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resumo 
 
 

O cádmio (Cd) é um metal não essencial e é considerado um poluente prioritário 
pela comunidade europeia. Este metal atinge o ambiente no decurso de várias 
actividades antropogénicas e tende a concentrar-se nos solos e sedimentos, onde 
está potencialmente disponível para as plantas, sendo posteriormente transferido 
através da cadeia trófica. Neste contexto, o principal objectivo da presente 
dissertação foi o estudo dos efeitos da assimilação e da acumulação de Cd em 
plantas e as suas consequências para animais consumidores. Numa primeira fase, 
foram estudados os principais efeitos fisiológicos e genotóxicos do Cd em plantas. 
As plantas de alface (Lactuca sativa L.) expostas a Cd apresentaram um 
decréscimo na eficiência fotossintética, aumento de peroxidação lipídica e 
alterações significativas na actividade de enzimas de stress oxidativo. Estas 
alterações culminaram num decréscimo do crescimento da parte aérea no final da 
exposição. As respostas obtidas pelos parâmetros bioquímicos sugerem que estes 
poderão ser utilizados como eventuais biomarcadores em testes ecotoxicológicos 
com Cd em abordagens integrantes em conjunto com parâmetros clássicos. Os 
efeitos mutagénicos de Cd foram avaliados através da determinação da 
instabilidade de microsatélites (IM). Não foi observada IM, nem nas folhas nem nas 
raízes de plantas de alface com 5 semanas de idade expostas a 100 μM Cd durante 
14 dias, no entanto observou-se IM em raízes de alface exposta a 10 μM Cd 
durante 28 dias desde a germinação. A idade da planta e a maior acumulação de 
Cd nas raízes poderão explicar os resultados obtidos. A clastogenicidade de Cd foi 
analisada em três espécies vegetais com diferentes capacidades de destoxificação 
e acumulação de metais através de citometria de fluxo. Foram detectadas 
alterações significativas nos parâmetros analisados em raízes alface, mas não nas 
espécies Thlaspi caerulescens J & C Presl e Thlaspi arvense L. Estes resultados 
sugerem que o stress provocado pelo Cd originou clastogenicidade como 
consequência da perda de porções de cromossomas, uma vez que o conteúdo de 
ADN nuclear diminuiu. A transferência trófica através da cadeia alimentar 
permanece muito pouco estudada em termos ecotoxicológicos. A distribuição 
subcellular de metais num organismo pode ser utilizada para compreender a 
transferência trófica de um metal na cadeia alimentar. Como tal, numa última parte é 
estudado de que modo a distribuição subcellular do Cd em plantas com perfis de 
acumulação de Cd distintos afecta a biodisponibilidade e transferência trófica de Cd 
para isópodes. A distribuição de Cd entre as 4 fracções subcelulares obtidas através 
de centrifugação diferencial revelou a existência de diferenças significativas entre as 
espécies de plantas. Estes resultados em conjunto com a avaliação directa da 
eficiência de assimilação (EA) de Cd individual de cada uma das quatro fracções 
subcelulares das plantas em estudo, resultou em informação de grande relevância 
para a explicação das diferenças observadas na EA de Cd por parte de isópodes 
alimentados com folhas de diferentes espécies de plantas. Com base nos resultados 
obtidos, o Cd ligado a proteínas estáveis à temperatura (e.g. metaloteoninas e 
fitoquelatinas) é o menos biodisponível, sendo assim o que menos contribuiu para a 
transferência trófica, enquanto que o Cd ligado a proteínas desnaturadas pela 
temperatura foi a fracção mais disponível para transferência trófica de Cd ao 
isópode. Estes resultados realçam a relevância ecológica da distribuição subcelular 
de Cd em plantas que tem influência directa na tranferência trófica deste metal para 
os consumidores e ainda o facto de que alterações na distribuição subcelular de Cd 
em plantas devido a diferentes mecanismos de destoxificação poderá ter um 
impacto directo na transferência trófica de Cd para o animal consumidor. 
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abstract 
 

Cadmium (Cd) is a non-essential metal and is considered a priority 
pollutant by the European Community. This metal is released to the 
environment as a consequence of several anthropogenic activities and 
tends to accumulate in soils and sediments where it is potentially available 
to rooted plants causing severe detrimental effects and then transferred to 
animals through the food chain. In this context, the main objective of the 
present dissertation is to study the effects of Cd uptake and accumulation 
in plants and its implications to animal consumers. First, the main 
physiologic and genotoxic effects of Cd to plants were examined. 
Cadmium-exposed lettuce (Lactuca sativa L.) plants displayed a significant 
decrease in photosynthetic efficiency, enhanced lipid peroxidation and 
alterations in the activities of antioxidant enzymes over the duration of 
exposure. These alterations culminated in reduced shoot growth at the end 
of the exposure. The aforementioned biochemical alterations are suggested 
to be used as plant biomarkers in integrative approaches with classical 
endpoints in future ecotoxicological tests with Cd. The mutagenic effects of 
Cd on plants were assessed examining microsatellite instability (MSI). No 
MSI was found neither in leaves nor roots of 5-week old lettuce plants 
exposed to 100 μM Cd, but MSI was found in roots of lettuce plants 
exposed to 10 μM for 28 days from seed germination. The age of the plant 
at the time and the higher accumulation of Cd in the roots might explain the 
results obtained. Clastogenic effects of Cd was examined in plants with 
different metal accumulation and detoxification capacities by flow 
cytometric (FCM). The endpoints analysed indicated significant alterations 
in lettuce roots but not in Thlaspi caerulescens J & C Presl and Thlaspi 
arvense L.. The results obtained suggested that Cd stress may have lead 
to clastogenic damage as a consequence of loss of chromosome portions 
because nDNA content was found to be diminished. Trophic transfer 
through the food chain remains a largely unexplored area of ecotoxicology. 
Subcellullar distribution of metal accumulated within an organism can be 
used to understand metal trophic transfer within a food chain. Thus, in a 
final stage we examined how Cd subcellular distribution in plants with 
different patterns of Cd accumulation can affect assimilation of Cd by the 
isopod. The distribution of Cd between the four different subcellular 
fractions obtained by differential centrifugation revealed significant 
differences between the plant species. This, together with the direct 
assessment of isopod Cd AE from individual subcellular fractions of the 
leaves of the three plant species, resulted in vital information to help 
explain the differences observed in Cd AE by isopods fed the different type 
of leaves. On the basis of our results, Cd bound to heat-stable proteins 
(e.g. phytochelatins and methallothionein) was the least bioavailable to 
isopods and contributed less to the trophic transfer of Cd, while Cd bound 
to heat-denatured proteins was the most trophically available to the isopod. 
These results point to the ecological relevance of the subcellular 
distribution of consumer and highlight that a shift in Cd subcellular 
distribution in plants due to different detoxifying mechanisms may have a 
direct impact in the trophic transfer of Cd to the animal consumer.   



  

 

 Aos meus pais e ao Edgar



  

  

 “There is no simple answer to the basic questions - why and how?” 
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 General introduction 

Preamble 
 

Cadmium (Cd) is a naturally occurring element, and its presence has been 

detected in more than 1,000 species of aquatic and terrestrial flora and fauna (Eisler, 

1985). With one known exception, there is no evidence that Cd is biologically essential or 

beneficial; on the contrary, it has been implicated in several human health diseases and 

various deleterious effects in wildlife (Eisler, 1985). The exception is a Cd-dependent 

carbonic anhydrase found in the marine diatom Thalassiosira weissflogii (Lane and Morel, 

2000; Lane et al., 2005); a similar role has been postulated for the metal 

hyperaccumulating plant, Thlaspi caerulescens (Liu et al., 2008). In all life-forms, including 

microorganisms, higher plants and animals (in particular humans), Cd is toxic when 

present in sufficient concentrations (Eisler, 1985). 

The identification of Cd as a distinct element is relatively recent. The German 

scientist Friedrich Stromeyer was at the origin of the discovery of Cd in 1817 (Robards 

and Worsfold, 1991). Its toxicity was soon recognized and early recorded cases of Cd 

poisoning were generally as a consequence of industrial exposure involving inhalation of 

Cd dusts (Robards and Worsfold, 1991). 

Pollution of the biosphere with this toxic metal has accelerated dramatically since 

the beginning of the industrial revolution (Nriagu, 1996) and Cd accumulation in soil and 

water now poses a major environmental and human health problem. In 1955 in Japan, Cd 

toxicity was found to be the cause of Itai–itai disease. For the first time, Cd pollution was 

shown to have severe consequences on human health. Cadmium contaminations were 

attributed to the effluents from a zinc mine located in the upper reaches of Jinzu river and 

profoundly affected the health of the human population living in that area (Inaba et al., 

2005). 

Historically, the study of metal uptake by plants has focused on micronutrient 

metals important in agricultural production, whereas non-essential metals, such as Cd, Hg 

and Pb, have generally received less attention. However, over the last three decades Cd 

has been the subject of several investigations in plant research mainly because of its 

potential for bioaccumulation through soil-plant-animal food-chain. For example, the 

consequences of soil contamination by Cd, through application of treated sewage sludge 

(biosolids) (McLaughlin et al., 2006) and Cd-enriched phosphate fertilizers (e.g. He and 

Singh, 1994b, a) to soils have been extensively studied. However, the driving force of this 

research area has been the concern for the risk to human health, not for the state of the 

plant itself. 
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Most of the research on Cd pollution focused on the processes involved in Cd 

accumulation in crop plants and on the consequences of this accumulation on human 

health (Wagner, 1993). Cadmium phytotoxicity is, however, a relevant problem, especially 

in some highly metal polluted regions, where a decrease in agricultural crop productivity 

has been observed (Vassilev and Yordanov, 1997). More recently, metal 

hyperaccumulator plant species have been used to re-examine mechanisms of metal 

uptake by plants in light of the potential for phytoremediation of metal-contaminated soils 

(Chaney et al., 1997; Pilon-Smits, 2005; Padmavathiamma and Li, 2007). On the other 

hand, Cd toxicity to plants has great impact and relevance not only for plants but also to 

the ecosystem, in which the plants form an integral component. Therefore, understanding 

Cd uptake and physiological responses of plants is critical to the long-term safety and 

conservation of agricultural resources and ecosystems. In addition, plants as sedentary 

organisms offer unique advantages for in situ monitoring of soil contamination (Grant, 

1999) and can potentially be used as biomonitors of environmental quality through the use 

of biomarkers. In plants it is well known that Cd interferes with photosynthesis, respiration 

and nitrogen metabolism, induces oxidative stress and genotoxicity, all of which can 

culminate in poor growth and low biomass production (Sanitá di Toppi and Gabbrielli, 

1999; Fodor, 2002). The biochemical pathways involved in these processes offer a battery 

of biochemical biomarkers that not only provide mechanistic endpoints of toxicity, but also 

improve our understanding on the toxic modes of action and exposure assessment. 

Hence, the purpose of the first part of the present dissertation is to contribute to a better 

understanding of the overall process of Cd-induced senescence, describing the cascade 

of events and the enzymatic protection strategies that plants can adopt against Cd-

induced oxidative stress (Chapter 2) in order to shed light on a selection of relevant plant 

biomarkers for further use as biomonitoring tools in the assessment of environmental Cd 

pollution. Special emphasis is given to genotoxicity of Cd; in Chapter 3 the clastogenic 

and mutagenic effects of Cd in exposed plants are examined.  

Another issue concerning Cd accumulation in plants centres on the fact that Cd 

could pose a risk to animal health if they consume plants contaminated with Cd, even if 

plant tissue concentrations are not generally phytotoxic (McLaughlin, 2002). Indeed, the 

ability of some plant species to uptake and hyperaccumulate Cd in edible parts increases 

the risk of Cd assimilation by animal consumers through trophic transfer. Because there is 

very limited knowledge regarding the trophic transfer of metallic contaminants between 

plants and consumers of plants, the second part of this dissertation presents an 

examination of the subcellular distribution of Cd within plant leaves, and subsequent 

 4 
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significance of that distribution on the bioavailability of Cd to a consumer - a detritivore 

isopod (Crustacea). A subcellular fractionation procedure developed by Wallace and co-

workers (Wallace et al., 2003; Wallace and Luoma, 2003) that has been largely applied in 

the dietary accumulation of metals, particularly in marine food chains, was adopted to try 

to explain the variability observed in metal assimilation by isopods fed plants with different 

patterns of Cd accumulation. Indeed, this method is considered a simple and pragmatic 

approach in the prediction of trophic transfer of metals and a first step towards a practical 

tool that could explain most of the variability observed in metals accumulation and toxicity 

in organisms (Vijver et al., 2004). 

 

Cadmium – a priority pollutant 
 

What is Cd 

 

Cadmium is an element that occurs naturally in the earth’s crust as a result, for 

instance, of volcanic emissions. Pure Cd is a soft, silver-white metal, and it is not usually 

present in the environment as a pure metal, but as a mineral compound combined with 

other elements. Cadmium is most often present in nature as complex oxides, sulphides, 

and carbonates in zinc, lead and copper ores (ATSDR, 1999).  

Cadmium is generally considered to be a so called “heavy metal” due to its high 

density (8.6 g.cm-3), high atomic weight (112.4 g.mol−1) or even for its toxic properties. 

However, many different definitions have been proposed for this commonly used term; 

some based on density, on atomic number or weight, and others on chemical properties 

or toxicity (Nieboer and Richardson, 1980). Despite early suggestions for the use of other 

nomenclature (Nieboer and Richardson, 1980), the term “heavy metal” has been widely 

used by scientific community over the past three decades. More recently the term “heavy 

metal” has been considered meaningless and misleading in an IUPAC technical report 

due to the contradictory definitions and its lack of a coherent scientific basis (Duffus, 

2002). Therefore, in the present dissertation the term “heavy metal” is used restrictively, 

specifically when citing other works. 

 

Sources of Cd pollution 

 

Cadmium is included in the list of 33 priority pollutants established by European 

Community (2455/2001/EC, 2001) and is one of 129 priority pollutants listed by EPA 
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(Environmental Protection Agency, USA). The release of Cd into the environment 

constitutes a significant pollution problem. Cadmium occurs naturally in the environment. 

It is estimated that about 25,000 to 30,000 tons of Cd are released to the environment 

each year; about half from the weathering of rocks into river water; and a further 

proportion from forest fires and volcanoes (ATSDR, 1999). Release of Cd from human 

activities is estimated to be about 4,000 to 13,000 tons per year, with major contributions 

from mining activities, and burning of fossil fuels (ATSDR, 1999). The Cd-yellow oil 

colours used by landscape painters, including Claude Monet (Figure 1.1) is just one of the 

many valuable uses of Cd. Other important applications of Cd are in metallurgical industry 

and in the manufacture of nickel–cadmium batteries, pigments, plastic stabilizers and anti-

corrosive products, phosphors for television sets, scintillation counters and X-ray screens, 

semiconductors and ceramic glazes (Robards and Worsfold, 1991). As a consequence of 

this widespread and diverse usage, large quantities of Cd end up in sewage.  

Treated sewage sludge (“biosolids”) and phosphate fertilizers (He and Singh, 

1994b, a; Speir et al., 2003; McLaughlin et al., 2006; Singh and Agrawal, 2007) are 

important sources of Cd contamination in agricultural soils. The usage of Cd in developed 

countries has, however, begun to decline because of its toxicity. For instance, Cd is one of 

six substances banned by the European Union's Restriction on Hazardous Substances 

(RoHS) directive, which bans carcinogens in computers (2002/95/EC, 2002).  

 

 

 
 
 
 
 

a ba b

Figure 1.1 – Cadmium, a beautiful toxic colour. a) Poplars in the sun 
by Claude Monet, 1891 (www.monet-on-canvas.com/prod197.htm), 
showing the powerful use of Cd yellow pigments and b) a lettuce 
leaf reflecting the toxic effects of Cd exposure (arrow: Cd-induced 
necrosis). 
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Cadmium characteristics 

 

The most important feature which distinguishes metals from other toxic pollutants 

is that they are not biodegradable and, once they become resident in the biosphere, they 

remain as a persistent pollutant. For instance, in estuarine coastal systems the residence 

time of Cd has been estimated as a relatively low 1-2 years (Robards and Worsfold, 1991). 

On the other hand, estimates of the residence time in ocean water range from 7,000 to 

250,000 years (Robards and Worsfold, 1991). The bioavailability of metals and their 

subsequent toxicity to organisms within the biosphere is controlled largely by their 

physico-chemical form. Cadmium, among the metals, is likely to have high mobility in soils 

because it does not bind as strongly to organic matter as do metals such as Hg and Pb 

(Nelson and Campbell, 1991). 

Besides of a long environmental persistence, Cd has a long biological half-life, 

which accounts for its bioaccumulation in individuals (John and Leventhal, 1996). For 

example, in man Cd accumulates in the liver and kidneys and has a long biological half-

life ranging from 17 to 30 years (Goyer, 1997). Existing data on Cd bioaccumulation in a 

range of animals and plants (Robards and Worsfold, 1991; Greger, 1999) verify the ability 

of these species to amplify the concentration of Cd relative to their environment. 

Bioaccumulation occurs within an organism and is the increase in concentration of a 

substance in an individual’s tissue as a consequence of uptake from their environment, 

including diet (Connell et al., 1999). The extent of contaminant bioaccumulation, which is 

the net outcome of two competing processes, uptake and depuration, is related to the 

level of environmental contamination and depends upon a number of physico-chemical 

(e.g. chemical speciation, partitioning) and environmental factors (e.g. season, 

temperature) and biological variables (e.g. specie, feeding habitat, physiology) that may 

alter the distribution and bioavailability of individual contaminants (Robards and Worsfold, 

1991; Connell et al., 1999). Among the factors that can affect Cd bioaccumulation are its 

physico-chemical form, the presence of other metals, pH, salinity, temperature, season, 

cation-exchange capacity of soils and the species taking up the Cd (Robards and 

Worsfold, 1991 and references therein). 

 Metal biomagnification is defined as the progressive accumulation of a metal with 

increasing trophic levels towards higher consumers (Connell et al., 1999). Among metals, 

this type of amplification at higher trophic levels was previously thought to occur only for 

mercury, but it has also been demonstrated in a few studies with Cd (Croteau et al., 2005). 

Croteau and co-workers (2005) have demonstrated that Cd was progressively enriched 
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among trophic levels in two discrete epiphyte-based food webs composed of macrophyte-

dwelling invertebrates or fishes. Cadmium concentrations were biomagnified 15-fold within 

the span of two trophic links in both food webs. 

 

Cadmium uptake: from soils to plants  
 

Cadmium in soils 
 

Among metals, Cd is of particular concern because of its mobility in the plant-soil 

system. Wagner (1993) estimated that non-polluted soil solutions contain Cd 

concentrations ranging from 0.04 to 0.32 µM. Cadmium concentrations in nonpolluted 

soils are however highly variable, depending on sources of minerals and organic material. 

For instance, Eisler (1985) reported Cd concentrations of 0.01-1.00 mg/kg in soils of 

nonvolcanic origin and up to 4.50 mg/kg in soils of volcanic origin. Soil solutions which 

have a Cd concentration varying from 0.32 to about 1 µM are considered as moderately 

polluted (Sanitá di Toppi and Gabbrielli, 1999). Topsoil concentrations are often more than 

twice as high as subsoil levels as the result of atmospheric fallout and contamination 

(Pierce et al., 1982). Cadmium levels up to 800 mg/kg have been reported for soils in 

polluted areas (IARC, 1993). Jung and Thornton (1996) have found Cd concentrations up 

to 40 mg/kg in surface soils taken from a mining area in Korea; and more recently, Cd 

contaminated river water (65-240 μg/l, 0.58-2.13 μM) downstream from a mining area in 

Bolivia has increased the soil concentration of Cd to 20 mg/kg and the concentration of Cd 

in soil solutions to 27 μg/l (0.24 μM) (Oporto et al., 2007).  

Contamination of topsoil is likely the most important route for human exposure to 

Cd, mediated through uptake of soil Cd into edible plants (IARC, 1993). Cadmium 

concentrations of 0.5 mg/kg or more have been found in rice grown in Cd-polluted areas 

of Japan (Nogawa et al., 1989) and China (Cai et al., 1990). Furthermore, in a recent field 

study in Europe performed by Peris et al. (2007) the Cd content in edible parts of 

vegetables such as lettuce were found to be above the maximum levels established by 

the Commission Regulation no. 466/2001 for horticultural crops (466/2001/EC, 2001).  

 The Cd concentration of 100 μM to grow/contaminate plants hydroponically was 

chosen for use in all different approaches of the present dissertation. Previous studies 

have used similar approaches and similar concentrations (Azevedo et al., 2005a; Azevedo 

et al., 2005b, c).  Also, this concentration is twice the maximum permitted concentration in 

irrigation water by Portuguese legislation (0.05 mg/l) (Decreto-Lei, n.º236/98), and 

therefore represents worst case scenario.  

 8 



 General introduction 

Uptake and transport of Cd by plants 

  

Cadmium accumulation by higher plants can occur through foliar or root uptake. 

However, the primary point of entry for Cd into plants is through the roots. Cadmium 

uptake by plants grown in contaminated soils has been extensively studied, particularly in 

sludge-amended soils (e.g. Jackson and Alloway, 1991; Speir et al., 2003; McLaughlin et 

al., 2006; Singh and Agrawal, 2007) and in soils treated with Cd-enriched phosphate 

fertilizers (Crews and Davies, 1985; He and Singh, 1994b, a; Huang et al., 2003). In 

general, metals have to be in an available form to be taken up by plants. Alternatively 

plants must have mechanisms to make the metals available. The degree to which higher 

plants are able to take up Cd depend on its concentration in the soil and its bioavailability. 

Cadmium bioavailablity in soils is modulated by the presence of organic matter, pH, redox 

potential, temperature, light intensity, cation exchange capacity and concentrations of 

other elements (He and Singh, 1993; Greger, 1999; Sanitá di Toppi and Gabbrielli, 1999). 

In particular, Cd ions seem to compete with other micro and macro-nutrients such as 

calcium and zinc for the same transmembrane carriers (Sanitá di Toppi and Gabbrielli, 

1999), which might lead to plant nutrient deficiencies (Krupa et al., 2002). As is the case 

for other metals, Cd uptake tends to be reduced at low pHs because of competition with 

H+ ions at root uptake sites; however, Cd bioavailability increases with decreasing pH in 

soil (Greger, 1999). The presence of colloids from which there is a release of metals at 

low pH, increases the metal concentration in pore water and thus also in the roots (Greger, 

1999). For instance, acid rain and the resulting acidification of soils and surface waters 

are known to increase the geochemical mobility of Cd (Campbell, 2006). Cadmium uptake 

also appears to be decreased in the presence of dissolved organic matter because 

ligands on the organic matter effectively bind Cd ions (He and Singh, 1993; Prasad, 1995). 

Chloride levels would also be expected to affect Cd availability as soil sodium chloride has 

an antagonistic effect on metal toxicity (Bhartia and Singh, 1994).  

In the present dissertation hydroponic culture of plants was chosen as the most 

suitable culturing method because it avoids taking in account the above factors that can 

alter bioavailability of Cd in soils for plant uptake. Hence, hydroponics provides the most 

consistent and reproducible levels of contamination required for the present objectives. In 

addition, a previous study demonstrated that >90% of the Cd remained in solution in the 

Hoagland’s nutrient solution used in almost all experiments in this work, and was therefore 

available for uptake (Mann et al., 2005).      
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Cadmium is believed to enter the root through the cortical tissue till the stele either 

by apoplastic and/or a symplastic pathway (Sanitá di Toppi and Gabbrielli, 1999). The 

apoplast continuum of the root epidermis and cortex is readily permeable to solutes. The 

cell walls of the endodermal cell layer act as a barrier for apoplastic diffusion into the 

vascular system. In general, solutes have to be taken up into the root symplasm before 

they can enter the xylem (McLaughlin, 2002). The cell membrane plays a key role in metal 

homeostasis, preventing or reducing entry into the cell. However, examples of exclusion 

or reduced uptake mechanisms in higher plants are limited (Benavides et al., 2005). The 

mechanism for metal transport across the plasma membrane to the stele still not 

completely understood (McLaughlin, 2002). For all cationic metals, such as Cd, the main 

route for uptake across the plasma membrane is the large negative electrochemical 

potential produced as a result of the membrane H+ translocating adenosine triphospatase 

(ATPases) (McLaughlin, 2002). Costa and Morel (1994) reported that in lettuce grown in 

hydroponic solution with Cd concentrations from 0.05 µM to 5 µM, high amounts of Cd in 

roots were correlated with high contributions from H+-ATPase in the active process of Cd 

uptake. Other authors contend however, that the main route for uptake of divalent metals 

is via ion channels, such as Cd2+ and Mg2+ channels (McLaughlin, 2002 and references 

therein).  Subsequent to metal uptake into the root symplasm, three processes govern the 

movement of metals from the root into the xylem: sequestration of metals inside root cells, 

symplastic transport into the stele and release into the xylem (Clemens et al., 2002). 

During their transport through the plant, metals become bound to cell walls, which 

can explain why normally Cd2+ ions are mainly retained in the roots, and only small 

amounts are translocated to the shoots (Cataldo et al., 1983; Greger, 1999). But once 

loaded in the xylem sap, Cd is translocated to the aerial parts of plants through the 

transpiration stream, where they might be present as a divalent ion (Greger, 1999) or 

complexed by several ligands, such as amino acids, organic acids and/or, perhaps, 

phytochelatins (Salt et al., 1995; Briat and Lebrun, 1999; Sanitá di Toppi and Gabbrielli, 

1999; Gong et al., 2003). 

 

Phytotoxicity effects of Cd as environmental markers of Cd stress 
 

General effects 

 

Plants can play a crucial role in the monitoring and assessment of environmental 

metal pollution. Plants respond to metal accumulation by expressing various 
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manifestations of toxicity that can be detected and analyzed at various levels of 

organization ranging from gross morphology to cellular, biochemical or molecular levels, 

and thus can be useful to monitor as well as assess environmental metal pollution. 

Moreover, the sedentary nature of plants is a major advantage of plant-based assays for 

monitoring toxic chemicals in the environment. 

Cadmium is a toxic element without any known physiological function in plants that 

can affect plants on various organizational and functional levels. Several symptoms of Cd 

stress have been described in plants and they include chlorosis, necrotic lesions, wilting, 

reddish coloration and growth reduction (Prasad, 1995; Hagemeyer, 1999; Sanitá di Toppi 

and Gabbrielli, 1999). Disturbances in plant water relations are widely known as one of 

the first effects of Cd toxicity. Indeed, some authors have proposed that water stress 

caused by Cd is the beginning of the cascade of physiological and metabolic processes, 

including photosynthesis impairment (Barceló and Poschenrieder, 1990).  

The photosynthetic apparatus is particularly susceptible to Cd toxicity. 

Photosynthesis can be inhibited at several levels: CO2-fixation, stomatal conductance, 

chlorophyll synthesis, electron transport and enzymes of the Calvin cycle (Mysliwa-

Kurdziel and Strzalka, 2002). One of the most usual symptoms of Cd stress is chlorosis of 

the leaves due to an impairment of photosynthetic pigment biosynthetic pathways 

(Mysliwa-Kurdziel and Strzalka, 2002), but also to a strong interaction between Cd and Fe 

that reduces uptake of Fe and causes Fe deficiency in leaves (Krupa et al., 2002). 

Cadmium can alter both chlorophyll biosynthesis by inhibiting protochlorophyllide 

reductase and the photosynthetic electron transport by inhibiting the water-splitting 

enzyme located at the oxidising site of photosystem II (Mysliwa-Kurdziel et al., 2002; 

Mysliwa-Kurdziel and Strzalka, 2002). Moreover, Cd2+, like other metals, can interfere with 

photosynthetic pigments through the substitution of the Mg2+ ion in the chlorophyll 

molecules by Cd2+ (Mysliwa-Kurdziel and Strzalka, 2002). These substituted chlorophylls 

have much lower fluorescence quantum yields when compared to Mg-chlorophylls (Krupa 

et al., 2002). Several authors have reported decreased levels of chlorophyll pigments in 

different plant species due to Cd stress (e.g. Krupa and Moniak, 1998; Lagriffoul et al., 

1998; Láng et al., 1998; Chugh and Sawhney, 1999). Since the chlorophyll concentration 

may directly influence the functioning of the photosynthetic apparatus and thus affect 

overall plant metabolism, it is considered a key factor when assessing the impact of Cd 

stress (Fodor, 2002).  The ratio Chl a/Chl b is another related endpoint relevant for Cd 

toxicity assessment. Although, there is no known direct influence of metal ions on the 

process of transformation of Chl a to Chl b, changes on Chl a/Chl b ratio are commonly 
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reported on metal stressed plants (Mysliwa-Kurdziel and Strzalka, 2002). Both increases 

and decreases in this ratio have been found in plants treated with Cd2+ (Mysliwa-Kurdziel 

and Strzalka, 2002 and references therein). 

The reduction in photosynthetic rate is a common response in plants exposed to 

several metals (Mysliwa-Kurdziel and Strzalka, 2002). Profound anatomical changes in 

leaves and structural disorganization of chloroplasts are the basis of the inhibition of 

photosynthesis (Mysliwa-Kurdziel et al., 2002). The maximum photochemical efficiency of 

photosystem II (PSII) was found to be reduced in different plant species exposed to Cd 

(Chugh and Sawhney, 1999; Linger et al., 2005; He et al., 2008). Dark-adapted values of 

Fv/Fm (Fv, variable fluorescence; Fm, maximal fluorescence induction) reflect the potential 

quantitative efficiency of PSII and are used as a sensitive indicator of plant photosynthetic 

performance (Maxwell and Johnson, 2000). 

Another unfavourable effects of toxic metals on plants are the inhibition of the 

normal uptake and utilization of mineral nutrients (Fodor, 2002). One of the crucial factors 

of Cd2+ influence on plant metabolism and physiological processes is its relationship with 

other mineral nutrients. As mentioned above, Cd2+ transport across cell membranes is 

most likely facilitated by metal transporters that normally act to mobilize essential metals. 

Thus, by substituting for essential divalent cations, Cd2+ limits their uptake. Alternatively, 

Cd2+ may bind to specific groups of proteins and lipids or channel proteins of membranes, 

thereby inhibiting transport and disturbing the uptake of many macro and micronutrients. 

Furthermore, destruction of the cell membranes can also alter the ratio of essential 

elements and cause the decrease in their content, thereby inducing nutrient deficiencies 

(Cseh, 2002).  

One of the most important mechanisms for impairment of the uptake of nutrients 

by Cd is via the inhibition of Fe transport into the shoot, which has a pronounced effect on 

many aspects of the structure and function of the photosynthetic apparatus (Krupa et al., 

2002). The induced iron shoot deficiency reduces the pool of Fe-containing electron 

carriers in the photosynthetic electron transport chain, causes disorganization of the 

chloroplast structure and even reduces RuBisCO (ribulose 1,5-bisphosphate 

carboxylase/oxygenase) content (Siedlecka and Krupa, 1996). Cadmium is also known to 

cause other important disturbances in nutrient levels that can severely affect normal plant 

metabolism. Specifically it can decrease the levels of Mg, K, P, Ca and Zn, and increase 

Mn content (Krupa et al., 2002).  
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Oxidative stress 

 

A common consequence of most abiotic and biotic stresses is that they result, at 

some stage of exposure, in an increase in reactive oxygen species (ROS) (Mittler, 2002). 

The ROS intermediates are partially reduced forms of atmospheric oxygen (O2); they 

typically result from the excitation of O2 to form a singlet (1O2), or from the transfer of one, 

two or three electrons to O2 to form, respectively, a superoxide radical (O2
-), hydrogen 

peroxide (H2O2) or a hydroxyl radical (HO-) (Mittler, 2002). Metals have been 

demonstrated to stimulate the formation of ROS, either by direct electron transfer 

involving metal cations, or as a consequence of metal-mediated inhibition of metabolic 

reactions (Dietz et al., 1999).  

Although Cd is known to produce oxidative stress, in contrast with other metals, it 

does not seem to act directly on the production of ROS (via Fenton and/or Haber Weiss 

reactions) (Dietz et al., 1999). Metals without redox capacity, such as Cd can enhance the 

pro-oxidant status of a plant by reducing the antioxidant glutathione (GSH) pool, activating 

calcium-dependent systems and affecting Fe-mediated processes (Dietz et al., 1999). 

These metals can also disrupt the photosynthetic electron chain, leading to the production 

of ROS (O2
- and 1O2) (Dietz et al., 1999). 

The ROS are generated in plant cells during normal metabolic processes, such as 

respiration and photosynthesis (Mittler, 2002). Although some of them function as 

important signalling molecules that alter gene expression and modulate the activity of 

specific defence proteins, all ROS can be extremely harmful to organisms at high 

concentrations (Apel and Hirt, 2004). Reactive oxygen species may lead to the oxidation 

of proteins, lipids and nucleic acids (this particular aspect is discussed further in section 

3.3), often leading to lipid peroxidation, membrane damage, mutagenesis and inactivation 

of enzymes, thus affecting cell viability (Apel and Hirt, 2004). As a consequence, tissues 

injured by oxidative stress generally contain increased concentrations of carbonylated 

proteins and malondialdehyde (MDA) (Apel and Hirt, 2004). 

The balance between the steady-state levels of different ROS are determined by 

the interplay between different ROS-producing and ROS-scavenging mechanisms (Mittler, 

2002; Apel and Hirt, 2004). One of the plant responses to ROS production is the increase 

in anti-oxidant enzyme activities providing protection from oxidative damage induced by 

several environmental stresses (Apel and Hirt, 2004). A variety of proteins function as 

scavengers of superoxide and hydrogen peroxide. Among the major ROS-scavenging 

enzymes in plants are catalase (CAT), peroxidase (POX) and superoxide dismutase 
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(SOD) (Mittler, 2002). The superoxide released by processes such as oxidative 

phosphorylation is first converted to hydrogen peroxide and then further reduced to give 

water. This detoxification pathway is the result of multiple enzymes, with superoxide 

dismutases catalysing the first step and then catalases and various peroxidases removing 

hydrogen peroxide (see 1.2). In addition, the anti-oxidative enzymes are supplemented 

with non-protein scavengers, including ascorbate and glutathione (Mittler, 2002). 
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Figure 1.2 - Enzymatic pathway involving anti-oxidant enzymes for 
detoxification of ROS (adapted from Apel and Hirt (2004)). 
 

As for other stresses, activation or inhibition of anti-oxidative enzymes due to metal 

stress depends not only on stress intensity and duration but also on the tissue type and 

the age of the plant (Dietz et al., 1999). Cadmium can inhibit and/or stimulate the activity 

of several anti-oxidative enzymes (Dietz et al., 1999). Several studies demonstrated that 

Cd stress induced antioxidant enzymes, whereas some others showed that exposure to 

high concentrations of Cd resulted in a decrease in antioxidant capacities (Schützendübel 

and Polle, 2002 and references therein). For instance, catalase activity has been shown to 

be suppressed in diverse plant species exposed to Cd (Chaoui et al., 1997; Chaoui and El 

Ferjani, 2005). 

Finally, available data suggest that Cd, when not detoxified rapidly enough, may 

trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading 

to growth inhibition, stimulation of secondary metabolism, lignification, and subsequent 

cell death (Schützendübel and Polle, 2002). Thus, in the present dissertation the 

antioxidant capacities of the plant were chosen as an appropriate endpoint for the 

assessment of Cd stress in plants.  

. 

Genotoxicity effects of Cd in plants 

 

In addition to the various biological effects referred above, Cd exposure may 

induce genotoxicity in plants; i.e. like other metals, Cd can damage the genome or DNA of 

plants (Panda and Panda, 2002). There are different types of genotoxic effects: 
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mutagenesis, which is a permanent change in DNA sequence within a gene; 

clastogenesis that refers to a damage in chromosome structure, usually resulting in a gain, 

loss or rearrangement of chromosome pieces within the genome; aneugenesis, which 

refers to the gain or loss of one or more chromosomes (aneuploidy) or to a complete 

haploid set of chromosomes (euploidy) (Panda and Panda, 2002). 

The genotoxic effects of Cd have been extensively studied in mammals and 

particularly in humans. Cadmium and its compounds were classified as Category 1 human 

carcinogens by the International Agency for Research on Cancer (IARC, 1993); exposure 

to this metal has been linked to several types of cancer, such as lung, prostate and renal 

cancer, and has been shown to induce tumours in experimental animals and exposed 

human cell lines (Waalkes, 2003) and to induce large deletion mutations in mammalian 

cells (Filipic et al., 2006). However, the molecular mechanisms underlying the genotoxic 

and carcinogenic potential in organisms are still not well understood. Two models are 

currently favoured (Figure 1.3).  

 

   

Figure 1.3 - Proposed mechanisms of Cd induced mutagenesis (adapted from Filipic et al., 
2006). Cadmium can initiate genotoxicity: (a) by induction of intracellular ROS formation, 
which would directly produce critical mutations, (b) by direct binding of Cd2+ to DNA, 
possibly at guanine, adenine and thymine centres thereby damaging DNA (Hossain and 
Huq, 2002) or (c) by interference with DNA repair mechanisms, which would increase the 
level of spontaneous and/or exogenously produced mutations.  
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According to one, Cd may interfere with DNA repair (Hartwig, 1994) acting as a 

mutagen by direct inhibition of an essential DNA mismatch repair, resulting in a high level 

of genetic instability (Hartwig, 1994; Jin et al., 2003; Slebos et al., 2006). Alternatively, 

genotoxicity may be induced indirectly by promoting the production of reactive oxygen 

species (ROS e.g. O2−, H2O2 and OH−), which may then damage nucleic acids (Hartwig, 

1994; Valverde et al., 2001; Apel and Hirt, 2004). Furthermore other authors have also 

shown that Cd2+ can directly damage DNA, binding to DNA, possibly at guanine, adenine 

and thymine centres (Hossain and Huq, 2002) (see Figure 1.3). 

As in animals, continuous exposure to Cd might then significantly contribute to the 

inherited change of many phenotypic traits in the progeny of exposed plants. Thus, 

evaluation of the mutagenicity and/or induced genetic instability in plants by this metal is 

of the utmost importance in environmental studies. Furthermore, plants have been shown 

to provide ideal models for genotoxicity assays for screening as well as monitoring of 

environmental mutagens or genotoxins (Grant, 1994; Knasmuller et al., 1998; Grant, 

1999). Several different techniques have been used in plant bioassays for the detection of 

environmental metal pollution, such as micronucleus (MCN) induction, chromosome 

aberration, comet assay, sister chromatid exchange (SCE), random-amplified polymorphic 

DNAs (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence 

repeats or microsatellite markers (SSRs). A brief compilation of relevant works and their 

main achievements in the study of Cd genotoxicity in plants is presented in Table 1.  

Some of these plant assays, such as the Allium cepa chromosome aberration, 

micronucleus tests and the Tradescantia tests have relatively low sensitivity and they 

cannot provide information on the effects of toxicity at the DNA level (Panda and Panda, 

2002).  

Chapters 3.1 and 3.2 present an evaluation of Cd genotoxic effects on plants using 

simple sequence repeats or microsatellite markers (SSRs) to assess genetic instability. 

Microsatellite markers are tandem repeats of DNA sequences of 1-6 base pair (bp) long 

units spread throughout the genome. These markers have a high abundance, random 

occurrence and are highly polymorphic, and thus extremely useful for fine-scale genetic 

analysis (Gupta et al., 1996; Tóth et al., 2000); they can be used in the detection of 

genomic DNA damage and/or mutational events (e.g. deletions, insertions, point 

mutations) (Tóth et al., 2000). Microsatellite markers are likely to be one of the most 

reproducible techniques, especially when compared to RAPDs, which has the main 

disadvantage of low reproducibility with a consequent inconsistency of results (Powell et 

al., 1996; Jones et al., 1997).  
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Table 1 - A brief review of genotoxicity studies in Cd exposed plants. 
 

  Species studied Method used Genotoxicity effect 
(organ) 

References 
   

Allium cepa  
Vicia faba and 
Tradescantia 

Micronucleus 
 

Yes (root tips and  
pollen mother cells) 
 

Steinkellner et 
al. (1998) 

Bacopa monnieri Comet assay Yes (+ roots and - 
leaves ) 

Vaipayee et al. 
(2006)  

Allium cepa Chromosome 
aberrations  

Yes (root) Borboa and de 
La Torre (1996) 

Helianthus annuus SSRs3 No (root and leaves) Gomes et al. 
(2005) 

Helianthus annuus  Flow cytometry No (roots and leaves) Azevedo (pers. 
comm.) 

Hordeum vulgare  RAPD1

 
Yes (root tips) Liu et al. (2005) 

Nicotiana tabacum  Comet assay 
 

Yes (roots);  
No (leaves) 

Gichner et al. 
(2004) 

Oryza sativa AFLP2 Yes (roots) Aina et al. 
(2007) 

Oryza sativa  RAPD1 Yes (root tips) Liu et al. (2007) 
Phaseolus vulgaris RAPD1 Yes (seedlings) Enan (2006) 
Pisum sativum  Flow cytometry Yes (roots) Fusconi et al 

(2006) 
Thlaspi caerulescens 
and Thlaspi arvense 

SSRs3 No (roots) Paiva (2008) 

Vicia faba  Micronucleus Yes (root tips) Beraud et al. 
(2007) 

Vicia faba Comet assay Yes (leaves) Lin et al. (2007) 
1RAPD - Random Amplified Polymorphic DNA. 
2AFLP - Amplified Fragment Length Polymorphism. 
3SSRs - Microsatellites or Simple Sequence Repeats.  

 

Because of these advantages, SSRs have already been used to study genotoxic 

effects in several animal species (e.g. Zienolddiny et al., 2000; Jin et al., 2003; Ohshima, 

2003; Slebos et al., 2006). For instance, some metals have been found to induce 

microsatellite instability (MSI). Nickel (Ni) has been reported to promote genetic instability 

in hamster (Ohshima, 2003) and human (Zienolddiny et al., 2000) cell lines, and exposure 

of human cell lines to environmentally relevant quantities of Cd led to statistically 

significant increases in MSI (Jin et al., 2003; Slebos et al., 2006). In plant research, SSRs 

are already a powerful tool in taxonomy (e.g. Prasad et al., 2000) genetic mapping (Gupta 

and Varshney, 2000; Ma et al., 2004) and environmental population genetics focusing on 

the relationships between environmental selective agents (stressors) and genotypic 

variability of plant natural populations (D'Surney et al., 2001; Mengoni et al., 2001; van 

Rossum et al., 2004; Berckmoes et al., 2005). Furthermore, SSRs have the potential to be 

used in the surveying of plant genomic DNA for evidence of genetic instability as in a 
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genotoxic bioassay for the detection of DNA damage induced by environmental 

contaminants. However, apart from a survey performed by Kovalchuck et al. (2000) using 

SSRs to monitor germline mutations in plants upon chronic exposure to ionizing radiation 

produced by the Chernobyl accident, the application of SSRs in higher plant bioassays 

remains unexplored. Therefore, in Chapters 3.1 and 3.2 these molecular markers were 

applied as a technique for the assessment of genetic instability at the level of DNA in 

plants exposed in vivo to Cd.  

Conventional cytogenetic studies, such as chromosome aberration and 

micronucleus tests are very elaborate and time consuming. Flow cytometry (FCM) is 

largely used in health and biological research for many different purposes and appeared 

as a relatively rapid test applicable to any organism or tissue from which cellular or 

nuclear suspensions can be obtained. A FCM assay has been developed to detect the 

changes in nuclear DNA that result from the breakage of chromosomes providing a 

quantitative measurement of genetic damage at the cellular level (Otto and Oldiges, 1980). 

This technique has the potential to detect minute differences in nuclear DNA (nDNA) 

content and chromosomal damage produced by clastogenic agents through the 

quantification of the increase of the coefficient of variation (CV) of the G0/G1 peak (Otto 

and Oldiges, 1980). Flow cytometry measurement of the dispersion in the nDNA content 

as induced by the interactions of DNA with environmental agents, emerged then as a 

powerful tool in cytogenetic investigations and in genotoxicity testing (Otto et al., 1981). 

This technique has subsequently been successfully employed in both laboratory and field 

studies with several animal species (e.g. Otto et al., 1981; Bickham et al., 1998; Matson et 

al., 2005; Oliveira et al., 2006; Barbee et al., 2008). However, the use of FCM as an assay 

for the assessment of genotoxicity in plants remains much less common; it has been used 

to detect genotoxic effects in maize plants exposed to coal fly ash (McMurphy and 

Rayburn, 1993) and to the fungicides captan (Rayburn et al., 1993) and triticonazole 

(Biradar et al., 1994).  

More recently, FCM has been used to assess metal genotoxicity in plants; 

Rayburn and Wetzel (2002) found an increase in the CV values of the G0/G1 peak in 

maize and wheat plants grown in soil with high levels of aluminium, and Citterio et al. 

(2002) reported that the exposure of Trifolium repens to Cd and Cr resulted in a decrease 

in the DNA index with increasing concentrations of Cr, and to an increase of debris 

background at the highest concentrations of Cd and Cr. Preliminary FCM assays 

performed in our laboratory revealed no genotoxic effects in lettuce plants exposed to Cd; 

no changes in nDNA content and in CV values were detected neither in five-week-old 
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lettuce plants exposed to 100 µM Cd for 14 days (Monteiro et al., 2004) nor in lettuce 

plants germinated and grown for 2 months in 10 µM Cd and analysed every 15 days 

(Monteiro et al., 2005). In Chapter 3.3 a FCM assay is used to detect putative genotoxic 

effects (e.g. clastogenic effects) in three plant species germinated and exposed to Cd for 

28 days to increasing concentrations of Cd. 

 

Mechanisms of tolerance  
 

Metal-binding ligands 

 

Plants, like all living organisms, have evolved a suite of mechanisms that control 

and respond to the uptake and accumulation of both essential and nonessential metals. 

These mechanisms include the chelation and sequestration of heavy metals by particular 

ligands and, in some cases, the subsequent compartmentalization of the ligand-metal 

complex in vacuoles.  

The vacuole of plant cells plays an important role in the homeostasis of the cell 

(Barkla and Pantoja, 1996). In most plant cells the vacuole comprises more than 80-90% 

of the cell volume and acts as a central storage compartment for ions, amino acids, 

sugars and CO2 in the form of malate and also play a key role in the sequestration of toxic 

ions and xenobiotics (Barkla and Pantoja, 1996; Briat and Lebrun, 1999). The vacuolar 

membrane, named tonoplast, functions as an effective and selective metal diffusion 

barrier (Briat and Lebrun, 1999). Vacuolar compartmentalization prevents the free 

circulation of Cd ions in the cytosol and forces them into a limited area (Sanitá di Toppi 

and Gabbrielli, 1999). Several studies have shown that the vacuole is the site of 

accumulation of a number of metals including Cd (Ma et al., 2005; Ueno et al., 2005). One 

example is the accumulation of Cd and phytochelatins (PCs) in the vacuole involving an 

ATP-binding cassette (ABC) transporter (Hall, 2002). Oat root tonoplast vesicles were 

found to accumulate Cd2+ by a 2H+/ion antiport mechanism (Salt and Wagner, 1993).  

Several metal-binding ligands have now been recognized in plants and include 

organic acids, amino acids, peptides, and polypeptides (Rauser, 1999). Among the metal-

binding ligands in plant cells the PCs and metallothioneins (MTs) are the best 

characterized. MTs are cysteine-rich polypeptides encoded by a family of genes whereas 

PCs are a family of enzymatically synthesized cysteine-rich peptides (Cobbett and 

Goldsbrough, 2002).  
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In plants, PC-Cd complexes are sequestered in the vacuole (Cobbett and 

Goldsbrough, 2002). In mesophyll protoplasts derived from tobacco plants exposed to Cd, 

almost all of both the Cd and PCs accumulated was confined to the vacuole (Vogeli-

Lange and Wagner, 1990). Lactuca sativa and Thlaspi arvense plants also possess 

detoxification mechanisms in which PCs play an important role (Ebbs et al., 2002; Maier 

et al., 2003). Thlaspi caerulescens was found to mainly store Cd2+ in electron-dense 

granules inside vacuoles by means of complexation with malate (Ma et al., 2005; Ueno et 

al., 2005). 

 

Plant metal accumulation and hyperaccumulation   

 

Plants respond to high concentrations of environmental metals in three main ways: 

metal excluders maintain low and constant metal concentration in their shoots up to a 

critical soil value; indicator species have internal metal concentrations that reflect the 

external metal levels, whereas metal accumulators have high accumulation of metal at 

very low external metal concentration (Greger, 1999). The term hyperaccumulator 

describes a plant with a highly abnormal capacity for metal accumulation (Reeves and 

Baker, 2000). Hyperaccumulator plants are found in metalliferous soils, such as calamine 

(with high levels of Zn, Pb and Cd) and serpentine soils (with high levels of Ni, Cr and Co) 

(Greger, 1999). 

Although Cd is not an essential or beneficial element for plants, they generally 

exhibit measurable Cd concentrations, particularly in roots, but also in leaves, most 

probably as a result of inadvertent uptake and translocation (Assunção et al., 2003). A Cd 

foliar concentration above 100 µg/g DW (0.01%) is considered exceptional and it is used 

as a threshold value for Cd hyperaccumulation (100 mg/Kg DW) (Reeves and Baker, 

2000). The metal hyperaccumulation characteristic is not common in higher terrestrial 

plants and less than 0.2% of all angiosperms have been identified as metal 

hyperaccumulators (Reeves and Baker, 2000). The Brassicaceae plant family is well 

represented among the reported hyperaccumulators. Thlaspi caerulescens is the best 

known hyperaccumulator plant with a capacity to hyperaccumulate Zn, Cd and Ni 

(Assunção et al., 2003). Thlaspi caerulescens plants have been found by Reeves and 

Baker (2000) to contain more than 100 mg/Kg Cd frequently, and more than 1000 mg/Kg 

Cd occasionally, with very large variations between sites and populations, and 

considerable intrasite variability. Several studies have shown that T. caerulescens 

ecotype from metalliferous soils of a Zn/Pb mine spoil in the southern France (Ganges 
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ecotype) is far superior in Cd accumulation to other ecotypes (e.g. Prayon from Belgium); 

in hydroponic conditions it was able to accumulate >10,000 mg/kg Cd in the shoots 

without showing any symptoms of phytotoxicity (Lombi et al., 2000).  

Three plants with different patterns of Cd accumulation were the object of study in 

the present dissertation: lettuce (Lactuca sativa L.) is a Cd-accumulating plant and an 

important human food crop; the alpine pennycress (Thlaspi caerulescens J. & C. Presl, 

Ganges ecotype), which is a hyperaccumulator plant commonly used as a model in metal 

transport and accumulation studies with a view to their use in phytoremediation (Pence et 

al., 2000; Assunção et al., 2003; Zhao et al., 2003); and the related non-accumulator, field 

pennycress (Thlaspi arvense L).  

 

Trophic transfer of Cd  
 

A key pathway for metal exposure to animal species, including humans results 

from the uptake by plants of elements from the soil. However, the study of the trophic 

transfer of metals from plants to animals is a largely unexplored field. As indicated above, 

plants have developed mechanisms for sequestering metals in their systems in such a 

way that the metal is not phytotoxic, but these plants may still pose a threat to the animals 

that consume them, becoming a risk to ecological and human food chains (McLaughlin, 

2002).  

 

Factors affecting trophic transfer of metals 

 

The bioaccumulation of metals is known to differ among species and metals 

because of differences in uptake and loss rates, exposure pathways and influences of 

environmental parameters (Fisher and Reinfelder, 1995; Wang and Fisher, 1999). 

However, less is known about the influence of these factors in the internal storage and 

detoxification of accumulated metal and subsequent impacts on trophic transfer. Since the 

ingestion of metal-contaminated food can serve as a source of metals to consumers and 

can result in sub-lethal toxicity (e.g. Fisher and Hook, 2002), understanding the 

mechanisms that influence metal trophic transfer is a critical step in the management of 

metal contaminated ecosystems. In general, to completely understand metal cycling 

through trophic levels, several factors which control the bioavailability of tissue-bound 

metals to predators must be considered and understood (e.g. tissue metal distributions 

and concentrations, duration of exposure, nutritional status and exposure history of 
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predator). Different species will accumulate and partition metals in varying ways 

depending on the detoxification mechanisms employed. The subsequent bioavailability of 

those partitioned metals to a consumer will be dictated by digestive and assimilative 

mechanisms of its digestive tract and gut passage time (Wang and Fisher, 1999). Added 

to this complexity is the varying ability of consumers to discriminate between different 

foods and contaminants, their nutritional status at the time of consumption, the degree of 

exposure, and the exposure history for the metal in question, all of which can influence the 

degree of metal assimilation (Wang and Fisher, 1999).  

 

Metal assimilation and assimilation efficiency 

 

One critical parameter in understanding the trophic transfer and accumulation of a 

metal is its assimilation efficiency (AE) in animals from the ingested food (Wang and 

Fisher, 1999). Assimilation efficiency has been defined as the fraction of ingested metal 

that is assimilated across the gut lining into the body tissue (Wang and Fisher, 1999). 

Assimilation efficiency measurements are difficult to make and often yield variable results 

(Fisher and Reinfelder, 1995); they can be determined by the mass balance method in 

which ingested and egested masses are compared to each other or to the mass retained 

in the animal after an appropriate gut clearance period (Fisher and Reinfelder, 1995).   

Determination of AEs is an important endpoint when addressing contaminant 

bioavailability, it is considered a first-order physiological parameter that can be 

quantitatively compared among different chemicals, species, and food particles under 

various environmental conditions (Wang and Fisher, 1999). Furthermore, AE for metals 

has been shown to be directly proportional to metal bioaccumulation, which highlights the 

significance of AE in understanding and predicting metal bioaccumulation (Fisher et al., 

1996).  

The various factors that affect metal assimilation are reflected in the wide variety of 

Cd AEs that have been reported in organisms of different food chains fed biologically 

contaminated food. For instance AEs ranging from 1% have been reported in rats fed 

snail viscera (Hispard et al., 2008), to 4.7% in the lizard Podarcis carbonelli fed crickets 

(Mann et al., 2006), to 52% in the isopod P. dilatatus fed lettuce (Calhôa et al., 2006), and 

up to 76.2 to 94.2% for whelk Thais clavigera fed five different species of prey (Cheung 

and Wang, 2005).  
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Subcellular partition of metals 

 

The internal distribution and detoxification of metals within an organism can be 

used to explain trophic transfer of metals but also to predict metal toxicity for the organism 

itself. The internal metal sequestration strategies of different species are complex and 

variable and the determination of the metal concentrations in different compartments can 

be used to understand the complex relationship between metal accumulation and toxicity.  

Over the past decades, chemistry-orientated models have been developed to 

predict the bioavailability and toxicity of metals focusing on identifying which metal forms 

are present in the aquatic environment, and investigating their interaction with the 

biological site of action (Paquin et al., 2002). The free ion activity model (FIAM) relied on 

the free metal ion activity and assumed that uptake from solution was determined by the 

availability of free metal ions, whereas the biotic ligand model (BLM) which is an extension 

of the FIAM, assumes that the effect is proportional to the concentration of metal bound to 

the target site (biotic ligand) and that this site is in direct contact with the external 

environment. These models perform well in the prediction of metal bioavailability in water-

borne exposures of aquatic organisms, but also for plants (Antunes et al., 2006) and soft-

bodied organisms (Peijnenburg, 2002). When considering the contribution of the dietary 

route of metal exposure the gut/instestine can also act as a biotic ligand (Hogstrand et al., 

2002) and metal speciation and/or dietary form is likely to be an important factor for metal 

assimilation.  

Metals can be present in various chemical forms in an organism, including the 

following: (a) free ionic form or complexed ion species (e.g., CdCl2, CdCl+, CdCl3-); (b) 

bound in the active center of functional proteins and enzymes; (c) bound to low molecular 

weight organic acids (e.g., citrate, malate); (d) bound to sequestration proteins (MTs and 

PCs); (e) bound in vesicles of the lysosomal system, as intracellular granules; (f) 

precipitated in extracellular granules, mineral deposits, residual bodies, and exoskeletons; 

(g) bound to cellular constituents potentially causing dysfunction (e.g. DNA) (Vijver et al., 

2004). 

The various internal metal fractions all have their own binding capacity for metals, 

which has implications for food-chain transfer to higher trophic levels. A study on the 

relationship between subcellular Cd distribution in an oligochaete and its trophic transfer 

to a predatory shrimp showed that only metal present in the soluble fraction (organelles 

and protein fraction)) of prey is available for the predator (Wallace et al., 1998). Factors 

influencing the subcellular distribution in the prey will directly alter trophic transfer to 
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predators. Wallace et al. (1998) showed that differences in subcellular distribution of Cd 

between resistant and nonresistant worms directly affected Cd availability for the 

predatory shrimp. When fed resistant worms, shrimp absorbed about 4 times less Cd than 

when fed non-resistant worms (Wallace et al., 1998). Similar conclusions were found in a 

study using bivalves as prey, where the metal partitioning to organelles, denaturated 

proteins, and MTs comprise a subcellular compartment of that was considered as 

trophically available metal (TAM) to predators (see Figure 1.4).  

A subcellular fractionation procedure (Wallace et al., 2003; Wallace and Luoma, 

2003) has been successfully applied in several studies of dietary accumulation of metals, 

particularly in marine food chains, with the purpose of explaining the variability observed 

in metal accumulation across the different species and food chains. This method has been 

considered by other authors to be a simple and pragmatic approach in the prediction of 

trophic transfer of metals and a first step towards a practical tool that could explain most 

of the variability observed in metal accumulation in organisms (Vijver et al., 2004).  

Wallace and Luoma (2003) building on previous studies (Wallace and Lopez, 

1997; Wallace et al., 1998), postulated that Cd associated with the subcellular fractions, 

organelles, heat-denatured proteins (HDP), and heat-stable proteins (HSP) of prey was 

TAM (Figure 1.4) and was assimilated at an efficiency of approximately 100% by the 

predator, while Cd bound to metal-rich granules was less bioavailable to predators.  
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Figure 1.4 - The five subcellular fractions of metals identified in aquatic 
organisms and their biological significance as attributed by Wallace et al. 
(2003): TAM – trophically available metal; MSF – metal sensitive fraction; and 
BDM – Biologically detoxified metal. 
 

Using this procedure the accumulated metals associated with different subcellular 

compartments were separated into five different fractions by differential centrifugation: 

cellular debris, granules, organelles, heat-denatured proteins, heat-stable proteins (MTs 

and PCs). Such subcellular partitioning is dynamic in response to metal exposure and 

other environmental conditions, and is metal- and organism-specific. The different metal 
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pools are not equally bioavailable to predators; thus, the determination of the metal 

concentration in the different subcellular compartments and the differences in its 

assimilation by consumers can be a useful tool to understand metal transfer to higher 

trophic levels. In chapter 4 of the present dissertation, a similar procedure of subcellular 

fractionation to the one developed by Wallace and co-workers (Wallace et al., 2003; 

Wallace and Luoma, 2003) was adopted as a tool to explain the variability observed in Cd 

assimilation by isopods fed plants with different patterns of Cd accumulation.  

Other applications of this approach have been proposed. Recent studies in aquatic 

organisms have revealed that the subcellular partitioning model (SPM) may provide an 

improved method to predict Cd toxicity. As intracellular metal accumulation and the 

subsequent subcellular distribution of the metal in the cells are directly related to metal 

toxicity, it is likely that the metal concentration in a particular subcellular fraction will serve 

as a better toxicity predictor than the activity of the free metal ion in bulk solution (Wang 

and Rainbow, 2006). In this approach different combinations of the five subcellular 

fractions have been proposed (Figure 1.4) to represent a metal-sensitive fraction 

(organelles and HDP) and a biologically detoxified metal fraction (HSP and granules) 

(Wallace et al., 2003). Rainbow (2002) proposed that when accumulated metal destined 

for storage in a detoxified form (e.g. by MTs and granules) exceeds the detoxified binding 

capacity, the metals are subsequently bound with other (metabolically available) forms, 

with the potential to cause toxicity to the organism. The significance of the subcellular 

distribution of accumulated metals in toxicity assessments is now receiving increasing 

attention among aquatic (e.g. Cheung et al., 2006; Perceval et al., 2006; Steen Redeker 

et al., 2007) and terrestrial organisms (Vijver et al., 2006; Vijver et al., 2007). 

 

Isopods as model species for metal accumulation 

 

Invertebrates are among the major components of soil biomass and play an 

important role in maintaining the structure and fertility of the soil. Invertebrate-mediated 

processes such as drainage, aeration, incorporation and degradation of organic matter 

are important in improving soil quality.  Moreover, invertebrates are an important part of 

the terrestrial food web and can constitute a significant component of the diet of other 

animals (Peijnenburg, 2002).   

The terrestrial isopod Porcellio dilatatus (Crustacea) was chosen as a model 

species in the present dissertation as it is an important representative of the invertebrate 

soil fauna and a valuable model for the examination of metal assimilation and 
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accumulation. This species inhabits the upper layer of the soil and surface leaf litter, is 

quite abundant in southern Europe and is easy to handle under laboratory conditions. 

Moreover, isopods are strong bioaccumulators of metals; they have an enormous capacity 

to accumulate large body burdens of toxic metals, predominantly in the hepatopancreas 

(Donker et al., 1990; Hopkin, 1990; Hames and Hopkin, 1991) with low to negligible 

depuration rates (Witzel, 2000). As hard-bodied soil invertebrates, the main route for 

accumulation of metals in isopods was found to be through dietary exposure rather than 

absorption through the body wall (Vijver et al., 2005). Feeding on leaf litter of metal 

accumulator plants is thus a potential route of exposure that can enhance metal 

accumulation by isopods. The effects of Ni hyperaccumulation in the Brassicaceae 

endemic to serpentine soils in NE Portugal Alyssum pintodasilvae to the P. dilatatus was 

recently studied by Gonçalves et al. (2007). These authors suggested that the effects of 

hyperaccumulator litter on the activity of this important detritivore species may be 

significantly impaired with potential consequences on the decomposition processes. 

 

Objectives 
 

Plant uptake of Cd from soils is a constant threat not only for the conservation of 

vegetal biological resources, but also to animal consumers through trophic transfer. 

Therefore, the main objective of this work is to study the effects of Cd uptake and 

accumulation in plants and its implications to animal consumers. 

The following specific questions are addressed: 

i) What are the main physiological and genotoxic effects of Cd to plants? 

ii) How does Cd subcellular distribution in plants affect assimilation of this metal 

by an animal consumer? 

 

To answer these main questions, the following steps/specific aims were 

performed: 

1) Examination of uptake and toxicity effects of Cd on plants, addressed in 

Chapter 2. 

2) Evaluation of genotoxic effects on plants addressed in Chapter 3. 

3) Determination of subcellular distribution of Cd in plants and evaluation of how 

Cd subcellular distribution in plants affect transfer to animal consumers, addressed 

in Chapter 4. 
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In a final section, Chapter 5, the general discussion and concluding remarks of this 

study are presented, aiming to resume and present the relevant conclusions of this work.   
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Abstract 

 

Laboratory and field studies have provided encouraging insights into the capacity of plants 

to act as biomonitors of environmental quality through the use of biomarkers. However, a 

better understanding of the overall process of Cd-induced senescence, describing the 

cascade of Cd effects in plants is needed for a selection of relevant biomarkers of Cd 

stress. In order to approach this, five-week-old Lactuca sativa L. were exposed for 14 

days to 100 µM Cd(NO3)2 and harvested at days 0, 1, 3, 7 and 14. The parameters 

measured included classical endpoints (shoot and root growth) and biochemical endpoints 

related to photosynthesis, nutrients content and oxidative stress. Cadmium-exposed 

plants displayed nutrient imbalances in leaves and roots. Photosynthetic efficiency was 

significantly decreased and lipid peroxidation was enhanced. Antioxidant enzymes were 

significantly altered during exposure - catalase was inhibited by the end of exposure and 

peroxidase was induced at day 1 in young leaves. These alterations culminated in a 

decrease in shoot growth after 14-days exposure to Cd. Biochemical alterations could be 

used in integrative approaches with classical endpoints in ecotoxicological tests for Cd 

and after further testing in real scenarios conditions, they could form the basis of a plant 

biomarkers battery for monitoring and predicting early effects of exposure to Cd.   

 
Keywords: chlorophyll content; Lactuca sativa; lipid peroxidation; metal; nutrient 

imbalances; oxidative stress; PSII efficiency 
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Chapter 2 

Introduction 
 

Among those environmental pollutants often referred to as ‘heavy metals’, 

cadmium (Cd) is of particular concern because of its mobility in the plant-soil system. 

Although Cd is naturally present in trace amounts in the environment (0.04 to 0.32 µM) 

(Sanitá di Toppi and Gabbrielli, 1999), fallout from several industrial activities and the 

agricultural application of phosphate fertilizers and biosolids have enriched soils with this 

element (Sanitá di Toppi and Gabbrielli, 1999). For instance, it was  reported that the use 

of irrigation with Cd-contaminated river water (65-240 μg/l) downstream a mining area for 

irrigation in Bolivia has increased the median soil concentration of Cd to 20 mg/kg and 

median concentration of Cd in soil solutions to 27 μg/l (Oporto et al., 2007). Cadmium is 

particularly dangerous because plants growing in contaminated soils can absorb and 

accumulate Cd in edible tissues in large quantities without any visible signs, thereby 

introducing the metal into the food (Monteiro et al., 2008), including the human diet 

(McBride, 2003). A recent field study in Europe (Peris et al., 2007) reported contents of Cd 

in edible parts of vegetables that were above established thresholds. Understanding Cd 

uptake and physiological responses of plants is thus critical to the long-term safety and 

conservation of agricultural resources and ecosystems. 

Cadmium is particularly damaging to the photosynthetic apparatus. Inhibition of 

RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) activity in the Calvin cycle 

is considered a primary response to Cd stress (Siedlecka et al., 1997), and levels of total 

chlorophyll and photosystem II (PSII) maximum photochemical efficiency can be reduced 

in different plant species (Chugh and Sawhney, 1999; Krupa and Moniak, 1998; Lagriffoul 

et al., 1998; Linger et al., 2005; Mysliwa-Kurdziel and Strzalka, 2002). In general, metal 

stress in plants can promote the production of reactive oxygen species (ROS, e.g. O2
-, 

H2O2 and OH-) that are naturally formed in plant cells, mainly in chloroplasts, peroxisomes 

and mitochondria, during regular metabolism. ROS can damage cell components such as 

proteins, polysaccharides, nucleic acids and cause peroxidation of membrane lipids (Apel 

and Hirt, 2004). Regulation of ROS in the plant cell is mediated through the activity of the 

antioxidative system, which includes enzymes such as superoxide dismutase (SOD, E.C. 

1.15.1.1), catalase (CAT, E.C. 1.11.1.6) and guaiacol peroxidase (POX, E.C. 1.11.1.7) 

(Apel and Hirt, 2004; Wójcik et al., 2006). Superoxide dismutase converts the strong 

oxidant O2
- radicals into H2O2 and the accumulation of H2O2 is prevented in the cell by 

reduction to H2O through the actions of either CAT or POX (Apel and Hirt, 2004; Wójcik et 

al., 2006). Exposure to Cd also brings about oxidative stress, but it does not seem to act 
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directly on the production of ROS. On the other hand, Cd ions can inhibit or stimulate the 

activity of several antioxidant enzymes (Fodor, 2002; Sanitá di Toppi and Gabbrielli, 

1999).  

Cadmium transport across cell membranes is most likely facilitated by metal 

transporters that normally act to mobilise essential metals. Also, by substituting for 

essential divalent cations, Cd limits their uptake (e.g. Cd inhibits the transport of Fe into 

the shoot). Alternatively, Cd may bind to specific groups of proteins and lipids or channel 

proteins of membranes, thereby inhibiting transport and disturbing the uptake of many 

macro and micronutrients. Destruction of the cell membranes can also alter the ratio of 

essential elements and cause the decrease in their content, thereby inducing nutrient 

deficiencies (Cseh, 2002). 

As sedentary organisms, higher plants offer unique advantages for in situ 

monitoring and screening for the effects of exposure to soil contaminants and are already 

recognized as excellent indicators of effects of environmental chemicals. However, 

recommended tests are only focused on non-specific responses of seedling emergence 

and plant growth (ISO, 1993; ISO, 1995; OECD, 2006). Furthermore, seed germination 

was found to be a less sensitive parameter or even insensitive to Cd toxicity and is not 

considered a good indicator to assess Cd toxicity in soils (An, 2004; da Rosa Correa et 

al., 2006; Wang and Zhou, 2005).  

In plants Cd interferes with photosynthesis, respiration and nitrogen metabolism, 

and induces oxidative stress, all of which can culminate in poor growth and low biomass 

production (e.g. Sanitá di Toppi and Gabbrielli, 1999; Fodor, 2002; Azevedo et al., 2005a; 

Azevedo et al., 2005b, c). The biochemical pathways involved in these processes offer a 

battery of biochemical biomarkers that not only provide mechanistic endpoints of toxicity, 

but also improve our understanding of toxic mode of action and exposure assessment. 

Linking these endpoints with more traditional responses (e.g. growth) will improve risk 

assessment of the pollutant. Understanding the overall process of Cd-induced 

senescence, describing the cascade of events and the enzymatic protection strategies 

that plants can adopt against Cd-induced oxidative stress is then critical for the selection 

of relevant plant biomarkers for ecological risk assessment.  

For this study we examined the uptake and toxicity of Cd in lettuce. Lettuce is a 

plant recommended for standard toxicity tests (e.g. ISO/CD 17126) (ISO, 1995). Also, 

lettuce is a Cd-accumulating plant, and because it is one of the most consumed leafy 

vegetables, it is of particular concern in human dietary uptake (Cobb et al., 2000; McBride, 

2003). We evaluated plant growth, nutritional imbalance, oxidative stress, chlorophyll 
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content and fluorescence parameters during 14 days of exposure to Cd. The studies were 

carried out using hydroponically grown lettuce because under these conditions the entire 

metal pool was accessible to plants, growth conditions are easier to control and the data 

obtained is more reproducible than in soils. Results from this study can then give 

important information for selection of useful plant biomarkers for further studies in real 

scenarios conditions.  

 
Material and Methods 
 

Plant culture and growth conditions 

 

Lactuca sativa L. (cv Reine de Mai) seeds (Oxadis, France) were germinated and 

grown as described by Monteiro et al. (2007). Briefly, seeds were germinated on perlite 

saturated with distilled water. Plants were subsequently grown hydroponically in aerated 

modified Hoagland’s medium at 24 ± 2 ºC, under light intensity of 200 μmol/m2/s and 

photoperiod of 16 h/8h (light/dark). After 5 weeks of culture, lettuce plants were either 

exposed to the Hoagland’s medium supplemented with 100 µM Cd(NO3)2 or maintained 

as control plants kept on modified Hoagland’s medium without Cd.  

The concentration of 100 μM of Cd was chosen based on previous works 

(Azevedo et al., 2005a; Azevedo et al., 2005b; Monteiro et al., 2007), and in order to 

achieve twice the maximum permitted in irrigation water by Portuguese legislation (0.05 

mg/l). Leaves and roots from control and exposed plants were harvested at 0, 1, 3, 7 and 

14 days of Cd exposure for the various parameters analysed. Length of shoots and 

primary roots of control and exposed lettuce (n=6) was recorded at day 14. 

  

Nutritional status and Cd analysis 

 

Cadmium concentration in the hydroponic culture medium of control and Cd-

treated plants (n=3) was verified by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES, Jobin Yvon, JY70 Plus, Longjumeau Cedex, France). 

Accumulation of Cd and the content of the macro and micronutrients K, Ca, Na, Mg, Mn, 

Fe, B, Co, Cu and Zn through the exposure time (0, 7 and 14 days) were determined in 

leaves (n=6) and roots (n=3) dried to constant weight at 60 ºC. Prior to drying, roots were 

washed for 10 min in 0.5 mM CaSO4 to remove (by cation exchange) Cd adsorbed to the 
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root surface. Dried tissues were treated according to Evans and Bucking (1976) and then 

analysed by ICP-AES.  

 

Chlorophyll content and photosystem II efficiency  

 

Chlorophyll content and photosystem II efficiency were determined at day 14 of 

exposure in young and expanded leaves of lettuce plants (n=6). Chlorophyll a and b 

content were determined by the method of Arnon (1949). Young and expanded leaves 

were collected from six individual plants and ground in 10 ml 80% acetone. After 

centrifugation (2,800 g, 5 min), the absorbance of the supernatant was measured at 645 

and 663 nm and chlorophyll a and b contents and the ratio Chl a/ Chl b were estimated.  
Fluorescence readings were taken using a Plant Efficiency Analyser (Hansatech 

Instruments Ltd., UK), in order to determine the efficiency of electron transfer in PSII. 

Chlorophyll fluorescence was monitored in young and expanded leaves of control (n=6) 

and exposed plants (n=6), with adaxial surface of leaves facing up. Fluorescence 

measurements were always made between 10 and 12 a.m., and after dark adaptation of 

leaves for 30 min to open all reaction centres of PSII. The minimum fluorescence (F0) was 

measured by applying a weak pulse of light and the maximal fluorescence induction (Fm), 

which is observed when all PSII reaction centres are closed, was obtained by illuminating 

the leaves with a beam of saturating light (3000 μmol/m2/s) (Maxwell and Johnson, 2000). 

The variable fluorescence (Fv = Fm – F0) and the maximum quantum yield of PSII (Fv/ Fm), 

were then estimated.  

 

Lipid peroxidation and membrane permeability  

 

Lipid peroxidation of leaves (n=6) was determined by measuring malondialdehyde 

(MDA) production (Dhindsa et al., 1981). Tissues samples were homogenized in 0.1% 

trichloroacetic acid, centrifuged (10,000 g, 10 min) and the supernatants were collected. 

To 1 ml aliquots of supernatant, 4 ml of a solution of 20% trichloroacetic acid and 0.5% 

thiobarbituric acid was added; the mixture was heated (95 ºC; 30 min), quickly cooled and 

then centrifuged (10,000 g, 10 min). Supernatants were used to determine MDA content 

at 532 nm.   

Membrane permeability was determined in lettuce leaves (n=6) as described by 

Lutts et al. (1996). The leaves were washed with deionized water and immersed in 20 ml 

of deionized water and incubated overnight (25 ºC, 85 rpm). Electrolyte leakage analysis 
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was performed by measuring conductivity before (Lt) and after (L0) autoclaving (10 min, 

120 ºC).  

 

Antioxidant enzymes and soluble protein content 

 

Tissue samples of young and expanded leaves (n=3) were homogenized and 

dialysed as described by Santos et al. (2001). The dialysed samples were used for 

enzymatic and protein content determinations. Activities of CAT, POX, and SOD were 

determined according to the methods of Aebi (1974), Takahama and Egashira (1991) and 

Asada et al. (1975), respectively. One unit of CAT and POX is defined as the number of 

μmoles of H2O2 consumed per minute, and one unit of SOD as the enzyme content which 

gives 50% inhibition of cytochrome c reduction. Soluble proteins were determined with 

Total Protein Kit (Sigma), according to Bradford method (Bradford, 1976). 

 

Statistical analysis 

 

Data were analysed using t-test and when necessary data were transformed to 

achieve normality and equality of variance. When these criteria were not satisfied even 

with transformed data, the non-parametric Mann-Whitney rank sum test was performed. 

When justified, Pearson correlations were performed on data satisfying criteria of 

normality, otherwise non-parametric Spearman correlations were performed and the 

respective correlation coefficient are presented as r or rs, respectively. All statistical 

analysis was performed using SigmaStat for Windows, version 3.1. 

 

Results 
 

Toxicity symptoms and plant growth 
 

Visible manifestations of Cd toxicity were observed in lettuce mainly after 7 days of 

exposure. Plants developed toxicity symptoms, especially in expanded (older) leaves 

which exhibited chlorosis. Brown necrotic lesions appeared both on the leaves and stems 

of exposed plants. Expanded-leaf fall was observed during the second week of exposure. 

Roots of Cd-treated plants appeared darker than those of control plants. 

Exposure to Cd in the nutrient solution produced growth inhibition in lettuce plants 

(Fig. 2.1). The growth of lettuce shoots was significantly reduced after 14 days of 
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exposure (p<0.05) when compared to the control. Root growth was also lower in Cd-

exposed plants, but difference was not significant.  
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Figure 2.1 – Control and exposed lettuce shoots (a) and roots (b) growth 
after 14 days of exposure. Results are expressed as mean ± SE of six 
replicates; (*) significantly different from control at the same day (p<0.05).  
 

Cadmium accumulation and nutrient imbalances 

 

Cd concentration was below the ICPS detection limit (<0.01 µM) in the culture 

medium of control plants and was 104 ± 0.8 µM in the medium with the nominal 

concentration of 100 µM Cd(NO3)2. The results of Cd content in lettuce are presented in 

Figure 2.2. There was an increase with exposure duration in both roots and leaves up to 

2.17 ± 0.212 and 0.34 ± 0.062 mg/g DW, respectively. Roots had a higher accumulation of 

Cd than leaves (8-fold higher at day 14). 

Macro and micronutrient imbalances in leaves and roots of lettuce are presented in 

Table 2.1. At day 14, leaves from Cd-exposed plants displayed significant alterations in 

nutrients content when compared with control leaves on the same day. With regard to 

macronutrients, leaves displayed a significant decrease in P (p<0.05) and an increase in K 

(p<0.01). Potassium tended to decrease with time in exposed plants, however in control 

plants this decrease was even more pronounced, which led to the significant difference 

between control and exposed leaves at day 14. By contrast, at day 7, roots displayed a 

significant increase in P (p<0.05) and a decrease in K (p<0.05). Among the 

micronutrients, Fe and Mn significantly decreased in leaves (p<0.01 for Fe and Mn) and B  
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Figure 2.2 – Cadmium content in lettuce roots and leaves of exposed plants during 
the 14 day exposure. Results are expressed as mean ± SE of three replicates. In 
control plants Cd levels were below detection limit. 
 

Table 2.1 – Effect of Cd stress on nutrients content in lettuce leaves (a) and roots (b). 
Results are expressed as mean ± SE (n=5 or 6 for leaves and n=3 in roots); (*) and 
(**) significantly different from control at the same day p<0.05 and 0.01, respectively. 

Leaves (a)     Element 
(mg/g DW) Day 0 Control - Day 7 Cd - Day 7 Control - Day 14 Cd - Day 14 

P 10.3 ± 1.01 7.8 ± 0.55 6.7 ± 0.35 7.6 ± 0.48 5.6 ± 0.54 * 

K 68.9 ± 5.66 60.3 ± 6.27 54.5 ± 3.27 43.9 ± 3.43 57.9 ± 2.64 **

Mg 7.9 ± 0.28 7.0 ± 0.70 6.4 ± 0.55 4.6 ± 0.52 5.9 ± 0.47 

Na 1.2 ± 0.06 1.3 ± 0.45 2.1 ± 0.49 0.7 ± 0.05 0.8 ± 0.06 

Mn 0.3 ± 0.02 0.3 ± 0.03 0.2 ± 0.02  0.2 ± 0.01 0.1 ± 0.01 ** 

Fe 0.15 ± 0.013 0.13 ± 0.011 0.13 ± 0.021 0.14 ± 0.014 0.07 ± 0.004 **

Zn 0.06 ± 0.004 0.15 ± 0.097 0.06 ± 0.006 0.07 ± 0.013 0.07 ± 0.009 

Cu n.d. 0.11 ± 0.106 0.04 ± 0.015 0.004 ± 0.0030 n.d. 

B 0.02 ± 0.010 0.01 ± 0.010 0.03 ± 0.011 n.d. 0.05 ± 0.004 **
 

Roots (b)     Element 
(mg/g DW) Day 0 Control - Day 7 Cd - Day 7 Control - Day 14 Cd - Day 14 

P 13.5 ± 1.38 11.4 ± 1.03 16.0 ± 0.97 * 14.05 ± 0.70 13.9 ± 0.48 

K 64.6 ± 4.06 61.5 ± 4.89 43.6 ± 2.68 *  55.84 ± 8.35  41.0 ± 2.29 

Mg 1.4 ± 0.09 1.3 ± 0.05 1.6 ± 0.14 1.12 ± 0.05 1.3 ± 0.09 

Na 3.4 ± 0.82 3.1 ± 0.41 3.00 ± 0.42 3.14 ± 0.99 1.2 ± 0.15 

Mn 0.9 ± 0.33  0.6 ± 0.11 0.1 ± 0.02 * 0.45 ± 0.13 0.04 ± 0.007 * 

Fe 0.38 ± 0.111 0.22 ± 0.033 0.33 ± 0.083 0.18 ± 0.005 0.33 ± 0.061 

Zn 0.2 ± 0.03 0.1 ± 0.02 0.1 ± 0.03 0.09 ± 0.01 0.1 ± 0.01 

Cu n.d. n.d. 0.026 ± 0.0047 0.003 ± 0.0001 0.041 ± 0.0085 *

B n.d. n.d. n.d. n.d. 0.02 ± 0.008 
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increased (p<0.01). In the roots by contrast, there was a significant decrease in Mn 

content at days 7 and 14 (p<0.05 and p<0.05) and an accumulation of Cu (p<0.05). 

 

Chlorophyll content and PSII efficiency 

 

After 14 days of exposure, chlorosis was visibly more pronounced in fully 

expanded leaves than in young leaves of plants exposed to Cd. Furthermore, accentuated 

necrosis and leaf fall were observed in the oldest plant leaves. These superficial 

observations were consistent with the chlorophyll contents and the fluorescence 

parameters at the 14th day of exposure (Table 2.2). Young leaves from exposed plants did 

not display significant differences in chlorophylls a and b content. By contrast, expanded 

leaves contained significantly lower contents of chlorophyll a and b than control leaves 

(p≤0.001), displaying a reduction of about 41 % and 43 %, respectively. The ratio of Chl 

a/Chl b tends to be slightly higher in exposed leaves but did not present significant 

changes in neither young nor expanded leaves (p>0.05). 

 

Table 2.2 – Effects of Cd stress on Chlorophyll a and b content, Chl a/ Chl b ratio and on 
fluorescence parameters in young and expanded leaves of lettuce after 14 days of 
exposure. Results are expressed as mean ± SE (n=6); (*) and (***) significantly different 
from control p<0.05 and p<0.001, respectively. 

Young leaves Expanded leaves Photosynthetic 

parameters 
 

Control Cadmium Control Cadmium 

Chl a 501 ± 40.1 541 ± 29.9 504 ± 19.4 295 ± 28.9 *** Chlorophyll 
content  
(μg/g FW) Chl b 183 ± 17.9  192 ± 15.5 169 ± 8.2 96 ± 11.7 *** 

Chlorophyll 
ratio 

Chl a/ 
Chl b  2.8 ± 0.11 2.8 ± 0.08 3.0 ± 0.16 3.1 ± 0.28  

      
F0 613 ± 34.0 713 ± 29.5 679 ± 31.0 756 ± 81.0 

Fm 3037 ± 
397.2 2829 ± 75.2 3632 ± 90.5  2273 ±195.8 *** 

Fv 
2423 ± 
153.0 2116 ± 67.8 2953 ± 82.9 1510 ± 134.9 *** 

Fluorescence 
parameters 

Fv/Fm 0.794 ± 
0.0018 

0.747 ± 
0.0099* 

0.812 ± 
0.0081 0.665 ± 0.0018 *** 

  

Concerning the effects of Cd upon chlorophyll fluorescence parameters (Table 

2.2), young leaves presented non-significant alterations at day 14, exposed leaves 

displaying a slight trend of increased basal fluorescence, F0, and decreased Fm and Fv 

levels. However, the ratio Fv/Fm was affected, registering a significantly lower value (0.75 

± 0.01) in exposed than in control leaves (p= 0.041). With respect to expanded leaves, 
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exposed leaves presented a slightly higher F0 level (p>0.05), and a significant decrease in 

both Fm (p≤0.001) and Fv value (p≤0.001) when compared to control. The ratio Fv/Fm also 

presented a significantly decreased value for Cd expanded leaves (0.665 ± 0.018) when 

compared to control (p≤0.001).  

Concerning the normal values of Fv/Fm obtained for lettuce, control plants 

presented Fv/Fm medium values of 0.82 ± 0.006 and 0.81 ± 0.008 in young and expanded 

leaves (media obtained from all the measurements performed during the experiment), 

respectively. 

 

Lipid peroxidation and membrane permeability 

 

Lipid peroxidation as measured by MDA content in lettuce leaves (Fig. 2.3) 

increased significantly (p<0.05) in the control plants over the 14 days up to 0.18 ± 0.004 

nmol/g FW at day 3, then dropped to 0.16 ± 0.004 nmol/g FW at day 7 and reached a 

maximal content of 0.19 ± 0.007 nmol/g FW at day 14. Cadmium stress enhanced this 

effect since MDA content was higher in exposed than in control leaves, except at day 14 

when MDA content was similar to control. The difference between Cd-exposed and 

control leaves was statistically significant at day 7. At this time, MDA content in Cd-

exposed leaves was sustained (0.20 ± 0.006 nmol/g FW). For Cd-stressed leaves, there 

was a significant negative correlation between MDA and the photosynthetic parameter Fv 

(rs=-0.668; p≤0.001) and with the content in leaves of the macronutrients K and P (K, rs=-

0.387; p<0.05; P, r=-0.624; p≤0.001). 

Membrane permeability was assessed by measuring electrolyte leakage (Lt/L0) 

(Fig. 2.3). No significant differences in Lt/L0 were observed between control and Cd-

exposed leaves.  

 

Soluble protein content  

 
The content of soluble protein was always higher in young leaves than in 

expanded leaves of both control and Cd exposed plants (Fig. 2.4). In exposed young 

leaves, there was a slight decrease in protein content during exposure to Cd, but this 

trend is not significant when compared to controls on the same days (p>0.05), registering 

at day 14 levels of 8.4 ± 0.42 and 4.6 ± 1.56 mg/g FW for control and Cd treatment, 

respectively. In expanded leaves the protein content did not differ significantly from control 

(p>0.05).   
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Figure 2.3 – MDA content (a) and electrolyte leakage (b) in lettuce leaves 
of control and exposed plants during the 14 day exposure. Results are 
expressed as mean ± SE of six replicates; (*) significantly different from 
control at the same day (p<0.05). 
 

 

Antioxidant enzymes 

 

The effects of Cd exposure on antioxidant capacities of young and expanded 

leaves are presented in Figure 2.5. In general, the expanded leaves displayed higher 

activities of the antioxidant enzymes, CAT, POX and SOD, than young leaves. 
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Figure 2.4 – Protein content in young and expanded leaves of lettuce. 
Results are expressed as mean ± SE (n=3). 
 

 

As a general response, CAT displayed higher activities at the first days of 

exposure (days 1 and 3) than at the end of exposure (days 7 and 14), both in young and 

expanded leaves. At day 14, CAT activity was significantly lower in Cd-treated young and 

expanded leaves than in the respective control at the same day (p<0.01 and p<0.05, 

respectively). 

In young leaves POX, as CAT, had relatively high activities in the first three days of 

exposure. POX displayed significantly higher activity levels than controls at day 1 

(p<0.05). The response of CAT and POX in young leaves was then followed by an 

increase of SOD after day 3 up till the end of the experiment.  

In expanded leaves, the onset of CAT depression at day 3, is coincident with 

transient increases in POX and SOD activity in response to Cd stress; the activity of both 

these enzymes were at their highest at day 3 (38.6 ± 22.02 and 358.8 ± 89.82 U/mg 

protein, respectively). Both POX and SOD displayed similar trends in activity in expanded 

leaves during the exposure to Cd (Fig. 2.5), which is underlined by the significant 

correlation with each other (r=0.534; p<0.05). 
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Figure 2.5 – CAT, POX and SOD activities in lettuce young (a, b and c, respectively) 
and expanded leaves (d, e and f, respectively). Results are expressed as mean ± SE 
(n=3). 

 

 
Discussion  
 
Plant growth 

 

Plant growth inhibition is a classical parameter commonly used in the assessment 

of Cd toxicity to plants (An, 2004; Lagriffoul et al., 1998; Linger et al., 2005) and a 

recommended endpoint in standard tests for toxicity assessment (ISO, 1993; OECD, 
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2006). Apart from being an important indicator of toxicity at an individual level, growth 

inhibition is a non-specific manifestation of alterations at a biochemical level that are 

produced as a more specific response of plants to the particular stress. Thus, knowing the 

cascade of events produced by Cd exposure and relating it with growth effects would be 

an important consideration for risk assessment in plants. 

In this work growth inhibition of lettuce shoots was exhibited within 7 days of exposure.  

No growth inhibition was exhibited in the roots. Costa and Morel (1994) found both root 

and shoot growth in L. sativa L. cv. Reine de Mai exposed to 100 μM of Cd.  

 
Metal accumulation and distribution 

 

Partitioning of metals in different plant parts is a common strategy to avoid toxicity 

in above-ground parts. The first barrier against Cd stress occurs in the roots where Cd 

may be immobilized by ligands on cell walls and extracellular carbohydrates (Sanitá di 

Toppi and Gabbrielli, 1999). In the present study, exposure to 100 μM of Cd resulted in an 

accumulation of Cd at higher levels in roots than in leaves. This result is consistent with 

the findings of several studies that demonstrated that Cd ions are mainly retained in the 

roots and that only small amounts are transported to the shoots; Cd uptake into roots is 

relatively fast, whereas translocation to shoots is slower (Maier et al., 2003; Sanitá di 

Toppi and Gabbrielli, 1999; Zhang et al., 2005). In L. sativa (cv. Reine de Mai) exposed 

from 0.01 to 100 μM of Cd, roots always displayed higher Cd contents than shoots and 

reached 980 μg/g DW at 100 μM Cd (Costa and Morel, 1994).  

 
Chlorophyll content and PSII efficiency  

 

The degeneration of chlorophyll and reduction in photosynthetic rate is a common 

response in plants exposed to several metals, and particularly Cd (Chugh and Sawhney, 

1999; Lagriffoul et al., 1998; Linger et al., 2005; Mysliwa-Kurdziel and Strzalka, 2002). 

Dark-adapted values of Fv/Fm reflect the potential quantitative efficiency of PSII and are 

used as a sensitive indicator of plant photosynthetic performance (Maxwell and Johnson, 

2000). Fv/Fm mean values obtained for control plants during the 14 days exposure were in 

the range expected for healthy plants (Maxwell and Johnson, 2000). 

In response to Cd treatment, the increase of F0 together with the decrease of Fm, 

translated as a decrease of the Fv/Fm ratio in both young and expanded leaves of Cd-

exposed lettuce plants, and indicated a reduction in PSII efficiency and thus a reduction in 
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photosynthetic performance. These results are typical of stressed plants and indicate 

reduced efficiency in light-harvesting despite the absence of a reduction in chlorophylls in 

young Cd-treated leaves. Thus, the diminished photosynthetic activity cannot be solely 

attributed to the effect on chlorophyll content. Similar results were obtained in pea plants 

exposed to Cd (Chugh and Sawhney, 1999).  In that study, the photosynthetic activity was 

affected to a much greater extent than the reduction in chlorophyll content would have 

predicted. Like other metals, Cd can substitute for Mg2+ ion in the chlorophyll molecule. 

These could strongly affect photosynthesis since such chlorophylls may have much lower 

fluorescence quantum yields when compared with Mg-chlorophylls (Krupa et al., 2002). 

This phenomenon may explain the observed reduction in photosystem II efficiency, with 

no significant changes of chlorophylls content in young exposed leaves.  

In agreement with our results concerning the different responses to Cd stress 

obtained by young and expanded leaves, Krupa and Moniak (1998) have shown a close 

relation between the stage of leaf maturity and the efficiency of the photosynthetic 

apparatus in the monocotyledonous rye plants (Secale cereale). In particular, older leaf 

sections of rye were most heavily affected by Cd with respect to Fv/Fm.  

Moreover, the negative correlation obtained in this study with the photosynthetic 

parameter Fv and the MDA content (the latter indicative of lipidic oxidation, which often 

correlates with membrane degradation) further suggests that damage to the thylacoidal 

membranes of chloroplast apparatus might be occurring as a consequence of stress-

induced production of ROS, as demonstrated by other authors (Fodor, 2002). 

These results are of great importance because inhibition of the light photosynthetic 

reaction results in a lower photosynthetic capacity and subsequently, in lower biomass 

production and plant growth.  

  

Macro and micronutrient imbalances 

 

It is known that unfavourable effects of toxic metals on plants are manifested, 

among other mechanisms, by inhibiting the normal uptake and utilization of mineral 

nutrients (Fodor, 2002). One of the crucial factors of Cd influence on plant metabolism 

and physiological processes is its relationship with other mineral nutrients. In this study, 

the leaf and root content of several essential elements, including Fe, P, K, Mn and B, were 

significantly affected by the Cd exposure. 

Foremost among these was a significant decrease in foliar Fe. Iron-deficiency is a 

recognised consequence of exposure to other metals, and has implications for various 
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biological processes (Krupa et al., 2002). Apart from growth and chlorophyll synthesis, Cd 

induced Fe deficiency affects photosynthetic electron transport (Krupa et al., 2002). In 

agreement with this, the reduction in leaf-Fe was indeed correlated with a reduction in 

photosynthetic efficiency.   

Potassium content in both leaves and roots was also affected in this study. 

Considering that one of the main roles of K is as an osmoticum, the decrease of its 

content both in control and exposed leaves suggests that both age and Cd influence 

osmotic regulation.  

Manganese is a micronutrient essential for several important metabolic processes, 

such as the photolysis of H2O by PSII or for the assimilation of NO2
- in chloroplasts 

(Fodor, 2002). The deficiency of Mn in both lettuce roots and leaves (and underlined by 

the strong negative correlation between Mn and Cd content in leaves) might cause the 

impairment of such processes. Our results are consistent with reports by Hernandez et al. 

(1998) and Lagriffoul et al. (1998). These authors demonstrated that pea plants 

challenged with 10 and 100 µM Cd for 10 days almost completely inhibited Mn uptake; 

both roots and shoots presented a large decrease in Mn content (Hernandez et al., 1998). 

Similarly, in maize cultivated with Cd concentrations up to 25 µM, Mn contents were lower 

in both leaves and roots (Lagriffoul et al., 1998). In contrast, Ramos et al. (2002) found 

that concentrations of 0.1 and 1 mg/l Cd (about 0.9 µM and 9.0 µM, respectively) caused 

an increase in Mn uptake and translocation to the shoots of lettuce plants, more 

specifically an increase in Mn content in the chloroplasts.  

The interaction between Cd and Mn obtained in the present study with lettuce 

requires further investigation, since Mn is known to be involved in some Mn-

metalloproteins, for example, the mitochondrial Mn-superoxide dismutase (Apel and Hirt, 

2004). Moreover, Mn is an important co-factor of a class of plant peroxidases, essential to 

complete the catalytic cycle of H2O2 scavenging (Apel and Hirt, 2004). 

It is well known that rates of photosynthesis depend on external inorganic 

phosphate supply, and that in general, metals may decrease intracellular levels of this 

essential element. In the present work, exposure to Cd significantly decreased P content 

in leaves. Krupa et al. (1999) also reported that Cd affected levels of this macronutrient in 

rye leaves, which lead to a disturbance of photosynthetic electron transport and to affect 

the crucial enzyme RuBisCO.   

Accumulation of micronutrients in Cd stressed plants is not fully understood and 

needs further study. The behaviour of lettuce leaves and roots was different with respect 

to micronutrient accumulation. Boron increased in leaves, while Cu accumulated in roots. 
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This fact may be due to different cellular organization of these organs. Copper might be 

accumulated in roots as consequence of an interaction with Cd2+ that might impair the 

translocation of Cu2+ from roots to leaves. Boron is known to have a role in the inhibition of 

the synthesis of phenolic compounds, thus protecting leaves from being damaged by such 

compounds.  

 
Lipid peroxidation and membrane permeability 

 

Malondialdehyde is a cytotoxic product of lipid peroxidation and its formation is 

routinely used as a general indicator of the extent of lipid peroxidation resulting from 

oxidative stress. The elevated MDA content obtained in lettuce leaves suggests that Cd, 

by the indirect production of ROS or by the inhibition of oxidative stress enzymes, induces 

oxidative damage in lettuce as evidenced by increased lipid peroxidation. Furthermore, 

Zhang et al. (2007) found MDA content increase in leaves of Bruguiera gymnorrhiza 

exposed to multiple metals, and recommended lipid peroxidation as a biomarker of heavy 

metal stress in this mangrove plant for pollution monitoring purposes.  

In general, Cd-induced senescence was not significantly reflected in solute 

leakage (Lt/L0) as it was expected by the observed increase in MDA content, which is an 

indicator of injury to biological membranes. Leaf water content, osmolality and electrolyte 

leakage (quantified by relative leakage ratio, RLR) also presented no significant 

alterations (data not shown). Other authors have previously demonstrated decreases in 

Lt/L0 and RLR due to salt-stress, which were indeed correlated with MDA increase (e.g. 

Lutts et al., 1996).  

 

Soluble protein content  

 

Soluble protein decrease is a potential indicator of proteolysis, a senescence 

parameter. The slight decrease of protein content in young lettuce leaves exposed to Cd 

may have been consequent to an increase in degradation and/or to a decrease in 

synthesis of proteins. These findings are supported by various authors; Cd stress could be 

manifested as protein degradation, via amino acid catabolism resulting from a general 

reduction of plant development (Costa and Spitz, 1997), and also by the inhibition of 

RuBisCO activity, the major soluble protein in leaf and the primary site of CO2 fixation in 

the Calvin cycle (Siedlecka et al., 1997; Muthuchelian et al., 2001).  
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Antioxidant response to Cd 

 

Metals, including Cd, are known to cause molecular damage to plant cells either 

directly or indirectly through the burst of ROS, which can react with fatty acids leading to 

the peroxidation of lipids, destroying biological membranes (Apel and Hirt, 2004; Fodor, 

2002). One of the plant responses to ROS production is the increase in antioxidant 

enzyme activities providing protection from oxidative damage induced by several 

environmental stresses (Apel and Hirt, 2004). The tolerance of some plants to heavy 

metal stress has been associated with higher activities of antioxidant enzymes (Dixit et al., 

2001; Lagriffoul et al., 1998; Singh et al., 2006; Zhang et al., 2005). At the concentration 

used, Cd sequentially induced some enzymes over the 14 day exposure, suggesting that 

this complex of antioxidative enzymes (predominantly POX and SOD) act in combination 

to reduce the impact of Cd toxicity, especially in young leaves. However, the ability of 

plants to increase antioxidant protection to combat negative consequences of heavy 

metal-induced oxidative stress appears to be limited. Many studies showed that exposure 

to high concentrations of Cd resulted in a decreased antioxidant capacity (Sanitá di Toppi 

and Gabbrielli, 1999; Fodor, 2002). In our study, CAT seemed to be inhibited with 

extended exposure to Cd, in both young and exposed leaves. Catalase activity has been 

shown to be suppressed in several plants exposed to Cd, such as bean, Phaseolus 

vulgaris (Chaoui et al., 1997), and more recently in pea, Pisum sativum (Chaoui and El 

Ferjani, 2005), and in the aquatic plant Bacopa monnieri (Singh et al., 2006).  

 

Conclusions 
 

In this work we have demonstrated that Cd stress induced senescence in lettuce, 

as measured in general as photosynthetic efficiency reduction, nutrient imbalances, MDA 

production, and a decrease in the overall antioxidant capacities of lettuce plants. These 

alterations were accompanied by an inhibition in the classical endpoint, shoot growth, at 

the end of exposure. These biomarkers, in particular photosynthetic efficiency, MDA 

production and oxidative stress enzymes, could be used in integrative approaches with 

classical endpoints in ecotoxicological tests with Cd and after further studies in real 

scenarios conditions they could form the basis for monitoring and be predictive of early 

effects of this pollutant before they give rise to significant changes in natural community 

structures.  
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Abstract 

 

Cadmium (Cd) is a non-essential element and is a widespread environmental pollutant. 

Exposure to Cd can result in cytotoxic, carcinogenic and mutagenic effects. Mutagenesis 

is indicative of genetic instability and can be assayed using microsatellites. Microsatellites 

or simple sequence repeats (SSRs) are composed of tandem repeats of short sequence 

motifs (1–6 bp) that are polymorphic, mainly in the number of tandem repeated units. 

Therefore, chromosomic mutations like inversion, deletion or translocation and point 

mutations can be detected by this type of molecular marker. In this study we have 

evaluated the mutagenic/genotoxic effects of Cd in lettuce (Lactuca sativa L.). Five-week-

old lettuce plants grown in a modified Hoagland’s medium were exposed for a further 14 

days to a medium containing 100 μM Cd(NO3)2. Genomic DNA was extracted from lettuce 

leaves and roots, harvested at days 0, 1, 3, 7 and 14, and nine SSRs were tested, 

amplified and analysed to evaluate microsatellite instability (MSI). Mutagenic effects of Cd 

on microsatellite DNA loci were assessed and no MSI was observed in the used markers. 

 

Keywords: Cadmium; Genotoxic effects; Lactuca sativa; Microsatellite instability (MSI); 

Simple sequence repeats (SSRs) 

 

 

 69



Chapter 3.1 

Introduction  
 

Cadmium (Cd) is a non-essential metal that has an outstanding importance among 

toxic metals because of its mobility in the plant–soil system and subsequent movement 

through the food chain (Rojas et al., 1999). Plants growing in contaminated soils can 

absorb and accumulate Cd in edible tissues, thereby introducing the metal into the food 

chain by trophic transfer, including the human diet (McBride, 2003). Understanding Cd 

uptake and its effects on plants is thus critical to the long-term safety and conservation of 

agricultural resources.  

Cadmium is a cytotoxic, carcinogenic and mutagenic metal with no known 

biological role. The genotoxic effects of Cd have been extensively studied in mammals 

and humans, and it has been shown that Cd is implicated in the induction of tumours in 

experimental animals and exposed human cell lines (Dalton et al., 2000; Jin et al., 2003). 

However, the molecular mechanism responsible for the genotoxicity of Cd remains 

unclear. It has been suggested that it may involve direct interaction of Cd2+ with DNA 

through the binding of Cd at G, A and T bases (Valverde et al., 2001; Hossain and Huq, 

2002). Furthermore, recent studies indicate that Cd acts as a mutagen primarily by direct 

inhibition of an essential DNA mismatch repair, resulting in a high level of genetic 

instability (Jin et al., 2003). Cadmium cellular toxicity and genotoxicity may also be 

mediated indirectly; cells under oxidative stress display various dysfunctions due to 

lesions caused by reactive oxygen species (ROS, e.g. O2−, H2O2 and OH−) to lipids, 

proteins and DNA (Sanità di Toppi and Gabbrielli, 1999). In plants, Cd produces a wide 

range of biochemical effects, interacting with photosynthetic, respiratory and nitrogen 

metabolism resulting in growth retardation, low biomass production, leaf chlorosis, water 

and nutrient imbalances and also promoting the production of ROS (Sanità di Toppi and 

Gabbrielli, 1999). 

As sedentary organisms, higher plant systems are excellent indicators of genotoxic 

effects of complex mixtures and provide unique advantages for in situ monitoring and 

screening for the detection of possible genetic damage resulting from exposure to 

chemicals in their environment (Grant, 1999). Several plant bioassays have used the 

Comet assay, micronucleus (MCN) induction or RAPDs (random-amplified polymorphic 

DNAs) for the detection of environmental genotoxins (Steinkellner et al., 1998; Angelis et 

al., 2000; Arkhipchuk et al., 2000; De Wolf et al., 2004; Liu et al., 2005). Furthermore, 

transgenic tests with plants carrying a recombination- or mutation-reporter transgene (β-

glucuronidase gene, GUS) allowed direct scoring of DNA damage and have been applied 
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to study the genetic effects of heavy metals in plants (Kovalchuk et al., 2001; Kovalchuk et 

al., 2005). 

Techniques that allow direct measurement of genotoxicity are advantageous, 

mainly due to their high sensitivity and short response time. The recent advances in 

molecular biology led to the development of several PCR-based techniques, which can be 

used for DNA analysis in the field of genotoxicology. RAPD, RFLP (restriction fragment 

length polymorphism), AFLP (amplified fragment length polymorphism) and SSR (simple 

sequence repeats, microsatellite) markers are among those techniques. 

SSRs are tandemly repeated tracts of DNA composed of 1–6 base pair (bp) long 

units spread throughout the genome and, in comparison to the other markers, they are 

more abundant, ubiquitous in presence and highly polymorphic, and thus extremely useful 

for fine-scale genetic analysis (Gupta et al., 1996; Tóth et al., 2000). Furthermore, SSRs 

are likely to be one of the most reproducible techniques, especially when compared to 

RAPDs (Powell et al., 1996; Jones et al., 1997). Because of these advantages, SSRs 

have already been used to study genotoxic effects in several species (Angelis et al., 2000; 

Zienolddiny et al., 2000; Speit and Merk, 2002; Jin et al., 2003; Ohshima, 2003; 

Berckmoes et al., 2005). In plant research, SSRs have been extensively used in 

taxonomy studies (Prasad et al., 2000), genetic mapping (Ma et al., 2004) and also in the 

emerging scientific discipline of environmental population genetics (D'Surney et al., 2001, 

for a review), focusing on the relationships between environmental selective agents 

(stressors) and genotypic variability of plant natural populations (Mengoni et al., 2001; van 

Rossum et al., 2004). Furthermore, a study performed by Kovalchuk et al. (2000) uses 

SSRs as a methodology to assess genetic instability in the offspring of wheat plants 

exposed to radiation near the Chernobyl nuclear power plant. However, the application of 

SSRs in higher plant bioassays for the detection of genomic DNA damage and/or 

mutational events (e.g. deletions, insertions, point mutations) as a consequence of 

exposure to environmental pollutants remains unexplored. 

To test the hypothesis that in vivo exposure to Cd will induce DNA damage in 

lettuce, hydroponic cultures of lettuce were exposed to a high concentration of Cd and 

DNA damage was assessed in leaves and roots using microsatellite analysis as a new 

tool for plant genotoxicity assessment. Lettuce is a Cd-accumulating plant and an 

important human food crop (McBride, 2003). Hydroponic culture of L. sativa was chosen 

as the most suitable culturing method because it avoids complications associated with the 

adsorption of the contaminant to organic and inorganic soil components, and therefore 

provides the most consistent and reproducible levels of contamination in lettuce. 
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Material and Methods 
 

Plant culture and growth conditions 

 

Lactuca sativa L. (Reine de Mai de Pleine Terre) seeds (Oxadis, France) were 

germinated using a perlite support media in polystyrene seedling trays (n = 5) floating on 

distilled water under dark conditions. After germination, the trays were maintained under a 

light intensity of 200 μmol/m2/s and photoperiod of 16 h/8 h (light/dark), in a culture room 

maintained at 25 ± 1 ºC. After 1 week of culture, distilled water was replaced by modified 

Hoagland’s hydroponic medium (concentration in mg/l: 605 KNO3, 945 Ca(NO3)2·4H2O, 

230 NH4H2PO4, 490 MgSO4·7H2O, 2.86 H3BO3, 0.22 ZnSO4·7H2O, 0.09 CuSO4·5H2O, 

0.09 NaMoO4·2H2O, 1.82 MnCl2·4H2O, 4.78 Na2-EDTA titriplex, 1.21 FeCl3 10%, w/v) and 

plants were grown hydroponically for 5 weeks. The nutrient solution was continuously 

aerated and changed twice a week.  

After 5 weeks of culture, lettuce plants were either exposed to Hoagland’s solution 

augmented with 100 μM Cd(NO3)2 or maintained as controls (no Cd). A previous study 

demonstrated that >90% of the Cd in the growth medium remained in solution, and was 

therefore, available for uptake (Mann et al., 2005). Five-week-old plants presented a shoot 

and root height of 25 ± 2.1 and 22 ± 3.8 cm, respectively. The nutrient solution was 

changed on alternate days to avoid depletion of nutrients and changes in Cd 

concentration during the course of the exposure to the metal (Mann et al., 2005). Five 

control and five Cd-exposed plants were harvested at days 0, 1, 3, 7 and 14 for young 

leaves and at day 14 for root tips. Samples of about 80 mg each were stored at −30 ºC 

until DNA extraction. 

 

Cadmium analysis 

 

Cadmium concentration in the hydroponic culture medium of control and Cd-

treated plants (n = 3) was verified by inductively coupled plasma spectroscopy (ICPS, 

Jobin Ivon, JY70 Plus, France). Accumulation of Cd in leaves (n=6) and roots (n=3; roots 

were previously washed in 0.5 mM CaSO4 and in deionised water to remove adsorbed 

Cd2+ ions) of lettuce during the time of exposure was also determined by ICPS. 
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Microsatellite analysis 

  

Total genomic DNA was extracted from 80 mg of L. sativa leaves and roots with 

the DNeasy® Plant Mini Kit (QIAGEN, Germany), according to the manufacturer’s 

instructions. Concentration and purity of the extracted DNA were estimated using 0.8% 

agarose gel electrophoresis with ethidium bromide (EB) staining, comparing with a 

standard molecular weight marker (lambda HindIII, NEB) and spectrophotometrically in a 

Beckman DU®-68 Spectrophotometer (1A260 unit of dsDNA= 50 μg/mL H2O; pure DNA: 

A260/A280 ≥1.8).  

From the available nuclear SSRs in L. sativa developed by van de Wiel et al. 

(1999), nine were chosen on the basis of their level of polymorphism information content 

(PIC, see Table 3.1.1) and their PCR product quality index. Details of the studied SSRs 

are presented in Table 3.1.1. For the amplification of the abovementioned microsatellites, 

the primers designed by the authors were used. The forward primers for SSRs 7, 8 and 9 

were synthesized by MWG-Biotech (Germany) and the remaining primers were supplied 

by Plant Research International (Wageningen, The Netherlands). 

 
Table 3.1.1 - Description of the lettuce SSRs used: locus, repeat structure, allele size, 
number of alleles and PIC value described in the original publication and the PCR 
conditions (van de Wiel et al., 1999) and ABI dyes used. Polymorphism Information 
Content, PIC = 1 - Σ pi

2, where pi is the frequency of the ith allele. 
 

Key SSR Repeat Structure Allele 
size 
(pb) 

No. 
Alleles / 

PIC 
values 

PCR 
Conditions 

ABI 
dye 

1 LsA004a (GA)19(GT)7(GAGT)4(GA)10 200 2 / 0.52 55ºC / 30 FAM
2 LsB101 (GT)12(AT)5(GT)17 184 3 / 0.56 55ºC / 30 NED
3 LsB104 (GA)5(GT)7TATT(GT)12- 

-(T)4(GT)8(GA)11 
164 4 / 0.64 55ºC / 30 FAM

4 LsD106G (TCT)17(T)5(TCT)2 190 3 / 0.56 55ºC / 30 HEX 
5 LsD109 (TCT)22 155 4 / 0.80 55ºC / 30 HEX 
6 LsE003a (TGT)24(TA)(TGT)10(TAT)2 208 2 / 0.32 55ºC / 30 HEX 
7 LsB108a (GT)8(AT)7 

GT)25(GA)2(GT)5 
197 3 / 0.56 55ºC / 30 FAM

8 LsD110a (TCT)21(TCC)2(TCT)7 234 - 55ºC / 30 JOE 
9 LsG001G (GATA)31(GA)17 299 3 / 0.72 50ºC / 30 FAM

 

SSRs were then tested and amplified in a gradient Thermal Cycler (Thermo, 

Germany) using PCR conditions according to van de Wiel et al. (1999) (see Table 3.1.1). 
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As certain primer pairs were mixed in duos, duplex PCR amplifications were performed 

following the QIAGEN Multiplex PCR protocol. 

After PCR amplification, PCR products were electrophoresed in 2% agarose gels 

stained with EB, visualized on a UV transilluminator and the image digitized using KODAK 

1D 2.0 software package (Life-Technologies). Then, 1 μL of water-diluted PCR product 

was mixed with 0.5 μL of GeneScan internal size standard labelled with ROX and 25 μL of 

formamide. The mixture was briefly vortexed and visualized by Capillary Electrophoresis 

(CE) on an ABI Prism 310 Genetic Analyser (PE Biosystems). 

The fluorescent label attached to the 5’ end of the forward primers allowed the 

detection of the PCR products by CE and then their correspondent fragment sizes were 

automatically calculated to two decimal places using the Local Southern Method option of 

the GeneScan v.3.1 software. 

 
Results 
 

Cd concentration was below the ICPS detection limit (<0.01 μM) in the culture 

medium of control plants and was 104.0 ± 0.8 μM in the medium with the nominal 

concentration of 100 μM Cd(NO3)2. The accumulation of Cd in roots and leaves of lettuce 

during the 14 days of exposure is presented in Figure 3.1.1. The results of Cd  
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Figure 3.1.1 - Cd accumulation in Lactuca sativa roots and leaves of 
control and exposed plants during a 14 day exposure period. Results 
are expressed as mean ± standard error.  
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accumulation showed an increase with exposure duration in both roots and leaves up to 

2.167 ± 0.2115 and 0.344 ± 0.0621 mg/g DW, respectively. Roots had a higher 

accumulation of Cd than leaves (eight-fold higher at day 14). 

Exposure to Cd in the nutrient solution produced growth inhibition in lettuce plants 

(Fig. 3.1.2). The growth of lettuce shoot was significantly reduced at days 7 and 14 of 

exposure (p<0.05). Roots also presented a reduction of growth during the Cd-exposure, 

but this reduction was not significant when compared to the control at the same day. 

The integrity of the lettuce genomic DNA extracted by the QIAGEN® (Germany) 

method was evaluated. The electrophoresis of the extracted DNA showed clear bands of 

about 23 kb, therefore, this method is suitable for DNA extraction in lettuce. Furthermore, 

all the nine pairs of oligonucleotide primers tested produced amplification products as 

observed in the agarose gel electrophoresis (data not shown).  
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Figure 3.1.2 – Shoot and root length in Lactuca sativa plants during the 
14 days exposure to Cd. Results are expressed as mean ± standard 
error; (*) significantly different from control at the same day (p<0.05).   
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After the analysis of the PCR products in the CE apparatus, all fragment sizes 

were scored and the results from days 1, 3, 7 and 14 of exposed lettuce plants were 

compared both to day 0 from the same plant and to control plants. A summary of the allele 

size of the SSRs analysed in control and Cd-exposed plants is presented in Table 3.1.2. 

All the SSRs scored presented similar sizes for the amplification products (alleles) that 

were monomorphic across all the treatments. 

 
Table 3.1.2 – Summary of the 
allele sizes obtained for the 
SSRs analysed in control and 
Cd-exposed lettuce plants. 
 

Allele size (pb) 

SSR 
Control 

Cd 

exposed 

1 198 198 

2 206 206 

3 191 191 

4 193 193 

5 171 171 

6 206 206 

7 203 203 

8 230 230 

9 255 255 

 

As an example of the results obtained with the CE apparatus, a set of 

electropherograms is presented in Figure 3.1.3, showing the amplification products of a 

duplex PCR of SSRs 3 and 6. In the six electropherograms, both SSRs presented the 

same pattern in the Cd-treated plant harvested at different days. SSRs 3 and 6 presented 

homozygous individuals with one allele each, with sizes of 191 and 206 bp, respectively. 

The allele sizes obtained for the remaining SSRs analysed were 198, 206, 193, 203, 203, 

230, 255, respectively, for SSRs 1, 2, 4, 5, 7, 8 and 9, and they were similar to those 

obtained by the group who developed lettuce SSRs (van de Wiel et al., 1999, see Table 1). 

According to these results, no MSI was detected on the exposed lettuce leaves or roots. 
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Figure 3.1.3 - Amplification products of a duplex PCR: SSR 3 (FAM dye – on the left) and 
SSR 6 (HEX dye – on the right). The electropherograms correspond to the same Cd-
treated plant harvested for leaves or roots at different days. All electropherograms present 
the same pattern for both microsatellites: SSRs 3 and 6 correspond to homozygous 
individuals with one allele of ca. 191 and 206 bp, respectively. Top scale indicates 
fragment size in nucleotides. Left scale indicates fluorescence intensity measured in 
relative fluorescence units. 
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Discussion 

 

In the present study the application of SSR marker analysis is reported for an 

assessment of chemical genotoxicity to plants. This technique allowed the determination 

of genetic stability of the SSRs analysed in 100 μM Cd-exposed lettuce plants. 

The concentration of Cd used in the present work produced an accumulation of Cd 

in lettuce leaves and root tissues at levels of 0.344 ± 0.0621 and 2.167 ± 0.2115 mg/g DW, 

respectively, and significantly inhibited growth on lettuce shoots. Furthermore, Cd induced 

senescence in lettuce plants as observed by the chlorosis of the young leaves and the 

necrotic spots in several leaves. Fluctuations were also observed on antioxidant enzymes 

levels (catalase, peroxidase and superoxide-dismutase) and lipid peroxidation 

(malondialdehyde production) in response to Cd (Monteiro et al., 2004a, Chapter 2 of this 

thesis). Besides the physiological effects observed and the levels of Cd accumulation, 

particularly in roots, it does not seem to be interfering with DNA integrity. Despite being 

chosen as the most polymorphic SSRs available for lettuce (van de Wiel et al., 1999), all 

the SSRs scored presented alleles that were monomorphic across all the treatments. 

Hence, the severe toxicity observed in lettuce plants was reflected by MSI neither in 

leaves nor in roots, as measured by these specific SSRs under the conditions of this in 

vivo toxicity test.  

As for the genetic stability, similar results were obtained using flow cytometry to 

quantify nuclear DNA content, a technique that could in theory detect ploidy differences, 

cell cycle changes and chromosome aberrations. No major ploidy changes were detected 

by flow cytometry, neither in lettuce plants exposed under the same experimental 

conditions as those used in the present work (Monteiro et al., 2004b) nor during the 2-

month exposure of lettuce seedlings to 10 μM Cd(NO3)2 (Monteiro et al., 2005). 

Plant cells can resort to a number of defense systems to prevent Cd toxicity, 

including, immobilization of Cd at the level of the cell wall or at extracellular carbohydrates, 

synthesis of phytochelatins, which chelate Cd preventing it from circulating as free Cd2+ 

inside the cytosol, and vacuolar compartmentalization. Induction of phytochelatins by Cd 

has been demonstrated in lettuce (Sanità di Toppi and Gabbrielli, 1999). Notwithstanding 

the presumed induction of this detoxification pathway, access to the cytosol by a toxic 

species of Cd must also be assumed, because exposure to Cd under the same conditions 

resulted in various biochemical and morphological disruptions (Monteiro et al., 2004a, 

Chapter I of this thesis). However, access to the nucleus and subsequent DNA damage in 

lettuce has not been demonstrated in this study. 
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Other authors obtained similar results for Cd using minisatellites. In a field 

approach, Rogstad et al. (2003) examined whether mutation rates at minisatellite DNA loci 

in dandelions (Taraxacum officinale) increased with increasing exposure to metal pollution 

in 16 sites (Colorado to Pennsylvania, USA). Across sites, mutation rates were 

significantly and positively correlated to increasing leaf-tissue concentrations of Cr, Fe, Mn, 

and Ni. However, no such correlation was observed for Cd and other metals (Cu, Pb, and 

Zn).  

In a somewhat different approach, SSRs have been successfully used as a 

methodology in environmental population genetics to detect (or not) relationships between 

stressors and genotypic variability of plant natural populations. For instance, in the study 

of van Rossum et al. (2004), five SSR markers were used to investigate the spatial 

genetic structure at a microgeographical scale (ranging from 10 cm to 500 m) in a 

metallicolous population of Arabidopsis halleri, located in a metal impacted site, in which 

the soil presented a gradient of metal concentrations (mainly Zn, Pb, Cd). No evidence of 

genetic divergence due to spatial metal heterogeneity was found between zones with low 

or high pollution levels. In another study, using chloroplast microsatellite loci (cpSSR) 

analysis, Mengoni et al. (2001) have characterized tolerant and non-tolerant natural 

populations of Silene paradoxa growing in copper mine deposits, in serpentine outcrops or 

in uncontaminated soil, with respect to their genetic variation and relationships. Their 

findings indicated a reduction of genetic diversity in copper tolerant populations, the 

results from cpSSR markers gave statistical significance to the grouping of populations 

according to their geographical location.  

Several higher plant bioassays, such as Comet assay and micronucleus induction 

have been tested and recommended for use in mutation screening and monitoring of 

genotoxicity induced by environmental chemicals (Grant, 1999). In plants exposed to Cd, 

genetic instability has already been verified with these and other techniques (e.g. RAPDs), 

however all these studies have used either exceedingly high concentrations of Cd and/or 

isolated tissues in vitro. For example, in the work of Gichner et al. (Gichner et al., 2004) 

Cd was applied on tobacco seedlings in the form of cadmium chloride (0.02–0.1 mM), and 

induced significant DNA damage as measured by cellular Comet assay, but only in roots. 

In the same study, Cd did not induce DNA damage, neither in treated isolated root nuclei, 

analysed by use of the acellular Comet assay, nor in leaves.  

Similarly, micronucleus induction has been observed in several plant studies with 

Cd. Steinkellner et al. (1998) reported genotoxic effects of four metals, including Cd, in 

MCN assays with pollen mother cells of Tradescantia sp. and with isolated meristematic 
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root tip cells of Allium cepa and Vicia faba. In experiments with Tradescantia, induction of 

MCN was observed in a concentration range between 1 and 10 mM, whereas in tests with 

root tip cells, higher concentrations (10–1000 mM) were required to show significant 

effects (Steinkellner et al., 1998). A significant increase in micronucleus formation was 

also observed on Vicia faba roots exposed to the concentrations of 20, 200 and 2000 μM 

CdCl2 in solution (Cordova Rosa et al., 2003). Furthermore, significant changes occurred 

in RAPD profiles of 1.5 cm-root tips of barley seedlings exposed to Cd in the range of 30–

120 mg/L (about 136–547 mM) for 6 days (Liu et al., 2005). 

In the study presented here, although the exposure is still acutely toxic, using a 

relatively high concentration of Cd (cf. Westfall et al., 2005), we have used an in vivo 

exposure with whole plants, which may more accurately represent agricultural practice. 

Detoxification systems (e.g. induction of phytochelatins and anti-oxidant systems) were 

therefore available to the whole plants to ameliorate metal toxicity and may be adequate 

to explain the absence of observable genotoxic effects. 

However, in a different approach, Kovalchuk et al. (2001) when using transgenic 

tests in the assessment of genetic effects of heavy metals in Arabidopsis thaliana plants 

grown in vitro on liquid and agar medium, showed that several heavy metals strongly 

influenced the rate of homologous recombination and point mutation in a concentration-

dependent manner. Point mutations were induced by Cd, even at the low concentration of 

0.001 mg/L (Kovalchuk et al., 2001). Kovalchuk et al. (2005) have also found that 

homologous recombination frequency increased about 2.7-fold in transgenic A. thaliana 

plants grown in vitro on agar medium supplemented with 100 μM Cd. Furthermore, in an 

application of this approach to monitor chemically polluted environments, these authors 

noted a 4–7-fold increase in the frequency of homologous recombination and a 5–10-fold 

induction of point mutations in plants grown in metal contaminated soils compared with 

those grown in clean control soil (Kovalchuk et al., 2001).  

In conclusion, and considering the microsatellite loci analysed and the 

experimental conditions used, the uniform microsatellite patterns observed for the SSRs 

seem to suggest that Cd generated no genetic instability. However, a combination of 

methods for analysing structural aberrations of genetic apparatus, namely MCN test and 

Comet assay, should be performed to complement and/or confirm these results. Despite 

the apparent absence of Cd effects in this study, SSR analyses were successfully applied 

in this work and seem to be a useful and cost-effective method (once the primers are 

readily available) to be implemented as a plant bioassay in the screening for genotoxins, 

 80 



 Cadmium genotoxic effects in plants 

which could be used as a complementary tool for elucidating the different genotoxicity 

effects of compounds. 
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Abstract 
 

Cadmium (Cd) is a cytotoxic, mutagenic and carcinogenic metal. Mutagenesis is indicative 

of genetic instability and can be assayed by use of microsatellite markers (simple 

sequence repeats, SSRs). These are tandem-repeated tracts of DNA composed of units 

that are 1-6 base pairs (bp) long, spread throughout the genome and highly polymorphic. 

SSRs can be used in the detection of genomic DNA damage and/or mutational events 

(e.g. deletions, insertions, point mutations). In order to study chronic exposure to Cd, 

Lactuca sativa L. seeds were germinated in distilled water and grown on modified 

Hoagland’s medium, both supplemented with 0, 10 and 100 μM Cd(NO3)2. After 28 days 

of exposure, the plants were harvested to assess shoot and root length and accumulation 

of Cd. DNA was extracted from young and expanded leaves and roots in order to analyse 

microsatellite instability (MSI). Mutagenic effects of Cd were evaluated on nine 

microsatellite loci. No MSI was found in leaves, but a 2-bp deletion in one lettuce root 

SSR was detected among the SSRs that were analysed. Thus, SSR analyses may 

provide a complementary tool in the assessment of different genotoxic effects of 

compounds on plants. 

 

 
Keywords: Genotoxicity; Lettuce; Metal; Simple sequence repeats  
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Introduction  
 

Environmental contamination with metals has increased drastically over the past 

decades. Soils have been contaminated with cadmium (Cd) mainly through atmospheric 

deposition, urban–industrial activities and agricultural practices (e.g. use of phosphate 

fertilizers and application of sewage sludge). Jung and Thornton (1996) have found Cd 

concentrations up to 40 mg/kg in surface soils taken from a mining area in Korea. 

Among other biological effects (e.g. Azevedo et al., 2005a; Azevedo et al., 2005b, 

c), Cd exposure may cause genotoxic effects, namely mutagenesis. Cadmium has been 

shown to induce large deletions in mammalian cells (Filipic and Hei, 2004). The molecular 

mechanism of Cd genotoxicity in organisms is still relatively poorly understood, but it has 

been suggested that it may involve direct binding of Cd2+ to DNA, possibly at guanine, 

adenine and thymine centres (Hossain and Huq, 2002), or direct inhibition of DNA 

mismatch repair (Jin et al., 2003). Genotoxicity of Cd may also be indirect, through 

promotion of the production of reactive oxygen species (ROS), which may then damage 

nucleic acids (Valverde et al., 2001; Apel and Hirt, 2004). Plants are ideal assay systems 

for genotoxicity, for screening as well as for monitoring environmental mutagens, and they 

provide vital information from the standpoint of safeguarding biodiversity and ecological 

resources (Grant, 1994; Panda and Panda, 2002). Therefore, the assessment of 

genotoxic effects of metals is an important topic in environmental research and increasing 

attention has been paid to this field in the last years (Steinkellner et al., 1998; Grant, 1999; 

Kleinjans and van Schooten, 2002). 

The development of molecular biology has led to several PCR-based techniques 

that can be used to evaluate DNA damage in toxicological studies. Analysis of 

microsatellite markers, also called simple sequence repeats (SSRs), is among those 

techniques. SSRs are tandem repeats of DNA sequences of 1–6 base pair (bp) long. 

They are an important class of DNA markers because of their abundance, random 

occurrence and high degree of polymorphism (Gupta et al., 1996). These markers can be 

used in the detection of genomic DNA damage and/or mutational events (e.g. deletions, 

insertions, point mutations) (Tóth et al., 2000). Metals have been found to induce 

microsatellite instability (MSI); nickel (Ni) has been reported to promote SSR mutations in 

human cell lines (Zienolddiny et al., 2000) and Cd to induce MSI by increasing the 

frequency of mutant alleles (Jin et al., 2003). In plant research, SSRs are already a 

powerful tool in taxonomy, genetic mapping and environmental population genetics 

(Gupta and Varshney, 2000; D'Surney et al., 2001; Dimsoski and Tóth, 2001). Additionally, 
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SSRs can be used to screen plant genomic DNA for evidence of mutational events as in a 

genotoxicity test for the detection of DNA damage induced by environmental contaminants.  

In a previous study performed by our group on the assessment of the genotoxicity 

of Cd on lettuce, no MSI was observed in 5-week-old lettuce plants exposed in vivo to 100 

μM Cd (Monteiro et al., 2007b). The effects of metals are strongly dependent on the age 

of the plant at the time of exposure: the older the plant the larger the amount of metal that 

can be tolerated, because metals accumulate at metabolically inactive sites such as cell 

walls and vacuoles (Fodor, 2002). This may explain the absence of observable genotoxic 

effects in the previous study (Monteiro et al., 2007b). In the same study the plants were 

already severely affected by the toxic effects of Cd by the end of the 14-day exposure 

period, becoming necrotic after that. Therefore, it was decided to assess the genotoxic 

effects in young plants, over a longer period of time using a lower but still environmentally 

relevant concentration of 10 μM Cd. Soil solutions having a Cd concentration from 0.32 to 

about 1 μM are considered as polluted to a moderate level and an environmentally 

relevant Cd level is about 10-fold higher than 1 μM, which may ensure the survival of 

plants in the ‘field situation’ up to reproduction (Sanità di Toppi and Gabbrielli, 1999). 

Under hydroponic conditions, plants exposed to 10 μM Cd will survive for a longer period 

and allow the assessment of DNA damage as a consequence of chronic Cd stress.  

The aim of the present study was to assess if in vivo exposure to Cd from the time 

of seed germination will induce MSI in lettuce (L. sativa L.). In order to assess this, lettuce 

seeds were germinated and grown for 28 days in 0, 10 and 100 μM Cd and nine SSRs 

were analysed in roots and in young and expanded leaves. 

 
Material and methods 
 

Plant culture and growth conditions 

 

Lettuce seeds (L. sativa L. cv. Reine de Mai; Oxadis, France) were germinated in 

the dark in distilled water containing 0, 10 or 100 μM Cd(NO3)2 (pH 5.8), with perlite as 

support medium in polystyrene seedling trays. After 6 days the distilled water was 

replaced by modified Hoagland’s nutrient solution (pH 5.8) as described by Monteiro et al. 

(2007b), also containing 0, 10 or 100 μM Cd(NO3)2. Plants were maintained at 25 ± 2ºC, 

under a light intensity of 200 μmol/m2/s with a light/dark period of 16h/8h. The nutrient 

solution was continuously aerated and changed twice each week to avoid nutrient 

depletion and large changes in Cd concentration (Mann et al., 2005). 
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After 28 days of exposure, shoot and root length of the plants (18 controls and 17 

Cd-exposed) were measured and plants were harvested to measure Cd accumulation and 

analyse microsatellites. Roots and leaves were stored at −80 ºC until DNA extraction. 

 

Cadmium analysis 

 

The nominal concentration of Cd in the hydroponic culture medium of control and 

Cd-treated plants was verified by inductively coupled plasma spectroscopy (ICPS, Jobin 

Yvon, JY70 Plus, Longjumeau, France).  

Accumulation of Cd was determined in leaves (n=3) and roots (n=3) of control and 

Cd-treated plants that had been dried to constant weight at 60ºC. Prior to drying, roots 

were washed for 10 min in 0.5 mM CaSO4 to remove Cd adsorbed onto the root surface, 

according to Santos et al. (2002). Dried tissues were treated according to Evans and 

Bucking (1976) and then analysed by ICPS. 

 

Microsatellite analysis 

 

Total genomic DNA was extracted with the DNeasy® Plant Mini Kit (QIAGEN, 

Germany) from roots and young and expanded leaves (80 mg each) of control and Cd-

exposed (10 μM) plants (n=3), following instructions of the manufacturer. Plants exposed 

to 100 μM Cd presented less than 40 mg of either leaf or root material and the amount of 

genomic DNA was not enough for DNA extraction and/or MSI analysis. Pooling of material 

was avoided since this would not preserve the individuality of each plant replicate. 

Therefore, this treatment was not analysed for MSI. 

In order to assess the occurrence of MSI, the same nine SSR loci used in the 

previous study of Monteiro et al. (2007b) were assessed in the present work. The primers 

used (see Table 3.2.1) were designed and supplied by Plant Research International 

(Wageningen, The Netherlands), with the exception of the forward primers for SSRs 7, 8 

and 9, which were synthesized by MWG-Biotech (Germany). 

SSRs were amplified in a gradient Thermal Cycler (Thermo, Germany). The PCR 

conditions used were according to van de Wiel et al. (1999). Duplex PCR amplifications 

were performed for SSRs 1 and 6, and 2 and 4, according to the QIAGEN Multiplex PCR 

protocol and mixing the respective primers in pairs. Amplification of PCR products was 

first assessed in 2% agarose gels stained with ethidium bromide, visualized on the UV 

 90 



Cadmium genotoxic effects in plants 

transilluminator G:Box (Syngene, Cambridge, UK). The respective software (GeneSnap) 

was used for image acquisition and analysis. 

PCR product (1 μL) was mixed with formamide (25 μL) and GeneScan internal 

size-standard labelled with ROX (0.5 μL), vortexed and visualized by Capillary 

Electrophoresis (CE) on an ABI Prism 310 Genetic Analyser (PE Biosystems, USA). The 

fluorescent label attached to the 5’-end of the forward primers allowed the detection of the 

PCR products by CE and their correspondent fragment sizes were automatically 

calculated to two decimal places using the Local Southern Method option of the 

GeneScan v.3.1 software. 

 

Table 3.2.1 – Description of SSRs used: locus, repeat structure and allele size 
obtained in the original publication of L. sativa SSRs (van de Wiel, 1999). 

 

Key SSR Repeat structure Allele size (pb) 

1 LsA004a (GA)19(GT)7(GAGT)4(GA)10 200 

2 LsB101 (GT)12(AT)5(GT)17 184 

3 LsB104 (GA)5(GT)7TATT(GT)12(T)4(GT)8(GA)11 164 

4 LsD106G (TCT)17(T)5(TCT)2 190 

5 LsD109 (TCT)22 155 

6 LsE003a (TGT)24(TA)(TGT)10(TAT)2 208 

7 LsB108a (GT)8(AT)7(GT)25(GA)2(GT)5 197 

8 LsD110a (TCT)21(TCC)2(TCT)7 234 

9 LsG001G (GATA)31(GA)17 299 

 

 

Statistical analysis 

 

Statistical analysis of differences in shoot length between control and exposed 

plants was performed using Kruskal-Wallis one-way ANOVA (since even with transformed 

data no normality and/or equality of variance were achieved) and Dunn’s post-hoc test. 

Root length was analysed using one-way ANOVA and Dunnett’s method. SigmaStat 

(version 3.01, SPSS, Chicago, IL, USA) was used to perform all statistical tests. 
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Results 
 

Cd accumulation and plant growth  

 

Nominal concentrations of Cd in the nutrient solutions were verified by ICPS and 

were below the detection limit for controls (<0.01 μM) and 10.50 and 96.97 μM for 10 and 

100 μM Cd treatments, respectively. Figure 3.2.1A presents the accumulation of Cd in 

leaves and roots of lettuce after 28 days of exposure. The contents in plants treated with 

10 μM were 0.058 ± 0.0024 and 0.512 ± 0.2630 μg Cd per mg dry weight (mean ± SE) in 

leaves and roots, respectively. In plants exposed to 100 μM Cd accumulation was 0.804 ± 

0.0851 and 1.774 ± 0.1060 μg per mg dry weight (mean ± SE) in leaves and roots, 

respectively. Roots of plants exposed to 10 μM Cd showed about 9-fold higher 

accumulation of Cd than leaves, but this difference was not statistically significant 

(p=0.160). Roots of plants treated wih 100 μM Cd showed about 2-fold higher 

accumulation than leaves (p<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1 – (A) Cd accumulation in 
leaves and roots (n=3) and (B) shoot and 
root length of lettuce plants after 28 days 
of exposure (n=17-18). Results are 
expressed as mean ± standard error; (*) 
significantly different from control p<0.05; 
(a) significantly different from leaves that 
received the same Cd-treatment. 

L.
 sa

tiv
a 

le
ng

th
 (c

m
)

0

5

10

15

20 Shoot
Root 

*

*

*

*

0 10 100
Cd concentration (μM)

C
d 

ac
cu

m
ul

at
io

n 
in

 L
. s

at
iv

a 
( μ

g/
m

g 
D

W
)

0.0

0.5

1.0

1.5

2.0
Leaf
Root 

A

B

*

*a

 

 92 



Cadmium genotoxic effects in plants 

Figure 3.2.1B represents lettuce shoot and root length after 28 days of exposure. 

Lettuce exposed to 10 and 100 μM Cd showed significant growth inhibition in both shoot 

and roots (p<0.05) when compared with the respective control. Moreover, Cd treatment 

affected plant survival: in each treatment group one plant was completely necrosed. 

 

Microsatellite analysis 

  

PCR products were analysed by CE and fragment sizes from control and exposed 

plants were scored and compared. A summary of the allele size of the SSRs analysed in 

control and exposed plants harvested after 28 days of Cd-exposure is presented in Table 

3.2.2. The amplification products (alleles) retrieved from control and exposed plants (both 

young and expanded leaves) for each of the SSRs were of similar size. 

 

Table 3.2.2 – Lettuce SSRs with the allele size obtained in 
leaves and roots of control and Cd-treated plants, and in 
previous studies of Monteiro et al. (2007b). 
 

SSR Control 
28 days 

exposure 

10 μM Cd 
28 days 

exposure 

Monteiro et al. 
(2007b) 

(5-week old plants,  
14 days exposure 

to 100 μM Cd ) 
1 197 197 198 

2 206 206 206 

3 192 190*, 192 191 

4 194 194 193 

5 170 170 171 

6 206 206 206 

7 203 203 203 

8 232 232 230 

9 256 256 255 
* One sample of a 10 μM Cd-treated lettuce root presented an 
allele of 190 bp (see Figure 3.2.3). 

 

As an example of the results obtained with the CE apparatus, a set of 

electrophoretograms is presented in Figures 3.2.2 and 3.2.3, showing the amplification 

products of a duplex PCR of SSRs 5 and 7 and of SSR 3, respectively. For both young 

and expanded leaves the pattern of amplification products of SSRs 5 and 7 and SSR 3 is 

the same in control and exposed plant leaves, revealing homozygous individuals with 
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alleles of 170, 203 and 192 bp, respectively. The allele sizes obtained for the remaining 

SSRs analysed were 197, 206, 194, 206, 232, 256 bp for SSRs 1, 2, 4, 6, 8 and 9, 

respectively, in both control and exposed young and expanded leaves. No MSI was 

detected in young or expanded leaves of exposed plants.  

 
Figure 3.2.2 – Amplification products of a duplex PCR: SSR 5 
(HEX dye – green colour) and SSR 7 (FAM dye – blue colour). 
The electrophoretograms correspond to control and Cd-treated 
plants harvested for young or expanded leaves or root at the 
28th day of exposure (from top to bottom, respectively). Top 
scale indicates fragment size in nucleotides. Left scale indicates 
fluorescence intensity. 
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In roots, the PCR products were also of similar size in both control and exposed 

plants for all SSRs (197, 206, 194, 170, 206, 203, 232, 256, respectively, for SSRs 1, 2, 4, 

5, 6, 7, 8 and 9), except for SSR 3. As shown in the electrophoretograms of exposed roots 

presented in Figure 3.2.3, a Cd-treated (10 μM) lettuce root showed an allele of 190 bp 

instead of 192 bp for SSR 3 retrieved from the remaining samples of lettuce roots and 

leaves. These results are indicative of MSI in roots of Cd-exposed lettuce plants, which 

presented a mutation frequency of 3.7% ((1 root plant/3 plants analysed)*(1 SSR / 9 SSR 

analysed)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.3 – Amplification products of 
SRR 3 (FAM dye – blue colour). The 
electrophoretograms correspond to 
control and Cd-treated plants harvested 
for young or expanded leaves or root at 
the 28th day of exposure (from top to 
bottom, respectively). Top scale indicates 
fragment size in nucleotides. Left scale 
indicates fluorescence intensity. 

 95



Chapter 3.2 

To test the reproducibility of the technique, duplicates were run for five of the 

sample

iscussion  

he assessment of genotoxic effects as a consequence of exposure to metals is 

an imp

 stress throughout 

germin

rallel 

study t

0 1

have the same effect in root tissue: neither nuclear DNA content nor FPCV were affected.  

s. The sample where the MSI was found was also run five times to verify that it 

was no artefact. These assays were complete re-runs, i.e., all procedures from PCR 

amplification to fragment analysis on the CE apparatus took place on different occasions 

for each of the replicates. All sets of replicates yielded exactly the same banding patterns. 

 

D
 

T

ortant issue in environmental research with plants and can be improved with the 

application of new PCR-based methods to detect toxicant-induced alterations in the plant 

genomes. As far as known, SSRs were first adopted by Kovalchuk et al. (2000) as tools to 

assess genetic instability in the offspring of wheat plants exposed to radiation near the 

Chernobyl nuclear power plant. More recently, the application of SSRs in higher plant 

bioassays for the detection of genomic DNA damage and/or mutational events such as 

deletions, insertions and point mutations as a consequence of exposure to environmental 

pollutants has been reported by Monteiro et al. (2007b, chapter 3.1 of this thesis). That 

work comprised an assessment of MSI in root and leaf tissue of 5-week-old lettuce 

exposed to 100 μM Cd for 14 days. The reported absence of MSI in these plants due to 

Cd stress may be related with the age of the plants, since the effects of metals are known 

to be highly dependent on the age of plants at time of exposure (Fodor, 2002). Exposure 

of young cucumber plants to Cd caused more effects than exposure of older plants, even 

though they accumulated a smaller amount of Cd (Láng et al., 1998).  

In the present study, the lettuce plants were exposed to Cd

ation and growth, and although the plants manifested symptoms of Cd toxicity 

within the leaves (senescence of expanded leaves and inhibition of shoot growth), Cd did 

not seem to interfere with DNA integrity. In this case, MSI was observed in lettuce roots 

exposed in vivo to 10 μM of Cd, with a mutation rate of 3.7% in the SSRs analysed.  

The MSI results presented here are complemented by data collected in a pa

hat employed flow cytometry to assess clastogenic damage. Monteiro et al. (2007a, 

chapter 3.3 of this thesis) presented data indicating that a 28-day exposure of L. sativa to 

100 μM Cd may lead to clastogenic damage in root tissues, since nuclear DNA content 

significantly decreased and FPCV (full peak coefficient variation of the G /G  peak) levels 

were significantly higher than in control plants. However, exposure to 10 μM Cd did not 

 96 



Cadmium genotoxic effects in plants 

In the present work, exposure to Cd resulted in greater accumulations of Cd in 

roots than in leaves. In previous studies by Costa and Morel (1994), roots of L. sativa 

plants 

nicity found in leaves 

(Monte

o those obtained by 

Montei

icrosatellite patterns found for the nine SSRs analysed seem to 

suggest that the Cd treatment performed generated no microsatellite instability on lettuce 

leaves.

(cv. Reine de Mai) exposed to hydroponic Cd solutions ranging from 0.01 to 100 

μM always displayed higher Cd contents than shoots. These results are in agreement with 

the findings of several authors who demonstrated that Cd ions are mainly retained in the 

roots and that only small amounts are transported to the shoots: Cd uptake into roots is 

relatively fast, whereas translocation to shoots is slower (Sanità di Toppi and Gabbrielli, 

1999; Maier et al., 2003; Zhang et al., 2005). Partitioning of metals in different parts of the 

plant is a common strategy to avoid toxicity in above-ground parts. The first barrier against 

Cd stress occurs in the roots where Cd may be immobilized by ligands on cell walls and 

extracellular carbohydrates (Sanità di Toppi and Gabbrielli, 1999). 

The higher accumulation of Cd in roots may explain the observed genotoxicity in 

this tissue, whereas the absence of MSI and no/low clastoge

iro et al., 2007a) may be related with lower Cd accumulation in leaves. Similar 

results were obtained by Gichner et al. (2004; 2008); in both of these studies the authors 

related the absence of genotoxic effects of Cd in plant leaves with the lower accumulation 

of Cd in this tissue and also to the better antioxidant defence system of leaves in 

comparison to roots, which may protect the nuclear DNA in leaf cells from Cd-induced 

oxidative stress. Gichner et al. (2004) found that activity of the antioxidant enzyme 

catalase was about 30 times higher in tobacco leaves than in roots. 

Considering the allele size of SSRs obtained in lettuce leaves and roots, results 

were similar (except for the mutation found - see Table 3.2.2) t

ro et al. (2007b). The difference in allele size of 1 or 2 bp obtained between both 

studies in some SSRs is attributed to the use of different lots of plant seeds and to the 

different devices of CE used to assess fragment sizes. Also, it is known that identical 

alleles can generally migrate within 0.5 bp of each other on the same sequencing run and 

larger variations can be observed when comparing data from the same sample on 

different sequencing runs (Santos et al., 2007). 

 

Conclusions  
 
The uniform m

 The 2-base pair deletion in one lettuce root SSR suggests the occurrence of MSI 

in this organ. Because Cd content is greater in roots than in leaves, roots may be more 
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exposed to internal Cd2+ than leaves. However, additional chronic toxicological trials 

should be performed in order to assess genotoxic effects of chronic exposure to Cd and to 

test the sensitivity of the method under more realistic exposure scenarios. 
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Abstract 

 
Cadmium (Cd) is a widespread environmental contaminant, strongly mutagenic and 

known to cause DNA damage in plants. In this work, flow cytometry (FCM) was applied to 

determine if chronic exposure to Cd would induce genotoxic effects at the genome level. 

The hyper-accumulator Thlaspi caerulescens (J. & C. Presl), the related non-accumulator 

Thlaspi arvense L. and the accumulator crop species Lactuca sativa L. were germinated 

in distilled water and grown in modified Hoagland’s medium with increasing 

concentrations of Cd(NO3)2 (0, 1, 10 and 100 μM). After 28 days of exposure, shoot and 

root growth was recorded and the tissues were harvested for Cd and FCM analysis. In 

general, roots from treated plants contained higher content of Cd than leaves and it was 

observed growth inhibition in the treated plants. Nuclear DNA content was estimated and 

the G0/G1 full peak coefficient of variation (FPCV), as an indicator of clastogenic damage, 

was recorded. In T. arvense and T. caerulescens no significant differences were detected 

between control and exposed plants. Leaves of L. sativa exposed to 10 μM Cd presented 

a statistically significant increase in FPCV values in comparison with the control group. 

Furthermore, roots exposed to 100 μM Cd presented a reduction in nuclear DNA content 

and an increase in FPCV when compared to the control. FCM data suggests that no major 

DNA damage was induced on both Cd-exposed Thlaspi species. On the contrary, chronic 

exposure to 10 μM and 100 μM of Cd seemed to cause genotoxic effects in L. sativa, with 

more severe effects being detected in the roots.  

 

Keywords: DNA, Lactuca sativa, metal, Thlaspi arvense, Thlaspi caerulescens 
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Introduction 
 

Cadmium (Cd) is a cytotoxic and mutagenic metal that can affect plant growth and 

development (Fodor, 2002). Atmospheric deposition, urban–industrial activities, coal ash 

and agricultural practices (e.g. use of agrochemical products and addition of sewage 

sludge) are the main anthropogenic sources of Cd in soils. The molecular mechanisms of 

Cd genotoxicity in organisms are not well understood, but it has been suggested that it 

may involve direct binding of Cd to the nucleotides guanine, adenine and thymine 

(Valverde et al., 2001; Hossain and Huq, 2002), direct inhibition of DNA mismatch repair 

(Hartwig, 1994; Jin et al., 2003), or may be processed indirectly by promoting the 

production of reactive oxygen species (ROS) that may then damage nucleic acids (Fodor, 

2002). Cadmium is known to induce genotoxicity in plants (Panda and Panda, 2002); 

Borboa and de La Torre (1996) have shown clastogenicity and aneugenicity in Allium 

cepa as a consequence of Cd exposure. 

Flow cytometry (FCM) is a technique that theoretically has the potential to detect 

minute differences in nuclear DNA (nDNA) content, as well as chromosomal damage, in 

exposed organisms. Otto and Oldiges (1980) were able to assess chromosomal damage 

induced by clastogenic agents and irradiation on Chinese hamster cell lines and mice 

through the analysis of the coefficient of variation (CV) of the G0/G1 peak. The increase in 

CV was positively correlated with the clastogenic effects observed by microscopic 

examination. Flow cytometry measurement of the dispersion in the nDNA content as 

induced by the interactions of DNA with environmental agents, emerged then as a 

powerful tool in cytogenetic investigations and in mutagenicity testing (Otto et al., 1981). 

Although FCM is routinely used in animal toxicological studies (Biradar and 

Rayburn, 1995; Easton et al., 1997; Bickham et al., 1998; Whittier and McBee, 1999), the 

use of similar approaches in plant genotoxicity assessment remains much less common. 

Significant changes in nDNA content have been detected in maize plants (Zea mays) 

exposed to coal fly ash (McMurphy and Rayburn, 1993) and to the fungicides captan 

(Rayburn et al., 1993) and triticonazole (Biradar et al., 1994). Furthermore, the mean CV 

of the G0/G1 peaks also increased in Z. mays individuals subjected to coal fly ash 

treatments (McMurphy and Rayburn, 1993). More recently, Rayburn and Wetzel (2002) 

reported that an increase in the CV values of the G0/G1 peak in both a maize mutant and 

in wheat grown in soil with high levels of aluminium was correlated with the number of 

abnormal anaphase figures.  
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In combination with amplified fragment length polymorphism (AFLP) analysis, FCM 

was also successfully introduced as a new biomonitoring tool to assess soil genotoxicity 

(Citterio et al., 2002). These authors demonstrated that exposure of Trifolium repens to 

Cd and Cr resulted in a decrease in the DNA index with increasing concentrations of Cr, 

and to an increase of debris background at the highest concentrations of Cd and Cr. More 

recently, Aina et al. (2006) using the same method and the same species did not find any 

differences in nDNA content between plants exposed to different polycyclic aromatic 

hydrocarbons and the control.  

The aim of the present study was to evaluate by FCM the dose-response 

relationship on nDNA content and CV of the G0/G1 peak after chronic exposure to Cd. For 

this, plants with different patterns of Cd accumulation were chosen: the hyper-accumulator 

alpine pennycress (Thlaspi caerulescens J. & C. Presl) that accumulates high levels of Cd 

in shoot tissues (up to 10.000 mg.Kg-1 in the Ganges ecotype, Lombi et al., 2000); the 

related field pennycress (Thlaspi arvense L.), which is a non-accumulator plant; and 

lettuce (Lactuca sativa L.), a Cd-accumulating plant and important human food crop 

recommended in several standard tests (e.g. ISO/CD 17126) (ISO, 1995). 

 
Material and Methods 
 

Plant culture and growth conditions 

 

Seeds of L. sativa (cv. Reine de Mai, Oxadis, France), T. arvense (Amsterdam) 

and T. caerulescens (Saint-Félix-de-Pallières, Ganges, France) were germinated under 

dark conditions in distilled water, using perlite as support media in polystyrene seedling 

trays. After germination, lettuce plants were grown on modified Hoagland’s nutrient 

solution (Monteiro et al., 2007), and Thlaspi sp. were grown on modified Rorison’s nutrient 

solution (Monteiro et al., in press). Both distilled water and nutrient solutions were 

supplemented with 0, 1, 10 and 100 μM Cd(NO3)2. Plants were grown at 24 ± 2 ºC, under 

light intensity of 200 μmol/m2/s and photoperiod of 16h/8h (light/dark). Nutrient solution 

was continuously aerated and changed twice a week to avoid nutrient depletion and 

changes in Cd concentration (Mann et al., 2005). After 28 days of exposure, plants were 

harvested. Morphological symptoms of Cd toxicity were noted, and shoot and root length 

was recorded (n=15-17). Also, plant material was collected for Cd accumulation 

assessment and FCM analysis. 
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Cadmium accumulation assessment 

 

Cadmium concentration in the hydroponic culture medium of control and Cd-

treated plants was verified by inductively coupled plasma spectroscopy (ICPS, Jobin Ivon, 

JY70 Plus, Longjumeau Cedex, France). Accumulation of Cd was determined in leaves 

and roots (n=3) dried to constant weight at 60 ºC. Roots were previously washed for 

10 min in 0.5 mM CaSO4 to remove, by cation exchange, the Cd adsorbed to the root 

surface. Dried tissues were treated as described by Santos et al. (2001) and subsequently 

analysed by ICPS. 

 

Flow cytometric analysis 

 

Nuclear suspensions from plant leaves and roots were prepared according to 

Galbraith et al. (1983). In brief, to release nuclei from the cells, leaf sections (1 to 2 cm2) 

and root apices (1 to 2 cm from the tip of 3 to 4 roots), were chopped with a sharp razor 

blade together with a young leaf (2 cm2) of the internal reference standard Pisum sativum 

cv. Ctirad (for L. sativa; 2C = 9.09 pg DNA (Doležel et al., 1998)) or Solanum 

lycopersicum cv. Stupicke (for the two Thlaspi spp.; 2C = 1.96 pg DNA (Doležel et al., 

1992)), in LB01 buffer (Doležel et al., 1989) (15 mM Tris, 2 mM Na2EDTA, 0.5 mM 

spermine.4HCl, 80 mM KCl, 20 mM NaCl, 0.1% (v/v) Triton X-100, pH 8.0). The 

suspension of nuclei was then filtered through an 80 μm nylon filter to remove large tissue 

fragments. Afterwards, 50 μg/ml of propidium iodide (PI; Fluka, Buchs, Switzerland) and 

50 μg/ml of RNase (Sigma, St. Louis, MO, USA) were added to the samples to stain 

nDNA and prevent the binding of PI to double stranded RNA, respectively. At least 5,000 

nuclei per sample were analysed in a Coulter EPICS-XL (Coulter Electronics, Hialeah, 

Florida, USA) flow cytometer. The instrument was equipped with an air-cooled argon-ion 

laser (15 mW operating at 488 nm). Before starting the analysis, the instrument was 

checked for linearity with fluorescent check beads (Coulter Electronics, Hialeah, FL) and 

the amplification was adjusted to position the G0/G1 peak of sample nuclei at channel 200. 

This setting was kept constant throughout the analysis. The results were acquired using 

the SYSTEM II software (v. 3.0, Beckman Coulter®) in the form of three histograms: linear-

fluorescence light scatter (FL); FL pulse integral versus FL pulse height and forward angle 

(FS) versus side angle (SS)-light scatter in logarithmic scale. In the last two cytograms, 

“interest zones” were defined to separate intact nuclei from doublets and debris.  
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Three replicates per condition and tissue were analyzed. In order to assess 

putative genotoxic effects on exposed plants, two different parameters were determined in 

each histogram: nuclear DNA content and full peak coefficient of variation (FPCV) of the 

G0/G1 nuclei. The nuclear DNA content was given by the ratio between the mean channel 

position of the sample and the internal standard multiplied by the nuclear DNA content of 

the reference standard. The FPCV was chosen instead of the more usual half peak 

coefficient of variation as it was our intention to analyse the whole dispersion of nDNA 

content, as diagnostic for clastogenic damage (as recommended for toxicological studies 

by Misra and Easton (1999). Since the control samples of Thlaspi spp. roots presented 

very high FPCV values (>10 %) and debris background, the samples corresponding to 

exposed plants of these species were not analysed and only the results concerning the 

leaves are presented. 

 

Statistical analysis 

 

Statistical differences between control and exposed leaves and roots were 

analysed using a one-way ANOVA, followed by the appropriate post-hoc tests (Dunnett’s 

method). Where necessary, data were transformed to achieve normality and equality of 

variance. If these criteria were not satisfied even after data transformation, non-parametric 

tests were performed (Kruskal-Wallis one-way ANOVA). SigmaStat (version 3.01, SPSS, 

Chicago, IL, USA) was used to perform all statistical tests. 

 
Results 
 

Cd accumulation assessment 

 

The concentration of Cd in the nutrient solution of control plants was below the 

ICPS detection limit (<0.01 µM). In the nutrient solutions with the nominal concentrations 

of 1, 10 and 100 µM Cd(NO3)2 the concentrations of Cd were 1.88, 10.50 and 96.97 µM 

for lettuce and 1.25, 11.56 and 100.52 µM for Thlaspi spp., respectively.  

The accumulation of Cd in roots and leaves of lettuce and Thlaspi spp. plants at 

the 28th day of exposure is presented in Figure 3.3.1. In general, roots from treated plants 

contained higher content of Cd than leaves. Specifically, plants exposed to 100 µM Cd 

presented about 2, 8 and 1.4-fold higher content of Cd in roots than in leaves of L. sativa, 

T. arvense and T. caerulescens, respectively. In contrast, among T. caerulescens plants 
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exposed to 10 µM Cd, the content of Cd in the leaves was more than 3-fold higher than in 

roots. 
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Figure 3.3.1 - Cadmium content in leaves and roots of Lactuca sativa (A), 
Thlaspi arvense (B) and Thlaspi caerulescens (C) plants after 28 days of 
exposure to 0, 1, 10 and 100 μM of Cd. Results are expressed as mean ± 
standard error. Significantly different values (*) when compared with the 
control group at p<0.05 and (a) when compared with leaf group at the same 
concentration of Cd. 
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Toxicity symptoms and plant growth 

 

Physical manifestations of Cd toxicity were observed in plants within the 28 days of 

culture. Plants developed toxicity symptoms in the form of chlorotic lesions, especially in 

expanded leaves of L. sativa and T. arvense, (3.3.2). Expanded leaf-fall was among Cd-

treated plants during exposure, and the roots of Cd-treated plants appeared darker than 

those of control plants. 

A B C

0 1 10 100 0 1 10 100 0 1 10 100

A B C

0 1 10 100 0 1 10 100 0 1 10 100

Figure 3.3.2 – Morphological aspect of the plants of Lactuca sativa (A), Thlaspi 
arvense (B) and Thlaspi caerulescens (C) after 28 days of exposure to 0, 1, 10 and 
100 μM of Cd. Bars represent 5 cm. 

 

In general, the exposure to Cd in the nutrient solution led to growth inhibition in the 

studied plants (Fig. 3.3.3). The growth of lettuce shoots and roots was significantly 

reduced at Cd concentrations of 10 and 100 μM (p<0.05). In the case of T. arvense 

growth inhibition was evident, with statistically significant differences (p<0.05) being 

observed in leaves after an exposure to 10 and 100 μM of Cd and on roots at a Cd 

concentration of 100 μM (p<0.05). Finally, growth in T. caerulescens was significantly 

reduced (p<0.05) only after exposure to 100 μM Cd. 

 

Flow cytometric analysis  

 

Cadmium treated plants of T. caerulescens and T. arvense presented similar 

nDNA content and FPCV values to those obtained for the control group (see Table 3.3.1). 

The small differences that were observed were not statistically significant (p>0.05). The 

nDNA contents of T. caerulescens and T. arvense were estimated to be 0.63 ± 0.006 

pg/2C and 1.19 ± 0.005 pg/2C, respectively. To our knowledge, this is the first estimation 

of nDNA content for the species T. caerulescens. FPCV values were much higher in T. 
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caerulescens than in T. arvense, which is likely associated with the higher impact that 

autofluorescent particles (such as chloroplasts) may have in the nuclei with lower 

fluorescence (those of T. caerulescens).  
 

 

Figure 3.3.3 - Shoot and root length of Lactuca sativa (A), Thlaspi 
arvense (B) and Thlaspi caerulescens (C) plants after 28 days of 
exposure to 0, 1, 10 and 100 μM of Cd. Results are expressed as mean ± 
standard error. (*) Significantly different values when compared with the 
control group at p<0.05. 
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In L. sativa (Table 3.3.1, Figure 3.3.4), roots exposed to 100 μM Cd presented a 

statistically significant reduction (p<0.05) in nDNA content (5.89 ± 0.056 pg/2C) when 

compared to the estimation obtained for the control plants (6.13 ± 0.055 pg/2C). On the 

other hand, in leaves, no statistically significant differences in nDNA content were 

obtained between control and exposed plants. There was a statistically significant 

increase in FPCV after the exposition of leaves to 10 μM Cd and of roots to 100 μM Cd.   

 

Table 3.3.1 - Nuclear DNA content and FPCV of plants exposed to 0, 1, 10 and 
100 μM Cd. Results are expressed as mean ± standard deviation (n=3). 

Sample 
Plant species & 

Organ 
Cd (μM) 

DNA content 
(pg/2C) 

FPCV (%) 

0 0.63 ± 0.006 8.60 ± 0.441 

1 0.64 ± 0.012 8.71 ± 0.232 

10 0.66 ± 0.002 8.35 ± 0.930 

Thlaspi caerulescens 

Leaf 

100 0.65 ± 0.017 9.83 ± 0.990 

0 1.19 ± 0.005 4.53 ± 0.456 

1 1.17 ± 0.008 4.66 ± 0.269 

10 1.17 ± 0.022 4.91 ± 0.335 

Thlaspi arvense 

Leaf 

100 1.18 ± 0.027 4.90 ± 0.689 

0 6.41 ± 0.044 3.65  ± 0.287 

1 6.36 ± 0.073 4.26  ± 0.590 

10 6.32 ± 0.077 4.90  ± 0.512* 

Lactuca sativa 

Leaf 

100 6.25 ± 0.194 4.64  ± 0.43 

0 6.13 ± 0.055 4.77 ± 0.643 

1 6.27 ± 0.045 4.63 ± 0.358 

10 6.23 ± 0.081 4.94 ± 0.283 
Lactuca sativa 

Root 

100 5.89 ± 0.056 * 6.63 ± 0.619 * 

 
 
Discussion  
 

Exposure of the three plants to Cd resulted in an array of dose dependent 

morphological effects that are symptomatic of Cd toxicity in plants, including a strong 

inhibition of leaf and root growth, chlorosis in the leaves and browning of the roots. This is 

in agreement with the current knowledge on the effect of this heavy metal in Thlaspi 
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species (Ozturk et al., 2003; Wójcik et al., 2005) and lettuce (Michalska and Asp, 2001) as 

well as other plant species (Prasad, 1995). 

Flow cytometric analyses of the leaves of T. arvense and T. caerulescens revealed 

homogeneity in nDNA content and FPCV values, suggesting that no clastogenic damage 

occurred due to Cd exposure. These results seem to indicate that besides the severe 

inhibition of growth and the accumulation of Cd in roots and subsequent translocation to 

the leaves, both Thlaspi species possess mechanisms to cope with the Cd toxicity at the 

cellular level. These mechanisms involve the chelation of Cd by phytochelatins and/or 

 
Figure 3.3.4 - Histograms of relative fluorescence intensity obtained after simultaneous 
analysis of nuclei isolated from Pisum sativum cv. Ctirad (as reference standard) and 
Lactuca sativa leaves (a and c) and roots (b and d) exposed to 0 (a and b) and 100 μM Cd 
(c and d).  In all FL histograms four peaks were observed: 1 – nuclei at G0/G1 phase of L. 
sativa; 2 – nuclei at G0/G1 phase of P. sativum; 3 - nuclei at G2 phase of L. sativa; 4 – 
nuclei at G2 phase of P. sativum. For each peak the following information is given:  mean 
fluorescence in arbitrary units (Mean FL), full peak coefficient of variation (FPCV) and the 
DNA index (ratio between the mean FL of each peak and the mean FL of the G0/G1 peak 
of the internal standard, DI). 
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organic acids and storage in vacuoles (Ueno et al., 2005; Wójcik et al., 2005) and may 

prevent the accumulation of ionic Cd2+ in the cells where it could cause severe 

genotoxicity either by direct binding to DNA, by indirect inhibition of DNA mismatch repair, 

or by causing oxidative stress. 

Lactuca sativa has been for some time a “model” species for Cd genotoxicity tests 

in our laboratory. In preliminary trials using the same methodology, no changes in nDNA 

content and in CV (HPCV) values were detected neither in five-week-old lettuce plants 

exposed to 100 μM Cd for 14 days (Monteiro et al., 2004) nor in lettuce plants germinated 

and grown for 2 months in 10 μM Cd and analysed every 15 days (Monteiro et al., 2005). 

However in the present work, statistically significant changes in nDNA content and FPCV 

values have been detected. These results suggest that Cd stress may be leading to 

clastogenic DNA damage as a consequence of loss of chromosome portions, because 

nDNA content is depressed. Still, caution should be taken in the interpretation of these 

results as other factors may be governing the observed differences: i) higher 

condensation of nDNA in exposed tissues, which could lead to a lower binding of PI (a 

chromatin state sensitive fluorochrome) to DNA structure and thus to a lower estimation of 

nDNA content (Doležel and Bartos, 2005); ii) higher amounts of secondary metabolites 

(e.g. phenolic compounds) in the cytosol of cells exposed to Cd. It was previously 

demonstrated that phenolic compounds affect the fluorescence and light scatter properties 

of plant nuclei by interfering with the stoichiometric binding of PI to DNA and by 

aggregating other particles to plant nuclei, which leads to higher CV values (Loureiro et al., 

2006). Several authors have already demonstrated that part of the mechanism for metal 

tolerance in plants involves the production of organic acids and the release of phenolic 

compounds to the cytosol (Delhaize et al., 1993a; Delhaize et al., 1993b; Mullet et al., 

2002). In the particular case of Cd, (Irtelli and Navari-Izzo, 2006) revealed an increase of 

phenolic compounds in leaves of Brassica juncea that were under Cd exposure.  

In support of the hypothesis that Cd stress has indeed resulted in DNA damage, 

previous work by Monteiro et al. (2007) using microsatellite markers demonstrated a 

mutation rate of 3.7% in roots of lettuce exposed to 10 μM Cd. Moreover, in the present 

study and in the work of Monteiro et al. (2007), the genotoxic effects occurred mainly in 

the roots and not in the leaves (except the increase in FPCV registered in leaves of 10 μM 

Cd-exposed plants). Actually, Cd was accumulated in far greater concentrations (2-fold) in 

the roots than in the leaves of L. sativa exposed to 100 μM Cd, which may well be related 

with the genotoxicity patterns that were detected. Gichner and co-workers obtained similar 

results, with Cd exposure inducing DNA damage only in the roots of Nicotiana tabacum L., 
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but not on the leaves (Gichner et al., 2004), and with the absence of Cd genotoxicity in the 

leaves of Solanum tuberosum L. subjected to short-term treatments with Cd (Gichner et 

al., 2008). In both studies the authors related the absence of genotoxic effects of Cd in 

plant leaves, to the lower accumulation of this metal in this organ and to the presence of a 

better antioxidant defence system that might protect the nuclear DNA in leaf cells from 

Cd-induced oxidative stress (Gichner et al., 2004; Gichner et al., 2008). Gichner et al. 

(2004) found that the activity of catalase (an anti-oxidant enzyme) was about 30 times 

higher in tobacco leaves than in roots, which underscores the differences in sensitivity to 

Cd exposure in leaves and roots. 

 

Conclusions 
 
The results suggest that on the basis of FCM analysis, a long-term exposure to Cd 

induced cyto/genotoxicity in L. sativa but not in Thlaspi spp., highlighting the usefulness of 

this technique to screen and monitor in vivo effects of environmental pollutants. These 

data have been complemented with other molecular assays (e.g. SSR) which, together 

with physiological and cytological data, will surely help to give further insights to the 

results obtained using flow cytometry.  
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Abstract 
 

The present study examined how subcellular partitioning of Cd in plants with different 

strategies to store and detoxify Cd may affect trophic transfer of Cd to the isopod Porcellio 

dilatatus. The plant species used were Lactuca sativa, a horticultural metal accumulator 

species; Thlaspi caerulescens, a herbaceous hyperaccumulator species; and the 

nonaccumulator, T. arvense. Taking into account that differences in subcellular 

distribution of Cd in plants might have an important role in the bioavailability of Cd to a 

consumer, a differential centrifugation technique was adopted to separate plant leaf 

tissues into four different fractions: cell debris, organelles, heat-denatured proteins, and 

heat-stable proteins (metallothionein-like proteins). Plants were grown in replicate 

hydroponic systems and were exposed for 7 d to 100 μM Cd spiked with 109Cd. After a 14-

d feeding trial, net assimilation of Cd in isopods following consumption of T. caerulescens 

and T. arvense leaves reached 16.0 ± 2.33 and 21.9 ± 1.94 μg/g animal, respectively. 

Cadmium assimilation efficiencies were significantly lower in isopods fed T. caerulescens 

(10.0 ± 0.92%) than in those fed T. arvense (15.0 ± 1.03%). In further experiments, Cd 

assimilation efficiencies were determined among isopods provided with purified 

subcellular fractions of the three plants. On the basis of our results, Cd bound to heat-

stable proteins was the least bioavailable to isopods (14.4–19.6%), while Cd bound to 

heat-denatured proteins was the most trophically available to isopods (34.4–52.8%). 

Assimilation efficiencies were comparable in isopods fed purified subcellular fractions from 

different plants, further indicating the importance of subcellular Cd distribution in the 

assimilation. These results point to the ecological relevance of the subcellular Cd 

distribution in plants, which directly influence the trophic transfer of Cd to the animal 

consumer. 
 

Keywords: Assimilation efficiency; Centrifugal fractionation; Dietary metal; Porcellio 
dilatatus; Trophically available metal 
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Introduction 

 

Cadmium (Cd) is a toxic metal that is able to accumulate in soils. It reaches soils 

mainly from mining (e.g., zinc mining), several industrial activities, and agricultural use of 

phosphate fertilizers and sewage sludge. Cadmium can be strongly cytotoxic and 

mutagenic to plants and animals, interfering in a wide variety of metabolic processes in 

plants and animals (Prasad, 1995). The toxic action of Cd is facilitated through its 

propensity to bind to the sulfhydryl groups of proteins and substitute for essential metals 

such as Zn in metalloenzymes and through the inhibition of DNA mismatch repair and 

production of reactive oxygen species (Prasad, 1995; Jin et al., 2003). 

However, some plants are able to accumulate Cd in edible tissues at high 

concentrations without showing symptoms of toxicity, thereby introducing the metal into 

the food chain by trophic transfer. Plants use sequestration mechanisms to detoxify 

metals and prevent interaction with important biomolecules. These mechanisms include 

binding to proteins and other ligands (e.g., metallothionein (MT)-like proteins) and storage 

of metals into metabolically inactive cellular sites, such as granules inside vacuoles 

(Prasad, 1995; Clemens et al., 2002). These two major detoxification pathways in plants 

may have implications for the trophic transfer to animal consumers. 

Extensive studies have been made on Cd bioaccumulation and toxicity to 

organisms, and models have been developed to predict the bioavailability and toxicity of 

metals (Paquin et al., 2002; Wang and Rainbow, 2006). However, they do not yet 

consider the contribution of the dietary route of metal exposure and the relevance of the 

complexity of internal metal subcellular partitioning in prey, which may significantly affect 

the subsequent trophic transfer of metals to predators (Wang and Rainbow, 2006). In an 

attempt to develop a predictive model for the dietary accumulation of metals in marine 

food chains, a subcellular fractionation procedure has gained popularity (Wallace et al., 

1998; Wallace et al., 2003; Wallace and Luoma, 2003; Cheung et al., 2006; Seebaugh et 

al., 2006; Zhang and Wang, 2006; Steen Redeker et al., 2007). Wallace and Luoma 

(2003) postulated that Cd associated with the subcellular fractions organelles, heat-

denatured proteins (HDP), and heat-stable proteins (HSP) of prey was trophically 

available metal (TAM) and was assimilated at an efficiency of approximately 100% by the 

predator, while Cd bound to metal-rich granules was less bioavailable to predators 

(Wallace et al., 1998; Wallace and Luoma, 2003). This is considered a simple and 

pragmatic approach in the prediction of trophic transfer of metals and a first step toward a 

practical tool that could explain most of the variability observed in metal accumulation and 
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toxicity in organisms (Vijver et al., 2004). However, there is a need to apply this approach 

to other food chains in order to verify its utility. 

To the best of our knowledge, trophic transfer of metals from plants through 

terrestrial food chains has not received much attention, despite being of great relevance. 

However, there have been some studies focusing on the cellular and subcellular 

distribution of metals in plants. Subcellular localization of Cd in plants has been assessed 

through subcellular fractionation (Weigel and Jäger, 1980; Ramos et al., 2002), and other 

techniques such as autoradiography (Cosio et al., 2005), energy dispersive X-ray 

microanalysis (Kupper et al., 2000; Cosio et al., 2005; Wójcik et al., 2005a), and electron 

energy loss spectroscopy (Liu and Kottke, 2003). In lettuce 64% of accumulated Cd is 

partitioned to cell walls (Ramos et al., 2002), and both Lactuca sativa L. and Thlaspi 

arvense L. possess detoxification mechanisms in which phytochelatins (PC) play an 

important role (Ebbs et al., 2002; Maier et al., 2003). Thlaspi caerulescens was found to 

mainly store Cd in electron-dense granules inside vacuoles by means of complexation 

with malate (Ma et al., 2005; Ueno et al., 2005). Cadmium distribution reflects internal 

processing that occurs during Cd uptake and accumulation in plants and can be used to 

interpret metal toxicity and tolerance. In addition, knowledge of how organisms handle 

their accumulated metal may allow more accurate predictions of the eventual transfer of 

metals to higher trophic levels (Wallace and Luoma, 2003). 

In the present study we tested the hypothesis that subcellular distribution in plants 

will dictate the trophic bioavailability of Cd to isopods. To achieve this, the transfer of Cd in 

a food chain comprised of plant leaves and a detritivorous animal, the isopod Porcellio 

dilatatus, was examined with the following specific aims: to investigate the relevance of 

different subcellular distribution in plants in the assimilation efficiency (AE) of the isopod, 

and to determine the assimilation of Cd from each subcellular fraction of plants, to directly 

assess the role of each fraction in the assimilation of Cd by isopods. For this, three plants 

with different patterns of Cd accumulation were studied: T. caerulescens J. & C. Presl is a 

hyperaccumulator of several metals, including Cd, and is a plant commonly used as a 

model in metal transport and accumulation studies with a view to use in phytoremediation 

(Pence et al., 2000; Assunção et al., 2003; Zhao et al., 2003); the related nonaccumulator 

T. arvense; and lettuce (L. sativa), which is a Cd-accumulating plant and an important 

human food crop. The terrestrial isopod P. dilatatus, inhabiting the upper layer of the soil 

and surface leaf litter, is quite abundant in southern Europe and an important 

representative of the detritivorous soil fauna. Moreover, isopods have an enormous 
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capacity to accumulate large body burdens of toxic metals (Donker et al., 1990) making 

them a valuable model for the examination of metal assimilation and accumulation. 

 
Material and methods 
 
Cadmium trophic transfer from plants to isopods was assessed in three different 

and complementary experiments: assessment of Cd subcellular distribution in the plants L. 

sativa, 

T. caerulescens, and T. arvense; feeding experiment 1, an assessment of isopod 

(P. dilatatus) Cd AEs from plant leaves of T. caerulescens and T. arvense; feeding 

experiment 2, an assessment of isopod Cd AEs from individual subcellular fractions of L. 

sativa, T. caerulescens, and T. arvense plant leaves. 

 

Plant culture and growth conditions 

 

Seeds from L. sativa (Reine de Mai de Pleine Terre) (Oxadis, Saint Quentin 

Fallavier, France), T. caerulescens (Saint-Féix-de-Pallièes, Ganges, France), and T. 

arvense (Amsterdam, The Netherlands) were germinated under dark conditions on filter 

paper moistened with distilled water. After germination, seedlings were transferred to 

perlite support media in polystyrene seedling trays floating on nutrient solution. The trays 

were maintained in a plant growth chamber (APT.line® KBWF, Binder, Tuttlingen, 

Germany) with controlled temperature (20 ± 1ºC), 16:8 h light:dark photoperiod, 80% 

humidity, and 200 μmol/m2/s light intensity. Lettuce was grown in modified Hoagland’s 

nutrient solution according to Monteiro et al. (2007). Thlaspi plants were grown on 

modified Rorison nutrient solution with the following basic composition (μM): 1500 KNO3, 

1000 Ca(NO3)2·4H2O, 500 NH4H2PO4, 500 MgSO4.7H2O, 46.25 H3BO3, 0.77 ZnSO4.7H2O, 

0.36 CuSO4.5H2O, 0.37 NaMoO4.2H2O, 10.12 MnCl2.4H2O, 17.91 FeCl3. Before Cd 

exposure, L. sativa and T. arvense were grown for five weeks. Since T. caerulescens 

grows more slowly, to achieve a similar plant biomass, this plant was grown for nine 

weeks before Cd exposure. Plants were exposed to Cd for 7 d; the respective nutrient 

solution was supplemented with Cd(NO3)2 at 100 μM and 77 nCi/ml 109Cd (Amersham 

Biosciences, London, England). Control plants were maintained in nutrient solution with 

no addition of Cd. The nutrient solution was continuously aerated and changed on 

alternate days to avoid depletion of nutrients and changes in Cd concentration during the 

course of the exposure to the metal (Mann et al., 2005). After 7 d of exposure, plant 
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leaves were frozen in liquid nitrogen and stored at -80ºC until subcellular fractionation 

analysis or dried at 60ºC for subsequent use in isopod feeding experiment. 

    

Subcellular Cd distribution in plant leaves 

 

Differences in plant subcellular Cd distribution were investigated by subjecting 

plant leaves to the following procedure. Replicated (n = 6–10) 1-g samples of leaves from 

each species were each reduced to powder with liquid nitrogen using a mortar and pestle 

and homogenized in 4 ml of buffer containing 0.25 M sucrose, 1 mM dithioerythritol, and 

50 mM Tris-HCl (pH 7.5) (Weigel and Jäger, 1980). All steps were performed at 4ºC and 

according to Weigel and Jäger (1980) with some modifications based on Wallace et al. 

(2003). The resulting homogenate was filtered through nylon cloth (50 μm) and washed 

twice with homogenization buffer. The filtrate was then centrifuged at 500 g for 5 min. The 

resulting pellet combined with the residue of the filtration contained mainly cell walls, 

tissue fragments, and other cellular debris and was designated as cell debris. The 

supernatant of the first centrifugation step, containing the cytosol, was then centrifuged at 

100,000 g for 30 min to sediment organelle components (i.e., chloroplasts, mitochondria). 

The pellet was designated as the organelle fraction. The 100,000 g supernatant 

containing the cytosol fraction was then heat denatured at 80ºC for 10 min and cooled on 

ice for 15 min. Heat-denatured proteins were separated from the HSPs (MT-like proteins) 

by centrifugation at 50,000 g for 10 min. All fractions were assayed for Cd by 

radiospectrometry and metal contents were used to calculate distributions of Cd within 

plant leaves based on summation of Cd content of the four subcellular fractions. 

 

Isopod culture and feeding test conditions 

 

Cadmium AEs in isopods fed T. arvense and T caerulescens leaves was assessed 

in this experiment. A similar experiment has already been performed in L. sativa leaves by 

Calhôa et al. (2006). In the current experiment we used P. dilatatus from laboratory 

cultures derived from individuals collected in a secondary coastal dune system in central 

Portugal. Isopods were maintained in plastic containers with sand substrate and kept at 

20ºC with a 16:8 h light:dark photoperiod. Alder leaves were provided as a source of food 

and distilled water was added to maintain moisture. Twenty juvenile isopods (weight 

range: 14–19 mg) per treatment were selected and isolated individually in test boxes for 

24 h before the test without food to purge the gut. No distinction was made between sexes. 
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Polyethylene terephthalate boxes (diameter 85 mm × 43 mm; Termoformagen, Leiria, 

Portugal), containing a thin layer of plaster of Paris mixed with activated charcoal (8:1 v/v) 

for the retention of added moisture were used as individual test boxes. Food was replaced 

every week to prevent consumption of food that had become inoculated with fungi; fungi 

growth may alter Cd bioavailability. Fecal pellets were collected every day to prevent 

coprophagy. 

 

Feeding experiment 1 

 

Leaves from control and Cd-exposed plants of T. arvense and T. caerulescens 

were cut into individual portions weighing approximately 10 mg (range 8.1–10.9 mg dry 

wt), assayed for 109Cd (438.9 ± 88.76 and 236.2 ± 53.30 μg Cd/g dry weight (mean ± 

standard deviation) in Cd-exposed T. arvense and T. caerulescens, respectively) and 

moistened before being placed in test boxes. Animals were fed for a period of 14 d 

exclusively on leaves according to treatment. Food was replaced every week with fresh 

leaves and the remains of food were dried (2 d at 60ºC), weighed and analyzed for Cd by 

radiospectrometry. After 14 d, isopods were left for 24 h without food to purge their guts 

and were then weighed and analyzed for Cd. Fecal pellets were collected and dried (2 d 

at 60ºC) to be weighed. Data on isopod, fecal pellet, and leaf mass were used to 

determine indices of isopod growth, food consumption, and AE. Plant AE by isopods was 

calculated as: 

 

AEplant = (Cplant – F)/Cplant×100                                                                     (1) 

 

where Cplant is the mass of plant leaf consumed by isopods, and F is the mass of 

fecal material produced. Radiospectrometry data obtained from the isopods and food 

were used to determine indices of Cd AE. Cadmium AE was calculated as: 

 

AECd=ICd/CCd×100                                                                                       (2) 

 

where ICd is the amount of Cd within the isopod at the termination of the feeding 

trial, and CCd is the amount of Cd consumed. 
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Feeding experiment 2   

 

Leaves of L. sativa, T. arvense, and T. caerulescens exposed to Cd and were 

subjected to subcellular fractionation as described above. The four different fractions 

obtained (cell debris, organelles, HDP, and HSP) were mixed (1:2) with a gelatine solution 

prepared from 2.5 g gelatine powder (VWR Prolabo, Fontenay Sous Bois, France) and 

12.5 ml ultra pure water and were then mixed by vortexing (Wallace and Lopez, 1996). As 

a supernatant, HSP fraction presented higher volume than the other pellet fractions, 

therefore these fractions were concentrated by evaporation under a stream of nitrogen 

before being mixed with gelatine. Aliquots of 7 μl of the mixture (fraction and gelatine) 

were pipetted onto Parafilm® (Pechiney Plastic Packaging, Menasha, WI, USA), forming 

gelatine discs that were stored frozen at -20ºC until required (Wallace and Lopez, 1997). 

Additionally, gelatine discs were prepared containing either gelatine alone or a mixture of 

homogenate of control plant leaves and gelatine solution (1:2) to be used as a control 

foods (control 1 and control 2, respectively). 

Isopods were fed gelatine discs for a period of 28 d. Because some of the fractions 

were likely to contain very small quantities of Cd, a longer duration was chosen for this 

feeding experiment to ensure that accumulated Cd was above the detection limits of 

analysis. This longer period of exposure will not influence Cd AE since elimination of Cd is 

negligible in isopods (Witzel, 1998) and therefore allows for comparisons with the above 

experiment. Gelatine discs were previously assayed for Cd by radiospectrometry before 

being fed to isopods and were replaced every week; the remains of food were also 

assayed for Cd. After 28 d isopods were left in test boxes without food to purge their guts, 

and after 24 h were weighed and analyzed for Cd. The Cd content and mass data 

obtained for isopods and the gelatine discs were used to determine isopod growth and Cd 

AE as described above. 

Estimation of AE of Cd from whole plant leaves (AEwhole) based on AE for individual 

fractions was calculated by the following mass balance equation: 

 

  AEwhole = ∑AEi×Cdi       (3)

  

where AEi is the Cd AE of isopod fed a purified fraction i and Cdi is the percentage 

of Cd in the subcellular fraction i (Wallace and Lopez, 1997; Zhang and Wang, 2006). 
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Cadmium analysis 

 

All samples of subcellular Cd distribution were placed in 10.4-ml polycarbonate 

tubes (Beckman instruments, Fullerton, CA, USA) and analyzed for 109Cd in a Genesis 

Gamma-1 bench-top gamma counter (Laboratory Technologies, Maple Park, IL, USA). 

Sections of dry plant leaf and gelatine discs (before feeding and remains after feeding), 

isopods, and fecal material were placed in 3.5-ml Röhren tubes (Sarstedt, Newtown, NC, 

USA) and were analyzed for Cd by radiospectometry. Data on Cd content of leaves, 

isopods, and fecal material were used to determine indices of Cd consumption and AE. 

Cadmium concentration in the hydroponic culture medium was verified by 

inductively coupled plasma spectroscopy (Horiba Jobin Yvon, 70 Plus, Longjumeau, 

France) compared with radiospectometry measurements and used as a reference for 

calculations of total Cd content. 

 

Statistical analysis 

 

Statistical analysis was carried out by t tests or one-way analysis of variance and 

Tukey post hoc tests as appropriate. When necessary, data were transformed to achieve 

normality and equality of variance. When these criteria were not satisfied even with 

transformed data, nonparametric tests were performed, namely Kruskal–Wallis one-way 

analysis of variance followed by Dunn’s method post hoc test. SigmaStat® (Ver 3.01, 

SPSS, Chicago, IL, USA) was used to perform all statistical tests. 

 

Results 

 
Cadmium subcellular distribution in plant leaves 

 

Cadmium subcellular distribution in L. sativa, T. arvense, and T. caerulescens in 

relation to the total Cd accumulated in leaves is shown in Figure 4.1. The cell debris 

fraction represents an important pool of the total accumulated Cd (28.0–43.8%) in all the 

plants analyzed. In lettuce leaves the cell debris fraction was the dominant pool for Cd 

storage, displaying the highest percentage of the total Cd present in leaves, which is 

significantly different from the other fractions ( p<0.05). 
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Figure 4.1 - Subcellular Cd distribution in Lactuca sativa, Thlaspi arvense, 
and Thlaspi caerulescens in relation to the total accumulated Cd. In each 
fraction numbers represent mean (%), error bars represent standard error for 
each fraction (n=6–10). 
 

The organelle fraction accounted for 10.2 and 19.7% of the Cd in T. arvense and T. 

caerulescens, respectively. In T. arvense the organelles fraction accounted for the lowest 

percentage of Cd in the leaves of this plant, being significantly lower than the percentage 

of Cd in the cell debris and HDP fractions ( p<0.05). 

The HDP fraction was the dominant fraction for Cd binding in T. arvense (46.3%) 

and T. caerulescens (40.3%), but accounted for a significantly lower percentage of Cd 

(16.3%) in lettuce leaves (p<0.001). 

The HSP fraction contained the lowest percentage of Cd in T. caerulescens leaves 

(4.1%), when compared to the other fractions in the same plant (p<0.001) and also, when 

compared with the same fraction in the leaves of L. sativa and T. arvense (p< 0.05). 

 

Feeding experiment 1  

 

Isopod growth 

 

During the 14 d of the feeding experiment with Thlaspi leaves isopods all 

increased in weight, except those provided with control leaves of T. caerulescens (Fig. 
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4.2A). Growth of isopods fed T. caerulescens control leaves was significantly different 

from that of isopods fed T. arvense control leaves (p<0.05). No significant difference was 

found between growth of isopods fed control and treated leaves of both plants. Mortality 

was below 10% in all treatments. 
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Figure 4.2 - Growth (A), Thlaspi plant leaf consumption (B), plant assimilation efficiencies 
(C), Cd consumption (D), Cd assimilation (E), and Cd assimilation efficiencies (AEs) (F) of 
isopods fed exclusively control or Cd-treated T. arvense and T. caerulescens leaves for 
14 d. Bars represent mean ± standard error (n=20). (*) Significantly different from control 
(B) or between treatments (F), p<0.001. (a) Significant difference between plant controls, 
p<0.05. 
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Plant consumption and assimilation efficiency 
 

Plant consumption by isopods was significantly different between the Thlaspi 

species (p<0.01). Isopods fed T. caerulescens consumed less than isopods fed T. 

arvense leaves (Fig. 4.2B). Treatment with Cd significantly reduced plant consumption for 

T. arvense (p<0.001) but not for T. caerulescens (p>0.05). Plant AE was not significantly 

different between isopods of the different treatments (p<0.05). Isopods fed controls leaves 

displayed plant AEs of 73 ± 4.6% for T. arvense and 77 ± 2.7% for T. caerulescens (Fig. 

4.2C). 
 

Cadmium consumption, assimilation, and AE 
 

Cadmium consumption by isopods (Fig. 4.2D) was similar between the plant 

species studied. Isopods fed T. arvense and T. caerulescens consumed (mean ± standard 

error) 155 ± 9.6 and 162 ± 11.5 μg/g animal, respectively. Assimilation of Cd was lower in 

isopods fed T. caerulescens (Fig. 4.2E) than in those fed T. arvense, however a t test 

indicated a marginally nonsignificant difference (p=0.058) between treatments. The AE of 

Cd by isopods fed T. caerulescens leaves, 10.0 ± 0.92%, was significantly lower than the 

AE of Cd by isopods fed T. arvense leaves, 15.0 ± 1.03% (p<0.001) (Fig. 4.2F). 
 

Feeding experiment 2 
 

Growth 

 

The effects of subcellular Cd distribution in plants on Cd AE were further 

determined in the experiments when isopods were fed pure subcellular fractions (cell 

debris, organelles, HDP, and HSP) derived from the leaves of L. sativa, T. arvense, and T. 

caerulescens. Isopods displayed positive growth in all treatments with the three different 

plant species studied (Fig. 4.3A). Isopods fed pure gelatine discs (control 1) grew less 

than isopods fed gelatine added with the respective plant leaf homogenate (control 2) or 

subcellular fractions. However this difference was not always significant. Growth among 

isopods in the control 2 treatment was significantly higher than in control 1 for isopods fed 

T. caerulescens leaves. Isopods fed the cell debris fraction of the three plants displayed 

significantly higher growth (p<0.05) when compared to control 1, as was the case with the 

organelles fraction of T. arvense (p<0.05). Isopods fed the organelle fraction of T. 

caerulescens displayed significantly lower growth when compared to the respective C2 
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(p<0.05). Furthermore, when comparing growth in isopods fed different subcellular 

fractions of L. sativa, HDP and HSP fractions presented a significant reduction in isopod 

growth when compared to the cell debris fraction (p<0.05). 
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Figure 4.3 – Isopods fed exclusively separated subcellular fractions (heat-denatured 
proteins (HDP) or heat-stable proteins (HSP)) of Lactuca sativa, Thlaspi arvense, and 
Thlaspi caerulescens leaves for 28 d. (A) Isopod growth, among control isopods fed pure 
gelatine discs (Control 1) or gelatine with control leaf homogenate (Control 2), or isopods 
fed subcellular fractions. Statistical differences: (a) different from Control 1 (p<0.05), (b) 
different from Control 2 (p<0.05), (c) different from D (p<0.05). (B) Isopods Cd assimilation 
efficiencies (AE), bars with different letters are significantly different (p<0.05) for the same 
plant. Bars represent mean ± standard error. 
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Cadmium AE from purified subcellular fractions 

 

As a general pattern across plant species, isopods fed the HSP fraction displayed 

significantly lower AE compared to the AEs for the other fractions (p<0.001) (Fig. 4.3B). 

Isopods fed the cell debris fraction displayed similar AEs to those fed the organelles and 

HDP fractions for L. sativa and T. caerulescens, but for T. arvense, AE for the cell debris 

fraction was significantly lower than that for the organelles and HSP fractions (p<0.001). 

The order of Cd AE from each subcellular fraction was similar across the three species 

analyzed, HSP (22.8%) < cell debris = organelles = HDP (57.0%) for L. sativa; HSP 

(15.6%) < cell debris < organelles = HDP (47.4%) for T. arvense; and HSP (12.1%) < cell 

debris = HDP = organelles (35.0%) for T. caerulescens. 

 

Estimation of Cd AEs 

 

Figure 4.4 presents a comparison between the predicted and the actual Cd AEs in 

isopods. Estimation of Cd AEs through mass balance equation (Eqn. 3) using data 

obtained in feeding experiment 2 indicated that isopods would be expected to assimilate 

about 44.1, 36.4, and 26.4% of Cd from L. sativa, T. arvense, and T. caerulescens, 

respectively. The trend displayed by actual AEs (data from feeding experiment 1 and 

Calhôa et al. (2006)) was similar to the estimated AEs; L. sativa was the plant species 

displaying higher Cd AEs in isopods; whereas, Cd in T. caerulescens presents the lowest 

AEs. However, in both Thlaspi species AEs seem to be overestimated, whereas in L. 

sativa the estimation of Cd AE is slightly lower than the observed in the study performed 

by Calhôa et al. (2006). 

Figure 4.4 also displays the individual contribution of each subcellular fraction to 

the total estimated AEs. It is apparent from Figure 4.4 that Cd sequestered in HSP fraction 

constitutes only a minor source of the Cd assimilated by isopods from the three plant 

species studied. In L. sativa, the cell debris fraction, which includes cell walls and 

granules, is the major source of Cd, accounting for about half the estimated Cd AE (21% 

out of the total estimated 44.1%). In Thlaspi species, HDP displayed the highest 

contribution to the estimated AEs, accounting for about half of the estimated Cd AE by 

isopods (21.9% out of the total 36.4% for T. arvense and 13.0% out of the total 26.4% for 

T. caerulescens). 
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Figure 4.4 – Estimated and whole-leaf Cd assimilation efficiencies (AEs) in the isopod 
Porcellio dilatatus fed Lactuca sativa, Thlaspi arvense, and Thlaspi caerulescens. Error 
bars represent standard error (n=20). The estimated Cd (AEs) were calculated from the 
isopod Cd AEs from individual fractions (heat-denatured proteins (HDP] or heat-stable 
proteins (HSP)) and the subcellular distributions of cadmium in the plant (see mass 
balance equation, Eqn. 3). Whole-leaf Cd AEs from L. sativa leaves is from the work of 
Calhôa et al. (2006). 

 
 
Discussion 
 
Predicting the bioavailability of tissue-bound metals to a consumer or predator is 

fraught with difficulty, as several important aspects of trophic transfer must be considered. 

Different prey species will accumulate and partition metals in varying ways depending on 

the detoxification mechanisms employed. The subsequent bioavailability of those 

partitioned metals to a consumer will be dictated by digestive and assimilative 

mechanisms of the digestive tract. Added to this complexity is the varying ability of 

consumers to discriminate between different foods and contaminants, their nutritional 

status at the time of consumption, the degree of exposure, and exposure history for the 

metal in question, all of which can influence the degree of metal assimilation. These 

various factors are reflected in the wide variety of Cd AEs that have been reported in 

organisms fed biologically contaminated food, ranging from 1% in rats fed snail viscera 
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(Hispard et al., 2008), to 52% in the isopod P. dilatatus fed lettuce (Calhôa et al., 2006), 

and up to 76.2 to 94.2% for whelk Thais clavigera fed five different species of prey 

(Cheung and Wang, 2005). In the present study we have shown that the centrifugal 

fractionation techniques previously advocated by Wallace et al. (2003), can be used to 

explain the pattern of Cd assimilation in isopods fed different plant species contaminated 

with Cd.  

 

Subcellular distribution of Cd in plants 

 

Lactuca sativa 

 

In our work, Cd was found mainly in the cell debris fraction of L. sativa leaves, 

which was obtained from the residue of filtration and the 500 g pellet of the filtrate and 

includes cell walls and cell debris. These results are in good agreement with those 

obtained by Ramos et al. (2002) for L. sativa (cv. Grandes Lagos). Using a subcellular 

fractionation method similar to the one used in the present study, they found 64% of 

accumulated Cd associated with the fraction named cell wall fraction, which is equivalent 

to the cell debris fraction in the present study. Ramos et al. (2002) also found 

approximately 12% of Cd associated with chloroplasts, which also is consistent with the 

proportion of Cd found in the organelles fraction in the present study. Lettuce also had a 

substantial proportion of Cd associated with the HSP fraction, and this is consistent with 

reports that have shown a strong induction of PCs following Cd exposure (Maier et al., 

2003). 

 

Thlaspi caerulescens 

 

In T. caerulescens (ecotype Ganges), Ma et al. (2005) found that mesophyll was a 

major storage site of Cd in leaves (65–70% of total Cd) and through the isolation of 

protoplasts and vacuoles they showed that most of the Cd in the mesophyll cells was 

localized in the protoplast (91%), and within this partition, 100% was inside the vacuoles. 

Accordingly, Wójcik et al. (2005a), using energy dispersive X-ray microanalysis, found Cd 

only in electron-dense deposits inside vacuoles of T. caerulescens leaves, and suggested 

that vacuoles are the main compartment of Cd storage and detoxification in these plant 

organs. The form of vacuolar storage was determined to be as a complex with malate 

(Ueno et al., 2005). In the present study, only a relatively small proportion of the Cd was 
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partitioned to the organelles fraction; however, it seems likely that large vacuoles would 

not survive the homogenization procedures used to prepare our fractions. Therefore, any 

Cd bound to small molecules like malate, is likely to remain suspended within the cytosol 

and ultimately appear in the HSP fraction, or, if Cd-malate remains as insoluble electron-

dense deposits, which seems likely at the pH used in the fractionation buffer (pH 7.5), it 

will remain in cell debris fraction rather than in HSP. In the present study, Cd bound to 

HSP, which is presumed to contain predominantly MT-like proteins such as PCs, 

represents a very low percentage of total accumulated Cd (4.1%). This result is supported 

by previous studies that indicated that PCs have no role in the mechanism of T. 

caerulescens tolerance to Cd, since total PC concentration were generally low compared 

to Cd concentrations (Ebbs et al., 2002; Wójcik et al., 2005b). Indeed the Cd found within 

HSP may be at least partially explained by the presence of small Cd bound molecules of 

vacuolar origin (Clemens et al., 2002; Ueno et al., 2005). Apart from the cell debris 

fraction which contained 31.5 to 34.9% of accumulated Cd, HDP seems to be the major 

site for Cd binding in T. caerulescens, suggesting an important role for non–heat-stable 

proteins in Cd accumulation in this plant. Identification of the Cd-binding components in 

this fraction might explain the role of HDP in T. caerulescens Cd accumulation.  

 

Thlaspi arvense 

 

In contrast to T. caerulescens, PCs are known to be an important component in 

the response to Cd by T. arvense. Results obtained by Ebbs et al. (2002) for T. arvense 

were consistent with a PC-mediated response; PC concentrations in T. arvense (15.5–

42.5%) being 2 to 3-fold higher in this species than in T. caerulescens. This difference is 

reflected in our data that shows a relatively high proportion of Cd within the HSP fraction. 

 

Cadmium assimilation from plants 

 

Other than determining Cd subcellular distribution in plant leaves, this study also 

demonstrated how this distribution can influence Cd assimilation in isopods. Several 

studies have investigated the effects of Cd distribution within prey on Cd assimilation by 

predators in aquatic food chains (Wallace and Lopez, 1996, 1997; Wallace et al., 2003; 

Wallace and Luoma, 2003; Cheung et al., 2006; Wang and Rainbow, 2006; Zhang and 

Wang, 2006). A shift in subcellular distribution can have an important impact on the 

trophic transfer of metals. To the best of our knowledge, this is the first study applying this 
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approach to a plant–animal food chain. It is important to note that metal assimilation is 

often assessed through pulse-chase techniques that attempt to assess metal assimilation 

prior to elimination. In both of the feeding experiments of the present study, the 

assimilation phase continued for an extended period and accumulation of Cd occurred as 

a consequence of net assimilation. Elimination of Cd in a closely related species, Porcellio 

scaber (and other terrestrial isopods), is known to be negligible, and the error in the 

calculation of AE is expected to be small (Hames and Hopkin, 1991; Witzel, 1998). 

 

Confounding effects 

 

Nutritional quality of the food is known to affect assimilation of contaminants 

(Wang and Fisher, 1999). Although consumption and assimilation of both Thlaspi species 

were similar, isopods fed uncontaminated T. arvense displayed significantly higher growth 

than those fed uncontaminated T. caerulescens. However, no significant difference in 

growth was found among isopods fed contaminated leaves of either species. Therefore, 

food nutritive quality was unlikely to be an important confounding factor in this study. 

Results of consumption by isopods of Thlaspi plants and the respective AEs are in the 

range of those obtained for lettuce by Calhôa et al. (2006) in a similar feeding study with 

the same isopod species. 

 

Cadmium assimilation efficiencies 

 

In the present study, plant species with different detoxifying mechanisms and 

accumulation patterns were studied in order to examine if there were particular 

relationships between subcellular Cd distributions in plants and Cd AE by isopods. 

Wallace and Luoma (2003) recently introduced the concept of TAM and defined it as a 

combination of fractions organelles, HDP, and HSP. They deduced a 1:1 relationship 

between the percentage of Cd in TAM of several invertebrate prey items (bivalve and 

resistant and nonresistant oligochaetes) and Cd AE by the predator shrimps 

Palaemonetes pugio and Palaemon macrodactylus. In further experiments, Seebaugh et 

al. (2005) found a weaker relation between Cd deposition in the proposed TAM fraction of 

prey Artemia franciscana (about 63%) and Cd AE by the predator Palaemonetes pugio 

(37%). Cheung et al. (2006) have also found a significant positive correlation between the 

Cd subcellular distribution in HSP and Cd body concentration in the welk Thais clavigera 

fed the snail Monodonta labio. However, this type of relationship between the proposed 
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TAM fraction or individual fractions and Cd AE is not universal. In the present study no 

statistically significant correlation was found between Cd AE by isopods and Cd present in 

individual or combined subcellular fractions (data not shown). Performing a similar 

approach for three metals, Zhang and Wang (2006) found a positive correlation for Se and 

Zn from the combination of HDP and HSP fractions, but for Cd no relationship was found 

between AEs and any of the subcellular fractions or a combination of fractions. These 

authors suggest that this result for Cd was due to the low AE of Cd in the marine fish 

Terapon jarbua fed different prey types (copepods, barnacles, clams, mussels, and fish 

viscera).  

Assimilation efficiencies were reasonably well predicted on the basis of metal 

subcellular distribution and from AE of each subcellular fraction in studies with Cd 

(Wallace and Lopez, 1997) and other metals (Zhang and Wang, 2006). Two feeding 

studies were conducted in the present study; one with whole leaves (T. arvense and T. 

caerulescens) contaminated with Cd, and a second with individual fractions (T. arvense, T. 

caerulescens, and L. sativa). Figure 4.4 presents for each of the three species both the 

Cd AE for whole leaves and the estimated Cd AEs obtained through mass balance 

equation (Eqn. 3), using Cd AE of isopods fed purified fractions and the percentage of Cd 

in the each subcellular fraction. For the purpose of comparing whole leaf AEs and 

estimated Cd AEs, we included in Figure 4.4 data from a previous study by Calhôa et al. 

(2006) that generated AEs for whole lettuce leaf contaminated with Cd. The data from that 

study are comparable to those collected in the present study because there is a great deal 

of consistency between the studies, including the nutritional status and source of the 

isopods, the physical conditions under which the trials were conducted, and the 

concentrations of Cd in the respective leaves. The concentration of Cd in the food is of 

particular importance as it is known to affect Cd AE in isopods. Specifically, AE is reduced 

with increasing Cd concentration in food (Zidar et al., 2003). The Cd concentration in T. 

arvense and T. caerulescens leaves were in the same range (438.9 ± 88.76 and 236.2 ± 

53.30 μg Cd/g dry wt [mean ± standard deviation], respectively) as lettuce leaves (300–

600 μg Cd/g dry wt (Calhôa et al., 2006)). 

The Cd AE obtained in the present study by isopods fed T. arvense and T. 

caerulescens (whole leaf) were lower than the predicted AEs (Fig. 4.4) obtained from Cd 

AE from individual fractions. In contrast, the Cd AE among isopods fed lettuce (whole leaf) 

reported by Calhôa et al. (2006) was very close to the predicted AEs. In order to 

demonstrate the direct influence of Cd subcellular distribution in plants on Cd assimilation 

by the isopod, individual subcellular fractions were embedded in gelatine to produce 
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discrete packets of food in feeding experiments. Wallace and Lopez (1997) have 

demonstrated that embedding homogenized preys in gelatine did not alter Cd 

bioavailability to the predator, since its Cd AE was similar to the AE obtained for predators 

fed entire preys. Therefore, it was assumed in the present study that this method could be 

used in feeding experiments with subcellular fractions without affecting Cd bioavailability 

to the isopod. However Zhang and Wang (2006), using the same method, have also 

obtained overestimation of Cd AE and suggested that the homogenization step for 

subcellular fractionation may have facilitated the digestion of Cd by breaking the prey 

tissues into smaller portions, and addition of buffer may have increased the Cd 

bioavailability. Furthermore, gelatine obviously increases nutritional quality of food to 

isopods, and this is a biological factor known to directly influence assimilation of 

contaminants (Wang and Fisher, 1999). The inclusion of a homogenate of Cd-

contaminated leaves embedded in gelatine in feeding experiments as an additional control 

treatment would have allowed a direct comparison to the Cd AE of whole leaves and 

might help to clarify the overestimations of Cd AE observed in the present study.  

Figure 4.4 also displays the individual contribution of each subcellular fraction to 

the total estimated AEs. It is apparent from Figure 4.4 that Cd sequestered in the HSP 

fraction constitutes only a minor source of the Cd assimilated by isopods from the three 

plant species studied, in part because only 12 to 23% of this fraction is trophically 

available (Fig. 4.3). This result contrasts with those obtained for animals, since HSP 

fraction is part of the proposed TAM fraction, contributing significantly to the trophic 

transfer of Cd from several invertebrate animals to shrimp (Wallace et al., 1998; Wallace 

and Luoma, 2003) and marine fish (Zhang and Wang, 2006). It was shown that metal 

partitioned to a subcellular compartment containing TAM is readily available to predators 

and may be enhanced by increased binding of metal to HSP (Wallace and Luoma, 2003). 

This fraction is considered to be dominated by MT-like proteins, a family of low-molecular-

weight, cysteine-rich proteins that can bind to essential metals and sequester toxic metals, 

and therefore, can also be considered as biologically detoxified metal (Wallace et al., 

2003). As indicated above, HSP may contain other Cd-bound molecules, and a closer 

examination (or a further fractionation) of the HSP fraction might clarify this apparent 

difference between the AE of Cd from HSP fraction of prey animals and plants. Beyond 

differences in HSP content, differences in AE of HSP-bound Cd might also be related to 

the different capacity of isopods to assimilated Cd bound to HSP, due to digestive 

physiology, in comparison to other predators, such as marine animals.  
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In all three species, Cd in the cell debris fraction contributes more to isopod 

assimilation of Cd than would be expected according to the TAM model proposed by 

Wallace and Luoma (2003). The composition of the cell debris fraction includes tissue 

fragments and cell walls and might contain metal-rich granules. This fraction was originally 

considered as trophically unavailable in marine invertebrate food chains (Wallace and 

Luoma, 2003). However, in a previous study, these same authors reported the 

bioavailability to predators of Cd bound to the cellular debris fraction at 19.0% (Wallace 

and Lopez, 1997). Furthermore, direct evidence on the bioavailability of metal-rich 

granules to a marine predator has been demonstrated (Cheung and Wang, 2005). In the 

present study, among isopods fed the cell debris fraction of lettuce, the AE of Cd was 47.8 

± 2.05%, and this fraction accounts for approximately half the estimated Cd AE (21% out 

of the total estimated 44.1%); thus, the cell debris fraction can be considered at least 

partially trophically available. The bioavailability of Cd bound to tissue fragments, cell 

walls and metal rich granules must to a certain extent be dictated by gut physiology. For 

example, gut pH may play a role in dissolution of metal-rich granules; the terrestrial isopod 

P. scaber is able to buffer pH in the intestinal tract to approximately 5.5 to 6.0 in the 

anterior hindgut and approximately 6.0 to 6.5 in the posterior hindgut (Zimmer and Topp, 

1997). Presuming that the P. dilatatus has a similar digestive physiology, at these pHs the 

metal-rich granules, if present, do not seem likely to become available, since dissolution 

occurs at lower pH. Bioavailability of Cd stored in granules depends on the form and 

granule elemental composition, but is likely to be higher at lower pH levels (Nott and 

Nicolaidou, 1994).  

In both Thlaspi species, HDP displayed the highest contribution to the estimated 

AEs, accounting for approximately half of the estimated Cd AE by isopods (21.9% out of 

the total 36.4% for T. arvense and 13.0% out of the total 26.4% for T. caerulescens), and 

this is in closer agreement with the proposed TAM fraction (Wallace and Luoma, 2003). 

Similar results were obtained by other authors through direct evidence of bioavailability of 

Cd bound to HDP (Cheung and Wang, 2005; Zhang and Wang, 2006), indicating that Cd-

HDP as part of TAM was partially bioavailable to fish (Zhang and Wang, 2006) and marine 

snails (Cheung and Wang, 2005). 

 

Conclusions 
 

The concept of TAM as defined by Wallace and Luoma (2003) is not supported by 

the data presented here. In contrast with results in marine food chains obtained by other 
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authors, Cd bound to HSP is relatively less available and seems to contribute in lesser 

extent to the trophic transfer of Cd than other fractions obtained by a centrifugal 

fractionation procedure. However, the AE of compartment-specific Cd was consistent 

across the different plant species. These results point to the ecological relevance of the 

subcellular Cd distribution in plants, which directly influences the trophic transfer of Cd to 

the animal consumer, and highlight that a shift in Cd subcellular distribution in plants due 

to different detoxifying mechanisms may have a direct important impact in trophic transfer 

to the animal consumer. Although predicted Cd AEs from the different plants were 

overestimated in two of the plants studied, they helped to elucidate the observed Cd AE in 

isopods, providing the specific contribution of each subcellular fraction on the trophic 

transfer of Cd. 

 

 143



Chapter 4 

References 
 

Assunção, A.G.L., Schat, H. Aarts, M.G.M., 2003. Thlaspi caerulescens, an 
attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 
159, 351-360. 

Calhôa, C.F., Soares, A.M.V.M. Mann, R.M., 2006. Cadmium assimilation in the 
terrestrial isopod, Porcellio dilatatus - Is trophic transfer important? Sci Total Environ 371, 
206-213. 

Cheung, M.-S. Wang, W.-X., 2005. Influence of metal compartmentalization in 
different prey on the tranfer of metals to a predatory gastropod. Mar Ecol Prog Ser 286, 
155-166. 

Cheung, M.-S., Fok, E.M.W., Ng, T.Y.-T., Yen, Y.-F. Wang, W.-X., 2006. 
Subcellular cadmium distribution, accumulation, and toxicity in a predatory gastropod, 
Thais clavigera, fed different prey. Environ Toxicol Chem 25, 174-181. 

Clemens, S., Palmgren, M.G. Kramer, U., 2002. A long way ahead: understanding 
and engineering plant metal accumulation. Trends Plant Sci 7, 309-315. 

Cosio, C., DeSantis, L., Frey, B., Diallo, S. Keller, C., 2005. Distribution of 
cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56, 765-775. 

Donker, M.H., Koevoets, P., Verkleij, J.A.C. van Straalen, N.M., 1990. Metal-
binding compounds in hepatopancreas and hemolymph of Porcellio scaber (Isopoda) from 
contaminated and reference areas. Comp Biochem Physiol Part C Toxicol Pharmcol 97, 
119-126. 

Ebbs, S., Lau, I., Ahner, B. Kochian, L., 2002. Phytochelatin synthesis is not 
responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. 
Presl). Planta 214, 635-640. 

Hames, C.A.C. Hopkin, S.P., 1991. Assimilation and Loss of 109Cd and 65Zn by the 
Terrestrial Isopods Oniscus asellus and Porcellio scaber. Bull Environ Contam Toxicol 47, 
440-447. 

Hispard, F., Vaufleury, A.d., Cosson, R.P., Devaux, S., Scheifler, R., Cœurdassier, 
M., Gimbert, F., Martin, H., Richertc, L., Berthelot, A. Badot, P.-M., 2008. Comparison of 
transfer and effects of Cd on rats exposed in a short experimental snail–rat food chain or 
to CdCl2 dosed food. Environ Int 34, 381-389. 

Jin, Y.H., Clark, A.B., Slebos, R.J.C., Al-Refai, H., Taylor, J.A., Kunkel, T.A., 
Resnick, M.A. Gordenin, D.A., 2003. Cadmium is a mutagen that acts by inhibiting 
mismatch repair. Nat Genet 34, 326-329. 

Kupper, H., Lombi, E., Zhao, F.J. McGrath, S.P., 2000. Cellular compartmentation 
of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis 
halleri. Planta 212, 75-84. 

Liu, D.H. Kottke, I., 2003. Subcellular localization of Cd in the root cells of Allium 
sativum by electron energy loss spectroscopy. J Biosci 28, 471-478. 

 144 



Trophic transfer of Cd from plants to animals 

Ma, J.F., Ueno, D., Zhao, F.J. McGrath, S.P., 2005. Subcellular localisation of Cd 
and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 
220, 731-736. 

Maier, E.A., Matthews, R.D., McDowell, J.A., Walden, R.R. Ahner, B.A., 2003. 
Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in 
a chelator-buffered nutrient solution. J Environ Qual 32, 1356-1364. 

Mann, R.M., Matos, P., Loureiro, S. Soares, A.M.V.M., 2005. Foundation studies 
for cadmium accumulation studies in terrestrial isopods-diet selection and diet 
contamination. Eur J Soil Biol 41, 153–161. 

Monteiro, M., Santos, C., Mann, R.M., Soares, A.M.V.M. Lopes, T., 2007. 
Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. 
Environ Exp Bot 60, 421–427. 

Nott, J.A. Nicolaidou, A., 1994. Variable transfer of detoxified metals from snails to 
hermit crabs in marine food chains. Mar Biol 120, 369-377. 

Paquin, P.R., Gorsuch, J.W., Apte, S., Batley, G.E., Bowles, K.C., Campbell, 
P.G.C., Delos, C.G., Di Toro, D.M., Dwyer, R.L. Galvez, F., 2002. The biotic ligand model: 
a historical overview. Comp Biochem Physiol C Comp Pharmacol 133, 3-35. 

Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., 
Eide, D. Kochian, L.V., 2000. The molecular physiology of heavy metal transport in the 
Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci 97, 4956-4960. 

Prasad, M.N.V., 1995. Cadmium toxicity and tolerance in vascular plants. Environ 
Exp Bot 35, 525-545. 

Ramos, I., Esteban, E., Lucena, J.J. Garate, A., 2002. Cadmium uptake and 
subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Sci 162, 761-767. 

Seebaugh, D.R., Goto, D. Wallace, W.G., 2005. Bioenhancement of cadmium 
transfer along a multi-level food chain. Mar Environ Res 59, 473-491. 

Seebaugh, D.R., Estephan, A. Wallace, W.G., 2006. Relationship between dietary 
cadmium absorption by grass shrimp (Palaemonetes pugio) and trophically available 
cadmium in amphipod (Gammarus lawrencianus) prey. Bull Environ Contam Toxicol 76, 
16-23. 

Steen Redeker, E., van Campenhout, K., Bervoets, L., Reijnders, H. Blust, R., 
2007. Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications 
for trophic availability and toxicity. Environ Pollut 148, 166-175. 

Ueno, D., Ma, J.F., Iwashita, T., Zhao, F.J. McGrath, S.P., 2005. Identification of 
the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi 
caerulescens using Cd-113-NMR. Planta 221, 928-936. 

Vijver, M.G., van Gestel, C.A.M., Lanno, R.P., van Straalen, N.M. Peijnenburg, 
W.J.G.M., 2004. Internal metal sequestration and its ecotoxicological relevance: a review. 
Environ Sci Technol 38, 4705-4712. 

 145



Chapter 4 

Wallace, W.G. Lopez, G.R., 1996. Relationship between subcellular cadmium 
distribution in prey and cadmium trophic transfer to a predator. Estuaries 19, 923-930. 

Wallace, W.G. Lopez, G.R., 1997. Bioavailability of biologically sequestered 
cadmium and the implications of metal detoxification. Mar Ecol Prog Ser 147, 149-157. 

Wallace, W.G., Lopez, G.R. Levinton, J.S., 1998. Cadmium resistance in an 
oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar Ecol 
Prog Ser 172, 225-237. 

Wallace, W.G., Lee, B.G. Luoma, S.N., 2003. Subcellular compartmentalization of 
Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and 
biologically detoxified metal (BDM). Mar Ecol Prog Ser 249, 183-197. 

Wallace, W.G. Luoma, S.N., 2003. Subcellular compartmentalization of Cd and Zn 
in two bivalves. II. Significance of trophically available metal (TAM). Mar Ecol Prog Ser 
257, 125-137. 

Wang, W.-X. Fisher, N.S., 1999. Assimilation efficiencies of chemical 
contaminants in aquatic invertebrates: a synthesis. Environ Toxicol Chem 18, 2034-2045. 

Wang, W.X. Rainbow, P.S., 2006. Subcellular partitioning and the prediction of 
cadmium toxicity to aquatic organisms. Environ Chem 3, 395-399. 

Weigel, H.J. Jäger, H.J., 1980. Subcellular distribution and chemical form of 
cadmium in bean plants. Plant Physiol 65, 480-482. 

Witzel, B., 1998. Uptake, storage and loss of cadmium and lead in the woodlouse 
Porcellio scaber (Crustacea, Isopoda). Water Air Soil Pollut 108, 51-68. 

Wójcik, M., Vangronsveld, J., D'Haen, J. Tukiendorf, A., 2005a. Cadmium 
tolerance in Thlaspi caerulescens - II. Localization of cadmium in Thlaspi caerulescens. 
Environ Exp Bot 53, 163-171. 

Wójcik, M., Vangronsveld, J. Tukiendorf, A., 2005b. Cadmium tolerance in Thlaspi 
caerulescens:  I. Growth parameters, metal accumulation and phytochelatin synthesis in 
response to cadmium. Environ Exp Bot 53, 151-161. 

Zhang, L. Wang, W.X., 2006. Significance of subcellular metal distribution in prey 
in influencing the trophic transfer of metals in a marine fish. Limnol Oceanogr 51, 2008-
2017. 

Zhao, F.J., Lombi, E. McGrath, S.P., 2003. Assessing the potential for zinc and 
cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 
249, 37-43. 

Zidar, P., Drobne, D., Štrus, J. Blejec, A., 2003. Intake and assimilation of zinc, 
copper, and cadmium in the terrestrial isopod Porcellio scaber Latr. (Crustacea, Isopoda). 
Bull Environ Contam Toxicol 70, 1028-1035. 

Zimmer, M. Topp, W., 1997. Homeostatic responses in the gut of Porcellio scaber 
(Isopoda: Oniscidea) optimize litter degradation. J Comp Physiol B Biochem Syst Environ 
Physiol 167, 582-585. 

 146 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

General discussion and concluding remarks 
 

Chapter 5 
 



 



   General discussion and concluding remarks  
 
 

General discussion and concluding remarks 
 
 

Ecotoxicology has emerged as a distinct subject of interdisciplinary character only 

recently, and was early defined as the branch of toxicology concerned with the study of 

toxic effects caused by natural or synthetic pollutants, to the constituents of ecosystems, 

animal (including human), vegetable and microbial, in an integral context (Truhaut, 1977). 

The ultimate goal of this approach is to be able to predict the effects of pollution and 

thereby, provide information to facilitate the regulation of chemical use and to set maximal 

environmental limits and, should a pollution incident occur, the most efficient and effective 

action to remediate the detrimental effects can be identified (Connell et al., 1999; Walker 

et al., 2001). In this context, the main aim of this work was to improve the scientific 

knowledge concerning the toxic effects of cadmium (Cd) accumulation for the plant itself 

and to study the consequent trophic transfer of this metal to the animal consumers. 

Firstly, the main physiological and genotoxic effects of Cd to plants were 

addressed (Chapters 2 and 3). Phytotoxicity of Cd has been largely studied in 

fundamental plant physiology and several reviews have been published on the specific 

effects of this metal on plants (Prasad, 1995; Sanitá di Toppi and Gabbrielli, 1999). 

However, the mechanisms of Cd toxicity are not fully understood in plants and need to be 

clarified before this extensive existing knowledge can be transposed to more applied 

areas of scientific research, such as ecological risk assessment of metal contaminated 

soils. Therefore, Chapter 2 describes the cascade of events and enzymatic protection 

strategies of Cd-induced senescence in lettuce plants over 14 days of exposure to 100 μM, 

with a view to discriminate the most pertinent responses to Cd for further application/use 

as biomarkers of Cd stress. It is demonstrated that Cd stress induced senescence in 

lettuce plants which was generally manifested as photosynthetic efficiency reduction, 

nutrient imbalances, malonaldehyde (MDA) production, and by a decrease in the overall 

antioxidant capacities of lettuce plants over the 14 days of exposure. These alterations 

were accompanied by an inhibition in the classical endpoint, shoot growth, at the end of 

exposure. 

Despite the absence of a reduction in chlorophyll content in Cd-exposed plant 

leaves, the analysis of the dark-adapted values of Fv/Fm (Fv, variable fluorescence, and Fm, 

maximal fluorescence) demonstrated a significant decrease in photosynthetic efficiency of 

photosystem II. This parameter is widely used by plant physiologists and is considered as 

a sensitive indicator of plant photosynthetic performance (Maxwell and Johnson, 2000), 

and thus, has the potential to be used as a reliable marker of Cd-induced senescence.   
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Cadmium exposure induced oxidative stress. At the concentration used, Cd 

sequentially altered catalase (CAT), guaicol peroxidase (POX), and superoxide dismutase 

(SOD) over the 14-day exposure. Peroxidase, which was significantly induced at the early 

days of exposure, and SOD seemed to act in combination to reduce the impact of Cd 

toxicity, especially in young leaves. However, the antioxidant capacities were found to be 

reduced at the end of the exposure period, mainly through the inhibition of CAT. This 

might have led to the accumulation of ROS which are known to cause lipid peroxidation. 

Malonaldehyde is a measurable product of lipid peroxidation and was found to be induced 

in lettuce leaves exposed to Cd at the 7th day of exposure. Therefore, together with 

photosynthetic efficiency, antioxidant enzymes and MDA content are at this point 

suggested as potential biomarkers of Cd stress in higher plants. Indeed, MDA content has 

already been suggested by other authors as a biomarker of metal stress in plants for 

pollution purposes (Zhang et al., 2007). The responses obtained with these endpoints are 

not Cd-specific; therefore, in further laboratorial tests and/or studies in real scenario 

conditions, they should not be used separately, but used together in an integrated 

approach with several endpoints, also including classical endpoints (e.g. growth). 

The endpoints analysed were evaluated over time in lettuce plants exposed to a 

singular concentration of 100 μM Cd, which is only expected in worst case scenarios. This 

concentration was toxic to lettuce plants causing senescence. As the antioxidant 

capacities were found to be exceeded, it would be interesting to follow the antioxidant 

enzymes cascade and the lipid peroxidation at lower exposure to evaluate plant 

responses at lower environmental concentrations of Cd. 

In this study, hydroponic culture provided consistent and reproducible levels of 

contamination in plants, avoiding complications associated with the adsorption of the 

contaminant to organic and inorganic soil components. However, the factors that are likely 

to alter the bioavailability of Cd in soils are an important aspect of exposure. Therefore, 

examining the responses of the endpoints suggested here with increasing concentrations 

of Cd, from lower environmental relevant concentrations up to the one used in this work, 

both in hydroponic and soil conditions will be of great relevance in order to test the 

suitableness of these markers for field monitoring purposes. 

Cadmium is known to induce genotoxicity in plants, mainly indirectly through the 

production of ROS and/or by inhibiting DNA repair (Panda and Panda, 2002). In order to 

address part of the first objective of this dissertation, in Chapter 3 an evaluation of the Cd 

genotoxicity in plants was performed. In Chapter 3.1 the mutagenic effects of Cd were 

evaluated in 5-week-old lettuce plants exposed for a further 14 days to a medium 
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containing 100 μM of Cd. Considering the microsatellite or simple sequence repeat (SSR) 

loci analysed the uniform SSR patterns observed seem to suggest that Cd generated no 

genetic instability under the experimental conditions used. 

It is known that the effects of metals are strongly dependent on the age of the plant 

at the time of exposure; the older the plant the greater the amount of metal that can be 

tolerated because metals accumulate at metabolically inactive sites such as cell walls and 

vacuoles (Fodor, 2002). This might explain the absence of observable genotoxic effects in 

the study described in Chapter 3.1. In a different study (Chapter 2), but under the same 

exposure conditions the plants were already severely affected by the toxic effects of Cd by 

the end of the 14-day exposure, becoming necrotic after that period. Therefore, it was 

decided to assess the genotoxic effects in younger plants, over a longer period of time 

using the lower concentration of 10 μM Cd2+, which is considered an environmentally 

relevant concentration (Sanitá di Toppi and Gabbrielli, 1999) and this formed the basis of 

Chapter 3.2. 

In Chapter 3.2 microsatellite instability was examined in leaves and roots of lettuce 

plants exposed for 28 days to 10 μM Cd. The uniform patterns found for the nine SSRs 

analysed seem to suggest that the Cd treatment generated no MSI instability on lettuce 

leaves. However, a deletion of 2 bp in one lettuce root SSR suggested MSI in this organ. 

Since Cd content was greater in roots than in leaves, roots are likely exposed to higher 

internal concentrations of Cd2+ than leaves, which might explain the different responses 

obtained by the two organs. 

A similar approach to those performed in this dissertation was conducted by Paiva 

(2008) who evaluated Cd genotoxicity through the analysis of selected SSRs in 

hyperaccumulator T. caerulescens and in non-accumulator T. arvense plants exposed to 

10 μM of Cd. However, no MSI was detected in neither of these plants (Paiva, 2008). 

Although, the aforementioned trials have demonstrated the utility of the method, 

further longer-term trials, on plants grown under more realistic exposure conditions need 

to be performed in order to demonstrate the genotoxicity that might occur under natural 

conditions. Moreover, since the suggested molecular mechanisms of Cd genotoxicity 

include not only direct damage of DNA (Hossain and Huq, 2002) but, also direct inhibition 

of DNA mismatch repair (Jin et al., 2003; Slebos et al., 2006), the effect of Cd exposure 

might potentiate the genotoxic effects of other environmental mutagens as already shown 

for other metals (Deng et al., 2005). Therefore, assessment of Cd genotoxic effects in 

plants using mixtures of environmental mutagens with different modes of action seems 

like an important line of research to be followed in future. 

 149



Chapter 5 

The studies presented in Chapter 3 of this thesis could have benefited from the 

use of a positive control. The application of a mutagenic compound (such as EMS, ethyl 

methanesulphonate) in increasing concentrations might provide an indicator of the 

sensitivity of the technique for genotoxicity assessment purposes. Also, Cd genotoxicity 

assessment in other plant species, specifically in Cd-sensitive plants (natives or Cd-

sensitive mutants) would help clarify the utility of SSRs as an assay for plant genotoxicity. 

In Chapter 3.3 a flow cytometric (FCM) assessment of Cd genotoxicity (e.g. 

clastogenesis) was performed in three plants with different metal accumulation and 

detoxification capacities (L. sativa, T. caerulescens and T. arvense). No ploidy changes 

were found in the plant species analysed. However, statistically significant changes in 

nDNA content and the G0/G1 full peak coefficient of variation (FPCV) values were 

detected in L. sativa but not in Thlaspi spp. These results suggested that Cd stress may 

have lead to clastogenic damage as a consequence of loss of chromosome portions, 

because nDNA content was found to be diminished. These data, complemented other 

genetic assays previously performed (SSRs), which together with physiological and 

biochemical data obtained in Chapter 2 have provided further insights into the 

phenomenon of Cd-induced stress and resulting effects in plants.  

Moreover, the results obtained with this FCM approach, highlighted the usefulness 

of this technique to screen and monitor in vivo genotoxic effects of environmental 

pollutants. However, Loureiro et al (2006) have highlighted the confounding effects of 

cytosolic compounds that can interfere with the FCM methodology. Therefore, 

improvement of this technique for use in some recalcitrant species (e.g., Thlaspi spp.) is 

still required. 

Among the various aspects of ecotoxicology, the trophic transfer of contaminants 

along food-chains has recently generated a great deal of interest and research, 

particularly in regard to the implications for consumers of metals sequestered within prey 

species (Rainbow, 2002; Vijver et al., 2004; Wang and Rainbow, 2006; Rainbow, 2007). 

Traditionally, dietary toxicity studies have added contaminants directly to the food source. 

However, contaminants that are biologically incorporated into live prey are likely to be 

sequestered into various sub-cellular compartments and are likely to be bound within 

various chemical complexes. These compartmentalized chemical species may have very 

different bioavailabilities from Cd salts artificially added to the food to predator species. In 

addition, the degree to which metals are transferred within a food chain is not easily 

predictable, because both the metal-binding properties of the plant/prey species and 

subsequent bioavailability to the consumer/predator are likely to be highly variable. 
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The subcellular partitioning model (SPM) arose as an improved method to predict 

metal toxicity following its application in aquatic food chains (e.g. Wallace and Lopez, 

1997; Wallace et al., 1998; Wallace and Luoma, 2003). As in aquatic food chains, the 

understanding, prediction and mitigation of toxicity associated with soil metal pollution will 

certainly be improved by knowledge of the mechanisms of metal detoxification and 

partitioning in plants, and how those different mechanisms will affect metal assimilation 

and transfer to consumers, including extreme cases such as metal trophic transfer from 

hyperaccumulator plants, but also in accumulator crops that might have direct impacts on 

human food chains. 

One of the main questions of this work “How does Cd subcellular distribution in 

plants affect assimilation of Cd by an animal consumer?” was addressed in Chapter 4. In 

this study it was demonstrated that Cd assimilation efficiencies (AE) were significantly 

lower in isopods (Porcellio dilatatus) fed T. caerulescens leaves (10.0 ± 0.92%) than in 

those fed T. arvense (15.0 ± 1.03%). Moreover, under similar experimental conditions 

Calhôa et al. (2006) demonstrated much higher AE among isopods fed Lactuca sativa 

leaves (52 ± 5%). Each of these plant species possesses different strategies to store and 

detoxify Cd; therefore, the subcellular distribution of Cd in the leaves of these three plant 

species was examined to help explain the differences in Cd AE. The distribution of Cd 

between the four different subcellular fractions obtained by differential centrifugation 

revealed significant differences between the plant species. This, together with the direct 

assessment of isopod Cd AE from individual subcellular fractions of L. sativa, T. 

caerulescens and T. arvense plant-leaves, resulted in vital information to help explain the 

observed differences in Cd assimilation by isopods. On the basis of our results, Cd bound 

to heat-stable proteins (HSP) was the least bioavailable to isopods (14.4-19.6%), while Cd 

bound to heat-denatured proteins (HDP) was the most trophically available to the isopod 

(34.4-52.8%). 

Trophically available metal (TAM), as defined by Wallace and Luoma (2003), 

includes metal bound to the HSP fraction; however, their definition is not supported by the 

data presented in Chapter 4. In contrast with results in marine food chains obtained by 

other authors, Cd bound to HSP is relatively less available in the terrestrial food chain 

examined in Chapter 4 and seems to contribute in lesser extent to the trophic transfer of 

Cd than other fractions obtained by the centrifugal fractionation procedure used. 

In order to confirm the lower bioavailability to isopods of Cd bound to the HSP 

fraction of plant leaves, the direct assessment of the bioavailability of a Cd-cystein 

compound (e.g. Cd-phytochelatin (PC) and Cd-methallothionein (MT)) should be 
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performed in further studies. Moreover, as the digestive system of the animal is an 

important factor that affects metal assimilation, a different plant-herbivore food chain might 

shed more light on the low bioavailability of HSP bound Cd, and whether it is specific to 

some consumers and not others. Indeed, studies on mammals indicate that MT-Cd is 

assimilated via the mice (Sugawara and Sugawara, 1991) and rat (Groten et al., 1991) gut, 

to a lesser degree than Cd from CdCl2 amended diets. The differences observed were 

attributed, by the authors, to the slower transport of the intact Cd-MT across the intestinal 

mucosa when compared to the absorption of Cd2+. In agreement with these results, lower 

Cd AEs were found in isopods fed biologically contaminated lettuce which is known to 

produce PCs against Cd-stress, than in isopods fed CdCl2 amended leaves (Calhôa et al., 

2006). However, the contrary was demonstrated in rainbow trout fed biologically 

contaminated amphipods; fish fed Cd contaminated amphipods exhibited higher 

absorption efficiency than those fed CdCl2 amended trout diet (Harrison and Curtis, 1992). 

These authors further speculated that Cd associated with strong biological ligands, such 

as the sulfur moieties that form the functional groups in cysteine and MT, are more easily 

absorbed by the fish gut than Cd2+, that must compete with essential ions such as Ca2+ for 

binding sites on ion-transport system (Harrison and Curtis, 1992). 

The AEs of compartment-specific Cd were consistent across the different plant 

species studied. These results point out the ecological relevance of the subcellular Cd 

distribution in plants, which directly influence the trophic transfer of Cd to the animal 

consumer, and highlight that a shift in Cd subcellular distribution in plants due to different 

detoxifying mechanisms may have a direct and important impact in trophic transfer to the 

animal consumer. 

A mass balance equation was used to predict Cd AEs from the different plants, 

using data of subcellular distribution of Cd and of isopod Cd AE from individual subcellular 

fractions. Although the AEs predicted from the feeding study in which isopods were fed 

individual fractions (i.e. debris, organelles, HDP, HSP) were overestimated in two of the 

plants studied, they helped to elucidate the observed Cd AE in isopods, providing the 

specific contribution of each subcellular fraction on the trophic transfer of Cd. It should be 

pointed out that for each fraction only a proportion of Cd was bioavailable, suggesting Cd 

speciation in each subcellular fraction, with different Cd-species having differences in their 

bioavailability. This is obviously true for cell debris fraction, where Cd bound to cell walls 

carbohydrates should be differently assimilated from Cd bound to metal-rich granules. But 

also the other fractions might not present a homogeneous pool of bioavailable Cd. For 

instance, the organelles fraction is a well defined fraction in terms of plant subcellular 
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components (e.g. chloroplasts, mitochondria). However, the different organelles might 

have relevant differences in composition (e.g. different membrane proteins), with a 

variable capacity of the different components to bind Cd2+. A proportion of the Cd bound to 

the organelle components of the plant species analysed might not be bioavailable to 

isopods, while another is. The same rationale is applied to the cytosolic proteins present 

in the HDP fraction, differences in the amino-acid composition and tertiary configuration 

might lead to proteins with stronger Cd binding ligands than others. 

As far as is known, this was the first time that a subcellular fractionation method 

has been used in plants with the purpose of explaining metal trophic transfer from plants 

to consumers. It should be kept in mind that the fractionation protocol adopted in this work 

aims at a pragmatic separation of fractions. The protocol used originated from the 

discipline of molecular biology and has in this way been validated; however, the 

operationally defined fractions should be examined further to confirm their composition, 

particularly in regard to metal speciation. For instance, the likely occurrence of Cd bound 

to organic acids such as malate in electrodense granules inside vacuoles is an important 

issue, since it is an important metal detoxification pathway in plants (Ueno et al., 2005). 

Moreover, after confirming the presence of metal-rich granules that might accumulate in 

the acidic environment of vacuoles through complementary techniques (e.g. energy 

dispersive X-ray microanalysis or electron energy loss spectroscopy), their separation 

from cell debris fraction would be useful for further studies. The solubilization of metal-rich 

granules during homogenization might occur, depending on its elemental composition and 

on the pH of the homogenization buffer. Knowledge of the nature of metal-rich granules 

will certainly help to improve the fractionation protocol by providing an extra, better 

defined subcellular metal fraction. In addition, it would be relevant to perform the analysis 

of the composition of the HSP fraction through chromatographic techniques, in order to 

confirm the presence of MT and PC and/or to reveal the presence of other type of 

compounds that might bind Cd. 

Summarizing, steps were made towards the understanding of the physiological 

and genotoxic effects induced by Cd in plants. However, testing these main effects as 

reliable biomarkers of Cd stress in plants remains a problem yet to be solved. Concerning 

the issue of Cd accumulation in plants and its implications to the trophic transfer to 

consumers, a new and promising approach was performed which provided a better 

understanding of metal trophic transfer in terrestrial food chains.  
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