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resumo 
 

 

Devido às actividades antropogénicas várias substâncias químicas têm sido introduzidas no 
meio ambiente em concentrações que de outro modo não ocorreriam de forma tão elevada 
naturalmente. Assim, o conhecimento acerca das características de um químico, tais como, o 
potencial para se acumular em diferentes níveis tróficos, a sua mobilidade dentro do 
ecossistema, a toxicidade específica e a bioacumulação, é fundamental para compreender os 
seus efeitos nos ecossistemas. Esta tese investiga a influência de especiação, na 
biodisponibilidade do cádmio (Cd) para o isópode Porcellio dilatatus, incluindo os efeitos de 
especiação do metal: (i) na assimilação do Cd, (ii) no modo como o Cd se distribui 
internamente no organismo, e (iii) como a sobrevivência e a reprodução são afectadas em 
isópodes terrestres. Num primeiro ensaio laboratorial avaliou-se a importância da transferência 
trófica na assimilação do Cd em P. dilatatus. Para tal analisou-se a eficiência de assimilação 
(EA) do Cd em isópodes, adicionado superficialmente ao alimento (alface) na forma de 
Cd(NO3)2 e contaminando o meio de crescimento da alface. A hipótese era de que a alface 
contaminada biologicamente através do cultivo em meio hidropónico contaminado teria uma 
maior proporção de complexos com proteína ou conjugado na forma de Cd (ex. Cd cisteína). A 
EA de Cd foi maior entre os isópodes que foram alimentados com o sal (71%, SE = 7%), do 
que entre os isópodes que se alimentaram de alface contaminada biologicamente (52%, SE = 
5%), demonstrando-se assim num teste laboratorial que é provável que a especiação do Cd 
influencie a taxa de assimilação e acumulação do Cd. Na experiência alimentar que se seguiu, 
estudou-se em detalhe a especiação do metal comparando as EA do Cd conjugado com 
cisteína (Cd(Cys)2) e na forma de Cd(NO3)2, com os quais se contaminou gelatina com alface. 
A utilização de Cd-cisteína, proporcionou uma forma experimental para explorar a 
biodisponibilidade do Cd complexado dentro do tecido biológico. Como esperado, a EA de Cd 
em isópodes alimentados com nitrato de Cd (64%, SE = 5%) foi maior do que no caso de 
isópodes alimentados com o conjugado de cisteína (20%, SE = 3%). De seguida estudou-se a 
distribuição subcelular das espécies de Cd assimilado através de um processo de 
fraccionamento. Supunha-se que as diferenças de especiação de Cd reflectiria diferentes 
estratégias de compartimentalização, com consequências ao nível da detoxificação, 
armazenamento celular e distribuição subcelular do metal. O “sequestro” na forma de metal 
biologicamente detoxificado (BDM = proteínas estáveis ao calor - HSP e grânulos ricos em 
metal - RMG) foi maior nos isópodes alimentados com Cd(NO3)2, sugerindo que são mais 
eficientes na detoxificação de Cd (22%) do que quando alimentados com Cd(Cys)2 (15%). Foi 
também demonstrado que os isópodes alimentados com Cd(Cys)2 possuíam níveis de 
armazenamento de Cd superior nas fracções sensíveis ao metal (MSF = organelos e proteínas 
desnaturadas pelo calor - HDP) consideradas fracções potencialmente vulneráveis e 
afectando os isópodes em termos de toxicidade. As diferentes distribuições internas que se 
seguiram à assimilação e detoxificação das diferentes espécies de Cd foram finalmente 
avaliadas em termos da sobrevivência e reprodução dos isópodes. O tratamento com 
Cd(Cys)2 teve maior mortalidade, provavelmente devido à maior disponibilidade de Cd ingerido 
com implicações ao nível dos processos fisiológicos. Os isópodes alimentados com Cd(NO3)2 
armazenaram o Cd nos MRG, como estratégia de detoxificação, sendo mais eficientes a 
detoxificar o Cd ainda que aumentando a concentração total do metal que se tornou menos 
tóxico para o isópode. Desta forma, o Cd nos grânulos não estava disponível para os 
processos fisiológicos e deixou de ser tóxico. Isso poderia estar relacionado com a resistência 
e tolerância aos metais devido à capacidade dos isópodes compartimentalizarem o Cd no 
hepatopâncreas, que actua como um mecanismo de detoxificação e contribui para a tolerância 
a altos níveis de cádmio. Em termos de parâmetros reprodutivos, observou-se uma redução 
de gestações e duração da gestação na presença de ambas as espécies de metal, mas no 
caso do Cd(Cys)2 as gravidezes não se concluíram. O número de jovens produzido por 
fêmeas alimentadas com Cd(NO3)2 foi menor do que no controlo, mas os pesos dos juvenis 
foram superiores. Finalmente sugere-se assim que esta abordagem seja considerada em 
estudos do movimento trófico de metais nas cadeias alimentares dado que se espera que a 
especiação de metais implique diferentes fluxos, dentro de uma dada cadeia trófica. 
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abstract 

 
Human activities have introduced several chemicals into the environment that otherwise would 
not be found in such high concentrations in nature. Therefore the knowledge about the 
characteristics of a chemical, such as the potential to accumulate at different trophic levels, 
mobility within the ecosystem and specific toxicity and bioaccumulation in organisms needs to 
be achieved in order to understand its effects on the ecosystems. The present thesis 
investigates the influence of speciation, in the bioavailability of cadmium (Cd) to the isopod 
Porcellio dilatatus, including the effects of metal speciation in: (i) Cd assimilation, (ii) the way 
Cd distributes internally within the organism, and (iii) how survival and reproduction is affected 
in terrestrial isopods. In a first laboratory trial the importance of trophic transfer to Cd 
assimilation in P. dilatatus was evaluated. This was carried out by examining the assimilation 
efficiency (AE) of Cd in isopods provided with food (lettuce) superficially amended with 
Cd(NO3)2 and provided with lettuce grown in Cd-contaminated media. The hypothesis was that 
lettuce biologically contaminated via hydroponic culture in contaminated media would have a 
high proportion of Cd in the form of Cd-protein complexes or Cd-S-conjugates (e.g. Cd-
cysteine). AE of Cd was greater among isopods that were fed the simple salt (71%, SE=7%), 
than among isopods feeding on biologically contaminated lettuce (52%, SE=5%), hence 
demonstrating that speciation of Cd is likely to influence the rate of Cd assimilation and 
accumulation in a laboratory test. In a following dietary experiment, metal speciation was 
further studied by comparing AE using Cd as Cd cysteinate (Cd(Cys)2) and Cd(NO3)2 deployed 
in contaminated gelatines containing lettuce. The use of Cd-cysteinate provided an 
experimental device to explore the bioavailability of Cd that is complexed within biological 
tissue. As hypothesized the AE of Cd by isopods fed with Cd nitrate (64%, S.E.=5%) was 
higher than in the case of isopods fed with Cd-cysteine conjugate (20%, S.E.=3%). The 
subcellular distribution of the assimilated Cd species was then studied with a fractionating 
procedure. It was assumed that differences in Cd speciation would reflect different 
compartmentalization strategies with consequences at the manner by which metal was 
detoxified, stored in cells and distributed at subcellular level. Sequestration as biologically 
detoxified metal (BDM = heat stable proteins - HSP and metal-rich granules - MRG) was higher 
in isopods fed with Cd(NO3)2 suggesting that they are more efficient at detoxifying Cd (22%) 
than when fed with Cd(Cys)2 (15%). It was also shown that isopods fed with Cd(Cys)2 had a 
higher storage level of Cd in the metal-sensitive fractions (MSF = organelles and heat 
denatured proteins - HDP) being considered potentially vulnerable fractions affecting isopods in 
terms of toxicity. The different internal distributions that followed the assimilation and 
detoxification of different Cd species were finally evaluated as survival and reproduction in 
isopods. The Cd(Cys)2 treatment had the highest mortality probably due to higher availability of 
the ingested Cd that impaired physiological processes. Isopods fed with Cd(NO3)2 stored Cd in 
the MRG as a detoxification strategy hence they were more efficient at detoxifying Cd which 
may had lead to increased metal body burdens although being less toxic to the isopod. In this 
way, Cd in granules was not available for the physiological processes and became non toxic. 
This could also be related to metal tolerance and resistance that may be attributed to the ability 
of isopods to compartmentalize Cd in the hepatopancreas, which acts as a detoxification 
mechanism and contributes to tolerance to high cadmium levels. In the presence of both metal 
species a reduction of pregnancies and pregnancy duration was observed in terms of 
reproductive endpoints but in the case of Cd(Cys)2 all pregnancies were inconclusive. The 
number of juveniles delivered per female fed with Cd(NO3)2 contaminated food was lower than 
in the control but the juvenile weights were higher. In sum, it can be suggested that future 
studies examining the trophic movement of metals in food chains should consider this kind of 
approach where different flows within a trophic chain are expected depending on metal 
speciation. 
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Chapter 1. General Introduction and Objectives 

 

 

1.1. Cadmium 

Cadmium (Cd) is a nonessential metal considered a priority pollutant in Europe, hence 

being recently assessed for its risks to the environment and human health (ECB, 2007), 

as foreseen by the Council Regulation 793/93/EEC of March 1993 on the evaluation and 

control of risks of existing substances. Although Cd occurs naturally in soils and waters at 

low concentrations, deposition within the biosphere has increased dramatically over the 

last century as a consequence of anthropogenic activities. There are many uses for Cd 

that range from batteries, coating and alloys in the metallic form, to PVC heat stabilisers 

and pigments from the oxides. An important source of Cd is the fertilizers because Cd is 

present in the phosphate mineral rocks which are mined for use as raw material in the 

manufacture of phosphate fertilizers. Hence this metal is a multi-regulated substance in 

Europe. The most important piece of legislation is related to the restriction of the use of 

cadmium and cadmium compounds in products as defined in Annex XVII of Regulation 

(EC) 1907/2006 of December 2006 on the registration, evaluation, authorisation and 

restriction of chemicals (REACH), which has been directly applicable in all member states 

since 1 June 2009. 

According to Council Directive 67/548/EEC of June 1967 on classification, 

packaging and labelling of dangerous substances Cd is considered as very toxic, 

carcinogenic, mutagenic and toxic to reproduction. Besides to its toxicity it has no known 

biological function (Odendaal and Reinecke, 1999). Effects to the environment have been 

mostly studied in the aquatic compartment and in the terrestrial compartment; most 

ecotoxicological tests have been performed with soluble Cd2+ salts (ECB, 2007). 

Standardized tests for soil fauna include the 14-day LC50 (50% lethal concentration) test 

using the earthworm Eisenia fetida (OECD, 1984) and the ISO test (ISO, 1999) with the 

collembolan Folsomia candida. Unlike many other toxic metals, Cd has the potential to 

bioaccumulate through soil-plant-animal food-chains (Nolan et al., 2003; McLaughlin et 

al., 2006; Mann et al., 2007). Bioaccumulation patterns among flora and fauna are 

dependent on both the environmental availability of Cd and physiological constraints on 

uptake into an organism, and both these aspects are in turn
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dependent on its chemical speciation, i.e. the chemical form in which the metal is 

presented to the consumer. However other factors may affect metal uptake and 

accumulation such as the presence of other metals, pH, salinity, temperature, season, 

cation-exchange capacity of soils and the species taking up the Cd (Robards and 

Worsfold, 1991). Within a certain food chain there may exist biological compartments that 

posses tolerance and/ or detoxification mechanisms. As a consequence of these 

pathways, Cd may reach high concentrations in plants before phytotoxicity is manifested 

(Nolan et al., 2003), thereby providing a pool of Cd which may be available to herbivores. 

Looking at these primary consumers, tolerance to Cd depends on the ability of animals to 

regulate metal in many of their tissues and to accumulate excess metal in non-toxic forms 

in other particular tissues. The ecological consequence of such compartmentalization 

processes in prey organisms is that they may mediate the bioreduction or bioaccumulation 

of toxic metals along food chains, by altering metal bioavailability (Wallace and Lopez, 

1997). 

 

1.2. Porcellio dilatatus 

Terrestrial isopods are invertebrates that play an important role in maintaining the 

structure and fertility of the soil. As saprophytic detritivores they are primary consumers 

alongside with millipedes and earthworms (Drobne, 1997; Loureiro et al., 2002). 

Invertebrate-mediated processes such as drainage, aeration, incorporation and 

degradation of organic matter are important in improving soil quality and energy flow 

through ecosystems (Drobne, 1997; Hornung et al., 1998). Moreover, invertebrates are an 

important part of the terrestrial food web and constitute a significant component of the diet 

of other animals (Peijnenburg, 2002).  

Isopods have been widely adopted as model species for the examination of metal 

accumulation and toxicity testing because of their extraordinary capacity to accumulate 

large body-burdens of toxic metals from the environment, predominantly in the 

hepatopancreas (Donker et al., 1990; Hopkin, 1990; Hames and Hopkin, 1991; Drobne, 

1997; Hornung et al., 1998) with low to negligible depuration rates (Witzel, 2000). As hard-

bodied soil invertebrates, the main route for accumulation of metals in terrestrial isopods 

is predominantly through dietary exposure rather than absorption through the body wall 

(Vijver et al., 2005). Isopods inhabit the upper layer of the soil and surface leaf litter, are 

quite abundant in southern Europe, being abundant in the field throughout the year, are 
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easily hand collected and are easy to handle under laboratory conditions, where they can 

complete their entire life-cycle (Caseiro et al., 2000). 

As saprophytic detritivores if the food they consume is contaminated with a metallic 

compound, only a limited proportion of that metal is likely to be present as free metal ions 

(Me+). A large proportion of the metal is likely to be present in a form that has resulted 

from biological sequestration and transformation by either the micro-organisms growing 

on the decaying organic matter or by the organic matter itself while it was part of a living 

system (Ledin et al., 1999; Rauser, 1999; Magyarosy et al., 2002). 

The woodlouse species Porcellio dilatatus Brandt (Crustacea, Isopoda) has been 

used in ecotoxicological experiments as it is an important representative of the 

invertebrate soil fauna and a valuable model for the examination of metal assimilation and 

accumulation. This woodlice is widely spread in Europe and tests performed aimed at 

studies of the effects to a wide range of toxicants, including metals (Mann et al., 2005; 

Raessler et al., 2005; Monteiro et al., 2008) and organic compounds (Ribeiro et al., 2001; 

Engenheiro et al., 2005). 

 

1.2.1. Putting reproduction of P. dilatatus into perspective 

Terrestrial isopods allocate its available resources to growth, reproduction, or improving 

its survival, in a combination designed to maximize its fitness (Jones and Hopkin, 1996). 

P. dilatatus reproduces sexually and ovigerous females are considered iteroparous i.e. a 

single female is capable of breeding more than once in her lifetime (Achouri et al., 2008). 

Parental care is a behavioural strategy among many terrestrial isopods, and contributes to 

increased fitness of progeny. Eggs and juveniles (i.e. the manca stage) are carried by 

females in a marsupium that is provisioned with fluid from the mother and allows early 

development to take place independently of an external water source (Lardies et al., 

2004). The mancae at emergence are relatively well advanced in age to cope with 

terrestrial life. The fact that gender and female pregnancy stage are easily distinguished, 

makes it easy to study the diverse aspects of their reproductive biology. 

The most widely used toxicological endpoints in isopod testing are mortality (e.g. (Jansch 

et al., 2005), growth and food consumption processes (e.g. (Loureiro et al., 2006), and 

reproduction (e.g. Vink and Kurniawati, 1996; Hornung et al., 1997). The use of 

reproduction patterns as toxic responses is sometimes not convenient because of the long 

duration required for the test. Reproduction is also difficult to assess because after 

mating, females may retain the sperm for a long period of time before egg fertilization 
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(Vink and Kurniawati, 1996; Drobne, 1997). On the other hand using reproduction as a 

response endpoint to test sublethal effects of chemicals has the advantage of not killing 

the animals during the procedure, and at the end of the test they can be re-exposed to 

uncontaminated food in order to study recovery processes (Drobne and Strus, 1996). The 

effects of chemicals to reproduction traits are crucial to understand and transpose those 

effects to higher levels of organization. The impairment of reproductive processes are 

crucial for the population stability/growth and therefore isopods‘ role in decomposition 

processes and cycling of nutrients may be also affected. 

 

1.3. Metal trophic transfer  

The study of the trophic transfer of metals is a largely unexplored field. In recent years, a 

growing number of researchers have recognized the need to incorporate the principles of 

trophic transfer within the design of metal toxicity studies with invertebrates (e.g. Devi et 

al., 1996; Allinson et al., 2000; Merrington et al., 2001; Maryan'ski et al., 2002; Simon and 

Boudou, 2002; Green et al., 2003; Hendrickx et al., 2003; Wallace and Luoma, 2003; 

Hansen et al., 2004; Mann et al., 2004). These authors provided their test species with 

prey items that had accumulated metallic contaminants while still alive. In this way, they 

attempt to simulate the movement of metallic contaminants through the food chain, and 

thereby incorporate within their tests, the complexities of metal speciation and 

bioavailability in biological systems. Notwithstanding, the results of such studies are not 

easily predictable, because both the metal binding properties of the prey species and 

subsequent bioavailability to the predator are likely to be highly variable. For example, 

Harrison and Curtis (Harrison and Curtis, 1992) found the assimilation of Cd by trout to be 

much higher from biologically Cd-contaminated amphipods than Cd from an artificially 

contaminated diet. Conversely, lacewings feeding on aphids growing on Cd-contaminated 

media did not assimilate the Cd pool that had been accumulated by the aphids 

(Merrington et al., 2001). The dietary transfer of metals needs further investigation for both 

toxicological and regulatory standpoints (Nolan et al., 2003; Bechard et al., 2008). 

 

1.3.1. Speciation and bioavailability 

Chemical availability on the environment is related to the form in which the metal occurs 

and little is known about how metal speciation affects the way metals are absorbed, 

transported and stored in vivo and of how chelating agents can promote excretion of the 
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toxic metal (Cakir et al., 1999). Bioavailability has traditionally been defined to include the 

availability of metals to organisms as well as the availability of metals to tissues within 

organisms once inside the organisms. Although laboratory experiments, including 

biokinetic models, are useful in examining bioavailability, it is the behaviour of metals in 

ecosystems that is salient for ecological risk assessment (Peakall and Burger, 2003). The 

bioavailability of trace metals, their biological uptake, and their ecotoxicological effects on 

the soil biota can be better understood in terms of their chemical speciation. Assessment 

of the potential toxicity or bioaccumulation of metals by ecotoxicologists has increasingly 

used information on metal speciation to improve biological and biochemical toxicity 

models. Less progress has been made in terrestrial environments, mainly due to the 

difficulties in measuring metal activities in soil systems and also to the heterogeneous 

nature of the soil environment, where exposure of organisms to metals occurs through 

solid, liquid and gaseous pathways (Nolan et al., 2003). Consequently regulations or 

guidelines used to protect soil from metal pollution are still based on assessing the total 

concentration of metal present in the soil. 

Bioavailability often determines whether the concentration at which a chemical is 

present will have effects on organisms. But the species with the highest concentration of 

metals are not necessarily the ones with the highest risk, because there are physiological 

mechanisms underlying the storage and excretion of metals (Peijnenburg and Jager, 

2003). According to Vijver et al (2004), at cellular level, metals can be found in the 

following species: as free ionic form or complexed ion species (e.g. CdCl2, CdCl+, CdCl3-); 

bound in the active centre of functional proteins and low molecular weight peptides; bound 

in the active centre of functional proteins and enzymes; bound to low molecular weight 

organic acids; bound to metallothionein, to transport proteins (e.g. ferritin), or other 

sequestration proteins; bound in vesicles of the lysossomal system, as intracellular 

granules; precipitated in extracellular granules, mineral deposits, residual bodies and 

exoskelotons; bound to cellular constituents potentially causing disfunction (e.g. DNA). 

These biochemical mechanisms serve to prevent the organism against accumulation of 

metal species, and they might also have an impact on the accumulation level reached in 

organisms during exposure. In the case of Cd exposure, the induction of metal-binding 

proteins such as phytochelatins and metallothioneins, as a mechanism of tolerance, plays 

an important role (Prasad, 1995). Phytochelatins and Metallothioneins (MTs) are small 

proteins with a significant concentration of cysteine (30%) (Ndayibagira et al., 2007), 

which contains a sulphydryl group and this fact accounts for the Cd-metallothionein 
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induction due to Cd high affinity for sulphur ligands (Zalups and Ahmad, 2003; Roosens et 

al., 2005). 

 

1.3.1.1. FIAM and BLM 

Some models have been developed in an attempt to link the bioavailability of 

contaminants and toxicity relying on the free ion metal activity (FIAM) or more recently on 

the metal binding with the proposed toxicological site of action (BLM) (Di Toro; 2001). The 

bioavailability of metals in soil is generally thought to be dictated by the free ion activity 

model (FIAM) which predicts that only metals existing as free Me+ are available for uptake 

across membranes (McLaughlin, 2002). The concentration of Me+ is dictated by 

physiochemical properties of the soil such as pH, the nature of metal exchange sites 

within the organic and inorganic matrices (McLaughlin et al., 2000; Peijnenburg, 2002), 

their binding affinity for soluble anionic ligands within soil pore-water (e.g. choride Lock 

and Janssen, 2003a; Weggler et al., 2004), and competition for those by sites with other 

cations in solution. These parameters dictate the ―environmental availability‖ of a metal in 

any matrix. The biotic ligand model (BLM), developed for use with fish, expands on the 

FIAM by proposing the gill as a biotic ligand that competes with the various environmental 

exchange sites for Me+-binding (Paquin et al., 2002). The difference between the BLM 

and FIAM is competitive binding at the biotic ligand, which models the protective effects of 

other metal cations, and the direct influence of pH (Nolan et al., 2003). The BLM 

considers not only the effect of the dissolved metal concentrations on toxicity, but also the 

metal interactions with organic and inorganic ligands—interactions that affect metal 

speciation and hence availability. Additionally, it incorporates the competitive interactions 

of metals and other cations with the organism at the site of action of toxicity, the biotic 

ligand (Peijnenburg and Jager, 2003). The capacity of the biotic ligand to bind and 

internalise metal ions (within the limitation of their environmental availability) is determined 

by physiological mechanisms and thereby dictates the ―bioavailability‖ of metal ions. 

Bioavailability models like the BLM perform well with regard to predicting metal 

bioavailability in water-borne exposures (Niyogi and Wood, 2004), and is likely also to be 

predictive of metal bioavailability to plants and soft-bodied soil organisms where the major 

routes of exposure are absorption from pore-water directly across roots (Antunes et al., 

2006) or body-walls (Peijnenburg, 2002; Lock and Janssen, 2003b). The digestive tract 

also acts as a biotic ligand (Hogstrand et al., 2002). However, the FIAM may not hold true 

with regard to the dietary exposure route because of the likely presence of active transport 

mechanisms that have the capacity to transport metal-bound organic (or inorganic) 
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complexes across the gut. Such mechanisms have been demonstrated in mammals 

(Sugawara and Sugawara, 1991; Groten et al., 1992) and trout (Harrison and Curtis, 

1992a; Kjoss et al., 2006). Indeed, the studies in trout indicate that protein bound Cu or 

Cd is more readily taken up via the trout gut, than diets amended with simple metal salts. 

Absorption of metal complexes in the gut has also been demonstrated in aquatic 

crustaceans (for review see Fisher and Hook, 2002; Xu and Wang, 2002), however it 

remains unclear if the dietary form or speciation of the metal affects the assimilation 

efficiency. 

 

1.3.1.2. Metal assimilation and assimilation efficiency 

Determination of assimilation efficiency (AE) is an important endpoint when addressing 

contaminant bioavailability and very important parameter in understanding the trophic 

transfer and accumulation of a metal in animals from the ingested food. It is considered a 

first-order physiological parameter that can be quantitatively compared among different 

chemicals, species, and food particles under various environmental conditions, and has 

been defined as the fraction of ingested metal that is assimilated across the gut lining into 

the body tissue (Wang and Fisher, 1999). AE for metals has been shown to be directly 

proportional to metal bioaccumulation, which highlights the significance of AE in 

understanding and predicting metal bioaccumulation (Fisher et al., 1996). 

 

1.4. Internal sequestration of metals in invertebrates 

The internal distribution and detoxification of metals within an organism can be used to 

explain trophic transfer of metals but also to predict metal toxicity for the organism itself 

(Wallace and Lopez, 1996; 1997; Wallace and Luoma, 2003; Seebaugh et al., 2006; 

Wang and Rainbow, 2006) 

Just because a metal is available for uptake by an organism does not mean that it 

will be harmful because organisms are able to control metal concentrations in certain 

tissues of their body to minimize damage of toxic metals. The internal metal sequestration 

strategies of different species are complex and variable, and the determination of the 

metal concentrations in different compartments can be used to better understand 

mechanisms of accumulation and toxicity (Vijver et al., 2004). The way an organism 

makes his internal sequestration will directly influence trophic transfer to predators. The 

various internal metal fractions all have their own binding capacity for metals (Cheung et 
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al., 2007), which has implications for food-chain transfer to higher trophic levels. Metal 

compartmentalization is based on the different accumulation strategies organisms can 

follow after metal exposure and are indicators of toxicity. Once a metal is uptake by a 

consumer, physiological responses such as excretion from the metal excess pool and 

internal storage may occur in order to prevent adverse effects (Peijnenburg and Vijver, 

2006). There is a need for partitioning the total body burden because only a portion of 

total body burden is biologically available for interaction with sites of toxic action. 

 

1.4.1. Subcellular fractionation of Cd 

A subcellular fractionation procedure (Wallace and Lopez, 1996; Wallace et al., 2003; 

Wallace and Luoma, 2003) has been successfully applied in several studies of dietary 

accumulation of metals, particularly in marine food chains (Seebaugh and Wallace, 2004; 

Rainbow et al., 2007; Steen Redeker et al., 2007), with the purpose of explaining the 

variability observed in metal accumulation across the different species and food chains. 

This method has been considered dynamic in response to metal exposure and other 

environmental conditions, and takes into account metal- and organism-specificity (Wang 

and Rainbow, 2006). It is a simple and pragmatic approach in the prediction of trophic 

transfer of metals to higher trophic levels and is a first step for a practical tool that could 

explain most of the variability observed in metal accumulation and toxicity in organisms 

(Vijver et al., 2004). However, there is a need to further apply this approach in other food 

chains and other environmental compartments, such as terrestrial ecosystems, in order to 

verify its utility. Spiders Dysdera crocata fed with metal-contaminated isopods showed that 

not all metal fractions are equally available to higher trophic levels. Metals bound in 

granules of the hepatopancreas of woodlice were not absorbed by the predatory spider, 

but metals bound to ferritin (type C granules) were released and became available for 

uptake (Vijver et al., 2004). 

In short, the procedure developed by Wallace and is co-workers (Wallace et al., 

2003; Wallace and Luoma, 2003) allows separating the accumulated metals associated 

with different subcellular compartments into five different fractions: cellular debris, 

granules, organelles, heat-denatured proteins, heat-stable proteins (MTs and PCs). The 

compartmentalization of metal with organelles and heat-denatured proteins ―enzymes‖ 

could be viewed together as a subcellular compartment containing metal-sensitive 

fractions (MSF) related to toxicity; and heat-stable proteins (HSP) such as MT and metal-

rich granules (MRG) as biologically detoxified metal (BDM) related to metal-detoxifying 
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capacity of an organism and potential tolerance (Wallace et al., 1998; Goto and Wallace, 

2007), providing a more complete understanding of potential mechanisms of toxicity 

(Wallace et al., 2003). 

The compartment MSF is considered vulnerable to metal exposure (i.e. non-specific 

binding) so the metals bound to organelles and HDP are considered metabolically 

available (Bechard et al., 2008). Wallace and Lopez (1997) showed that Cd associated 

with enzymes (HDP) and MT (HSP) in oligochaetes was absorbed by a grass shrimp with 

an efficiency of 100% and Cd associated in organelles with an efficiency of 70%. Wallace 

and Luoma (2003) first suggested that Cd associated with the subcellular fractions 

organelles, heat-denaturable proteins (HDP) and heat-stable proteins (HSP) in a bivalve 

were 100% assimilated by the grass shrimp suggesting that there is a trophically available 

metal compartment (TAM) for transfer to predator, while Cd bound to metal-rich granules 

was less bioavailable to predators. The significance of the subcellular distribution of 

accumulated metals in toxicity assessments is now receiving increasing attention among 

aquatic (e.g. Cheung et al., 2006; Perceval et al., 2006; Steen Redeker et al., 2007) and 

terrestrial organisms (Vijver et al., 2006). 

 

1.5. Objectives and thesis structure 

The starting point of the present thesis was the FCT-funded project ―TROPHA - Trophic 

assimilation of inorganic and organic pollutants in terrestrial invertebrates‖, that aimed to 

address the question whether biologically contaminated diets confer greater bioavailability 

to environmental pollutants than superficially contaminated diets. This question had its 

foundation on a study from Harrison and Curtis (1992b) that showed that Cd accumulated 

by a live food source (amphipod) was assimilated more efficiently by rainbow trout than 

Cd added superficially to an artificial trout diet. The projected rationale stated that toxicity 

as a consequence of trophic transfer through the food chain remained a largely 

unexplored area of ecotoxicology, and in particular when soil ecotoxicology was 

concerned. 

Hence a first laboratory trial had the purpose of evaluating the importance of trophic 

transfer to Cd assimilation in the terrestrial isopod P. dilatatus. This was carried out by 

examining the assimilation efficiency of Cd in isopods provided with food (lettuce) 

superficially amended with Cd(NO3)2 and provided with lettuce grown in Cd-contaminated 

media. The hypothesis was that lettuce biologically contaminated via hydroponic culture in 
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contaminated media would have a high proportion of the Cd in the form of Cd-protein 

complexes or Cd-S-conjugates (e.g. Cd-cysteine). In a following dietary experiment, metal 

speciation was further studied by comparing assimilation efficiencies using Cd as Cd 

cysteinate (Cd(Cys)2) and Cd(NO3)2. The use of Cd-cysteinate provides an experimental 

device to explore the bioavailability of Cd that is complexed within biological tissue. 

Therefore Cd-cysteinate represents the most elementary form (species) of thiol-bound Cd 

in biological systems. The aim of such study was to detail the trophic movement of metals 

in the plant-isopod food chain. The distribution of the assimilated Cd was then studied with 

a fractionating procedure. Once again two species of Cd, as cysteinate and as nitrate, 

were provided in food. It was assumed that differences in Cd speciation would reflect 

different compartmentalization strategies with consequences at the manner by which 

metal was detoxified, stored in cells and distributed at subcellular level. The different 

internal distributions that followed the assimilation of different Cd species were finally 

evaluated as survival and reproduction in isopods. 

In sum, the main objective of this dissertation was to test the hypothesis that 

speciation of metals influences bioavailability to the terrestrial isopod P. dilatatus and has 

consequences in the way metal distributes internally within the organism thus influencing 

Cd toxicity. Therefore, the following specific aims were pursued: 

 Determination of cadmium AE from the diet, when Cd is presented as either a 

Cd-amended diet or pre-incorporated biologically into lettuce (Lactuca sativa), 

in the terrestrial isopod P. dilatatus – Chapter 2; 

 Comparing the AE using Cd as cadmium cysteinate (Cys-S-Cd-S-Cys) (molar 

ratio Cd: Cys = 1:2) and also a Cd salt (Cd(NO3)2)., and hence the influence of 

Cd speciation on metal bioavailability to the terrestrial isopod, P. dilatatus – 

Chapter 3; 

 Testing the hypothesis that different Cd species deployed in food – Cd(Cys)2 

and Cd(NO3)2 – would influence the manner by which this metal is detoxified, 

stored in cells and distributed at subcellular level, influencing the trophic 

transfer to the terrestrial isopod, P. dilatatus – Chapter 4; 

 Determination of the toxicity effects of two species of Cd – Cd(Cys)2 and 

Cd(NO3)2 – to survival and several reproductive parameters of the terrestrial 

isopod P. dilatatus – Chapter 5; 
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 Setting a general discussion and concluding remarks of this study – Chapter 

6. 
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Chapter 2. Cadmium assimilation in the terrestrial isopod, 
Porcellio dilatatus – is trophic transfer important? 

 

Chapter section published as original article: 
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Abstract 

Terrestrial isopods have become important tools for the ecotoxicological 

assessment of metal-contaminated soils. Their value as an invertebrate model is 

partly because of their extraordinary capacity to bioaccumulate toxic metals from 

the environment. Replication of this accumulation process in the laboratory has in 

the past relied on the amendment of organic food substrates through the addition 

of simple metal salts. However, the bioavailability of the metals when presented 

through doping regimes, may differ from the bioavailability of metals in nature, 

because over time metals become biologically compartmentalised and 

complexed by organic molecules. This study examines the differential 

bioavailability of Cd to the terrestrial isopod, Porcellio dilatatus, when presented 

as either a Cd-doped diet or pre-incorporated biologically into lettuce (Lactuca 

sativa). Isopods were either provided with lettuce contaminated superficially with 

Cd(NO3)2 or lettuce grown hydroponically in growth media containing 100M 

Cd(NO3)2. Assimilation efficiency of Cd was greater among isopods that were fed 

the simple salt (71%, SE=7%), than among isopods feeding on biologically 

contaminated lettuce (52%, SE=5%) and demonstrates that speciation of Cd is 

likely to influence the rate of Cd assimilation and accumulation in a laboratory 

test. 

 

Keywords: Heavy metal, Cadmium, Bioavailability, Trophic transfer, Terrestrial 

ecotoxicology, Lactuca sativa. 
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2.1. Introduction 

In recent years, a growing number of researchers have recognised the need to 

incorporate the principles of trophic transfer within the design of metal toxicity studies with 

invertebrates (Devi et al., 1996; Allinson et al., 2000; Merrington et al., 2001; Maryanski et 

al., 2002; Simon and Boudou, 2002; Green et al., 2003; Hendrickx et al., 2003; Wallace et 

al., 2003; Hansen et al., 2004; Mann et al., 2004). All these authors provided their test 

species with prey items that had accumulated metallic contaminants while still alive. In this 

way, they attempted to simulate the movement of metallic contaminants through the food 

chain, and thereby incorporate within their tests the complexities of metal speciation and 

bioavailability in biological systems. The results of such studies are not easily predictable, 

because both the metal binding properties of the prey species and subsequent 

bioavailability to the predator are likely to be highly variable. For example, Hendrickx et al. 

(Hendrickx et al., 2003) described extremely high levels of Cd assimilation and a complete 

lack of depuration of Cd in wolf spiders (Pirata piraticus) feeding on Cd-contaminated flies. 

Conversely, Hopkin and Martin (Hopkin and Martin, 1985) demonstrated that the spider, 

Dysdera crocata (a species that feeds exclusively on isopods), did not assimilate Cd or 

lead from contaminated isopods collected from a smelting works. In this case the 

difference appears to be related to the ability of Dysdera crocata to eliminate Cd prior to 

gut absorption and points to an evolutionary adaptation in a species that specialises in 

eating crustaceans known to bioaccumulate metals (Hopkin and Martin, 1985; Paoletti 

and Hassall, 1999). 

The bioavailability of metals in soil is generally thought to be dictated by the free ion 

activity model (FIAM) which predicts that only metals existing as free metal ions (Me+) are 

available for uptake across membranes (McLaughlin, 2002). The concentration of Me+ is 

dictated by physiochemical properties of the soil such as pH, the nature of metal 

exchange sites within the organic and inorganic matrices (McLaughlin et al., 2000; 

Peijnenburg, 2002), their binding affinity for soluble anionic ligands within soil pore-water 

(Lock and Janssen, 2003; Weggler et al., 2004), and competition for those by sites with 

other cations in solution. These parameters dictate the ―environmental availability‖ of a 

metal in any matrix. The biotic ligand model (BLM), developed for use with fish, expands 

on the FIAM by proposing the gill as a biotic ligand that competes with the various 

environmental exchange sites for Me+-binding (Paquin et al., 2002). The capacity of the 

biotic ligand to bind and internalise metal ions (within the limitation of their environmental 

availability) is determined by physiological mechanisms and thereby dictates the 
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―bioavailability‖ of metal ions. Bioavailability models like the BLM perform well with regard 

to predicting metal bioavailability in water-borne exposures (Niyogi and Wood, 2004), and 

is likely also to be predictive of metal bioavailability to plants and soft-bodied soil 

organisms where the major routes of exposure are absorption from pore-water directly 

across roots (Antunes et al., 2006) or body-walls (Peijnenburg, 2002; Lock and Janssen, 

2003). 

The digestive tract also acts as a biotic ligand (Hogstrand et al., 2002). However, the 

FIAM may not hold true with regard to the dietary exposure route because of the likely 

presence of active transport mechanisms that have the capacity to transport metal-bound 

organic (or inorganic) complexes across the gut. Such mechanisms have been 

demonstrated in mammals (Sugawara and Sugawara, 1991; Groten et al., 1992) and trout 

(Harrison and Curtis, 1992; Kjoss et al., 2006). Indeed, the studies in trout indicate that 

protein bound Cu or Cd is more readily taken up via the trout gut, than diets amended with 

simple metal salts. Absorption of metal complexes in the gut has also been demonstrated 

in aquatic crustaceans (for review see Fisher and Hook, 2002; Xu and Wang, 2002), 

however it remains unclear if the dietary form or speciation of the metal affects the 

assimilation efficiency in invertebrates. 

Because of their capacity to accumulate large body-burdens of toxic metals, 

terrestrial isopods have been widely adopted as model species for the examination of 

metal accumulation and toxicity testing (Drobne, 1997; Hornung et al., 1998a). Because 

terrestrial isopods are hard-bodied soil invertebrates, accumulation of Cd (among other 

metals) is predominantly through dietary exposure rather than absorption through the 

body wall (Vijver et al., 2005). It is also important to remember that isopods are 

saprophytic detritivores, and if the food they consume is contaminated with a metallic 

compound, only a limited proportion of that metal is likely to be present as free Me+. A 

large proportion of the metal is likely to be present in a form that has resulted from 

biological sequestration and transformation by either the micro-organisms growing on the 

decaying organic matter or by the organic matter itself while it was part of a living system 

(Ledin et al., 1999; Rauser, 1999; Magyarosy et al., 2002). However, virtually all previous 

laboratory based examinations of metal accumulation and toxicity in terrestrial isopods 

have relied exclusively on addition of inorganic metal salts to organic substrates. The 

degree to which the metals in those studies were transformed into ‗species‘ of greater or 

lesser bioavailability is dependent on the physiochemical environment and the degree of 

microbial activity within the experimental systems, and is therefore a source of variability 

within the experimental systems. The aim of this study was to examine the role of 
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biological metal sequestration in the assimilation efficiency of cadmium in a terrestrial 

isopod. 

Cadmium was chosen because it is a priority pollutant in Europe (Council Directive 

76/464/EEC), is readily accumulated by isopods with low to negligible depuration rates 

(Witzel, 2000), and permits comparisons with other animal models that have examined 

similar questions (Harrison and Curtis, 1992; Zalups and Ahmad, 2003; Mann et al., 

2006). 

We provided terrestrial isopods with lettuce that had been, either: 

1. Biologically contaminated via hydroponic culture in contaminated media. 

Lettuce contaminated in this way will have a high proportion of the Cd in the 

form of Cd-protein complexes or Cd-S-conjugates (e.g. Cd-glutathione, Cd-

cysteine) (Maier et al., 2003), or 

2. Superficially contaminated with Cd(NO3)2. 

 

2.2. Materials and Methods 

2.2.1. Food substrate 

Lettuce was selected as a suitable food substrate on the basis of previous feeding and 

contamination trials (Mann et al., 2005). Three treatments (diets) were established to 

study the influence of metal speciation on the bioavailability of Cd to the terrestrial isopod 

Porcellio dilatatus. 

1. Biologically contaminated lettuce (BCL) 

2. Superficially contaminated lettuce (SCL) 

3. Non-contaminated (control) lettuce (CON) 

 

2.2.2. Test organisms 

Isopods were selected from in-house cultures of P. dilatatus derived from individuals 

collected from a secondary coastal dune system in central Portugal. They were 

maintained at 20º C with a 16:8 h (light:dark) photoperiod on a substrate of sand within 

plastic containers. Alder leaves were provided as food (Caseiro et al., 2000; Kautz et al., 

2000). 
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2.2.3. Lettuce growth and contamination 

Lettuce (Lactuca sativa cv. Reine de Mai de Pleine Terre) plants were grown from seed as 

described in Mann et al. (2005). Briefly, lettuce seeds were germinated on a bed of perlite 

moistened with distilled water and subsequently grown hydroponically at 25 C on a 

~6 mm column of perlite within polystyrene seedling trays (24 mm; Polisur 2000, Huelva, 

Spain) floating on aerated nutrient media within plastic boxes. The nutrient media used for 

growth of lettuce was based on Hoagland‘s media: Macronutrients- KNO3, 6 mM; 

Ca(NO3)2, 4 mM; NH4H2PO4, 2 mM; MgSO4, 2 mM; Micronutrients- H3BO3, 50 M; MnCl2, 

10 M; ZnSO4, 0.77 M; CuSO4, 0.36 M; Na2MoO4, 0.37 M; Fe3+-EDTA, 4.5 M. For all 

plants a 16:8 h (light:dark) photoperiod was established with an array of fluorescent tubes 

(Mazdafluor Prestilflux TFP 36W/CFT) suspended ~30 cm above the seedlings/plants. 

After 5 weeks of culture the nutrient media was altered to include 100 µM Cd as Cd(NO3)2 

(Mann et al., 2005). The Cd solution included 200 pCi ml-1 109Cd (PerkinElmer, Boston, 

MA, USA). The lettuce plants were grown within the contaminated media for a further 7 

days with replacement of growth media every 2 days to avoid depletion of nutrients and 

changes in Cd concentration as a consequence of evaporation, exclusion from the plants 

or adsorption to plant roots (Mann et al., 2005). The plants were dried (2 days at 60 ºC) 

and individual leaves cut into sections (midvein excluded) according to desired mass 

(~10 mg) and Cd content. Cd content varied even within individual leaves (Mann et al., 

2005). Therefore, leaf sections that contained between 300 and 600 g Cd g-1 dry wt were 

selected for use in the experiment 

Uncontaminated dried and sectioned lettuce designated for use as SCL was 

contaminated by topical addition of 10 L mg-1of a 360 M Cd(NO3)2 stock solution that 

also contained 660 pCi ml-1 109Cd (PerkinElmer, Boston, MA, USA). The leaves were 

again dried before use. All leaf Cd-amended leaf sections were analysed for Cd by 

radiospectrometry to ensure that they contained approximately 400 g Cd g-1 dry wt. 

 

2.2.4. Feeding study 

One day before starting the experiment a total of 60 juvenile isopods were selected by 

weight (mean = 47 mg, range = 35-65 mg) and isolated for 24 h without food to purge their 

gut. They were placed in individual polyethylene terephthalate (PET) boxes ( 85 mm x 

43mm; Termoformagen, Leiria, Portugal). No distinction was made between sexes. The 

bottom of each box was replaced with a 2 mm nylon screen. Each of these boxes was 

inserted within a second box containing a thin layer of plaster of Paris mixed with 
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activated charcoal (8:1 vol:vol) for the retention of added moisture. The distance between 

the nylon screen and the plaster of Paris was ~5 mm. The screen allowed faecal pellets to 

drop through to the plaster substrate where they could be collected for weighing and 

analysis for Cd, and prevented coprophagy. 

Twenty individuals were impartially allocated to each treatment. The food was cut 

into individual portions weighing between 5 and 10 mg (dry wt) and moistened before 

placing it within each box. Animals were fed for a period of 4 weeks exclusively on lettuce 

according to treatment. Faecal material was removed from the surface of the plaster of 

Paris every 2 days and dried (2 days at 60 ºC). At the end of each week, the food was 

replaced with fresh leaves of a known mass, and the remains of the old food were dried (2 

days at 60 ºC) and weighed. The food was replaced to prevent the consumption of food 

which had become inoculated with fungi – the growth of fungi may have altered the 

bioavailability of Cd. At the end of 4 weeks, the isopods were left for 24 h without food to 

purge their guts, weighed and analysed for Cd by radio-spectrometry. Data on isopod, 

faecal pellet and leaf mass were used to determine indices of isopod growth, food 

consumption and assimilation efficiency. 

 

2.2.5. Cadmium analysis 

Sections of dry lettuce leaf (before feeding and lettuce remains after feeding), isopods and 

faecal matter were analyzed for Cd by radiospectometry. Samples were counted in a 

Genesis Gamma1 bench-top gamma counter (Laboratory Technologies, USA). Data on 

Cd content of leaves, isopods and faecal material were used to determine indices of Cd 

consumption and assimilation efficiency. The 360 µM and 100 M contamination solutions 

were analysed for Cd by inductively coupled plasma spectroscopy (ICPS) in a Jobin Ivon 

JY70 with a Meinard C001 nebuliser. Specific activities of the 360 µM and 100 M Cd 

contamination solution were assessed by comparing gamma counts with measurements 

obtained by ICP-MS. 

 

2.2.6. Data analysis 

Lettuce assimilation efficiency was calculated as: 

AElett=(Clett-F)/Clett100 

where Clett is mass of lettuce consumed, and F is the mass of faecal material produced. 

Cadmium assimilation efficiencies, were calculated as either: 
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AECd=ICd/CCd100 

where ICd is the amount of Cd within the isopod at the termination of the feeding trial, and 

CCd is the amount of Cd consumed, or as: 

AECd=(CCd-FCd)/CCd100 

where FCd is the amount of Cd within the faecal pellets. 

 

SigmaStat (version 3.01, SPSS, Chicago, IL, USA) was used to perform all 

statistical tests. One-way ANOVA with Student-Newman-Keuls posthoc test was used to 

determine differences ( = 0.05) in mass gain/loss, lettuce consumption, and lettuce 

assimilation efficiency among Controls, BCL and SCL treatment groups. Student t-tests 

were performed to determine differences ( = 0.05) in indices of Cd consumption, 

assimilation and assimilation efficiency. Where data failed to fit a normal distribution, a 

Mann-Whitney rank sums test was employed ( = 0.05). 

 

2.3. Results 

2.3.1. Analyses of Cd content in BCL and SCL treatment groups 

ICP-MS analysis indicated that the nominally 360 and 100 M contamination solutions 

were 365 and 102 M respectively. Measured concentrations were used for all 

calculations. Biologically contaminated leaf sections provided to the BCL treatment group 

contained (mean  SD) 391  31 g Cd g-1 dry wt (range: 338 to 450 g Cd g-1 dry wt). 

Superficially amended leaf section provided to the SCL treatment group contained (mean 

 SD) of 482  94 g Cd g-1 dry wt (range: 327 to 604 g Cd g-1 dry wt). 

 

2.3.2. Isopod growth, lettuce and Cd consumption, assimilation and 
assimilation efficiency 

Isopods in all treatment groups lost weight during the trial (Figure 2.1A). Some animal 

mortality occurred in each treatment group – 5, 7 and 5 animals died in the CON, BCL and 

SCL treatment groups respectively. 
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Figure 2.1. A. Change in isopod mass (%). B. Lettuce consumption by isopods. 

C. Lettuce assimilation efficiency by isopods. All error bars represent SE (n=13-

15). Lower case letters a, b and c denote statistically significant (P < 0.05) 

groupings following an ANOVA with Student-Newman-Keuls post-hoc test. CON 

– Control lettuce; SCL – Superficial contaminated lettuce; BCL – Biological 

contaminated lettuce. 

 

Lettuce consumption was low. Isopods ate approximately 0.3 mg mg animal (wet 

wt)-1 over 4 weeks (Figure 2.1B). There were statistically significant differences in lettuce 

consumption between treatment groups (one-way ANOVA, P = 0.029; Student-Newman-

Keuls, P< 0.05). 

Lettuce assimilation efficiency (AElett) was high among all treatment groups (Figure 

2.1C). There were statistically significant differences in AElett between biologically 

contaminated lettuce and control and between biologically contaminated lettuce and 
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artificially contaminated lettuce (one-way ANOVA, P = 0.020; Student-Newman-Keuls, P < 

0.05). 

Figure 2.2. A. Cd consumption by isopods. B. Cd assimilation by isopods. C. 

Assimilation Efficiency of Cd by isopods. All error bars represent SE (n=14). The 

asterisk denotes a statistically significant difference (P < 0.05) following a student 

t-test. CON – Control lettuce; SCL – Superficial contaminated lettuce; BCL – 

Biological contaminated lettuce. 

 

Although a t-test indicated a marginally insignificant difference (P = 0.054), isopods 

in the BCL treatment group consumed more Cd than the SCL groups (Figure 2.2A).  

The amount of total Cd assimilated by the two treatment groups was the same 

(Figure 2.2B) with no statistically significant differences between them (Mann-Whitney, P 
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=0.240). Assimilation efficiencies, when calculated as AECd=ICd/CCd100 were (mean  

SE) 52  5% and 71  7% for the BCL and SCL group respectively (Figure 2C) with a 

statistically significant difference between them (t-test, P = 0.047). Assimilation 

efficiencies, when calculated as AECd=(CCd-FCd)/CCd100 were (mean  SE) 77  2% and 

84  3% for the BCL and SCL group respectively (data not shown). The difference was 

not statistically significant (t-test, P = 0.089). 

 

2.4. Discussion 

This study provides support for the contention that Cd-speciation influences the level of 

Cd assimilation by terrestrial isopods. Isopods ate more lettuce if it had Cd biologically 

incorporated within it (BCL), and as a consequence they consumed more Cd than those 

isopods feeding on lettuce with Cd added superficially (SCL). Despite this, the actual 

amount of Cd assimilated by each treatment group was similar because the SCL group 

assimilated Cd more efficiently than those eating biologically contaminated lettuce (BCL). 

This result is consistent with results obtained in numerous studies with mammals (Zalups 

and Ahmad, 2003; Andersen et al., 2004) and reptiles (Mann et al., 2006) but contrary to 

those described for rainbow trout (Harrison and Curtis, 1992). 

Consumption of lettuce was 3 to 4 times lower than observed in a previous study 

that indicated that lettuce was readily consumed and promoted growth in juvenile isopods 

(Mann et al., 2005). By contrast, isopods in this study lost weight irrespective of treatment 

group, with at least 25% mortality which is assumed to be related to inadequate nutrition. 

The only notable difference between the two studies was the age of the isopods. The 

earlier study used younger animals (~17 mg), and the imperative to eat is possibly greater 

among very young animals. Failure to eat at the commencement of this kind of test is a 

common problem when the food substrate is fresh leaf material. Leaves generally become 

more palatable to isopods only after the onset of microbial colonisation (Zimmer, 2002), 

possibly because microbial pre-conditioning tends to lower the C:N ratio (Zimmer et al., 

2003). Many dietary studies have overcome this problem by either using alder leaves 

(Mann et al., 2005), which have inherently low C:N ratios (Kautz et al., 2000), or by 

augmenting leaf substrates with N rich pet-foods (e.g. Crommentuijn et al., 1995; Farkas 

et al., 1996; Hornung et al., 1998b; van Straalen et al., 2005). In this study, increased 

consumption would be expected if the leaves were left long enough to allow microbial 

preconditioning; however, it was important to avoid widespread microbial colonisation 

which might have changed the speciation of the Cd, particularly in the SCL treatment 
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group, so food could not be left for more than a week. Even during the course of one 

week, it is conceded that Cd bioavailability might change as a consequence chemical 

interactions within the moistened leaves. 

More intriguing is the fact that there were higher levels of food consumption and 

assimilation among isopods in the BCL treatment group, than in either the controls or SCL 

treatment group. We can assume that the Cd itself did not bestow greater palatability 

upon the lettuce, because the SCL lettuce was no more (or less) palatable than the 

control food. However, it is possible that the contamination procedure itself altered the 

palatability of the lettuce. One of the a priori assumptions for these trials was that Cd 

incorporated biologically into the lettuce must exist predominantly as a Cd-S-conjugate or 

Cd-protein complex (Mann et al., 2005). This is a reasonable assumption because it is 

known that exposure to Cd2+ induces the production of amino acids, glutathione and 

cysteine rich phytochelatins in lettuce (Costa and Morel, 1994; Maier et al., 2003). Thus, 

an overall increase in N in the form of metal-binding organic content may afford the lettuce 

a greater degree of palatability to isopods. 

Food assimilation efficiency was high (>70%) and has been a consistent 

characteristic of these studies when lettuce is provided as food. High food assimilation 

efficiency (>80%) was also described by Lirette et al. (1992) in snails provided with 

lettuce. Note however, that the high food assimilation rates in this study are likely to be an 

over-estimate because of the difficulty in accounting for all the faecal pellets produced by 

the isopods (see below). 

The isopods in this study assimilated 52% (BCL) and 71% (SCL) of the Cd 

consumed, which is in stark contrast with assimilation rates found in vertebrates, which 

generally assimilate less than 10% of the Cd that enters the gut (Zalups and Ahmad, 

2003; Mann et al., 2006). The AE‘s reported in this study are also higher than those 

reported previously for isopods, which range from 30% up to 50% in P. scaber (Donker 

and Bogert, 1991; Khalil et al., 1995). However, Zidar et al. (2003) reported a range of 

AE‘s for Cd ranging from 32% to 100% for P. scaber feeding on hazel leaves augmented 

with 1000 g Cd g-1 to 125 g Cd g-1 respectively. 

It could be argued that the higher rates of Cd assimilation in the SCL group could 

have resulted as a consequence of direct adsorption of Cd to the outer exoskeleton as 

isopods moved over the contaminated leaves, which is less likely to occur in the BCL 

group because the Cd is internalised within the lettuce. If this were the case, then an 

estimation of AECd as AECd=(CCd-FCd)/CCd is likely to provide an indication of gut AECd 
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alone. AECd calculated in this manner resulted in AECd‘s of 77% and 84% for the BCL and 

SCL treatment groups respectively. As expected these are over-estimations of AECd 

because of the difficulty in accounting for all the faecal pellets produced by the isopods. 

Also, leaching of Cd from the faecal pellets to the plaster of Paris may have occurred (the 

plaster of Paris was not analysed for Cd). Accordingly, caution should be exercised in 

interpreting these data, which still indicate higher gut AECd in the SCL group, but without a 

statistically significant difference between them. Perhaps more pertinent are findings of 

Vijver et al. (2005) who demonstrated that adsorption of Cd to the isopod exoskeleton 

does not occur, and that the Cd-burden is due exclusively to ingested Cd. 

Numerous factors influence metal AE in terrestrial isopods. Zidar et al. (2003) 

demonstrated that food-metal concentration will effect AE of Zn, Cu and Cd in P. scaber. 

Abdel-Lateif et al. (1998) also performed a similar analysis of the influence of temperature 

and Cd concentration on the rate of Cd accumulation in P. scaber , while Hopkin (1990) 

demonstrated that different species have different accumulation capacities for Cd, Zn and 

Pb. Metal speciation can be added to the list of factors which will influence the level and 

rate of accumulation of metals. 
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Chapter 3. The influence of metal speciation on the 
bioavailability of cadmium to the terrestrial isopod, 
Porcellio dilatatus 

 

 

Abstract 

 

The ability of Cadmium (Cd) to bioaccumulate in biological organisms and 

possibly biomagnify through the food web makes it necessary to understand how 

speciation determines bioavailability, that in turn affects bioaccumulation 

patterns. Previous studies on plant-consumer Cd transfer drew attention to 

differences in Cd assimilation when it was pre-incorporated biologically into plant 

tissue, when compared to ionic Cd2+, but the ecophysiological underpinning 

mechanism was not clarified. Cd is known for its high affinity for sulphur ligands 

in cysteine residues which form the basis for metal binding proteins such as 

metallothionein. This study compares Cd assimilation efficiency (AE) in P. 

dilatatus fed with cadmium-cysteine and Cd(NO3)2 in an examination of the 

influence of Cd speciation on metal bioavailability. As hypothesized, the AE of Cd 

by isopods fed with Cd nitrate (64%, S.E.=5%) was higher than in the case of 

isopods fed with Cd- cysteine conjugate (20%, S.E.=3%). This work 

demonstrates that the assimilation of Cd is greatly dependent on the chemical 

form of Cd presented to the isopod, i.e. its speciation. 

 

Keywords: Cd-cysteinate, Trophic transfer, Assimilation efficiency, Dietary toxicity 
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3.1. Introduction 

Cadmium (Cd) is a nonessential metal, considered a priority pollutant in Europe hence 

being recently assessed for its risks to the environment and human health (ECB, 2007) as 

foreseen by the Council Regulation 793/93/EEC of March 1993 on the evaluation and 

control of risks of existing substances. Although Cd occurs naturally in soils and waters at 

low concentrations, deposition within the biosphere has increased dramatically over the 

last century as a consequence of anthropogenic activities. Concern arises because unlike 

many other toxic metals, Cd has the potential to bioaccumulate through soil-plant-animal 

food-chains (McLaughlin et al., 2006; Mann et al., 2007). Bioaccumulation patterns among 

flora and fauna are dependent on both the environmental availability of Cd and 

physiological constraints on uptake into an organism, and both these aspects are in turn 

dependent on its chemical speciation, i.e. the chemical form in which the metal is 

presented to the consumer.  

Metals that are distributed within the biosphere seldom occur as free metal ions. 

Free metal ions are highly reactive chemicals that have the capacity to disrupt biological 

systems. Therefore, when metal ions (even essential ions) enter biological organisms, 

numerous detoxification and sequestration pathways are initiated, to either deliver 

essential metals to the place where they are required or to isolate and eliminate toxic 

metals and prevent damage. Among vascular plants, mechanisms of tolerance include the 

induction of metal-binding proteins such as phytochelatins and metallothioneins (Prasad, 

1995). Phytochelatins and Metallothioneins (MTs) are small proteins with a significant 

concentration of cysteine (30%) (Ndayibagira et al., 2007), which contains a sulphydryl 

group and this fact accounts for the Cd-metallothionein induction due to Cd high affinity for 

sulphur ligands (Zalups and Ahmad, 2003; Roosens et al., 2005). As a consequence of 

these detoxification pathways, Cd may reach high concentrations in plants before 

phytotoxicity is manifested (Nolan et al., 2003), thereby providing a pool of Cd which may 

be available to herbivores.  

A previous dietary study, reported in the previous chapter, on the assimilation of Cd 

in the terrestrial isopod Porcellio dilatatus (Calhoa et al., 2006) indicated that the Cd 

speciation dictated the assimilation efficiency (AE) of Cd. Cadmium AE was higher among 

isopods provided with food (lettuce) superficially amended with Cd(NO3)2 than among 

isopods provided with lettuce grown in Cd-contaminated media. These results were 

consistent with the Free ion activity model (FIAM) that dictates that metals which are 

complexed with organic molecules are less bioavailable than free metal ions (Nolan et al., 
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2003). Assuming a significant proportion of Cd that accumulates in lettuce is bound to 

sulphur ligands (Maier et al., 2003; Monteiro et al., 2008), we set out to specifically 

examine the bioavailability of Cd when bound to cysteine. 

A dietary study was performed by feeding P. dilatatus with cadmium cysteinate 

(Cys-S-Cd-S-Cys) (molar ratio Cd: Cys = 1:2) and also a Cd salt (Cd(NO3)2). The aim of 

this study was to compare the AE using Cd as Cd cysteinate (Cd(Cys)2) and Cd(NO3)2, 

and hence the influence of Cd speciation on metal bioavailability. This chapter assesses 

the advantages of using chemical speciation information to predict bioavailability of metals 

and its consequences to the environment on a trophic ecology approach. 

 

3.2. Materials and Methods 

3.2.1. Test organisms and culture conditions 

Isopods were selected from laboratory cultures of P. dilatatus that have been maintained 

for more than 3 years and that were derived from individuals collected in a secondary 

coastal dune system in central Portugal. They were maintained on a substrate of sand in 

plastic containers at 20 ºC with a 16:8 h (light:dark) photoperiod. Alder leaves were 

provided ad libidum as a food source (Caseiro et al., 2000; Kautz et al., 2000) and distilled 

water was added to maintain moisture. 

 

3.2.2. Lettuce and gelatine substrate 

A mixture of lettuce leaves and gelatine was selected as a suitable food substrate to be 

used as the exposure route (Mann et al., 2005; Monteiro et al., 2008). The advantage of 

feeding isopods with gelatine discs is the reduced variability of Cd absorption among 

isopods within treatments (Wallace and Lopez, 1996). Also, because gelatine is derived 

from animal protein, its inclusion effectively decreased the C/N ratio (Kautz et al., 2000). 

Non-contaminated leaves of Lactuca sativa were reduced to powder using a mortar and 

pestle and were mixed with a gelatine solution prepared from 2.5 g gelatine powder (VWR 

Prolabo, Fontenay Sous Bois, France) and 12.5 ml deionised water (Milli-Q®) and then 

mixed by vortexing (Wallace and Lopez, 1996). Small portions of the mixture (gelatine 

discs) weighing approximately 6 μg (dry wt) were made and were pipetted onto Parafilm® 

(Pechiney Plastic Packaging, Menasha, WI, USA). These discs were stored frozen at -

20 ºC until required (Wallace and Lopez, 1997). 
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Three treatments (diets) were established to evaluate the influence of metal 

speciation on the bioavailability of Cd to the terrestrial isopod P. dilatatus. 

 Cd(Cys)2 contaminated food- gelatine contaminated with Cd-cysteinate 

(including 462 µCi ml-1 109Cd as a tracer; Perkin-Elmer, Boston, MA, USA) 

mixed with non-contaminated leaves of L. sativa; 

 Cd(NO3)2 contaminated food- gelatine contaminated with Cd(NO3)2 (including 

23,1 µCi ml-1 109Cd as a tracer; Perkin-Elmer, Boston, MA, USA) mixed with 

non-contaminated leaves of L. sativa;  

 Control food-gelatine mixed with non-contaminated leaves of L. sativa. 

 

3.2.3. Cadmium-cysteine conjugate (Cys-S-Cd-S-Cys) (1:2) 

Cadmium acetate (90 mM) including 462 µCi ml-1 109Cd (Perkin-Elmer, Boston, MA, USA) 

was added to L-cysteine (180 mM) in water while stirring. Sodium acetate (0.3 M) was 

added until a white amorphous precipitate formed. The precipitate was filtered off, washed 

with deionised water, and dried in the oven at 50 ºC (Barrie et al., 1993). This powder was 

kept at 4 ºC until required. 

Cd content was analysed by inductively coupled plasma spectroscopy (ICPS) in a 

Jobin Ivon JY70 with a Meinard C001 nebuliser; confirming the molar ratio (1:2). 

 

3.2.4. Feeding study 

Before the start of the test, a total of 120 juvenile isopods were selected by weight (mean 

= 42 mg, ranging from 23 to 65 mg) and isolated individually in test boxes for 24 h without 

food to purge their gut. No distinction was made between sexes. 

Polyethylene terephthalate (PET) test boxes were used ( 85 mm x 43 mm; 

Termoformagen, Leiria, Portugal) containing in the bottom a thin layer of plaster of Paris 

mixed with activated charcoal (8:1 v/v) for the retention of moisture. 

Forty individuals were allocated to each treatment. Animals were fed for a period of 

28 d exclusively on gelatine discs according to treatment. Gelatine discs that had been 

contaminated with Cd(Cys)2 and Cd(NO3)2 were previously assayed for Cd by 

radiospectrometry [575 ± 118 and 296 ± 11 μg Cd/g dry wt (mean ± standard deviation, 

respectively)] before being fed to isopods. Gelatine discs were replaced every week to 

prevent the consumption of food which had become inoculated with fungi – the growth of 
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fungi may have altered the bioavailability of Cd. The remains of food were also weighed 

and Cd assayed by radiospectrometry. Faecal pellets were collected every 2 days to 

prevent coprophagy and dried (2 days at 60 ºC). 

After 28 d, isopods were left for 24 h without food to purge their guts and 

subsequently weighed and analyzed for Cd burdens by radiospectrometry. Data on 

isopod, faecal pellet and gelatine mass were used to determine indices of isopod growth, 

food consumption and assimilation efficiency. The Cd content in isopods and in the 

gelatine discs were used to determine Cd assimilation efficiency (Cd AE). 

 

3.2.5. Cadmium analysis 

Dry gelatine discs (before and after feeding) and isopods were placed in 3.5-ml Röhren 

tubes (Sarstedt, Newtown, NC, USA) and were analyzed for Cd by radiospectrometry in a 

Genesis Gamma1 bench-top gamma counter (Laboratory Technologies, USA). The 

Cd(NO3)2 and Cd(Cys)2 contamination solutions were analysed by inductively coupled 

plasma spectroscopy (ICPS) in a Jobin Ivon JY70 with a Meinard C001 nebuliser. Specific 

activities of the two contamination solutions were assessed by comparing gamma counts 

with measurements obtained by ICPS. 

 

3.2.6. Data analysis 

Food assimilation efficiency was calculated as: 

AEfood=(Cfood - F)/ Cfood  100 

where Cfood is the mass of gelatine discs (dry weight) consumed, and F is the mass of 

faecal material (dry weight) produced (Calhoa et al., 2006). 

Radiospectrometry data obtained from the isopods and food were used to determine 

indices of Cd AE. Cadmium AE was calculated as: 

AECd=ICd/CCd100 

where ICd is the amount of Cd within the isopod at the end of the feeding trial, and CCd is 

the amount of Cd consumed. 

All values presented in the Results section are mean values ± standard error. 

SigmaStat (version 3.01, SPSS, Chicago, IL, USA) was used to perform all 

statistical tests. One-way analyses of variance (ANOVA) were performed to determine 
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differences (=0.05) in changes in isopod mass, indices of food consumption and food 

assimilation efficiency among treatments. When necessary, data were transformed to 

achieve normality and equality of variance; when these criteria where not satisfied, the 

nonparametric Kruskal-Wallis one-way ANOVA was performed, followed by Dunn´s 

method post hoc test when differences were attained. Student´s t-tests were performed to 

determine differences (=0.05) in indices of Cd consumption, assimilation and 

assimilation efficiency among treatment groups and a Mann-Whitney rank sums test was 

employed, when data failed to fit a normal distribution. 

 

3.3. Results 

3.3.1. Isopod growth, food consumption and assimilation efficiency 

During the 28 d feeding experiment, only control isopods increased in weight (Fig. 3.1A). 

Growth among isopods provided with gelatine contaminated with Cd(NO3)2 was 

significantly lower than the control and Cd(Cys)2 treatments (P<0.05). No significant 

difference was found in isopod growth when comparing control and Cd(Cys)2 treatments. 

Mortality was below 10% in all treatments (4, 1 and 1 animals died in Control, Cd(Cys)2 

and Cd(NO3)2 respectively). 

Isopods ate approximately 0.2-0.3 mg.mg animal-1 over the 28 d (Fig. 3.1B). Food 

consumption was significantly different between the Cd(Cys)2 and the other two 

treatments (P<0.001). Feeding AE was significantly higher in isopods fed with Cd(Cys)2 

when compared with the other treatments (p<0.05). Isopods fed with control lettuce 

displayed AEs of 63 ± 4.3%, and treatments with Cd(Cys)2 and Cd(NO3)2 food showed 

AEs of 81 ± 3.1% and 61 ± 4.3%, respectively (Fig. 3.1C). 

 

3.3.2. Cadmium consumption, assimilation, and AE 

Cd consumption (Fig. 3.2A) was significantly higher (P<0.001) in isopods fed with 

Cd(Cys)2 gelatine although Cd assimilation was higher in isopods fed with Cd(NO3)2 

gelatine (Fig. 3.2B). There were significant differences in Cd assimilation between 

treatments (P=0.04). The AE of Cd by isopods fed with Cd(NO3)2 gelatine (64.3 ± 4.47%) 

was higher than Cd AE of isopods fed with Cd(Cys)2 gelatine (20.15 ± 2.82%) (P<0.001) 

(Fig. 3.2C). 
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Figure 3.1. Food related traits of Porcellio dilatatus exposed to control, Cd(Cys)2 and 

Cd(NO3)2 lettuce gelatines for 28 d. A. changes in isopod biomass (%); B. food consumption; 

C. food assimilation efficiency. All error bars represent SE (n=36-39). Lower case letters a, b 

and c denote significant differences among groups following an ANOVA with Dunn´s 

method post hoc test. Control - control food; Cd(Cys)2 – Cd(Cys)2 contaminated food; 

Cd(NO3)2 – Cd(NO3)2 contaminated food. 
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Figure 3.2. Cadmium related traits for Porcellio dilatatus exposed to control, Cd(Cys)2 and 

Cd(NO3)2 lettuce gelatines for 28d. A. Cd consumption; B. Cd assimilation. C. Cd 

assimilation efficiency. All error bars represent SE (n=39). The asterisk denotes significant 

difference (student t-test; P<0.001). Cd(NO3)2 – Cd(NO3)2 contaminated food; Cd(Cys)2 – 

Cd(Cys)2 contaminated food. 
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3.4. Discussion 

The use of Cd-cysteinate in this study provides an experimental device to explore the 

bioavailability of Cd that is complexed within biological tissues. Cysteine is the primary 

source of sulfydryl ligands in metal-binding proteins such as MTs or phytochelatins, and a 

proportion of the Cd that has been assimilated into biological tissues is likely to be 

associated with cysteine residues incorporated into MT or MT-like proteins (Monteiro et 

al., 2008). Therefore Cd-cysteinate represents the most elementary form (species) of 

thiol-bound Cd in biological systems. 

The results in the present study are in accordance with findings from a previous 

study by Calhoa et al. (2006). In that study P. dilatatus were provided with lettuce 

contaminated superficially with either Cd(NO3)2 (SCL – superficially contaminated lettuce) 

or lettuce that had been grown hydroponically in Cd-contaminated media (BCL – 

biologically contaminated lettuce). That study relied on an assumption that a high 

proportion of Cd in the BCL treatment-group would be bound to Cd-S-conjugates. This 

assumption was born out by a subsequent sub-cellular fractionation study (Monteiro et al., 

2008) that indicated that 22.4% of Cd was bound to the heat stable protein fraction (MT-

like proteins). Therefore, in several aspects the present study parallels that of Calhôa et al 

(2006), with numerous similarities, but more importantly, some distinct differences, as 

follows. 

Firstly, food consumption and assimilation indices are similar. As was the case with 

the BCL treatment group (Calhoa et al., 2006), food assimilation among isopods in the 

Cd(Cys)2 treatment group was higher than other treatment groups, and likely reflects an 

increase in nitrogen (and subsequent increase in palatability) conferred by cysteine 

residues (Zimmer, 2002; Zimmer et al., 2003). 

Secondly, in both studies growth was poor, although the inclusion of gelatine as a 

source of nitrogen in the present study did improve growth indices in control and Cd(Cys)2 

treatment groups. The negative growth rates among isopods in the Cd(NO3)2 treatment 

remain similar to that observed in Calhôa et al (Calhoa et al., 2006), and is therefore 

indicative of a distinct difference between the Cd(NO3)2 and Cd(Cys)2 treatment groups. 

Growth inhibition among isopods is a commonly reported consequence of Cd exposure 

(Odendaal and Reinecke, 2004), and the fact that food assimilation in the Cd(NO3)2 

treatment group was similar to controls indicates that the poor growth indices are not 

simply a reflection of an avoidance behaviour (Odendaal and Reinecke, 1999), but may 

reflect the increased cost of detoxification of Cd2+ (Zidar et al., 2003). The absence of a 
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similar growth inhibition among isopods in the Cd(Cys)2 treatment group is notable, and 

suggests that Cd, when presented as a Cd-S-conjugate, does not elicit the same 

metabolic response as Cd2+. This inference requires verification because Cd assimilation 

was slightly (but significantly) lower in the Cd(Cys)2 treatment group. 

Isopods fed with Cd(Cys)2 lettuce gelatine consumed more Cd than in the last 

experiment with the BCL treatment, as a consequence of higher gelatine Cd 

concentration. In the previous study the differences in the Cd assimilation were not so 

evident, being Cd assimilation for the BCL treatment a bit higher than in the SCL. One can 

also draw the hypothesis that higher rates of Cd assimilation as Cd(NO3)2 might have 

resulted as a consequence of direct adsorption of Cd from water vapour in the pleoventral 

space since isopods are in straight contact with contaminated food, although Vijver et al. 

(2005) demonstrated that the absorption of Cd is exclusively due to ingested Cd. 

Nonetheless Drobne (1993) demonstrated that in isopods water vapour absorption, 

cutaneous absorption and liquid water uptake take place by the mouthparts and/or 

uropods. These processes are based on active processes for liquid uptake which does not 

include penetration through the cuticle. 

In the present study, the assimilation efficiency of Cd(Cys)2 is relatively low (20%) 

compared to Cd(NO3)2, and much lower than the Cd-AE in the BCL group (~50%)(Calhoa 

et al., 2006), confirming the relatively low bioavailability of Cd associated with Cd-S-

conjugates (Harrison and Curtis, 1992; Andersen et al., 2004; Mann et al., 2006; Monteiro 

et al., 2008). Monteiro et al. (2008) examined the subcellular distribution of Cd in lettuce 

following hydroponic contamination, and demonstrated that only a small proportion of 

metal (22.4%) was bound to a subcellular fraction (HSP) synonymous with phytochelatins 

or MT-like proteins. In the same study, Monteiro et al. (2008) provided isopods with 

isolated subcellular fractions, and similarly demonstrated that the Cd in the fraction 

containing Cd-S-conjugates (HSP) had a low AE (22.8%), which is close to the AE for Cd 

in Cd(Cys)2 in the present study, suggesting that the isopods ability to assimilate Cd(Cys)2 

is the same as its ability to assimilate Cd-MT. Another interesting similarity with Monteiro 

et al. (2008) studies is that estimated Cd AE in all fractions in the isopod P. dilatatus fed 

with L. sativa were 44.1% similar to AE obtained on an previous study (Calhoa et al., 

2006) for BCL of 52%. 

Although bioavailability of Cd bound within Cd-S-conjugates has been demonstrated 

in the present study and elsewhere to be low, some Cd is assimilated, and it is possible 

that Cd(Cys)2 and other Cd-S-conjugates are able to cross the gut epithelium (Groten et 
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al., 1991; Sugawara and Sugawara, 1991; Harrison and Curtis, 1992). Cd-cysteinate is 

known to behave as molecular mimics at the sites of specific transport proteins that 

normally serve to absorb aminoacids or oligopeptides (Zalups and Ahmad, 2003). As 

indicated above, the manner in which Cd-S-conjugates are metabolised or detoxified by 

organisms may be quite different to the manner in which they handle Cd2+. The following 

chapters will examine the subcellular distribution of Cd when presented to isopods as 

different Cd species, and the potential difference in toxicity. 

 

3.5. Conclusion 

Results from this study clarify how the mechanisms by which plants sequester and 

detoxify accumulated metals can determine metal speciation and subsequent 

bioavailability to consumers. This chapter presents the direct assessment of the 

bioavailability of a Cd-cysteinate compared to a simple Cd salt (Cd(NO3)2), and 

demonstrated that Cd-speciation influences the level of Cd assimilation by terrestrial 

isopods. Cd(Cys)2 was significantly less bioavailable than the Cd provided as Cd(NO3)2. 

Future studies that examine the trophic movement of metals in food chains should also 

consider this kind of approach, where different flows within a trophic chain are expected 

depending on metal speciation. 
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Chapter 4. Does metal speciation dictate the subcellular 
distribution of cadmium in the terrestrial isopod Porcellio 
dilatatus? 

 

 

Abstract 

Cadmium (Cd) metal is present at potentially harmful concentrations in the environment 

but there is little information on its bioaccumulation and transfer up terrestrial food webs. 

Subcellular distribution of metal accumulated within an organism can be used to 

understand metal trophic transfer along a food chain and may provide valuable 

information about metal toxicity and tolerance. A previous dietary study with isopods 

showed that Cd cysteine conjugate decreased the assimilation efficiency of Cd when 

comparing with organisms fed with nutriment contaminated with the metal salt. The 

subcellular fractionation was adopted in this study as a tool to test the hypothesis that 

different Cd species deployed in food – Cd(Cys)2 and Cd(NO3)2 – would influence the 

manner by which this metal is detoxified and stored in cells, thereby influencing the 

trophic transfer to isopods. Studied fractions were as follows: cellular debris, metal-rich 

granules (MRG), organelles, heat denatured proteins (HDP) and heat stable proteins 

(HSP). The organelles, HSP and HDP were considered trophically available fractions 

(TAM). Organelles and HSP were grouped as metal-sensitive fractions (MSF), and HDP 

and MRG were grouped as biologically detoxified metal (BDM). The cellular debris has 

the highest subcellular Cd distribution (59-64%) independently of the species of Cd. 

Sequestration as HSP and MRG (BDM) were higher in isopods fed with Cd(NO3)2 

suggesting that they are more efficient at detoxifying Cd (22%) than when fed with 

Cd(Cys)2 (15%). Thus our data suggests that estimates of TAM (trophically available 

metal) in isopods were not dependent on Cd species, that is available to a predator, 

being 24% in Cd(Cys)2 and 22% in Cd(NO3)2.The results draw attention to the ecological 

relevance of the subcellular distribution of Cd in a consumer and highlights that a change 

in the speciation of Cd may have a direct impact in the Cd subcellular distribution which 

may affect the trophic transfer. 

 

Keywords: Cd-cysteine, Dietary metal, Centrifugal fractionation, Trophic transfer. 
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4.1. Introduction 

Metal availability on the environment is related to the form in which the metal occurs, and 

little is known about how metal speciation affects the way metals are absorbed, 

transported and stored in vivo and of how chelating agents can promote excretion of a 

toxic metal (Cakir et al., 1999). Hence it is important to consider the dietary route of metal 

exposure and the relevance of the complexity of internal metal subcellular partitioning in 

target organisms, which may significantly affect the subsequent transfer of metals to 

higher levels of the trophic chain (Wallace and Lopez, 1996b; 1997; Wallace and Luoma, 

2003; Seebaugh et al., 2006; Wang and Rainbow, 2006). The dietary transfer of metal 

needs further investigation for both toxicological and regulatory standpoints (Nolan et al., 

2003; Bechard et al., 2008). 

Some models have been developed in an attempt to link the bioavailability of 

contaminants and toxicity relying on the free ion metal activity (FIAM) or more recently on 

the metal binding with the proposed toxicological site of action (BLM) (Di Toro; 2001) but 

neither consider the complexity of internal metal subcellular fractionation, which may 

significantly affect metal toxicity and subsequent trophic transfer (Steen Redeker et al., 

2007). 

The internal metal sequestration strategies of different species are complex and 

variable. The way an organism makes its internal sequestration depends on different 

accumulation strategies that follow metal exposure. This can be explained by the fact that  

the various internal metal fractions have their own binding capacity for metals (Cheung et 

al., 2007), which has implications for food-chain transfer to higher trophic levels. Once a 

metal is uptaked by a consumer, physiological responses such as excretion from the 

metal excess pool and internal storage may occur, to prevent adverse effects 

(Peijnenburg and Vijver, 2006). 

Subcellular partitioning of metals can provide valuable information about metal 

toxicity and tolerance (Wang and Rainbow, 2006), with the view of predicting metal toxicity 

for the organism itself, but it can also be used to explain trophic transfer of metals 

(Wallace et al., 2003). Subcellular fractionation (Wallace et al., 2003; Wallace and Luoma, 

2003) has been successfully applied in several studies of dietary accumulation of metals, 

particularly in marine food chains (Wallace and Lopez, 1996b; Wallace et al., 2003; 

Wallace and Luoma, 2003; Seebaugh and Wallace, 2004; Zhang and Wang, 2006; 

Rainbow et al., 2007; Steen Redeker et al., 2007), with the purpose of explaining the 

variability observed in metal accumulation across different species and food chains. This 
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method has been considered dynamic in response to metal exposure and other 

environmental conditions, and takes into account  metal- and organism-specificity (Wang 

and Rainbow, 2006). It is a simple and pragmatic approach in the prediction of trophic 

transfer of metals to higher trophic levels and is a first step for a practical tool that could 

explain most of the variability observed in metals accumulation and toxicity in organisms 

(Vijver et al., 2004). 

Cysteine is present in metalothioneins and contains a sulphydryl group that 

accounts for the Cd-metallothionein induction due to Cd high affinity for sulphur ligands 

(Zalups and Ahmad, 2003; Roosens et al., 2005). 

In a prelimary experiment, the effect of speciation in plant-isopod food chain was 

studied (Chapter 3) with a dietary trial that compared isopod uptake traits when feed with 

Cd(Cys)2 and Cd(NO3)2. It was demonstrated that the cysteine conjugate decreased the 

assimilation efficiency of Cd when comparing with the isopods fed with nutriment 

contaminated with the metal salt.  

A similar procedure of subcellular fractionation to the one developed by Wallace and 

co-workers (Wallace et al., 2003; Wallace and Luoma, 2003) was adopted in this study as 

a tool to explain the variability observed in Cd assimilation by isopods fed with different 

species of Cd. It is assumed that differences in Cd speciation reflect different internal 

compartmentalization strategies that will influence internal bioavailable concentration. 

Most previous studies on Cd in isopods have focused on their toxicity (Khalil et al., 1995; 

Odendaal and Reinecke, 1999) but there is few knowledge on how this metal is 

transferred along food chains. Here, we tested the hypothesis that different Cd species 

deployed in food – Cd(Cys)2 and Cd(NO3)2 – would influence the manner by which this 

metal is detoxified, stored in cells and distributed at subcellular level, influencing the 

trophic transfer to the isopods. 

 

4.2. Materials and Methods 

4.2.1. Test organisms and culture conditions 

Isopods were selected from laboratory cultures of P. dilatatus that have been maintained 

for more than 3 years and that were derived from individuals collected in a secondary 

coastal dune system in central Portugal. They were maintained on a substrate of sand in 

plastic containers at 20 ºC with a 16:8 h (light:dark) photoperiod. Alder leaves were 
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provided ad libidum as food source (Caseiro et al., 2000; Kautz et al., 2000) and distilled 

water was added to maintain moisture. 

 

4.2.2. Lettuce and gelatine substrate 

A mixture of lettuce (Lactuca sativa L.) leaves and gelatine was selected as a suitable 

food substrate to be used as the exposure route (Mann et al., 2005; Monteiro et al., 2008). 

The advantage of feeding isopods with gelatine discs is the reduced variability of Cd 

absorption among isopods within treatments (Wallace and Lopez, 1996b). Also, because 

gelatine is derived from animal protein, its inclusion effectively decreased the C/N ratio 

(Kautz et al., 2000). Non-contaminated leaves of L. sativa were reduced to powder using 

a mortar and pestle and were mixed with a gelatine solution prepared from 2.5 g gelatine 

powder (VWR Prolabo, Fontenay Sous Bois, France) and 12.5 ml deionised water (Milli-

Q®), and then mixed by vortexing (Wallace and Lopez, 1996b). Small portions of the 

mixture (gelatine discs) weighing approximately 6 mg (dry wt) were made and were 

pipetted onto Parafilm® (Pechiney Plastic Packaging, Menasha, WI, USA). These discs 

were stored frozen at -20 ºC until required (Wallace and Lopez, 1997). 

Two treatments (diets) were established to study the influence of metal speciation 

on the subcellular distribution of Cd to the terrestrial isopod P. dilatatus: 

 Cd(Cys)2 contaminated food- gelatine contaminated with Cd-cysteinate 

(including 462µCi ml-1 109Cd as a tracer; Perkin-Elmer, Boston, MA, USA) 

mixed with non-contaminated leaves of L. sativa; 

 Cd(NO3)2 contaminated food- gelatine contaminated with Cd(NO3)2 (including 

23,1µCi ml-1 109Cd as a tracer; Perkin-Elmer, Boston, MA, USA) mixed with 

non-contaminated leaves of L. sativa. 

 

4.2.3. Feeding study 

Before the start of the test, a total of 80 juvenile isopods were selected by weight (mean = 

38 mg, ranging from 23 to 62 mg) and isolated individually in test boxes for 24 h without 

food to purge their gut. No distinction was made between sexes. 

Polyethylene terephthalate test boxes were used ( 85 mm x 43 mm; 

Termoformagen, Leiria, Portugal) containing in the bottom a thin layer of plaster of Paris 

mixed with activated charcoal (8:1 v/v) for moisture maintenance. 
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Forty individuals were allocated to each treatment. Animals were fed for a period of 

28 d exclusively on gelatine discs according to treatment. Gelatine discs that had been 

contaminated with Cd(Cys)2 and Cd(NO3)2 were previously assayed for Cd by 

radiospectrometry [range: 575 ± 118 and 296 ± 11 μg Cd/g dry wt to (mean ± standard 

deviation respectively)] before being fed to isopods. Gelatine was replaced every week, to 

prevent food consumption already inoculated with fungi; this procedure avoids the 

changes in Cd bioavailability caused by fungi. Faecal pellets were collected every 2 days 

to prevent coprophagy. 

After 28 d, isopods were left for 24 h without food to purge their guts and were 

weighed and analyzed for Cd burdens by radiospectrometry. 

 

4.2.4. Subcellular Cd distribution in isopods 

Differences in isopods subcellular Cd distribution were investigated using the 

methodology described by Wallace and co-workers (Wallace et al., 2003; Wallace and 

Luoma, 2003), with few modifications (Figure 4.1). 

Replicates (n = 6) of 3 isopods each (weight range: 0.8 - 1.5mg) were homogenized 

in 2ml of Tris buffer at pH 7.6 (20mM; 1:10 (m/v) tissue to buffer ratio). The homogenate 

was centrifuged at 1450g for 15min at 4 ºC. The resulting pellet was re-suspended in 

0.5ml distilled water and heated at 100 ºC for 2min. An equal volume of NaOH (1N) was 

then added followed by heating at 70 ºC for 1h. Afterwards it was centrifuged at 5000g for 

10 min at 20 ºC. The pellet formed contained the metal-rich granules (MRGs) and the 

supernatant was designated cell debris, containing mainly cell walls, tissue fragments, 

and other cellular debris (Wallace et al., 1998). The supernatant of the first centrifugation 

step, containing the cytosol, was centrifuged at 100.000g for 1 h at 4 ºC to sediment 

organelle components (i.e., chloroplasts, mitochondria). The pellet was designated as the 

organelle fraction. The 100.000g supernatant containing the soluble fraction of the cytosol 

was then heat denatured at 80 ºC for 10min and cooled on ice for 10min. Heat-denatured 

proteins were separated from the heat stable proteins (HSPs) (MT-like proteins) by 

centrifugation at 50.000g for 10min at 4 ºC. All fractions were assayed for Cd by 

radiospectrometry and metal contents were used to calculate distributions of Cd within 

isopods based on summation of Cd content of the five subcellular fractions. Each fraction 

was subsequently assayed for radioactivity, and Cd content. 
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Figure 4.1. Procedure to obtain subcellular Cd distributions in isopods into five 

operationally defined fractions and three subcellular compartments with different biological 

significance (modified from Wallace and co-workers (Wallace et al., 2003; Wallace and 

Luoma, 2003)). 

 

In total, five subcellular fractions were obtained: cellular debris (cell membranes and 

unbroken cells), metal-rich granules (MRG), organelles (mitochondria, microsomes, and 

lysosomes), heat denatured proteins (HDP) and heat stable proteins (HSP) like 

metallothionein (Wallace et al., 2003). The organelles, heat-denaturable proteins and 

metallothionein-like proteins were considered trophically available fractions (TAM) 

(Wallace and Luoma, 2003). Organelles and HSP were grouped as metal-sensitive 

fractions (MSF), and HDP and MRG were grouped as biologically detoxified metal (BDM) 

(Wallace et al., 2003) (Figure 4.1). 
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4.2.5. Cadmium analysis 

All isopods and subcellular fractions were placed in 3.5-ml Röhren tubes (Sarstedt, 

Newtown, NC, USA) and were analyzed for Cd content by radiospectrometry in a Genesis 

Gamma1 bench-top gamma counter (Laboratory Technologies, USA). The Cd(NO3)2 and 

Cd(Cys)2 contamination solutions were analysed for Cd by inductively coupled plasma 

atomic emission spectroscopy (ICP-AES; Jobin Ivon JY70 with a Meinard C001 

nebuliser). Specific activities of the two contamination solutions were assessed by 

comparing gamma counts with measurements obtained by ICP-AES. 

 

4.2.6. Statistical analysis 

Cd assimilation and fractionation by isopods was analysed using a two-way ANOVA – 

with interaction between factors (i) Cd species, i.e. Cd-cys and Cd(NO3)2, (ii) and fractions 

(Cellular debris, MRG, Organelles, HSP and HDP) and compartments (BDM, MSF and 

TAM) – with the SigmaStat (version 3.01, SPSS, Chicago, IL, USA) and pair-wise multiple 

comparison procedures with the Student-Newman-Keuls method whenever significant 

differences between treatments were found. Statistical analysis was carried out for a 

significance level of 0.05. Data on the percentage compartmentalization were arcsine 

transformed to ensure normality and homoscedascity of data. 

 

4.3. Results 

To evaluate the distribution among body compartments, two levels of biological 

organization were considered in this study: the whole individual and the subcellular 

fractions following feeding experiment where Cd(Cys)2 has 20% of AE of Cd and 

Cd(NO3)2 has 64% Porcellio dilatatus (Chapter 3). 

Comparing subcellular fractionation of Cd between Cd(Cys)2 and Cd(NO3)2 

treatments in relation to the total assimilated Cd revealed significant differences (F4,50 = 

9.337; p<0.001) (Figure 4.2). In fact there is a statistically significant interaction between 

Cd speciation and respective fractionation according to the two-way ANOVA calculations 

(p<0.001). The cell debris fraction is significantly different from the other fractions (p<0.05) 

and represents the biggest storage of the total accumulated Cd (59-64%) in both 

treatments used. Within the cells of P. dilatatus, storage of Cd (Figure 2) for i) Cd(Cys)2 

was located in: cellular debris (64%)> HDP (12.1%) > MRG (11.8%) > organelles (9.2%) > 
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HSP (2.9%); and for ii) Cd(NO3)2 located in: cellular debris (59,1%) > MRG (19%) > HDP 

(12,5%) > organelles (6,2%) > HSP (3,3%). 

 

Figure 4.2. Percentage distribution of Cd in subcellular fractions of Porcellio 

dilatatus (means ±SD, n=6) fed Cd(Cys)2 or Cd(NO3)2. Significant differences 

between Cd(Cys)2 and Cd(NO3)2 fractions (P0.05) are indicated with asterisk. 

 

Considering Cd speciation as one of the factors for the two-way ANOVA, no 

significant differences were found between Cd(Cys)2 and Cd(NO3)2 treatments (F2,30 = 

9.954; p=0.356) although the analysis revealed that there is a significant interaction 

between Cd speciation and metal compartmentalization (p<0.001). In fact, BDM 

compartment is significantly different (p<0.05) between treatments. Isopods fed with 

Cd(NO3)2 stored more Cd in the BDM compartment (Figure 4.3). 

Cadmium that is theoretically available for transfer to higher trophic levels, i.e. TAM: 

HSP + HDP + Organelles (Wallace and Luoma, 2003), represent 24% and 22% of the 

total assimilated Cd for isopods treated with Cd(Cys)2 and Cd(NO3)2, respectively. 
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Figure 4.3. Subcellular compartments in Porcellio dilatatus fed with Cd(Cys)2 and 

Cd(NO3)2 based on the biological significance of the various subcellular fractions. 

MSF = Organelles + HDP; BDM = HSP + MRG, Cellular debris and TAM (arc) = HSP 

+ HDP + MRG. 

 

Within each Cd treatment, only in the case of Cd(Cys)2 significant differences were 

found between compartments, namely between BDM and the other two compartments. 

 

4.4. Discussion 

This study evaluated the subcellular distributions of Cd in isopods fed with Cd(Cys)2 and 

Cd(NO3)2. Previous work (Chapters 2 and 3) had shown that these two species of Cd 

differed in terms of their assimilation efficiency to isopods and in terms of bioavailability. 

Examining whole metal body burdens may not always be sufficient to explain 

ecotoxicological significance in terms of detoxification, toxicity and trophic transfer, being 

important the analysis of internal distribution of metals within an organism also in order to 

predict metal toxicity for the organism itself. Concentration of Cd in subcellular fractions 

varies depending on the specific organ (Perceval et al., 2006), species (Zhang and Wang, 

2006), size of the body, as well as with the season (Wallace et al., 2003). The 

compartmentalization of metal as a subcellular compartment containing metal-sensitive 

fractions (MSF) is related to toxicity and is the metal considered metabolically available 

(Bechard et al., 2008). The biologically detoxified metal (BDM) compartment is related to 
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metal-detoxifying capacity of an organism and potential tolerance (Wallace et al., 1998; 

Goto and Wallace, 2007), providing a more complete understanding of potential 

mechanisms of toxicity (Wallace et al., 2003). Wallace and Lopez (1997) showed that Cd 

associated with enzymes (HDP) and MT (HSP) in oligochaetes was absorbed by a grass 

shrimp with an efficiency of 100% and that Cd associated in organelles was absorbed with 

an efficiency of 70%. Wallace and Luoma (2003) first suggested that Cd associated with 

the subcellular fractions organelles, heat-denaturable proteins (HDP) and heat-stable 

proteins (HSP) in a bivalve were 100% assimilated by the grass shrimp, indicating these 

fractions as a trophically available metal compartment (TAM) for transfer to predators. 

The cellular debris is the only subcellular fraction that was not included in the 

compartmental analysis and includes tissue fragments, cell membranes and other cellular 

components of unknown consequence in terms of function. The present work reveals that 

the cellular debris has the highest subcellular Cd distribution (59-64%) independently of 

the species of Cd, which is in good agreement with results obtained by Monteiro et al. 

(2008) for Cd subcellular distribution of L. sativa deployed to the isopod P. dilatatus. The 

authors found 43.8% of accumulated Cd in the cell debris fraction in L. sativa. Inouye et 

al. (2007) reported that 85% of lead in the exoskeleton fraction of isopods was not 

available to predators so there is a great probability that the majority of the total Cd body 

burden in isopods may not be available to predator species because the highest Cd 

concentration were found in the cellular debris. 

On cellular sequestration there are two major strategies of detoxification. One 

involves the binding of metals to heat-stable proteins (HSP) and the second one involves 

the formation of metal-rich granules (MRG). The role of MT in Cd binding (i.e. percentage 

of Cd bound to HSP) compared to the other subcellular fractions appears to be lower in 

this study when compared to other investigations with organisms exposed to Cd via food 

(Giguere et al., 2006; Monteiro et al., 2008). In both tested species of Cd, the HSP fraction 

does not appear to play an important role in detoxification processes for Cd, as expected 

(2,9% in Cd(Cys)2 and 3,3% in Cd(NO3)2). The second detoxification strategy in 

invertebrates is metal storage in MRG. P. dilatatus fed with Cd(NO3)2 accounted for 19% 

in MRG, whereas only 11,8% of the total Cd was found in MRG of P. dilatatus fed with 

Cd(Cys)2. MRG has been found in intestinal cells of many invertebrates (Vijver et al., 

2006), including isopods (Dallinger and Prosi, 1988), where is known that Cd that enters 

in the hepatopancreas is mainly present in the S (small) cells, which consist of granules. 
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If sequestration as HSP and MRG (BDM) is considered a mode of detoxification, we 

can suggest that isopods fed with Cd(NO3)2 are more efficient at detoxifying Cd (22%) 

than when fed Cd(Cys) (15%), which can lead to increased metal body burdens although 

being less toxic to the isopod. This could be also related to metal tolerance and 

resistance, being such subcellular compartmentalization approach important to interpret 

differences in toxicity. During our 28d study, storage to MRG and HSP were used as 

mechanisms of detoxification of both Cd species, however Wallace et al. (2003) showed 

that during long periods of extreme exposure, these mechanisms may become 

overwhelmed and metals may bind to more sensitive cellular components, such as 

organelles and HDP (MSF), resulting in toxicity. In fact, it was observed a higher storage 

level in the MSF compartment in Cd(Cys)2 treatment, although not significant in 

comparison to Cd(NO3)2 treatment, showing that Cd in organelles and in HDP are 

potentially vulnerable fractions to both metal exposures, and tend to be more sensitive to 

Cd(Cys)2 treatment and consequently causing higher toxicity in isopods. 

Wallace et al. (1998) showed that Cd-resistant worms produced both MT and MRG 

for Cd storage and detoxification while non-resistant worms only produced MT in 

response to Cd. Differences in subcellular distribution of Cd between resistant and 

nonresistant worms directly affected Cd availability for a predatory shrimp. There is no 

evidence that the same is true for isopods because to our knowledge no previous study 

investigated the subcellular partitioning of Cd within terrestrial isopods used as prey, but 

our data suggests that MRG might play a more relevant role in tolerance to long-term 

exposure than MT, that might act to protect against short-term Cd exposure. 

TAM has been defined as an additional compartment because the subcellular 

partitioning of metal within prey may be related to metal trophic transfer (Wallace and 

Lopez, 1996a; 1997; Wallace et al., 2003). In several studies linear relationships were 

found between TAM and assimilation by predators (Wallace and Luoma, 2003; Seebaugh 

and Wallace, 2004; Cheung and Wang, 2005; Seebaugh et al., 2006; Zhang and Wang, 

2006). However, it is common to find cases where TAM does not show a strong 

relationship to trophic transfer, as reported by Seebaugh et al. (2005) where 68% of Cd 

was trophically available in grass shrimp but only 3-19% Cd was assimilated by the 

predator fish. Similarly, Steen Redeker et al. (2007) reported 72% trophically available Cd 

in Tubifex tubifex but only 9.8% was assimilated by the predator carp. Furthermore, there 

are several studies which indicate that not only trophically available fractions were 

available to the predator but also insoluble fractions (such as MRG) could be bioavailable 

to the predator (Cheung and Wang, 2005; Zhang and Wang, 2006). In our study, if 
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sequestration as HSP, HDP and MRG are considered as a component of TAM, we can 

conclude that both species of Cd used to feed isopods have similar (TAM in Cd(Cys)2= 

24%; TAM in Cd(NO3)2 = 22%) accumulated Cd available to predators. Thus our data 

suggests that estimates of TAM in isopods were not dependent on Cd species. 

In sum, this study shows that total tissue burdens in prey may not be directly related 

to metal transfer to predators and the subcellular partitioning results are more useful when 

individual fractions were grouped into compartments MSF and BDM, demonstrating that 

the variability observed in metal partitioning can be useful in explaining toxicity. Moreover, 

herewith it is demonstrated that the subcellular distribution of Cd in isopods can be 

modified by metal speciation and subcellular fractionation of metal-binding in tissues, 

clarifying the mechanisms for metal toxicity and how the organisms detoxify metals. The 

results highlight that a change in the speciation of Cd may have a direct impact in the Cd 

subcellular distribution, affecting the trophic transfer. 
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Chapter 5. Survival and reproductive traits in Porcellio 
dilatatus exposed to different Cd species 

 

 

Abstract 

The woodlouse Porcellio dilatatus (Crustacea) is a suitable model species for the 

examination of toxic effects following metal assimilation and accumulation. In this 

study, the influence of cadmium speciation in survival and reproduction of 

isopods was investigated. Survival, growth and reproductive parameters (time to 

pregnancy, pregnancy duration, pregnancy and abortion occurrence, number of 

juveniles per female and juvenile weight) were recorded when isopods were 

exposed to two species of Cd deployed in food: Cd(Cys)2 or Cd(NO3)2. There was 

a difference between survival rates of Cd(Cys)2 exposed males and females and 

an higher acute toxicity was also observed when compared to males exposed to 

Cd(NO3)2. In the presence of both metal species a reduction of pregnancies and 

pregnancy duration was observed, but in the case of Cd(Cys)2 all pregnancies 

were inconclusive. The number of juveniles delivered per female fed with 

Cd(NO3)2 contaminated food was lower than in the control but the juvenile 

weights were higher. As far as we are aware, the present study is the first 

demonstrating that metal speciation affects reproduction. Cd(Cys)2 showed to be 

more toxic in this long term exposure and to jeopardize completely the 

reproduction effort of isopods. 

 

Keywords: Cadmium-cysteine, Reproduction, Survival, Isopods 
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5.1. Introduction 

Terrestrial isopods are saprophytic detritivores that inhabit the upper layer of the soil and 

surface leaf litter, and that play an important role in maintaining the structure and fertility of 

soils (Drobne, 1997; Loureiro et al., 2006). Invertebrate-mediated processes such as 

drainage, aeration, incorporation and degradation of organic matter are important in 

improving soil quality and energy flow through ecosystems (Drobne, 1997; Hornung et al., 

1998b; Odendaal and Reinecke, 1999).  

The woodlouse species Porcellio dilatatus (Crustacea) has been often chosen as a 

model species as it is an important representative of the invertebrate soil fauna (Sousa et 

al., 1998; Caseiro et al., 2000; Ribeiro et al., 2001; Engenheiro et al., 2005; Calhoa et al., 

2006). Terrestrial isopods are also easily cultured under laboratory conditions, where they 

can complete their entire life-cycle (Caseiro et al., 2000). Moreover they have been widely 

used for the examination of metal accumulation and toxicity testing because of their 

extraordinary capacity to accumulate large body-burdens of toxic metals from the 

environment, predominantly in the hepatopancreas (Donker et al., 1990; Hopkin, 1990; 

Hames and Hopkin, 1991; Farkas et al., 1996; Drobne, 1997; Hornung et al., 1998b), and 

protocols for toxicity testing are available (Hornung et al., 1998a; Hornung et al., 1998b) 

although no standard methods have been developed for these organisms (i.e. ISO, 

ASTM, OECD). 

The most widely used toxicological endpoints in isopod testing are survival (e.g. 

Drobne, 1997; Jansch et al., 2005), growth and food consumption processes (e.g. 

Loureiro et al., 2006), and reproduction (e.g. Vink and Kurniawati, 1996; Hornung et al., 

1997). The use of reproduction patterns as toxic responses is sometimes not convenient 

because of the long duration required for the test. Reproduction is also difficult to assess 

because after mating, females may retain the sperm for a long period of time before egg 

fertilization (Vink and Kurniawati, 1996; Drobne, 1997). On the other hand using 

reproduction as a response endpoint to test sublethal effects of chemicals has the 

advantage of not killing the animals during the procedure. The effects of chemicals to 

reproduction traits are crucial to understand and transpose those effects to higher levels 

of organization. The impairment of reproductive processes will be crucial for the 

population stability/growth and therefore isopods‘ role in decomposition processes and 

cycling of nutrients will be also affected. 

Previous dietary studies on the assimilation of Cd in the terrestrial isopod Porcellio 

dilatatus (Chapter 2, Calhoa et al., 2006) indicated that the Cd speciation dictated the 
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assimilation efficiency (AE) of Cd in plant-isopod food chain. Among vascular plants, 

mechanisms of tolerance include the induction of metal-binding proteins such as 

phytochelatins and metallothioneins (Prasad, 1995) which are small proteins with a 

significant concentration of cysteine (30%) (Ndayibagira et al., 2007). Cysteine contains a 

sulphydryl group that accounts for the Cd-metallothionein induction due to Cd high affinity 

for sulphur ligands (Zalups and Ahmad, 2003; Roosens et al., 2005). The use of Cd-

cysteinate in these studies provides an experimental device to explore the bioavailability 

of Cd that is complexed within biological tissues. Therefore Cd-cysteinate represents the 

most elementary form (species) of thiol-bound Cd in biological systems. In previous 

studies (Chapter 3) cadmium AE was lower among isopods provided with food with 

Cd(Cys)2 demonstrating that the cysteine conjugate was less available when comparing 

with the isopods fed Cd(NO3)2. 

In this study, the influence of cadmium speciation in the survival and reproductive 

effort of isopods was investigated. The main goal was to determine the toxicity effects of 

two species of Cd [Cd(Cys)2 and Cd(NO3)2] on the survival and several reproductive 

parameters of the terrestrial isopod Porcellio dilatatus during a long term exposure period. 

The sublethal toxicity of dietary species of Cd to terrestrial isopods was measured as the 

time to reach pregnancy (as an indication of fertilization ability), pregnancy duration, 

pregnancy and/or inconclusive pregnancy, number of juveniles per female and juvenile 

weight. 

 

5.2. Materials and Methods 

5.2.1. Test organisms and culture conditions 

Isopods were selected from laboratory cultures of P. dilatatus that have been maintained 

for more than 3 years and that were derived from individuals collected in a secondary 

coastal dune system in central Portugal. They were maintained on a substrate of sand in 

plastic containers at 20 ºC with a 16:8 h (light:dark) photoperiod. Alder leaves oven-dried 

were provided ad libidum as a food source (Caseiro et al., 2000; Kautz et al., 2000) and 

distilled water was added to maintain moisture. 

 

5.2.2. Lettuce and gelatine substrate 

A mixture of lettuce leaves and gelatine was selected as a suitable food substrate to be 

used as the exposure route (Mann et al., 2005; Monteiro et al., 2008). Non-contaminated 
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leaves of Lactuca sativa were reduced to powder using a mortar and pestle, and were 

mixed with a gelatine solution prepared from 2.5 g gelatine powder (VWR Prolabo, 

Fontenay Sous Bois, France) with 12.5 ml deionised water (Milli-Q®), and then mixed by 

vortexing (Wallace and Lopez, 1996). Small portions of the mixture (gelatine discs) 

weighing approximately 9 mg (dry wt) were made and were pipetted onto Parafilm® 

(Pechiney Plastic Packaging, Menasha, WI, USA). These discs were stored frozen at -

20 ºC until required (Wallace and Lopez, 1997). 

Three treatments (diets) were established for this long term exposure test to 

evaluate the toxicity of metal speciation to the terrestrial isopod P. dilatatus. 

 Cd(Cys)2 contaminated food - gelatine contaminated with Cd-cysteinate mixed 

with non-contaminated leaves of L. sativa; 

 Cd(NO3)2 contaminated food - gelatine contaminated with Cd nitrate mixed 

with non-contaminated leaves of L. sativa. 

 Control food - gelatine mixed with non-contaminated leaves of L. sativa. 

 

5.2.3. Experimental setup 

A total of 50 non-gravid females were selected and separated into a test box for one 

month, to guarantee that they were not pregnant when the test started. Tests boxes were 

made of polyethylene terephthalate (PET) ( 85 mm x 43 mm; Termoformagen, Leiria, 

Portugal) containing in the bottom a thin layer of sand to provide the same conditions as in 

the culture boxes. After this month a total of 30 males were also selected. At this stage 

(T0) 30 females and 30 males were exposed individually in test boxes for a period of 28 d 

(T1), and exclusively fed on gelatine discs according to treatment, to guarantee Cd 

assimilation. Hereafter this period will be named individual exposure test. 

Gelatine discs were previously assayed for Cd radiospectrometry before being fed 

to isopods, and contained 335±29 μg Cd/g dry wt for gelatine with Cd(NO3)2 and 744±108 

μg Cd/g dry wt (mean ± standard error) for gelatine with Cd(Cys)2. Food was replaced 

every week, to prevent consumption of disks that had become inoculated with fungi, 

because fungi growth may alter Cd bioavailability. 

After this 28 d period of individual exposure, one male and one female were paired 

randomly per box for mating, using 10 replicates per treatment. Hereafter this test period 

will be referred as reproduction test. Female reproductive cycle and survival was followed 
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for 54 days (T2), being monitored 3 times a week, and when pregnancy was observed 

females were moved into a new box alone until they gave birth. The percentage of 

females that successfully reached pregnancy (i.e. successful egg fertilization), the time 

until pregnancy, duration of pregnancy and the percentage of inconclusive pregnancies 

(females that successfully reached pregnancy but were unable to carry out in to the end) 

were recorded. The number of juveniles born per female and their individual weight were 

also registered. Isopods were assayed for Cd body burden by radiospectrometry, and 

metal contents were used to calculate their assimilation of Cd. 

 

5.2.4. Statistical analysis 

All data were checked for normality and homoscedascity using SigmaStat (version 3.01, 

SPSS, Chicago, IL, USA). Statistical analysis was carried out , for a significance level of 

0.05, by t-tests or one-way analysis of variance (ANOVA) with Tukey test multiple 

comparison and with Dunnett´s multiple comparison of means to determine differences 

relatively to control treatment. Whenever possible data that was not normally distributed or 

whose equal variance testing failed were transformed.  

The lethal time of 50% (LT50) was calculated with the Probit method using the 

MiniTab software (Minitab, 2000). 

 

5.3. Results 

5.3.1. Survival 

Survival is registered in Figure 5.1. During the individual exposure period no mortality was 

observed.  

During the 82 days of exposure, there was no mortality on control females while 

20% of the males died during the test. In the Cd(Cys)2 treatment 70% of females and 90% 

of males have died at the end of the test. As for the Cd(NO3)2 treatment mortality was of 

10% and 70%, respectively for females and males, being the differences between the 

gender extremely high. LT50 values for Cd(Cys)2 exposures differed between females and 

males: 65.85 days (63.97-67.89 for 95%CL) and 58.35 days (56.80-59.89 for 95%CL), 

respectively. For the Cd(NO3)2 exposure only data from male survival gave a LT50 value of 

70.36 days (68.44-72.57 for 95%CL). Females exposed to Cd(NO3)2 showed a low 

mortality rate of 10% (figure 5.1). 
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Figure 5.1. Number of females (A) and males (B) of Porcellio dilatatus that 

survived during the 82 days of the test. 

 

5.3.2. Cd assimilation in isopods 

Isopods fed with Cd(NO3)2 and Cd(Cys)2 had equivalent rates of assimilation (6,4±1,9 and 

7,8±1,7ng Cd/mg animal, (mean ± standard error, respectively) after the individual 

exposure period of 28 days (T1) (Figure 5.2). In the final of the experiment (T2) isopods 

fed with Cd(NO3)2 assimilated much more Cd (17,9ng Cd/mg animal) than those from the 

Cd(Cys)2 treatment that only assimilate 9,9ng Cd/mg animal. 
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Figure 5.2. Cadmium assimilation by Porcellio dilatatus before the experiment 

starts (T0), after 28 days of individual exposure (T1) and at the final of the 

experiment (82 days of exposure) (T2). Grey bars represent the assimilation in 

isopods fed with Cd(NO3)2 and the white bars represent the assimilation in 

isopods fed with Cd(Cys)2. Vertical error bars represent the standard error of the 

mean (n=4 to Cd(Cys)2 and n=12 to Cd(NO3)2). 

 

5.3.3. Time to reach pregnancy, pregnancy duration and abortions 

During the individual exposure test, plus the 54 days of the reproduction test, all animals 

lost weight, with the exception of the only male that survived in the Cd(Cys)2 treatment, 

that showed a growth rate of 14.22%. There were no significant differences between 

treatments and within sexes (female data after exponential transformation, P=0.117; 

males, P=0.376). 

As shown in Figure 5.3, the average time after mating at which isopods showed the 

first signs of pregnancy in control isopods were of 19±2 days (mean±st. error). This 

interval was lower for isopods fed with Cd(NO3)2 (12±1 days) and even lower for Cd(Cys)2 
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decreased in Cd(NO3)2 treatment (14±3 days) whereas for the Cd(Cys)2 treatment no 

females were able to deliver mancae. 

 

Figure 5.3. Number of days until first signs of pregnancy were detected (grey 

bars), and number of days between first signs of pregnancy and release of 

manca (white bars) of Porcellio dilatatus fed with Cd(Cys)2 and Cd(NO3)2 gelatine 

and lettuce discs. n ranges from 3 to 10. Vertical error bars represent the 

standard error of the mean. “*” indicates a significant difference (P<0.05) from 

the control (ANOVA, Dunnett´s test); “**” indicates a significant difference 

(P<0.05) between the treatments (t-test). 
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Figure 5.4. Percentage of successful females achieving pregnancy (grey bars) 

and percentage of female inconclusive pregnancies (white bars) of Porcellio 

dilatatus feed with Cd(Cys)2 and Cd(NO3)2 gelatine and lettuce discs. 

 

In the control all the females successfully reached pregnancy within the test period 

(Figure 5.4). Only 30% of the females fed with Cd(Cys)2 become pregnant but all these 

females did not produce any manca (two of them died and the one that survived did not 

delivered any manca due to inconclusive pregnancy). In the Cd(NO3)2 treatment only half 

of the females successfully reached pregnancy, but only 80% of these were able to carry 

it till the end. 

 

5.3.4. Number of juveniles and individual juvenile weight 

Significant differences were found between the number of juveniles in the control and the 

Cd treatments (P<0.001), but differences between the Cd(Cys)2  and the Cd(NO3)2 were 

not statistically significant (Figure 5.5). In the control, the average number of mancae 

delivered per female was 21±2. In the Cd(Cys)2 none of the females were able to carry the 

pregnancy to the end so no juveniles were delivered. In the Cd(NO3)2 the number of 

mancae delivered per female was 7±2. 
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Figure 5.5. Number of juveniles hatching per pregnant female (grey bars), and 

individual manca weight (white bars) of Porcellio dilatatus fed with Cd(Cys)2 and 

Cd(NO3)2 gelatine and lettuce discs. Vertical error bars represent the standard 

error of the mean. a and b indicates a significant difference (P<0.001) between 

number of juveniles produced in the treatments (ANOVA, Tukey test); asterisk 

indicates a significant difference (p=0.007) between juvenile individual weight (t-

test). 

 

The total juvenile weight was significantly different between the control and 

Cd(NO3)2 treatment (P<0.001). In the control there were more juveniles delivered, and 

therefore the total weight (6.8±0,31 mg) was higher than in the Cd(NO3)2 (3.3±0,96mg). 

But associated with the decreasing number of mancae per female in Cd(NO3)2, the 

individual manca weight increased. There were significant differences between individual 

weight of the control juveniles and those from the Cd(NO3)2 treatment (p=0.007). In the 

control more juveniles were delivered but the individual weight was lower 

(0.338±0.015mg) than in the Cd(NO3)2 that produced less juveniles but with higher 

individual weight (0.435±0.029mg). 
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5.4. Discussion 

Metal contamination is one of the most important factor responsible for the change on life-

history patterns in isopods because it acts as a selection pressure, being reproduction a 

highly sensitive life-history parameter (Hornung et al., 1998b). Life-history theory predicts 

that habitat disturbances will increase mortality, select for early reproduction and increase 

reproductive effort (Donker et al., 1993). 

From the survival data, there was an unexpected difference between sexes in both 

exposures. In several works no differentiation between sexes is considered due to the 

expected similarity on pattern behaviour and survival of terrestrial isopods (Jansch et al., 

2005; Calhoa et al., 2006; Loureiro et al., 2009). The inexistence of differences between 

sexes in isopods was described in the study where the aquatic isopod Idotea baltica was 

exposed to zinc, copper and lead and no differences were observed between males and 

females LT50 values (Bat et al., 1999). In the present work males exposed to Cd(Cys)2 

died earlier than those exposed to Cd(NO3)2, showing higher acute toxicity. 

Influences of chemical speciation on the reproduction systems of terrestrial isopods, 

with consequences at the population level, are expected but have not been confirmed until 

now. Isopods fed with Cd(NO3)2 and Cd(Cys)2 had equivalent Cd assimilation rates (6.4 

and 7.8ng Cd/mg animal, respectively) after the 28 days (T1) of individual exposure. A 

higher concentration of Cd in Cd(Cys)2 gelatine discs was provided to try to equal metal 

assimilation by isopods fed with both Cd species, because in previous experiments 

(Chapter 3) isopods fed with Cd(Cys)2 assimilated less Cd than those exposed to 

Cd(NO3)2 contaminated food. It was important to have similar assimilation rates for a 

reproduction test to compare what happens in terms of toxicity for both Cd species. At the 

end of the experiment (T2) isopods fed with Cd(NO3)2 contaminated food assimilated 

much more Cd (17.9ng Cd/mg animal) than those from Cd(Cys)2, that only assimilated 

9.9ng Cd/mg animal. 

In a previous study (Chapter 4) it was also shown that isopods fed with Cd(Cys)2 

gelatine discs had a higher storage level of Cd in the metal-sensitive fractions (MSF). It is 

hypothesized that Cd in organelles and in heat denatured proteins (HDP) can be 

considered potentially vulnerable fractions, and in the present study it is demonstrated 

how it affects isopods in terms of toxicity. The Cd(Cys)2 treatment had the highest 

mortality probably due to higher availability of the ingested Cd that impaired physiological 

processes. Isopods fed with Cd(NO3)2 stored Cd in metal-rich granules (MRG) as a 

detoxification strategy, so they were more efficient at detoxifying Cd which may had lead 
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to increased metal body burdens although being less toxic to the isopod. In this way, Cd in 

granules is not available for the physiological processes and become non toxic. This could 

be also related to metal tolerance and resistance that may be attributed to the ability of 

isopods to compartmentalize Cd in the hepatopancreas, which acts as a detoxification 

mechanism and contributes to tolerance to high cadmium levels. MRG has been found in 

intestinal cells of many invertebrates (Vijver et al., 2006), including isopods (Dallinger and 

Prosi, 1988), where it is known that Cd in the hepatopancreas is mainly present in the S 

(small) cells, which consist of granules. 

Jones and Hopkin (1996) showed that terrestrial isopods (Porcellio scaber and 

Oniscus asellus) from metal polluted sites had higher reproductive investment, suggesting 

that they were able to redirect resources from other functions, like growth, to meet the 

physiological costs of metal detoxification. Donker et al. (1993) also showed that isopods 

from a zinc smelter started to reproduce earlier and that metal contamination decreased 

the adult survival, but the reproductive effort was higher when compared to reference site 

isopods. In our experiment, isopods were previously exposed to Cd for 28 days, to 

evaluate the effects of Cd on the egg fertilization phase. 

During the 28 days of the individual exposure test plus the 54 days of the 

reproduction test all animals lost weight, probably due to the long duration of the test, in 

involving a long period of stress. Growth inhibition among isopods is a commonly reported 

consequence of Cd exposure (Odendaal and Reinecke, 2004), and in this study may 

reflect the increased cost of detoxification of Cd2+ (Zidar et al., 2003). Considering the high 

rates of mortality observed in this study, although isopods exposed to Cd(NO3)2 

assimilated more Cd, higher female mortalities were observed in the Cd(Cys)2 treatments, 

showing that Cd(Cys)2 induced higher acute toxicity. 

In the control all females become pregnant and delivered mancae within the 54 days 

of the reproduction test. These values are much higher than the few reports available with 

other isopod species but are in accordance with Lemos et al. (2009) that reported the 

same percentage of successfully pregnancy (100%) for Porcellio scaber females. Van 

Brummelen et al. (1996) reported a 57% failure of pregnancy in Oniscus asellus, Faber 

and Heijmans (1995) reported a 49% failure in Trachelipus rathkei, and Hornung and 

Warburg (1994) reported a 47% failure in Porcellio ficulneus. 

Control females showed the first signs of pregnancy later than the Cd treatments, 

which is in accordance with life-history theory that predicts a selection for early 

reproduction and increase reproductive effort when these organisms are stressed (Donker 
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et al., 1993). As mentioned above, metal exposure is responsible for changes on life-

history, acting as a selection pressure, being reproduction a highly sensitive life-history 

parameter (Hornung et al., 1998b). As observed in this study and also reported by Donker 

et al. (Donker et al., 1993), stress increased mortality, and early reproduction, with an 

additional increase in reproductive effort. 

Pregnancy duration was higher for the control treatments and decreased in the 

Cd(NO3)2 treatment, where juveniles were released, on average, seven days earlier. As 

Cd induced a decrease of the brood period, females exposed to Cd(NO3)2 had a reduced 

length of time to provision for their developing young. A similar observation was observed 

in females of Armadillidium vulgare exposed to predatory ants (Castillo and Kight, 2005) 

and females of Porcellio leavis under physical (five minutes of continuous locomotion daily 

throughout the brooding period) stress (Kight and Nevo, 2004) that exhibited significantly 

shorter brooding periods than controls, releasing juveniles almost 48 hours earlier. 

Parental care by female isopods is a behavioural strategy that contributes to increase 

fitness of progeny but is energetically costly (Lardies et al., 2004). Terrestrial isopods 

have the most extensive parental care since they carry the eggs and juveniles in a ventral 

marsupium, that is provisioned with fluid from the mother and allows early development to 

take place independently of an external water source (Lardies et al., 2004). The 

equilibrium between energy losses with reproduction/ maternal care and those from 

detoxification processes due to Cd exposure might justify the decrease in the number of 

days of isopod pregnancy, to shift energy for detoxification. 

Terrestrial isopods‘ female reproductive cycle, i.e. ovarian maturation and 

embryogenesis, is a synchronous event with the moult cycle. Ecdysteroids are 

crustacean‘s moulting hormones, involved in controlling the reproduction process and 

embryogenesis (Vafopoulou and Steel, 1995; Subramoniam, 2000; Lemos et al., 2009). 

Metals interfere with egg production binding to enzymes involved with vitellogenesis 

(Hook and Fisher, 2002). Thus any impact on the moulting process has negative 

consequences at the reproductive success. Hornung and Warburg (1994) observed for 

the first time the oosorption in an ovary of an oniscid isopod (P. ficulneus) and Farkas et 

al. (1996) showed that P. scaber under stressful conditions increased disruption of 

oocytes within the ovarium during vitellogenesis (oosorption) resulting in fewer juveniles. 

The isopod marsupium physically limits the area available for egg attachment, and 

abnormal egg growth may lead to overcrowding and consequent egg loss or reabsorption, 

following-on lower manca numbers (Lardies et al., 2004). This phenomenon may had 

occurred in the present experiment with the Cd(NO3)2 treatment. The oocyte resorption 
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takes place when the albumin is stopped from entering the oocyte and no vitellogenin 

synthesis takes place. This process leaves no visible traces after the reasorption has 

been completed. In the Cd(Cys)2 none of the females were able to carry the pregnancy to 

the end (most of them because animals died before breeding) and the only that survived 

did not deliver any manca, due to inconclusive pregnancy. 

In the control the average number of mancae delivered per female was of 21±2. In 

the Cd(NO3)2 treatment the number of mancae delivered per female decreased when 

compared to the control, but the individual weight increased. Probably upon stress 

exposure isopods invest in quality rather than in quantity of juveniles to produce a higher 

quality and fit offspring. Among crustaceans, fecundity has been demonstrated to be 

particularly sensitive to dietary metal exposure (Hook and Fisher, 2001; Mann and Hyne, 

2008; Mann et al., 2009). Hence we suggest that females from Cd(NO3)2 balanced the 

benefits of having smaller clutch decreasing the costs of providing parental care, which 

implies less energy for maintenance. 

 

5.5. Conclusion 

The results from the present study demonstrate that different species of Cd affect survival 

and reproduction of terrestrial isopods in different ways. In fact speciation had already 

been shown to affect the assimilation efficiency and compartmentalization of Cd in 

isopods (Chapters 2 and 3). The compartmentalization results were of particular interest 

because they showed that Cd accumulates differently depending on the form it is provided 

in food. Isopods fed with Cd(Cys)2 gelatine discs had a higher storage level of Cd in the 

metal-sensitive fractions (organelles+ heat denatured proteins) that are responsible for 

toxicity. As for isopods fed with Cd(NO3)2 they stored Cd in metal-rich granules as a 

detoxification strategy so they were more efficient at detoxifying Cd. Thus it was expected 

that the effects of Cd(Cys)2 would be more toxic than the effects of Cd(NO3)2. In 

agreement with this, survival and reproduction were also affected differently depending on 

Cd speciation. There was a difference between survival rates of Cd(Cys)2 exposed males 

and females and an higher acute toxicity was also observed when compared to males 

exposed to Cd(NO3)2. In both treatments a reduction of pregnancies and pregnancy 

duration was observed but in the case of Cd(Cys)2 all females had an inconclusive 

pregnancy and therefore no juveniles were delivered. Although in Cd(NO3)2 the number of 

juveniles per female was lower than in the control, juvenile weights were higher. As far as 
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we are aware, the present study is the first one demonstrating that metal speciation 

affects reproduction. 
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Chapter 6. General Discussion 

 

 

The focus of this research was to investigate the influence of cadmium speciation in its 

bioavailability to the isopod Porcellio dilatatus (Figure 6.1). We wanted to know if Cd 

speciation had consequences in Cd assimilation (Experiment 1 and 2), in the way metal is 

distributed internally within the organism (Experiment 3), and how survival and 

reproduction were affected in terrestrial isopods (Experiment 4) (Figure 6.1). 

 

Figure 6.1. Schematic sequence of the experimental set-up. 
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Bioavailability of the metals when presented through doping regimes may differ from 

the bioavailability of metals in nature, because over time metals become biologically 

compartmentalized and complexed by organic molecules. Therefore, the first step of this 

study was to evaluate the Assimilation Efficiency (AE) of Cd in isopods provided with food 

(lettuce) superficially amended with Cd(NO3)2 and provided with lettuce grown in Cd-

contaminated media (Chapter 2). One of the a priori assumptions for these trials was that 

Cd incorporated biologically into the lettuce must exist predominantly as a Cd-S-conjugate 

or Cd-protein complex (Mann et al., 2005). This assumption was born out by a 

subsequent sub-cellular fractionation study (Monteiro et al., 2008) that indicated that 

22.4% of Cd was bound to the heat stable protein fraction (Metallothionein-like proteins). 

The results from our experiments showed that the AE of Cd was greater among isopods 

that were fed the simple salt (71%, SE=7%), than among isopods feeding on biologically 

contaminated lettuce (52%, SE=5%), hence demonstrating that speciation of Cd is likely 

to influence the rate of Cd assimilation and accumulation in a laboratory test, unlike the 

findings from Harrison and Curtis (1992) where the AE was higher in the case of Cd 

accumulated by a live food source. 

In the following trial we used Cd-cysteinate to provide an experimental device to 

explore the bioavailability of Cd that is complexed within biological tissues (Chapter 3). 

Cysteine is the primary source of sulfydryl ligands in metal-binding proteins such as 

Metallothionein (MTs). Food provided in treatments consisted of gelatine contaminated 

with Cd cysteinate (Cd(Cys)2) and Cd(NO3)2. In this dietary study as well as in the study 

performed with contaminated lettuce, growth was poor. Growth inhibition among isopods 

is a commonly reported consequence of Cd exposure (Odendaal and Reinecke, 2004), 

and the fact that food assimilation in the Cd(NO3)2 treatment group was similar to controls 

indicated that the poor growth indices were not simply a reflection of an avoidance 

behaviour (Odendaal and Reinecke, 1999), but rather may had reflected the increased 

cost of detoxification of Cd2+. The AE of Cd(Cys)2 was relatively low (20%) when 

compared to Cd(NO3)2, and much lower than the Cd-AE in the biologically-contaminated 

lettuce group (~50%) from the first experiment, which confirms the relatively low 

bioavailability of Cd associated with Cd-S-conjugates (Harrison and Curtis, 1992; 

Andersen et al., 2004; Mann et al., 2006; Monteiro et al., 2008). Monteiro et al. (2008) 

examined the subcellular distribution of Cd in lettuce following hydroponic contamination, 

and demonstrated that only a small proportion of metal (22.4%) was bound to a 

subcellular fraction (HSP) synonymous with phytochelatins or MT-like proteins. In the 

same study, isopods were provided with isolated subcellular fractions, and similarly 
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demonstrated that the Cd in the fraction containing Cd-S-conjugates (HSP) had a low AE 

(22.8%), which was close to the AE for Cd in Cd(Cys)2.from the second experiment. 

These data suggest that the isopods‘ ability to assimilate Cd(Cys)2 was the same as their 

ability to assimilate Cd-MT. 

Chapter 4 examines the subcellular distribution of Cd when presented to isopods as 

the different Cd species – Cd(Cys)2 and Cd(NO3)2 –, and the hypothetical difference in 

toxicity. The compartmentalization of metal as a subcellular compartment containing 

metal-sensitive fractions (MSF) is related to toxicity and is the metal considered 

metabolically available (Bechard et al., 2008). The biologically detoxified metal (BDM) 

compartment is related to metal-detoxifying capacity of an organism and potential 

tolerance (Wallace et al., 1998; Goto and Wallace, 2007), providing a more complete 

understanding of potential mechanisms of toxicity (Wallace et al., 2003). The cellular 

debris is the only subcellular fraction that was not included in the compartmental analysis 

and includes tissue fragments, cell membranes and other cellular components of unknown 

consequence in terms of function. This compartmentalization experiment revealed that the 

cellular debris had the highest subcellular Cd distribution (59-64%) independently of the 

species of Cd, which was in good agreement with results obtained by Monteiro et al. 

(2008) for Cd subcellular distribution of L. sativa deployed to the isopod P. dilatatus. On 

cellular sequestration there are two major strategies of detoxification. One involves the 

binding of metals to heat-stable proteins (HSP) and the second one involves the formation 

of metal-rich granules (MRG). The role of MT in Cd binding (i.e. percentage of Cd bound 

to HSP) compared to the other subcellular fractions appeared to be lower in our study 

when compared to other investigations with organisms exposed to Cd via food (Giguere et 

al., 2006; Monteiro et al., 2008). In both tested species of Cd, the HSP fraction did not 

appear to play an important role in detoxification processes for Cd as it would be expected 

(2,9% in Cd(Cys)2 and 3,3% in Cd(NO3)2). The second detoxification strategy in 

invertebrates is metal storage in MRG. P. dilatatus fed with Cd(NO3)2 accounted for 19% 

in MRG, whereas only 11,8% of the total Cd was found in MRG of P. dilatatus fed with 

Cd(Cys)2. MRG has been found in intestinal cells of many invertebrates (Vijver et al., 

2006), including isopods (Dallinger and Prosi, 1988), where is known that Cd that enters 

in the hepatopancreas is mainly present in the S (small) cells, which consist of granules. If 

sequestration as HSP and MRG (BDM) is considered a mode of detoxification, we can 

suggest that isopods fed with Cd(NO3)2 were more efficient at detoxifying Cd (22%) than 

when fed Cd(Cys) (15%), which can lead to increased metal body burdens although being 

less toxic to the isopod. This could be also related to metal tolerance and resistance, 



Chapter 6 

108 

being such subcellular compartmentalization approach important to interpret differences in 

toxicity. In sum, this study showed that total tissue burdens in prey may not be directly 

related to metal transfer to predators and the subcellular partitioning results were more 

useful when individual fractions were grouped into compartments MSF and BDM. Such 

findings demonstrate that the variability observed in metal partitioning can be useful in 

explaining toxicity. Moreover herewith it was shown that the subcellular distribution of Cd 

in isopods can be modified by metal speciation and subcellular fractionation of metal-

binding in tissues, clarifying the mechanisms for metal toxicity and how the organisms 

detoxify metals. The results highlighted that a change in the speciation of Cd may have 

had a direct impact in the Cd subcellular distribution hence affecting the trophic transfer. 

In a final set of experiments, detailed in Chapter 5, the differences in terms of 

survival and reproduction in isopods exposed to Cd(Cys)2 and Cd(NO3)2 were assessed. 

From the survival data, there was an unexpected difference between sexes in both 

exposures. Males exposed to Cd(Cys)2 died earlier than those exposed to Cd(NO3)2, 

showing higher acute toxicity. In the control all females become pregnant and delivered 

mancae within the 54 days of the reproduction test. Control females showed the first signs 

of pregnancy later than the Cd treatments which is in accordance with life-history theory 

that predicts a selection for early reproduction and increase reproductive effort when 

stressed (Donker et al., 1993). Pregnancy duration was higher for the control treatments 

and decreased in Cd(NO3)2 treatment where juveniles were released seven days earlier. 

As Cd induced a decrease of the brood period, females exposed to Cd(NO3)2 had a 

reduced length of time to provision for their developing young. Terrestrial isopods have 

the most extensive parental care since they carry the eggs and juveniles in a ventral 

marsupium, that is provisioned with fluid from the mother and allows early development to 

take place independently of an external water source (Lardies et al., 2004). The 

equilibrium between energy losses with reproduction/ maternal care and those from 

detoxification processes due to Cd exposure might justify the decrease in the number of 

days of isopod pregnancy, to shift energy for detoxification. In the Cd(NO3)2 the number of 

mancae delivered per female decreased when compared to the control (21±2), but the 

individual weight increased. Probably upon stress exposure isopods invested in quality 

rather than in quantity of juveniles to produce a higher quality and fit offspring. Among 

crustaceans, fecundity has been demonstrated to be particularly sensitive to dietary metal 

exposure (Hook and Fisher, 2001; Mann and Hyne, 2008; Mann et al., 2009). Hence upon 

the obtained results we suggested that females from Cd(NO3)2 balanced the benefits of 

having smaller clutch decreasing the costs of providing parental care, which implies less 
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energy for maintenance. At the end of the experiment isopods fed with Cd(NO3)2 

contaminated food assimilated much more Cd (17.9ng Cd/mg animal) than those from 

Cd(Cys)2 that only assimilated 9.9ng Cd/mg animal. In Chapter 4 it was also shown that 

isopods fed with Cd(Cys)2 gelatine discs had a higher storage level of Cd in the metal-

sensitive fractions (MSF). It was then hypothesized that Cd in organelles and in heat 

denatured proteins (HDP) could be considered potentially vulnerable fractions and in 

chapter 5 it was demonstrated how it affects isopods in terms of toxicity. The Cd(Cys)2 

treatment had the highest mortality probably due to higher availability of the ingested Cd 

that impaired physiological processes. Isopods fed with Cd(NO3)2 stored Cd in metal-rich 

granules (MRG) as a detoxification strategy so they were more efficient at detoxifying Cd 

which may had lead to increased metal body burdens although being less toxic to the 

isopod. In this way, Cd in granules was not available for the physiological processes and 

become non toxic. This could also be related to metal tolerance and resistance that may 

be attributed to the ability of isopods to compartmentalize Cd in the hepatopancreas, 

which acts as a detoxification mechanism and contributes to tolerance to high cadmium 

levels. 

As a final remark it can be suggested that future studies examining the trophic 

movement of metals in food chains should consider this kind of approach, where different 

flows within a trophic chain are expected depending on metal speciation. 
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