take advantage of this distributed
architecture.

The second part of this thesis provides the implementation of an Application
Programming Interface (API) to establish the communication with the traffic
monitoring platform. It is intended to allow different modules to execute the
various commands in the platform through the use of the API for the
establishment of the communication.

This dissertation concludes with the proposal of a graphical interface to the
peer-to-peer monitoring system as a means for testing the implemented API.
Therefore, an intuitive interface was created which allows the execution of the
various commands based on the API for the establishment of the
communication with the platform. This interface is also intended to replace
command line interfaces, allowing for a more intuitive, simpler, faster and more
straightforward deployment of all facilities provided by the monitoring system. It
also provides feedback messages that will show how to execute these
commands in a correct way. The interface and the API are developed in the
Java language to provide more portability to other computational platforms.

LIST OF FIGURESo 1]

LIST OF TABLES ... e \%
1 INTRODUCTION ...ttt e ea e e 1
1.1 Identification of Internet appliCatioNS...........cooveiiiiiiiiiiiiii e 1.

1.2 Application Programming Interface and Graphical Interface of the DTMS-

P2P PIAIONM ... et 4
1.3 Structure of the diSSErtationoooviroiiiiiiiee e 4
2 STATE OF THE ART ... 7
2.1 Identification of Internet Applicationsccoooiiiiiiiiiiiiii e 7.
2.2 Graphical INterfaCes.........coouuiiiiiii e e 10
3 THE DISTRIBUTED TRAFFIC MONITORING SYSTEM............. 13
3.1 SyStEM ElBMENTS ... e 13
3.2 Measurement COMMANTSccoiriiiiiiiiaeesmmmmm e e e e e e e e e e e e e e e e e e e aeeeeeeeas 15.
3.3 Types of measured dataoeeeiiiiiii i e 15
3.4 Data Retrieval.........cccuviiiiiiiiii 16

4 MODULE FOR IDENTIFICATION OF INTERNET APPLICATIONS
17

o R o To] I] o1[=T 4 T=T 01 ¢= U1 o] o SO 17
411 Methodology OVEIVIEWcccoiiiiiiiie et 18
4.1.2 Parsing the TUIESoooiiii e 23
4.1.3 Configuring the CaPLUIecoouiiiiieieeee e e 24
4.1.4 Capturing and storing the packet............oeiiiiiiiiiiiii e 25
4.1.5 Classifying the fIOWScoiiiiiiee e 28

4.2 RESUIS....cooiiiiii 31

4.3 CONCIUSIONSceiiiiiiiiiiiiie ettt e e e e e et e e e e e et e et et et et e e e e e et e eeeeeeeenenenenes 35

5 APIIMPLEMENTATION ...t 37

S0 R [o1 o o [FTod 1o o R URPPPPP PPN 37
5.2 AP FUNCHONANTIEScciiiiieiii i 38
521 Change of the status of the client ... 38
5.2.2 Visualization and changing of the client#i8gScooevviiiiiiiiieeeneens 39
5.2.3 Command execution functionalitycccccceeieiiiiiiieiiiii e, 9.3
5.24 Search and retrieval Of results file ... eooviiiiiiiiii e, 41
5.2.5 Listing of files of the client or of anode..............ccoooiviiiiiiiiiee e, 43
TR T @0 o Tor 1153 o] £ 43
6 GRAPHICAL INTERFACE OF THE DTMS-P2P TOOL 45
6.1 The rules of user interface designooveeiieiiiii e 45
6.2 Graphical INterfaceuuiiiiiiii e 46
6.2.1 INterface PresSentation................ e e eee et ee e eeeeeeaans 49
[T @7 o (1] (o] o RPN 68
7 FINAL REMARKS ..o 69
APPENDIX T —=APIMETHODS. ..., 71
APPENDIX 2 — INTERFACE METHODS.........cc o, 83
BIBLIOGRAPHY ... 95

List of figures

Figure 1 - Hierarchical relationship between thetegm elementscccooeeeeiiieeeen, 14
Figure 2 - File of signatures and related parameter..............cccoeeeeeviiiiieeiiiie e v eeeeees 24
Figure 3 - Capture ParameEterSc..uuucceeeeeeii e e e e e e e e e e e e eeean e e e eaaan s 25
Figure 4 - Flow diagram of the capture proCeSS..oo......uvuiiiiieiiiiiiiiii e 28
Figure 5 - Flow diagram of the classification priigeecoooviviiinieiiiiiiiiiiieees 30
Figure 6 - Flow diagram of the classification prege............c.ceeeeiiiiiiieeee e s 31
Figure 7 - Hierarchy of the APl and the calling Bationc.coeeeiiiiiii e s 37
Figure 8 - Use Cases diagramM.............oicemmmmmeeennieeeeiiiieee e ee e e e eeee e eeeanaaeeennan s 38
Figure 9 - Flow diagram of the method value_chafiged.................ccciiiiirinnnnn.n.. 42
Figure 10 — Communication HierarChycccoooeiiiiiiiiciiii e 47
Figure 11 - Main Frame of the INnterface ... 49
Figure 12 - Block diagram of the interface’s tabs.............ccoooveiiiiiiiiiiice, 50
Figure 13 - Block diagram of the Menu bar..............oiiiiiiiiiiiiiii e 51
Figure 14 - Message box indicating that the clieag been disconnected from the network
... 52
Figure 15 - Window showing the various client pagtens.................cccceeeeeeveeeeeennnn. 53.
Figure 16 - Selection of the node to execute a can@L..................cceeviieeeiiiniieeeesinn 54
Figure 17 - List of restrictions associated to piveg command..............cccoeeeeeiviiieieennnnn.n. 55
Figure 18 - Message indicating that the node doésupport the command 55
Figure 19 - Message indicating the conclusion efdbwnload of the results file 57
Figure 20 - Message illustrating the usage of tmaroand.................coooovviiiiiiiinneees 51
Figure 21 - Selection of the type of search toquemf...............ccoooiiiiiiiiiiiii e 58
Figure 22 - Table presenting the search resultS............ccccooviiiiiniiiiiiei e, 59

Figure 23 - Message indicating that the clientddesady downloaded the file................. 59

Figure 24 - List of files the ClIeNt OWNS.coocuiiiiiii e 59
Figure 25 - List of files 0f @ NOAEovveeiiiiii e 61
Figure 26 - Frame showing the network represemtatio..............cc.ccceeveiieiiiiineeennnn. 62
Figure 27 - Flow diagram of the process of the XW...............coeeiiiiiiiiiiiiiin e 64
Figure 28 - Flow diagram of the procedure for thgresentation of the network 66
Figure 29 - Representation of a network with vasielements connected 67
Figure 30 - Representation of a second network feitrer elements connected 67

List of Tables

Table 1 - Characteristic signatures of the diffe@tocols............ccccceeeviiiiieiiiinnee. 23
Table 2 - Dimension of the captured traCeS. .ccu.ceeeeviviie i, 31
Table 3 - Classification results 0btaiNedccccoooovvieiiiiiiii e 32
Table 4 - Statistical information about correctigssified flows..............ccccvviiiinnn e 33
Table 5 - Statistical information about misclagsifor unclassified flows........................ 33
Table 6 - Number of packets needed to classifySIOW...........c.ooeuiiiiiiiiiiiiiiiii e 35

vi

Chapter | - Introduction

1 Introduction

The emergence of new protocols raised the needaforexact study of the
characteristics of these new kinds of traffic. Ne@thodologies were created to identify
these applications, since the previously used igoks (namely port-based analysis,
which was the most used one) became no longer aecustatistical analysis of the
properties of the generated flows and inspectiorthef packets payloads. This thesis
presents a module for identification of Internefffic based on packet payload inspection,
since we believe this technique presents some #alyes over statistical analysis. Section
1.1 will present an introduction to all the aboventioned methodologies, along with an
explanation of their advantages and disadvantages.

The identification module will be integrated in @asurement network with a peer-
to-peer architecture (called DTMS-P2P platform:tilisited Traffic Monitoring System
with a Peer-to-Peer architecture) that is being ettged at our research group
[Salvador2005], [Veiga2007], [IT2007].

The second part of the dissertation consisted emdévelopment of an Application
Programming Interface (API) for the DTMS-P2P platfiothat is intended to allow
multiple modules to interact with the mentionedtfolan. As a means for testing this
implementation, a graphical interface was creatddchv uses the mentioned API to
communicate with the monitoring system. This irdedf was also proposed for replacing
the command line interface. It is also intendetefwresent an intuitive and simple interface
that can perform all the different measurementdakle platform is able to execute in a
faster and more intuitive way. The interface wiladisplay general messages in order to

advise the user on how to execute each chosen codimahe most appropriate way.

1.1 Identification of Internet applications

Over the last few years we have withessed a mamrease in the number and
variety of Internet applications. From a set of famd known protocols, we have evolved
to a very large number of unknown applications andlentified traffic. Therefore, an
exact analysis and identification of Internet tiaffs essential to acquire a precise
knowledge of these emerging applications and is <al to several network related

activities, such as security and Quality of Serypcevision. Traffic studies can be also

Page 1 of 98

Chapter | - Introduction

very useful to Internet service providers that aaa the obtained results to supply better
service levels to their costumers and propose nafifilg plans. Besides, some
applications are bandwidth-expensive and can leambmgestion problems that will result
in unsatisfied clients. Therefore, ISPs and enisgprmust have the possibility to block or
provide less bandwidth to a certain type of traffilnowing which applications are
generating traffic and occupying bandwidth and otietwork resources is of inestimable
interest for network administrators that can usehsinformation to plan network
resources. From a social point of view, this stwhn also identify new emerging
applications, mainly peer-to-peer and multimediaahing applications, and communities
of users.

All the above mentioned tasks require the ability gerform exact traffic
classification. However, there are some obstacles/ércome: some packet headers don’t
include enough information to enable an exact #flaaton and some applications use
arbitrary ports and encryption. Several approadtaa® been proposed to deal with these
difficulties, like for example port-based analysgtistical and payload analysis. Each one
of these techniques has its own advantages andivdistages.

On an early-stage, classification was based opdhis to which packets were sent
to or received from. It is known that some applmas use only reserved and well-known
ports to communicate: for example, HTTP uses pori@d DNS uses port 53. Having this
knowledge in mind, the technique was based on ttemmation of packet headers,
specially the communicating ports. The next stepsisbed on associating the traffic of a
determined port to a certain application. Howewis process can lead to traffic
misclassification and has proved itself to be wttmorthy because nowadays many
emerging applications, such as peer-to-peer prtgpeoice or video transmission over IP
networks, use ephemeral ports. Besides, applicatioay try to disguise themselves by
using ports that are usually associated to othplicgtions in order to bypass proxies or
firewalls. Thus, nowadays we cannot say that aipguort is associated only with traffic
generated by a certain application.

A second technique was used to overcome the bmrneposed by port based
classification: the study of the statistical prdjger of each traffic flow. This technique is
based on the fact that different applications gateedifferent traffic patterns. For example,

a HTTP browsing generally does not generate as ntadfic as a FTP file transfer.

Page 2 of 98

Chapter | - Introduction

Moreover, applications may also be distinguishedetdaon the traffic direction. As an
example, FTP data traffic is only in one directiovhile instant messaging applications
generate traffic in both directions. As this tecjug is more accurate, it has also its own
disadvantages: it is able to identify the type mblacation that generated the traffic but not
the exact application/client. Classification casoabe erroneous due to applications that
possess similar statistical properties.

The last approach is payload analysis. This tectenapnsists on the analysis of the
packet's payload and is based on the fact that rapplications use particular signatures
in their packets. These signatures distinguish eaidtocol from the others. Thus,
analysing the packet payload and finding theseadheristic strings can lead to a very
precise identification. This method, like all prewsly mentioned methods, has its
associated disadvantages: access to user’s pagdmale very difficult due to privacy and
legal issues and some protocols use traffic enionyptaking payload analysis useless. An
additional barrier is the lack of reliable and #aale protocol specifications for all those
non-standardized and still evolving protocols. Hesj there are several client
implementations for the same protocol and somd@itdo not follow the specifications
stated in the officially available documents.

This thesis will present a module for Internet ficafdentification using payload
inspection. Our methodology involved the invesiigat of available and reliable
documentation about the different protocols in orde identify their particular
characteristics and behaviour and the examinatfoeeweral packet traces in order to
confirm the obtained information or discover newevant information. The main
requirements for this approach to be efficient are:

» The used signatures must be accurate and lealb¥oraisclassification rate;

* Low overhead, in order to allow for a quick searcheal-time captures;

» Allow identification in the first packets.

The proposed module was presented in the MCSISe@emde 2007 [Rocha2007].

Page 3 of 98

Chapter | - Introduction

1.2 Application Programming Interface and Graphical
Interface of the DTMS-P2P platform

The second part of this thesis proposes an AppitaProgramming Interface
(API) for the DTMS-P2P platform and a graphicaknfiace to the mentioned peer-to-peer
measurement network.

The APl was implemented to provide a means for camiocation with the DTMS-
P2P platform. Therefore, modules which may neddttract with the mentioned platform
can use the mentioned API to achieve it.

The graphical interface was implemented as a miaresting the API as it will
send the necessary messages to the platform intordecomplish a task a user ordered to
the interface. The graphical interface was alsggaied by an urgent need to create a
simplified and intuitive interaction framework beden the user and the network.
Therefore, we believe this interface constituteslmable resource and greatly improves
the capability of the DTMS-P2P network.

Several functionalities are envisaged for the fatm. It must show the user the
DTMS-P2P network elements that are connected toéftieork. The interface must also
allow the execution of the several monitoring atsian any of the system probes and the
immediate retrieval of the measurement data flesecond functionality of this interface
is to allow the search of measurement data fileg #re stored in the system in a
distributed way, present them to the user in aablétway manner and, again, allow the
download of the selected file(s). The interface tralso display the files the client has
already downloaded. Moreover, changing the cliesttirgs and the operations of
connecting and disconnecting from the network sthaiso be enabled and configured
through this interface.

As a part of the interface, a graphical represemtaof the network is also
presented. The different monitoring network elerseate represented along with the

connections between them.
1.3 Structure of the dissertation

This dissertation is organized as follows: Chag@eaoresents the state of art on
traffic identification tools and graphical userarfaces, which are the two main modules

that have been developed in this Master thesisptéh& presents some concepts related to

Page 4 of 98

Chapter | - Introduction

the DTMS-P2P platform; Chapter 4 shows the detaflghe implementation of the

identification module and presents the main resolitained; Chapter 5 introduces the
implemented API and its several methods; Chaptaesents the graphical interface of the
DTMS-P2P network, showing its different possibégiof interaction with the user and,

finally, Chapter 7 presents the most relevant agichs of the developed work.

Page 5 of 98

Chapter Il — State of the art

2 State of the Art

This section presents the state of the art regarttaffic identification tools and
graphical user interfaces, which were the two nodifectives for this thesis. Basically, we
will list, for each one of these topics, the mostent studies that were made and the

alternatives that could have been used for theemphtation of the modules.

2.1 Identification of Internet Applications

A lot of studies have been made in the area ofrietetraffic identification,
proposing new methodologies and evaluating themparative accuracy. In this section,
we enumerate the most significant studies andheasame time, have tried to understand
the advantages, drawbacks and limitations of edhtification approach.

As mentioned above, port-based approach is no toagsecure and reliable
identification method because well-known ports@oeassociated to a specific application
anymore and modern applications use random porttudy conducted by Madhukar A.
and Williamson C. [Madhukar2006] tried to confirfmat this technique is no longer a
reliable one, by comparing it with other identiticea methods. Their work used datasets
from the University of Calgary campus network. Bhsa the port analysis methodology,
the unknown traffic percentage was 40-65% of thal toaffic. This study also showed that
unknown traffic was more evident at night periogdéjch might suggest that this traffic
belongs to P2P applications. On a similar study, &eal [Sen2004] refer that the default
port of the Kazaa protocol accounted for only 30Rthe total traffic while the remaining
traffic was sent on ephemeral ports. They alsoguidhie above mentioned reasons for this
trend. Another study conduced by Dewes C. et @w@s2003], that analysed Internet chat
systems, evidenced that using a port identificatibathodology it is impossible to
distinguish HTTP traffic from traffic created by athapplications running on top of the
same protocol. Therefore, a new methodology musiske.

The statistical method provides better resultfoaigh it has also raised some new
important questions. Karagiannis T. et al. [Karagia2004a] developed a technique to
identify P2P flows based on the connection patteftthough P2P applications may use
random ports or payload encryption, their traffiattprns will not change, and this

constitutes the main advantage of this techniqie. dlassification method presented by

Page 7 of 98

Chapter Il — State of the art

Karagiannis T. et al. was based on two steps. Fetedne consisted on the identification
of source-destination IP pairs which simultaneousigd TCP and UDP protocols and on
the determination of their associated ports. If iked ports were not well-known ports,
then the flows were considered as P2P. The sectmpdvgas based on the structural
patterns of the transport-layer between nodes. Gbyefor P2P traffic the number of
ports used by a host corresponds to the numbesrofected IP hosts. The results achieved
were very accurate and also provided the identiboaof unknown P2P protocols.
Although this method is able to identify P2P traffits main disadvantage relies on its
incapacity to identify a particular P2P protocohieh is a significant drawback. Madhukar
A. and Williamson C. [Madhukar2006] have also cartdd a study using this technique.
Unlike the work by Karagiannis T. et al., their @t did not contain any UDP traffic and
the TCP traffic only contained the TCP SYN, FIN &8T headers to provide connection-
level information patterns. Their methodology stdrby removing traffic of known non-
P2P applications. After this removal step, all ficathat used known P2P ports was
considered as P2P flows. Then, the number of distih addresses communicating was
calculated; if it corresponded to the number otgpéor each {IP, port} pair, then the {IP,
port} pair was classified as P2P. Their resultseyg@omising, however, as they claim, no
proof of the correct classification was made ay tiid not have any packet payload. New
limitations appeared in this work: port masquergdimould not be detected as the
approach used a list of standard ports for filgripurposes. This heuristic is also
ineffective in the case of one IP host that is camizating with another IP host using only
one port. Many applications use this connectiontepat On one of their studies,
Karagiannis T. et al. [Karagiannis2005] presenteatifferent approach to achieve traffic
classification. Their study was based on identdyiraffic patterns of host behaviour at the
transport layer. They analyzed these charactesiatithree levels: the social, the functional
and the application level. At the first level, thehaviour of a host was captured by
studying its interactions with other hosts. At thenctional level, they studied the
behaviour of a host based on its role in the ndtywwhich consisted of analysing if it acts
as a provider or a consumer. At the functional llekests were examined based on the
transport layer interactions on specific ports. réf@re, hosts were associated with
applications. With this methodology, they suggedteat observing the activity of a host

provides more information and can evidence the tyfpapplications the host is running.

Page 8 of 98

Chapter Il — State of the art

The results were very precise in classifying thgomity of the captured traffic. However,
their work also suffered from the above explairigdtations.

Using the statistical properties, it is also paestb distinguish traffic through the
use of clustering technigues. Erman J. et al. [B2086] use two unsupervised algorithms,
K-Means and DBSCAN to perform classification. Thedgorithms use unlabelled data
and group data into clusters based on similaritigadfavior. The results indicate that these
algorithms are a useful technique for classificatiDespite the ability of grouping traffic,
this method has to rely on other techniques tol fdidgeclusters.

Statistical study of traffic patterns can also ualg the use of Machine Learned
classifiers. Zuev D. and Moore A. [Zuev2005] usee supervised Naive Bayes technique
as a traffic discriminator. The results were geliergood, although they were not as
accurate as desirable in some cases. McGregor Al [@cGregor2004] used machine
learning techniques to create clusters for trafflassification. The results achieved
provided accurate clusters to classify traffic. @ other hand, Bernaille L. et al.
[Bernaille] used unsupervised clustering, as iteeelon unlabeled data samples. They
believe that unsupervised clustering is more apjatgpas it does not rely on pre-defined
classes. This is an advantage, since a singlecagiplh can have multiple behaviours that
should be separated. The results were also venyrates although some new limitations
appeared: traffic with the same statistical behawvie classified as belonging to the same
application, which is not always true; besidesffirawith unknown behaviour is not
classified. Using unsupervised clustering meth@dsder S. et al. [Zander2005] proposed
an approach to identify an optimal set of flowihtites. The results were also accurate.

A similar study conducted by Haffner P. et al [H&if2005] used three linear
classifiers: Naive Bayes models, Maxent and AdaBodls these algorithms were used
due to their learning process scalability and tligfierent and efficient implementations.
These classifiers were used to construct signatuhe@$ can be used for online
classification. The three classifiers were ablathieve low error rates, with almost 99%
of correctly classified flows.

Regarding the QoS monitoring and intrusion detecttweas many tools were
introduced. Cisco’'s NBAR (Network-Based ApplicatioRecognition) [Cisco2007]
provides application recognition by using port mgaition and packet header information

to distinguish traffic. IDSs (Intrusion Detectiorystfems) are equipped with application

Page 9 of 98

Chapter Il — State of the art

recognition modules that operate on a signaturegmtion basis through the use of
payload analysis.

Based on the same methodology, Karagiannis T. @aagiannis2004b] have
recently developed a study to identify P2P traffidieir analysis was only based on
examining the user’s payload and the results werg precise. On the first mentioned
work, Karagiannis T. et al also used payload amalgs a comparative technique to their
statistical approach and the results obtained prabat this technique achieves better
results although showing also some disadvantaghs. dccuracy of the results was
measured by the occurrence of false positives alsé hegatives. False positives relate to
traffic misclassified as P2P, while false negativeter to P2P traffic that the identifier
failed to classify. Their results had less than &f4alse positives and false negatives,
proving this to be the most correct way of identifytraffic. On a similar study, Haffner et
al. [Haffner2005] developed a technique that iseald automatically determine
applications signatures and the obtained resutiz’sti an error rate less than 1%. Sen S.
et al [Sen2004] used on their work application atgres to identify traffic. The obtained
results were also impressive and proved that #udbrtique is the most promising one to
use. Another study that can be mentioned was thy ¢ty Dewes C. [Dewes2003], which
consisted on the identification of Internet chaitpcols, such as IRC and Messenger. The
technique used was payload analysis and it missssl than 8.3% of all existing chat
connections. A. Moore and K. Papagiannaki [Mooré&0ave also used this technique to

identify traffic and the results obtained were alsoy accurate.

2.2 Graphical Interfaces

Graphical interfaces can be implemented in seygmgramming languages. In the
following lines we will be presented some of theEsguages.
GTK+ is a multi-platform toolkit used for the ctea of graphical user interfaces.
It offers a set of widgets which are suitable fomplete application suites. It is based on
three libraries:
* Glib: it is the low-level core library that formke basis of GTK+ and GNOME.
It provides data structure handling for C, port@pilvrappers, and interfaces

for several runtime functionalities.

Page 10 of 98

Chapter Il — State of the art

* Pango is a library for layout and rendering of tewith an emphasis on

internationalization.

 The ATK library provides a set of interfaces forcassibility. Through it an

application or toolkit can be used with such tadsscreen readers, magnifiers,
and alternative input devices.

GTK+ has been designed to support a range of layggpjanot only C/C++. Using
GTK+ from languages such as Perl and Python prevate effective method of rapid
application development.

Glade is a user interface-building program. It $&dito rapidly prototype GTK+
and GNOME applications. It allows an applicatiothau to dynamically add, remove, and
modify widgets and their layout. The interfacesigiesd are stored in XML format which
allows an easy integration with external tools.

Interfaces can also be implemented using wxWidgelsch is a C++ framework
providing GUI facilities on several platforms. Thdvantage of its platform-independent
class library cannot be overstated, since GUI apptin development is very time-
consuming, and sustained popularity of particulaisscannot be guaranteed. An interface
can become obsolete if it addresses the wrongophatbr audience. wxWidgets helps to
insulate the programmer from these changes. Althawg/Vidgets may not be suitable for
every application, it provides access to most efftinctionalities a GUI program normally
requires and also to network programming, PostSaipput, and HTML rendering. It
provides a far cleaner and easier programmingfaterthan the native APIs.

Using Java programming language, the Abstract Windoolkit (AWT) can be
chosen to create an interface. It is the Javar@iglatform-independent graphics toolkit
and is also part of the Java Foundation Classe8)(Jrhich is the standard API for
providing a GUI. The AWT provides the connectiortivieen the developed application
and the native GUI It offers several layout managard the interface to input devices. As
its components depend on the native counterpart8/T Acomponents are called
heavyweight componentBhis dependence brings platform specific limaas.

The Standard Widget Toolkit (SWT) is a toolkit mained by the Eclipse
Foundation. SWT's implementation has more in comnwith the heavyweight
componentof AWT. This confers benefits such as more figelitith the underlying

native windowing toolkit but it causes an increasagosure to the native platform in the

Page 11 of 98

Chapter Il — State of the art

programming model. SWT is relatively simpler thamir®, which an alternative to the
mentioned toolkits. This has led some people ttesteat SWT lacks functionality when
compared to Swing. As its components are akavyweightSWT suffers from the same
portability limitation of AWT.

Using Java, Swing appears as another alternatwengSwidgets provide more
sophisticated GUI components than the Abstract Wind oolkit. It supports pluggable
look and feel, which means that any supported lan# feel on any platform can be
shown. Swing is platform independent in both impamation and expression (Java). It
allows the custom implementation of framework ifgees through which users can
override the default implementations. Swing is anponent-based framework and its
objects asynchronously fire events and respondwelbknown set of commands specific
to the component. Swing can also respond at runtonéundamental changes in its
settings. However, its components rely on AWT cmatiss and are often described as
lightweight because they do not require allocation of natesources in the operating
system's windowing toolkit. Much of the Swing ABIa complementary extension of the
AWT rather than a direct replacement. In fact, g\@winglightweightinterface exists in
an AWT heavyweightomponent.

As the DTMS-P2P tool was implemented in Java, ldnguage was chosen for the
accomplishment of the interface because some ofedmurces and classes of the DTMS-
P2P platform need to be used for a correct intEnadbetween the interface and the

network. For all its advantages, Swing was choeethis implementation.

Page 12 of 98

Chapter Il - The Distributed Traffic Monitoring Stem

3 The Distributed Traffic Monitoring System

The Distributed Traffic Monitoring System with a déPdo-Peer Architecture
(DTMS-P2P) is a versatile, scalable and easily meahble traffic monitoring system based
on a P2P hierarchical architecture [Salvador200h]s system can be used to perform
both active and passive measurements. Given tlatrtbnitoring elements may have
different computational resources (e.g. processeggbilities, storage space or network
connections) and the availability of those resosircey vary drastically over time, the
DTMS-P2P tool was implemented with a totally distited hierarchical architecture
similar to Gnutella 0.6. The adoption of a P2P aeciure allows high tolerance to failures
and distributed storage of measured data. Thistaattire is also advantageous for traffic
monitoring in wide area network environments. Maep access andjuerying of

measured data can be performed using traditiorRlfiR2sharing schemes.

3.1 System Elements

The system consists of two main entities: the prahd the client. The probe
performs the measurements and stores the reshiésclient is the interface between the
monitoring system and the user. It is used to gomé the system (e.g. configure the mode
of the probes, request the list of probes in a omeasent group, etc), configure the
measurements and retrieve the measured data. Rrabasin multiple software modules
and are responsible for their integration in the P&tform.

To improve the system scalability, probes are amghin groups and each group
is responsible for monitoring a particular netwatea. Within a group, one or more
probes, called super-probes, are responsible fontrabng other probes and
communicating with other groups. The super-proleeneht has the same definition of the
Ultra-peer element of the Gnutella network. Theestygrobes are probes with enough
available resources (CPU usage, free memory, statagacity, etc) that can be used to
control other probes. A monitoring element canralite between both modes of operation
in order to adjust to different network conditiomsid resources availability. These
elements can run tests measurements. Figure lsespsethe hierarchical relationship
between the system elements.

Page 13 of 98

Chapter Il - The Distributed Traffic Monitoring Stem

Groug 1

Supet-probe 1 1

Groug 2
Groug 3

Supet-probe 3 1

Supet-probe
22

Figure 1 - Hierarchical relationship between the sgtem elements

Groups are identified through the use of a uniduedlled Group ID. This value is
assigned to each node before it is initiated.

All network elements (probe, super-probe or cliemt)st keep a list of known
nodes (probes and super-probes) in the networls [8tiis used in the connection setup,
when a node is trying to connect to the networkoBestarting an element, the network
administrator must provide it with this list of radddresses. For example, this list can be
supplied through a file (node cache file).

The system should guarantee connection to any caalgected to the network. The
probes keep only one connection active, the coiorecto a super-probe of its
measurement group. All super-probes should bedoterected. A super-probe acts as a
proxy to the monitored network for the probes ta connected to it. This configuration
guarantees scalability of the network by reducimg number of network nodes that are
involved in message handling and routing, as welreducing the actual traffic among
them.

A client can connect to any super-probe of any grmuobtain information of the
entire monitored network. This information can tsedi to configure measurements at any
probe and to retrieve their results. Thus, acceshd monitoring system is completely
distributed. Besides, a client can connect to 1o obtain the address of a super-probe
to which it should connect. The addition of a newhe to the monitoring system should
be transparent: the probe connects to a super-pnothés automatically integrated on the
network.

The DTMS-P2P system should support any monitorygjesn. When running a

node, the network administrator must specify whigbnitoring systems the node will

Page 14 of 98

Chapter Il - The Distributed Traffic Monitoring Stem

support and with which restrictions. Different mtoning systems may have different
restrictions regarding their running mode or ports.

Nodes must store the results of all scheduled meamnts in a file (heavy data
file). Thus, for each configured measurement sastiere is a heavy data file with the
measurement results. These files are stored atdtie that created them and are possibly
replicated at other nodes (super-probes includ€dg replication improves the system
reliability, since data can be retrieved even i thode that made the measurements
becomes inactive or inaccessible. The search anéva methodologies for measured

data that is stored at the nodes are similar toties used in P2P file sharing applications.

3.2 Measurement Commands

The DTMS-P2P system is used to configure and erea@itany element of its
network, any monitoring command. These modules rhasihstalled at the remote node
and will be used to perform the measurements.

In this network, the client is the interface tanfigure the measurement modules
installed at the nodes. Through it, a user can shdloe module he wants to use and which
measurement should be done. Also, the client nllustrate to the user how to configure
the command. To achieve this, the client requestsd remote node the restrictions of the

command.

3.3 Types of measured data

In the network there are two types of measured filag light data and heavy data
files. The first one stores the system parameterdgs addresses) and statistics (round trip
time - RTT) related to each group. This file is gexted periodically by each super-probe
and is broadcasted to all super-probes of the mktwite file comprises the RTT statistics
between a super-probe and all the other elemenits sheasurement group and all the
other measurement groups connected to it. As tbeofily contains the RTT statistics, it
provides a coarse view of the network. Any cliemmmected to a measurement group can
request the file to its super-probe.

The heavy data file stores the results of all mesasants and can include packet or
flow information, and various statistics related ttee command. Therefore, for each

configured command there will be a heavy datawvili its results. The file is stored at the

Page 15 of 98

Chapter Il - The Distributed Traffic Monitoring Stem

node which generated it and can be replicated laratodes of the same measurement
group or other measurement groups. This replicatiggroves the system’s scalability as

the heavy data file can be downloaded even if thdenwhich generated it becomes

inactive or inaccessible. A download can also beenefficient if it is simultaneously

made from multiple sources that store the file.

3.4 Data Retrieval

A user running a client element is able to retrighie results of previously
configured test measurements. A user is also algettthe results of previously performed
test sessions that are shared between any elemwietiie DTMS-P2P network. To gain
access to these results the user must performrahseathe network to discover where
they are stored.

To perform a search a client must first send aeasqto its super-probe. This super-
probe will then broadcast the received messagdl super-probes connected to it, in the
case of a global search. Any super-probe receithiggrequest must forward the message
to all nodes they are connected to. In the casel@tal search, which is only performed on
the node’s measurement group, the super-probe $kadequest to all connected nodes.
In both cases, the nodes sharing files which satief search criteria must answer to the
request. After receiving the responses to the bBeacammand, the client presents the

results to the user and then he can choose whéshtéi download.

Page 16 of 98

Chapter IV - Module for Identification of InternApplications

4 Module for identification of Internet Application S

This chapter presents and explains the implementedule for capturing and
identifying traffic using the payload analysis nmdh This technique was adopted as we
believe it is the most accurate methodology. Thesiged tool attempts to identify traffic
only through payload analysis, does not look atubed ports and also does not pay any
attention to the statistical properties of the uegd flows. With this methodology, we can
reach very accurate results.

The identification tool relies on a database ofrabgeristic signatures that will
permit the identification of the various protocolsalso allows users to write their own
rules for traffic detection, which makes it adap¢aio new emerging protocols.

The proposed methodology has some advantageshmvettters, such as:

e It can identify applications that use ephemeraltpaor try to disguise

themselves through the use of reserved ports;

* |t allows the identification of flows with similatharacteristics;

* It permits the identification of the client thatrggates the traffic;

» It identifies traffic based only on the first patkef the flow.

An important advantage of this tool is its scal@pilas there is no limit for the
traffic identification capability as new rules che easily added, thus adapting to new
protocols. The rules are written in a simple fornvath a set of parameters that are vital
for the payload inspection: the rules enable ingpeavithin a chosen range of the payload
and also allow for the search of characteristings in hexadecimal format.

The tool is intended to identify all kinds of traff provided that the corresponding
rules are available. It was not designed to idgraifrestricted set of protocols, but all
applications a user may wish to identify. The depeld module can also be incorporated at
any probe of a totally distributed monitoring ptath that is being developed at our
research centre.

4.1 Tool Implementation

The implementation of the classifier involved marhases. The first is the rules’

processing which are passed to the program inea Tihe second phase is the session

Page 17 of 98

Chapter IV - Module for Identification of InternApplications

configuration, which consists in processing somep&ters selected by the user (these
parameters will be described later). The next phamaprises the initialization of all
structures that are needed to capture packetshanditialization of the capture itself. The
next stage is the classification of flows, whichhased on the pre-established rules. This
sub-section will provide an overview of the methlody and the subsequent explanation

of all the phases.
4.1.1 Methodology Overview

The proposed tool captures traffic and groups tib iitows using the five-tuple:
Source IP Address, Source Port, Destination IP @skjrDestination Port and Higher-layer
Protocol. Flows are saved into a hash table far lahalysis. This hash table will contain
several informations about the flows:

* number of packets;

* minimum, average and maximum packet size;

* minimum, average and maximum packet inter-arrivaét

» source and destination IP addresses;

» source and destination ports.

The inter-arrival time is defined as the periodiofe elapsed between the sending
of two consecutive packets in the same directiomwéier, these values will not be used
for flow classification.

The classification process is implemented durirggadhapture. The identification of
the underlying protocol and application is achiewbtbugh the use of a database of
distinctive strings that are passed through adfstules. This list is created when the
program begins. These are the characteristic striglgted to a protocol, which are usually
carried in the beginning of the payload and distisges it from all the others. As an
example, most Gnutella packets carry in their paylthe string “Gnutella”, differentiating
undoubtedly this protocol from all others. Thistf@ompelled us to investigate a set of
protocols and applications in order to determinehgaarticular digital signature. A series
of applications were chosen, followed by a studythedir characteristic traffic. Payload
inspection was done and some signatures were datzmin the following paragraphs

some of the studied protocols will be enumerated.

Page 18 of 98

Chapter IV - Module for Identification of InternApplications

* MSN Messenger
The MSN Messenger network is an instant messagietgvark created by
Microsoft and is one of the most used messagingces [MSN2007]. A client must first
connect to the server to the get access to theonletwA series of packets are sent to
perform registration. After gaining access, themliis able to communicate with other
connected clients. After capturing and studyingtth#fic generated by this protocol, some
of the identified strings were: “VER”, “CON",” NLN"“BYE”", “XFR”, “FLN", “USR”,
“JOI", “CAL", “"MSG” and “PNG”".
* Yahoo Messenger
This protocol is used by the Yahoo Messenger imstaessaging clients. The
messages of this protocol always begin with thegoa name, “YMSG”. However, if the
application is placed behind a firewall or a prossrver, HTTP routes are used and,
consequently, we will have HTTP requests and resgoimstead of messages with a string
in the payload. These known requests are usedpfonding messages from the client and
for downloading all messages which have been stioréak server. In this case, the client
stays connected until it fails to send a request docertain period of time. The
identification of this protocol relies on these mi®nal features.
*+ ICQ/OSCAR
This protocol is used in the instant messaging famogwith the same name
[OSCAR2007] ICQ wuses the FLAP protocol to facilitate datagramemted
communication between clients and servers. Thdifd=tion of this protocol can be done
when a client sends an “HTTP GET” message to tiigd@roxy. This message carries the
“login.icq.com” string in the payload, allowing itketection. Besides, flows are identified
through the FLAP ID byte, which takes the value ®xhd is always placed at the
beginning of the payload.
* RFB
The RFB (Remote Frame Buffer) Protocol is usedrémnote access to graphical
interfaces [Richardson2006]. Connections in thistgmol begin with a handshaking
between both elements in an attempt to agree ipith@col version to use. It starts with
the server sending the highest version it suppootsyhich the client replies with the
version that should be used. The packets exchangbi phase have, in their payload, the

string “RFB xxx.yyy\n”, where xxx and yyy are theajor and minor version numbers.

Page 19 of 98

Chapter IV - Module for Identification of InternApplications

« SQL
The SQL (Structured Query Language) Protocol isldee database management
systems communication that takes place betweervarsand a client. The messages used
for identification are “SELECT DATABASES” and “SHOWATABASES".
« SIP
SIP (Session Initiation Protocol) is an applicatiayer signalling protocol for
creating, modifying and terminating multimedia sess over an IP network [SIP2007].
SIP packets carry, in their payload, some strifgs tan be used for identification
purposes: “OPTIONS”, “REGISTER” and “SIP”.
« H.323
This is a standard protocol for multimedia commatians that was designed to
support real-time transfer of audio and video datr packet networks, like IP [IEC2007]
[Jawin2007]. The standard involves several diffefgotocols covering specific aspects
of Internet telephony: H.225 RAS is intended tovide registration and authentication
services between clients and gatekeepers (enthiEsare responsible for managing a
group of terminals and gateways); H.225 call cdniso used for establishing and
configuring connections between endpoints and eseat reliable TCP channel for
multimedia sessions; H.245 provides end-to-end robmhessages between endpoints.
Both H.225 and H.245 have, in their payload, afedlled Protocol Identifier that will be
used for identification.
« HTTP
Hypertext Transfer Protocol (HTTP) is the networfotpcol used to transfer
information on the World Wide Web (WWW). It is basen a client-server architecture
and follows a request-response model. The “HTTP2ZDAA OK” message was the only one
used for identification because, as we will seerlamany applications use HTTP
messages. So, our methodology first analyzes allRHdllke messages in order to verify if
they belong to any application different from HTTiPthis is not the case, the flow is
classified as web browsing.
* NetBIOS
NetBIOS protocol allows applications running on feliént computers to

communicate with each other. Detection of this grot is based on the NameQuery field

Page 20 of 98

Chapter IV - Module for Identification of InternApplications

of the UDP packets. This field is located on thedtbyte of the payload and takes always
one of two possible values: 0x0110 and 0x110a.
» eDonkey

The eDonkey network is populated with servers dmhis. Clients connect to one
server to get network services and this conneajmerates as long as the client is in the
system. Servers do not communicate with each o#imel perform general indexing
services. A client uses one TCP connection to wesén order to get information from it
regarding desired files and other connected clielgsservers do not store files and files
are broken into chunks, clients can use severataxtions to other clients to upload and
download. This means that a client can downloatkmint pieces of the same file from
different clients [Kulbak2005]. After analyzing ebBkey packets, we have discovered that
every packet includes a characteristic string eqoaDxe3 immediately after the TCP
header.

* Gnutella

The Gnutella network follows a P2P decentralizeddehowhere every client can
be simultaneously client and server [Gnutella200Hese are callegervents or gnodes
and can perform both client and server tasks: fneyide interfaces through which clients
can issue queries and view search results anchatspt queries from otheerventsAs a
result of its distributed nature, the network witit stop working if one or momerventgyo
offline. A session begins whenserventconnects to another by sending the following

message to advise its presence and requestingatamme
GNUTELLA CONNECT/ <protocol version string>\n\n

The receiver of this message then replies with rieet message accepting the

connection and returning a list of currently acsesvents

GNUTELLA OK\n\ n
Once aserventis connected to the network, it communicates wdth other
connectedservents sending the first message all over the netwoHe Serventsreply to
this message sending a Gnutella packet about tidmen a file is found and chosen for
download, a separate HTTP session is establishieebr the client and the host of the

resource. Theerventhat wishes to download the file sends a HTTP eack

Page 21 of 98

Chapter IV - Module for Identification of InternApplications

GET /get/<File Index>/<File Name>
/HTTP/ 1.0 \r \n

Connection: Keep-Alive\r\n

Range: byte=0-\r\n

User- Agent: <Nane>\r\n

\rin

A note should be made: if théserAgenffield is captured, an identification of the
client is also possible.

Our methodology for identifying of the messageshig protocol was based on the
fact that the TCP payload should begin with thingtfGNUTELLA”. When receiving
HTTP messages, théserAgentfield should also have the same string or the nafthe
used client.

» Direct Connect

In the network created by this protocol there arsh clients and HubListServer
Hubs are central servers to which clients connéets, implying a centralized network.
Hubs also facilitate communication between cliemtd give information about them while
responding to file searching queries. All hubs rexgistered on thélubListServerwhich
then acts as a name service. Clients discover hylasking theHubListServer Clients
also store files and respond to search queriethfize files. When a file is requested for
download, communication is established directlywaen the involved clients in a true
P2P fashion. In our study, we have noticed that ¢ commands always have the

format:
$command_type fieldl field2 ...|

The command type field can be one of the followifigogedin”, “Key”,
“MyNick”, “Lock”, “Direction”, “FileLength”, “HubName”, “Send”, “Get”, “Canceled”,
“Validate”, “GetPass”, “MyPass”, “Hello”, “MyINFO”,“GetINFO”, “GetNick”, “Nick”,
“OpList”, “MultiConnect”, “Connect”, “Rev”, “Kick”, “SR”, “Search”, “OPForce”,
“ForceMove”, “GetListLen”, “ListLen” and “MaxedOut”

» Bit Torrent

The network created by this protocol comprisesntéieand a central server that
coordinates actions from all clients and does retehany knowledge about the files’
contents [BitTorrent2007]. Servers do not search fies; clients browse the Web

searching for a torrent file that contains the rata about the file. The philosophy of Bit

Page 22 of 98

Chapter IV - Module for Identification of InternApplications

Torrent also relies on breaking files into chunks distributing them among users. Users
who download a torrent file are also uploadingoithe remaining clients [Bit T., 2007].

The signature used by this protocol is:
<0x13><Bit Torrent protocol >

Table 1 resumes all the gathered characteristicatiiges that were enumerated

above.
Protocol Signature Transport
protocol
MSN Messenger| “VER”, “CON”,” NLN”, “BYE", “XFR”, “FLN7, TCP
“USR”, “JOI", “CAL", “MSG”, “PNG”
Yahoo Messenger“YMSG” TCP
ICQ Ox2a TCP
RFB “RFB xxx.yyy\n” TCP
SQL “SELECT DATABASES”, “SHOW DATABASES” TCP
SIP “OPTIONS”, “REGISTER”, “SIP” TCP/UDP
HTTP “HTTP/1.1 Get” TCP
NetBIOS 0x0110, 0x110a UDP
eDonkey Oxe3 TCP
Gnutella “Gnutella” TCP
Direct Connect “$Logedin”, “"Key”, “$MyNick”, “$LoK”, TCP
“$Direction”, “$FileLength”, “$HubName”, “$Send’}
“$Get”, “$Canceled”, “$Validate”, “$GetPass/,
“$MyPass”, “$Hello”, “$MyINFO”, “$GetINFO”
Bit Torrent “Ox13BitTorrent protocol” TCP

Table 1 - Characteristic signatures of the differehprotocols

4.1.2 Parsing the rules

As mentioned above, a database of strings is st the application. This
consists of a file with all signatures that must identified and a series of related
parameters that will determine the way the packed\doad should be observed. The file

and some of the rules are shown in Figure 2.

Page 23 of 98

Chapter IV - Module for Identification of InternApplications

B rules - WordPad g@@
File Edit View Insert Format Help

N H SR M o B

tocp offset: O depth: 2 content: "VER™ messenger -
top offset: 1 depth: 10 content: "Bit"™ Bit Torrent

top offset: 3 depth: 15 content: "30L"™ 30L

toep offset: 0 depth: 0 content: TANS™ messenger

tep offset: § depth: 2 content: "205.185.10.14% icg

udp bytes: 2 offset: 0 depth: 0 content: |11 0Oe| nethios

top offset: 100 depth: 50 content: "LiwmeWire™ Limewire

top offset: 0 depth: 2 content: "M3IG" messenger

top bytes: 2 offset: depth: O content: |11 Oa| netbhios

top offset: 0 depth: 2 content: "YM3IG" vahoolMessenger w
Far Help, press F1

Figure 2 - File of signatures and related parameter

The parameters are:

Protocol: the transport layer protocol used in lRecommunication (TCP or
UDP). Search is only performed in the packets thaich the selected protocol.
Offset: from where to start the search in the pagyloThis value is written in
bytes.

Depth: defines until which byte the search will gegformed. This parameter,
together with the offset, allows the examinatiorited payload within a chosen
range of bytes. This will lead to a quicker and enaccurate examination of the
payload.

Content: the characteristic string to search fdrisTcan be written in ASCII
format or in hexadecimal, since some signaturesalsein this format.

The last parameter is the message to print whetifidation is achieved.

A structure is created to store all the informatiegarding the rule and all rules are

parsed together to form a linked list. This listlwie used each time a new packet arrives

and a continuous search is made in its payloadrdicgpto the parameters that are stored

on each element of the list.

4.1.3 Configuring the capture

The user is urged to configure certain parametetiseocapture. This configuration

is made through a file. Figure 3 shows the capgtarameters.

Page 24 of 98

Chapter IV - Module for Identification of InternApplications

B conf_file - WordPad
File Edit Wiew Insert Format Help

D2 Hd &k # ® i
K

#[timeonut]

#The interval of time for a flow to expire [(in ms)
#

interval 20000

#

#[length]

#The number of bytes to save

#

Length 25

#

#lotart_time]

#time to start the relative statistics (in ma)
#

time_start 5§

#

#lend time]

#irime to end the relative statistics [in ms)
#

time_end 117

For Help, press F1

Figure 3 - Capture parameters

These parameters include:

* The interval of time for a flow expiration,

» The number of payload bytes that must be captured,

* The time instants for starting and ending the ctitbe of relative statistics for

each flow, in milliseconds. These statistics arkateel to the chosen time

interval.
4.1.4 Capturing and storing the packet

As previously mentioned, each time a new packetesrits payload is examined.
Besides, packets are grouped into flows and thaore by using a hash table. Elements
are saved in this table using a key that identiffemm and allows for the search of a
particular flow in the list. This table stores ekmms of theflow structure type. Each
element saves the following information:

» Statistics concerning the incoming and the outggiagkets. This information
contains the number of packets sent, the maximuminmam and average
packet size, the maximum, minimum and average -mtéval time and the
time the first and the last packet arrived;

* Information concerning the five-tuple (Source IP déess, Source Port,
Destination IP Address, Destination Port, HighgelaProtocol);

Page 25 of 98

Chapter IV - Module for Identification of InternApplications

* A string containing the name of the file where taptured payload was saved,;

* Flags indicating if the FIN flag of the TCP connentflow has already been

seen, if the flow can be erased and if the flowleen classified;

* A pointer to the list of rules;

* Integers indicating the number of packets with pasgil which have been

captured and the number of packets analysed.

A second linked list of elements of the type swwetflow is constructed and
elements are inserted each time a new flow arriwbdéch occurs when no match in the
hash table is found. The reason for maintaining sieicond list is to have an exclusive list
the program will examine and consequently will ms# erase elements according to the
results of the classification process. It shoukbdle noted that the hash table stores all the
information concerning the flows statistics, inf@tion that will be presented at the end of
the capture. Therefore, no element can be removed.

The linked list is constructed as follows: theftfisrived flow will be located at the
head of the list and each time a new flow arrivés placed on the next position. When the
first element is classified, this flow is eraseanfrthe second list to avoid being processed
again, and a new head of the list is found in tet ®lement. This process finishes when
all the flows are classified. In the case of haviluyvs which were not classified, the
application finishes the process when all flowsiexp

The capture process starts by performing a seardhe hash table each time a
packet is captured. If no match is found in theg, Imeaning that a packet from a new flow
has arrived, a new element is created and inseéntdzbth lists mentioned above. The
variable in the structure that stores the startinge of the flow registers the capturing
instant time of this packet and the remaining elesiare initialized. The file where each

captured payload will be saved to is created vhighfollowing name:
Sour cel PAddr ess Sour cePort <->Desti nati onl PAddress Desti nati onPort

Besides, the structures where the statistics ajnmieg and outgoing packets will
be saved are created and initialized.

For the case of a packet that belongs to a flowhha been already instantiated,
the corresponding statistics are actualized with playload size and inter-arrival time

values.

Page 26 of 98

Chapter IV - Module for Identification of InternApplications

The following step consists of saving the payloadhte corresponding file. This
only occurs if the maximum number of packets wittylpad has not been captured yet.
This is done since only a limited number of packeeeds to be saved to achieve
classification. Moreover, saving all packets witaylmad from a flow would be very
expensive in terms of time and resources and, asilveee later, most of the saved data
will not be read due to the fact that classificatis achieved using only the first packets.
Also, only a limited number of bytes, chosen by tlser, are saved to the file. At this
stage, we perform an examination of the payloadreedleciding how many bytes will be
saved. If the packet corresponds to an HTTP Gesages then 200 bytes of the payload
are saved. This amount of bytes was chosen sinog P2P protocols request downloads
of files using this message. Therefore, this packet be misclassified as an HTTP flow
when it is associated to a P2P flow. In this cadeigger number of bytes must be saved in
order to identify the client that made the requéhkts will allow a differentiation between
the indicated protocols. If the packet does notrespond to the stated message, the
number of bytes indicated by the user is saveds rbcedure continues until the
maximum number of packets with payload has beetuoagh the flow has been classified
or the flow has expired. This occurs after the guiof time defined in the configuration
process passes. When capturing packets, the tapsesl since the starting instant of the
related flow is determined and if this value ishwit the values chosen by the user the
related statistics are updated. The state diagreowrs in Figure 4 illustrates the capture
process.

Page 27 of 98

Chapter IV - Module for Identification of InternApplications

Does the
packet belong

Update the statistics relative to the flovD
to a new flow?

(Create element and insert it in the hashtable and in the list of flow%

!

Gpdate the statistics relative to the flow

Does the
packet have
payload?

[Save payload to the corresponding fila

!

(Update elements in the structura

Wait for a new packet

Figure 4 - Flow diagram of the capture process

4.1.5 Classifying the flows

After processing all rules and configuring the s@ssthe capture of packets
begins. At the same time, a thread is launchedassify the captured flows. The address
of the head of the list of flows is passed to thigad. Then, the thread waits until enough
packets with payload have been captured and sitertdassification process.

The process initiates by verifying if the analy$fiedv has already been classified, if
the FIN flag of the TCP flows has been captured iiadl captured packets with payload
have been read. In this case, the flow is erased the linked list and the new head is put
on the next element or simply a connection betwberpreceding element and the next is
performed. Otherwise, the flow will be analyzedisTanalysis starts by checking if there

is any packet from the flow that has not been eranhiyet. In the structure that stores

Page 28 of 98

Chapter IV - Module for Identification of InternApplications

information related to flows, there are fields tivadicate how many packets have been
captured and how many have been processed. liktthie case, the corresponding payload
will be evaluated. The integer that contains thenber of packets read from the flow is
updated to avoid a second processing of this stiiingn, the file with the name of the
flow, contained in the structure, is opened and dtieng of the related packet is read.
Subsequently, a new function is invoked and willifmen a comparison between the
payload that is read from the file and the stritigat are passed in the rules. This
comparison respects the limits imposed in each caleerning the range of payload to
inspect. As soon as a correspondence between yheagdaand one of the rules happens,
the flow is considered to be classified. A poinfeelonging to the structure) that will
contain the message to be printed is updated hétlmtessage field present in the rules and
all flags, needed to indicate that the flow is sifisd, are actualized. The message
indicating the type of flow is saved to the file wsll as all related statistics data. The
relative statistics are also printed to the fileede statistics are calculated based on the time
interval the user has chosen. The flow is removenh fthe list and the program moves to
the next element. If the end of the list is reachiy application moves back to the
beginning and processes the whole list again. iy, we are continuously inspecting
for expired flows and decreasing the size of th. liThis allows for a quicker

classification. The flow diagram shown in FigurelBnmarizes these steps.

Page 29 of 98

Chapter IV - Module for Identification of InternApplications

Move to the new flow

Has the flow Has a packet
sufficient from a new
payload? No flow arrived?

Y

Process flows not yet classified

Is there new
payload to be
read?

Is the flow
classified?

Has the flow
expired?

@pda&e elements of the structure)

A

[Save to the corresponding file the results of classification and the statislicg

4

Grase element from the list of flows not yet classifie(ai

Figure 5 - Flow diagram of the classification procdure

As shown in the previous diagram, the list of flawgontinuously processed. Each
time a packet is classified or processed, the progwaits for the arrival of a new flow.
Until this occurs and sufficient payload has beaptared, the program passes through the
stated list and if a flow is considered as expited erased from the list and the process
repeats itself.

Figure 6 shows the classification process.

Page 30 of 98

Chapter IV - Module for Identification of InternApplications

)

Gead the number of packets already processedj<

Y

Is there a new No

packet?

=(Pass to the next flow
[

Is the flow
classified?

Gpdate the elements in the structura

Pass to the next rule

Is this the last
rule?

Figure 6 - Flow diagram of the classification procss

4.2 Results

To test the developed application, we have gengrataEfic belonging to the

applications identified above. Each application was individually in order to obtain

completely known and identified traces, each ofeted to a specific application. Traces

were captured using Ethereal and, for each pawalketave stored the full header and the

first 180 bytes of payload. Table 2 shows the disimmnof the captured traces.

Type of application Number of captured flows
P2P 512
Web browsing 90
Instant messaging 128
VolP 35
Other 115

Table 2 - Dimension of the captured traces

Page 31 of 98

Chapter IV - Module for Identification of InternApplications

After being captured, the traces were analyzed lxy application and the
classification results were examined. The applicatvas able to distinguish and identify
all protocols and, when required, it was also abledentify the client related to the

captured flow. Table 3 presents the results achieve

Protocols Number of Correctly Incorrectly % of correctly
Analyzed | classified flows| classified flows| classified flows
Flows
e-Donkey 158 156 2 98.73%
Gnutella 150 146 4 97.4%
Direct Connect 41 40 1 97.5%
Bit Torrent 163 157 6 96.32%
HTTP 55 51 4 92.72%
HTTPS 40 40 0 100%
NetBios 85 81 4 95.3%
Messenger 78 68 10 87.18%
ICQ 40 40 0 100%
Yahoo Messenger 10 10 0 100%
RFB 20 20 0 100%
H.323 25 17 8 68%
SIP 10 10 0 100%
SQL 10 10 0 100%

Table 3 - Classification results obtained

From the above table, it can be concluded thatdbtined results are very
accurate. For P2P traffic, the average percenthgeroectly classified flows was about
97%. For web browsing applications, the averageggage of correctly identified flows
reached 92.72%. This also included the identificatf all clients. For instant messaging
protocols, the average value was of 95.72%. Ircttse of VolP applications, the average
classification efficiency was equal to 84%. An expdtion for the misclassified flows will
be provided later in this section. Table 4 showmescstatistical values related to the
correctly identified flows. As can be seen, therectly identified flows have high numbers
of packets per flow and bytes per packet. For R2Rpols these flows correspond to file
transfers and to message exchanges betpeers while for instant messaging protocols
they are related to conversations between clidfds. all other cases, these flows are
related to successful connection establishmentwdaet the different elements of the
protocol and to traffic that was exchanged betwibem, leading to a high number of bytes

in the payload.

Page 32 of 98

Chapter IV - Module for Identification of InternApplications

Protocols Average number of | Average number of
packets bytes per packet

e-Donkey 5 77

Gnutella 17 96

Direct Connect 478 94

Bit Torrent 16 78

HTTP 18 94

HTTPS 20 114

NetBios 3 174

Messenger 60 87

ICQ 23 105

Yahoo Messenger 11 75

RFB 510 57

H.323 16 107

SIP 5 76

SQL 43 99

Table 4 - Statistical information about correctly dassified flows

Table 5 shows some of the statistical propertieh@efmisclassified or unclassified

flows. An explanation for this misclassification Iwialso be provided in the next

paragraphs.
Protocols Average number Average number of
of packets bytes per packet
e-Donkey 2 32
Gnutella 6 88
Direct Connect 6 40
Bit Torrent 7 43
H.323 8 320
NetBios 5 720
Messenger 76 68

Table 5 - Statistical information about misclassi#d or unclassified flows

For the e-Donkey case, it can be observed thattieeage number of packets is
low, as well as the number of bytes per packets&heay indicate that the flows are due
to Acknowledgeor KeepAlive messages exchanged between client and servere Thes
messages are usually composed by packets withylogoband the respective flows have
few packets. Comparing the values obtained for phigtocol in the last two tables, a
difference can be easily seen.

For the Gnutella protocol, misclassified or undléesd flows have a similar number

of bytes per packet as the classified ones. Theoretor the misclassification lies on the

Page 33 of 98

Chapter IV - Module for Identification of InternApplications

fact that these flows were originated byHIRTP Getmessage that was issued to download
a file. These messages didn't carry tbeerAgentfield inside the captured payload.
Therefore, these flows were classified as HTTP,thist problem can be easily solved if a
higher number of payload bytes are captured. Whesetflows carried the mentioned field
correct identification was achieved, as well asiidieation of the client that issued the
request.

For the Direct Connect protocol, the misclassifiedkets have no payload at all or
a small number of payload bytes, indicating thasthcan bécknowledgdlows. They
can be also related to file transfers that wereraatically stopped by the client and then
restarted.

The lowest efficiency occurred for the H.323 pratiocldentification of its
messages was based on searching for a particwddd fwithin the payload: the
Protocolldentifierfield. Some flows, related ©©penLogicalChannedndLocationRequest
messages, do not carry this identifier which prévéatentification.

The misclassified NetBIOS flows were due to an yeetedNameQuenflag.

For the Messenger protocol, misclassified flows tenrelated to file transfers
made in binary and without any signature. This egreith the values shown in the
previous table: these packets have an average p&diets per flow and an average of 68
bytes per packet.

To illustrate the efficiency of the methodology,bl& 6 presents the number of
packets that were read in order to perform thetifieation. As shown, the technique is
very effective. For almost all cases, it was abladcomplish protocol identification in the
first captured stream. When this situation did axaxtur, it was able to identify based on the
subsequent packets. However, it should be notddrilthese cases it is not necessary to
examine a high number of packets. This demonstthtefficiency of payload analysis
and that it can achieve very accurate identificatishile saving computational and
memory resources. It also proves that the gathesigdatures respected the main
requirement of accuracy. The results obtained piswe that the developed tool can be
used at high-speed links.

Page 34 of 98

Chapter IV - Module for Identification of InternApplications

Protocol Identification in the first | Identification in the following
packet packets/ Number of packets
read
e-Donkey 100%
Gnutella 100%
Direct Connect 100%
Bit Torrent 100%
HTTP 50% 38.89% - 2 packets

11.11% - 3 packets
5.55% - 4 packets
5.55% — 5 packets

HTTPS 100%
NetBIOS 100%
Messenger 100%
ICQ 100%
Yahoo Messenger 100%
RFB 100%
H.323 100%
SIP 66.67% 33.33% - 2 packets
SQL 100%

Table 6 - Number of packets needed to classify flav

4.3 Conclusions

As shown in the previous section, the developed uteodchieved very accurate
identification results. All chosen protocols wedentified with a very high percentage of
correctly identified flows. Besides identifying tipeotocol that generated a given flow, in
some cases the module was also able to identifglignet. This consists of very interesting
information and proves the capability of the moddta identifying applications.
Moreover, all the flows were identified in the figackets which also proves the efficiency

of the used methodology.

Page 35 of 98

Chapter V — APl Implementation

5 API Implementation

5.1 Introduction

The second part of this thesis consists on theemehtation of an API to establish
the communication with the DTMS-P2P platform. listbhapter it will be presented and
shown how it establishes the communication betwaggplication level modules and the
DTMS-P2P platform. These application level modutesy consist of graphical interfaces
or statistical traffic monitoring tools which mayxexute several management actions on
the platform using the API.

The API consists of a class which, through itsetght methods, sends messages to
the monitoring network and its elements, retrievaigp information from them. The role
the API performs is illustrated in Figure 7. Thencepts related to the mentioned platform

were already described in Chapter 3.

Application level

DTMS-P2P Network

Figure 7 - Hierarchy of the APl and the calling apgication

Page 37 of 98

Chapter V — APl Implementation

5.2 API Functionalities

The API must allow the calling applications to penfi all the tasks that any client
of the DTMS-P2P network performs: these tasks mted in the diagram of Figure 8.
Therefore, the API must, for each task an appbecatnay request to it, send the proper
message to the network with the necessary parasnfetera correct performance of the
chosen command. In this way, the API has, for eamhmand, a method that sends the
respective message to the network and retrievesstdts. Application level modules can
use these methods to communicate with the DTMS-R&Rork and its nodes. In the
following sub-sections, will be listed the sevemaéthods of the APl according to the
functionality they belong to. For each method, ith@del of use cases can be consulted in
Appendix A.1.1.

Perform the search for a
file in the network

Download files from the
search operation

Execute a command

View and change the

settings of the client

Download the results file of
*~——» —e
a command

Calling Application

Request the list of files a
node owns

Connect and disconnect
from the network

Provide a list of connected

Ask for the restrictions of a

command nodes

Figure 8 - Use Cases diagram
5.2.1 Change of the status of the client

In the following sub-sections will be explained tiae methods which perform the

connection and disconnection of the client fromribavork.

Page 38 of 98

Chapter V — APl Implementation

5.2.1.1 Disconnect method

To disconnect the client from the network, tisconnect()method can be used.
This shuts down the connection of the client tositper-probe and, therefore, from the
network [Veiga2007].

5.2.1.2 Connect method

After disconnecting the client from the networke tbonnection can be performed
through the APIl. The methodonnect() starts theOutgoingConnectionManagethat
connects the client to the network [Veiga2007].akia&ble will then indicate that the client

is connected to the network.

5.2.2 Visualization and changing of the client’s settings

The API must enable the retrieval of the clientsttings as well as their
modification. Therefore, it holds methods which tise settings and change their values.
Moreover, a method was also created to changeetiegs to their default value. These

are listed and explained below.

5.2.2.1 Show_settings method

This method returns some of the client settingsriter to allow its presentation to

the user by the upper-layers.

5.2.2.2 Listener_settings method

This method applies the new settings to the clidnth are passed as parameters to
it. It subsequently changes each of the settingswiere displayed by th&how_settings()

method.
5.2.2.3 Listener_default method
This method applies the default settings to thentliThese are obtained from the
client.

5.2.3 Command execution functionality

This sub-section lists all the methods of the ARick allow the execution of the

various steps that are involved in the performasfce several monitoring commands in

Page 39 of 98

Chapter V — APl Implementation

the DTMS-P2P platform. These steps are: the reaquidhle restrictions of a command, the
execution of the chosen command and the retrievéhhen file which saves the achieved

results. The methods which enable these operadi@nexplained below.

5.2.3.1 Get_restrictions method

This method is used to retrieve, from a node, th&trictions associated to a
command. It starts by verifying that a node haslmdected to execute the command. If a
node was selected, the messagquestListOfCommandRestrictiongll be sent to it
[Veiga2007]. This message requests the selectedeealeto send the restrictions of the
command that the user selected. These are rulemtis be respected by the user in order
to achieve a correct performance of the commandratidate which parameters must and
must not be used. After sending this message, ®leldcks in the resource used by the
client to signalize it has received the restricsioBubsequently, it constructs the messages
that will be used by the upper-classes. If a nodsnit selected, the method urges for the

need of the selection of a network element.

5.2.3.2 Execute_command method

This method executes the command selected by the with all the respective
parameters. When calling applications ask the ARIxecute a command, this method will
read the typed command along with the typed pammmett will then construct the
messagerocessCommandRequeghich will comprise the measurement group in which
the command will be performed along with the IPradd of the node which will execute it
[Veiga2007]. The method also provides messagesitdatate the state of the command
execution and any error that may have occurrechduts execution. In this manner, the
user is taught how to correctly execute a commantl ia always aware of its state of

execution.

5.2.3.3 Download_results_file method

In the case of a correct execution of the comméralname of the file where the
results were saved is presented to the upper-layedules and the possibility of
downloading it is also provided. To complete tlaisk, the methodownload_results_file()
was implemented. It starts by searching for theenadhich has the chosen file and

subsequently sends a message to the node indidhgngntention of downloading it.

Page 40 of 98

Chapter V — APl Implementation

Afterwards, an instance of thdultiSourceDownloaders created, with all the necessary
parameters and the download of the file is exec[\eiya2007]. When the download is

finished, a variable of the API is updated indiogtthat the download is finished.

5.2.4 Search and retrieval of results file

As previously mentioned, the APl must enable tharde and retrieval of
measurement files. Therefore the API holds two weshwvhich allow the performance of
the mentioned tasks: one for retrieving the listfitfls which satisfy a search criterion

while the second performs the download of thess fil

5.2.4.1 Show_search_results method

As previously mentioned, one of the operationsapplication layer modules can
request is the search of a file in the network gisirsearch criterion. To perform this task,
the methodshow_search_table(yas created. This function receives as paramatstsng
with the criterion to be used in the search andiibasurement group where the search will
be performed. Subsequently, it verifies if the aduiced criterion is valid. Then, it selects
the measurement group in which the search will @dopmed, according to the value
received as a parameter, and sendssaltsSearchmessage to the nodes of the selected
group with the inserted parameter [Veiga2007]. dgponse to this message, the nodes
which own files matching the selected criterion ds€ueryHit messages to the client
indicating that they own those files. When therdliseceives these messages, this method
processes the name of the indicated files in ordlgaresent some characteristics, which
include:

» The measurement group of the client;
* The IP address of the client;
» The measurement group of the node;
* The IP address of the node;
» The date of execution of the command,
* The command itself.
Subsequently, all these characteristics are indérta data array which can be used

by the upper-layer modules.

Page 41 of 98

Chapter V — APl Implementation

5.2.4.2 Value_changed method

This method enables the download of files resulfrogn the search operation. It
receives the name of the selected file and subsdgustarts its download. Then, an
instance of theMultiSourceDownloaderclass is created which before starting the
download, tests if it has already been downloadéeiga2007]. If this is the case, the
variables of this method are updated and indichige situation. Otherwise, when the
download is complete, the variables are updatdtiatathey indicate the completion of the

download. The operation of this method is showRigure 9.

>Grocess the chosen file and create the necessary variable%—

(Create a new instance of the MultiSourceDownIoader(D

Has the client
already

downloaded

the file?

Update variables indicating the download has already been performea

(Start the download of the fila

-t

Y

Has the
download
finished? No

Yes
Y
@pdate variables indicating the completion of the downloaa

Figure 9 - Flow diagram of the method value_changéyl

Page 42 of 98

Chapter V — APl Implementation

5.2.5 Listing of files of the client or of a node

In the following will be listed the methods whichoav the user to visualize the
files a client and a node of the DTMS-P2P platféroid.

5.2.5.1 Show_files method

A functionality the APl must support is the presgiun of the files the client owns.
The methodshow_files()was implemented to provide this information to thmper-layer
modules and it uses a variable of the client tloatains the list of all files [Veiga2007].
The method creates two data arrays, one for eguh ay file (heavy-data and light-data
files). These arrays contain various informatiohsu the files, as mentioned in Section
524.1

Each file is placed in the corresponding array bath can be used by the upper-

layer modules which can make use of the informgpi@vided to present the files.

5.2.5.2 Get_file_list method

The API may retrieve the list of files owns. Thistimod receives the element
selected and consequently downloads its list @sfivhich is present in a file named
IPAddresOfTheNode_FileList.xml. After the downloate method parses the XML file
and adds all the file’s names to a data array. @higy can be subsequently used by the

calling applications.

5.3 Conclusions

This section presented the API, a module that ishiarge of the communication
between modules needing to interact with the DTN2B-Blatform and the platform itself.
The different functionalities of this APl were iattuced and their functions were
explained. The API consists of several methods ¢thatbe used by modules needing to
communicate with the network and retrieve informiatifrom it. It sends the required
messages to the nodes of the DTMS-P2P platform mtideves their responses.
Subsequently, these are sent to the modules wisehthe API for communicating with
mentioned platform. In the following chapter wik lexplained a graphical interface which

was implemented in order to test the API.

Page 43 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

6 GRAPHICAL INTERFACE OF THE DTMS-P2P TOOL

This chapter explains the implementation of theplgieal interface implemented for
testing the API. This interface was implementedett the API explained in the previous
section and allows the user to accomplish the sévasks that can be performed through
the DTMS-P2P client. It uses the previously exmdirAPI for communicating with the
DTMS-P2P platform. All concepts that are necessamynderstand the interaction between
the interface and the mentioned platform were empthin chapters 3 and 5.

The following section enunciates some principlest ghould be taken into account
when implementing an interface. The remaining sestiexplain its implementation and its

various functionalities.
6.1 The rules of user interface design

In the past, computer programs were designed hawimgind that the user had to
adapt somehow to the system. This approach is pptopriate nowadays, where the
system has to adapt itself to the user [Mandel1997]

Users should have a successful interaction witkesys in order to gain confidence
on themselves. Well-designed interfaces shouldeguikrs to learn and enjoy what they
are doing. They can also challenge the user tooexghe interface behind their normal
usage.

To achieve this level of interaction, several stsdhave been made and several
principles have been discussed and agreed. The ttmen principles are:

* Place users in control of the interface;
* Reduce user's memory load;
* Make the user interface consistent.

The first rule indicates that the user should lzevided with the ability of controlling
the interface and performing all the operationsirtends to in a simple manner. The
interface should also:

» Allow users to change focus;
» Display descriptive messages;

» Provide reversible paths and exits.

Page 45 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

The second rule explains that the interface shawoid users from having to
remember information while interacting with it. Teéore the interface should:

* Provide visual clues;

» Provide shortcuts;

» Use real-world metaphors;

» Provide visual clarity.

The third rule illustrates that consistency is @ &epect of interfaces. The interface
must teach users how to perform a command sotthahibe applied to other situations. It

also means that users should see information isahee logical and visual way.
6.2 Graphical Interface

As mentioned above, the main goals of the userhigapinterface are to test the
API explained in Chapter 5 and to present the nreasent tool in an easily usable way to
the user.

As previously mentioned, the interface will use #el for the communication
with the DTMS-P2P network in order to allow the use perform the several tasks
allowed by the client of the monitoring platformhi¥ is illustrated in Figure 10.

A fourth module was also implemented to createaglgical representation of the
network. This module communicates with the appiicatayer that instructs it to present
the network representation and communicates with &Pl to get the necessary
information from the network. The implementation tbfs module will be explained in

sub-section 6.2.1.6.

Page 46 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

Representation module Graphical Interface

DTMS-P2P Network

Figure 10 — Communication Hierarchy

Prior to the presentation of the interface, thertlimust connect itself to a super-
probe in the network. This is done using the XM fClientCachethat contains a list of
super-probes to which it must connect. Also asohgican promote itself to a super-probe,
all their addresses must be provided to assure thwfclient gains connection to the
network. Consequently, the file contains all corteé@robes since there is no guarantee
that the super-probes exist. The client will attetgpconnect to the super-probes in the
order that they appear in tl@ientCachefile. If no attempt is successful, it will try to
connect to the probes.

As previously explained, when the client is conadcit will download the
LightData file in order to know the existing network nodesatt will permit its
representation.

The interface was developed using Swing componé&wtsdisplaying or receiving
parameters from the user, the most suitable commpeneere used. For the insertion of

Page 47 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

parameters for the various commands, text fieldsewdhosen. For presenting various
elements to the user and enable the choice ofteydar element, combo-boxes were used.
These components can be inserted into panels dmata@ntain more components, such as
buttons, tabs and many more [Eckel2002], [Zukow8K&, [Walrath2004]. Each panel
uses a layout manager responsible for positiorisigaveral components regardless of the
screen size and platform. Layout managers disctwerspace a component needs by
calling the component'ggetMinimumSize() getPreferredSize(Jand getMaximumSize()
methods. These report the minimum, preferred ankirman sizes a component requires
to be properly displayed. Therefore, each componerdt know the space requirements it
needs. The layout manager will then use the comqtnspace requirements to resize the
components and arrange them on the panel. A layantger was attached to each created
panel where components were placed.

Each of the Swing components has the property porteall events that may
happen and also report each kind of event sepwralblerefore, event listeners were
attached to the several components of the interfaaader to allow it to know which
operation the user has executed and act accordinglythe next sections the
implementation of the interface and the variousrajens a user can perform will be
presented and explained.

The main frame of the interface, illustrated inUfigg11, presents all the previously
mentioned components necessary to accomplish thieugaoperations. The main frame
consists of three tabs, each one responsible faska and a menu that presents to the user
additional functionalities of the interface. To a@ie the main frame, an object of the class
JFramewas used. Using some methods of this class, tse dperation, the content panes
and the size parameters are set. The method tieesame visible is also set. A frame can
contain several components such as panels, tabslret frame also allows the exhibition
of menus. The block diagram of the constructorhef ¢lass that creates and places all the

components is shown in appendix A.2.1.

Page 48 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

DTMS-P2P Interface
Network Settings Visualization

Choose the command to execute

[c | searcn | Gettne istotfies oranode x | Listotfiles ofthe cliemt x

Command Panel

Command Fields

c [| Restrictions
P [| Execute Command

Type the command to execute and the parameters.

Select the node

Choose the node =

Figure 11 - Main Frame of the interface

6.2.1 Interface presentation

In this section will be explained the interactiagtween the user and the interface.
The communication between the interface and thevAlPhlso be mentioned. This section
provides sub-sections with the explanation of ezdine interface functionalities, the way
it allows the execution of the various tasks anel Way it indicates to the user how to
perform them. Figure 12 shows the block diagramthef implemented interface. The
following sub-sections will list and explain the rius functionalities the interface

implements and how to correctly execute them.

Page 49 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

Wait for the user actions

Has the user
pressed the
button
{Restrictions™?,

Call get_restrictions() method

A

Present the restrictions to the useD

as the usel
pressed the
button

Call execute_command() methoa
“Execute
Command”?

No y
Has the user
Gresent the results to the user and allow the download of the file '—> pre;jggnthe

“Download"?

A

Gall download_results_file() method(a

Has the user

pressed the I
button “Get the e Call get_file_list() method

list of files™?

No 4

Present the list to the user

Has the user

selected the Call show_search_table() method
search of a Yes

file?

No

-

Gresent the results and allow the download of the file9

Figure 12 - Block diagram of the interface’s tabs

Figure 13 shows the block diagram of the interfaeenu bar. The bar includes
various items that allow a more organized and give presentation of the information.
The menu bar has also several event listeners ctethend each item invokes the

appropriated method from the API.

Page 50 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

Wait for the user actions

Has the user
pressed the

Is the client

menu connected?

“Network™?

Call disconnect() method

Call connect() method

A

Has the user

pressed the Call show_settings() method
menu ves

“Settings"?

No Has the user

pressed the
button “Apply
Changes™?

Has the user
pressed the
button “Apply
Default"?

Show the settings to the user

E:all listener_settings() methoa E:all listener_default() melhog

Has the user
pressed the Call representation module
menu Yes
WVisualization™?

'
(5

k resent the representation to the useD

Figure 13 - Block diagram of the Menu bar

6.2.1.1 Change of the status of the client connection

As previously explained, the APl has methods thexfggm the connection and
disconnection of the client from the network. These thedisconnect()and connect()
methods, which were explained in sub-sections 3.24d 5.2.1.2.

To complete the connection or disconnection frdme hetwork, a menu is
presented to the user with the title “Network”tHe client is connected this menu presents
the possibility of disconnecting and if the cliéntdlisconnected the option of connecting is

shown. The item the user must press is in the iatlg menu:Menu > Network -
Di sconnect/ Connect .

Page 51 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

If the user chooses to disconnect, a message fjmeass after the client completes
the task indicating that the client is no longetive; as shown in Figure 14. Subsequently,
the menu presents the possibility of connectionhéf user chooses to connect, a window

message appears indicating that the operatiorbe/iédxecuted.

ng:’-h"-%

-Netwark Settings Visualization

[-[oix|

Choose the command to execute

[| searcn
Command Panel

Command Fields

C lping | Restrictions

Parameters: \ | Execute Command |

Type the command to execute and the parameters.

Select the nade

Choose the node \ s i

FrnY
LJ) Please select the node where you want to execute the command

Figure 14 - Message box indicating that the clierftas been disconnected from the network

6.2.1.2 Change of the client settings

The view and change of the client settings is Etathrough the use of the menu
“Settings” that allows the user to change the tlgarameters. When the user presses the
menu, a new window appears showing the currentitgiarameters. This window consists
of several text fields, one for each client’'s sgftiand a button indicating that the new
settings can be applied to the client. A secontbhus presented to indicate that the user
pretends to apply the default settings to the tli€his is shown in Figure 15. The method
that shows the client’s information is the metlshdw_settings(nentioned in sub-section
5.2.2.1.

After changing one or various parameters, the uwsar indicate that these
parameters can be applied to the client by pregki@greviously mentioned button. The
event listener will then invoke the methbistener_settings(gxplained in Section 5.2.2.2

and when this operation is concluded a messageappkar pointing out this fact.

Page 52 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

P01 P2P nterface. A=l
Network Settings Visualization
Choose the command to execute
y;
Commands | Search
| I/;l Settings of the client
Command Panel .
Settings
Command Fields —_————
IP address: | /193.136.82.228 |
Commands: Port: (21165 Restrictions
Parameters: Measurement Groupzio | Execute Command
Authentication Field: |2l
Type the command to exe Username: |Unset
Select the node Passphrase: |Unset
————————— Pfs: |Unset
Choose the node b Prsdir: [Unsal

Firewalled: false |

Cache dir name: [Unset

Node cache: [Unset |

Maximum number of nodes: 2147483647

Maximum number of retransmissions: |1 \
|7

timeout: |1 20000 |

Number of groups: [21 47483647
Number of records: |0 \
Speed: 'U \
Download dir: {downloads |

Set the parameters of the client and press the button to apply them.

! Apply Changes | Apply Default

Figure 15 - Window showing the various client paranaters

If the user wishes to apply the default settingght® client, the button “Apply
Default” can be pressed. The methiadener_default() explained in section 5.2.2.3, is
then invoked and these settings are applied telteet and a message appears indicating
the appliance of the settings.

If the user places the mouse pointer in a texdfi@ tooltip text will appear
indicating the function of the setting and its dafaalue.

6.2.1.3 Command execution functionality

The performance of a command can be achieved thrthayuse of a proper tab
dedicated only to this functionality. The methodnfrthe API that performs the command
inserted by the user is te@ecute_command@epicted in sub-section 5.2.3.2.

The tab contains numerous components that allowsbe to complete a command
and interact with the network. This tab is dividadwo panels. The first panel contains
two text fields that allow the user to execute ¢tbenmand he wishes: the first allows the
user to choose the command while the second letagér insert the parameters necessary

for the command to be executed as intended. Twotsitvere also inserted in this panel:

Page 53 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

one for asking the restrictions associated to ancand and the other to execute it. The
second panel contains a combo-box with the lisalbélements connected to the network
and allows the user to choose the node where thsunement is to be executed. Figure 16
shows how a node can be selected.

I DTMS-P2P Interface EEX

Network Settings Visualization

Choose the command to execute

[| search
Command Panel

Command Fields

C |] | Restictons |

Parameters:‘ | | Execute Command ‘

Type the command to execute and the parameters.

Select the node

Choose the node i b4

[Choose the node

193.136.92.228:22361
193.136.92.228:22362
193.136.92,228:22363
193.136.92.228:22364

Figure 16 - Selection of the node to execute a corand

After the user selects the node, all the elemtiatsare necessary to establish the
connection to the element are created and the ctianes performed. However, if the
user types a command without previously choosimgetflement, an error message should
be presented in order to alert to the fact thatuder must first choose a node to execute
the command. The message will present the followasguction: “Please select the node
where you want to execute the command”. If thentlie disconnected from the network,
the interface asks the user to perform the conmecti

After the user selects a node and inserts the @mdrto execute, and if the button
“Restrictions” is pressed, the corresponding evdistener calls the method
get_restrictions() referred in sub-section 5.2.3.1, that in turn dsena
requestListOfCommandRestrictiomessage to the indicated element. When the icterfa
obtains the response of the API, the received icéistis will be presented in the
“Commands” tab in the form of a new table that isoainserted inside a tab. The

restrictions are sent to thget restrictions() function using the following format:
<must Use></ nust Use><doNot Use></ doNot Use>.

The parameters that the user must insert for r@ecoexecution of the command are

listed between the tags <mustUse> and </mustUshke. perameters the user must not

Page 54 of 98

Chapter VI — Graphi

cal Interface of the DTMS-P2pITo

insert for the execution of the task are shown dmsthe tags <doNotUse> and

</doNotUse>. The interface then processes thewedeestrictions and presents them in a
table with two columns that indicate the mentiondds.

For each

command the user selects, there will babawith the associated

restrictions and related messages concerning thememd execution. Figure 17 presents
the interface with a tab that is related to pieg command and its restrictions.

Choose the command to execute

B3 DTMS-P2P Interface FEX

Network Seftings Visualization

| Search r"

Command Panel

Command Fields

c [ping

| Restrictions

P s

\ Execute Command

Select the node

193.136.92.228:22361 ¥ ‘

Type the command to execute and the parameters.

[Command ping |

List of restrictions of the command

Must Use | Must Mol Use |

Command messages

Figure 17 - List of restrictions associated to thping command

If the node does not support the chosen commantkssage is printed in the tab
indicating this fact to the user. This is showrkigure 18.

8 DTMS -P2P Interface

Network Settings Visualization

Choose the command to execute

| Search r Command

Command Panel

Command Fields

C iowamp

| Restrictions

Parameters: ‘

| Execute Command

Select the node

Type the command to execute and the parameters.

193.136.92.228:22361 v| IR e e

[SE ping | C ping "f‘ jowamp |

The node 193.136.92.228:22361 does not support the command jowamp.
Flease select other command.

Figure 18 - Message indicating that the node do@est support the command

Page 55 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

However if the user does not want to see theicéistis, the button “Execute
Command” can be pressed to execute the commandivéitharameters that are set in the
text field labelled “Parameters”. Although, if theser pressed the first button, he can
execute the command by inserting the parametetiseirmppropriated text field and press
the second button. The interface will then calléRecute_commandf)ethod explained in
sub-section 5.2.3.2 that will construct a messaigle the inserted preferences and send it
to the corresponding node. Afterwards, when therfate receives the response from the
API, it will indicate that the command has beenceted. While the command is not
completed, the interface indicates that the no@xésuting the command.

If the command was successfully executed, thefade will present a message to
the user with the name of the file where the aaderesults were saved. The name of the

file follows the following format:

Measur enent G oupCOf Thed i ent _| PAddressOf Thed i ent _Measur enent G oupOf TheNod
e_ | PAddr essO TheNode_Dat e Execut i on_Conmmand. r es

The message is presented inside the tab thati®delo the command. Also, in the
“Commands” panel a new button is shown in ordegitee the user the possibility of
downloading the file.

If the user presses the download button, indigatiat he intends to download the
file, a message stating that the file will be dovaded is written in the tab. The event
listener that is attached to the button calls tleth@ddownload_results_file()depicted in
sub-section 5.2.3.3, that sends a message to tteewbere the file is located, indicating
the intention of downloading it. When the downlaadfinished, a new message is also
written in the same tab. This situation is showrfrigure 19. The download of the results
file is always related to the command that is repn¢ed in the tab and was selected by the
user. In this way, if the user chooses to downkba&dresults file of a command which has
not been executed yet, an error message appears.

The user can insert a new command and a new thbappear indicating the
restrictions and all the above explained messdgethe case the user does not enter any
parameter and the command needs at least one eéadoaited, the interface displays an
error message together with the usage of the comindns case is shown in Figure 20. If
the user does not respect the restrictions impdsedhe command or the inserted
parameters are incorrect, a message is displagéchting that the node refused to execute

the command.

Page 56 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

DTMS-P2P Interface
Network S

gs \Visualization

Choese the command to execite

| search | Command

Command Panel

Command Fields

c [ping J

v ua pt

Type the command to execute and the parameters.

Command ping

Select the node

Execute Command

List of restrictions of the command

Must Use |

Must Mot Use

Command messages

The command was successfully processed and the results were saved ta

i i 193.136.92.228.21165 0
28.22361_1194375543156_ping www.ua pt.res file.

The file

)000_193.136.92.2

1000_193.136.92.2

)) _193.136.92.228.21165_0
28.22361_1194375543156_ping www.ua.pt.res download is finished.

Download

Figure 19 - Message indicating the conclusion of ¢hdownload of the results file

DTMS-P2P Interface
Network Seftings Visualization

Choose the command to execute

[

=]

" Search | Command

Command Panel

Command Fields

Ce |umu |
[|

Type the command to execute and the parameters.

Select the node Commandping | Command traceroute | Command jowamp | Command ping

List of icti of the

193.

Must Use |

Restrictions

Execute Command

Must Mot Use |

Command messages

The command was rejected by the receiving node.
Usage: ping [-t] [-a] [-n count] [-1 size] [-f] [1 TTL] [-v TOS]

[-r count] [-s count] [[-] host-List] | [-k host-list]]

[-w timeout] target_name

Options:
+ Phugthe wpecifiad hostuntlstennsd,

To see statistics and continue - type Control-Break;

[v]

[l

Download

Figure 20 - Message illustrating the usage of themmand

Page 57 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

6.2.1.4 Search Functionality

The search for a file that is stored at some nétwiode is allowed by the interface.
A tab named “Search” shows the user all the necgdsdds to execute this task. The
search can be performed locally, only in the measent group where the client is
connected, or globally, in the entire network [\&2007]. Therefore, this choice must be
presented to the user and this is achieved thrthegluse of a combo-box that lists all the
measurement groups connected in the network aast aption of global search. Figure 21

illustrates this.
B DTMS P2P Interface FEX

Network Settings Visualization

Choose the command to execute

Comman ds | Search
Type the criteria and select the measurement group to perform a search

Search: | -
[00000000000000000000000000000000
(Global Search

Figure 21 - Selection of the type of search to penfm

After choosing the type of search that will be @xed, the criterion must be typed
in the text field presented in the tab. After ity it, the user presses the Enter key a first
search is executed with a small list of files matgtthe criterion. If the user wants to see
with more results, the same key must be presseinh aga a more extensive search is
realized. The results are exhibited in this takaitable format. This table includes six
columns that indicate several parameters relatedth®® command, such as: the
measurement group of the client that executed dinentand, the IP address of the client,
the measurement group of the node, the IP addfas® mode, the date of the command
execution and the name of the command. The lastmoolindicates if the client has
downloaded the file. Each table is enclosed withtab. As an example, Figure 22 presents
a frame showing the results of a search withping criteria. The function that performs

the search is thehow_search_results(presented in sub-section 5.2.4.1.

Page 58 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

B DTMS-P2P Interface =63
Network Seftings Visualization
Choose the command to execute
G | search
Type the criteria and select the measurement group to perform a search
search: [ping| : ‘V‘
[ping | ping
ea:] of . lignt Addre 5] e Addre Ti if execution Command Download
1- 0000 i [i i 06-08-2007 15:30 |ping v ua pi e -
- 0000 0 0 0 06- 71355 rue
- 0 0 [i] Ji] 03 71447 e
- 0000 0 0 0 30- 71723 I TE rue =
- 0000 0 0 0 0 71516 |ping Wz p alse 1
60000 0 0 0 13 71326 |ping oz p rue ¥
70000 0 0 0 09- 71635 rue -
60000 0 0 0 - 71664 rue
50000 0 0 0 - 7 rue
0- 0 0 [i] Ji] - 7 e
1- 0000 0 0 0 2 H ping WUz alze
20000 0 0 0 0 7 |ping Wz p false
% 0 0 0 0 20 2 [ping www.ua pf [false
1 0 0 0 0 8- 7 ltrue
5 0 0 0 0 18- 7 Iralse
B 0 0 I 0 0a- 7 pin true
7 0] i li 13- 7055 i [true
g 0000 i 0 0 18- T11.08 i ralze
G o000 0 0 0 26 71430 |ping Wz p ftrue
00000 0 0 0 30- 71410 |ping wuwua pi ftrue
1-_0000 0 0 0 7- 71071 |ping wwva p ftrue
2- 0 i 0 0 2 71442 [ping s ua p ftrue
3 0 i] 0 0 H 71357 [ing g p false
4- 0 i] 0 0 3 7 11:06 |ing wn.ua.p false
- 0 i 0 0 - 71533 |ping Uz p false
6 0000 0 0 0 06- 71712 |ping Wz p false
= 0 0 0 0 27 7180 [ping www.ua pf true
& 0000 0 0 0 1- 7100:
50000 0 0 0 06- 7171
0-_0000 0 0 0 [E3 7134
1- 0 0 [i] Ji] 06- 7141
2- 0 0 [i] Ji] 06- T145
30000 0 0 0 10-09-2007 103
B4 0000 0.. 1931368 1164 _|000000000000000000...[193136.92 226.22361 |06-09-2007 17:10 =
ez —asncancnnansnlsoo 460 Ao-050 Sa4Rk |ANNANGAAAGAGAARGA 1505 406 HA5A0 S0ARs a1 450 000 040 =

Figure 22 - Table presenting the search results

If the user intends to download one of the fileshef presented results, a click must
be done in the row corresponding to the file, iating the file to download. An event
listener attached to the table will then invoke thethodvalue changed()explained in
Section 5.2.4.2, which in turn sends a messagéd@¢onbde where the file is located,
indicating the intention of downloading the file §\a2007]. If the client has already
downloaded it, a message alerting the user isaliepl, as shown in Figure 23.

If the client has not downloaded the file yet, twevnload is started and once it is
concluded a message is presented. The item irixtiec®lumn, which indicates if the file

has been downloaded, is set to true.

@ The client has already the file _193.136.92.228.21165_00000000000000000000000000000000_193.136.92.228.22361_1188306990515_ping www.uapt.res

Figure 23 - Message indicating that the client haalready downloaded the file
6.2.1.5 List of files functionality

The files that the client owns are presented touer using two tables there are
shown inside a tab, named “List of Files of thee@fi. In this tab, the two types of data

files are shown and each one is placed in the sporeding table. To present this

Page 59 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

information, the interface calls the methsftbw_files() mentioned in Section 5.2.5.1, and

retrieves the tables with the files the client owlBach file’s name is divided in six fields,

in the case of a results file, or in three fieldsew it is aLightDatafile. This is illustrated

in Figure 24.

ITMS-P2P Interface E“EI@

Network Settings Visualization
Choose the command to execute
Commands Search r Get the list of files of anode % rrLisl of files of the client %
Measurement Group ofthe client Client Address Measurermnent Group of the node MNode Address Time of execution | Command
00000 18313692 228 21165 0000000000 00 (1931368 361 |27-08-2007 1548 \m\w\mua pires =
0oooo .|193.136.92,228. 21165 0000000000 00.. [193136.9 361 |27-08-2007 1619 [ping www.ua.plres
00000 193.136.92.228 21165 0000000000 00..|1931369 361 [27-08-2007 17:14 i wnw U3 prres =
00000 18313692 228 21165 0000000000 00 1931368 361 [27-08-2007 1756 [ping wana ua ptres
0oooa .|193.136.92.228.21 165 0000000000 00.. [193.136.9 361 [27-08-2007 18.02 |ping wanwy.ua.plres
0oooo .|193.136.92,228.21 165 0000000000 00.. [193136.9 361 |28-08-2007 11.34 [ning www.ua.ptres
00000 193.136.92.228 21165 0000000000 00..|1931369 361 [28-08-2007 14:10 [ww U3 prres
00000 18313692 228 21165 0000000000 00 [1931368 361 |28-08-2007 1416 [ping won ua ptres
0oooo .|193.136.92,228.21 165 0000000000 00.. [193136.9 361 |28-08-2007 1418 |ping wanw.Ua.plres
0oooo .|193.136.92,228.21 165 0000000000 00.. [193136.9 361 |28-08-2007 1422 [ning www.ua.ptres
00000 193.136.92.228 21165 0000000000 00..|1931369 361 [28-08-2007 14:24 [ww U3 prres
00000 18313692 228 21165 0000000000 00 [1931368 361 |28-08-2007 14:30 [ping won ua ptres
0oooo .|193.136.92,228.21 165 0000000000 00.. [193136.9 361 |28-08-2007 14.42 |ping wanw.Ua.plres
0oooo .|193.136.92,228.21165 0000000000 00... [193.136.9 361 |28-08-2007 1510 [ping woiw.ua.ptres
00000 193.136.92.228 21165 0000000000 00...|193136.9 361 [28-08-2007 15:54 [ing v Uz prres
00000 18313692 228 21165 0000000000 00 [1931368 361 |29-08-2007 10:41 [ping wonw ua ptres
0oooo .|193.136.92,228.21 165 0000000000 00.. [193136.9 361 |29-08-2007 1054 |ping wanw.Ua.plres
0oooo .|193.136.92,228.21165 0000000000 00... [193.136.9 361 |29-08-2007 1424 [ping woiw.ua.ptres
00000 193.136.92.228 21165 0000000000 00...|193136.9 361 [29-08-2007 17:24 [ing v Uz prres
00000 18313692 228 21165 0000000000 00 [1931368 361 [30-08-2007 10:21 [ping wonw ua ptres
0oooo .|193.136.92,228.21 165 0000000000 00.. [193136.9 361 |30-08-2007 1253 |ping v Ua.plres
0oooo .|193.136.92,228.21165 0000000000 00... [193.136.9 361 |30-08-2007 1353 [ping woiw.ua.ptres
00000 18313692 228 21165 0000000000 00 [1931368 361 [30-08-2007 1842 [v Uz ptres
00000 18313692 228 21165 0000000000 00 [1931368 361 [31-08-2007 10:38 |ping wanw ua pires
0oooo .|193.136.92,228.21 165 0000000000 00.. [193136.9 361 [31-08-2007 11.01 |ping v Ua.plres
0oooo .|193.136.92,228.21165 0000000000 00... [193.136.9 361 [31-08-2007 1354 [ping woiw.ua.ptres
00000 18313692 228 21165 0000000000 00 [1931368 361 [31-08-2007 1618 [v Uz ptres
00000 18313692 228 21165 0000000000 00 [193 1368 361 |03-08-2007 1014 |ping wanw ua pires i
IP address ofthe client Type of file Date of creation

193.136.92 228 21165 LightData 29-10-2007 10:06 o?

19313682 228 21165 LightData 28-10-2007 10:06 =

193.136.92.228.21165 LightData 29-10-2007 10007

193.136.92.228.21165 LightData 29-10-2007 10007

19313682 228 21165 LightData 20-10-2007 10:21

19313682 228 21165 LightData 28-10-2007 10:24

193.136.92.228.21165 LightData 29-10-2007 10:24

193.136.92.228.21165 LightData 29-10-2007 10:28

19313682 228 21165 LightData 20-10-2007 10:28

19313682 228 21165 LightData 28-10-2007 10:30

193.136.92.228. 21165 LightData 29-10-2007 10:39 =

Figure 24 - List of files the client owns

6.2.1.6 List of files of a node

The client can request to a node of the files ih®@wlo enable this operation to the

user, the interface presents a tab with the nanm f files of a node”. In this tab are

presented a combo-box, which lists all the elemeotsected to the network that the user

can select to retrieve the list of files, and atdnutwhich allows the user to indicate he

wishes to execute the mentioned task. The evaenés attached to the button calls the

methodget_file_list() from the API, which was explained in Section 5.2.8Nhen the

interface receives the results from the API, thexse presented in the form of a table as

shown in Figure 25.

Page 60 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

2 DTMS-P2P Interface
Network Settings Visualization

Choose the command to execute

| commands | search | Getthe listoffiles of anode x | List ot files ofthe client x |

Select the node to get the list of files

[193.136.92.228:22361 | = || et the st of rtes

[List of files of the node 193.136.92.228:22361 |

|Maasuramem Group of the: Source [P Address \Measurement Group of the D ion IP address Time of execution | Command
|000000000000000000000... [193.136.9 1165 000000000000000000000... |193.136.9 Jit} 1188380518812 [ping err =
1000000000000000000000... [193.136.9 1165 000000000000000000000... |192.136.9 61 1189429613390 [ping.err
:_D[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 183.136.9 1165 000000000000000000000... |193.136.9 61 1188420687234 IEII’VQ err =
1000000000000000000000... [193.136.9 1165 000000000000000000000... |192.136.9 61 1189530153328 [ping.err 1
!LD[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 193136.82 228 21165 000000000000000000000.. |193.136.92.378 22361 1188779542062 |ping 193.136.92.228 1.erm
1000000000000000000000... [193.136.9 1165 000000000000000000000... |193.136.9 61 1190035632796 IEing i, ULt e
!LD[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 193.136.82 228 21165 000000000000000000000.. |193.136.92.278 22361 1180280482078 [ping.err

100000 [i] 00 368 5 00 [i] 0 03004373 [ping err

!LU a0 0 00000. 36.9 I} a0 0 0. . 03054714 [ping.err

100000 0i 00 368 5 00 0i 0 030565808 [ing err

|aonoo 0 00000, 36.9 I} ao 0 0. . 03057907 [ping.err
'LD[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 193.136.82.228 21165 000000000000000000000.. |193.136.92.328 22361 1180306164406 |ping.err
1000000000000000000000... [193.136.9 1165 000000000000000000000... |193.136.9 61 1193843336234 |ping.err
!LD[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 193.136.82 228 21165 000000000000000000000.. |193.136.92.278 22361 1183843889750 |ping.err

100000 0i 00 368 5 00 0i 0 937: Iging atr

|aonog 0 00000. 36.9 I} a0 0 0. . 3 510! [ing.err

100000 [i] 00 368 5 00 [i] 0 3 3541 |ping whksdihysj err

|aonoo 0 00000, 36.9 I} ao 0 0. . 385226981 [ping.err
:_D[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 183.136.9 1165 000000000000000000000... |193.136.9 61 1194002878562 IEII’VQ err
1000000000000000000000... [193.136.9 1165 000000000000000000000... |193.136.9 61 1194375479968 [ping.err
!LD[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 193.136.82 228 21165 000000000000000000000.. |193.136.92.278 22361 1194532377515 |ping.err

100000 [i] 00 369 5 00 [i] 0 82261637 IEingWWWua ptres

|aonog 0 00 36.9 4 Juji] 0 0. A 82276611 [ing wirw.ua ptres

100000 [i] 00 368 5 00 [i] 0 82279448 [ing v ua pt res

|aonoo 0 00000. 36.9 I} Juli] 0 0. . 82305009 [ing ww.ua ptres
:_D[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 183.136.9 1165 000000000000000000000... |193.136.9 61 1188230624328 IEII’VQWWWLIQ ptres
1000000000000000000000... [193.136.9 1165 000000000000000000000... |192.136.9 61 1188221278171 [ping wew.ua.ptres
!LD[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 193136.82 228 21165 000000000000000000000.. |193.136.92.378 22361 1188232982859 |ping wiawe.ua pt res
1000000000000000000000... [193.136.9 1165 000000000000000000000... |193.136.9 61 1188233777437 IEing W, UE. it res
!LD[I[IEIEIEIEI[I[I[IEIEIEIEI[I[IEIEIEIEID 193.136.82 228 21165 000000000000000000000.. |193.136.92.278 22361 1188234132890 [ping wwaw.ua ptres

100000 [i] 00 368 5 00 [i] 0 8235873187 [ing v ua pt res

|aonog 0 00000. 36.9 I} a0 0 0. . 0236923640 [ing ww.ua ptres

100000 0i 00 368 5 00 0i 0 5EB46E [Ring wasw ua pt res

iU 00 0 00 369 b} 00 0 0 8294758312 |ping wrw.ua.ptres =

Figure 25 - List of files of a node
6.2.1.7 Visualization of the Network

To visualize the representation of the network, tlser can press the menu
“Visualization” that will display an item. This ite will make the interface present the
mentioned illustration. It is located in the follmg menu:Menu - Visualization >
Vi sual i ze Network.

If the user presses the referred menu item, a fraitethe network representation
will be exhibited. This frame shows the differenbnponents and the respective
connections. For each type of element a diffeneratge is displayed in order to allow the
distinction between the different types of nodeaschesuper-probe’s IP address is written
just above its icon. Figure 26 shows a represemtaif a network with some connected

nodes. The next section will explain how to accasfplhis representation.

Page 61 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

DTMS-P2P Network Graphical Representation

103.136.92.228:22368

B

T99.136.92.228:22301

/
e\
=

Figure 26 - Frame showing the network representatio

6.2.1.8 Graphical representation of the DTMS-P2P network

To graphically represent the DTMS-P2P network, ¢hent must first download
the LightData file. This file, written in XML format, containshe list of all the active
super-probes, probes and clients. It also eviderioesvhich super-probe a node is
connected to. The XML format allows for a more fgednsertion of contents and retrieval
of significant search results.

The SAXParser_classs used to process the downloaded file and begins
searching elements in the file which begin with $téng “SuperProbe”. When this string
is found, a new element is created and all thecissal information is saved into the
respective class. An element of the cladfibutesis used to search for information
relative to the element, such as the IP addresshengroup number. These are called the
attributes of the root element and provide all ittfermation relative to a super-probe. It
also creates the necessary structures to saveathggomed information.

All nodes connected to a super-probe are savelgeirKML file as child elements
and their attributes as sub-childs. ”. This alldasa hierarchical structure of information.
The function subsequently searches for the stribgMS_P2P_Element” and when it is

found in the file, the corresponding charactersstice saved to the corresponding class.

Page 62 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

A super-probe’s information is saved in an elenwrthe SProbeclass. This class
contains the following:

* A string saving the IP address;

» A string saving the group ID;

» Integers saving the position where the super-praitiebe represented in the

screen;

» Alist of elements of the class node containingladl elements connected to it.

Information concerning to a node is saved on ameid of theNodeclass. This
class contains the next fields:

» A string saving the IP address;

* An integer saving the mode of the element: probdient;

» A string containing the group ID;

* An integer saving th®TTparameter

Two lists were created to store the elements of edss. Each list has an iterator
and elements can be added as information is found.

When an element beginning with the string “SupeoBtas found, the instantiated
object is added to the list of super-probes. If atement starting with
“DTMS_P2P_Element” is found, the function fills trouplD field of the corresponding
node with the value of the similar field of the styprobe to which it is connected.
Subsequently, the loading of the IP address ofptisbe or client is performed and this
attribute is saved as a sub-child of the child eleinode The object will then be added to
the list of nodes of the related super-probe. Télds mode(that indicates if the node is a
probe or a client) and RTT (round-trip-time) arecdlilled. When this process ends, all the
necessary information about all the elements ofdkisting network is located on the
created lists.

The diagram in Figure 27 illustrates this implenagion.

Page 63 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

Read the xml file

4
(Read the root element and save its informatio%

Process the child elements

Is the element

a probe or a G’ass to the next root eIemenD
client? No
Y

Yes

Eb\dd the element to the list of nodes connected to this super-probe)

Bl

Y

Is this the last Yes
element
connected?

Y

Pass to the next element

Figure 27 - Flow diagram of the process of the XMlfile

After having all the needed information, the graphirepresentation can be made.
The methodology used was to display the super-grobea circle, with the distance
between them depending on how many elements mugtdsented. Around each one of
these super-probes, the connected probes andsclieany, are represented. For drawing
this representation, the classageAppletwvas created. The class receives, as parameters,
the lists that were constructed during the parsaigthe XML file and uses their
information. In the following lines the implemernitat of the graphical representation of
the network will be explained.

A frame was used to display the representatioth@fnetwork. A frame is a top-
level window with a title and a border. The sizetlod frame includes all the area assigned

Page 64 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

to the border. The dimensions of the border caotiained using thgetinsetsmethod.
The frame, which is an instance of the cldBsame has decorations elements such as a
border, a title and buttons for closing the window.

The function that draws the network iterates thiothe lists of super-probes and
probes/clients (these are saved in the same list) displays them according to their
connections. The function begins by calculating #mgle of separation between each
super-probe. This depends on their number and amoppate value is found in this
manner. Then the function loads a variable withnaage which will stand for the super-
probes and draws the first one in the XML file. &fwards, the function iterates through
the child elements of the super-probe and chodsesmage to load according to their
mode of operation. If the element is a super-prtie|ist of connected super-probes is run
through to discover if it has already been repregknin this case, a simple connection
between these two elements is performed. To fiigl élement, the function must iterate
through the list of existing super-probes and find element with the same IP address.
When it is found and if its coordinates are nozéndicating that the element is already
represented, a line connecting these two coordinateepresented. Otherwise, no action is
performed and the second super-probe will be repted when the corresponding element
in the list is found. If the child element of thaper-probe is a client or a probe, the
corresponding image is loaded and represented. eldrent will be placed near the
corresponding super-probe. Its position will dependthe zone of the image where the
super-probe is represented. A line representingaheection between the super-probe and
its child element is also shaded. The flow diagr@presented ifrigure 28 shows this
process.

The entire plane of representation is divided fote regions. The region where the
super-probe is represented will determine wherectiremected nodes will be illustrated.
With this, it is intended to provide a simple meémswvoid different probes and clients to
be superposed. Probes and clients will be showowbile super-probe, if it is placed in an
angle higher than 180°, or above if the value efahgle is lesser, i.e., they will always be
placed on the outer side of the circle createdhieysuper-probes. Besides, their position
relative to the super-probe depends on the numbelements which are connected to it,

i.e., the node will be farther from the root elenaoccording on how many probes/clients

Page 65 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

are already illustrated and on their distance edhper-probe. This last value is RET
(round-trip time).

Gead information about the super-probe and represent 94—6’5155 to the next super-probe)di

Y

Gead the list of elements connected to the super»proba

Yes

Y

No Is this the last
Read the element connected to the super-probe Pass to the next element element
L connected?

Is the element No Is the super-
a probe or a - probe already -
client? represented? NO

Yes

Q_oad the corresponding imagea

G)raw a connection between the super-probea

Y

Gepresent the element near the corresponding super-probe]

y

Gepresent a connection betwenn the two elemtena

Figure 28 - Flow diagram of the procedure for the epresentation of the network

After all these procedures and all images represerthe super-probes must be
repainted. This is due to the fact that the linesnecting these components will overlap
the images that have been placed. Therefore, esrefif the image must be done. This is
achieved by simply iterating through the list opsuprobes, consulting their coordinates
and repositioning the correspondent image in thegthat is indicated by the coordinates.

After concluding the explained steps, the repregaent is ready. The following
images will show some illustrations of networkshndtifferent number of super-probes and
probes/clients. Figure 29 shows a representati@nraftwork with eight super-probes with
several clients and probes. Figure 30 illustratastevork with three super-probes and their
related nodes.

Page 66 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

Address:193.136.92.234:22375,

Address:193,136.92.234:22360,

Figure 29 - Representation of a network with varios elements connected

Address 193136 82,228 22368,

Al 55.193.136.92 228:22361,

Address193.136.92.228:22367,

Figure 30 - Representation of a second network witfewer elements connected

Page 67 of 98

Chapter VI — Graphical Interface of the DTMS-P2pITo

6.3 Conclusion

The previous sections have shown all operationstenface can perform and the
results that were obtained with the user’s intéoactin this chapter was also demonstrated
that the API explained in Chapter 5 can implemkeatdommunication between modules in
upper-layers and the DTMS-P2P platform.

The interface allows a user to complete all th&kdas client of the network is
supposed to conclude and provides intuitive regg®is the user so that he can have an
insight about what the network is executing. lbalsarns the user about incorrect tasks he
requests the network to do and shows how thesdeamwrrectly executed. The interface
also displays messages indicating the conclusidheofasks that have been ordered by the
user.

The frames displayed by the interface are intejtiwith all necessary fields
properly identified, and provide visual clues tddguthe user in the execution of a given
command.

The results obtained from the execution of thé&ed#int commands are presented in
an efficient manner and many operations can bécaout over them.

The advantage of using this interface is thatsuseat don't have an extensive
knowledge on how the network and clients interact abtain the desired results based on
fast and intuitive steps and without the need efritaa deep insight into how they operate
together.

Page 68 of 98

Chapter VIl — Final Remarks

7 FINAL REMARKS

This dissertation proposed a module for identifarabf Internet applications based
on the analysis of the packets payload. The repuidtsented proved that this methodology
constitutes a very accurate one, with very efficresults. The module was able to identify
all the protocols it was proposed to and that ifieation was achieved after analyzing
very few packets of the corresponding flows.

The second part of the thesis presented an APlemgnted in order to establish
the communication of the peer-to-peer measuremiatfiopm with other modules. In the
corresponding chapter was shown how the API estadsi the communication and the
several messages it sends to the platform and hoetrieves the obtained results. The
various methods it uses were explained and it uss shown how these can be used by
calling applications.

In the Chapter 6 was introduced a graphical interf@r the DTMS-P2P platform.
The aim of this implementation was to test the grenfance of the APl and also to provide
a simple means of interaction between the usetlamdlient of the DTMS-P2P platform.
This interface communicates with the DTMS-P2P nekwthrough the APl whose
methods perform the different tasks a user may ddnfeom the interface. The API
returns the results of such commands and, in thisnar, the interaction between user and
network is achieved.

In the mentioned chapter, the interaction betweesm API and the module
presenting the interface was proved to be a suitdesse. As the user orders tasks in the
interface, it invokes the corresponding method fribva API, retrieving information and
results from it. This testing proved that the APlable to interact successfully both with
the monitoring platform and, in this case, with graphical interface.

As a conclusion, the implemented interface alseassfully replaces the command
line interface as it provides various visual cluesshow the user how to execute the
command he intends to and also shows messagestindicthe correct or incorrect

performance of the commands.

Page 69 of 98

Appendix

Appendix | — APl Methods

Al1l - Method connect()
Name connect()
Purpose Connect the client to the network
Requisites The client is disconnected
Syntax boolean connect()

Input Parameters

Output Parameters

Boolean variable indicating ttiatclient is connected

Event Sequence

API

1. API starts the OutgoingConnectionManager()
2. API updates the Boolean variable indicating tha client
is connected

Page 71 of 98

Appendix

Al1.2 - Method disconnect()
Name disconnect()
Purpose Disconnect the client from the network
Requisites The client is connected
Syntax boolean disconnect()

Input Parameters

Output Parameters

boolean variable indicatingttietlient is disconnected

Event Sequence

API

1. API shuts down the connection of the clienthi super-
probe

2. APl updates the Boolean variable indicating tha client
is disconnected

Page 72 of 98

Appendix

A.1.3 - Method show_settings()
Name show_settings()
Purpose Present the current settings of the client
Requisites
Syntax String[] show_settings()

Input Parameters

Output Parameters

A string array with the pararsetéthe client

Event Sequence

API

1. API reads the settings of the client
2. API processes the settings and places thendateaarray

Page 73 of 98

Appendix

AlA4 - Method listener_settings()
Name listener_settings()
Purpose Apply the new settings to the client
Requisites
Syntax boolean listener_settings(String[] settings)
Input Parameters String[] settings — array cont@rthe new settings of the client
Output Parameters A boolean variable indicatingaiy@iance of the new settings
Event Sequence API

1. API reads the settings of the client
2. API applies the new settings to the client
3. APl writes the new settings to tbenf_clientfile

4. API updates the Boolean variable indicatingappliance

of the new settings

Page 74 of 98

Appendix

A.1l5 - Method listener_default()
Name listener_default()
Purpose Apply the default settings to the client
Requisites
Syntax boolean listener_default()

Input Parameters

Output Parameters

A boolean variable indicating #ppliance of the defau
settings

Event Sequence

API

1. API reads the default settings of the client.

2. API applies the default settings to the client.

3. API writes the default settings to thenf_clientfile.

4. API updates the Boolean variable indicatingappliance
of the default settings.

Page 75 of 98

—

Appendix

A.1.6 - Method get_restrictions()
Name get_restrictions
Purpose Ask to the node which will execute the camdrthe restrictions.
Requisites User has entered a command and prdéssédtton “Restrictions”.
Syntax boolean get_restrictions (String[] arrayirgtcommand)

Input Parameters String[] array — array[0]: IP addrof the node
array[1]: the measurengmoup of the noe
String command: the command to be performed

Output Parameters| A boolean variable indicating tie AP| has received the response

from the node

Event Sequence API

1. APl tests if a node was selected to executedhemand.
3. API sends aistOfCommandRestrictionsRequestssageéo
the node.

3. APl waits for the response of the node and tgsdeariable

indicating it has received the restrictions.

Page 76 of 98

Appendix

Al1.7 - Method execute_command()
Name execute_command()
Purpose Execute the command the user typed
Requisites The restrictions have been requested
Syntax boolean execute_command(String args, Stongnand)

Input Parameters

String[] args — args|[0]: IP adsicéthe node
arfs]: the measurement group of the node

String command: the command to be performed

Output Parameters

A boolean variable indicatingRéhas received a response
from the node.

Event Sequence

API

1. API tests if a node was selected.

2. API tests if a command was inserted.

3. Send processCommandRequestssage to the node

4. API waits for the response of the node and tgsdeariable

indicating it has received the response from thaeno

Page 77 of 98

Appendix

A.1.8 - Method download_results_file()
Name Download_results_file()
Purpose Download the file with the results
Requisites The command has been executed
Syntax boolean download_results_file(String file)

Input Parameters

String file — a string contairtimg name of the file to downloa:

Output Parameters

A boolean variable indicatirtgefdownload has finished

Event Sequence

API

1. API tests if a file was selected for download @rocesses
its name.

3. API creates an instance of tMeltiSourceDownloadeto
perform the download of the file

4. API runs theMultiSourceDownloadeto initiate the
download of the file

5. API updates the boolean variable indicatirgdbmpletion
of the download or throws an exception if the dlieas
already downloaded the file

Page 78 of 98

Appendix

A.1.9 - Method show_search_results()
Name show_search_results()
Purpose Present the list of files which satisfearsh criterion
Requisites
Syntax boolean show_search_results (String crite@ring group)

Input Parameters

String criterion — the criteriopérform the search
String group — the measurement group where to perfihe

search for files

Output Parameters

A boolean variable indicatirthetcompleted the processing

the search results.

Event Sequence

API

1. API sends eesultsSearcimessage to the nodes of the
selected measurement group

2. The API processes tlueryHitmessages sent by the
nodes

3. The API processes the names of the files iQineryHit
messages and places them in a data array accaooding
parameters.

4. API updates variable indicating it has compuldtee
processing of the search results.

Page 79 of 98

of

Appendix

A.1.10 - Method value_changed

Name value_changed()

Purpose Download the file the user selected irc#ieng application
Requisites

Syntax boolean value_changed (String file)

Input Parameters String file — the name of thetéildownload

Output Parameters A boolean variable indicatingctivapletion of the download.

Throws an exception if the client has already doaded the
file.

Event Sequence API

1. API processes the name of the file to download.

2. API creates an instance of MeltiSourceDownloader
which will perform the download of the file.

3. API starts théultiSourceDownloadeto initiate the
download of the file.

4. API updates the boolean variable to indichée t
completion of the download of the file or throwsexteption

if the client has already downloaded the file.

Page 80 of 98

Appendix

A.1.11 - Method show_files()

Name show_files()

Purpose Present the list of files the client owns
Requisites

Syntax boolean show_files()

Input Parameters

Output Parameters A boolean variable indicatingdbmpletion of the process

the list of files

Event Sequence API

1. API requests the list of files the client owns
2. API processes the list of files and places digelon the
corresponding data array.

3. API updates variable indicating it has compuletes

process.

Page 81 of 98

Appendix

A.1.12 - Method get_file_list()

Name get_file_list()

Purpose Present the list of files a node owns.
Requisites

Syntax boolean get_file_list(String IP_address)

Input Parameters

String: the IP address of the.node

Output Parameters A boolean variable indicatirtta processed the list of files
a node.
Event Sequence API

1. API processes the IP address of the node.

2. APl downloads the file with list of files th@de owns.
3. API parses the file.

4. API places the name of the files in the datayar

5. API updates boolean variable.

of

Page 82 of 98

Appendix

Appendix 2 — Interface Methods

A.2.1 - Constructor

E:reate text fields for the insertion of commands and parametera

/

Greate buttons "Restrictions" and "Execute Command" and attach event Iistenera

4
E:reate a combo-box for the selection of the nodea

/
@sert the components in a tab named "Commands)

/

Greate a text field for the insertion of a criterion for the search

NG

/

Gttach an event listener to the text fiela

/

E:reate a combo-box for the selection of the type of search

Qnsert the components in a tab named "Searchj

!

Greate a combo-box for the selection of the node to present the list of filea

Y

Greate button to order the presentation and attach event IisteneD

Ensert the components in a tab named "List of Files of a node}

Greate tables with the lists of files the client owng

/

Ensert the tables in a tab named "List of Files of the Clientj

Page 83 of 98

Appendix

A.2.2 - Method notify_disconnect()
Name notify_disconnect()
Purpose Notify the API to disconnect the clientirthe network.
Requisites The client is connected.
Event Sequence User Interface

1. User presses the menu item

“Disconnect”.
2. Interface calls the metho
disconnect(from the API.
3. Interface presents a
message to the user
indicating that the client is

disconnected.

Page 84 of 98

Appendix

A.2.3 - Method notify_connect()
Name notify_connect()
Purpose Notify the API to connect the client to tieéwork.
Requisites The client is disconnected.
Event Sequence User Interface

1. User presses the menu item

“Connect”.
2. Interface calls the metho
connect()from the API.
3. Interface presents a
message to the user
indicating that the client is

connected.

Page 85 of 98

Appendix

A2.4 - Method get_settings()
Name get_settings()
Purpose Notify the API to get the settings of thent.
Requisites The client is connected.
Event Sequence User Interface

1. User presses the menu item

“Show Settings”.
2. Interface calls the metho
show_settings(rom the
API.

3. Interface presents the

settings to the user.

Page 86 of 98

Appendix

A.2.5 - Method apply_settings()
Name apply_settings()
Purpose Notify the API to apply the new settingth® client.
Requisites The client is connected.
Event Sequence User Interface

1. User presses the button

“Apply Settings”.
2. Interface calls the metho
listener_settings(from the
API.
3. Interface presents a
message to the user

indicating that the settings

have been applied.

Page 87 of 98

Appendix

A.2.6 - Method

apply_default()

Name apply_default()
Purpose Notify the API to apply the default setsing the client.
Requisites The client is connected

Event Sequence

User

Interface

1. User presses

“Apply Default”.

the button

2. Interface calls the metho
listener_default(from the
API.

3. Interface presents a
message to the user
indicating that the default

settings have been applied.

Page 88 of 98

Appendix

A.2.7 - Method listener_restrictions()
Name listener_restrictions()
Purpose Notify the API to show the restrictionsoassted to a command.
Requisites User has selected a node to executmthmand and inserted
command
Event Sequence User Interface

1. User selects a node

2. User enters a command to

view its restrictions

3. User presses the button

“Restrictions”
4. Interface calls the metho
get_restrictions()
5. Interface presents the

restrictions

Page 89 of 98

a

Appendix

A.2.8 - Method listener_command()
Name listener_command()
Purpose Notify the API to execute a command
Requisites User has selected a node to executeotimenand, typed th

command and viewed the restrictions associated.

(1))

Event Sequence

User Interface

1. User enters the parameters of

the command.

2. User presses the button

“Execute Command”.
3. Interface calls the metho
execute_command()
4. Interface presents the

results.

Page 90 of 98

Appendix

A.2.9 - Method listener_button()
Name listener_button()
Purpose Notify the API to download the results. file
Requisites The command has been executed.

Event Sequence

User Interface

1. User presses the button to

download the file.
2. Interface tests if the user
has executed the command
3. Interface calls the methoc
download_results_file()
4. Interface presents a
message to the user
indicating the end of the

download.

)

Page 91 of 98

Appendix

A.2.10 - Method actionPerformed()

Name actionPerformed()

Purpose Notify the API to perform the search afea f

Requisites User entered a search criteria and ythe ©f search to b
performed.

Event Sequence User Interface

1. User enters a search criterion
and selects the type of search to
perform.
2. Interface calls the methog
show_search_results()

3. Interface presents the

results to the user.

Page 92 of 98

Appendix

A.2.11 - Method

notify _download_file()

Name notify _download()

Purpose Notify the API to perform the download dfl@ resulting from
a search operation.

Requisites User performed the search of files.

Event Sequence

User Interface

1. User selects a file for

download from the table

containing the search results.
2. Interface calls the metho
value_changed()

3. Interface presents a

message to the user.

Page 93 of 98

Appendix

A.2.12 - Method listener_button_list()

Name listener_button_list()

Purpose Notify the API to perform the download loé tist of files of a
node.

Requisites The user has selected a node to rettievest of files.

Event Sequence User Interface

1. User selects a node to get its
list of files.
2. User presses the button “Get
the list of files”.
3. Interface calls the method
get_file_list()
4. Interface presents the list

of files.

Page 94 of 98

Bibliography

Bibliography

Books:
[Eckel2002] B. EckelThinking in Javas"d ed., Prentice-Hall, 2002.

[Mandel1997] T. MandelThe Elements of User Interface Desidmhn Wiley & Sons,
1997.

[Walrath2004] K. Walrath, M. Campione, A. Huml, a8d ZakhourJFC Swing Tutorial:
A Guide to Constructing GUI€" ed, Addison Wesley, 2004.

[Zukowski2005] J. ZukowskiThe Definitive Guide to Java Swir§ ed., Appress, 2005.

Articles and Documents:

[Bernaille] L. Bernaille R. Teixeira, I. Akodkenou, A. Soule, K. Slamatidiiraffic
Classification On The Fly”, IMACM SIGCOMM Computer Communication Reyiew
Vol. 36, N° 2, pp. 23-26, 2006.

[BitTorrent2007]Bit Torrent http://www.bittorrent.com, 2007.

[Cisco02007] Cisco NBAR. http://www.cisco.codwiwgppblic/732~ecldgos/nbar/.
[Dewes2003] C. Dewes, A. Wichmann, and A. Feldmd&Am analysis of Internet chat
systems”. InProceedings of ACM SIGCOMM Internet Measurementféence Oct

2003.
[Erman2006] J. Erman, M. Arlitt, and A. Mahanti.raffic Classification Using Clustering

Algorithms”, In Proceedings of ACM SIGCOMM Minenet Workshépsa, Italy,
September 2006.

Page 95 of 98

Bibliography

[Gnutella2007] Gnutella2. http://www.gnutella2.com

[Haffner2005] P. Haffner, S. Sen, O. Spatscheckd Bn Wang “ACAS: Automated
Construction of Application Signatures”, IBIGCOMM’ 05 MineNet Workshop
Philadelphia, USA, August 22-26, 2005.

[IEC2007] IEC, 2007. International Engineering Consortium

http://www.iec.org/online/tutorials/h323

[IT2007] Institute of Telecommunications — Networksand Multimedia.

http://www.it.pt/area_p_3.asp, 2007.

[Jawvin2007] Jawvin. H.323: ITU-T VOIP Protocols Overview
http://www.javvin.com/protocolH323.html, 2007.

[Karagiannis2004a] T.Karagiannis, A.Broido, N.Brdes kc claffy, and M.Faloutsos.
“Transport Layer ldentification of P2P Trafficln Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement (IMCG42Qtp. 121-134, 2004.

[Karagiannis2004b] T. Karagiannis, A.Broido, N.Bnoee, kc claffy, and M.Faloutsos.
“Is P2P dying or just hiding?”, Proceedings of lBEE Globecom 2004 - Global

Internet and Next Generation Networks, 2004.

[Karagiannis2005] T. Karagiannis, D. Papagiannaknd M. Faloutsos. “BLINC:
Multilevel Traffic Classification in the Dark”, Témical report, 2005.
http://www.cs.ucr.edu/_tkarag/papers/BLINC TR.g2005.

[Kulbak2005] Y. Kulbak and D. Bicksofmhe eMule Protocol Specificatipiniversity of

Jerusalem, Israel, 2005.

[McGregor2004]A. McGregor, M. Hall, P. Lorier, and Brunskill J*Flow Clustering
Using machine Learningrechniques”, InPassive & Active Measurement Workshop
2004, France, April, 2004.

Page 96 of 98

Bibliography

[Madhukar2006] A. Madhukar and C. Williamson. “Angitudinal Study of P2P Traffic
Classification”, InProceedings of the 14th IEEE International Symposain Modeling,
Analysis, and Simulatiompp. 179 — 188, 2006.

[Moore2005] Moore A. W. and Papagiannaki K. “Towdh# accurate identification of
network applications”, InPassive & Active Measurement Worksh&wston, USA,
March 2005

[MSN2007] MSN. MSN Messenger Protocol
http://www.hypothetic.org/docs/msn/general/overvighp, 2007

[OSCAR2007] OSCAR. OSCAR (ICQ v7/v8/v9) Protocol Documentation
http://iserverd.khstu.ru/oscar, 2007.

[Richarson2006] T. Richardson. The RFB Protocol
http://www.realvnc.com/docs/rfbproto.pdf, 2006

[Rocha2007] E. Rocha, H. Veiga, R. Valadas, P.&#dv, and A. Nogueira. “Module for
identifying Internet Applications and its integ@ti in a peer-to-peer measurement
tool”, In MCCSIS 2007, Lisbon, Portugal, 2007

[Salvador2005] P. Salvador and R. Valadas. “A Nekadonitoring System with a Peer-
to-Peer Architecture”, IfProceedings of the Third International Workshoploternet
Performance, Simulation, Monitoring and Measurermeltarsaw, Poland, pp. 115-
122, 2005.

[Sen2004] S. Sen, O. Spatscheck, and D. Wang. ‘vatey Scalable In-Network
Identification of P2P Traffic using Application Sigtures”, InProceedings of the 13th
International World Wide Web Conferendgy, USA, pp. 512-521, 2004.

Page 97 of 98

Bibliography

[SIP2007] SIP C. “SIP Center”,
http://lwww.sipcenter.com/sip.nsf/html/What+Is+SIRtrbduction, 2007.

[Veiga2007] H. Veiga. “Distributed Traffic Measuremt System with a Peer-to-Peer
Architecture”, 2007.

[Zander2005] S. Zander, T. Nguyen, andA@nitage “Automated Traffic Classification
and Application Identification using Machine Leargi. In LCN’05, Sydney, Australia,
Nov 15-17, 2005.

[Zuev2005] D. Zuev and A. Moore. “Traffic ClassHiton using a statistical approach”, In
Passive & Active Measurement WorkshBpston, USA, March 2005.

Page 98 of 98

