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resumo 
 
 

Durante os últimos anos, foram descritas alterações ao código genético, quer em 
procariotas, quer em eucariotas, quebrando o dogma de que o código genético é 
universal e imutável. Estudos recentes sugerem que a evolução de tais alterações 
requerem modificações ao nível da estrutura da maquinaria da tradução e são 
promovidas por mecanismos de descodificação ambígua. Em C. albicans, um 
organismo que é patogénico para o Homem, a alteração ao código genético é mediada 
por uma alteração na estrutura de um novo tRNACAG de serina que descodifica o codão 
CUG de leucina como serina.  
 
De forma a determinar se este tRNA, que é aminoacilado pelas Seryl- e Leucyl- tRNA 
sintetases, promove a descodificação ambígua do codão CUG, foi desenvolvido um
sistema para a quantificar in vivo, por espectrometria de massa, os níveis de 
incorporação de serina e de leucina em codões CUG. Os resultados mostraram que em 
condições normais de crescimento leucina é incorporada a uma taxa de 3% e que serina
é incorporada a uma taxa de 97%. No entanto, o nível de ambiguidade na
descodificação de codões CUG aumentou para 5% em células crescidas em condições 
de stress, indicando que a incorporação de leucina em codões CUG é sensível a factores
ambientais e é manipulada durante a tradução do mRNA. Tal, levanta a hipótese de que 
a incorporação de leucina poderá atingir níveis superiores aos determinados neste 
estudo. Para testar esta hipótese e determinar os níveis máximos de ambiguidade na 
descodificação do codão CUG tolerados pelas células, aumentou-se artificialmente a 
ambiguidade do codão CUG em C. albicans. Surpreendentemente, a incorporação de 
leucina subiu de 5% para 28%, o que representa um aumento na taxa de erro da 
tradução de 3500 vezes, relativamente ao descrito para o mecanismo de tradução.  
 
Dado existirem 13.000 codões CUG no genoma de C. albicans, a sua descodificação 
ambígua expande de uma forma exponencial o proteoma deste fungo, criando assim um 
proteoma estatístico, resultante da síntese de um conjunto de moléculas diferentes para 
cada proteína a partir de um único RNA mensageiro (mRNA) que contenha codões
CUG.  
 
Os resultados obtidos demonstraram que o proteoma de C. albicans tem uma dimensão 
muito superior à prevista pelo seu genoma e demonstram um papel central da 
descodificação ambígua na evolução do código genético. 
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abstract 
 

Alterations to the standard genetic code have been found in both prokaryotes and
eukaryotes, demolishing the dogma of an immutable and universal genetic code. Recent
studies suggest that evolution of such alterations require structural change of the 
translation machinery and are driven through mechanisms that require codon decoding
ambiguity. In the human pathogen C. albicans, a structural change in a novel ser-
tRNACAG allows for its recognition by both the LeuRS and SerRS in vitro and in vivo, 
providing such molecular device. 
 
In order to determine whether this tRNA charging ambiguity results in ambiguous CUG
decoding, we have developed a system for quantification of the level of serine and
leucine at the CUG codon by Mass-Spectrometry. The data showed that 3.0% of
leucine and 97.0% of serine are incorporated at CUG codons in vivo under standard 
growth conditions. Moreover, this ambiguity increases up to 5.0% under stress, 
indicating that it is sensitive to environmental change and raising the hypothesis that 
leucine incorporation may be higher than determine experimentally. In order to 
determine the scope of C. albicans tolerance to CUG ambiguity, we have created 
highly ambiguous C. albicans cell lines through tRNA engineering. These cell lines 
tolerated up to 28% leucine incorporation at CUGs, which represents an increase of 
3500 fold in decoding error rate. 
  
Since there are 13,000 CUG codons in C. albicans such ambiguity expands the
proteome exponentially and creates a statistical proteome due to synthesis of arrays of 
protein molecules from mRNAs containing CUG codons. 
 
The overall data showed that the dimension of the C. albicans proteome is far higher 
than that predicted from its genome and provides important new evidence for a pivotal 
role for codon ambiguity in the evolution of the genetic code. 
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1.1. The genetic code 

 

1.1.1. The standard genetic code 

 

The genetic code established in the 1960s defines the rules that govern the transfer of 

genetic information from nucleic acids to proteins (Crick, 1970). In the early studies, 

Nirenberg and co-workers incubated RNA samples in cell-free extracts containing bacterial 

ribosomes, enzymes, ATP, tRNAs and both cold and [14C]-labelled amino acids. They 

started by programming the cell free lysates with poly-U oligonucleotides and were able to 

synthesize poly-Phe peptides, hence indicating that the UUU codon coded for 

phenylalanine. Similar experiments using different RNA templates unveiled the other 

codon assignments (Table 1. 1) (Nirenberg et al., 1966; Nirenberg and Matthaei, 1961; 

Nirenberg and Leder, 1964).  

 
 

Table 1. 1 - The universal genetic code. 
2nd base   

 
U C A G   

UUU UCU UAU UGU U 
UUC 

Phe 
UCC UAC 

Tyr 
UGC 

Cys 
C 

UUA UCA UAA UGA Stop A 
U 

UUG 
Leu 

UCG 

Ser 

UAG 
Stop 

UGG Trp G 
CUU CCU CAU CGU U 
CUC CCC CAC 

His 
CGC C 

CUA CCA CAA CGA A 
C 

CUG 

Leu 

CCG 

Pro 

CAG 
Gln 

CGG 

Arg 

G 
AUU ACU AAU AGU U 
AUC ACC AAC 

Asn 
AGC 

Ser 
C 

AUA 

Ile 

ACA AAA AGA A 
A 

AUG Met ACG 

Thr 

AAG 
Lys 

AGG 
Arg 

G 
GUU GCU GAU GGU U 
GUC GCC GAC 

Asp 
GGC C 

GUA GCA GAA GGA A 

1s
t B

as
e 

G 

GUG 

Val 

GCG 

Ala 

GAG 
Glu 

GGG 

Gly 

G 

3r
d 

B
as

e 

 

A close analysis of the distribution of amino acids over the genetic code table 

revealed biased allocation of codons associated to amino acids polar properties. For 

example, all codons with U at the second position code for hydrophobic amino acids (Phe, 

Leu, Ile, Met and Val), and amino acids that share similar chemical properties, namely 

Leu, Ile and Val are connected by a single base mutation at the first codon base. Six of the 

most hydrophilic amino acids – His, Gln, Asn, Lys, Asp and Glu - have an A at the second 
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codon position; Tyr, which is hydrophobic, is the exception to this rule. (Woese, 1965a; 

Woese, 1965b; Woese et al., 1966; Volkenstein, 1966). As a result, amino acids that are 

decoded by complementary anticodons tend to have opposite hydrophobicities 

(Volkenstein, 1966; Blalock and Smith, 1984). In line with these observations, codons 

encoding amino acids with similar chemical properties tend to be related. For example, the 

acidic amino acids Asp and Glu belong to a split codon family and their amine derivates 

Asn and Gln belong to codon families that only differ in the first codon position.  It is not 

yet clear why the genetic code evolved in such a manner. However, it is likely that its 

biased codon organization and redundancy may minimize decoding error, since most errors 

occur through near cognate insertion of amino acids with similar chemical properties, 

hence causing a minimal impact on protein structure.  

 
 
 

1.1.2. The origin and early evolution of the genetic code 

 

With few exceptions (sections 1.4.2 and 1.4.3), the same genetic code is used in all 

organisms. Such uniformity suggests that the extant genetic code must have provided 

important selective advantages over other codes that may have existed before the last 

common ancestor (Woese, 2002). Since the origin of the genetic code remains poorly 

understood, one does not yet fully comprehend the establishment of the standard code. 

Nevertheless, several theories have been proposed to explain its evolution.  

 

 

(i) The Adaptation of the Genetic Code  

 

This theory postulates that the genetic code has been gradually refined to 

minimize the impact of codon decoding error. It sprung from a large scale analysis 

of the relationship between genetic code redundancy and amino acids chemical 

properties (Alf-Steinberger, 1969). In his work, the extant genetic code was 

compared with 200 alternative codes and the impact of point mutations at different 

positions was tested using Monte Carlo simulations. A statistical approach used to 

estimate the distribution of error values in a large sample of alternative codes 
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directly estimated the probability of evolution without selection of codes with better 

or as good performance than the natural code. The data showed that almost no 

random codes could minimize polarity changes better than the canonical code. 

Indeed, the 3rd codon position was highly optimized relative to random codes, 

followed by the 1st codon position, but there was no evidence for optimization in 

the 2nd codon position. This is consistent with the relative effects of translation error 

(Alf-Steinberger, 1969). These results were put aside for over 20 years, but were 

reviewed in 1990s to highlight the highly optimized nature of the genetic code for 

polar requirements, rather than other amino acid characteristics, such as 

hydropathy, molecular volume or isoelectric point (Haig and Hurst, 1991). This has 

functional meaning since changing a non-polar for a polar amino acid, or vice-

versa, would most probably destroy protein folding and structure and could be 

lethal.   

 

Nevertheless, those studies failed to address differences in decoding error 

associated to the different bases. Since both mutation and mistranslation are highly 

biased for the 4 bases (Collins and Jukes, 1994; Kumar, 1996; Moriyama and 

Powell, 1997; Morton and Clegg, 1995; Friedman and Weinstein, 1964; Parker, 

1989; Woese, 1965b), the data had significant noise. To overcome this, Freeland 

and Hurst extended the Haig and Hurst’s Monte Carlo approach by incorporating 

known biological biases that influence both mutational patterns and mistranslation. 

Their approached showed that in 1 million of randomly generated codes only 1 

performed better than the natural genetic code, thus the “genetic code is one in a 

million” (Freeland and Hurst, 1998; Freeland et al., 2003). 

  

 

(ii) Co-Evolution of the Genetic Code   

 

This theory, proposed by Wong, postulates that the organization of the 

canonical genetic code reflects evolutionary pathways of amino acids biosynthesis 

(Wong, 1975). Thus, the earliest genetic code used a small subset of pre-biotically 

synthesized amino acids (such as Gly, Ala and Ser), which were coded by an 



Molecular evolution of a genetic code alteration   

6 

extremely degenerated code. Then, it expanded by incorporating new metabolic 

derivatives of these primordial amino acids (Figure 1. 1) (Wong, 1975; Wong and 

Bronskill, 1979; Di Giulio and Medugno, 1999). Wong carried out a correlation 

analysis between codons distribution and amino acids biosynthetic pathways and 

proved the existence of a precursor-product relationship between them. This study 

was latter strengthen by Di Giulio’s work, who improved the robustness of the 

correlation algorithm (Di Giulio, 1999). Indeed, the existence of molecular fossils 

with ancient codon assignments, such as the Asp-tRNAAsn →Asn-tRNAAsn and the 

Glu-tRNAGln → Gln-tRNAGln, in most bacteria and in all archea, and Sep-tRNACys 

→ Cys-tRNACys, in methanogenic archea (Section 1.3.2.3), strongly support the co-

evolutionary theory (Di Giulio, 2001b). 

 
Figure 1. 1 - The evolutionary map of the genetic code. 
Each box represents a single amino acid and its contemporary codons. The Glu and Asp enclosed in the 
dashed boxes were likely to be primitive codons assignments, required to create the relationships predicted 
by the coevolution theory. The single headed arrows show precursor-product relations, whereas double 
headed arrows indicate biosynthetic interconvertions. The arrow connected codons have a single base change 
(adapted from Wong, 1975).  
 
 

(iii) The Steriochemical Origin of the Genetic Code 

 

This hypothesis proposes that canonical codon assignments were originated 

through specific steric interacting ions between amino acids and their associated 

codons, so, primordial protein sequences were directly templated on base 
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sequences. Therefore, the actual complex translation mechanism, involving RNA 

and associated enzymes, is a late development (Yarus, 1998; Knight et al., 1999; 

Knight and Landweber, 2000).  

 

The observation that led to this hypothesis came from in vitro selection 

amplification experiments (SELEX) using RNA-aptamers, which revealed that 

RNA molecules selected from random sequences that bind specific amino acids 

have more standard codons, anticodons or both for those amino acids than would be 

expected by chance. So far, a total of 43 RNA aptamers have been selected and 

isolated for specific binding of phenylalanine, isoleucine, histidine, leucine, 

glutamine, arginine, tryptophan and tyrosine (Caporaso et al., 2005; Yarus et al., 

2005). Of these, research has been focused on the arginine binding aptamers 

because free arginine can mimic the natural interaction of HIV Tat peptides with 

TAR RNA (Tao and Frankel, 1992) and arginine aptamers have far more arginine 

codons at the binding site than the others (Knight and Landweber, 1998). 

   

 

All these complementary theories focus on different characteristics of the genetic 

code, and they do provide important glimpses of the emergence and evolution of the 

standard genetic code (Knight et al., 1999; Di Giulio, 1999; Yarus et al., 2005). 

Nevertheless, the first theory explaining the origin of the genetic code was the Frozen 

Accident Theory, postulated by Crick in 1968 (Crick, 1968). This theory was a corner stone 

of the early days of molecular biology and postulated that the “genetic code is universal 

because any change to it would be lethal or at least very strongly selected against” (Crick, 

1968). The theory assumed that once organisms with complex genomes encoding 

thousands of proteins were established, any change in the code would cause wide protein 

structure disruption, which would be lethal or highly detrimental. The robustness of this 

theory was shaken in 1979 (Barrell et al., 1979) by the discovery of a genetic code change 

in human mitochondria, which involves decoding of the UGA stop codon as tryptophan. 

Since then, 16 alterations have been found in various organisms which put a definitive end 

to this theory.  

 



Molecular evolution of a genetic code alteration   

8 

 

1.2. Translation 

 

The uprising of mRNA templated translation allowed for the transition from the 

“RNA world” into the “Protein world”, which was an evolutionary breakthrough – as the 

22 amino acids provided greater catalytic versatility than the 4 nucleic acids (Szathmary, 

1999).  

 
Figure 1. 2 – The structure of the eukaryotic ribosome by crio-electron microscopy.  
Translation of the DNA/RNA genetic information into amino acid information is accomplished in the 
ribosome. The figure shows the small subunit (in orange) and the large subunit (blue) scanning an mRNA 
molecule (purple). The tRNAs are bound to the A-, P- and E-sites of the ribosome and the nascent 
polypeptide chain (yellow) is emerging through the polypeptide tunnel. Adapted from (Mitra and Frank, 
2006). 

 

The translational process, in particular the elongation and termination phases are 

rather conserved in the three kingdoms of life. This process relies on the existence of a 

translational machinery, composed by a large number of different molecules – mRNAs, 

tRNAs, amino acids, translational factors, rRNA, ribosomal proteins (RNP) and aminoacyl 

tRNA-synthetases (aaRS). Translation occurs at the ribosome (Figure 1. 2), a 

supramolecular complex composed of rRNA and proteins that contains three sites for 

binding tRNAs, namely the aminoacyl site (A site), peptidyl site (P site), and exit site (E 

site). It can be divided in three distinct stages: initiation, elongation and termination, which 

are briefly explained in this section. 
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1.2.1. Translation initiation 

 

In the first stage of translation, the ribosome and mRNA are assembled in such a 

manner that the initiation codon (AUG) and the methionyl initiator tRNA bound are 

located in the P–site. This step requires help from initiation factors (IF). This step differs 

significantly between eukaryotes and prokaryotes (reviewed by Kapp and Lorsch, 2004), 

mainly because it is an important regulatory step of gene expression in the former, but not 

in the latter.  

 

In prokaryotes, the 30S ribosomal subunit binds two initiation factors, IF1 and IF3. 

The IF1 binds over the A site of the 30S, thus preventing the initiator tRNA from binding 

to it, whereas the IF3 prevents the 30S and 50S subunits from premature assembly. The 

30S-IF1-IF3 complex recruits the mRNA through base-pairing interactions between the 3’-

end of the 16S rRNA and an mRNA sequence, named Shine-Delgano sequence, which is 

located 10 bases upstream the initiation codon. In the next step of initiation, the complex 

containing mRNA is joined by the ternary complex IF2•fMet-tRNAi
fMet•GTP. Finally, this 

large complex combines with the 50S ribosomal subunit; and, simultaneously, the GTP 

bound to IF2 is hydrolyzed to GDP and Pi, which are released from the complex. Then, the 

three initiation factors are released and a functional 70S ribosome – the initiation complex, 

with the fMet-tRNAfMet in the P site and an empty A site – starts elongation. 

 

In eukaryotes, translation initiation is more complex than in prokaryotes and archea. 

The translation initiation begins with formation of a eIF2•GTP•Met-tRNAi ternary 

complex, which binds to the 40S ribosomal subunit with help of eIF1, eIF1A and eIF3. 

This results in the formation of a 43S complex. Meanwhile, the eIF4F complex, which 

includes the factors eIF4E, eIF4G, and eIF4A, is assembled on the 5’-cap structure of the 

mRNA. In this complex, the eIF4A, which has RNA helicase activity, unwinds secondary 

structure found on the 5’-untranslated region (UTR), while eIF4G binds both the eIF4E 

and the poly(A) binding protein (PBP), which is bound to the 3’-poly(A) tail of the mRNA. 

Indeed, the eIF4F complex effectively ties together the 5’- and the 3’-ends of the mRNA 

(Gingras et al., 1999). Then the 43S complex is loaded onto the mRNA, with the help of 
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eIF3, eIF4F and PBP, and starts scanning down the mRNA looking for the AUG initiation 

codon, which signals the beginning of the open reading frame (ORF). Once this codon is 

found, the GTP of the eIF2•GTP•Met-tRNAi ternary complex is hydrolysed, by eIF2 with 

the help of eIF5, hence promoting the release of the Met-tRNAi into the P-site and 

dissociation of eIF2•GDP along with other initiation factors. Then the complex 

eIF5B•GTP promotes the joining of the 60S ribosomal subunit to the Met-

tRNAi•mRNA•40S ternary complex, in a process that requires the GTP hydrolysis by 

eIF5B, which is subsequently released as an eIF5B•GDP complex (Pestova et al., 2000; 

Lee et al., 2002). So the 80S ribosome is assembled and ready to proceed with protein 

synthesis. 

 

 

1.2.2. Translation elongation 

 

In the second phase of translation (Figure 1. 3), the ribosome moves along the 

mRNA, towards its 3’-end, assembling amino acids into polypeptides by reading codons. It 

requires a group of proteins termed elongation factors (EF) – EF-Tu in prokaryotes, or 

eEF1A in eukaryotes – that participate both in recruitment of aminoacyl-tRNAs (aa-

tRNAs) for ribosome decoding and in subsequent translocation of the ribosome as it moves 

along the mRNA. It is critical for the translational accuracy that only the tRNAs charged 

with their cognate amino acid are recognized by the elongation factors, which are able to 

discriminate. In prokaryotes, the EF-Tu•GTP binds all the correctly aminoacylated tRNAs 

with about the same affinity, hence obeying the thermodynamic compensation rule 

(LaRiviere et al, 2001).  

 

At this stage, the ribosome selects aa-tRNAs that are delivered to its A-site as a 

ternary complex – EF-Tu•aa-tRNA•GTP or eEF1A•aa-tRNA•GTP – through cognate 

codon-anticodon interactions. This process represents a critical point in translation, and is 

achieved in two stages, separated by the irreversible hydrolysis of GTP from the ternary 

complex (Thompson and Stone, 1977; Ruusala et al., 1982). 
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During initial selection, a charged tRNA is presented to the ribosome A-site, where it 

is tested for cognate codon-anticodon pairing. At this stage, ternary complexes with 

noncognate anticodons rapidly dissociate without GTP hydrolysis (Pape et al., 1999; Pape 

et al., 2000). Cognate codon-anticodon pairing stabilizes the ternary complex on the 

ribosome and stimulates GTP hydrolysis, which promotes a conformational change and its 

subsequent dissociation, with the release of  EF-Tu•GDP or eEF1A•GDP (Gromadski and 

Rodnina, 2004; Rodnina and Wintermeyer, 2001b; Rodnina and Wintermeyer, 2001a; 

Valle et al., 2003; Ogle and Ramakrishnan, 2005).  

 

 
Figure 1. 3 – The ribosome translation elongation cycle. 
The aa-tRNA forms a ternary complex with elongation factor Tu (EF-Tu) and GTP, and binds to the A-site of 
the ribosome (1). Correct codon–anticodon base pairing between the A-site mRNA codon and the tRNA 
anticodon activates the GTPase activity of EF-Tu and so the GTP hydrolysis occurs (2). Then a 
conformational change is induced in EF-Tu, resulting in its release from the aa-tRNA and enabling the 
acceptor end of the aa-tRNA to move into the A-site (3). After accommodation, the growing polypeptide 
esterified to the P-site-bound tRNA is transferred to the A-site-bound tRNA, elongating the peptide chain by 
one amino acid (4). With the aid of elongation factor G (EF-G), the deacylated P-site tRNA is then 
translocated to the E-site, and the A-site-bound tRNA is translocated to the P-site (5). The ribosomal A-site is 
then available for binding to the next ternary complex (Adapted from Dale and Uhlenbeck, 2005). 
 

 

Positive discrimination of cognate aa-tRNA is further enhanced by a geometrical 

accommodation in the decoding site. As non-canonical codon-anticodon base pairing leads 

1

2

3

4 

5
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to steric clashes, the geometry adopted by the ribosome is an effective criterion for positive 

discrimination of cognate aa-tRNA. During the aa-tRNA selection step, the ribosome 

changes its conformation from an open to a close state. In the open state, which is favoured 

when the A site is empty or bears a near-cognate anticodon, the ribosome is inactive for 

tRNA selection, whereas in the closed state, thus bearing the cognate anticodon, the rates 

of both GTPase activation and accommodation are accelerated. This geometric argument is 

reinforced by the finding that some antibiotics, such as paromomycin, force the ribosome 

to switch from the open to the closed conformation increasing error rate. The latter is due 

to increased acceptance of near-cognate aa-tRNAs. In other words, this conformational 

change is critical to maintain translational accuracy (Ogle et al., 2002; Ogle et al., 2003; 

Ogle and Ramakrishnan, 2005). This argument, also explains why the presence of a tRNA 

on the E-site lowers the affinity of the A-site and, consequently, increases the accuracy of 

selection of cognate anticodons (Nierhaus, 1990). Indeed the E-site tRNA makes contacts 

with both small and large ribosomal subunits and its presence increases the energetic cost 

of transition between the open and the closed states of the ribosome, increasing accuracy 

(Ogle et al., 2002). 

 

Once the aa-tRNA is accommodated, the ribosome peptidyl transferase center 

catalyses the formation of the peptide bond between the incoming aminoacyl residue, 

attached to the tRNA at the A-site, and the nascent peptidyl chain, which is attached to the 

tRNA at the P-site. At this stage, both tRNAs adopt an hybrid conformational state on the 

ribosome: the tRNA at the P-site is deacetylated, with its acceptor end at the E-site of the 

large subunit and its anticodon in the P-site of the small subunit; whereas the newly formed 

peptidyl-tRNA has its acceptor end in the P-site of the large subunit, while its anticodon is 

still in the A-site of the small subunit. Such movements of the acceptor ends of tRNA, on 

the large subunit of the ribosome, occur spontaneously and immediately after the formation 

of the peptide bond, and thus independently of the anticodon (Noller et al., 2002).  

 

The elongation cycle is completed by the movement of the mRNA–tRNA complex 

on the ribosome, in a process called translocation, catalyzed by the complex EF-G•GTP, in 

prokaryotes, or eEF2•GTP, in eukaryotes, at the expenses of the energy from the GTP 

hydrolysis. During translocation, the anticodon ends of the tRNAs and the mRNA move 
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along the small ribosome subunit, thus the deacetylated tRNA is displaced from the P-site 

to the E-site and then released from the ribosome; whereas the newly formed peptidyl-

tRNA is displaced from the A-site to the P-site, hence resulting in an empty A-site, which 

is ready to accommodate a new aa-tRNA on the next round of elongation  (Rodnina et al., 

2002; Rodnina et al., 1999; Noller et al., 2002; Kapp and Lorsch, 2004). 

 

1.2.3. Translation termination 

 

Termination of protein synthesis is initiated when one of the three stop codons is 

present in the ribosome A-site. This step involves decoding of a STOP codon through an 

interaction between RNA (rRNA and mRNA) and proteins (release factors) and facilitates 

the hydrolytic release of the nascent polypeptide chain from the peptidyl-transferase centre 

of the ribosome. The release factors (RFs) are split in two classes: the class-I proteins 

recognize the STOP codons in the mRNA and the class-II proteins interact with class-I RFs 

and have GTPase activity. Prokaryotes have two class-I RFs with overlapping specificity: 

RF1 (specific for UAG and UAA) and RF2 (specific for UGA and UAA), whereas 

eukaryotes only have one factor, eRF1, which recognizes the three STOP codons. The 

class II RFs are RF3 and eRF3, in prokaryotes and eukaryotes, respectively (reviewed by 

Nakamura et al., 1996; Buckingham et al., 1997). 

 

Several models have been proposed to explain the molecular mechanism of 

translation termination, and although there is a consensus about the termination elements, 

the order by which the events occurs is still open for debate (Freistroffer et al., 1997; 

Zavialov et al., 2001; Peske et al., 2005). In prokaryotes, the better accepted model 

proposed for termination posits that once a stop codon is recognized by RF1 or RF2, the 

ester bond between the nascent polypeptide and the tRNA at the P-site is hydrolysed, 

leading to the release of the polypeptide chain from the ribosome (Zavialov et al., 2001). 

This originates a post-termination ribosome complex containing deacylated tRNA bound 

on the mRNA at the P-site and an empty A-site. Then, RF3 promotes rapid dissociation of 

RF1 or RF2 from the ribosome, in a GTP-dependent manner (Freistroffer et al., 1997). 

Afterwards, the ribosomes, along with the tRNA and mRNA, are released from the post-

termination complex by the concerted action of EF-G, RF3 and the ribosome recycling 
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factor (RRF), leaving these components available for a new round of translation (Peske et 

al., 2005). 

 

1.3. The operational RNA code 

 

Accurate translation relies on the highly discriminating properties of the ribosome A-

site. Most tRNAs that enter in the A-site fail to form three base pairs with the displayed 

codon and the tRNA rapidly dissociates. Therefore, in this process only cognate tRNAs are 

efficiently retained.  

 

Nevertheless, the ribosome does not check whether tRNAs are correctly charged 

(Prather et al., 1984) and, consequently, translation accuracy strongly relies on 

aminoacylation specificity. Indeed, the accuracy in the genetic code is ensured by an 

operational RNA code – the “second genetic code” – that correlates amino acids to 

specific structural features located in tRNAs structure and is imprinted in aaRSs structure 

(De, 1988; Schimmel et al., 1993). 

 

1.3.1. Transfer RNAs 

 

The existence of an adapter molecule that would carry an amino acid and interact 

with messenger RNA, playing a central role in translation, was first hypothesized by Crick 

(Crick, 1955): “there would be 20 different kinds of adaptor molecules, one for each amino 

acid, and 20 different enzymes to join the amino acids to their adaptors”. This theory 

proved to be correct, with the exception that there are more than 20 different tRNAs, which 

can be grouped in families of isoacceptors. Isoacceptors are tRNAs that, despite having 

different mRNA codon selectivity, are recognized by a single aaRS that charges them with 

their cognate amino acid. Since their discovery in the early 1970s, up to 5,800 different 

tRNA molecules have been identified in organisms belonging to the three domains of live 

(Sprinzl and Vassilenko, 2005). tRNAs have invariant and semi-invariant nucleotides 

(Figure 1. 4), though some tRNAs have atypical structures displaying variation at 

conserved positions. 
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1.3.1.1. Structure of tRNAs 

 

The secondary structure of tRNAs was first predicted by Holley and co-workers 

(Holley, 1965). Comparative sequence analysis allowed them to identify invariant 

nucleotides and to define a cloverleaf secondary structure. The canonical cloverleaf (Figure 

1. 4) consists of three stem-loop regions, a variable region, a terminal stem and a 3’ single 

stranded N-C-C-AOH end, to which the amino acids become attached. The tRNAs are 

clustered in two families – class-I and class-II, according to the length of their variable 

region. The class-I comprises the majority of tRNAs, which are characterised for having 

short variable loops of four or five nucleosides. Class-II tRNAs have longer variable arms 

of 10 to 24 bases and belong to leucine and serine amino acid families in eukaryotes and 

leucine, serine and tyrosine in bacteria and organelle translation systems (Dirheimer et al., 

1995a). 

  

 
Figure 1. 4 – tRNA secondary and tertiary structure. 
(A) Diagram showing the cloverleaf structure of tRNAs. The conserved nucleotides are indicated. The stems 
can be related to their different domains according to size : the acceptor stem is the longest with seven base 
pairs; both the TψC and the anticodon stems have five base pairs; and finally, the D stem has three or four 
base pairs, in class I and class II tRNAs, respectively. (B) L-shaped tertiary structure of tRNAs, representing 
the special location of its stems and loops.   
 
 

An interesting feature of tRNA structure is the formation of non-canonical base pair 

interactions, of which the G·U wobble pairing is the most frequent, though there are more 

non-Watson-Crick interactions, such as A·A, C·C, C·U, G·A, U·U and U·Y (Grosjean et 

 

A B 
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al., 1982). The cloverleaf, in turn, assumes a L-shaped three-dimensional structure, where 

the D-arm is stacked onto the anticodon-arm and the TψC-arm is stacked onto the 

anticodon-arm and the acceptor stem, thus defining two distinct functional domains. The 

conserved and semi-conserved residues play a critical role in forming and maintaining the 

L-shaped structure, as the R15:Y48 tertiary interaction, known as Levitt base pair. This 

base pair stabilizes the stacking of the D-arm with the TψC- stem and keeps the D- and 

variable loops together (Levitt, 1969; Hou et al., 1993). 

 

These distinct structural domains had independent origins. Indeed, they bind to 

different domains of aaRSs and the TψC-acceptor minihelix functions as an independent 

unit. In fact, this minihelix can be recognized and charged by aaRSs and recognized by the 

elongation factor EF-Tu (Schimmel and Ribas de, 1995). This suggests that the TψC-

acceptor minihelix is an ancient structure, upon which the early genetic code might have 

relied on, whereas the D- and the anticodon arms are late acquisitions (Noller, 1993). 

 

 

1.3.1.2. Identity Elements 

 

There are twenty different aminoacylation systems, one for each amino acid and 

tRNA family. Since tRNAs are broadly similar in structure, the accurate discrimination 

between them is a challenge to the aminoacyl-tRNA synthetases. To overcome this 

problem, tRNAs contain certain structural elements, called identity determinants, which 

directly interact with the enzymes (Figure 1. 5). However, such identity determinants have 

varied slightly during evolution and the recognition system of tRNA families is sometimes  

different among different organisms. 

 

In many cases, specific tRNA-protein interactions occur in the anticodon but in other 

cases the variable arm and the acceptor stem are also involved in tRNA recognition  (Kim 

et al., 2000). Since anticodon nucleotides interact directly with codon nucleotides during 

translation, they were the first to be considered as key elements for tRNA recognition by 

the aaRSs. Indeed, they play major roles in recognition of most of the tRNAs in both 

E. coli and S. cerevisiae. Actually, in E. coli only the tRNALeu, tRNASer and tRNAAla 
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families do not contain identity elements in the anticodon. These families decode six or 

four codons – the tRNALeu decodes CUN and UUR codons, the tRNASer decodes AGY and 

UCN codons and tRNAAla decodes GCN codons – therefore, have different isoacceptors 

tRNAs with different anticodons, which complicates recognition of the anticodons by the 

respective aaRSs.  

 

 
Figure 1. 5 – Distribution of identity elements over the tRNA structure. 
The tRNA identity elements are distributed over four main features of the tRNA structure: the discriminator 
base, the acceptor stem, the core region and the anticodon-loop. The involvement of each feature in tRNA 
recognition by either class I or class II aaRSs is indicated. Apart from these, the variable arm is a key player 
for Ser identity, whereas the -1 nucleotide is important for His identity (adapted from Giege et al., 1998). 

 

 

The acceptor stem also contains a significant number of identity determinants, mainly 

in the first three base pairs – N1-N72, N2-N71 and N3-N70 – and the unpaired nucleotide N73 

(Figure 1. 5). The latter is known as the “discriminator base”, as it contributes to the 

identity of virtually every tRNA species (Normanly and Abelson, 1989; Lee et al., 1993; 

McClain et al., 1990; McClain, 1993). Each tRNA family has its own discriminator base 

and most tRNAs accepting chemically similar amino acids are characterized by an 

identical, phylogenetically well-conserved residue at this position (Crothers et al., 1972). 

The importance of this base for tRNA recognition is highlighted in human leucine tRNAs 

where A73 to G73 mutation changes its identity to serine (Breitschopf and Gross, 1994).  
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The importance of the acceptor stem for tRNA aminoacylation has been extensively 

studied through aminoacylation of both acceptor-TψC stem minihelices and acceptor stem 

microhelices, which have proven to be, just by themselves, substrates for aminoacylation. 

For example, both minihelices and microhelices from alanine tRNAs are efficiently 

charged with alanine, provided that they contain the G3-U70 base pair, which is the identity 

determinant for alanine (Francklyn et al., 1992). The charging of specific RNA helices has 

been demonstrated with at least 11 different aminoacyl-tRNA synthetases, even for cases 

where the anticodon is known to play a significant role in the cognate tRNA recognition 

(Frugier et al., 1994; Hou et al., 1995; Quinn et al., 1995; Saks and Sampson, 1995), again, 

these studies demonstrate that there is an operational code embedded in the tRNA 

structure. 

 
           Table 1. 2 – Examples of tRNA identity anti-determinants. 

Antideterminants tRNA aaRS Type 

Lysidine 34 (modified C) tRNAIle (E. coli) MetRS 

U34 tRNAIle (E. coli) MetRS 

A36 tRNAArg (E. coli) TrpRS 

G37 tRNASer (yeast) LeuRS 

m1G37 (methylated G) tRNAAsp (yeast) ArgRS 

A73 tRNASer (human) SerRS 

G3-U70 tRNAAla (yeast) ThrRS 

U30-G40 tRNAIle (yeast) GlnRS, LysRS 

 

 
 

Interestingly, in addition to the positive identity elements present in a tRNA 

structure, which direct specific interactions with cognate synthetases, there are also 

negative elements, called anti-determinants, which contribute to the tRNA identity by 

blocking the recognition by other non-cognate synthetases (Table 1. 2). Such 

antideterminants can be modified or unmodified nucleotides at any structural domain of the 

tRNA. Several examples are known, but two of them are of special interest – (i) the 

lysidine residue (a modified C) at position 34 of the tRNAIle acts as an anti-determinant for 

the MetRS, since the tRNAIle recognizes AUA/U/C codons, whereas the tRNAMet 

recognizes the AUG codon (Muramatsu et al., 1988); and (ii) the Leu/Ser recognition 
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system, where the A73 protects the tRNALeu against the SerRS, whereas the G73 protects the 

tRNASer against the LeuRS (Breitschopf et al., 1995; Soma et al., 1996). 

 

1.3.1.3. Modified bases 

   

tRNAs are the most extensively modified nucleic acids in eukaryotes, prokaryotes 

and archea (Sprinzl et al., 1998; Woese et al., 1990). Base modifications are introduced 

post-transcriptionally and improve the specificity and efficiency of tRNAs, as they are 

involved in codon recognition and act as identity determinants for cognate aminoacylation 

(Yokoyama et al., 1985; Bjork, 1995; Agris, 2004).  

 

 
Figure 1. 6 – Cloverleaf structure of tRNA with the localization of modified nucleotides. 
(A) Distribution of modified nucleotides in tRNAs from 546 tRNA sequences. In white are nucleotides for 
which no modification has yet been reported, in grey are nucleotides for which there is at least one 
modification in one tRNA, and finally, in black are those nucleotides for which more than 5 different 
modifications have been detected in the analysed tRNAs. The numbered positions are those where more than 
25% of the nucleotides are modified. (B) Modified tRNA nucleotides found in E. coli. The positions 32, 34 
and 37 are known to contain hypermodified nucleotides. Adapted from (Dirheimer et al., 1995b; Auffinger 
and Westhof, 1998) 
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Indeed, more than eighty modified nucleotides have been found in tRNAs and some 

of them are conserved in the 3 domains of life, as the dihydrouridine (D) in D-loops or 

ribothymidine in T-loops (Bjork et al., 1999).  The modified nucleotides can be found over 

61 different positions on the tRNA (Figure 1. 6), however, the richest domain is the 

anticodon loop, especially the first anticodon position (N34) and position 3´ to the 

anticodon triplet (N37).The anticodon region is also the only structural domain that contains 

hypermodified bases, namely the guanosine derivatives wybutosine which is found at 

position 37 in almost all eukaryotic phenylalanine tRNAs, and queueosine (Q) at position 

34 of Tyr, His, Asn and Asp tRNAs from prokaryotes and eukaryotes (Yokoyama et al., 

1985). Regarding minor modifications, such as methylation and acetylation, they are 

evenly distributed over the entire tRNA structure. 

 
The modified bases at position 34 can either extend or restrict the decoding properties 

of tRNAs, for instance, inosine (I) (an adenosine derivate) permits base pairing with U, A 

and C; and the hypermodified Q pairs with all four nucleotides (A, U, C, G) (Yokoyama et 

al., 1985). Concerning the modified bases at position 37, they seem to strengthen the base 

pairing between the last base of the anticodon (position 36) and the first base of the codon, 

as is the case of isopentenyl adenosine (i6A) in tRNAs that read codons starting with U. In 

this case, i6A improves A36-UXX interaction and prevents base pairing of A36 with other 

bases (Bjork, 1995). Nevertheless, the most conserved modified residues in position 37 are 

m1G in tRNAs that decode codons starting with C, and the t6A in tRNAs that decode 

codons starting with A. The existence of these conserved modified residues points towards 

an important function for base modifications since they appeared early during the evolution 

of life (Bjork, 1995).  

 

While modified bases in several positions do not have a significant influence on 

aminoacylation efficiency, certain modifications on the anticodon do lead to a change in 

tRNA conformation and play an important role in codon recognition (by both the aaRSs 

and the ribosomes) (Li et al., 1997). For example, in E. coli the modification of cytidine to 

lysidine (k2C) at position 34 in the two isoleucine tRNAs is sufficient for identity, and also 

prevents misacylation with methionine and alters decoding properties since  k2C  pairs with 

A rather than G (Muramatsu et al., 1988).  
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Finally, modified bases play an important role in the evolution of genetic code 

alterations. For example, decoding of the UGA stop codon as tryptophan in mitochondria 

is due to loss of its recognition by RF2 combined with a mutation in the anticodon of 

tRNATrp that changed 5´-CCA-3´anticodon to 5´-U*CA-3´, where U* is the modified base 

5- carboxymethyl-aminomethyl U (cmnm5U). The 5´-U*CA-3´ anticodon pairs only with 

purines and hence it decodes both the tryptophan UGG by wobble and the stop UGA by 

Watson-Crick base pairing (Tomita et al., 1999). In the case of animal mitochondria, the 

tRNAMet contains a modified base at position 34 – f5C in vertebrates and nematodes, and  

cmnm5C in ascidia,  and thus is able to decode both AUG and AUA. (Moriya et al., 1994; 

Watanabe et al., 1994; Kondow et al., 1999). 

 

 

 

1.3.2. Aminoacyl-tRNA synthetases 

 

The correct charging of tRNA with cognate amino acids is catalysed by aminoacyl-

tRNA synthetases (aaRS), which recognize both the amino acid and the tRNA via its 

imprinted RNA code. In contrast to the standard genetic code, the operational RNA code is 

not degenerated, since there is only one aaRS for each amino acid. The aaRSs are enzymes 

from the 6.1.1 class, which have been exhaustively studied, so both their structure and 

mechanism are well documented.  

 

The aminoacylation reaction is a highly specific two step reaction (Figure 1. 7). The 

first step involves the formation of aminoacyl adenylate, which is an enzyme-bound 

intermediate, resulting from the specific binding of the amino acid and its activation 

through a reaction with ATP:Mg2+, with release of  pyrophosphate. In the second step, the 

3’ terminal adenosine of the enzyme-bound tRNA reacts with the aminoacyl adenylate 

intermediate, leading to both esterification of the tRNA and the release of AMP.  
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Figure 1. 7 – The aminoacylation reaction. 
The aminoacylation reaction is achieved in two steps. (A) The amino acid is activated by attacking a 
molecule of ATP at the [alpha]- phosphate, giving rise to a mixed anhydride intermediate-
aminoacyl-adenylate and inorganic pyrophosphate. (B) The amino acid moiety is transferred to the 
3’-terminal ribose of the cognate tRNA, yielding an aminoacyl-tRNA and AMP 
 

 

1.3.2.1. Classes of Aminoacyl-tRNA synthetases 

 

The aaRS can be grouped in two classes – class I and class II – based in the 

conserved sequence motifs and structural architecture of the catalytic domains of the 

enzymes (Lenhard et al., 1997; Eriani et al., 1990; Cusack et al., 1990) (Figure 1. 8, Figure 

1. 9, Figure 1. 11). This class division is very rigid, mutually exclusive (each enzyme can 

be classified as belonging to only one group) and inter-changes between classes are not 

possible. However, the lysyl-tRNA synthetase (LysRS) is an exception to this rule, since in 

some organisms it is a class I, while in others it is a class II enzyme. For example, in some 

archea, namely Methanococcus maripaludis, Methanobacterium thermoautotrophicum and 

Methanococcus jannaschii, and in some bacteria, namely in Borrelia burgdorferi and 

Treponema pallidum, belongs to the class I, whereas in all the other organisms from all the 

kingdoms of live it belongs to class II enzymes (Ibba et al., 1997b; Ibba et al., 1997a).  

 

Class I enzymes comprise ArgRS, CysRS, GluRS, GlnRS, IleRS, LeuRS, MetRS, 

TrpRS, TyrRS and ValRS, and are characterized by a Rossman nucleotide-binding fold, 

consisting of alternating β-strands and α-helices, responsible for adenylate synthesis 

(Figure 1. 8). In these proteins the active site fold is divided in two halves linked by a 

polypeptide of variable length, designated as connective polypeptide 1 (CP1) (Starzyk et 

A 

B 
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al., 1987). Indeed, this insertion may form an editing domain and contains residues for 

binding the synthetase to the tRNA acceptor helix (Rould et al., 1989). The Rossman fold 

is further characterized by two additional sequence motifs, namely an 11-amino acid 

element, which ends in the sequence His–Ile–Gly–His, known as the HIGH signature 

sequence, located in the first half of the nucleotide-binding fold, between the end of the 

first β-strand and the beginning of the first α-helix; and a KMSKS motif, located in the 

second half of the nucleotide-binding fold. (Delarue and Moras, 1993).  

 

 
Figure 1. 8 – General structure of Class I aminoacyl-tRNA synthetases. 
(A) Cartoon representing the structure of class I aaRSs, with the KMSKS and HIGH signatures. (B) The 
structure of the class I GluRS, complexed with the acceptor arm of its cognate tRNA. The Rossman fold is in 
yellow with the characteristic motifs HIGH and KMSKS, which are highlighted in red and dark blue, 
respectively. Adapted from (Moras, 1992; Arnez and Moras, 1997).  

Figure 1. 9 - Structure of the Class II aminoacyl-tRNA synthetases. 
(A) Cartoon representing the structure of class II aaRSs, with the motif 1, 2 and 3. (B) The structure of the 
class I AspRS, complexed with the acceptor arm of its cognate tRNA, with the characteristic motifs 1, 2 and 
3 highlighted in red, green and dark blue, respectively. Adapted from (Moras, 1992; Arnez and Moras, 1997). 

 

A B 
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The class II enzymes are AlaRS, AsnRS, AspRS, GlyRS, HisRS, LysRS, PheRS, 

ProRS, SerRS and ThrRS (Mechulam et al., 1995; Woese et al., 2000), characterized by 

seven-stranded antiparallel β-sheet flanked by three α-helices (Figure 1. 9). The active site 

is formed by three conserved motifs known as motifs 1, 2, and 3, consisting of a N-terminal 

helix–loop–strand, a central strand–loop–strand, a C-terminal and strand–helix, 

respectively, whose sequence is highly degenerate (Eriani et al., 1990; Cusack et al., 1990).   

 

However, the differences between the enzymes belonging to each class go beyond the 

secondary and tertiary structures. They also differ on their quaternary structure, as the class 

I synthetases are predominantly monomers, with the exception of TrpRS and TyrRS,  

while the class II synthetases are obligate homo or heterodimers, whose interface is 

established by the conserved motif 1 and is required for the integrity of their active site.  

 

 

 
Figure 1. 10 - Interaction of the two distinct classes of aaRSs with tRNA. 
A class I synthetase is represented on the left and a class II synthetase on the right. The mirror-symmetrical 
interaction with the tRNA (on the centre) is highlighted. Adapted from (Moras, 1992; Arnez and Moras, 
1997). 
 

 

The class partitioning is further manifested mechanistically in the two steps of the 

aminoacylation reaction. During the first step, the conformation of ATP bound to the class 

I and class II enzymes is different – in class I synthetases the ATP is in a straight 
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conformation, whereas in class II synthetases the ATP is positioned in a bent 

conformation. Also, during the second step of the reaction, while in class I enzymes, the 

aminoacyl group is transferred to the 2’-hydroxyl group of the terminal adenosine of the 

tRNA and then moved to the 3’-hydroxyl by a trans-esterification reaction; in class II 

enzymes the aminoacyl group is directly loaded on the 3’-hydroxyl of the terminal 

adenosine. These differences in the reaction mechanisms are a direct consequence of the 

manner that aaRSs use to bind tRNA. Class I aaRSs bind the tRNA minor groove, and 

class II aaRSs recognize its major groove (Figure 1. 10) (Ruff et al., 1991; Moras, 1992). 

 

An analysis of the sequences and structures of synthetases have also shown that these 

enzymes can be further divided into three subclasses – a, b, and c – that share homologous 

anticodon binding modules (Figure 1. 11) (Cusack, 1995). So, synthetases of the same 

subclass are more similar to each other than to members of other subclasses. Class Ia 

contains enzymes that recognize hydrophobic (Ile, Leu and Val) and sulphur-containing 

residues (Met and Cys) along with arginine; class Ib enzymes recognize glutamic acid and 

glutamine; and class Ic is formed by enzymes that recognize the aromatic tyrosine and 

tryptophan residues. Likewise, class IIa enzymes recognize histidine, proline, serine, 

threonine, alanine and glycine residues; class IIb enzymes recognize the charged aspartic 

acid and asparagine residues; and class IIc recognize the aromatic phenylalanine. 

Interestingly, when the members of the two classes of synthetases are listed according to 

their subclasses, a symmetry emerges, both in terms of the number of members and in 

terms of the chemical properties of the amino acid. Such symmetry is particularly obvious 

between the members of subclasses Ib and IIb, as both recognize charged amino acids and 

their derivates; and between Ic and IIc, that recognize the aromatic amino acids (Moras, 

1992; Cusack, 1995; Ribas and Schimmel, 2001b).  
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Figure 1. 11 – The two classes of aminoacyl-tRNA synthetases and their sub-classes. 
The division if the aaRSs in classes I and II, and sub-classes a, b and c. The symmetry of the sub-classes is 
represented. Based on (Ribas and Schimmel, 2001a). 
 

 

1.3.2.2. The evolution of aminoacyl-tRNA synthetases 

 

The aaRSs are among the oldest proteins that appeared before the last common 

ancestor. Since aaRSs for a given amino acid are more related among different organisms 

than among other synthetases within the same organism (Nagel and Doolittle, 1991), their 

origin and evolutionary history reflects the history of life itself. For this reason, aaRSs can 

be regarded as potential markers for phylogenetic studies (Brown and Doolittle, 1995; 

Woese et al., 2000; Ribas et al., 2001). Interestingly, out of the 20 aminoacyl-tRNA 

synthetases, only 3 are not present in all organisms, namely the GluRS, AsnRS and CysRS. 

The first two are present in all eukaryotes, but only in some bacteria (Freist et al., 1997; 

Siatecka et al., 1998) and the latter is absent in the methanogenic archea 

Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus and 

Methanopyrus kandleri (Doolittle and Handy, 1998; Koonin and Aravind, 1998). 

 

The existence of two classes of aaRSs containing 10 enzymes each, suggests that 

they have evolved from two ancestral molecules – the ancestors of the Rossman fold (class 

I) and of the antiparallel β-sheet (class II) (Eriani et al., 1995; Wolf et al., 1999). Similarly, 

each subclass is thought to have its own ancestor that arose after the progenitor of the 

entire class.  
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The class I and II enzymes high divergence, both at sequence and at mechanistic 

levels, is regarded as evidence for their independent origins in the archaic translational 

systems (Carter, Jr., 1993; Cavarelli and Moras, 1993). However, according to 

phylogenetic analysis of both classes of synthetases, they have about the same evolutionary 

age (Nagel and Doolittle, 1991),  and it seems incongruous that in archaic systems two 

types of molecules would have independently emerged to perform the same catalytic 

function. This observation, led Rodin and Ohno to propose that the class division is 

intrinsic to the origin of translation itself and does not result from independent origins. 

According to them, the aaRSs arose from a primordial gene that encoded the ancestors of 

the two classes on opposite strands (Figure 1. 12)  (Rodin and Ohno, 1995; Rodin and 

Rodin, 2006). This hypothesis was strengthen by two findings – (i) a gene of Achlya 

klebsiana encodes in the sense strand a glutamate dehydrogenase (GDH), and in the 

antisense strand a HSP70-like chaperonin (LeJohn et al., 1994), and (ii) GDH has 

homology to class I aaRSs while the HSP70 ATP binding site has homology to motif 2 of 

class II SerRS (Carter and Duax, 2002).  

 

 
Figure 1. 12 – The antiparallel map of Class I versus Class II aminoacyl-tRNA synthetases. 
The class I defining signature motif HIGH stands against the motif 2 of class II aaRSs, and the KMSKS 
against motif 1. Adapted from (Rodin and Ohno, 1995).  
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The analysis of the structure of aaRS-tRNA complexes suggests that catalytic 

domains of synthetases from opposite subclasses are able to bind to a single tRNA acceptor 

stem without any steric clashes, as they bind to opposite sides of the tRNA acceptor stem 

(Figure 1. 13). This symmetrical nature of the two classes suggests that their evolution was 

shaped under the same evolutionary pressure, and can be interpreted as evidence that 

primordial synthetases have developed a protection for the acceptor helix in a hostile 

environment, namely high temperature (Ribas and Schimmel, 2001b).  

 

 
Figure 1. 13 – The class I and II synthetases complexes. 
Model for the ternary complexes class I aaRS–class II aaRS–tRNA. On the top, the molecules are displayed 
along the axis of the anticodon stem loop, from the acceptor stem side, whereas in the bottom, the complexes 
are oriented with the plane defined by the axes of the tRNA acceptor stem and anticodon stem helices in 
parallel. (A) The IleRS-ThrRS-tRNA complex, both synthetases belong to the sub-class a. (B) The ternary 
complex formed with the sub-class b, GlnRS-AspRS-tRNA complex. (C) The sub-class c TyrRS-PheRS-
tRNA complex. Adapted from (Ribas and Schimmel, 2001a). 
 

 

Initially, these complexes of 2 synthetases and 1 tRNA may have been required for 

discrimination of closely related amino acids, namely valine vs. threonine in subclass a; 

glutamate vs. aspartate or glutamine vs. asparagine in subclass b; and tyrosine vs. 

phenylalanine in subclass c. The acquisition of the capacity to discriminate between similar 
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amino acids allowed the double aaRS complexes to separate and to evolve independently 

from each other (Ribas and Schimmel, 2001a; Ribas and Schimmel, 2001b). 

 

At a later stage, a second aaRS domain was joined to the primordial catalytic site 

domain, which provided contacts with tRNA domains distal from the amino acid acceptor 

stem, namely the anticodon-domain in MetRS and GluRS and the variable loop in class II 

SerRS (Rould et al., 1991; Brunie et al., 1990; Cusack et al., 1996; Mosyak et al., 1995; 

Arnez et al., 1995).  Thus, these two aaRS domains interact with different regions of the 

tRNAs – the catalytic domain interacts with the acceptor-TψC minihelix; while the second 

major domain interacts with other regions of the tRNA, such as the anticodon or the 

variable loop. The addition of the nonconserved domains possibly occurred when the D-

arm and the anticodon domains of the tRNA emerged and became important for the 

translation process (Schimmel et al., 1993).  

 

These late domains of aaRSs were often recruited by other types of proteins and 

created novel functionalities. For example, the cytokine EMAPII (endothelial monocyte-

activating polypeptide II) is homologous to the C-terminal domain of mammalian TyrRSs. 

Interestingly, this domain, which is not essential for aminoacylation, once cleaved by an 

elastase (an extracellular enzyme from  polymorphonuclear leukocytes) has cytokine 

function (Wakasugi and Schimmel, 1999; Kleeman et al., 1997). Apart from this, aaRS 

like-domains are also involved in amino acid biosynthesis, DNA replication, RNA splicing 

and cell cycle control (reviewed in Francklyn et al., 2002; Martinis et al., 1999). 
 

 

1.3.2.3. Ancient pathways for tRNA charging 

 
The discovery of indirect synthesis of asparaginyl-, glutaminyl-, and cysteinyl- 

tRNAs has shed new light on the evolution of aaRSs (reviewed in Ibba and Soll, 2000) and 

provided valuable arguments for the co-evolution theory of the genetic code (Di Giulio, 

2001a). 
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Figure 1. 14 – Alternative pathways for tRNA aminoacylation. 
The ancient routes for the Gln-, Asn- and Cys-tRNAs charging. Both Gln- and Asp-tRNA charging is 
achieved by a transamidation reaction since tRNAGln and tRNAAsn are firstly mischarged with Glu and Asp, 
respectively. These mischarged products are not recognized by the EF-Tu, and so are not used by the 
translational machinery. Then a transamidase transfers a –NH2 group either to the Glu- or the Asp- residue on 
the tRNA, hence generating the Gln- and Asn-tRNA. The synthesis of the Cys-tRNACys undergoes a similar 
process, the tRNA is firstly mischarged with O-phospho-serine (Sep), by SepRS, and then the SepCysS 
catalysis the conversion of the Sep into Cys. Adapted from (Praetorius-Ibba and Ibba, 2003). 

 

The synthesis of Asn-tRNAAsn and Gln-tRNAGln
 in most bacteria and in all archea is 

accomplished by an indirect pathway that requires mischarging of those tRNAs by AspRS 

and GluRS, originating Asp-tRNAAsn and Glu-RNAGln intermediates, respectively (Figure 

1. 14) (Curnow et al., 1997; Curnow et al., 1996). However, the fidelity of translation is 

not compromised since the elongation factors do not recognize those mischarged tRNAs 

(Becker and Kern, 1998). Rather, the mischarged Asp-tRNAAsn and Glu-tRNAGln are 

substrates for a tRNA-dependent aminotransferase (Asp/Glu-tRNA aminotransferase – 

AspAdT and GluAdT) (Curnow et al., 1997; Curnow et al., 1996; Ibba and Soll, 2000), 

that converts the attached aspartate to asparagine and the glutamate to glutamine, 

generating Asn-tRNAAsn and Gln-tRNAGln, respectively.  

 

Another ancient indirect tRNA aminoacylation pathway is the formation of Cys-

tRNACys in certain methanogenic archea lacking the CysRS (Figure 1. 14). In 

Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus and 

Methanopyrus kandleri,  the tRNACys is charged with O-phosphoserine (Sep), a precursor 

of cystein, by a class II SepRS, forming the noncognate Sep-tRNACys, which is converted 

to cognate Cys-tRNACys by the Sep-tRNA:Cys-tRNA synthase (SepCysS) (Sauerwald et 

al., 2005; O'Donoghue et al., 2005). 
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These ancient indirect aminoacylation pathways indicate that Cys, Asn, and Gln are 

recent acquisitions, and consequently, CysRS, AsnRS and GlnRS appeared more recently 

than other aaRSs, probably after the first split of the archeal and bacterial branches (Wong, 

1975; Lamour et al., 1994; Becker et al., 2000; Stathopoulos et al., 2000; Sethi et al., 

2005). 

 

 

1.3.2.4. Editing 

 

A central issue on protein synthesis is its high fidelity, which, in part, results from 

correct selection of both tRNA and amino acids by aaRSs. Since the latter is rather 

complex for chemically similar amino acids, namely leucine and isoleucine, aaRSs evolved 

an editing mechanism that prevents mischarged tRNA to reach protein synthesis (Nangle et 

al., 2002; Zhao et al., 2005). 

 
 

 
Figure 1. 15 – Pre- and post-transfer editing of the aminoacylation reaction. 
(A) The aminoacylation reaction and the steps where pre- and the post- transfer editing occur. The pre-
transfer editing is achieved immediately after the amino acid activation, whereas the post-transfer editing is 
only achieved after the aminoacylation of the tRNA. (B) Editing by E. coli LeuRS, which lacks the pre-
transfer activity. The yellow filter represents the aminoacylation active site, in the Rossman fold, which in 
the LeuRS, besides Leu, activates Ile and Val, but discriminates against bulkier amino acids, namely Trp and 
Phe. The green filter represents the editing CP1 domain of LeuRS. Adapted from (Mursinna et al., 2004). 
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Editing can occur at pre-transfer or post-transfer levels (Figure 1. 15 A). In the 

former, non-cognate amino acids, misactivated in the catalytic domain of aaRSs, are 

hydrolyzed before being transferred onto the tRNA (Fersht and Dingwall, 1979; Zhao et 

al., 2005). In the latter, the misactivated amino acids are transferred to the 3’-CCA end of 

tRNA, but are then hydrolysed before being transferred to the translation elongation 

factors, which transport aa-tRNA to the ribosome (EF-Tu or eEF-1A). However, some 

enzymes, namely IleRS, use both types of proofreading synergistically (Zhao et al., 2005). 

 

Editing in class-I aaRSs is exemplified by ValRS, LeuRS and IleRS, which have to 

differentiate amino acids that only differ by a methyl group, namely leucine, valine and 

isoleucine. These class Ia aaRSs contain an highly efficient editing domain named CP1 

domain, which is inserted in the Rossman fold (Nureki et al., 1998; Lin and Schimmel, 

1996; Cusack et al., 2000). The CP1 domain has a threonine rich motif that is likely to 

participate in hydrolysis of the transiently misacylated tRNA (Nureki et al., 1998; 

Mursinna et al., 2001). Its core is a highly conserved beta-barrel fold, though its peripheral 

structures are quite variable (Zhao et al., 2005). 

 

In class II aaRSs, the editing mechanism is not yet fully understood, however it exists 

in AlaRS, ThrRS, ProRS, PheRS, and LysRS.  The AlaRS hydrolyzes misactivated serine 

and glycine, the PheRS deacylates Ile-tRNAPhe; the LysRS hydrolyzes misactivated 

homocysteine, homoserine, cysteine, threonine and alanine; the ProRS edits alanine; and 

the ThrRS edits serine (Tsui and Fersht, 1981; Beebe et al., 2003; Dock-Bregeon et al., 

2000; Beuning and Musier-Forsyth, 2000; Beuning and Musier-Forsyth, 2001; Yarus, 

1972; Jakubowski, 1997). These editing domains are diverse in structure and location and 

are unevenly distributed through the three domains of life. For instance, the ThrRS editing 

domain is located in the N-terminus fused to its catalytic core and has strong sequence 

homology among eukaryotes and bacteria, but is absent in archea. The AlaRS has an 

editing domain with similar architecture to the ThrRS editing domain and is present in all 

organisms. However, ThrRS and AlaRS are the only class II enzymes that have such 

similar editing domains (Sankaranarayanan et al., 1999; Dock-Bregeon et al., 2000). 

Conversely, the ProRS editing domain is formed by a large insertion within motifs 2 and 3, 
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though it is absent in higher eukaryotes (Beuning and Musier-Forsyth, 2000; Beuning and 

Musier-Forsyth, 2001). 

 

 

1.3.2.5. tRNAs misacylation 

 

Despite having highly refined quality control mechanisms, aaRSs misacylate tRNAs 

at a rate of 10-4 to 10-5 (reviewed in Jakubowski and Goldman, 1992). However, the rapid 

enzyme turnover and the kinetic proofreading by elongation factors (EF-Tu in prokaryotes 

and EF1α in eukaryotes) ensure that these misacylated tRNAs do not compromise the 

fidelity of protein synthesis. This explains why misacylated Asp-tRNAAsn and Glu-RNAGln 

(Section 1.3.2.3), do not compromise the fidelity of translation (Table 1. 3) (reviewed by 

Ibba and Soll, 2004). Also interesting is the initiation of prokaryotic protein synthesis with 

formyl-methionine, charged onto an initiator tRNAi
fMet, which differs from the elongator 

tRNAMet. The MetRS recognizes the anticodon of tRNAi
fMet and charges it with methionine 

(Schulman and Pelka, 1988). Formylation of methionine is catalysed by methionyl-tRNA 

formyltransferase (MTF), which specifically recognizes base pairs 2:71 and 3:70, in the 

acceptor stem of the tRNAi
fMet (Schmitt et al., 1998; Schulman and Her, 1973; Seong and 

RajBhandary, 1987).  

 
Table 1. 3 – Natural occurring misacylations. 
Examples of the tRNAs charged with non-cognate amino acids. These mischarged tRNA are not recognized 
by the elongation factors, or the initiator factor in the case of the tRNAi

fMet. Only after a modification do they 
become correctly charged and, consequently, available for the translational machinery. 

Amino Acid tRNA 
Mischarged tRNA 

(non recognized by EF / IF) 

Correctly charged tRNA 

(recognized by EF) 

Glu tRNAGln Glu-tRNAGln Gln-tRNAGln 

Asp tRNAAsn Asp-tRNAAsn Asn-tRNAAsn 

Sep tRNACys Sep-tRNACys Cys-tRNACys 

Ser tRNASec Ser-tRNASec Sec-tRNASec 

Lys tRNAPyl Lys-tRNAPyl Pyl-tRNAPyl 

Met tRNAi
fMet Met-tRNAi

fMet fMet-tRNAi
fMet 
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1.4.   Genetic code alterations  

 

The discovery of genetic code alterations shows that the genetic code evolves, even 

in organisms with complex genomes and proteomes. However, most genetic code changes 

occur in mitochondria and cytoplasmic genetic code alterations are in fact a subset of the 

former, indicating that proteome size imposes significant constraints to the evolution of 

genetic code alterations. The diversity of genetic code alterations uncovered to date also 

shows that they occur in distinct phylogenetic lineages and evolve from the standard 

genetic code rather than from ancient alternative codes. Interestingly, certain codons are 

more prone to identity change that others. For example, codons starting with A or U often 

change their identity, while no genetic code change has yet been discovered involving 

codons starting with G. Interestingly, there are two genetic code alterations involving 

codons that start with C, namely CUN codons (Li and Tzagoloff, 1979), which are 

reassigned from leucine to threonine in yeast mitochondria and also the CUG codon which 

is reassigned from leucine to serine in various Candida species (Santos and Tuite, 1995). 

This strongly suggests that the strength of first position codon-anticodon base pairing 

limits codon identity alterations and supports the hypothesis that codon decoding 

efficiency is a key factor in the evolution of genetic code alterations. Finally, certain 

codons are rather unstable as they changed identity more than once. For example, the 

arginine AGG codons changed identity to Ser, Gly, and STOP (as reviewed in Knight et 

al., 2001) and STOP-codons changed their identity to different amino acids, namely, 

tryptophan, tyrosine, glutamate, glutamine and cysteine (Osawa et al., 1992).  

 

 

1.4.1. The mechanisms of evolution of genetic code alterations 

 

Two main theories have been proposed to explain the evolution of genetic code 

alterations, namely - the “Codon Capture Theory” and the “Ambiguous Intermediate 

Theory”.  

 

The “Codon Capture Theory” (Osawa and Jukes, 1989) postulates that code changes 

are the result of biased genome G+C pressure. Since the latter has a strong effect on codon 
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usage by modulating the frequency of the 3rd nucleotide position of codons (GC3 pressure), 

the theory predicts that under strong G+C bias some codons may disappear altogether from 

the entire set of open reading frames of genomes (ORFeome) (Figure 1. 16a). The theory is 

supported by the finding that in Mycoplasma capricolum, whose genome has 25% G+C 

only, the CG rich arginine CGG codon disappeared from the ORFeome (is unassigned) and 

its cognate tRNAArg has also been lost (Oba et al., 1991); and in Micrococcus luteus, whose 

genome has 26% A+T, the A/T rich codons UUA, AUA and AGA are also unassigned 

(Ohama et al., 1990; Kano et al., 1991). The theory also proposes that rare codons are 

primary targets for identity change since these codons disappear from ORFeomes more 

easily than frequently used ones (Osawa et al., 1992). 

  

The “Ambiguous Intermediate Theory” (Schultz and Yarus, 1994), postulates that 

genetic code alterations are driven by selection and result from direct alteration of the 

translational machinery. In particular, mutations in tRNA genes that promote tRNA 

misreading are an important driving force of genetic code alterations. These mutations 

normally alter tRNA anticodons, translation release factors, tRNA modifying enzymes and 

aminoacyl-tRNA synthetases and create codons with more than one identity. That is, 

codons became decoded by either more than one tRNA or by both a release factor and a 

tRNA. This creates codon ambiguity and sets the stage for codon identity change, as the 

mutant tRNA may improve its decoding efficiency through additional mutations and 

become the main decoder of the codon undergoing the identity change (Figure 1. 16b). 

This theory does not require codon disappearance prior to reassignment and assumes that 

codon ambiguity is not deleterious. However, it does not explain what kind of selective 

advantage arises from codon ambiguity to allow for selection of genetic code alterations. 

This theory is supported by the existence of many natural suppressor tRNAs and a unique 

ambiguity status of CUG codons in many Candida species (Hanyu et al., 1986; Santos et 

al., 1997; Suzuki et al., 1997). This theory has been tested experimentally by engineering 

codon ambiguity in E. coli and yeast (Pezo et al., 2004; Bacher et al., 2003; Santos et al., 

1996; Santos et al., 1999). Remarkably, cells are highly tolerant to codon ambiguity, but 

trigger a unique stress response which dramatically increases pre-adaptation potential. This 

suggests that codon ambiguity is advantageous under certain stress conditions (Bacher et 

al., 2003; Santos et al., 1999). 
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Figure 1. 16 – Sense codon reassignment. 
(A) The codon capture theory. (B) The ambiguous intermediate theory. Adapted from (Santos et al., 2004). 
 

 

Despite the differences between those two theories, they are not mutually exclusive, 

in fact, Sengupta and Higgs have recently proposed a generic unifying model for codon 

identity changes (Sengupta and Higgs, 2005) – the Gain-Loss Model – based on their 

observations that codon reassignments always involve both a gain and a loss (Figure 1. 17). 

They consider as “gain” the new tRNA for the reassigned codon or a gain of function of 

an existing tRNA (due to a mutation or a base modification); and as “loss” a deletion of  

tRNA or release factor genes, or loss of function of such gene, again, due to a mutation or 

a base modification. According to this model, the Codon Capture Theory and the 

Ambiguous Intermediate Theory have a synergistic action and it is the strength and the 

frequency of the loss or the gain that determines which mechanism is favoured – for 

instance, if a codon identity change requires a new modified base, a loss seems simpler 

than a gain, as it is easier to lose a tRNA gene than to gain a novel enzyme to create such 

modification, and hence the Codon Capture model would be favoured. 
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Figure 1. 17 – The Gain-Loss model.  
The codon reassignment process under the gain-loss model. Adapted from (Sengupta and Higgs, 2005). 
 

 

 

1.4.2. Mitochondrial Genetic Code alterations 

 

As mentioned above, the majority of genetic code alterations occur in mitochondria. 

This may be due to the smaller size and highly A+T biased genomes (reviewed in Knight 

et al., 2001). Indeed, to date, 15 genetic code alterations have been reported in 

mitochondrial genomes, involving the reassignment of CUN, CGN, AGR, UGA, UAG, 

AUA, AAA and UAA codons (Table 1. 4). Such changes to the standard genetic code, 

albeit being widely spread, are not evenly distributed through the various phylogenetic 

groups, since many plant mitochondria do not have genetic code alterations while 

metazoan mitochondria are rather prone to them (Figure 1. 18). 
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Table 1. 4 . Variations in the mitochondrial genetic code. 

 

The most ancient and common mitochondrial genetic code alteration involves the 

change of identity of the UGA stop codon to tryptophan (Yokobori et al., 2001; Inagaki et 

al., 1998). Though in green plants, namely in Hydrodictyon reticulatum and 

Coelastrummicroporum,  the  UAG stop changed its identity to alanine or serine (notes 14 

and 15 from Figure 1. 18) (Hayashi-Ishimaru et al., 1996). Apart from this, it is also 

surprising that some codons have changed identity to different amino acids in different 

organisms. For example, the arginine AGR codons have been reassigned to serine in 

platyhelminths, nematodes, annelids, arthropods, molluscs, echinoderms and 

hemichordates. Such new codons have further changed their identity from serine to glycine 

in urochordates and became stop codons in vertebrates. Finally, unassigned AGR codons 

were re-introduced in different species of Brachiostoma as glycine or serine (notes 3, 10, 

11, 12 and 13 from Figure 1. 18). Another example of successive identity changes is the 

isoleucine AUA codon, which changed its identity to methionine in the metazoan clade, 

but in platyhelminths, echinoderms and hemichordates it has reverted its identity back to 

isoleucine (notes 2 and 4 from Figure 1. 18) (Castresana et al., 1998). 

 

Sense to sense identity changes have also occurred at leucine CUN and lysine AAA 

codons, which altered their identity to threonine (Pape et al., 1985) and to asparagine in 

platyhelminths and echinoderms (Castresana et al., 1998), respectively. Regarding the 

arginine CGN codon family, it has been unassigned in yeasts (Pape et al., 1985; Clark-

Walker and Weiller, 1994). 
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Figure 1. 18 – The mitochondrial genetic codes. 
The phylogeny of the genetic code changes in mitochondrial genomes showing that some organisms have 
experienced consecutive alterations, highlighted in green and blue. Adapted from (Knight et al., 2001) 
 

 

 
Figure 1. 19 - The nuclear/cytoplasmatic genetic code alterations.  
The phylogenetic tree shows STOP codon reassignments in blue and STOP codon unassignments in black. 
The leucine to serine CUG codon change, in the Candida genus, is the only known sense to sense 
reassignment in eukaryotes. Adapted from  (Knight et al., 2001) 
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1.4.3. Cytoplasmic genetic code alterations 

 

All the cytoplasmic genetic code alterations involve codons that have also experience 

a reassignemet in mitochondrial genomes (Figure 1. 19). These alterations involve mainly 

stop codons, but there are also unassigned codons in Mycoplasma capricolum and 

Micrococcus luteus, and the leucine CUG codon is reassigned to serine in many yeast 

species, in particular in species of the genus Candida (Ohama et al., 1993; Santos et al., 

1993). The stop codons UAA/G (UAR) changed their identity to glutamine in some 

ciliates, in Zosterograptus, Paramecium and Nexella (Lozupone et al., 2001; Sanchez-Silva 

et al., 2003), in green algae of the genus Acetaularia (Schneider and de Groot, 1991), and 

in diplomonads (Keeling and Doolittle, 1997). In three peritrich ciliates – Vorticella 

microstoma, Opisthonecta henneguyi and Opisthonecta matiensis – only the UAA codon is 

decoded as glutamine (Sanchez-Silva et al., 2003). On the other hand, the UGA stop codon 

changed its identity to cysteine, in the genus Euplotes (Lozupone et al., 2001), and to 

tryptophan in some bacteria, namely in Mycoplasma, Spiroplasma and in Bacillus subtilis 

– interestingly in the later it remains ambiguous as it can be used to terminate protein 

synthesis or decoded as tryptophan (Lovett et al., 1991; Matsugi et al., 1998). Finally, in 

Nyctotherus ovalis the UGA has been unassigned (Lozupone et al., 2001). Other 

unassigned codons are the arginine CGG codon in Mycoplasma species (Oba et al., 1991) 

and the arginine AGA and the isoleucine AUA codons in Micrococcus (Ohama et al., 

1990; Kano et al., 1991). 

 

 

1.4.4. The Expansion of Genetic Code 

 

As discussed above, there are only 20 primary amino acids specified in the genetic 

code, although at least 120 amino acids and amino acid derivatives have been identified as 

constituents of different proteins in different organisms (Crick, 1968; Uy and Wold, 1977), 

all of them are products of post-translational modifications. During the last 20 years, 

selenocysteine and pyrrolysine were also added to the genetic code since they are 

incorporated into proteins in response to UGA and UAG stop codons, respectively in 

various (not all) organisms (Zinoni et al., 1987; Hao et al., 2002). This expansion of the 
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genetic code from 20 to 22 amino acids confirmed the code flexibility and showed that 

codon identity can be reprogrammed through structural alteration of the protein synthesis 

machinery. It also showed that genetic code expansion brings about novel protein 

functionalities since these novel amino acids are located in the catalytic centre of the 

respective enzymes and participate directly in catalysis. Selenocysteine and pyrrolysine 

also suggest that additional non-standard amino acids may exist, however in silico 

strategies for genome mining have so far failed to identify the putative 23rd amino acid 

(Lobanov et al., 2006).  

 

1.4.4.1. Selenocysteine 

 

Selenocysteine exists in all kingdoms of life. It is a cysteine analogue containing  

selenium instead of sulphur atoms and is critical for selenoprotein catalysis (reviewed by 

Hatfield and Gladyshev, 2002). Its translational insertion at UGA stop codons involves an 

alternative decoding mechanism mediated by several new translational factors, namely: (i) 

a  unique tRNA (tRNASec); (ii) a specific structure on the mRNA called selenocysteine 

insertion sequence (SECIS); (iii) a SECIS binding protein; and (iv) a new elongation factor 

(SelB) (Thanbichler and Bock, 2002; Namy et al., 2004). These novel translational 

elements are structurally different in prokaryotes, eukaryotes and archea.  

 

In E. coli, the specific tRNASec is initially charged with serine, by the seryl-tRNA 

synthetase (SerRS), and then the selenocysteine synthase (SelA) converts the seryl-

tRNASec into selenocysteyl-tRNASec using selenophosphate as a source for activated 

selenium. The selenophosphate is provided by selenophosphate synthetase (SelD) from 

selenide in an ATP-dependent reaction (Leinfelder et al., 1988; Forchhammer et al., 1991). 

Once the tRNASec is correctly charged with selenocysteine, it is captured by the SelB, 

which is a homologue of the elongation factor Ef-Tu, containing an extra C-terminal 

domain, which confers the ability to recognize the SECIS-element. The latter is an mRNA 

structure, located immediately downstream of selenocysteine-UGA codons that guides the 

elongation factor SelB to the ribosome. Thus, the decoding of selenocysteine UGA codons 

depends on a quaternary complex formed by selenocysteyl-tRNASec, SelB, GTP and the 
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SECIS-element (Figure 1. 20) (Leinfelder et al., 1988; Forchhammer et al., 1991; 

Thanbichler and Bock, 2002; Hatfield and Gladyshev, 2002). 

 

In both eukaryotes and archea the SECIS-element is located in the 3’-untranslated 

region (3’-UTR) of the mRNA (Berry et al., 1991; Rother et al., 2001). In eukaryotes, the 

SECIS-element is recognized by a SECIS binding protein (SBP2), which recruits a specific 

elongation factor (eEFSec) that recognizes the selenocysteyl-tRNASec. Therefore, in 

eukaryotes, incorporation of selenocysteine requires a complex formed by selenocysteyl-

tRNASec, eEFSec, GTP, SBP2 and the SECIS-element (Figure 1. 20) (Tujebajeva et al., 

2000). In archea, the mechanism of selenocysteine incorporation is not yet fully 

understood, though a SECIS element in the 3’-UTR and an archeal specific elongation 

factor (aSelB) have been described (Rother et al., 2001). 

 

 

 
Figure 1. 20 – The synthesis of selenoproteins. 
 (A) The aminoacylation of tRNASec. (B) Selenocysteine incorporation in prokaryotes is mediated by a SelB 
transcription factor and a structured SECIS element in the open reading frame. (C) In eukaryotes, the 
selenocysteine is inserted at the UGA codon by the eSelB translation factor, which interacts with the SBP2 
that recognizes the SECIS element in the 3’-UTR of the mRNA. 
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1.4.4.2. Pyrrolysine 

 

Pyrrolysine is translationally incorporated in methanogenic archea in response to 

UAG stop codons present in the monomethylamine methyltransferase, an enzyme of the 

catabolic route of methylamines. It is the most recent addition to the genetic code and is 

referred to as the 22nd amino acid. Its incorporation mechanism is not yet fully understood, 

though a suppressor tRNA with a CUA anticodon (tRNACUA
Pyl) is known to play a key role 

in pyrrolysine incorporation.  

 

Two distinct pathways, namely a direct and an indirect pathway have been described 

for tRNACUA
Pyl charging (Figure 1. 21). In the direct pathway, a cognate pyrrolysyl-tRNA 

synthetase (PylS) charges the cognate tRNACUA with pyrrolysine (Blight et al., 2004; 

Korencic et al., 2004; Polycarpo et al., 2004). In the indirect pathway, the tRNACUA
Pyl 

interacts with both class I (LysRS1) and class II (LysRS2) lysyl-tRNA synthetase, forming 

the ternary complex tRNACUA
Pyl:LysRS1:LysRS2. The tRNACUA

Pyl is firstly charged with 

lysine, which is then converted to pyrrolysine by a not yet fully understood pathway 

(Polycarpo et al., 2003; Srinivasan et al., 2002). The existence of the indirect pathway to 

obtain Pyl-tRNACUA
Pyl, which is less efficient than the direct pathway (Krzycki, 2005), can 

be regarded as a backup mechanism to overcome pyrrolysine deficiency, and hence 

safeguards the biosynthesis of proteins that require pyrrolysine (Polycarpo et al., 2004).  

 

The Pyl-tRNACUA
Pyl interacts in vitro with Ef-Tu and can be used by the E. coli 

translational machinery, indicating the requirement for a specific elongation factor  (EF-

Pyl) for its specific incorporation at specific UAG codons (Blight et al., 2004; Theobald-

Dietrich et al., 2004). In silico analysis predicted the existence of a hairpin structure, called 

pyrrolysine insertion sequence (PYLIS), in the mRNA immediately after the 

reprogrammed UAG codon (Namy et al., 2004), whose existence and structure have later 

been confirmed experimentally (Theobald-Dietrich et al., 2004). With these data some 

authors have built a model for the Pyl incorporation at re-programmed UAG codons 

(Figure 1. 21) similar to the Sec incorporation. However, the Pyl incorporation is still 

puzzling the research community, indeed, a recent study demonstrated that Pyl was 
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efficiently inserted into proteins in an anonymous context and, apparently, did not depend 

on the presence of additional proteins (Ambrogelly et al., 2007). 

 

 
Figure 1. 21 – Pyrrolysine incorporation pathways. 
 (A) Charging of tRNAPyl by both the direct and indirect pathways. (B) Model similar for Sec incorporation. 
According to this model there would be a PYLIS sequence, which would be recognized by the PLYIS-
binding protein (PBP). Then the PBP would interact with a Pyl-specific elongation factor (EF-Pyl), and so 
the Pyl residue would be incorporated into the nascent polypeptide  (Theobald-Dietrich et al., 2004). (C) 
Alternatively, the Pyl residues can be inserted without the need for neither a EF-Pyl or PYLIS signal 
sequence (Ambrogelly et al., 2007). 

 

 

1.4.4.3. Artificial expansion of the genetic code 

 

Modification of the 20 amino acids in living organisms indicates that proteins require 

additional chemical properties to carry out their natural functions, and that life with 20 

amino acids is possible, but by no means optimal (Cropp and Schultz, 2004). Moreover, 

the extant alterations of the genetic code, together with its natural expansion, have unveiled 

an unforeseen malleability and an extraordinary adaptation capacity of living organisms. 

The current knowledge on the chemistry of life and recent biotechnology developments 
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have broaden the horizons for protein engineering, as it is now possible to genetically 

encode additional amino acids and hence enable evolution of novel proteins, or even entire 

organisms, with new or enhanced physical, chemical or biological properties. The array of 

possible applications is countless as the engineered proteins can be applied in fundamental 

research, for instance in crystallographic studies where methionine has been replaced by 

selenomethionine (Hendrickson et al., 1990, reviewed by Hendrickson et al., 2004), but 

also in applied research to create new pharmaceuticals, such as protease inhibitors used 

against HIV (Kiso, 1999; Mak et al., 2003) and Candida albicans infections (Bein et al., 

2002; Bein et al., 2002). 

 

Unnatural amino acids can be incorporated into proteins through both chemical and 

biosynthetic methodologies. The former is simple and straightforward, but only a limited 

number of residues can be modified with exogenous chemical reagents (Kent, 1988). 

Biosynthetic methods can be used in vitro, by introducing nonsense or frameshifting 

suppressor tRNAs, that are chemically misacylated with unnatural amino acids in cell free 

translation systems (Noren et al., 1989); or in vivo, by engineering the translational 

apparatus of the living organisms, as has already been done in bacteriophages (Bacher et 

al., 2003), Escherichia coli (Wang et al., 2001; Doring et al., 2001; Mehl et al., 2003) and 

Saccharomyces cerevisiae (Chin et al., 2003). In summary, both theoretical and 

experimental approaches indicate that the genetic code is flexible and evolves. However, 

genetic code evolution is likely to introduce codon decoding ambiguity whose 

physiological and cellular consequences are not yet fully understood. 
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1.5. The Candida spp. genetic code 

 

As discussed on the previous section, a number of alterations to the genetic code have 

been found in prokaryotic, non-plant mitochondrial and eukaryotic translation systems. 

However, the reassignment of the CUG codon from leucine to serine in Candida albicans 

and several other Candida species is unique, since it is the only nuclear genetic code 

change that involves a sense to sense reassignment (Santos et al., 1993; Santos et al., 1996; 

Suzuki et al., 1997). 

 

 

 
Figure 1. 22 – The evolution of the CUG codon reassignment in Candida spp.  
The novel tRNACAG

Ser appeared approximately 270 My ago and during 100 My competed with the cognate 
tRNACAG

Leu for CUG decoding. This ambiguous CUG decoding was the main driving force responsible for 
decreasing CUG codon usage and consequent reorganization of CUGs in the genome. The 30,000 CUG 
codons present in the yeast ancestor disappeared, and “new” 16880 CUGs present in C. albicans genome 
evolved from UCN and AGY codons. For reasons not yet fully understood, the novel tRNACAG

Ser was 
maintained while the cognate tRNACAG

Leu was eliminated. Adapted from (Santos et al,  2004) 
 

 

The evolution of this genetic code change can be regarded as a unifying model for the 

two theories of the evolution of genetic code changes – the “Codon Capture Theory” and 

the “Ambiguous Intermediate Theory” (Figure 1. 22). In one hand, it is mediated by an 

ambiguous tRNA, which introduces ambiguity at the CUG codon, and thus favours the 

“Ambiguous Intermediate Theory”, but biased Candida genome A+T pressure also lowered 

CUG usage to low levels, thus favouring the “Codon Capture Theory”. The latter was 
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important to minimize the negative impact of CUG ambiguity in the proteome. Also, the 

appearance of the novel tRNACAG
Ser played a critical role in the capture of many “new” 

CUG codons that mutated from codons coding for serine or amino acids with similar 

chemical properties (Massey et al., 2003). Thus, the “Codon Capture” and the 

“Ambiguous Decoding” theories have synergistic effects on codon identity change. 
 
 
 

This genetic code alteration is unevenly distributed through the Candida genus 

(Figure 1. 23) (Sugita and Nakase, 1999), thus indicating that reassignment of the CUG 

codon is at different evolutionary stages among its different species. Some Candida 

species translate the CUG codon exclusively as leucine, namely C. glabrata and C. krusei, 

while others like C. cylindracea decode it only as serine. However, in many species, such 

as C. zeylanoides and C. albicans the CUG codon is ambiguous, meaning that it is 

simultaneously translated as leucine and serine, because the tRNACAG
Ser is charged with 

both serine (major) and leucine (minor) (Suzuki et al., 1997) (this work).  

 
Figure 1. 23 – The phylogenetic tree of CUG decoding in Hemiascomycetes. 
Those species that decode the CUG codon as serine are within the square box, all the other hemiascomycetes, 
including several Candida species, decode the CUG codon as the standard leucine. Adapted from (Sugita and 
Nakase, 1999). 
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1.6.1. The tRNACAG
Ser 

 

The CUG reassignment from leucine to serine is mediated by a novel tRNA that has a 

hybrid nature. It has both leucine and serine identity elements (Figure 1. 24) that altogether 

are responsible for making this tRNACAG
Ser an ambiguous molecule that is able to interact 

with both leucyl-tRNA synthetase (LeuRS) and seryl-tRNA synthetase (SerRS) (Santos et 

al., 1996; Perreau et al., 1999; Suzuki et al., 1997). 

 

The discriminator base of this special tRNA is a Guanosine (G73) which is an identity 

element for the serine tRNA-family. In S. cerevisiae, a single change of A73 to G73 of a 

tRNALeu is sufficient to convert its identity to serine (Soma et al., 1996). The other serine 

element of this tRNA is the variable arm, which contains a run of 3 conserved C-G pairs 

that is directly recognized by the SerRS. On the other hand, the anticodon arm of the 

tRNACAG
Ser has leucine identity determinants, namely A35, and m1G37, in the anticodon, 

which make direct contact with the LeuRS (Soma et al., 1996). Interestingly, in 

C. cylindracea, the CUG codon is decoded as serine only because the tRNACAG
Ser has a 

A37 instead of m1G37 (Figure 1. 24) and the LeuRS is not able to recognize it (Suzuki et al., 

1997).  

 

Another intriguing structural feature of this tRNACAG
Ser is the presence of guanosine 

at position 33. All other eukaryotic elongation tRNAs have a highly conserved uridine at 

position 33 (U33), which is required for the correct turn of the phosphate backbone (U-turn) 

and stacking of the anticodon bases (Ladner et al., 1975; Woo et al., 1980). The G33 

mutation may have had an important role on CUG reassignment in Candida species 

(Suzuki et al., 1997; Santos et al., 1996; Santos et al., 1997), since it may have lowered the 

leucylation levels of the tRNA. Indeed, replacement of G33 with pyrimidines in C. 

zeylanoids tRNACAG
Ser has increased its leucylation level (Suzuki et al., 1997). But, it may 

have also played a role in lowering the decoding efficiency of the tRNA at the ribosome, 

since U33 stabilizes tRNA-rRNA interactions during translation (Ashraf et al., 1999) and 

makes decoding more efficient. 
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In vitro, the tRNACAG
Ser from C. zeylanoids can be charged with up to 30% with 

leucine (Suzuki et al., 1997). However, the in vivo level of the mischarged tRNACAG
Ser 

(Leu-tRNACAG
Ser) is only a 3%, thus showing that this mischarging event is repressed 

under physiological conditions.  
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Figure 1. 24 – The secondary structure of the tRNACAG

Ser. 
 The C. albicans tRNACAG

Ser is an hybrid tRNA with identity elements for both leu- and ser-tRNAs. Its 
anticodon arm is characteristic of the tRNALeu, whereas the acceptor stem and the variable region are 
characteristic of tRNASer. Position 33 is highlighted as it was critical for the CUG reassignment from leucine 
to serine. The discriminator base (G73) belongs to the serine family tRNAs (Santos et al., 1993). 
 
 
 

 

1.6.2. The evolution of CUG codon reassignment 

 

Comparative genomics and molecular phylogeny studies have shown that the novel 

tRNACAG
Ser

 appeared 272±25 million years ago, before the divergence of Candida and 

Saccharomyces genera. Therefore, the ancestor of yeasts was ambiguous and it is not yet 

clear why the mutant tRNACAG
Ser was selected in the Candida lineage and lost in the 

Saccharomyces lineage. Furthermore, the existence of Candida species, namely C. 

glabrata and C. krusei that still decode the CUG codon as leucine, reinforces the idea that 

the evolution of CUG ambiguity is a special event that introduced some selective 

advantages in some, but not all, Candida species (Santos et al., 1993; Santos and Tuite, 

1995; Suzuki et al., 1997; Yokogawa et al., 1992; Sugita and Nakase, 1999). 
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The complete pathway of the CUG identity alteration is not yet fully understood, 

however, molecular phylogeny studies, carried out by Massey et al. (2003), have revealed 

that the tRNACAG
Ser originated from a serine rather than a leucine tRNA. This is in 

agreement with the proposal of Suzuki and colleagues (1994), who hypothesized that the 

CAG anticodon resulted from an insertion of an adenosine between the first two 

nucleotides of the CGA anticodon. The tRNACGA
Ser gene has an intron located on the 3´-

side of position 37 in the anticodon-loop and insertion of a single adenosine in the middle 

of the 5´-CGA-3´anticodon sequence would create the 5´-CAG-3´ anticodon (Suzuki et al., 

1994). 

 

 

Figure 1. 25 – The mutational pressure on C. albicans’ genome. 
 (A) Ambiguous CUG decoding forced a change of “old” CUG codons to leucine codons UUG and UUA. 
(B) Simultaneously, “new” CUG codons appeared via mutation of UCN serine codons (Massey et al., 2003) 

 

 

The appearance of such mutant tRNACAG
Ser  creates an ambiguous decoding of the 

CUG codon, since there were two distinct tRNA species, and so any CUG codon could be 

decoded as leucine by the cognate tRNACAG
Leu and as serine by the mutant tRNACAG

Ser. 

(Santos et al., 1996; Massey et al., 2003). This ambiguous decoding of the CUG codon  

decreased CUG usage (Figure 1. 25) (Massey et al., 2003). Indeed, only 2% of CUG 

codons existent in the ancestor of yeasts are still present in C. albicans and most likely in 

the genomes of other Candida species. The 13,074 CUG codons now present in the C. 

albicans haploid genome evolved after the appearance of the tRNACAG
Ser, over the last 
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272±25 MY, from codons coding for serine or amino acids with similar chemical 

properties and not from codons coding for leucine (Massey et al., 2003). Therefore, the 

CUG codons that actually exist in the genome of C. albicans are “new” and have no 

relationship with CUG codons present in non-ambiguous yeasts, such as S. pombe or S. 

cerevisiae.  

 

 

1.6. Objectives of this study 

Despite the important progress made to date on the study of genetic code alterations 

we are still far from understanding their evolution at the molecular level. The uniqueness 

of CUG identity change and the availability of molecular biology tools, robust genome 

analysis methods and the availability of the C. albicans genome sequence make this fungus 

an interesting model system to study the evolution of genetic code alterations. The aim of 

this work was to contribute to better understand how the CUG codon changed identity 

from leucine to serine and shed new light on how this unusual event shaped the evolution 

of the genus Candida. Finally, we hoped that this study would contribute to shed new light 

on the evolution of the genetic code, in particular on its expansion during the early stages 

of its development and on the evolution of tRNA and aminoacyl-tRNA synthetases. In 

order to achieve this, we have defined the following objectives for this project: 

 

1) To investigate whether the CUG codon is decoded as both serine and 

leucine in vivo in C. albicans. In other words, does the translational 

machinery discriminate between Ser-tRNACAG and Leu-tRNACAG or does 

the mischarged leu-tRNACAG participate in protein synthesis?  

2) To quantify misincorporation of leucine in vivo under different 

physiological conditions.  

3) To increase CUG ambiguity in vivo in C. albicans. 

  4) To evaluate the impact of the ambiguous CUG decoding event. 

5) To study the mechanism of interaction between the tRNACAG
Ser and both 

the Leucyl- and Seryl-tRNA synthetases. 



Molecular evolution of a genetic code alteration                

52 



 

   

 

2. Materials & Methods 
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2.1. Strains and Growth Conditions 

 

2.1.1. Strains and genotypes 

 

• Escherichia coli  

JM109, genotype:  recA1 SupE44 endA1 hsdR17 (rk–, mk+) gyrA96 relA1 thi 

Δ(Lac-proAB) [F’, traD36, proAB, lacIqlacZ ΔM15]  

 

BL21-Codon Plus®, from Stratagene, genotype: E. coli B F–, ompT, hsdSβ(rβ-mβ
-), 

dcm+, Tetr, gal λ(DE3) endA Hte [argU ileY leuW Camr] 
 

XL1, genotype:  recA1 endA1 gyrA96 thi-1 hsdR17 SupE44 relA1 lac [F’ proAB  

lacIqΔM15 (Tetr)] 

 

 

• Candida albicans  

CAI-4 (ura3Δ::imm434/ura3::imm434).  

Strains 2005, 1006, C316 and IGC were obtained by Santos (Santos et al., 1994). 

All of them are wild type stains, C316 is a clinical isolate, and the IGC strain was isolated 

from tree leaves. 

 

• S  cerevisiae  

CEN-PK2 (MAT a/α, ura3-52/ura3-52, trp1-289/trp1-289, leu2-3 112/leu2-3 112, 

his31/his31).  

W303 (mat alpha ade 2-1 can1-100 his3-11-15 trp1-1 ura3-1) 

J940557 (MAS5) – wild type, clinical isolate 

J940610 (MAS4) – wild type, clinical isolate 

 

2.1.2. Growth and Maintenance of E. coli, S. cerevisiae and C. albicans  

 

Escherichia coli strains were grown at 37ºC on LB broth [1% (w/v) peptone from 

casein, 0.5% (w/v) yeast extract, 1% (w/v) sodium chloride; (Merck)] or on LB/2% (w/v) 

agar. Transformed E. coli strains were grown in the LB-Amp [LB, 50 µg/ml ampicillin 
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sodium (Duchefa, Haarlem)]. Strains were stored at -80ºC in 0.5 LB-Amp/20% (v/v) 

glycerol. 

 

Wild types S. cerevisiae strains were grown at 30°C on YEPD (2% glucose; 1% 

yeast extract, 1% peptone). 

 

Wild type Candida albicans strains were grown at 30°C on YEPD (2% glucose; 1% 

yeast extract, 1% peptone), whereas transformed strains were grown in MM-URA (0.67% 

yeast nitrogen base without amino acids, 2% glucose, 2% agar and 100µg/ml of each 

required amino acids, without uracil). Transformed strains were stored at -80ºC in 

0.5 MM-URA/40% (v/v) glycerol. 

 

For the measurement of ambiguous CUG decoding under different physiological 

conditions, slight changes were made to the growth conditions, namely: 

 -    Opaque cells were grown at 25ºC on MM-URA 

- Heat stress: growth was on MM-URA at 37ºC. 

- Oxidative stress: growth was at 30ºC on MM-URA with 1.5 mM H2O2. 

- Low pH: growth was at 30ºC on MM-URA buffered with citrate buffer (sodium 

citrate – acid citric) pH 4.0 

 

 

2.2. DNA  Manipulation 

 

Generally, unless otherwise stated, all DNA manipulations were performed as 

described in Sambrook et al. (1989). 

 

2.2.1. Oligonucleotides 

 

Oligonucleotides were purchased from MWG-Biotech AG (Germany) and were 

resuspended in ultra pure milliQ (mQ) water to a final concentration of 100 mM. 
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Table 2. 1 – List of the oligonucleotides used. 

Oligo Sequence (5’  3’) Tm 
(ºC) 

Construction of the reporter protein 

oUA201 ATTAGGAAGCTTAGTGTTGCGTGTGTGTCAG 58 

oUA202 TTATCCCTCGAGACCGTTTGGTCTACCCAAG 58 

oUA204 AATTTTCTGCAGCCTTTTGGTGTACGAGAG 54 

oUA205 CTCAACTCGCGAGCTAGTTGAATATTATGTAAGATCTG 68 

oUA215 ACTAGACCGCGGGATTATAAAGATGATGATGATAAGAACGACAAATACTCATTAGC 54 

oUA216 ATTAGATCGCGATTAGTGATGGTGATGGTGATGGTTTTTGTTGGAAAGAGCAAC 58 

oUA217 TCCAGTTGTCTGGAATACC 56 

oUA224 TTCCAACTCAATTCACTCCTC 60 

oUA225 ACCCAAAATGGCCAAGAATGG 60 

   

Sequencing of  C. albicans LeuRS gene 

oUA711 GTGCGAGTAGGAGTGCC 50 

oUA712 GGTGTCTTGCACGCCG 50 

oUA713 CTAGAGTTGATTGGAGACG 48 

oUA714 GATGCTGGTAATGGTGAC 48 

oUA715 GTGCAGTTGGCCAACGC 48 

oUA716 GTCGAATCTTTGTCAGATTC 48 

oUA717 GGAGCTGATGCCTCTAG 52 

oUA718 GCCGAATACCTTTACAGAG 52 

oUA719 AAAGCCAGGGCTCATAG 48 

oUA721 GAATCTGACAAAGATTCGAC 48 

oUA723 CAGCATCTTCAGTTGCC 52 

oUA724 GGAGAATCTGATGGAACAC 52 

oUA740 GGGAATAATGCTCTCATACC 50 

oUA741 CCATAATCCACTTTTC 50 
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Sequencing of  S. cerevisiae LeuRS gene 

oUA749 ATAAATCATAATCACGTAAAGC 46 

oUA750 CATCTAATAAAGGCATCG 46 

oUA751 CTTCACTTGGGGTCG 46 

oUA752 TTGTTTTTGGCTTGTTCG 46 

oUA753 AAGGAAGATTACTACACTG 48 

oUA754 TAGCAGCATTAGCGTTAG 48 

oUA755 TTGCGTTTGCCGATGCG 48 

oUA756 TTCTGGTTGCTGTTTATTG 48 

   

Sequencing of  C. albicans SerRS gene 

oUA705 CGA TCC AGA AAG AGG GG 54 

oUA733 GATTTTCTTTTTTTCTGATACAT 52 

oUA734 CCCACCACCACAACCC 52 

oUA736 ATTAGTGCTTACCATGCCGG 60 

oUA738 CCGGCATGGTAAGCACTAAT 60 

   

Sequencing of  C. albicans TrpRS gene 

oUA759 TACAAAATGGTTACAAGAAG 52 

oUA760 GCCCAAGAATGAGTGAGAC 52 

oUA761 GCAAAGCATAGAGGGGTC   52 

oUA762 GGGGTCTTTGGTGGTAATC 52 

   

Site directed mutagenesis of LeuRS and SerRS 

oUA261 CTGTTTTTCTAAAGCTCCTGCTGATGACGAAGATGCAG  

oUA262 CTGCATCTTCGTCATCAGCAGGAGCTTTAGAAAAATCAG  

oUA263 GAACTTTTCAAGAAAGAGAGTCTCGATGTGAAGGAGAA  

oUA264 GTTCTCCTTCACATCGAGACTCTCTTTCTTGAAAAGTTTC  

oUA265 AACCAAGACAAGTTAAGAACTGGTGACTACGATTCCTTC  
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oUA266 GAAGGAATCGTAGTCACCAGTTTCTTAACTTTGTCTTGGTT  

oUA267 GCTATTCTTGATGCTCTGGAATATGTCAGAAGCCTTACC  

oUA268 GGTAAGGCTTCTGACATATTCCAGAGCATCAAGAATAGC  

    

Construction of tRNA overexpression system 

oUA218 AATTTCAAGCTTACTAGTTGAAACACC 52 

oUA219 CTCAATCTCGAGCCCACAGATGATTGAC 48 

oUA220 ATAGGACTGCAGACTAGTTGAAACACC 52 

oUA221 TTATCCAAGCTTCCCACAGATGATTGAC 48 

 

 

 

2.2.2. Plasmids  

 

2.2.2.1. Original plasmids 

 
Table 2. 2 – Original plasmids used for obtaining the necessary DNA constructions. 

Name Description 
References/ 

Supplier 

pSL1190 

 

E. coli vector containing the AmpR gene, thus allowing for selection of  

transformants in media containing ampicillin. Unique cleavage sites, 

on the multicloning site of the plasmid were used to insert the  desired 

DNA fragments, namely the Hind III, Xho I, Nru I and Pst I sites. 

Pharmacia 

   

pUA12 

 

Constructed by Miranda using the C. albicans  pRM1 vector , which is 

an autoreplicative shuttle vector constructed by Pla and colleagues. It 

contains two Autonomously Replicating Sequences (ARS): ARS2 and 

ARS 3 and two auxotrophic C. albicans markers (URA3 and LEU2) 

for replication and selection in yeasts. It also has an ampicillin resistant 

marker to allow for DNA manipulation in E. coli. The pUA12 has a 

multiple cloning site, inserted in the LEU2 promoter region at the 

NruI/EcoRV cleavage sites. 

(Pla et al., 1995; 

Miranda, 2007) 
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pUA15 

 

Constructed by Miranda and is based on pUA12. It contains a copy a S. 

cerevisiae tRNAUAG
Leu, whose 5´-UAG-3´anticodon was mutated to the 

5´-CAG-3´ anticodon for cognate decoding of CUG codons. 

(Miranda, 2007) 

   

pUKC701 

 

Constructed by Santos and colleagues. It is based on pSL315, which 

contains the LEU2 auxotrophic marker for S. cerevisiae and the AmpR 

marker for selection of E. coli in ampicillin media. This is a single 

copy plasmid in S. cerevisiae. The C. albicans tRNACAG
Ser was cloned 

in the Sma I  and Spe I sites of this vector’s multicloning site.  

(Santos et al., 

1999; Sikorski and 

Hieter, 1989)  

   

pUKC1710 Constructed by O’Sullivan for overexpression of the C. albicans  

LeuRS (strain 2005). This plasmid is based on the pET-15 expression 

system, from Novagen. 

(O'Sullivan et al., 

2001b) 

   

pUKC1722 

 

Constructed by O’Sullivan for the overexpression of the C. albicans 

SerRS (strain 2005). This plasmid is based on the pET-15 expression 

system, from Novagen. 

(O'Sullivan et al., 

2001a) 

   

pUA301 Plasmid constructed by Santo, resulting from site directed mutagenesis 

of the CUG codon of the SerRS cloned into plasmid pUKC1722. The 

CUG codon was mutated to the serine TCG codon. 

Unpublished 

 

 

2.2.2.2. Constructed plasmids 

 
Table 2. 3 – Plasmids constructed in this work. 
Name Description 

pUA61 E. coli plasmid based on the pSL1190 vector. This plasmid was used to assemble the CUG 

reporter system used for measuring CUG ambiguity in C. albicans. For this, the reporter gene 

was assembled in three sequential steps, using the restriction sites Hind III, Xho I, Nru I and 

Pst I. 

  

pUA63 C. albicans plasmid, based on the pUA12 shuttle vector. The whole reporter gene was 

extracted from pUA61, using the Hind III and Pst I restriction sites, and was inserted at the 

same restriction sites of pUA12.  
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pUA65 C. albicans plasmid based on pUA15. Contains copy the S. cerevisiae tRNAUAG
Leu gene. 

Again, for this plasmid, the whole reporter gene was transferred from pUA61 as a Hind III and 

Pst I fragment and inserted in pUA15. 

  

pUA74 Plasmid based on pUKC1710 for overexpression of C. albicans LeuRS in E. coli. This 

plasmid contains the isoform-A of the CaLeuRS from CAI-4 strain, created by mutation of the 

CUG codon to the serine replaced by a serine TCG-codon by site directed mutagenesis. 

  

pUA81 Plasmid based on pUA74. It was used for the overexpression of isoform-B of the CAI-4 C. 

albicans LeuRS in E. coli. The LeuRS isoform-B was obtained by site directed mutagenesis 

that altered all the non-silent SNPs. As in pUA74, its CUG codon is replaced by the serine 

TCG-codon. 

  

pUA82 Plasmid based on pUA74. It was used for overexpression of C. albicans LeuRS in E. coli. This 

plasmid contains the isoform-A of the CaLeuRS, with a CUG codon which is decoded as 

leucine in E. coli. 

  

pUA83 Plasmid based on pUA81. It was used for overexpression of C. albicans LeuRS in E. coli. This 

plasmid contains the isoform-B of the CaLeuRS, with a CUG codon which is decoded as 

leucine in E. coli. 

  

pUA72 Intermediate plasmid with two copies of the C. albicans wild type tRNACAG
Ser gene. It was 

constructed using pUKC701 as the base plasmid. The second tRNACAG
Ser was inserted at its 

Hind III and Xho I restriction sites. 

  

pUA73 Intermediate plasmid with three copies of the tRNACAG
Ser gene constructed upon the pUA72. 

The third tRNACAG
Ser was inserted at the Pst I and Hind III restriction sites. 

  

pUA77 Plasmid constructed for the overexpression of the tRNACAG
Ser in vivo in C. albicans, based on 

pUA12. A Xho I and Apa I DNA fragment containing three copies of the tRNACAG
Ser gene in 

tandem, was extracted from the pUA73 and it was then inserted in the same restriction sites of 

the multicloning site of pUA12. 
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2.2.3. DNA amplification by PCR 

 

DNA fragments were amplified by polymerase chain reaction (PCR) from plasmid or 

genomic DNA templates. Reactions were carried out using 5.0 ng.µL-1 of template DNA, 

in a mixture of 1mM dNTPs, 10µM of forward primer, 10µM of reverse primer, 2.0 mM 

MgCl2, 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.1% TritonX-100 and 0.05 U.µL-1 of Taq 

Polymerase (Fermentas or Bioron).  

 

PCR reactions were performed in a Mastercycler (Eppendorf), for 25 cycles of 30s at 

92ºC for DNA melting, 30s at the desired Tm, to promote the template-primer annealing, 

and finally 30s-90s at 72ºC for DNA elongation (the duration of this step was dependent of 

the length of the PCR product). An additional initial melting step for 2 min at 92ºC and a 

final elongation step for 3 min at 72ºC were also carried out.  

 

The Tm was set according the primers melting temperature, which is indicated on the 

3rd column of Table 2. 1. 

 

2.2.4. PCR product purification  

 

After PCR reactions, primers, nucleotides, enzymes and salts, were removed from the 

amplified DNA using the QIAquick PCR Purification Kit (Qiagen), as described by the 

manufacturer.  

 

2.2.5. Agarose Gel electrophoresis 

      

 DNA molecules were fractionated on agarose gels. Multi-Purpose agarose 

(Boehringer Mannheim) was melt using a microwave oven in TAE [40 mM Tris-acetic 

acid, 10 mM EthyleneDiamineTetrAcetic acid (EDTA), pH 8.0] at concentrations ranging 

from 0.8 to 1.0% (w/v). Ethidium bromide (EtBr) (Invitrogen) was added to the melted 

agarose to a final concentration of 0.2 µg.mL-1, and gels were then casted on BioRad 

casting systems. DNA samples were mixed with 6x loading buffer [0.25% (w/v) of 

bromophenol blue, 0.25% (w/v) of xylene cyanol, 30% (v/v) glycerol] in 1:6 ratio, loaded 
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into the wells and finally eletrophoresed at 70 V (Power Pac 3000, Bio-Rad) for one hour 

in submerged horizontal electrophoresis systems (Mini-Sub Cell GT, Bio-Rad). 

 

For DNA visualization, the eletrophoresed samples gels were exposed to U. V. light 

using a Gel Doc 2000 Gel Documentation System (BioRad) coupled to a PC. The images 

were acquired and analyzed with the Quantity One software (Bio-Rad). 

 

2.2.6. DNA extraction from agarose gel  

 

For DNA purification from agarose, 0.8% low-melt SeaKem® Gold agarose 

(Flowgen) gels were used. Bands corresponding to desired DNA fragments were removed 

from the gel with the QIAEX II Kit (Qiagen), as describe by the manufacturer, with slight 

adaptations. Briefly, gels were prepared without EtBr and DNA samples were 

electrophoresed for 60 min at 70V. After electrophoresis, gels were stained for 10 min in 

100 mL of TAE containing 0.5 µg.ml-1 EtBr and were then washed in dH2O for 10 min. 

DNA was visualised by UV light, excised using a clean scalpel and transferred to a clean 

microcentrifuge tube. Agarose slices were weighted and QX1- Buffer was added (3 

volumes buffer : 1 volume of gel). Gels were disrupted with pipette tips and buffer [10 µL 

of 3M Sodium Acetate (NaOAc)], pH 4.5, was added. The sample was incubated at 50ºC 

until the gel was completely melted. Afterwards, 10 µL of QIAEX II resin was added and 

samples were kept at 50ºC for more 5 min. with gently vortexing. Samples were then 

centrifuged for 30 sec, the supernatant discarded and the pellet washed twice with 500 µL 

of PE-Buffer. Finally, the pellet containing the resin with the DNA was air-dried for 15 

min and incubated with 50 µL of mQ dH2O for 5 min at room temperature for DNA 

elution. The DNA was recovered after a centrifugation step at 16 000g for 30 sec.  

 

2.2.7. DNA digestion with restriction enzymes 

 

Restriction digestions were performed to prepare DNA for cloning and to screen 

positive clones for confirming the DNA ligation and insertion into the cloning vectors. 

Digestions of up to 5 µg of DNA were performed in 20 µL reactions with the required 

enzymes (Fermentas) and appropriate buffer, for periods of time ranging 3 h to overnight, 
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at 37°C. DNA digestion was verified using agarose gel electrophoresis (as described 

above). 

 

2.2.8. DNA Dephosphorylation and ligation 

 

To prevent self-ligation DNA vectors were treated with alkaline phosphatase. 20 µL 

reactions were prepared with 2 µg of digested vector DNA, 2 Units of shrimp alkaline 

phosphatase (SAP) (Roche), 2 µL of 10x dephosphorylation buffer (0.5 M Tris-HCl, 50 

mM MgCl2, pH 8.5). Reactions were carried out at 37°C for 1 h and then SAP was 

inactivated at 65°C for 15 min. For DNA cloning, ligations of digested DNA fragments 

were performed with T4 DNA ligase (Gibco BRL or Fermentas). Routinely, 10-30 fmol of 

vector DNA were mixed with 30-90 fmol of insert DNA fragments, in four independent 

ligation reactions, with different vector: insert molar ratios, namely 1:0 (negative control), 

1:1, 1:2 and 1:5. The reactions were carried out in a 1.5 ml microcentrifuge tube containing 

4 µL of 5x Ligase Reaction Buffer [250 mM Tris-HCl (pH 7.6), 50 mM MgCl2, 5 mM 

ATP, 5 mM dithiothreitol (DTT), 25% (w/v) polyethylene glycol-8000], 5 Units T4 DNA 

Ligase. Reactions volumes were adjusted to 20 µL with H2OmQ and ligations were 

incubated overnight at 12°C.  

 

2.2.9. Transformation of E. coli  

 

E. coli cells were routinely used as hosts for manipulation of recombinant DNAs. For 

preparation of competent cells, a fresh E. coli colony was inoculated in 5 ml of LB and was 

grown at 37°C, overnight, with vigorous shaking (200 rpm). Fresh 5 ml LB cultures were 

then inoculated, with 200 µL of the overnight culture, and were grown, at 37°C to an 

OD550 of 0.3. 100 ml LB cultures were then inoculated with 4 ml of the previous cultures 

and allowed to grow to an OD550 of 0.3 at 37°C, with shaking. At this point, cultures were 

incubated on ice for 5 min and centrifuged at 500 g, for 5 min at 4°C. Pellets were 

resuspended gently in 40 ml of cold TFB I [100 mM RbCl, 50 mM MnCl2.4H2O, 30 mM 

potassium acetate (KOAc), 10 mM CaCl2.2H2O, 15% (w/v) glycerol, pH 5.8], and cells 

were collected by centrifugation at 500 g  for 5 min at 4°C. Finally, pellets were 

resuspended in 5 ml TFB II [10 mM 4-Morpholinepropanesulfonic acid (MOPS), 10 mM 
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RbCl, 75 mM CaCl2, 15% (w/v) glycerol, pH 6.8] and were distributed in 200 µL aliquots 

into ice cooled microcentrifuge tubes. Cells were then directly used for transformation or 

flash frozen in dry ice and stored at -80°C. 

 

For transformations, 200 µL of “competent” cells were incubated on ice, for 30 min, 

with 10-100 ng of DNA (or 10 µL of ligation reaction). Cells were submitted to heat shock 

at 42°C, for 90s and immediately incubated on ice for 2 min. Afterwards, cells were 

allowed to regenerate in 800 µL of SOC medium [20 mM glucose, 2% (w/v) tryptone, 0.5 

% (w/v) yeast extract, 0.05% (w/v) NaCl, 2.5 mM KCl, pH 7.0], which was added to the 

mixture and were incubated at 37°C for 1 h with 200 rpm agitation. Cells were centrifuged 

for 20s at 500g, and 800 µL of the supernatant was discarded. Pellets were resuspended, 

with the remaining supernatant, and plated on LB/Amp agar. Plates were incubated 

overnight at 37°C.  

 

2.2.9.1. Plasmid DNA preparation 

 

Rapid plasmid mini preparations were carried out from colonies picked up from LB-

agar-Amp plates. For this, colonies were inoculated into  5 ml LB-Amp and allowed to 

grow overnight at 37°C with agitation (200 rpm). 1.5 mL were transferred to  

microcentrifuge tubes, cells were centrifuged at 15,000 g for 5 min at room temperature 

and pellets were resuspended in 100 µL of solution I (50 mM glucose, 25 mM Tris pH 8.0, 

10 mM EDTA, pH 8.0), and then in 200 µL of solution II [0.2 M NaOH, 1% (w/v) Sodium 

dodecyl sulphate (SDS)]. After mixing, 150 µL of cold solution III [3 M KOAc, pH 5.0] 

was added, mixed by inverting tubes, and then incubating them on ice for 5 min. Samples 

were  centrifuged at 15,000 g, for 5 min at 4°C to remove cell debris, and DNA containing 

supernatants were recovered into clean 1.5 ml microcentrifuge tubes. The DNA was 

precipitated with 1 volume of isopropanol at room temperature for 10 min and then 

centrifuged at 15,000 g, for 5 min at 10°C. Pellets were washed with 1 ml of cold 70% 

(v/v) ethanol and centrifuged at 16,000g for 5 min at 4ºC. DNA pellet was dried at 37°C 

and resuspended in 20 µL of sterile mQ H2O. 
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For high quality DNA mini preparations,, QIAprep Miniprep Kits (Qiagen) were 

used as described by the manufacturer’s instructions. The optional wash with Buffer PB 

was always done. 

 

Large scale DNA plasmid preparation (Maxi-Prep) was carried out using the 

GenElute™ Plasmid Maxiprep Kit (Sigma), according to the manufacturer’s instructions, 

with minor changes. Briefly, cells from 200 mL overnight cultures were harvested by 

centrifugation at 5,000g for 10 min at room temperature. Pellets were resuspended with 6.0 

mL of the Resuspension Solution with RNase A. Cells were then lysed with 6.0 mL of 

Lysis Solution and lysis was allowed to proceed for 5 min, and then 8.0 mL of 

Neutralization/Binding Solution was added. Cellular debris were pelleted by centrifugation 

at 15,000g for 20 min at 4ºC and supernatants were loaded into the GenElute Maxiprep 

binding column, which was then centrifuged at 5,000g for 1 min at 4ºC and the flow-

through was discarded. The column was washed with 8.0 mL of the Optional Wash 

Solution and centrifuged at 5,000g for 1 min at 4ºC and the flow-through discarded. The 

final column wash was done with 15 mL of Wash Solution and was centrifuged at 5,000g 

for 5 min at 4ºC, the flow-through was discarded and the column was again centrifuged for 

1 min to dry up the resin. Finally, DNA was eluted by adding 5.0 mL of sterile mQ dH2O 

and centrifugation at 5,000g for 5 min at 4ºC. 

 

2.2.10. Site Directed Mutagenesis 

 

In vitro site directed mutagenesis was carried out with the QuikChange Site-Directed 

Mutagenesis Kit from Stratagene, according to the manufacturer instructions. However, we 

usually used 25 µL rather than 50 µL reactions which are recommended by the 

manufacturer. Two synthetic oligonucleotides primers complementary to both strands of 

the plasmid, containing the desired mutation in the middle, were used to extent the plasmid 

during amplification with PfuTurboTM DNA polymerase. Primers contained 35 and 40 

bases in length and melting temperature higher than 80ºC. PCR reactions were performed 

in 10 mM KCl, 10 mM (NH4)2SO4, 20 mM Tris-HCl, 2 mM MgSO4, 0.1% Triton® X-100, 

0.1 mg.mL-1 Bovine Serum Albumin (BSA), pH 8.8 with 0.2 mM of each dNTPs. The 

reactions contained 5 to 10 ng of DNA template, 60 - 70 ng of each primer and PfuTurbo 
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DNA polymerase at a final concentration of 0.5 U.µL-1.The PCR programs consisted of a 

first cycle at 95ºC for 30 s, followed by 18 cycles of 95ºC for 30 s, 55°C for 1 min and 

68°C for 20 min. The amplification was  checked by 0.8% agarose gel electrophoresis. 

After visualizing bands in gels, the original DNA templates were digested with 5 U of Dpn 

I for 1h at 37ºC. 

 

Dpn I treated-DNA was transferred to 50 µL of XL1-Blue competent cells (supplied 

by the manufacturer) and gently mixed. Transformations proceeded with 30 min incubation 

on ice, followed by a heat pulse of 45 s at 42ºC and were then cooled on ice for 2 min. 

Cells were allowed to recover in 0.5 mL of NZY+ broth [1%(w/v) NZ amine, 0.5% (w/v) 

yeast extract, 0.5% (w/v) NaCl, 0.4% (w/v) glucose, 12.5 mM MgCl2, 12.5 mM MgSO4, 

pH adjusted to 7.5 with NaOH], preheated at 42ºC, for 1h at 37ºC with shaking at 180 rpm. 

Cells were then centrifuged for 20s at 500g and 300 µL of supernatant were discarded and 

cell pellets resuspended, with the remaining supernatant. Finally, cells were plated on LB-

Amp agar and incubated overnight at 37°C. From each transformation four colonies were 

isolated and their plasmid DNA was extracted and sequenced, as described in sections 

2.2.9.1 and 2.2.12, respectively 

 

 

2.2.11. Nucleic Acids precipitation and quantification 

 

Nucleic acids were precipitated with NaOAc and ethanol. To the DNA or RNA 

solutions 0.1 volumes of 3 M NaOAc, pH 4.6 and 3 volumes of ethanol were added, so that 

it would have a final concentration of 0.3 M NaOAc, pH 4.6 and 70% of ethanol. Solutions 

were routinely incubated at -30ºC for periods ranging from 2h to overnight, after which 

samples were spun at 16,000g for 15 min at 4ºC. Supernatants were discarded and pellets 

were washed with 500 µL of 70% (v/v) ethanol and spun again for 16,000g for 10 min at 

4ºC. The pellets were then dried, resuspended in water and quantified by UV 

Spectrometry, at wave-lengths of 260 nm and 280 nm, considering that 1 unit of 

absorbance at 260 nm corresponds to 50 µg.mL-1 of dsDNA and 40 µg.mL-1 of RNA. 

Since proteins have maximal UV absorbance at 280 nm, the A260/A280 was used as a 
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measure of nucleic acid solutions quality. DNA and RNA preparation with ratios between 

1.7 and 2.2 were used in further manipulations.  

 

2.2.12. DNA sequencing  

 

DNA samples were prepared for sequencing following the ABI PRISM® BigDyeTM 

Terminator Cycle Sequencing Ready Reaction Kit protocol, with AmpliTaq® DNA 

Polymerase, FS (PE Applied Biosystems). Briefly, 20 µL sequencing reactions were 

prepared with 200-500 ng of template DNA, 3.2 pmol of primer and 4 µL of Terminator 

Reaction Mix. PCR programs had an initial step of 2 min at 96ºC, followed by 25 cycles of 

heating at 96°C for 10 s, 50°C for 5 s and 60°C for 4 min. The extension products were 

purified by precipitation, the pellets were dried at room temperature and resuspended in 

20-25 µL of Template Suppression reagent. Samples were heated at 95°C for 2 min, to 

allow for denaturation and were kept on ice until loading on the ABI Prism 377 DNA 

Sequencer (PE Applied Biosystems), according to the ABI Prism 310 Genetic Analyzer 

User’s Manual.  

 

2.2.13. Transformation of C. albicans 

 

The transformation protocol for C. albicans was based on the protocol described in 

the “Manual for the Preparation and Transformation of Pichia pastoris Spheroplasts” 

Version A from Invitrogen. 200 ml of C. albicans CAI-4 cultures were routinely prepared 

overnight in YEPD, at 30°C, with 180 rpm agitation. Cells were harvested, when the 

culture reached an OD600 between 0.2 and 0.3, by centrifugation at 3,200g for 10 min at 

room temperature. The pellets were washed in 20 ml of sterile distilled water resuspended 

in 20 ml of fresh SED [19 ml of SE (1 M sorbitol, 25 mM EDTA, pH 8.0) with 1ml of 1 M 

DTT], and centrifuged at 3,200g for 5 min at room temperature. They were then washed 

with 20 ml of 1 M sorbitol and centrifuged at 3,200g for 5 min at room temperature. Cells 

were finally resuspended in 20 ml of SCE buffer (1 M sorbitol, 1 mM EDTA, 1 mM 

sodium citrate, pH 5.8). The cell suspensions were divided into two tubes containing 10 ml 

each. One tube was used to monitor spheroplast formation and the other was kept at room 

temperature and later used for transformation. 
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C. albicans spheroplasts were then prepared by adding 60 µg of Zymoliase 100 T 

(Seikagaku Corp) to the 10 mL of previously treated C. albicans cells and incubating at 

30ºC until  80% of spheroplasts were obtained. For this, a primary time course assay was 

performed with 10 mL of cells. Spheroplasts were quantified by collecting fractions of 200 

µL of cell suspension at different time points and adding 800 µL of 5% SDS (v/v) to each 

fraction. Their absorbance at 800 nm was immediately measured and the spheroplasts were 

quantified using the following equation: 

 

 

% Spheroplasts = 100-[(OD800 of fraction tX/OD800 of fraction t0) x 100] 

 

 

Where tX corresponded to fractions collected at 2, 4, 6, 8, 10, 15 min and so on, until 

the percentage of spheroplasts reached the needed 80%. The blank control used consisted 

of 200 µL of SCE buffer mixed with 800 µL of 5% (v/v) SDS. For transformation, 

spheroplasts prepared as above were harvested by centrifugation at 750 g for 10 min at 

room temperature and resuspended in 10 mL of 1 M sorbitol, they were again harvested, 

and washed with 10 mL of CaS buffer (1 M sorbitol, 10 mM CaCl2, 10 mM TrisCl, pH 

7.5). Finally, spheroplasts were harvested and resuspended 0.6 mL of CaS. They were 

immediately used for transformation. For each transformation, 100 µL of spheroplasts 

were dispensed into 1.5 mL microcentrifuge tubes, and to each aliquot the plasmid DNA 

was added, in quantities ranging from 3 to 12 µg. Additionally, herring YeastMarker DNA 

carrier (Clonotech) was added. The DNA was allowed to get into the cells for 10 min at 

room temperature. Afterwards, each reaction was gently mixed with 1 mL of fresh 

PEG/CaT [20% (w/v) Polyethylene Glycol (PEG) 3350, 10 mM CaCl2, 10 mM Tris, pH 

7.5] and centrifuged at 750g for 10 min at room temperature.  The supernatant was 

discarded and the pellet resuspended in 150 µL of SOS medium (1 M sorbitol, 0.3xYPD, 

10 mM CaCl2) and incubated for 30 min at room temperature. Finally, cells were plated on 

MM-Ura agar plates and incubated at 30ºC, for 5-7 days to allow for colony formation 
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2.2.14. C. albicans genomic DNA extraction 

 

Genomic DNA of all strains and species was extracted using the Wizard Genomic 

DNA Purification Kit (Promega), according to the manufacturers’ instructions. 

 

2.3. Protein Extraction, Purification and Analysis 

 

2.3.1. Protein Extraction 

 

Candida albicans proteins were extracted from cultures grown to OD600 of 0.3. For 

this, cells were collected by centrifugation, for 5 minutes at 4000g, and lysed in a lysis 

solution containing 6 M Urea, 100 mM NaH2PO4, 10 mM Tri-Cl, 0.01 % Triton X-100, 

7.5 % Glycerol, 2.0mM phenylmethanesulphonylfluoride (PMSF), pH 8.0, and a cocktail 

of EDTA-free protease inhibitors (Roche). Lysis was carried out in a BeadBeater (BioSpec 

Products) with 15 cycles shaking for 1 minute with 3 minutes resting on ice. 

 

Recombinant LeuRS and SerRS overexpressed in E. coli BL21-CodonPlus® were 

prepared from 750 ml cultures. For this, 10 ml-LB/Amp overnight cultures were used to 

inoculate 50 mL-LB/Amp which were allowed to grow at 37ºC to an OD600 of 0.6. Then, 4 

ml of these fresh cultures were used to inoculate 750 mL-LB/Amp cultures which were 

allowed to grow to an OD600 of 0.6. Protein overexpression was then induced by the 

addition of isopropyl-beta-D-thiogalactopyranoside (IPTG) to a final concentration of 

0.5 mM. Cultures were incubated for 5h at 30 ºC with shaking (180 rpm). Once the 

induction was over, cells were harvested by centrifugation at 3,200g for 10 min at room 

temperature. The pellet was resuspended in 37 mL of Lysis Buffer (50 mM Na2PO4, 500 

mM NaCl, 0.05% Triton X-100, 0.1mM PMSF, 10 mM Imidazol, 10% Glycerol, pH 8.0) 

supplemented with 50 mg of Lysozyme (Sigma). The suspension was frozen and stored at -

20ºC. For protein extraction, cells were lysed by sonication, using five pulses of 10 sec. at 

100W with 10 sec resting on ice between each pulse. The lysates were cleared by 

centrifugation at 10,000g for 20 min at 4ºC. The supernatants were further centrifuged at 

18,000g for 15 min at 4ºC. The supernatant was collected and the purification of the 

overexpressed protein was immediately started, as described below. 
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2.3.2. Protein Purification 

 

The reporter protein was tagged at the C-terminus with a (His)6-Tag and was purified 

using nickel affinity chromatography. For this, protein extracts were incubated in batch 

with 1.0 mL of Ni-NTA Agarose (Qiagen), overnight with gentle agitation. The extracts 

were then centrifuged at 3,500g for 10 min at 4ºC, and supernatants were collected and 

frozen. Routinely, 5 ml of supernatant were used to resuspend the NiNTA-agarose prior to 

loading into a Poly-Prep Chromatography Column (BioRad). Both column washing and 

protein elution were performed with Buffer A1 (6 M Urea, 100 mM NaH2PO4, 10 mM Tri-

Cl, 0.01 % Triton X-100, 7.5 % Glycerol), at different pH. The washes were performed as 

follows: firstly with 5.0 mL of Buffer A1, pH 7.2; then with 5.0 mL of Buffer A, pH 6.8; 

and finally with 10 mL of Buffer A1, pH 6.3. Fractions of 5.0 mL were collected. The 

elution of the reporter protein was carried out with Buffer A at pH 5.8. A total of 7.5 mL 

were collected in 10 fractions of 0.75mL each. A final wash with 5 mL of Buffer A1 at pH 

4.5 was also done. The presence of the reporter protein in each fraction was monitored by 

SDS-PAGE and Western-Blotting. 

 

The fractions enriched in the reporter protein were then subjected to Fast Protein 

Liquid Chromatography (FPLC). For this, the pH was restored to 7.0 and the samples 

loaded into an AKTApurifier system coupled with a HiTrap Chelating HP column 

(Amersham Biosciences), chelated with NiCl2. The column was washed with 5 mL of 

buffer A1, and the protein eluted with a gradient of imidazol from 0 to 0.5M in 10 mL of 

buffer B1 (buffer A with 1.0 M Imidazol). Fractions of 0.50 mL were collected and reporter 

protein purification was monitored by SDS-PAGE and Western-Blotting. 

 

The recombinant SerRS was also purified by nickel affinity chromatography, as 

described above, except that 1 mL of Ni Sepharose High Performance (Amersham) was 

routinely used. The resin was incubated for 1 h at 4ºC with gentle agitation, and then 

centrifuged at 3,000g for 5 min at 4ºC. As before, almost all supernatant was removed and 

frozen. Sedimented agarose was resuspended in the remaining supernatant and loaded into 

a Poly-Prep Chromatography Column (BioRad). Column washing and protein elution were 

done with Buffer A2 (50 mM Na2HPO4, 500 mM NaCl, pH 8.0) supplemented with 
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Imidazol, at different concentrations. The column was firstly washed with 15 mL of Buffer 

A2 + 20 mM Imidazol, then with 15 mL of Buffer A2 + 40 mM Imidazol. The protein was 

eluted with a step gradient of 60 mM, 100 mM and 150 mM Imidazol in Buffer A2. Two 

fractions of 7.5 mL of each elution step were collected. A final column wash with 15 mL 

of Buffer A2 + 500 mM Imidazol was also carried out. 

 

Purification of the recombinant C. albicans LeuRS overexpressed in E. coli was 

carried out as described for the SerRS with the following alterations. The 1mL Ni 

Sepharose High Performance (Amersham) column was washed with 15 mL of Buffer A2 + 

20 mM Imidazol, and the protein was eluted with a step gradient of 40 mM, 60 mM and 

100 mM Imidazol in Buffer A2. Two fractions of 7.5 mL of each elution step were 

collected. A final column wash was of 15 mL of Buffer A2 + 500 mM Imidazol was also 

carried out. 

 

 

2.3.3. Protein Quantification 

 

The purified proteins were quantified using the BCA Protein Assay Reagent Kit 

(Pierce), which is based on bicinchoninic acid (BCA). Quantifications were carried out 

according to the manufacturer’s instructions, with minor changes. Briefly, the working 

reagent (WR) was prepared by mixing BCA Reagent-A with BCA Reagent-B in a 50:1 

ratio. In general, 0.9 ml of WR was prepared for each quantification. Protein samples were 

prepared in 100 µL. Blanks, containing no protein  were also prepared. The samples used 

to build standard curves contained 100, 75, 50 or 25 µg of protein. To all protein samples, 

0.9 mL of WR was added and mixed, and samples were incubated at 37ºC for 30 min and 

were then cooled down to room temperature and their absorbance at 562nm measured. The 

absorbance values of the standards were plotted against their respective amount of protein 

and a linear regression was determined to build the equation for protein quantification. 

Only regressions with R2 values above 0.97 were considered. 
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2.3.4. Polyacrylamide gel electrophoresis (PAGE) 

 

Proteins were fractionated on 10% or 12% PAGE prepared with 29:1 acrylamide/bis-

acrylamide as indicated on the Roche Molecular Biochemicals Lab FAQS. Protein samples 

were diluted in 2 or 3 μl of 6x sample buffer (30 % glycerol, 10 % SDS, 0.6 M DTT and 

0.012 % bromophenol blue in 0.5 M Tris-Cl / 0.4 % SDS, pH 6.8), to a final volume of 12 

or 18 μl, and boiled for 1 minute before loading onto the gel. Low Molecular Weight 

(Amersham) and Pre-stained markers (SIGMA) were used for stained and blotted gels, 

respectively. Gels were run on BioRad mini-gel apparatus, at 50 V for about 1 hour and 

then at 100-150 V for about 2 hours, until the front of the migration reached the bottom of 

the gel. Electrophoresis buffer contained 25 mM Tris, 192 mM Glycine and 0.2 % SDS. 

After electrophoresis, gels were stained or blotted as described below. The gel images were 

acquired using a densitometer and analysed with the QuantityOne software (BioRad).  

 

Coomassie Blue stain was prepared as a solution of 0.25 % Brilliant Blue R in 50 % 

methanol and 10 % acetic acid. This solution was filtered before use. Gels were stained by 

immersion in the solution for 5 to 10 minutes, with low agitation. After staining, gels were 

destained in 10 % ethanol and 7.5 % acetic acid with agitation, until the protein bands were 

visible, and stored in distilled water. 

 

When gels were used for in gel protein digestion and peptide Mass Spectrometry 

assays, NuPAGE Bis-Tris 10% pre-cast gels (Invitrogen) were used. These gels were run 

in NuPAGE MOPS SDS running buffer (Invitrogen) for 2h at 120V. Gels were stained 

with SimplyBlue SafeStain (Invitrogen), for 1 hour, and destained with milliQ water for 

either 3 hours or overnight. 

 

2.3.5. Western-blotting analysis 

 

After electrophoresis, proteins were electroblotted onto nitrocellulose membranes 

(Hybond ECL, Amersham) prior to immunodetection. For this, six sheets of 3MM paper 

(Whatman) and blotting membranes were cut to gel dimensions. Membranes were pre-

hydrated in distilled water and then hydrated in transfer buffer, TGM (20 mM Tris-Cl, 150 
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mM glycine and 20 % methanol), for 5 minutes. Gels were also equilibrated in TGM for 5 

minutes. 3 sheets of 3MM paper hydrated in TGM were placed on the anode of the transfer 

system, and a “sandwich” was assembled by laying down the membrane on top of the 

paper sheets. The gel was then added on top and was covered with 3 additional sheets of 

3MM paper hydrated with TGM. Air bubbles were avoided by rolling a glass pipette over 

the gel/paper sandwich before placing the cathode plate on the semi-dry blotter (BioRad). 

Transfers were carried out at 0.8 mA/cm2 of gel (approximately 12V for standard sized 

gels) for 20 minutes. After the transfer, membranes were washed in TBS-T (140 mM 

NaCl, 1 mM KCl, 19 mM Na2HPO4, 2 mM K2HPO4 pH7.4, with 0.1 % (v/v) Tween-20) 

for 15 minutes and blocked at room temperature for 2 hours with 5 % (w/v) skimmed milk 

powder (Molico, Nestlé) in TBS-T.  

 

Membranes from above were washed twice with TBS-T, for 5 minutes prior to 

addition of the primary antibody. Incubations with primary antibodies were specific for 

each antibody used (Table 2. 4). After this, membranes were washed 3 times for 20 

minutes each time in TBS-T. Incubation with secondary antibodies was carried out in TBS-

T with 1 % skimmed milk, for 2 hours at room temperature. The secondary antibodies 

were chosen according to specification of the primary antibodies used; they were either 

anti-Mouse (Amersham) or anti-Rabbit (Sigma), but both of them were diluted 1:5000 in 

TBS-T. Finally membranes were washed 3 times with TBS-T, for 15 minutes each time. 

Antibody incubations were carried out inside sealed plastic bags in order to reduce reaction 

volumes. 

 

Immunodetection was performed by chemiluminescence, using the ECL kit from 

Amersham, according to the manufacturer’s instructions. For this, detection reagent A and 

detection reagent B from the ECL kit were mixed in the dark in a 1:40 ratio and this 

mixture was applied onto the membranes surface, ensuring that the entire surface was 

covered. After 5-minute incubation, the mixture was removed with a pipette and the 

membranes were covered with clingfilm, avoiding air bubbles. Membranes were then 

exposed to X-ray film (Kodak) for a suitable period of time and the film was developed 

and fixed using Kodak reagents. 
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Table 2. 4 – Primary antibodies. 

Primary Antibody Source Dilution 
Incubation 

Conditions 
Obs. 

Anti-FLAG Rabbit 1:3000 Overnight at 4ºC Polyclonal, from Sigma 

Anti-PhosphoSerine Mouse 1:2000 Overnight at 4ºC Polyclonal, from Qiagen 

Anti-LeuRS Rabbit 1:1000 
1h at room 

temperature 

Whole serum, kind gift 

from M. Tuite at U. Kent 

Anti-SerRS Rabbit 1:1000 
1h at room 

temperature 

Whole serum, kind gift 

from M. Tuite at U. Kent 

Anti-Actin 

(H-300, sc-10731) 
Rabbit 1:500 Overnight at 4ºC 

Polyclonal, from Santa 

Cruz Biotech. 

    

 

2.3.6. In gel protein digestion 

 (Adapted from Chapman, 2000). 

 

Bands corresponding to the CUG reporter protein were cut from gels and in gel 

protein-digestions were performed. For this, gel slices were washed twice for 20 minutes in 

100 mM ammonium bicarbonate with 50% acetonitrile, and afterwards for 15 minutes with 

acetonitrile and then air dried. Gel pieces were rehydrated with 30 μL of cleavage solution 

[20 mM Tri-Cl pH 7.6, 0.15 M NaCl, 2.5 mM CaCl2, 2 U of Enterokinase and 2 U of 

Thrombin (both from Novagen)] and incubated for 36 hours at room temperature.  The 

digested peptides were removed from the gel slices by washing with 50 % acetonitrile at 

37 ºC for 1 hour. Supernatants were collected and concentrated by speed-vacuum. 

Immediately prior to mass spectrometry analysis, formic acid to a final concentration of 

0.1 % was added to concentrated samples.  

 

2.3.7. Mass-Spectrometry  

 

Peptide samples were loaded onto a Q-ToF Micro (Micromass) system equipped with 

a nanoelectrospray ion source coupled to a nanoflow High Performance Liquid 

Chromatography (HPLC) system (CappLC, Micromass) for mass spectrometry. The 

instrument was operated in positive ion mode. The capillary voltage was maintained at 
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3500 V and the sample cone at 35 V. The ion source temperature was 100 ºC. The cone gas 

flow was set at 130 L/hour and the nebulizing gas flow was maintained at 2 psi. A PepMap 

C18 pre-column cartridge (5 μm particles, 100 Å pores, 300  μm x 5 mm) was used to trap 

and desalt the peptides and a PepMap C18 analytical column (3 μm particles, 100 Å pores, 

75 μm x 15 cm) was used to separate them. The flow rate through the column was 

250 nL/min. Pre- and analytical columns were equilibrated with aqueous phase (2% 

acetonitrile and 0.1% formic acid) for 15 minutes. The digested peptides were bound to 

pre-columns and desalted with aqueous 0.1% formic acid at 30 μL/min for 3 minutes. The 

organic phase (98% acetonitrile and 0.1% formic acid) was increased from 5% to 40% 

during 27 minutes and increased from 40% to 90% during 5 minutes. Finally, it was held at 

90% for 5 minutes, reduced to 5% over 5 minutes and maintained at 5% for 15 minutes. 

Data were analyzed with Masslynx software from Micromass. 

 

 

2.4. Overexpression and purification of the C. albicans tRNACAG
Ser 

 

C. albicans CAI-4 was transformed with pUA77, which contained 3 copies of the 

tRNACAG
Ser gene. Cells were grown at 30ºC to an OD600 of 2.5 – 3.0 in cultures of 750 mL 

in MM-Ura. Cells were harvested by centrifuging at 3,500g, for 15 min at 4ºC. Several 

cultures were prepared to obtain 120g of cell pellet (wet weight). Cell pellets were frozen 

and stored at -80ºC until further use. Total RNAs were extracted in several successive steps 

in 250 mL bottles (Nalgen). For this, 30 g of cell pellet were resuspended in 60 mL of 

tRNA Extraction Buffer (0.1 M NaCl, 5 mM magnesium acetate (MgOAc), 2 mM DTT, 

1.5% SDS (w/v), 10 mM Tris-Cl, pH 7.0) and then 1 vol. of phenol, equilibrated with Tris-

Cl with a final pH of 6.4 (Sigma), was added. The mixture was shaken overnight at 200 

rpm at 25 ºC and then incubated in a water bath at 65 ºC for 1h. The two phases were 

separated by centrifugation at 3,200g for 20 min, at 4º C, and the upper aqueous phase was 

transferred to a new 250 mL bottle. To remove contaminant proteins present in the aqueous 

phase, the RNAs were re-extracted with 1 vol of phenol, equilibrated with Tris-Cl, pH of 

6.4 (Sigma), and the mixture was shaken for 1h at 200 rpm at 25 ºC. The aqueous phase 

containing RNAs was separated from the organic phase by centrifugation at 3,200 g, for 20 

min, at 4° C, and collected as 15 mL fractions in 50 mL tubes. The crude RNA was then 
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precipitated overnight at -20 ºC with 2 vol. of absolute ethanol and then harvested at 

10,000g for 30 min at 4ºC. The pellet was washed with absolute ethanol, the sample 

centrifuged at 10,000g for 30 min at 4ºC, the supernatant discarded and the pellet was air 

dried for 15-20 min. Finally the pellet was resuspended in 10 mL of 0.1 M NaOAc. pH 4.5 

and all fractions were pulled. 

 

The total RNA extracts were cleaned from contaminating rRNAs, mRNAs and 

proteins using 90 ml DEAE-52 (Sigma) columns equilibrated with 0.1 M NaOAc. pH 4.5. 

The columns were successively washed with 100 mL of each of the following buffers: 0.1 

M NaOAc. pH 4.5; 0.1 M NaOAc. pH 4.5 +  0.1 M NaCl; 0.1 M NaOAc. pH 4.5 + 0.2 M 

NaCl; and finally, 0.1 M NaOAc. pH 4.5 + 0.3 M NaCl. The tRNAs were eluted from the 

column with 90 mL of 0.1 M NaOAc. pH 4.5 + 1 M NaCl and were precipitated overnight 

with 2 vol. of absolute ethanol. Pellets were collected by centrifugation and dried as 

described above. The tRNA preparations were then de-acylated in 1M Tris-Cl, 1 mM 

EDTA pH 8.0, for 1h at 37ºC. These tRNA preparations were precipitated overnight with 

2 vol. of absolute ethanol and 0.1 vol. of NaOAc, as descried in section 2.2.11, and 

resuspended in CCC Binding Buffer (1.2 M NaCl, 15 mM EDTA, 30 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) - KOH, pH 7.5) 

  
 

 

2.4.1. tRNA purification by affinity chromatography  

(Adapted from Tsurui et al., 1994; Suzuki et al., 1996) 

 

Individual tRNAs were purified by affinity chromatography using DNA probes 

(Table 2. 5). For this, biotinylated DNA probes (MWG) were immobilized on 

Streptavidin agarose as follows: DNA probes were resuspended in 100 mM Tris-Cl, pH 

7.5 to a final concentration of 3 units of absorbance at 260 nm (A260) per 100 µL, and in a 

1.5 mL tube, 100 µL of DNA probe was incubated with 300 µL of  Streptavidin 

Sepharose™ slurry (Amersham) for 2 h at room temperature on a rotating wheel. 
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Table 2. 5 – DNA probes used for tRNA purification 
tRNA DNA probe sequence (5’  3’) Biotin 

tRNACAG
Ser CGC GGG CAA TGC CCA AAG GAA CCT GCA TCC 3’ – 

tRNAAGA
Ser CGA CAC GAG CAG GGT TCG AAC CTG CGC GG 5’ – 

tRNACAA
Leu TGA CAC CAA GGA GAT TCG AAC TCC TGC AT 5’ – 

 

 

Then, it was centrifuged at 3,000g and the A260 of the supernatant was measured to 

assess the incorporation efficiency of the probes by determining the ratio between the 

amount of free probe in solution after and before incubation. When ligation efficiency 

was above 85% supernatants were discarded and the resin was resuspended in CCC 

Binding Buffer. The slurry was finally packed into 0.5 mL columns (Pierce). 

 

Chromatography columns were assembled in an oven TCC-100 (Dionex) and 

connected to a low pressure liquid chromatography system (BioRad). The crude tRNA 

extracts, in CCC Binding Buffer, were circulated overnight in a closed circuit at a flow rate 

of 0.3 mL.min-1. The following program cycle was used: 10 min at 80 ºC, to denature 

tRNAs, 35 ºC for 30 min. for renaturation. tRNA binding to the column was at 65 ºC for 90 

min, then at 50 ºC for 500 min, and then the temperature was restored to 35 ºC for 60 min, 

for column washing.  

 

Columns were washed at 35ºC with 15 mL of CCC Washing Buffer (0.6 M NaCl, 7.5 

mM EDTA, 15 mM HEPES-KOH, pH 7.5). Once the absorbance at 258 nm (A258) of the 

sample stabilized, the buffer was changed to CCC Low Salt-Buffer (20 mM NaCl, 0.25 

mM EDTA, 0.5 mM HEPES-KOH, pH 7.5) and columns were washed until the A258 was 

stable. Then, tRNA elution started by increasing the column temperature to 50ºC and 

stopping the buffer flow. Once the temperature stabilized, the buffer flow was restored, at 

0.3 mL.min-1 and fractions of 0.3 mL were collected until the A258 became stable (linear). 

Then, the buffer flow was stopped again and the oven temperature was increased to 65 ºC. 

After a 5 min incubation at this temperature, the flow buffer was restored and new 

fractions were collected. The efficiency of tRNA purification was monitored by 

electrophoresis in semi-denaturing 12.5% (w/v) polyacrylamide mini-gels [12.5% 
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Acril:Bisacrylamide (19:1), 4 M Urea, TBE (0.09 M Tris, 0.09 M boric acid pH 8.3, 2.5 

mM EDTA), 1% (w/v) APS, 0.1% (w/v) TEMED]. 

   

2.4.2. High resolution tRNA electrophoresis 
 

For high resolution tRNA fractionation, 25 cm x 40 cm gels were assembled between 

clean glass plates separated using 0.5 mm thick spacers. Plates were held together using 

steel clips. The gel moulds were then filled with the gel solution [12.5% 

Acril:Bisacrylamide (19:1), 4 M Urea, TBE (0.09 M Tris, 0.09 M boric acid pH 8.3, 2.5 

mM EDTA), 1% (w/v) APS, 0.1% (w/v) TEMED], and the slot former introduced. Gels 

were allowed to polymerize at room temperature, wrapped in Clingfilm and stored at 4 ºC 

for later use. Gels were then inserted in an adjustable vertical running system (ADJ3, 

Anagene), the slot formers removed and the buffer tanks were filled with TBE. Prior to 

sample loading, a pre-run of 1 h at 500 V was performed. The tRNA samples were diluted 

in 2x Loading Buffer [10 mM NaOAc pH 5.0, 8 M urea, 0.05% (w/v) bromophenol blue, 

0.05% (w/v) xylene cyanol] and loaded onto the gel with a 50 μl Hamilton microsyringe. 

Electrophoresis was done at 700 V, at 4 ºC overnight and fractioned tRNAs were stained in 

TBE-EtBr and visualized under a UV light.  

 

2.5. Aminoacylation kinetics assays   

 

Aminoacylation reactions were carried out in a buffer (100 μL) containing 100 mM 

Tris-Cl, pH 7.6, 15 mM MgCl2, 4mM DTT, 250 mM NaCl, 10 mM KCl, 40 μM amino 

acid (either [3H]leucine or [3H]serine) (400 Ci/mol), 0.01% BSA and 2 mM ATP. In these 

reactions the concentration of both enzyme and tRNA were varied. For this, tRNAs were 

re-folded before use by heating to 85 ºC for 4 min in re-folding buffer (60 mM Tris, 

pH=7.8, 2 mM MgCl2) followed by slow cooling to room temperature. Reactions were 

initiated by adding the enzyme and, at varying time intervals, 20 μL aliquots were 

quenched by spotting on Whatman No. 3MM disks soaked with 5% trichloroacetic acid 

(TCA). The filters were washed 3 times for periods of 5 min each in 5% TCA. Then they 

were washed in 96% ethanol and counted in a liquid scintillation counter (Beckman). 



Molecular evolution of a genetic code alteration                

80 

Amino acid activation assays were based on the amino acid dependent ATP-PPi 

exchange reaction which can be used to determine the kinetics of activation of amino acids 

by aaRSs. This reaction was used in this study to determine the functionality of the active 

site of aaRSs, with an excess of both the enzyme and the amino acid. The reactions were 

carried out in 100 μL of  100 mM Tris-Cl, pH 7.8, 15 mM MgCl2, 4mM DTT, 250 mM 

NaCl, 10 mM KCl, 4 mM amino acid (either leucine or serine),  0.01% BSA, 2 mM ATP 

and 2 mM [γ32P]PPi (2TBq.mol-1) (Amersham). The enzyme concentrations were of 0.1 

μM SerRS or 1.7 μM LeuRS. Aliquots (20 μL) were removed from the reaction solution at 

various time points and quenched into 250 μL of buffer solution containing 1.6% w/v 

activated charcoal, 4.46% Na-PPi and 3.5% w/v HClO4.  The 270 μL charcoal suspension 

was then filtered on a Whatman filter,  assembled on vacuum filtering system, and the 

filter washed once with 4 mL of 40 mM Na-PPi, 1.4%  HClO4, followed by a wash of 4 

mL with distilled water and of a last wash with 4 mL 96% ethanol. The filters were then 

placed into scintillation vial and 4 mL of scintillation liquid was added. The [32P]-labelled 

ATP absorbed on the charcoal was quantified by liquid scintillation (Geslain et al., 2006).  

 
To determine the number of catalytic active sites, we carried out an active site 

titration reaction (Fersht et al., 1975). This method is based on the stoichiometric depletion 

of 1 mol of ATP for the formation of both 1 mol of pyrophosphate and 1 mol of complex 

aminoacyl-adenylte•enzyme (AA~AMP•E). In this reaction there is an initial linear 

decrease in the ATP concentration, consequence of the rapid burst of AA~AMP•E 

formation. The active site titrations were carried out at 30ºC in 150 μL reactions, with 

enzyme concentrations in the range of 0.25μM to 1μM in the presence of 100 mM Tris-Cl, 

pH 7.8, 15 mM MgCl2, 2mM DTT, 250 mM NaCl, 10 mM KCl, 1 mM amino acid (either 

leucine or serine), PPase 2 mU.μL-1, 10 μM ATP and 1000 cpm.μL-1 of [γ32P]ATP 

(Amersham). The enzyme was added at time 0 and ATP depletion was monitored at the 

time points 0.25, 0.5, 1, 2, 5, 15, 30 min. For each time point, an aliquot of 20 μL was 

taken out and the reaction was stopped by mixing with a 200 μL suspension of 7% 

percloric acid and 2% activated charcoal, to capture [γ32P]ATP. This 220 μL suspension 

was then filtered using Whatman filters,  assembled on a vacuum filtering system, and the 

filter washed with 4 mL of 0.5% percloric acid,  54 mL of water and finally with 4 mL of 

96% ethanol. Filters were then placed into scintillation vials and 4 mL of scintillation 
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liquid was added. The amount of [γ32P]ATP present in each sample was measured on a 

scintillation counter (Beckman).  

 

 

 

2.6. Bioinformatic tools and data mining 

 

2.6.1. Analysis of the genome and the proteome of C. albicans 

 

The C. albicans genome (assembly 19; haploid version), containing 6438 annotated 

Open Reading Frames (ORFs), was downloaded from the Candida Genome Database 

(www.candidagenome.org), and analyzed with ANACONDA (Moura et al., 2005). This in 

house built software package counted all codons present in the annotated ORFs and 

calculated the CAI values for each gene. The probability of generating different proteins 

from genes containing CUGs, due to serine or leucine insertion at those CUG positions 

was calculated by the binomial distribution: ( ) ( ) ini
pni pp

ni
nb −−
−

= 1
!1!

!
),,( , were n is the total 

number of CUG codons per gene, p is the probability of leucine incorporation at CUG 

positions for different percentages of ambiguity, and i is the number of CUGs decoded as 

leucine (Ex: For genes containing 3 CUGs; n =3 and i = 0, 1, 2 or 3).  

 

The total number of novel proteins in the proteome of C. albicans was estimated 

based on the studies of Ghaemmaghami et al (2003), who discovered that the abundance of 

proteins is co-related to the codon adaptation index (CAI) and that it ranges from 50 up to 

more than 106 molecules per cell. In our calculations we assumed that i) all the genes are 

expressed and ii) the abundance of proteins (Ntotal) is of 5,000 molecules for the 10% of 

genes with the lowest CAI values; of 50,000 molecules for the 10% of genes with the 

highest CAI values; and of 20,000 molecules for the remaining 80% of genes. The number 

of novel proteins arising (Nnovel) for each gene is given by: Nnovel = Ntotal x (1-b(0,n,p)). 
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2.6.2. Protein and gene sequence alignments and phylogenetic analysis 

 

 Both the gene and protein sequences used in this study were obtained from public 

databases. The NCBI database (http://www.ncbi.nlm.nih.gov) was routinely used in this 

study. The gene sequences from Candida lusitaniae, Candida guilliermondii and Candida 

tropicalis were extracted from their whole genome sequences, which are available at the 

Broad Institute, http://www.broad.mit.edu/annotation/fgi/. Finally, the gene sequences 

from S. bayanus and S. paradoxus were obtained at 

http://cbi.labri.fr/Genolevures/index.php. 

 

The BLASTP online server (http://www.ncbi.nlm.nih.gov/BLAST/) was used to find 

homologs of the C. albicans LeuRS and SerRS proteins. The multiple sequence alignments 

of both gene and protein sequences were carried out with ClustalW (Thompson et al., 

1994) and displayed with either the BioEdit or the ESPript software packages (Gouet et al., 

2003) (similarity score matrix: BLOSUM62). Phylogenetic analysis were carried out using 

Mega3.1  (Kumar et al., 2004) and were obtained with the neighbour-joining algorithm and 

a bootstrap of 1000 replications. 

 

2.6.3. Protein structure modelling  

 

Structural templates for the C. albicans LeuRS and SerRS were obtained from the 

Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics 

(RCSB). The selected structural templates of the LeuRS were from P. horikoshii and T. 

thermophilus, with the accession numbers 1WZ2 and 1OBC, respectively. The structural 

template of SerRS was from T. thermophilus, with the accession number 1SES. The 

theoretical models for the C. albicans proteins were generated by comparative protein 

modeling using the automated SWISS-MODEL servers (Arnold et al., 2006) and  were 

displayed and analyzed with the Pymol or the Rasmol software. 
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3. Quantification of CUG 
ambiguity in C. albicans in vivo 

by Mass-Spectrometry 
 

 

 

 

 

 

 

 

 

 

The results presented in this chapter were published in the following paper: 

 

Gomes, A.C., Miranda, I., Silva, R. M, Moura, G.R, Thomas, B., Akoulitchev, A. and 

Santos, M.A.S. (2007) “A Genetic Code Alteration Generates a Proteome of High 

Diversity in the Human Pathogen Candida albicans” Genome Biology 8:R206; 

doi:10.1186/gb-2007-8-10-r206. 
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3.1. Introduction  

 

Life maintenance and perpetuation is dependent on accurate flow of genetic 

information. The DNA replication error ranges from 10-10 to 10-11, whereas the 

transcription error is in the order of 10-4 to 10-6 (Edelmann and Gallant, 1977). The 

translational errors arise from both wrong aminoacylation and codon misreading, and are 

in the order of 10-4 to 10-5 (Fersht and Dingwall, 1979; Freist et al., 1985; Loftfield and 

Vanderjagt, 1972, reviewed in Parker, 1989; Ogle and Ramakrishnan, 2005). This suggests 

that there is no evolutionary pressure for the ribosome to increase decoding accuracy above 

that of aminoacylation levels. In fact, hyperaccurate ribosomes slow down growth rate 

indicating that protein synthesis accuracy is a compromise between decoding fidelity and 

decoding speed (Parker, 1989). 

 

Ribosome decoding errors are of 3 main types, namely (i) missense errors, which 

result in substitution of one amino acid for another; (ii) processivity errors that can be due 

to frameshifting and (iii) non-sense suppression, which result in readthrough of termination 

codons  (Farabaugh and Bjork, 1999). Such errors in protein synthesis result always in the 

production of aberrant proteins (Figure 3. 1), although their impact on the cell physiology 

may be variable.  
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Figure 3. 1 – Errors in translation. 
 (A) Proteins that are correctly translated and fold properly are fully functional. However, erroneous codon 
decoding produces aberrant proteins (B-E). (B) Mistranslated proteins can retain the wild type tertiary 
structure, and maintain activity. (C) Some mistranslated proteins can still fold, but become unstable and less 
active. (D) Missense errors disrupt protein structure. For example, frameshifting (E-F) can result in synthesis 
of truncated proteins because stop codons may appear just downstream of the frameshift site (E), 
alternatively readthrough proteins are synthesized if premature stop codons resulting from frameshifting are 
not recognized (F). Readthrough proteins are also synthesized by non-sense suppression of wild type (in 
frame) stop codons. The misread residue is represented as a black dot. Adapted from (Drummond et al., 
2005) 
 

 

Missense errors are the most frequent translation errors under general growth 

conditions (Kurland and Gallant, 1996). These errors can arise from tRNA mischarging or 

due to incorrect tRNA selection by the ribosome. Missense error rate is in the order of 10-4 

to 10-5, which is in agreement with global translation error rates. In E. coli different amino 

acids substitutions rates have been measured. Leucine misincorporation in poly(Phe) 

peptides is in the order of  4x10-4 (Wagner et al., 1982) and phenylalanine incorporation in 

recombinant mEGF, which does not have any Phe codon, is 6x10-4 (Scorer et al., 1991). 

Some missense errors are not deleterious since most amino acid substitutions involve 

chemically similar amino acids that do not disrupt protein structure and function (Kurland 

and Gallant, 1996). However, most missense errors decrease the activity of produced 

proteins and do have an impact on cell physiology and fitness (Ehrenberg and Kurland, 

1984; Kurland and Ehrenberg, 1984). Also, missense errors may increase during stress 

conditions, namely amino acid starvation (Parker, 1989) and may decrease growth rate 



         Quantification of CUG ambiguity in C. albicans in vivo by Mass-Spectrometry 
  

  87 

(Nangle et al., 2002). Interestingly under strong stress conditions it increases adaptation 

and is selectively advantageous (Santos et al., 1996; Santos et al., 1999).  

 

When a mRNA is being translated by the ribosome, the maintenance of the mRNA 

reading frame, after translocation, is of utmost importance, as any ribosomal slippage 

precludes synthesis of full length proteins, not only because the decoded message does not 

correspond to that expected from the mRNA open reading frame, but also because the 

ribosome usually encounters termination codons during out-of-frame reading. The latter is 

due to the fact that stop codons can arise from single base changes of several different 

codons. The ribosome, itself, has developed mechanisms to maintain the reading frame 

during decoding by positioning of the 3 tRNAs in the decoding centre and by stabilizing 

the complex formed between the anticodon and the mRNA codon at the P site (Li et al., 

2001; Hansen et al., 2003).  Frameshifting errors, either -1 or +1 (Figure 3. 2), occur at a 

frequency of 10-5 (Kurland and Gallant, 1996). This basal error rate may increase at 

particular mRNA sequences or under certain physiological conditions (Fu and Parker, 

1994; Barak et al., 1996; Stahl et al., 2004). For example, mRNA sequences prone to -1 

frameshifting are the heptameric sequences X-XXY-YYZ, where X and Z can be any 

nucleotide and Y is either a A or a U. (Jacks et al., 1988; Dinman et al., 1991; Curran, 

1993). Two models explain such frameshifting, the first proposes that it occurs before 

translocation and is induced by simultaneous slippage of the two tRNAs present in the P- 

and A-sites of the ribosome (Jacks et al., 1988). The second proposes that it occurs after 

translocation, when the codons of the heptameric sequence occupy the E- and P-sites of the 

ribosome (Horsfield et al., 1995). In both cases the tRNA at the P-site has always a central 

role in the frameshifting (Baranov et al., 2004). 

 

Frameshift errors also occur in a sequence independent manner, when the ribosome 

stalls at “hungry codons”, which may arise due to aa-tRNA limitation. In this case, +1 

frameshifting is caused by slow entry of the cognate aa-tRNA into the A-site. This creates 

a ribosomal pause and induces peptidyl-tRNA to shift in the P-site (Farabaugh, 1996; 

Gallant and Lindsley, 1992; Lindsley et al., 2005). Nevertheless, under this circumstance 

the frameshift might be regarded as a safeguard of translation, as it allows the ribosome to 

continue and facilitates its recycling. Likewise, the peptidyl-tRNA can also change the 
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reading frame at nonsense codons because of slow decoding of stop codons by release 

factors (Weiss et al., 1990). 

 

 
Figure 3. 2 – The -1 and +1 frameshifting. 
(A) The -1 frameshift results from a slippage of the mRNA in the 5’ direction. (B) The +1 frameshift is 
caused by a slippage of one base of the mRNA towards the 3’ end. 

 

Modified bases in the anticodon loop of tRNAs play an important role in reading 

frame maintenance. For example, m1G37 and ms2io6A37 prevent +1 frameshifts, but 

apparently have no role in preventing −1 frameshifts (Urbonavicius et al., 2001; 

Urbonavicius et al., 2003). On the other hand, it has been reported that the ψ39 modification 

may induce frameshifting, as it destabilizes the interaction between the tRNA and the E-

site of the ribosome, inducing a higher frequency of release of the tRNA from the E-site, 

thus promoting slippage in the P-site (Bekaert and Rousset, 2005). 

 

Non-sense suppression happens when the stop codons, namely UAA, UAG and 

UGA, are recognized by near-cognate tRNAs (nonsense suppressors), leading to the 

synthesis of readthrough proteins. Natural nonsense suppression occurs at a frequency of 

10-3 to 10-5, but each stop codon is suppressed with different efficiency. In bacteria, 

suppression of the UGA codon ranges from 10-2 to 10-5; of the UAG from 10-3 to 10-4; and 

of UAA from 10-4 to less than 10-5 (reviewed in Parker, 1989). Indeed, suppression 

efficiency is influenced by a variety of factors, namely stop codon context and presence of 

stimulatory elements downstream the stop codon (Bertram et al., 2001).  
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Despite the negative impacts of mistranslation, which are discussed in chapter 4, it 

plays an important role in the evolution of genetic code expansions and alterations because 

these evolve gradually through codon decoding ambiguity (Knight et al., 2001; Schultz and 

Yarus, 1994; Santos et al., 2004), at least in some cases. For example, both selenocysteine 

and pyrrolysine incorporation is achieved through re-programming of UGA and UAG stop 

codons, respectively, representing a context-dependent non-sense suppression event 

(section 1.4.4). Selenocysteine is incorporated in both prokaryotic and eukaryotic 

selenoproteins at UGA stop codons by novel translation elongation factors (SelB-

prokaryotes; EF-sec and SBP2-eukaryotes), a new tRNA (tRNASec) and a selenocysteine 

mRNA insertion element (SECIS) (Namy et al., 2004), whereas pyrrolysine, is inserted at 

the UAG-stop codon using a pyrrolysine insertion sequence (PYLIS), in the mRNA of 

methylamine methyltransferases (Theobald-Dietrich et al., 2004).  Also, the artificial 

expansion of the genetic code to incorporate non-natural amino acids (Anderson et al., 

2004; Santoro et al., 2002) is achieved either through non-sense suppression or 

frameshifting (section 1.4.4.3).  

 

Indeed, most alterations and expansions of the genetic code are mediated by 

structural changes in the protein synthesis machinery, in particular in tRNAs, aminoacyl-

tRNA synthetases, elongation and termination factors (Yokobori et al., 2001; Santos et al., 

1996; Santos et al., 2004). Nevertheless, per se they do not provide any insight into 

evolutionary forces that drive codon identity redefinition. Neither do they help to evaluate 

the impact of the code changes on proteome and genome stability, gene expression, 

adaptation and ultimately on evolution of new phenotypes. In order to address these 

questions, C. albicans was chosen as a well studied model system (Santos et al., 1993; 

Santos and Tuite, 1995; Santos et al., 1996; Santos et al., 1997). This fungal species has 

changed the identity of the leucine CUG codon to serine through an ambiguous codon 

decoding mechanism that affected approximately 30,000 CUG codons in more than 50% 

of its ancestor genes (Massey et al., 2003). The CUG reassignment from leucine to serine 

in Candida spp., is the only known sense to sense codon identity alteration in eukaryotic 

cytoplasmic translation systems. This genetic code change has evolved gradually over 

272±25 My, through an ambiguous codon decoding mechanism that arouse from leucine 

mischarging of a tRNACAG
Ser

 (Massey et al., 2003; Suzuki et al., 1997; Sugiyama et al., 
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1995). In C. zeylanoids the tRNACAG
Ser can be charged in vitro with leucine and in vivo it 

is charged with 3% leucine (Suzuki et al., 1997).  

 

The connection between ambiguous charging of the tRNACAG
Ser and ambiguous CUG 

decoding remains to be established. In here, this question was dissected using a reporter 

protein engineered to allow for quantification of leucine and serine insertion at CUG 

positions by mass spectrometry. We show that direct mass spectrometry is a powerful 

methodology to quantify mRNA decoding error. The latter has been poorly characterized 

and overlooked over the years due to lack of robust methodologies to quantify peptide 

mixtures arising from translation of single mRNA molecules. Our methodology opens the 

door for quantification of mistranslation under different physiological conditions.  

 

 

3.2. Results 

 

3.2.1. Construction of a CUG mistranslation reporter system 

 

A reporter protein to quantify CUG ambiguity (CUG-reporter system) (Figure 3. 3, 

Figure 3. 4) was constructed using the C. albicans phosphoglycerate kinase (CaPGK1) 

gene as a backbone system for assembly of a chimeric gene. The CaPGK1 gene has a high 

CAI value of 0.829 and does not contain CUG codons (Annexe B), indicating that it is a 

highly expressed gene and that it is not affected by ambiguous CUG decoding. We have 

inserted an N-terminal reporter cassette containing a single CUG codon to quantify leucine 

and serine incorporation at this position. This cassette peptide was flanked by thrombin and 

enterokinase cleavage sites, which were used to cleave the reporter peptide from the 

recombinant protein for mass spectrometry analysis. 

  

The chimeric gene was constructed in three sequential steps. Firstly, the promoter 

and a DNA fragment encoding the N-terminal 69 amino acids of the protein were cloned 

into the multicloning site of the pSL1190 vector (Hind III and Xho I sites). These 

restriction sites were included in the tail of the 5’ and 3’ primers, oUA201 and oUA202, 

respectively. Secondly, the fragment containing the CUG codon and the coding sequences 
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of thrombin and enterokinase were introduced using a long oligonucleotide containing 

Xho I and Sac II restriction sites (oUA215). This oligonucleotide was used as primer to re-

amplify the CaPGK1 backbone of the reporter. The other PCR primer (3´ end primer; 

oUA216) that hybridized to the 3´end of the CaPGK1 Open Reading Frame (ORF) 

contained a tail of six histidines to aid protein purification by affinity chromatography. 

This primer also contained a stop codon and an Nru I restriction site. This second fragment 

was cloned into the plasmid containing the first fragment (see above) into the Xho I and 

Nru I restriction sites. Thirdly, the 3’UTR sequence of eEF1-α was also inserted in the 

chimeric gene at the Nru I and Pst I restriction sites. Again, the restriction sites were added 

in the tail of both 5’ and 3’ primers, oUA205 and oUA204, respectively. This reporter gene 

assembled into the pSL1190 vector was then removed from this vector as a single DNA 

fragment containing Hind III and Pst I ends and was subcloned into the C. albicans pRM1 

shuttle vector at identical restriction sites (Figure 3. 3). 

 

 
Figure 3. 3 – Scheme of the C. albicans CUG reporter gene.  
The CTG codon was introduced into a mutagenesis cassette which was fused to the CaPGK1 gene as shown 
in the diagram. Two tags containing, the Flag- and 6xHis-epitopes were added to allow for the detection of 
the protein by Western blot and for its purification by affinity chromatography. The mutagenesis cassette was 
engineered to permit its easy replacement at the Xho I and Sac II restriction sites and is flanked by the 
sequence encoding both proteases cleavage sites.  
 

 

The reporter peptide of interest contained 17 amino acids (Figure 3. 4), and its 

sequence was LVPR↓GSXPRDYKDDDDK↓, where X indicates the residue encoded by 

the CUG codon. This peptide contains thrombin and enterokinase cleavage sites. 

Additionally, two tags were added to the protein to allow for its detection and purification, 

namely, the FLAG-Tag, which was added in the mutagenesis cassette and was used for 
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protein immunodetection; and a 6-histidine tag, which was added at the C-terminus and 

used for protein purification.  

 

 
Figure 3. 4 – Reporter protein. 
Diagram showing the primary structure of the reporter protein used to quantify Leucine and Serine 
incorporation at the CUG codon position. The FLAG-Tag epitope was used for immunodetection and the 6-
His Tag was used for protein purification by nickel affinity chromatography. The sequence of the peptides 
that were detected by mass-spectrometry and their respective molecular weights are also indicated. 
 

 

 

3.2.1.1. Reporter protein purification and processing. 

 

C. albicans CAI-4 cells were transformed with the pUA63 plasmid, as described in 

materials and methods (Section 2.2.13), and were grown on MM-URA at 30ºC to an OD600 

of 0.6 – 0.9. Cells were collected by centrifugation and lysed under denaturing conditions 

(section 2.3.1 ). The reporter protein was then purified, firstly in batch system, using a Ni-

NTA agarose slurry, which was incubated with the crude protein extract. The protein was 

eluted by decreasing the pH of the elution buffer and its purity was monitored by SDS-

PAGE (Figure 3. 5). 
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Figure 3. 5 – Reporter protein purification.  
SDS-PAGE of the fractions collected from the Ni-NTA agarose used to purify the protein. The column 
washes and the protein elution were performed with a decreasing pH gradient. W2 – wash at pH of 7.0; W4 – 
wash at pH of 6.3; E – elutions at pH of 5.8: 10 fractions of 0.75 mL were collected and the even fractions 
were loaded on the gel. Wf – final wash at pH of 4.3. Mw – Molecular weight. The reporter protein position 
on the gel is indicated by the arrow and its apparent MW on the gel corresponds to 47.0 kDa. 

 

 

 

The fractions containing the reporter protein (E2 - E10 and Wf in Figure 3. 5) were 

pulled together and re-purified by FPLC. The protein was then eluted with increasing 

concentration of imidazol (Figure 3. 6). Once purified, the reporter protein was 

electrophoresed on NuPAGE 10% pre-cast gels (Figure 3. 7) and its band was cut and in 

gel digested with both thrombin and enterokinase (see methods 2.3.6). The peptides were 

then eluted from the gel by washing with a 50 % acetonitrile solution at 37 ºC for 1 hour 

and analyzed by mass-spectrometry using a Q-ToF Micro (Micromass) system. 
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Figure 3. 6 - Reporter protein re-purification by FPLC. 
(A) The figure shows purification of the reporter from a 5.0 mL fraction obtained from a batch purification 
using Ni-NTA agarose. This fraction was loaded twice onto a HiTrap Chelating HP column, chelated with 
NiCl2. The protein was eluted with a linear gradient of imidazol starting after 20.0 mL of wash. The fractions 
collected were numbered as indicated in the panel. (B) SDS-PAGE showing proteins present in fractions 6-
14. The reporter protein is visible in fractions 11, 12, 13 and 14. 
 

 

 

 
Figure 3. 7 – In gel digestion of the purified reporter protein. 
Once purified, the protein was electrophoresed on 10% SDS-PAGE and stained with SimplyBlue SafeStain 
(Invitrogen), for 1 hour, and destained with milliQ water overnight. The band containing the protein was then 
cut using a clean scalpel. Finally, the protein was in gel digested with thrombin and enterokinase for 36 hours 
at room temperature. 
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3.2.1.2. Mass-Spectrometry data analysis. 

 

After cleavage, the reporter peptide containing the sequence GSXPRDYKDDDDK, 

where X is serine or leucine, was eluted from the gel as described above and its mass was 

determined by mass-spectrometry using Q-ToF Micro (Micromass) system. For this, we 

have taken into consideration the mass difference between serine and leucine containing 

peptides, which is 26 Da, and also the chemical differences between these amino acids. 

Since serine is polar (with a hydropathy index of -0.8) and leucine is apolar (with a 

hydropathy index of 3.8), and serine has a hydroxyl group (-OH) which is chemically 

reactive and can be phosphorylated, the two peptides behave differently on the HPLC-MS 

system and such differences were exploited to quantify serine and leucine incorporation at 

the CUG position. Indeed, the serine peptide had a low retention time on the C18-HPLC 

column (10.08 minutes) (Figure 3. 8A) due to its hydrophilic nature and was found in three 

different forms with different molecular weights, namely i) with the unmodified serine 

residue (Ser-OH) with a molecular mass of 1496.6 Da. Its peak appeared at a mass/charge 

ratio of 499.88 and 749.33, for charges of +3 and +2, respectively (Figure 3. 8B); ii) with a 

covalently linked phosphate group to the serine’s hydroxyl group (Ser-O-PO3) with a 

molecular weight of 1576.5 Da. Its peak appeared at a mass/charge ratio of 526.5, for a 

charge of +3 (Figure 3. 8C); and iii) with the ester bond between the phosphate and the 

serine’s hydroxyl group broken (Ser-H), which may have arisen due to the high voltage of 

the mass-spectrometer cone. The molecular mass of this peptide was 1478.4 Da and its 

peak appeared at a mass/charge ratio of 493.8, for a charge of +3 (Figure 3. 8D). 

 

In order to confirm whether the reporter protein was phosphorylated, a Western blot 

against phophoserine was carried out (Figure 3. 9). As a negative control, the phosphate 

groups were removed from the reporter protein with calf intestinal alkaline phosphatase 

(CIP). For this, 5 μg of the reporter protein were incubated with 10 units of CIP (New 

England Biolabs) for 60 minutes at 37°C in a 50 µL reaction, containing 10 mM NaCl, 1 

mM MgCl2, 0.1 mM dithiothreitol and 5 mM Tris-HCl, pH 7.9. 
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Figure 3. 8 – HPLC-MS of the Serine-peptide. 
Spectra of the reporter peptide obtained after digestion of the reporter protein with enterokinase and 
thrombin. (A) HPLC fractionation prior to mass determination, showing the elution of the serine peptide at 
10.08 minutes. The arrow indicates the interval of time used to obtain the combined spectra. (B) The major 
peaks of the combined spectra are 499.86 and 749.33, corresponding to the unmodified Ser-OH-peptide, with 
a charge of +3 and +2, respectively. (C) and (D) Detail (zoom) of the previous spectra showing the 526.5 and 
493.8 regions, respectively. Multiple peaks correspond to 13C isotopic forms of the amino acids. The right 
upper corner of panel-B shows the total number of counts for the major peak (499.8). 
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Figure 3. 9 – The reporter protein is phosphorylated in vivo.  
Detection of the reporter protein with anti-FLAG and anti-P-Ser antibodies. The protein fractions were 
loaded into a 10% Nu-PAGE gel (Invitrogen) and run for 2h at 120 V. Then proteins were transferred to  
nitrocellulose membranes and Western-Blots were carried out. 5 μg of the reporter protein were treated with 
10 units of calf alkaline phosphatase for 60 minutes at 37°C. 
 
 

The Western blot result confirmed that the protein was phosphorylated. Since the 

reporter contained the sequence Ser-Ser-Pro, which is a strong phosphorylation signal 

(Blom et al., 1999), and the corresponding phospho-peptide was detected in the mass-

spectrum, it is reasonable to assume that the phospho-serine found in the reporter protein is 

present in the reporter peptide.  

 

These results were further confirmed using synthetic peptides of identical amino acid 

sequences to the reporter peptides (Annexe C). The synthetic Ser-peptide that produced 

spectra in the interval of 9.90 and 10.58 minutes were taken into account, giving combined 

spectra which were then analysed.  Also, MS-MS analyses were carried out with both 

synthetic peptides and the reporter protein (Annexe C), which were compared and proved 

that the analysed peptide corresponded to the designed reporter peptide. The peaks 

corresponding to the mass/charge ratio of the three species of serine peptides were 

screened, the baseline subtracted and the number of counts for each species added to obtain 

the abundance of the serine peptide. 

 

A similar approach was followed for quantification of the peptide containing leucine 

at the CUG position. This peptide had a molecular mass of 1522.57 Da, showed higher 

White
Phoaphatase treatment - +

Anti-FLAG
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retention time (12.8 minutes) on the HPLC, caused by its stronger hydrophobicity. Its mass 

spectrum showed peaks at a mass/charge ratio of 508.57 and of 762.35, for charges of +3 

and +2, respectively (Figure 3. 10); 
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Figure 3. 10 - HPLC-MS of the Leucine peptide.  
Spectra of the reporter peptide containing leucine at the CUG position. The peptide was obtained by 
digestion of the reporter protein with enterokinase and thrombin. (A) The peptide had a retention time on 
HPLC of 12.8 minutes. The arrow shows the interval of time used to obtain the combined spectra. (B) Peak 
corresponding to the leucine peptide, with a mass/charge ratio of 508.5. Multiple peaks correspond to 13C 
isotopic forms. 
 

 

Likewise, MS-MS spectra were obtained for both the synthetic and the reporter peptides, 

and then compared (Annexe C), to ensure that peaks analysed corresponded to the reporter 

peptide. The spectra of the leucine peptide were obtained in the interval of 12.7 and 12.9 

minutes, giving combined spectra which were then analysed (Figure 3. 10). The peaks 

corresponding to the mass/charge ratio of the leucine peptide were screened and its number 

of counts quantified. 
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3.2.1.2.1. Data normalization 

 

In order to measure accurately serine and leucine incorporation at the CUG codon 

position, the ionization of leucine- and serine- peptides was monitored. This was important 

to ensure that putative differences in ionization efficiency were not interfering with the 

quantification of both peptides. Synthetic peptides of both forms were prepared in an 

equimolar solution and were analyzed by mass-spectrometry (Figure 3. 11).  

 

 

 
Figure 3. 11 – Spectrum of an equimolar mixture of serine and leucine peptides 
An equimolar mixture of the leucine and serine peptides was prepared and applied to the HPLC-MS. The 
spectrum shows that the peak intensity of the leucine peptide is higher than that of the serine peptide, 
indicating that the former did indeed ionize more efficiently than the latter. 
 
 
 

The synthetic peptide spectra showed that the serine peptide had a weaker signal than 

the leucine peptide – both for the +2 and +3 m/Z. In other words, the serine containing 

peptide ionises less efficiently than the leucine peptide. This allowed us to normalize the 

data considering the relative ionization efficiencies of the leucine peptide as 100% and that 



Molecular evolution of a genetic code alteration                

100 

of the serine peptide as 70%. Therefore, the mass-spectrometry data was normalized by 

correcting the number of counts obtained for the leucine peptide by a factor of 0.7.  

 
   

 

3.2.1.2.2. Amino acid misincorporation 

 

In order to ensure that leucine misincorporation at the CUG position could be 

detected above background noise, the amino acid misincorporation at near-cognate codons 

was also monitored. The near-cognate misreading is the most frequent mistranslation error 

since it involves misreading at the wobble position by near cognate tRNAs (Kurland and 

Gallant, 1996). This error has been monitored in yeast in vivo and is in the order of 0.001% 

(Stansfield et al., 1998). Since the aspartate GAU and lysine AAA codons encoded by the 

reporter peptide (Figure 3. 4) could be misread by near-cognate tRNAGlu and tRNAAsn, 

respectively, the mass of these aberrant peptides containing glutamate at the aspartate-

GAU position or asparagine at the lysine-AAA position was determined (Figure 3. 12 A). 

The peptides resulting from correct serine incorporation and leucine misincorporation at 

the CUG position were clearly visible in the mass-spectrum (Figure 3. 12 B,C), while the 

peptides containing serine at the CUG position plus glutamate at the aspartate-GAU or 

asparagine at the lysine-AAA positions were not detected (Figure 3. 12 D, E), confirming 

that our methodology was robust for accurate quantification of mistranslation of the 

C. albicans serine CUG codon as leucine. 
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Figure 3. 12– Mistranslation due to near-cognate decoding 
(A) Table with the theoretical mass and the expected m/Z peaks of the peptides that were screened in the MS 
experiments. The serine peptide is the product of correct translation of the recombinant gene and was the 
most abundant. The leucine peptide corresponded to a peptide synthesized by ambiguous decoding of the 
CUG codon by the C. albicans tRNACAG

Ser. The glutamate peptide was the product of decoding of the 
aspartate-GAU codon as glutamate by the near-cognate tRNA that decodes the glutamate GAA and GAG 
codons. Likewise, the lysine-AAA and AAG codons could be decoded by the near-cognate tRNAs that 
decode the asparagines AAU and AAC codons. (B) Mass spectrum of the serine peptide. (C) Mass spectrum 
of the leucine peptide. (D) Mass spectrum showing the region where the peak corresponding to the peptide 
containing glutamate at the aspartate position was expected (arrow). (E) Mass spectrum showing the region 
where the peak corresponding to the peptide containing asparagines in the position of the lysine AAA codons 
was expected (arrow). 
 
 
 
 
 
 

3.2.2. Determination of leucine and serine incorporation at the CUG codon in vivo 

 

Leucine incorporation at the CUG codon position was initially quantified in the most 

abundant type of Candida albicans cells, i.e., white cells, grown at 30ºC. The abundance of 

each peak was determined as described above, and is summarized in Table 3. 1. 
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Table 3. 1 – Leucine incorporation at the CUG codon on white cells. 
The abundance of each peptide species, obtained from independent HPLC-MS experiments. The % of leucine 
incorporation was obtained as explained in the text below. (n.d. – not detectable). 

Serine - Peaks Leucine - Peaks 

Ser Ser-OH Ser-P   

Z=+3 Z=+2 Z=+3 Z=+3 Z=+3 Z=+2 
Total File 

499,88 749,32 526,53 493,86 

Total 

508,56 762,35  Correc. 

%Leu

A9 1920 346 49 n.d. 2315 52 31 83 58,1 2,45 

A10 1790 303 62 53 2208 67 29 96 67,2 2,95 

A15 1260 177 47 n.d. 1484 48 20 68 47,6 3,11 

A17 2820 429 185 187 3621 110 37 147 102,9 2,76 

A19 2740 1006 113 n.d. 3859 80 35 115 80,5 2,04 

A13c 1890 291 129 170 2480 86 44 130 91 3,54 

A23 9570 2110 461 606 12747 428 203 631 441,7 3,35 

V-1w 1170 190 12 n.d. 1372 71 n.d. 71 49,7 3,50 

V-2w 4170 1000 175 n.d. 5345 176 78 254 177,8 3,22 

V-3w 760 161 n.d. 118 1039 51,3 n.d. 51,3 35,91 3,34 

XXX-2 663 92 18 n.d. 773 34 n.d. 34 23,8 2,99 

XXX-1 2220 510 40 30 2800 93 n.d. 93 65,1 2,27 

 

 

The total number of counts of all spectra collected for the serine (Sp) or leucine (Lp) 

peaks, were used to determine the relative frequency of leucine incorporation at the CUG 

codon position, by applying the expression: %Leucine = [ Lp / ( Lp + Sp ) ] x 100, and 

was 3.0 % ± 0.49 in white cells.  These results unequivocally showed that the CUG codon 

is ambiguous in C. albicans, which is surprising because such high misincorporation levels 

are forbidden by genetic code accuracy rules.  

 

 

3.2.2.1. CUG ambiguity in opaque cells 

 

Since C. albicans is polymorphic, we have also quantified leucine incorporation at 

CUG positions in different cell types, namely in opaque cells.  These cells result from low 

frequency (10-4) switching of white cells (Lan et al., 2002) and are the mating competent 

form of C. albicans. Opaque cultures of C. albicans are normally unstable, but it is 
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possible to maintain them at low temperature or by re-plating in fresh medium (Figure 3. 

13). In these conditions, cultures containing more than 90% of opaque cells can be 

maintained. This type of cells are known to be morphologically and physiologically 

distinct  from the white cells (Lan et al., 2002), and we wondered whether these 

physiological differences would have implications for CUG ambiguity. 

 

 
Figure 3. 13– Candida albicans morphology. 
(A) From C. albicans CAI-4 strain, transformed with pUA63, a colony with a white/opaque sector was 
screened. From this sector, an opaque cell line was isolated and maintained in fresh agar medium. (B) Details 
of colony and cellular morphological differences between white and opaque cells. 

 

 
Table 3. 2 – Leucine incorporation at the CUG codon on opaque cells. 
The abundance of serine and leucine peptides isolated from the reporter protein by thrombin/enterokinase 
digestion was determined by HPLC-MS experiments. The % of leucine incorporation was obtained as 
explained above (n.d. – not detectable) 

Serine - Peaks Leucine - Peaks 

Ser Ser-OH Ser-P   

Z=+3 Z=+2 Z=+3 Z=+3 Z=+3 Z=+2 
Total File 

499,88 749,32 526,53 493,86 

Total 

508,56 762,35  Correc. 

%Leu

XXIX-4 6890 2310 249 365 9814 159 n.d. 159 111,3 1,12 

XXIX-2 6160 4550 110 123 10943 66 n.d. 66 46,2 0,42 

XXIX-5 2730 635 165 65 3595 25 n.d. 25 17,5 0,48 

 
An opaque cell line, expressing the reporter protein, was selected from a white 

colony by successive plating on agar plates until a culture containing more than 90% of 

opaque cells was obtained. Then, the reporter protein was purified and analyzed, as 
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previously described (Sections 2.3.2, 2.3.6 and 2.3.7). And the HPLC-MS data obtained 

(Table 3. 2) allowed for determination of leucine incorporation at CUG codon in these 

opaque cells. 

 
 

The leucine incorporation at the CUG codon in opaque cells was 0.66 % ± 0.28, 

which was significantly different from that determined in white cells (3%), (p = 10-8). This 

result indicated that C. albicans is, somehow, able to manipulate the levels mistranslation 

of CUG codons.  

 
3.2.2.2. CUG ambiguity in different physiological conditions. 

 

The surprising discovery that CUG ambiguity varied between white and opaque cells 

prompted us to investigate whether such variation could also be observed in different 

physiological conditions. For this, the CUG reporter protein was expressed in C. albicans 

grown at 37ºC, under oxidative stress and in low pH.  The protein was purified, cleaved 

and analyzed by mass-spectrometry, as described above. Quantification of leucine 

incorporation at the CUG position was also carried out using synthetic peptides to calibrate 

the mass-spectrometer (as above). Interestingly, at 37ºC, which is the optimal growth 

temperature for C. albicans, leucine and serine incorporation at the CUG position was 3.7 

% ± 0.41 and 96.3% ± 0.41, respectively (Table 3. 3). Therefore, there was a slight 

increase in CUG ambiguity at 37ºC in relation to 30ºC, but this small increase is within the 

standard deviation and one should be careful to give it a real physiological significance.  

 
Table 3. 3 – Leucine incorporation at the CUG codon on cells grown at 37ºC. 
The abundance of leucine and serine peptide species, obtained from independent HPLC-MS experiments. 
The % of leucine incorporation was obtained as described above.   

Serine - Peaks Leucine - Peaks 

Ser Ser-OH Ser-P   

Z=+3 Z=+2 Z=+3 Z=+3 Z=+3 Z=+2 
Total File 

499,88 749,32 526,53 493,86 

Total 

508,56 762,35   Correc. 

%Leu

C12 3160 1050 291 265 4766 123 105 228 159,6 3,24 

C16 11800 5490 932 786 19008 785 332 1117 781,9 3,95 

C21 2010 440 203 236 2889 112 58 170 119 3,99 
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Next, CUG ambiguity was evaluated in cells grown on MM-Ura at pH 4.0. For this, 

the minimal growth medium was buffered with 50 mM of citrate buffer (Abaitua et al., 

1999) and the culture was incubated at 30ºC overnight. Again, preparation of the reporter 

protein and its analysis by mass-spectrometry was carried out as described before (Table 3. 

4). Most surprisingly, leucine incorporation at the CUG codon was measured 4.9 % ± 1.1.  

 

This is a significant increase in decoding error and may be of physiological 

significance. Indeed, C. albicans is mainly destroyed by macrophages forming lyzosomes 

at low pH (Watanabe et al., 1991), but C. albicans survives such acidic environment and is 

able to escape the macrophage (Kaposzta et al., 1999). This data does not allow us to 

establish a link between CUG ambiguity and macrophage survival, however increased 

CUG ambiguity increases synthesis of new proteins (see below; chapter 4) which may be 

secreted or exposed on the surface of the C. albicans cell. In other words, can C. albicans 

sense the presence of macrophages and somehow use CUG ambiguity to generate antigenic 

diversity? This would allow it to escape the immune system. If so, it shows how an 

apparently chaotic molecular event can generate important selective advantages. 

 
Table 3. 4 – Leucine incorporation at the CUG codon in cells grown at pH 4.0. 
The abundance of serine and leucine peptide species was obtained from independent HPLC-MS experiments. 
The % of leucine incorporation was obtained as explained above. (n.d. – not detectable) 

Serine - Peaks Leucine - Peaks 

Ser Ser-OH Ser-P   

Z=+3 Z=+2 Z=+3 Z=+3 Z=+3 Z=+2 
Total File 

499,88 749,32 526,53 493,86 

Total 

508,56 762,35  Correc. 

%Leu

D19 1960 680 236 338 3214 192 95 287 200,9 5,88 

D11 1000 474 58 107 1639 65 66 131 91,7 5,30 

D9 1660 314 n.d. 104 2078 63 50 113 79,1 3,67 

  

Following the above line of thought on the relationship between CUG ambiguity and 

pathogenesis, we have quantified leucine incorporation at the CUG codon under oxidative 

stress (Table 3. 5). As for acidic pH, the immune system uses oxidative stress as an 

important weapon against invading pathogens (Vazquez-Torres and Balish, 1997; Miller 

and Britigan, 1997). To simulate such condition, cells were grown in 1.5 mM of H2O2.  

Leucine and serine incorporation was 4.0 % ± 0.71 and 96.0 % ± 0.71, respectively. 
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Table 3. 5 – Leucine incorporation at the CUG codon on cells grown in the presence of 1.5 mM H2O2. 
The abundance of serine and leucine peptide species, obtained from independent HPLC-MS experiments. 
The % of leucine incorporation was obtained as explained above.  

Serine - Peaks Leucine - Peaks 

Ser Ser-OH Ser-P   

Z=+3 Z=+2 Z=+3 Z=+3 Z=+3 Z=+2 
Total File 

499,88 749,32 526,53 493,86 

Total 

508,56 762,35  Correc. 

%Leu 

E13 1060 213 46 69 1388 43 42 85 59,5 4,110535

E16 2610 536 256 292 3694 174 86 260 182 4,695562

E17 1250 450 61 128 1889 27 58 85 59,5 3,053631

E18 1100 237 63 100 1500 43 37 80 56 3,598972

 

 

The above results showed unequivocally that CUG ambiguity varies between cell 

type and between physiological conditions. This is surprising because it suggests that 

somehow charging of the tRNACAG
Ser is regulated and sensitive to the surrounding 

environment. The molecular mechanism underlying such regulation is still unknown, 

however it will be most interesting to unravel it and establish a link between such 

regulatory system and C. albicans adaptation (see below). More importantly, these data 

raised the questions of “how much CUG ambiguity can be tolerated by C. albicans?” and 

can CUG identity be reverted from serine back to leucine?” In order to answer these new 

questions CUG ambiguity was artificially increased in vivo in C. albicans, as described 

below. 

 
 

3.2.3. C. albicans tolerates partial reversion of CUG identity 

 

To engineer increased CUG ambiguity in vivo in C. albicans, a S. cerevisiae 

tRNACAG
Leu gene, which was derived from the S. cerevisiae tRNAUAG

Leu gene through 

mutation of the first anticodon wobble base (U to G), was used (Figure 3. 14). The reporter 

protein gene was also inserted in the same plasmid already containing the mutated 

tRNACAG
Leu (pUA15). This resulted in a new plasmid, named pUA65. The new leucine 

tRNA gene was cloned between the Xho I and Ava III restriction sites and the CUG 

reporter gene between the sites Hind III and Pst I (see section 2.2.2.2).  
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Figure 3. 14 – Engineered tRNACAG

Leu gene from S. cerevisiae. 
The wobble base of tRNACAG

Leu gene from S. cerevisiae was mutated to G in order to increase the decoding 
efficiency of this tRNA (Miranda, 2007).  

 

 

 
Figure 3. 15 – Leucine incorporation at CUG codons in vivo in engineered C. albicans cells. 
HPLC-MS analysis of the CUG reporter protein expressed in the pUA65 recombinant C. albicans cell lines. 
There was a sharp increase of the relative amount of the peptide containing leucine at the CUG-codon 
position.  
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The pUA65 vector was then transformed into C. albicans CAI-4 and positive clones 

were then used to purify the reporter protein. For this, transformed cells were grown at 

30ºC in liquid cultures, overnight to an OD600 of 1.5.  The reporter protein was purified, 

digested with thrombin and enterokinase and analyzed by mass-spectrometry as described 

above. Remarkably, the mass-spectra showed a dramatic increase in the abundance of the 

leucine peptide (Figure 3. 15, Table 3. 6). 
 

 

Table 3. 6 – Leucine incorporation at the CUG codon on highly ambiguous cells. 
The abundance of serine and leucine peptide species, obtained from independent HPLC-MS experiments. 
The % of leucine incorporation was obtained as explained above.  

Serine - Peaks Leucine - Peaks 

Ser Ser-OH Ser-P   

Z=+3 Z=+2 Z=+3 Z=+3 Z=+3 Z=+2 
Total File 

499,88 749,32 526,53 493,86 

Total 

508,56 762,35  Correc. 

%Leu

F8 1420 315 83 132 1950 932 199 1131 791,7 28,88 

F9 1900 365 116 161 2542 1200 217 1417 991,9 28,07 

F12 607 131 70 82 890 392 76 468 327,6 26,91 

 
 
 

In these cells, the measured leucine and serine incorporation was of 27.9% ± 1.0 and 

72.1% ± 1.0, respectively. This unanticipated result provided the first unequivocal 

evidence for dual identity of the CUG codon in C. albicans. In other words, C. albicans 

tolerates partial reversion of identity of the CUG codon without apparent decrease of 

fitness. It will now be most interesting to further increase CUG ambiguity and determine 

whether the identity of the CUG codon can be completely reversed in C. albicans. 

Interestingly, this data is in line with the above results showing that the CUG codon is 

ambiguous in wild type cells and suggests that the C. albicans proteome is not disrupted by 

serine or leucine insertion at CUG positions. 

 

3.3. Discussion 

 

Genetic code alterations pose important new biological questions whose answers 

remain elusive, especially about the mechanisms by which they evolve, their potential 

selective advantage and their physiological acceptability. We have chosen the Candida 
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genetic code change as a model to elucidate such questions. The studies described in this 

chapter indicate that C. albicans decodes the CUG codon ambiguously, that such 

ambiguity changes between cell types, physiological conditions (Figure 3. 16) and, 

moreover, that leucine incorporation at CUG positions can be sharply increased up to 28% 

(Figure 3. 17).  
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Figure 3. 16 - CUG ambiguity is sensitive to environmental cues. 
In order to determine whether the level of leucine (A) and serine (B) incorporation  in vivo was sensitive to 
environmental change, C. albicans cells were grown at 37ºC, in 50 mM citrate buffer at pH 4.0 and in 
presence of 1.5 mM H2O2. To determine the level of ambiguity of the CUG codon in opaque cells, an opaque 
cell line was selected from a white colony by successive plating on agar plates until a culture containing more 
than 90% of opaque cells was obtained. *p < 0.05; ** p < 0.001; *** p << 0.001. 
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Figure 3. 17 – Leucine incorporation on highly ambiguous cell lines. 
Peptide quantification shows that 27.9% ± 1.00 of the peptides incorporate leucine and 72.1% ± 1.00 
incorporate serine at the CUG codon corresponding to an increase in decoding error of 2800 fold above 
standard mRNA decoding error (10-4). P-value is of p<0,001. 
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These data clearly support the “Ambiguous Intermediate Theory” for the evolution of  

the genetic code, discussed in section 1.4.1 (Santos and Tuite, 1995; Schultz and Yarus, 

1994), because it demonstrated that the Candida spp. genetic code  alteration evolved 

through codon decoding ambiguity. This data also supports previous data obtained in our 

and other laboratories showing that organisms can tolerate high levels of codon ambiguity 

(Bacher et al., 2003; Pezo et al., 2004; Santos et al., 1996; Santos et al., 1999; Chin et al., 

2003). However, codon decoding ambiguity is toxic, decreases fitness and may ultimately 

lead to cell death, as is the case in multicellular organisms (Lee et al., 2006; Nangle et al., 

2002). For these reasons, evolution of genetic code alterations, through such codon 

ambiguity mechanisms, is most interesting.  

 

 The partial reversion of CUG codon identity from serine back to leucine, which was 

demonstrated by 27.9% of leucine incorporation, was carried out to expose the malleability 

of the genetic code in C. albicans and to reconstruct the high level of CUG ambiguity 

existent in the Candida ancestor. Surprisingly, these highly ambiguous cell lines were very 

heterogeneous in both cell and colony morphologies. Colonies were characterised by the 

formation of aerial hyphae and white-opaque sectoring, whereas its cells were larger and 

often formed very long filaments (Miranda, 2007). Indeed, morphological variation, 

growth at high temperature and yeast-hypha transition, as well as proteinase and lipase 

secretion and various adhesins, all play important roles in infection (Calderone and Fonzi, 

2001; Berman and Sudbery, 2002). The phenotypic diversity induced by CUG ambiguity 

exposed some of these virulence traits and suggests that increasing CUG ambiguity under 

stress may be relevant to pathogenesis (Miranda, 2007). Furthermore, morphological 

variation alters cell surface antigens which are a safeguard against the immune system.  

 

Considering that the basal mRNA decoding error in yeast is in the order of 10-5 

(Stansfield et al., 1998) the measured leucine misincorporation rates  in C. albicans 

represents an 66- up to 490- fold increase in decoding error in opaque cells and in cells 

grown under oxidative stress, respectively. Moreover, such increase in the mRNA 

decoding error can be as high as 2790-fold when compared to the typical error of 

translation. These results also unequivocally show that the tRNACAG
Ser is charged in vivo 

with both serine and leucine, and that the mischarged leu-tRNACAG
Ser is neither edited by 
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the LeuRS nor discriminated by translation elongation factor 1A (eEF1A). This event 

results in a wide proteome destabilization, which is likely to trigger morphogenesis, and 

raises intriguing questions about the complexity of the C. albicans proteome. These issues 

are addressed in the following chapters, which focus on the calculation of the number of 

different proteins that can be generated from the C. albicans gene set and on how C. 

albicans manipulates leucine misincorporation at CUG positions. 
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4. The impact of CUG ambiguity 
in C. albicans biology 
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4.1. Introduction  

 
Living systems have evolved highly accurate translational machineries, however, 

protein synthesis is not an error free process. The mistranslation of mRNA results in 

synthesis of aberrant proteins, which either have amino acid substitutions or are truncated, 

and most of them are unable to fold properly. Therefore, the ultimate consequence of 

mistranslation is the production of misfolded proteins. The presence of such aberrant 

proteins can be deleterious or even lethal to the cell (Figure 4. 1). 

 

 
Figure 4. 1 – The impact of mistranslation on the cell biology. 
Mistranslation results in formation of either (A) altered or (B) misfolded and unfolded proteins, which 
impose a burden on cell physiology. The misread residue is represented as a black dot. Adapted from 
(Drummond et al., 2005; Nangle et al., 2006). 
 
  

The precise impact of mistranslation in the cell physiology is still poorly understood. 

However, mistranslation is receiving increased attention because misfolded proteins 

promote the formation of aggregates, stress the endoplasmatic reticulum (ER) and trigger 

the unfolded protein response (UPR), and ultimately lead to cell death by apoptosis. These 

responses are associated to several pathologies, namely formation of cataracts (Ikesugi et 

al., 2006), alcoholic liver disease (Kaplowitz and Ji, 2006), diabetes (Harding and Ron, 

2002), mitochondrial encephalomyopathies MELAS and MERRF (Yasukawa et al., 2000), 

cancer (Ma and Hendershot, 2004), and several neurodegenerative diseases, namely 
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Alzheimer’s, Huntington’s and Parkinson’s diseases (Lindholm et al., 2006; Rao and 

Bredesen, 2004, reviewed in Chiti and Dobson, 2006; Zhao and Ackerman, 2006). 
 

Most of those diseases are multifactorial and the agent that causes the misfolding of 

proteins is unknown. Despite this, some of them were directly linked with mutations on 

ribosomal protein genes, on translation elongation factor genes, tRNA genes and on 

aminoacyl synthetase genes, which induce mistranslation. For instance the MELAS and 

MERRF diseases are caused by mutant tRNAs (Yasukawa et al., 2000; Yasukawa et al., 

2001), and a tRNA mutation is associated to hypertension and dyslipidemia, which are risk 

factors for cardiovascular diseases (Wilson et al., 2004). A mutant form of the translation 

factor eIF2B is also associated to leukoencephalopathy with vanishing white matter, which 

is a neurological disease (Leegwater et al., 2001). Further, mutations in the ribosomal 

proteins S19 and S24, which result in abnormal processing of ribosomal RNA, are 

responsible for a congenital anaemia, known as the Diamond-Blackfan anaemia (Flygare 

and Karlsson, 2007; Draptchinskaia et al., 1999; Gregory et al., 2007). Finally, mutant 

TyrRS and GlyRS are involve in Charcot-Marie-Tooth neuropathies (Jordanova et al., 

2006; Seburn et al., 2006) and a mutant AlaRS is involved in cerebellar Purkinje cell loss 

and ataxia (Lee et al., 2006).  

 

Organisms have evolved mechanisms to minimize mRNA mistranslation. For 

example, the universally conserved heat-shock response, the proteasome and molecular 

chaperones, which refold various misfolded proteins, form a safety network against 

aberrant proteins (reviewed in Lindquist and Craig, 1988; Pickart and Cohen, 2004).  The 

cytosolic and nuclear proteins targeted for degradation are covalently modified at lysine 

residues with ubiquitin, which is a small (76 amino acids), but highly conserved 

polypeptide (Thrower et al., 2000; Weissman, 2001). These tagged misfolded proteins are 

targeted for degradation by the proteasome, which also degrades many other correctly 

folded proteins. Indeed, besides protein quality control the proteasome is also involved in 

many diverse cellular processes, namely regulation of cell cycle progression, signal 

transduction or antigen processing (reviewed in Kostova and Wolf, 2003; Pickart and 

Cohen, 2004).  
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In eukaryotic cells, a wide range of proteins are synthesized in ribosomes attached to 

the ER, namely secreted and membrane proteins, and the accumulation of misfolded 

proteins imposes stress on the ER, which activates the UPR signal transduction pathway, 

causing temporary remodelling of the ER (Schroder and Kaufman, 2005). The balance of 

ER resident proteins is shifted to remove aberrant substrates and to restore the ER capacity 

to efficiently mature resident and exported proteins. The UPR pathway functions as a 

tripartite signal that involves (1) increasing the expression of housekeeping proteins that 

can work toward properly folding the misfolded proteins, (2) attenuating the secretory 

pathway load by decreasing the expression of secretory cargo, and (3) increasing the 

capacity for ER-associated protein degradation (ERAD) (Oyadomari et al., 2006; Pearse 

and Hebert, 2006, reviewed in Bernales et al., 2006). 

 

Despite the negative effects described above, mistranslation plays an important role 

in cell physiology. For instance, 30% of the newly synthesized proteins in HeLa, lymph 

node and dendritic cells are defective ribosomal products (DRiPs) that arise from 

missense, frameshifting and ribosome drop off at mRNA pausing sites. This is important 

for the surveillance of the immune system because the peptides resulting from proteasome 

degradation of  DRiPs are a major source of peptides for MHC class I molecules 

(Princiotta et al., 2003; Eisenlohr et al., 2007; Yewdell and Nicchitta, 2006). Also, 

mistranslation  can have positive evolutionary roles, in particular when cells are submitted 

to stress, namely starvation (Parker and Precup, 1986). In this case, increased 

mistranslation results in synthesis of arrays of altered proteins that provide a selective 

advantage for the cell. For example, Saccharomyces cerevisiae has evolved a system to 

exploit hidden genetic variation via conformational alteration of the translation termination 

factor Sup35p, namely the [PSI+] prion. Strains harbouring the [PSI+] prion experience  

generalized stop codon readthrough of genes and pseudogenes, which induces global 

proteome disruption and results in morphological variation (Uptain and Lindquist, 2002; 

True et al., 2004).  These [PSI+] strains have a short-term survival advantage, when grown 

under stress conditions, over strains that lack it [psi-], since increased stop codon 

readthrough generates beneficial phenotypes, though [PSI+] and [psi-] strains have 

identical growth rate under normal growth conditions (Tuite and Lindquist, 1996; 

Eaglestone et al., 1999). 



Molecular evolution of a genetic code alteration                

118 

 

As demonstrated in the previous chapter, C. albicans mistranslates constitutively and 

tolerates amino acid mis-incoropration at rates 2790 fold higher than the typical error rate. 

However, such increase in CUG ambiguous decoding results in genome instability, 

increases morphogenesis and generates new phenotypes (Miranda, 2007). Nevertheless, 

such mistranslation did not decrease growth rate (Miranda, 2007). This unanticipated result 

shows that C. albicans responds in unique ways to mistranslation because in all other 

studied cases similar mistranslation had a strong impact on growth rate (Bacher and 

Ellington, 2001; Pezo et al., 2004; Santos et al., 1996). This raises the hypothesis that C. 

albicans may have evolved unique mechanisms to circumvent the deleterious effects of 

mistranslation.  

 

Therefore, to better understand the impact of ambiguous decoding of the CUG codon, 

and to obtain a full picture of its global effect on C. albicans biology, the genomic 

distribution and the usage of the CUG codon were studied in detail. This was achieved by 

determining Specific Codon Usage (SCU) values for the CUG codon. As the genetic code 

is degenerated, and one amino acid can be coded by more than one codon, the SCU is a 

simple measure of non-uniform usage of synonymous codons in coding sequences (Sharp 

and Li, 1986). Indeed, the pattern of codon usage in genes reflects a complex balance 

among biases generated by mutation, selection and random genetic drift, such biases are 

due to (і) diversity in the (% G+C) at the third codon position (Alvarez et al., 1994); (іі) 

(іі) abundance of tRNAs (Ikemura, 1985); (ііі) overall base composition of genes (Ellis and 

Morrison, 1995); and differences in both (іv) gene expression level (Pouwels and 

Leunissen, 1994) and (v) the location of the genes in the genome (Chiapello et al., 1999).   

 

The impact of CUG ambiguity on protein synthesis was also evaluated using 

mathematical models. For this, the number of CUG codons per gene was correlated to its 

Codon Adaptation Index (CAI). The latter is a measure of the relative adaptiveness of the 

codon usage of a gene towards the codon usage of highly expressed genes and predicts the 

expression level (Sharp and Li, 1987; Sharp et al., 1986). All these studies were carried out 

using the C. albicans genome assembly 19, of 17/08/2005,  which represents its haplotype 

and  contains 6438 genes (Braun et al., 2005) (http://candida.bri.nrc.ca/candida/).  
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4.2. Results  

4.2.1. C. albicans has a statistical proteome 

 

The Candida albicans genome, which contains 6438 genes, was analysed using the 

ANACONDA software built by the Bioinformatics group of Aveiro (Moura et al., 2005). 

Analysis of the codon content of each gene revealed that the C. albicans’ genome contains 

13,074 CUG codons, distributed over 66% of its genes, at a frequency of 1 to 38 CUGs per 

gene (Figure 4. 2), though most of them (57.7%) have between 1 to 5 CUG codons.  

 

  

 
Figure 4. 2– CUG codon distribution over C. albicans genome. 
In the genome of C. albicans one third of its genes do not have CUG codons. The majority of its genes, 
57.7%, contain between 1 to 5 CUG codons, while 7.1% of its genes have between 6 and 10, and only a 
rather small fraction of genes have more than 10 CUG codons.  

 

Since codon-pair context influences mRNA decoding accuracy (Berg and Silva, 

1997; Murgola et al., 1984; Bossi and Ruth, 1980), a genome wide codon-context survey 

of the CUG codon was carried out for the genome of C. albicans. Similar analysis were 

also carried out for S. cerevisiae, S. pombe, A. fumigatus, S. bayanus, S. mitikae, S. 

paradoxus, C. glabrata, D. hansenii, K. lactis and Y. lipolytica. These analyses were also 

performed with the ANACONDA software by taking advantage of its statistical 

methodologies for codon-context analysis, namely contingency tables and residual analysis 

(Moura et al., 2005). The data obtained was displayed using a colour coded map that 

represented the 3’ and 5’ contexts of CUG codons from the genomes analysed (Figure 4. 

3). This study failed to identify any particular context bias for the CUG codon in C. 
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albicans, indicating that leucine and serine are randomly inserted at CUG positions. This 

indicates that CUG ambiguity has a global impact on the C. albicans proteome. 

 
Figure 4. 3 – CUG codon context analysis. 
The 5’- and 3’- context CUG codons from the 11 genomes tested. Red represents rejected contexts and green 
represents preferred contexts. The neutral contexts are in black. 
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Table 4. 1 – Expansion of the C. albicans proteome through CUG ambiguity. 
Determination of the total number of combinatorial proteins encoded in 
C. albicans genome. 

CUG per 
gene 

n 

No. Genes 
with n CUG 

(A) 

No. Possible 
proteins (2n)  

(B) 

Total number of 
proteins  
(A x B) 

    
0 2169 1 2169 
1 1439 2 2878 
2 953 4 3812 
3 609 8 4872 
4 423 16 6768 
5 289 32 9248 
6 174 64 11136 
7 103 128 13184 
8 93 256 23808 
9 44 512 22528 

10 45 1024 46080 
11 22 2048 45056 
12 22 4096 90112 
13 15 8192 122880 
14 6 16384 98304 
15 7 32768 229376 
16 6 65536 393216 
17 3 131072 393216 
18 2 262144 524288 
19 2 524288 1048576 
20 2 1048576 2097152 
21 3 2097152 6291456 
22 0 4194304 0 
23 1 8388608 8388608 
24 2 16777216 33554432 
25 0 33554432 0 
26 0 67108864 0 
27 2 134217728 268435456 
28 0 268435456 0 
29 0 536870912 0 
30 0 1073741824 0 
31 0 2147483648 0 
32 0 4294967296 0 
33 1 8589934592 8589934592 
34 0 17179869184 0 
35 0 34359738368 0 
36 0 68719476736 0 
37 0 1.37439E+11 0 
38 1 2.74878E+11 2.7488E+11 

    
Total: 6438 2.8379E+11 
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The data supported the hypothesis that leucine misincorporation at CUG codons in C. 

albicans is not dependent on CUG context and raised the opportunity to quantify the 

consequences of CUG ambiguity on the C. albicans proteome. For this, the theoretical 

number of novel proteins generated by CUG ambiguity was determined by the expression 

2n, where n is the total number of CUGs per gene. The data showed that the C. albicans 

proteome expands exponentially with the increase in the number of CUG codons per gene 

and that the 6438 protein encoding genes of C. albicans have the potential to produce the 

staggering number of 2.8379x1011 different proteins through CUG ambiguity (Table 4. 1).  

 

Therefore, genes containing more than 2 CUGs produce arrays of related protein 

molecules containing leucine or serine inserted randomly at CUG positions. This is of 

profound biological significance and implies that the C. albicans proteome has a statistical 

nature, because each cell has a unique combination of proteins. Considering that the rates 

of leucine incorporation at CUG codons vary with different physiological conditions, the 

impact of such variation on the C. albicans proteome can be calculated by determining the 

associated probability of one gene, with n CUG codons, to have i leucines incorporated at 

these CUG positions, under each growth condition. This was calculated by expanding the 

binomial distribution (Equation 4. 1): 

 

( ) ( ) ini
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(Equation 4. 1) 
 

 

 

Where n is the total number of CUG codons per gene, p is the probability of leucine 

incorporation at CUG positions in different growth conditions, and i is the number of 

CUGs being decoded as leucine. As a working example, the probability of synthesis of 

different proteins with 0, 1, 2, or 3 leucines incorporated during translation of mRNA 

containing 3 CUG codons, for the ambiguity levels determined experimentally under 

different growth conditions, were calculated (Table 4. 2). 
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Table 4. 2– Probabilistic decoding of a gene with 3 CUG codons. 
The probability of synthesis of proteins with 0, 1, 2 or 3 leucines incorporated at CUG codons, in cells 
growing in different physiological conditions. q(Ser) and p(Leu) are the measured serine and leucine 
incorporation rates, respectively. The number of proteins was determined by expanding the binomial 
distribution (Equation 4. 1), with n=3, i=0, 1, 2 or 3 and p=p(Leu) for each physiological condition. 

 q(Ser) p(Leu) P(L=0) P(L=1) P(L=2) P(L=3) 
White 0.9704 0.0296 9.14E-01 8.36E-02 2.55E-03 2.59E-05 

Opaque 0.9934 0.0066 9.80E-01 1.95E-02 1.29E-04 2.85E-07 

37ºC 0.9610 0.0390 8.87E-01 1.08E-01 4.39E-03 5.94E-05 

pH 4.0 0.9505 0.0495 8.59E-01 1.34E-01 6.99E-03 1.21E-04 

H2O2 0.9597 0.0403 8.84E-01 1.11E-01 4.68E-03 6.55E-05 

pUA65 0.7193 0.2807 3.72E-01 4.36E-01 1.70E-01 2.21E-02 
Typ. 
Error 0.9999 0.0001 1.00E+00 3.00E-04 3.00E-08 1.00E-12 

 

The same methodology can be used to determine the probability of a mRNA with n 

CUGs to generate proteins with only serines at CUG positions (i=0), under the studied 

physiological conditions (b(0,n,p)). Again, the differences in leucine misincorporation 

between 2.96% and 28.1% have significant consequences for the synthesis of 

combinatorial proteins (Table 4. 2). For instance, in the highly ambiguous cell lines 

(pUA65), the probability of synthesis of proteins with serines only at CUG positions is 0.5 

for genes with 2 CUGs, but it is 0.01 for genes with 14 CUGs. Likewise, for all other 

conditions, such probability decreases as the number of CUGs per gene increases. This 

effect is strongly affected by small increases of leucine misincorporation (Figure 4. 4). 

 
Figure 4. 4 – Probability of synthesis of proteins without leucine at CUG codons. 
Probability of synthesis of C. albicans proteins with 100% serine incorporated at CUG positions for genes 
with n CUGs. This probability is high for genes with 1 CUG codon, but decreases sharply as the number of 
CUGs per gene increases. Each C. albicans protein is composed by a statistical mixture of molecules that 
may contain leucine or serine at CUG positions. This data was obtained using (Equation 4. 1, with the p(leu) 
of each tested condition, n is the number of CUG codons and i = 0.  

 

n(CUG) 

b(0,n,p) 
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From these analyses one can infer, 1) the associated probabilities of a given CUG 

codon to be decoded as serine or leucine; and 2) the total number of different proteins that 

can be generated from the ambiguous CUG decoding event.  However, these analyses only 

provide a theoretical framework to understand the potential of C. albicans to generate new 

proteins from ambiguous CUG decoding and do not quantify the number of proteins 

present in a C. albicans cell. For this, one has to take into consideration the number of 

molecules per cell for each protein encoded by the C. albicans genome. Recent studies 

carried out by Ghaemmaghami and colleagues (Ghaemmaghami et al., 2003)  

demonstrated that protein abundance in yeast ranges from 50 up to more than 106 

molecules per cell. Since C. albicans and S. cerevisiae are phylogenetically related one can 

assume that overall protein expression values are similar and use the S. cerevisiae data set 

as a reference for C. albicans. If so, one should also assume that 1) all C. albicans genes 

are expressed and 2) the abundance of proteins (Ntotal) is 5,000 molecules/cell for the 10% 

of genes with lowest CAI values, 3) of 50,000 molecules/cell for the 10% of genes with 

highest CAI values (Ghaemmaghami et al., 2003), and 4) of 20,000 molecules/cell for the 

remaining 80% of genes. These assumptions allow one to estimate the number of different 

protein molecules that are present within a C. albicans cell and the number of novel 

proteins that are generated (Nnovel) (Equation 4. 2) from each mRNA and from the entire set 

of mRNAs (transcriptome). 

 

)1( ),,0( pntotalnovel bNN −×=  

(Equation 4. 2) 
 

Interestingly, the impact of ambiguous CUG decoding is very strong for highly 

expressed genes, but is weaker for genes whose expression is low. This effect is 

highlighted in Table 4. 3 and Table 4. 4, where the number of different proteins arising 

from ambiguous CUG decoding of genes with high and low expression levels are 

displayed. The selected genes for this analysis were CDC3, which has a CAI of 0.694, and 

RAD17, which has a CAI of 0.448 (see CAI values in the next section, p.126). These genes 

have 3 CUG codons, and each of them belongs to the group of the 10% most and 10% least 

expressed C. albicans genes, respectively.  
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Table 4. 3 - Novel proteins produced by ambiguous decoding of mRNAs whose genes have high CAI 
value. 

  Native Novel Proteins 
Condition p(Leu) SSS1 SSL2 SLS2 LSS2 LSL3 SLL3 LLS3 LLL4 Total 

White 0.0296 45691 1393 1393 1393 42 42 42 1 4306 

Opaque 0.0066 49020 324 324 324 2 2 2 0 978 

37ºC 0.0390 44374 1801 1801 1801 73 73 73 2 5624 

pH 4.0 0.0495 42938 2235 2235 2235 116 116 116 6 7059 

H2O2 0.0403 44194 1856 1856 1856 77 77 77 3 5802 

pUA65 0.2807 18604 7261 7261 7261 2834 2834 2834 1106 31391
Typ. 
Error 0.0001 49986 4 4 4 0 0 0 0 12 

1 N= 50,000 x b(0,3,p); 2 N= [50,000 x b(1,3,p)] / 3; 3 N= [50,000 x b(2,3,p)] / 3; 4 N= 50,000 x b(3,3,p)  

 

 
Table 4. 4- Novel proteins produced by ambiguous decoding of mRNAs whose genes have low CAI 
value. 

  Native Novel Proteins 
Condition p(Leu) SSS1 SSL2 SLS2 LSS2 LSL3 SLL3 LLS3 LLL4 Total 

White 0.0296 4569 139 139 139 4 4 4 0 429 

Opaque 0.0066 4901 32 32 32 0 0 0 0 96 

37ºC 0.0390 4437 180 180 180 7 7 7 0 561 

pH 4.0 0.0495 4293 223 223 223 11 11 11 0 702 

H2O2 0.0403 4419 185 185 185 7 7 7 0 576 

pUA65 0.2807 1860 726 726 726 283 283 283 110 3137 
Typ. 
Error 0.0001 4998 0 0 0 0 0 0 0 0 

1 N= 5000 x b(0,3,p); 2 N= [5000 x b(1,3,p)] / 3; 3 N= [5000 x b(2,3,p)] / 3; 4 N= 5000 x b(3,3,p)  

 

Although CUG ambiguity generates approximately 10% of new molecules of both 

Cdc3p and Rad17p, it is clear that the total number of new molecules is much higher for 

Cdc3p (4306 for 3% ambiguity) than for Rad17p (429 for 3% ambiguity) (Table 4. 3 and 

Table 4. 4). Also, if one focus on the leucine incorporation values of 2.96% and 4.95%, in 

cells grown at 30ºC and neutral pH and in cells grown at pH 4.0, respectively, one can 

observe that there is 1.67 fold increase in decoding ambiguity in the latter. However, this 

corresponds to 2.7 fold increase of proteins containing 2 leucines and 6 fold increase of 

proteins containing 3 leucines. Finally, by applying this analysis to all the ORFs of 

C. albicans’ genome, it was possible to determine the total number of novel proteins per 

cell, which ranges from 1.56 x106 in opaque cells to 42.8x106 in pUA65 transformed cells, 
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whereas under standard growth conditions (30 ºC) the number of novel protein molecules 

is 6.7x106  (Figure 4. 5). 
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Figure 4. 5 – Novel proteins generated through the ambiguous CUG decoding. 
The number of novel proteins generated through CUG ambiguity is correlated with protein expression levels, 
indicating that the impact of ambiguous CUG decoding is higher in highly expressed proteins. This analysis 
assumed that protein expression levels in C. albicans and S. cerevisiae are identical and considered the values 
of protein expression determined by Ghaemmaghami (2003). This graph was generated by determining the 
number of novel proteins (Equation 4. 2) arising in each physiological condition for each gene, and then 
summing up all of them. 

 

The above results illustrate the malleability of the C. albicans proteome and indicate 

that this organism has evolved a novel mechanism to generate protein diversity. 

Interestingly, if one considers the 6.7 million novel proteins in cells growing under the 

optimal conditions, this number is quite far from the 283,760 million of potential 

combinatorial proteins that are encoded by its genome (Table 4. 1). This shows that the 

complexity of C. albicans proteome is not fully exploited under normal growth conditions. 

 

 

4.2.2. C. albicans’ genome is optimized for CUG ambiguity 

 

In order to shed new light on the impact of CUG ambiguity of the C. albicans 

proteome a survey of CUG codons was carried out, taking into consideration protein 

expression levels. This study was complemented with a similar CUG usage study in 

S. cerevisiae, which was used as a reference for this analysis (Figure 4. 6 and Figure 4. 7). 

Error 
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Figure 4. 6 – Usage of C. albicans CUG codons in genes with different CAI values.  
(A) The CAI values of the C. albicans genes were determined using the ANACONDA algorithm (Moura et 
al., 2005) (B) The distribution of CUG codons per gene according to their CAI ranking order. In C. albicans, 
CUG codons are strongly repressed in the 10% of genes with highest CAI values. Data obtained from the 
analysis of C. albicans genome (assembly 19) with ANACONDA. 
 
 
 

 
Figure 4. 7 – Usage of S. cerevisiae CUG codons in genes with different CAI values.  
(A) The CAI values of S. cerevisiae genes were determined using the ANACONDA algorithm. (B) 
Distribution of CUG codons per gene according to their CAI ranking order.  
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Interestingly, C. albicans strongly represses CUG usage in the 10% of genes whose 

expression is highest (higher CAI values) and accumulates them in the 10% of genes 

whose expression is at the bottom of the CAI scale. Indeed, while 83% of the most 

expressed genes do not have CUG codons, 81% of genes whose expression is low have at 

least 1 CUG codon. This is in sharp contrast with CUG usage in S. cerevisiae, where only 

56% of the highly expressed genes do not have CUG codons. Furthermore, the 

accumulation of CUG codons is more frequent in the S. cerevisiae genome, where, with 

the exception of the most expressed genes, approximately one third of the genes have more 

than 5 CUG codons. These observations go in line with the studies made by Massey and 

colleagues, who have investigated the evolution of CUG codons in both C. albicans and 

S. cerevisiae. Those studies were based on alignments of orthologous genes and showed 

that 98% of the CUG codons in S. cerevisiae were reassigned to leucine codons in C. 

albicans (Massey et al., 2003).  

 

The impact of such CUG codon distribution according to protein expression levels 

becomes clearer if one determines the number of novel proteins synthesized in artificially 

ambiguous S. cerevisiae cells and compares it with the novel proteins arising in white 

C. albicans cells. Conversely to C. albicans, transformation of S. cerevisiae cells with 

wild-type the C. albicans’ tRNACAG
Ser (G33) decreased growth rate by 47.9% (Santos et al., 

1996). The mass-spectrometry methodology and the reporter system, described in the 

previous chapter, was used out in S. cerevisiae cells transformed with the C. albicans 

tRNACAG
Ser (G33) and with an engineered U33-tRNACAG

Ser, and showed that serine 

incorporation was of 1.4% and 2.31% for in G33 and U33 tRNACAG
Ser cell lines, 

respectively (Silva et al., 2007). The measured serine mis-incorporation in those cells 

represents 1400 and 2310 fold increase in decoding error (considering 1x10-4 the typical 

error) (Stansfield et al., 1998). Note that these values of serine mis-incorporation are below 

the natural CUG ambiguity in C. albicans (2.96%). The number of novel proteins in the 

U33 and G33 S. cerevisiae cell lines was determined as described above, and in cells with 

2.31% of serine misincorporation was of 12.5x106 and in the cells 1.40% with serine 

misincorporation was of 7.9 x106 (Figure 4. 8).  
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Figure 4. 8 – Novel proteins generated through the ambiguous CUG decoding in engineered S. 
cerevisiae. 

 

 

In other words, in S. cerevisiae, 2.31% of serine mis-incorporation at CUGs resulted 

in the generation of 12.5 million proteins, whereas as in C. albicans 2.96% of leucine mis-

incorporation at CUGs resulted in the production of “only” 6.3 million novel proteins. 

Therefore, similar CUG ambiguity levels resulted in the production of twice the number of 

novel proteins in S. cerevisiae. Furthermore, such mistranslation induced the general stress 

response in S. cerevisiae but did not do so in C. albicans  (Silva et al., 2007; Enjalbert et 

al., 2003).  
 

 

 
4.2.3. The CUG usage in C. albicans 

 

Another important question regarding CUG usage refers to its distribution in the 

C. albicans genome. Its usage frequency is 0.43% (Figure 4. 9), and, therefore, belongs to 

the category of rare codons. 
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Figure 4. 9 – C. albicans codon usage. 
The CUG codon is represented in orange, and the other serine codons are in green. The dashed line defines 
the threshold value that separates rare and non-rare codons, considering that rare codons are used below 0.5% 
of the time. The total codon count was obtained from the C. albicans genome Assembly-19 using 
ANACONDA. 
 
 

The contribution of each codon for the entire set of amino acids was measured as the 

Specific Codon Usage (SCU), which reflects their relative usage, and can be calculated for 

each codon, as follows:,  

aa

NNN
NNN n

n
SCU =)(  

(Equation 4. 3) 
 

where the SCU(NNN) is the SCU of a given codon, n(NNN) is the number of times that such 

codon appears in the genome and  n(aa) is the total number of amino acid residues in the 

entire genome, which are coded by such codon. 

 

The CUG codon, in Candida spp, belongs to the serine codon-family, along with the 

other 6 codons, namely AGC, AGU, UCU, UCA, UCC and UCG.  The total usage of each 

serine codon was determined using ANACONDA, and SCU values of each ORF were 

calculated as described in (Equation 4. 3). The CUG codon is the least used codon of the 

serine family, but its usage is rather similar to AGC codon (Table 4. 5). 
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Table 4. 5 – Relative serine-Specific Codon Usage 

 AGC AGU CUG UCA UCC UCG UCU 
no. 

Codons 15292 53914 13074 81648 26676 20954 60096 

SCU 0.056 0.198   0.048 0.301 0.098 0.077 0.221 

 

To characterize the distribution of CUGs in the ORFeome, the SCU was used as the 

unit of measurement of the amount of CUG codons, since it allows for data normalization 

in terms of serine abundance. This choice is based on the fact that the SCUCUG is more 

informative than the absolute number of CUGs within an ORF. For instance, the SCUCUG 

of a gene containing a single serine residue, which is encoded by a CUG, is 1.0, whereas 

the SCUCUG of a gene with 2 CUGs, but with 20 serine residues is 0.1. Therefore, by 

comparing the SCU of the CUG codon one takes into account the relative amount of serine 

residues that it encodes. 

 

Firstly, CUGs distribution was studied by taking in consideration ORF size, GC 

content and presence of rare codons. This allowed one to rule out these secondary effects 

on CUG accumulation in specific functional categories. For this, the Pearson correlation 

coefficient, which is the most common measure for linear associations, was used. It varies 

between –1 and +1, and a Pearson correlation of 0 indicates that there is no correlation 

between the variables. The coefficients (Table 4. 6) did not show correlation between the 

SCU of the CUG codon and the above tested variables, thus ruling them out.  

 
Table 4. 6 – Pearson correlation matrix 
A Pearson correlation analysis was carried out to test the correlation between SCUCUG and the tested 
parameters for the 6437 ORFs of C. albicans genome. 

 No. Codons % Rare Codons % GC 

SCUCUG -0.037 -0.122 0.052 

 

SCUCUG values were plotted against each of the tested variables (Figure 4. 10), to 

visualise the relationship between the analysed parameters, as well as to identify outliers. 

For this, and to reduce background noise, only the ORFs that had at least one CUG codon 

were used (4,269 in total), and the data was divided in four groups (coloured 
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differentially), corresponding to each of the four quartiles, to allow for an easier 

interpretation of the data. 

 
Figure 4. 10 – SCUCUG correlation with ORF size, rare codons and GC content. 
(A) Small ORFs tend to have higher levels of CUGs. (B) Correlation of SCUCUG with the presence of rare 
codons in ORFs. (C) The SCUCUG and the GC content of ORFs. The SCUCUG correlation with both rare 
codons and the GC content is very homogenous, and significant trends/bias were not observed. The dashed 
line indicates the average usage of CUGs and the solid line indicates values that are twice the average. In red 
are the 25% of the ORFs with the highest usage of CUGs (the 4th quartile), in yellow the 3rd quartile, in green 
the 2nd quartile and in blue are the 25% of ORFs with the lowest CUG usage.  
  

 

A 

B 

C 
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Therefore, the most surprising result was the accumulation of CUG codons in small 

ORFs (Figure 4. 10 A), which have evolved recently (Beltrão, P., personal 

communication). This indicates a fast accumulation of CUGs in genes that are evolving 

rapidly and that are specific of C. albicans. Interestingly 41 ORFs accumulate CUG 

codons since at least 1 out of 3 serines are coded by a CUG. These ORFs correspond to 

10% of ORFs with highest CUG usage. However, little can be said about the function of 

these genes because most of them are annotated as hypothetical proteins (17) or are not 

annotated in C. albicans genome assembly 19 (16). Nevertheless, orf19.3774 encodes an 

ubiquitin-like protein, which contains one serine residue coded by a CUG codon (SCUCUG 

= 1) and also orf19.5761, which contains 38 serines coded by CUG codons only. This ORF 

is annotated as a hypothetical protein. 

 

 

Since ORF size, GC content and rare codon bias did not influence CUG usage, one 

wondered whether particular features of CUG usage could be uncovered by analysing its 

distribution in the C. albicans genome. For this, ORFs were grouped in functional 

categories and CUG distribution in these ORFs was studied using SCUCUG values and the 

ANOVA statistical test. In order to ensure that the ANOVA analysis was reliable the data 

sets were pre-tested for normality and homogeneity of variances, using the Kolmogorov-

Smirnov’s and Levene’s tests, respectively. The data sets did not pass the Kolmogorov-

Smirnov test for normality, indicating that the SCUCUG did not follow the normal 

distribution.  However, the ANOVA analysis would still be reliable if the data passed the 

Levene’s test for the homogeneity of variances (Brownie and Boos, 1994). Whenever the 

ANOVA indicated that there were differences between the groups the post hoc Scheffe’s 

test was carried out to identify the outlier group. Finally, when both the normality and the 

Levene’s tests failed the mean and the standard deviation of codon usage were plotted. All 

the following statistical tests were carried out using Statistica 7.0 from StatSoft, Inc, 

according to the software instructions. 
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4.2.3.1. The CUG codon distribution in individual chromosomes  

 

In the annotated genome of C. albicans one of the analysed features is the physical 

mapping of each ORF (Braun et al., 2005). There are 8 chromosomes, namely Chr.1, 

Chr.2, Chr.3, Chr.4, Chr.5, Chr.6, Chr.7 and Chr.R (Table 4. 7) and the gene content of 

each chromosome varies between 422 (Chr. 7) to 1309 (Chr. 1), and from all the ORFs, 

only 373 were not allocated to any chromosome. The serine UCA codon was most 

frequently used in all chromosomes and CUG and AGC were the least used. CUG usage 

was rather similar between chromosomes (Figure 4. 11) and its distribution pattern was 

also similar to that of other least used serine codons, namely AGC, UCC and UCG.  

 

 
Table 4. 7 – ORF distribution over C. albicans chromosomes 

 Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5 Chr. 6 Chr. 7 Chr. R 
Non 

allocated 
No. Genes 1309 1011 748 663 519 423 422 944 373 

 

 

 

 

 
 
Figure 4. 11 – CUG usage in individual C. albicans chromosomes. 
The SCU values of each serine codon of the ORFs belonging to the 8 chromosomes are equal to its genome 
average. Only the SCUCUG of non-annotated ORFs (N.a.) showed a slightly different SCUCUG values.  
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4.2.3.2. The CUG codon distribution in different classes of enzymes  

 
The above analysis was then extended to functional categories, namely C. albicans 

enzymes. There are 1503 ORFs annotated as encoding enzymes (Table 4. 8), which are 

grouped according the chemical nature of the reaction that they catalyse. The enzyme 

classification system (EC) groups the enzymes in six major classes, namely: 

Oxidoreductases (EC 1); Transferases (EC 2); Hydrolases (EC 3); Lyases (EC 4); 

Isomerases (EC 5); and Ligases (EC 6). 

 
 
Table 4. 8 – ORF distribution for the six enzyme classes, and the respective SCUCUG average 

 

This data set passed the Levene’s test for the homogeneity of variances, allowing one 

to perform an ANOVA to test the hypothesis that CUG usage is not biased in the different 

classes of enzymes. Indeed, the tested hypothesis failed with p<0.05, meaning that the 

probability of having at least one group whose CUG usage is different from the others is 

higher than 95%. In order to identify the groups that have biased CUG usage the Scheffe’s 

test was carried out (Table 4. 9). 

 

 
Table 4. 9 – The p values of Scheffe’s test for the SCUCUG distribution 
in the 6 enzyme classes. 

 EC1 EC2 EC3 EC4 EC5 
EC2 0.034098     

EC3 0.020756 0.999981    

EC4 0.999907 0.684268 0.623579   

EC5 0.996823 0.341934 0.295967 0.993249  

EC6 0.961812 0.905307 0.864445 0.998143 0.921859 

 

 

The transferases and hydrolases (EC 2 and EC 3) were the only enzyme classes that 

showed significant CUG usage bias. This bias was more significant when compared with 

the Oxireductases (EC 1). Interestingly, CUG usage in enzymes genes was lower than its 

 EC 1 EC 2 EC 3 EC 4 EC 5 EC 6 

No. Genes 345 473 468 80 60 108 

Average SCUCUG 0.0286 0.0389 0.0394 0.0300 0.0251 0.0332 
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average usage in the whole genome (0.048), but the same was also observed for the ACG 

codon, which is another rare serine codon (Figure 4. 12). This suggests that CUG is not 

repressed due to its ambiguous decoding, but most likely due to the abundance of its 

cognate tRNA, as is the case for the other rare codons. 

 

 

 

 

 
Figure 4. 12 –The SCU distribution of serine codons in various classes of enzymes. 
 

 

 

For a deeper analysis of the CUG codon distribution, each class of enzymes was 

further sub-grouped, according to the specific reaction catalysed. Enzymes are organized in 

classes and sub-classes, but this analysis did not use such strict division criteria. Rather a 

more general criterion was used, which considered groups with more than 5 elements only. 

The remaining enzymes that formed groups with fewer enzymes were put together in a 

major group, named “other” (Table 4. 10). The EC4 and EC5 classes contained less than 

100 elements and their sub-groups had fewer than 10 elements and, for these reasons, they 

were not subjected to this analysis. 
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Table 4. 10 – CUG and AGC codons SCU in the enzymes sub-classes. 
   Means  

  
No. 

Genes SCUCUG  SCUAGC   
Other 113 0,0323 0,0378
Superoxide Dismutase 7 0,0204 0,0390
Redutase 74 0,0311 0,0473
Peroxidase 7 0,0443 0,0286
Oxidase 25 0,0189 0,0423
Monooxygenase 10 0,0430 0,0444
Dioxygenase 8 0,0399 0,0621

EC1 

Dehydrogenase 99 0,0220 0,0283
  

 

Other 206 0,0377 0,0504
Polymerase 37 0,0254 0,0378
Methyltransferase 24 0,0318 0,0550
Mannosyltransferase 13 0,0367 0,0515
Kinase 148 0,0444 0,0481
Aminotransferase 15 0,0329 0,0540

EC2 

Acetyltransferase 30 0,0473 0,0337
   

Other 202 0,0406 0,0534
Phosphatase 25 0,0479 0,0411
Ribonuclease 68 0,0370 0,0505
Protease 15 0,0472 0,0570
Phospholipase 64 0,0357 0,0475
Lipase 8 0,0452 0,0643
Deaminase 9 0,0395 0,0380
Deacetylase 7 0,0443 0,0413
ATPase 52 0,0294 0,0393

EC3 

  
Other 41  
Ubiquitin Ligase 25 0,0427 0,0523
Acetyl-CoA 7 0,0138 0,0447
Aminoacyl-tRNA 
Synthetase 35 0,0296 0,0393

EC6 

  
    

      SCUCUG      SCUAGC 

 

 

The data failed to meet the required homogeneity of variance and it was not possible 

to reach meaningful conclusions from this analysis, indicating that CUG usage in each of 

the sub-groups is very similar. However, in some groups, CUG usage was below its usage 

in the overall genome, namely in Superoxide Dismutases (EC1), Dehydrogenases (EC1), 

Polymerases (EC2), and ATPases (EC3). But, in these enzymes AGC usage was also 

below the average, suggesting that such codon repression is related to effects of rare 

0,00 0,05 0,10 0,15
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codons rather than CUG ambiguous decoding. Interestingly, in the Acetyl-coenzyme A 

synthetases (EC6) the usage of the CUG codon is very low – it is one third of the whole 

genome, while the usage of the AGC is not, suggesting that, at least in this sub-group, 

CUG usage may be repressed. 

 

Deacetylases (EC3), Phosphatases (EC3), Acetyltransferases (EC2) and Peroxidases 

(EC1) showed SCUCUG values in the same range of the genome’s SCUCUG, but SCUAGC 

values were lower, suggesting that these genes may repress rare codons,  but not CUGs. 

 

Finally, CUG usage was also analysed in the leucyl- and seryl-aminoacyl tRNA 

synthetase genes (CaCDC30 and CaSES1, respectively), which are directly involved in the 

genetic code change as they both charge the tRNACAG
Ser; and in ubiquitin ligases and in 

proteases, as they are involved on the recognition and degradation of aberrant proteins. 

However, the behaviour of the CUG codon was similar to that of the overall genome, 

hence indicating that it does not play a particular important role in these enzymes.  

 

 
 

4.2.3.3. The CUG distribution in protein domains 

 

 

PFAM is a comprehensive collection of protein domains and families containing 

7973 protein families (Finn et al., 2006). It was developed and is hosted by the Sanger 

Institute (http://www.sanger.ac.uk/Software/Pfam/). The availability of this information 

allowed a detailed characterization of the distribution of CUG codons in the gene parts that 

encode those protein domains. The ORFs present in the assembly 19 of C. albicans’ 

genome contain 2919 known protein motifs (corresponding to 45% of all the ORFs), 

corresponding to 962 different motifs. 

 

For the analysis of the CUG codon distribution on protein domains, all the annotated 

ORFs were grouped according to their predominant protein motif and only those groups 

with more than 9 elements were considered. Therefore, 956 ORFs distributed over 40 

PFAM domains were analysed (Table 4. 11). Again, the data failed to meet the required 
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assumptions for the ANOVA analysis and the results below are merely indicative as no 

significant bias could be detected. Interestingly, in three out of the four most abundant 

domains, namely on PF00069 (Protein kinase), PF00172 (Fungal Zn(2)-Cys(6) cluster) and 

PF00083 (Sugar transporter), CUG codon usage was equal to AGC usage, thus indicating 

that ambiguous CUG decoding does not affect these proteins, as it is not repressed.  

 

Another abundant domain is the leucine rich repeats (PF00560), which are short 

sequence motifs, present in a number of proteins with diverse functions and cellular 

locations. It is rather interesting that in these repeats CUG usage is twice as high as its 

usage on the whole genome, and is higher than AGC usage. One can not exclude that some 

of these ORFs are misannotated, as the CUG codon in the PFAM motif-search engine has 

its standard meaning as leucine. However, this bias is interesting because these repeats are 

usually involved in protein-protein interactions.  

 

 

Comparison of CUG and AGC usage identified 3 groups: i) ORFs whose AGC and 

CUG usages are similar to their genome’s usage; ii) ORFs whose CUG usage is than AGC 

usage; and iii) ORFs whose CUG usage is higher than AGC usage. The first group includes 

the Histone Core domain (PF 00125), which has the lowest usage and shows a strong bias 

against rare codons. Regarding to the second group, where the CUG codon is repressed in 

comparison to the AGC codon, it is composed by the following domains: Dehalogenase-

like hydrolase (PF00702), PHD-finger (PF00628), F-box domain (PF00646), Aldo/keto 

reductase family (PF00248), Proteasome A-type and B- type (PF00227), Cyclin, N-

terminal domain (PF00134) and ABC transporter (PF00005). Finally, in the PX domain 

(PF00787), the Acetyltransferase (GNAT) family (PF00583) and the Ubiquitin-

conjugating enzymes (PF00179), CUG usage is positively discriminated.  
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Table 4. 11 CUG and AGC codons SCU in protein domains 
   Means 

  No. 
Genes SCUCUG SCUAGC  

PF00004 ATPase family  27 0.0414 0.0430
PF00005 ABC transporter 21 0.0301 0.0579
PF00009 Elongation factor GTP binding  14 0.0185 0.0268
PF00018 SH3 (Src homology 3) 16 0.0463 0.0663
PF00023 Ankyrin repeat 10 0.0586 0.0807
PF00026 Eukaryotic aspartyl protease 15 0.0267 0.0397
PF00069 Protein kinase  90 0.0534 0.0523
PF00071 Ras family 21 0.0292 0.0604
PF00076 RNA recognition motif.  41 0.0469 0.0589
PF00083 Sugar transporter 57 0.0296 0.0309
PF00096 Zinc finger, C2H2 type 39 0.0530 0.0533
PF00106 short chain dehydrogenase 24 0.0481 0.0370
PF00107 Zinc-binding dehydrogenase 24 0.0391 0.0317
PF00125 Core histone H2A/H2B/H3/H4 11 0.0051 0.0051
PF00134 Cyclin, N-terminal domain 12 0.026 0.0563

PF00149 Calcineurin-like 
phosphoesterase 17 0.0400 0.0465

PF00153 Mitochondrial carrier protein: 31 0.0398 0.0348
PF00171 Aldehyde dehydrogenase family 11 0.0314 0.0318
PF00172 Fungal Zn(2)-Cys(6) cluster  68 0.0623 0.0660

PF00176 PSNF2 family N-terminal 
domain 17 0.0506 0.0605

PF00179 Ubiquitin-conjugating enzyme 14 0.0638 0.0400
PF00226 DnaJ domain 24 0.0460 0.0514
PF00227 Proteasome A-type and B- type 13 0.0096 0.0243
PF00248 Aldo/keto reductase family 16 0.0112 0.0517
PF00249 Myb-like DNA-binding domain 9 0.0773 0.0771
PF00270 DEAD/DEAH box helicase 33 0.0406 0.0615
PF00271 Helicase C- terminal domain 10 0.0409 0.0392
PF00324 Amino acid permease 32 0.0349 0.0356
PF00400 WD domain, G-beta repeat 78 0.0408 0.0550
PF00443 Ubiquitin hydrolase family  13 0.0473 0.0757
PF00515 TPR Domain 15 0.0455 0.0540
PF00560 Leucine Rich Repeat 35 0.0722 0.0671
PF00561 alpha/beta hydrolase fold 16 0.0560 0.0406
PF00566 TBC domain 10 0.0571 0.0791
PF00583 Acetyltransferase (GNAT) family 13 0.0767 0.0262
PF00628 PHD-finger 10 0.0464 0.0951
PF00646 F-box domain 12 0.0505 0.1280
PF00702 Dehalogenase-like hydrolase 13 0.0254 0.0673
PF00787 PX domain 10 0.0730 0.0468

PF01794 Ferric reductase like 
transmembrane component 14 0.0522 0.0655  

0 0.02 0.06  0.10 0.14  

  SCUCUG SCUAGC
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4.2.3.4. The CUG codon usage and the gene ontology      

 

 

The availability of several sequenced genomes and the discovery that most genes of 

core biological functions are shared by all eukaryotes prompted the uniformization of the 

cellular terminology. The Gene Ontology (GO) terms have then arisen with the objective 

of standardizing gene terminology. GO terms are split into three related ontologies – the 

molecular function of gene products; their role in multi-step biological processes; and 

their localization to cellular components (Ashburner et al., 2000) 

(http://www.geneontology.org). The genome of C. albicans was also annotated using GO 

terms, thus allowing one to study CUGs distribution in different ontologies. To carry out 

such a study, C. albicans ORFs were grouped according to their gene ontology categories, 

and only those groups with 10 or more elements were analysed. 

 

 

Interestingly, genes that belong to the cellular location ontology (Table 4. 12), in 

particular those bound to the membrane surface, but not integrated into the hydrophobic 

region, differ the most in terms of CUG usage. Indeed, CUG usage in this category is 2 

fold higher than genome average of CUG usage. This may be of biological relevance 

because these proteins are directly exposed to the immune system and are used as antigens. 

In other words, leucine/serine ambiguity at CUGs in these genes may help C. albicans to 

escape the immune system. Similar CUG usage bias was found in nuclear membrane genes 

and in genes of the SAGA-complex, which is a large multiprotein complex that possesses 

histone acetyltransferase activity and is involved in regulation of transcription (ex: Gcn5p; 

(Grant et al., 1998)).  
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Table 4. 12 – CUG and AGC codons SCUs in ORFs grouped according to their cellular localization 
 Means 
 No. 

Genes SCUCUG  SCUAGC  

 

C:cell wall 47 0.0315 0.0566
C:membrane  61 0.0326 0.0498
C:plasma membrane 138 0.0378 0.0433
C:extrinsic membrane protein  12 0.0940 0.0552
C:integral membrane protein 54 0.0390 0.0387
C:hydrogen-transporting ATPase 23 0.0186 0.0282
C:respiratory chain complex 16 0.0109 0.0174
C:mitochondrial ribosome  65 0.0304 0.0550
C:peroxisome 40 0.0254 0.0469
C:endosome  25 0.0473 0.0715
C:lipid particle  15 0.0379 0.0418
C:vacuole (sensu Fungi)  47 0.0383 0.0415
C:proteasome 43 0.0209 0.0370
C:COP vesicle coat  26 0.0303 0.0562
C:Golgi apparatus  76 0.0459 0.0488
C:endoplasmic reticulum  152 0.0377 0.0442
C:cytosolic ribosome (sensu Eukarya) 94 0.0061 0.0153
C:ribosome 21 0.0057 0.0194
C:eukaryotic translation initiation complex  10 0.0262 0.0444
C:RNase complex  18 0.0243 0.0174
C:nuclear membrane 11 0.0673 0.0467
C:nuclear pore  29 0.0435 0.0640
C:transcription factor 50 0.0501 0.0565
C:SAGA complex 17 0.0613 0.0384
C:DNA-directed RNA polymerase 35 0.0203 0.0280
C:histone complex  19 0.0421 0.0482
C:anaphase-promoting complex  11 0.0547 0.0430
C:DNA replication factor complex 10 0.0629 0.0768
C:mRNA processing 16 0.0559 0.0374
C:CCR4-NOT complex  11 0.0609 0.0890
C:mediator complex  15 0.0505 0.0588
C:spindle pole  15 0.0579 0.0844
C:cellular_component unknown  511 0.0534 0.0544
  

  0.05 0.10 
 SCUCUG SCUAGC

 

 

 

Conversely, CUG  usage is repressed in ribosomal protein genes, but these genes also 

use AGC codons (rare codons) less frequently than expected indicating that such 

repression is probably related to rare codon bias. This is in agreement with the high 

expression level of ribosomal proteins and their biased codon usage. Other genes coding 
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for abundant proteins also show reduced CUG usage, namely respiratory chain complex 

and RNA polymerase genes. 

 

  

Interestingly, several genes showed negative CUG usage bias and positive AGC 

usage bias, suggesting that CUG usage may be under negative selection. Among these are 

genes that code for proteins of the spindle pole, which are involved in the organization of 

the cytoskeleton, and genes of the CCR4-NOT complex, which is involved in several 

different cellular pathways, namely transcription regulation, mRNA degradation and post-

transcriptional modifications (Panasenko et al., 2006). 

 

 

In the biological processes gene ontology (Table 4. 13), a strong repression of CUG 

usage was observed in several classes, specially in genes coding for proteins involved in 

ATP synthesis coupled to proton transport, carbohydrate metabolism, heme biosynthesis, 

ubiquitin-dependent protein and in fatty acid catabolism. It is also repressed in genes of the 

NAD(+) biosynthesis, aging processes, processing of 20S pre-rRNA, drug 

susceptibility/resistance, endocytosis, G1/S transition of mitotic cell cycle, DNA 

replication and amino acid metabolism. Conversely, CUG usage is positively biased in 

genes of the cyclin catabolism, chromatin modification, Golgi to endosome transport, cell 

growth and/or maintenance, budding, mRNA processing and the DNA repair.  

 

 

In general, CUG usage is repressed in genes related to translational processes and 

metabolic pathways. Such repression may be explained by the need for accurate synthesis 

of proteins that play critical roles in cell functioning. On the other hand, genes with the 

highest CUG usage code for proteins involved in Golgi to endosome transport and on DNA 

repair. 
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Table 4. 13 – CUG and AGC codons SCUs in ORFs grouped according to their cellular process 
 Means 
 No. 

Genes SCUCUG  SCUAGC  

 

P:ATP synthesis coupled proton transport 10 0.0063 0.0248
P:carbohydrate metabolism 10 0.0154 0.0602
P:cyclin catabolism  10 0.0543 0.0357
P:protein complex assembly 10 0.0362 0.0424
P:regulation of redox homeostasis 10 0.0681 0.0748
P:chromatin modification 11 0.0546 0.0396
P:Golgi to endosome transport 11 0.0901 0.0748
P:heme biosynthesis  11 0.0264 0.0412
P:NAD (+) biosynthesis  11 0.0357 0.0594
P:signal transduction  11 0.0512 0.0482
P:glycogen metabolism 12 0.0249 0.0296
P:nitrogen metabolism 12 0.0391 0.0354
P:aging  13 0.0320 0.0456
P:chromatin assembly/disassembly 13 0.0161 0.0199
P:axial budding  14 0.0465 0.0571
P:deubiquitination 15 0.0455 0.0546
P:Golgi to vacuole transport 15 0.0637 0.0731
P:RNA elongation from Pol II promoter 15 0.0420 0.0477
P:cell growth and/or maintenance  16 0.0505 0.0390
P:cytokinesis 16 0.0563 0.0661
P:Golgi to plasma membrane transport  16 0.0571 0.0625
P:G1 phase of mitotic cell cycle 17 0.0519 0.0759
P:processing of 20S pre-rRNA  17 0.0306 0.0602
P:autophagy  18 0.0503 0.0638
P:drug susceptibility/resistance  18 0.0312 0.0519
P:endocytosis  18 0.0255 0.0467
P:histone 18 0.0367 0.0628
P:amino acid transport  19 0.0307 0.0346
P:budding 19 0.0529 0.0333
P:chromatin modeling 19 0.0498 0.0630
P:vesicle-mediated transport 19 0.0486 0.0691
P:cell cycle  21 0.0456 0.0577
P:chromosome segregation  21 0.0492 0.0651
P:chromatin silencing  22 0.0623 0.0663
P:G1/S transition of mitotic cell cycle  22 0.0387 0.0674
P:protein folding  22 0.0356 0.0276
P:protein amino acid phosphorylation 23 0.0503 0.0590
P:ergosterol biosynthesis 24 0.0193 0.0276  
  0.05 0.10
 SCUCUG SCUAGC
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Table 4. 13 – (cont.) 
 Means 
 No. 

Genes SCUCUG  SCUAGC 

 

P:NLS-bearing substrate-nucleus import 25 0.0453 0.0551
P:ribosome biogenesis  26 0.0320 0.0243
P:rRNA processing  26 0.0347 0.0458
P:meiosis  27 0.0504 0.0882
P:negative regulation of transcription  27 0.0483 0.0445
P:actin filament organization 28 0.0330 0.0516
P:regulation of transcription 32 0.0501 0.0741
P:ubiquitin-dependent protein catabolism 32 0.0251 0.0405
P:homeostasis 34 0.0394 0.0474
P:tRNA processing  34 0.0445 0.0569
P:mitosis  36 0.0568 0.0590
P:DNA replication  37 0.0404 0.0652
P:protein targeting  37 0.0559 0.0541
P:mRNA processing  41 0.0515 0.0455
P:DNA repair  42 0.0701 0.0610
P:glycosylation  43 0.0398 0.0335
P:aerobic respiration  44 0.0311 0.0523
P:35S primary transcript processing 46 0.0268 0.0294
P:fatty acid metabolism 48 0.0287 0.0424
P:mRNA splicing  54 0.0590 0.0502
P:cell wall organization and biogenesis  59 0.0358 0.0592
P:ER to Golgi transport 62 0.0400 0.0539
P:response to stress  62 0.0427 0.0613
P:translation 78 0.0292 0.0308
P:transcription  100 0.0424 0.0486
P:amino acid metabolism  102 0.0293 0.0408
P:protein biosynthesis  158 0.0191 0.0313
P:biological_process unknown  232 0.0392 0.0482  
  0.05 0.10
 SCUCUG SCUAGC

 

 

4.2.4. The evolution of the CUG codon in C. albicans’ genome 

 

The C. albicans genome is highly unstable. This has been considered as the only 

means of generating genetic variation for this organism  because it does not have a sexual 

cycle. It can only mate through a parasexual mechanism but there is no nuclear fusion and 

consequently meiotic recombination is impaired (Rustchenko et al., 1994; Rustchenko et 

al., 1997). C. albicans is also a diploid yeast and its genome is composed by 16 

chromosomes that frequently rearrange. Various strains loose or gain chromosomes 

generating stable aneuploids (as strains WO-1 and SGY-243, with 19 and 21 
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chromosomes, respectively (reviewed in Rustchenko, 2007) Interestingly, some 

chromosomes are more stable than others. For example, the chromosome R,  which 

contains tandem repeats of genes encoding the rRNA (Barton et al., 1995), is highly 

unstable due to intragenic rearrangements at the repeated sequences. Genome instability is 

also linked to the C. albicans parasexual life-cycle, because, after mating, the tetraploid 

cells do not undergo meiosis and use a yet poorly understood mechanism of chromosome 

loss to reduce genome size (Hull et al., 2000; Magee and Magee, 2004; Magee and Magee, 

2000; Bennett and Johnson, 2003; Soll, 2004; Bennett and Johnson, 2005).  

 

The C. albicans genome is also highly heterozygotic (Forche et al., 2004). Indeed, 

homologous chromosomes are substantially divergent, and many of its genes are present as 

two distinct alleles (Braun et al., 2005). For this reason, the C. albicans genome assembly 

20 includes an indication of the different alleles for most of the open reading frames. This 

allows one to draw a tentative model for CUG codon evolution in some of the genes for 

which two alleles are known. 

 

In order to study CUG evolution using alleles information, we used the approach 

described above for CUG analysis in different ontology classes. Again, the rare AGC 

codon was used as a control codon, but this time the comparison took into consideration 

codon usage differences between the two alleles of each gene (Table 4. 14). A preliminary 

genome analysis showed that 76.6% of genes had 2 heterozygotic alleles, and, for this 

reason, CUG and AGC usage was analysed and the difference between the two alleles was 

calculated, d(CUG) and d(AGC), respectively. Most genes did not show differences in 

CUG and AGC usage between the 2 alleles. However, this analysis showed that AGC 

usage varies more frequently between alleles than the CUG codon (Table 4. 14), 

suggesting a stabilization of the CUG content on both allelic forms.   

 
Table 4. 14 – Variation of AGC and CUG codons between alleles 

 
ORFs without 

codon difference 

ORFs with codon 

difference  

ORFs without 

alleles  

CUG 4711 220 1507 

AGC 4588 343 1507 
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This data prompted the question of whether the CUG codon is under negative 

selection in the C. albicans genome. In order to answer this, a set of 185 genes whose AGC 

and CUG codon usages are altered in the two alleles and have homologues in S. cerevisiae, 

was selected for phylogenetic analysis. For this, both alleles were aligned with the S. 

cerevisiae homologues. This allowed one to determine which of the 2 alleles had higher 

similarity to the S. cerevisiae homologue. This analysis was carried out using the software 

PALM (v 3.14) (Yang, 1997), and each allele was scored for i) all nucleotide substitutions 

(d(S)); and ii) the neutral nucleotide substitutions (d(N)). Indeed, these values permitted 

determining which allele diverges the most from S. cerevisiae both in terms of neutral and 

overall substitutions, and thus is evolving faster. 

 

Not surprisingly, most of the allelic forms that had a higher d(S) score also had a 

higher d(N) score, which reinforces the robustness of the approach, and indicates that those 

genes with more neutral substitutions also have more non-neutral substitutions. 

Interestingly, from the 185 ORFs analysed only in 4 of them the allele with higher number 

of substitutions was not the allele with higher number of non-neutral substitutions (Table 4. 

15). Still, within this group of 4 genes only PAC2, which is a non-essential gene involved 

in the tubulin heterodimer formation (Fleming et al., 2000), showed difference between 

CUG and AGC usage. 

 

 
Table 4. 15 –ORFs with higher d(S) score but lower d(N) score. 

Ca ORF with more neutral 
substitutions (d(N)) 

Ca ORF more substitutions 
(d(S)) 

S. cerevisiae 
homologue Gene name 

orf19.4335 orf19.11811 S000003492 TNA1 

orf19.3954 orf19.11436 S000003402 PSD2 

orf19.8292 orf19.675 S000000265 YEL077C 

orf19.2921 orf19.10438 S000000809 PAC2 

 

In order to exploit the behaviour of CUG codon usage in the remaining 181 genes, 

and thus infer the direction of the allelic evolution in terms of CUG usage, the difference 

of both SCUCUG and SCUAGC between the ancestral and the most recent allelic form was 

determined, by applying Equation 4. 4 and Equation 4. 5, respectively. 
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d(CUG) = (SCUCUG)recent - (SCUCUG)ancestral   
Equation 4. 4 

 
 

d(AGC) = (SCUAGC)recent - (SCUAGC)ancestral   
Equation 4. 5 

 
 

If this difference is higher than 0, there is a preference for the usage of the 

analysed codon in the alleles that are evolving faster, but if it is lower than 0 there is 

repression of its usage. Then, the values of d(CUG) and d(AGC) were submitted to a 

clustering analysis using MeV 4.0 from the TM4 Software package (Saeed et al., 2003). A 

complete linkage cluster with a bootstrap of 100 and a similarity matrix using the 

Uncentered Pearson correlation was generated. This analysis showed 8 clusters among the 

181 genes, with a distance threshold of -0.59 (Figure 4. 13). 

 

 

Those clusters allowed one to analyse the behaviour of CUG and AGC codons usage 

in the selected genes (Figure 4. 13, Annexe D). The most interesting clusters are 1 and 6, 

as CUG usage behaviour is opposite to that observed for AGC. Indeed, in group-1, CUG 

usage in the fast evolving ORF is increased and AGC usage is decreased, suggesting an 

evolutionary gain associated to CUG ambiguity.  On the other hand, in group-6, there is 

repression of CUG usage, when compared with AGC usage, thus indicating that 

ambiguous CUG decoding of such ORFs might be detrimental to the organism.  
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Figure 4. 13 – Cluster analysis of the CUG and AGC codons usage in the different alleles. 
The cluster analysis has unveiled the existence of 8 clusters. In clusters 1 and 6 the behaviour of CUG usage 
is opposite to that of AGC usage. The ORFs belonging to those clusters are in the text boxes. Red indicates 
an increase in codon usage in fast evolving alleles, green indicates a decrease in codon usage in the fast 
evolving allele, in black are those alleles without difference in codon usage. 
 
 

 In group-1 genes, MNN1 is rather interesting because it encodes an alpha-1,3-

mannosyltransferase, which is an integral membrane glycoprotein of the Golgi complex, 

required for addition of alpha1,3-mannose linkages to N-linked and O-linked 

oligosaccharides (Yip et al., 1994); BUD17, which is involved in the maintenance of the 

bipolar budding pattern (Ni and Snyder, 2001). Also, the MSS4 gene, which encodes a 
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phosphatidylinositol-4-phosphate 5-kinase, is associated with hyphal growth and is 

repressed by macrophages (Hairfield et al., 2002).  

  

In group-6 genes, CUG ambiguity may have been detrimental. Indeed, these genes 

are mainly involved in transcription – as TAF2, HIR2, SNF5; or are ABC transporters 

(ATM1 and YOR1) and permeases (TNA1, DAL4). In this group there is also a 

mannosyltransferase (KTR2) and a phosphatidylinositol 4,5-bisphosphate 5-phosphatase 

(INP51).  

 

  

4.3. Discussion 

 

In this chapter, a comprehensive analysis of the CUG codon usage in the C. albicans 

genome was carried out. The data showed that CUG ambiguity expands the C. albicans 

proteome exponentially. This is of profound biological significance as arrays of proteins 

are generated from single mRNAs creating a statistical proteome. Indeed, the 6,438 genes 

in the C. albicans genome have the potencial to produce 2.83x1011 different proteins. 

Moreover, CUG codon context biases were not detected indicating that the CUG codon is 

randomly decoded as either serine or leucine. This implies that C. albicans proteins are 

quasi-species (Freist et al., 1998) and that the probability of finding two identical cells in a 

population is extremely small. Such exponential increase of the size of the C. albicans 

proteome may ultimately be the main factor contributing to its morphological variation 

(Miranda, 2007).  

 

The data also showed that the C. albicans genome evolved to tolerate CUG 

ambiguous decoding and that its genome is optimized to cope with it. Indeed, a CUG 

ambiguity rate of 2.96% in the wild-type white C. albicans results in the production of 

6.5x106 novel proteins, while in engineered S. cerevisiae cells 2.31% and 1.40% of CUG 

ambiguity results in 12.5x106 and 7.9x106 novel proteins, respectively. However, the 

hidden malleability of C. albicans’ proteome is extremely high, as this organism tolerates 

at least 28.0% of CUG ambiguity, which results in 39.5x106 novel proteins. 
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In order to identify the genes that are more affected by CUG ambiguous decoding in 

C. albicans, the CUG codon usage was investigated in 6 enzyme classes, in its 8 

chromosomes, in protein domains and in gene ontologies. CUG codon usage is repressed 

in enzymes genes, as are all the other rare codons, hence indicating that such bias does not 

result from CUG ambiguous decoding. Also, CUG usage bias in individual chromosomes 

or in protein domains were not observed. Conversely, the CUG codon usage was repressed 

in genes that code for proteins involved in translation, which can be regarded as a 

safeguard for correct protein synthesis. On the other hand, a CUG usage bias was detected 

in genes coding for proteins bound to the membrane surface. Considering that C. albicans 

is a pathogen and that these proteins are recognized by the host immune system, such CUG 

codon usage may be important for pathogenesis, as an increase in the ambiguous CUG 

decoding results in an alteration of the surface antigens, which would be an elegant 

strategy to escape the immune system. 

 

Taken together, these data highlight novel features of CUG ambiguity, in particular 

in proteome expansion and diversity. Recent studies from our laboratory have shown that 

CUG ambiguity in C. albicans generates phenotypic diversity (Gomes et al., 2007). 

Indeed, the highly ambiguous cell lines, expressing the tRNACAG
Leu, displayed highly 

variable morphologies characterized by formation of aerial hyphae, white-opaque sectoring 

and hypha that penetrated deeply into agar  and produced opaque sectors (Gomes et al., 

2007). CUG ambiguity also induces karyotype alterations and remodels gene expression 

and cell physiology (Miranda, 2007).  Moreover, in S. cerevisiae CUG ambiguous 

decoding also resulted in transcriptome and proteome alterations and in a ploidy variation. 

Further, the partial redefinition of CUG identity in S. cerevisiae blocked lateral gene 

transfer and imposed a immediate genetic barrier to sexual reproduction, by decreasing 

sporulation efficiency, fertility and mating (Silva et al., 2007). All these studies clearly 

show that organisms with large proteomes can tolerate very high levels of codon 

ambiguity, confirming previous synthetic biology studies on the artificial expansion of the 

genetic code (Chin et al., 2003), and that the C. albicans proteome has a statistical nature 

of high complexity.  
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5. The role of the Leucyl- and 
Seryl- tRNA Synthetases in 

CUG ambiguity 
 

 

 



Molecular evolution of a genetic code alteration                

154 



                                                            The role of the Leucyl- and Seryl- tRNA Synthetases in CUG ambiguity 

  155 

 

5.1. Introduction 

 

The identity of CUG codons is variable in the genus Candida (Section 1.5): C. 

glabrata decodes CUGs as leucine, C. cylindracea has totally reassigned them to serine 

and several other Candida species decode them ambiguously (Sugita and Nakase, 1999; 

Santos et al., 1993; Santos et al., 1996; Suzuki et al., 1997). Such differences in the CUG 

codon decoding are due to structural differences in the tRNACAG – the only cognate tRNA 

for CUG codons in the Candida genus. Indeed, the ambiguous CUG decoding in 

C. albicans results from mischarging of the tRNACAG
Ser  (Sugita and Nakase, 1999; Santos 

et al., 1993; Santos et al., 1996; Suzuki et al., 1997). This mischarging is very interesting 

from a structural perspective, since it is not yet clear how this novel tRNA is recognized by 

the LeuRS and why this enzyme fails to edit the mischarged leu-tRNACAG
Ser.  

 

In E. coli, recognition of tRNALeu by the cognate LeuRS is achieved through 

interactions with the A73 – the discriminator base – and tertiary structural elements, namely 

the position of the invariant G18G19 sequence in the D-arm, the semi-invariant R15·Y48 

tertiary base-pair, the base R59 in the TψC loop, and the unpaired nucleotides present at the 

base of the variable-arm (Asahara et al., 1993). In archea and in most eukaryotes the 

LeuRSs recognize the long variable-arm of cognate tRNALeu (Fukunaga and Yokoyama, 

2005), whereas in yeast the LeuRS makes direct contact with both the A73 discriminator 

base and the methyl group of m1G37 and with A35 in the anticodon-loop. It also makes non-

specific contacts with the phosphate backbone of the anticodon-stem (Soma et al., 1996; 

Soma and Himeno, 1998). Interestingly, like the canonical tRNALeu, C. albicans 

tRNACAG
Ser

 contains A35 and m1G37 in its anticodon-loop, but not the A73 discriminator 

base, which is G73 (Sugita and Nakase, 1999; Santos et al., 1993; Santos et al., 1996; 

Suzuki et al., 1997). Such difference in the discriminator base is important because 

changing A73 to G73 in both yeast (Soma et al., 1996) and human tRNALeu (Breitschopf et 

al., 1995; Breitschopf and Gross, 1994) changes the tRNAs identity from leucine to serine. 

In the Pyrococcus horikoshii LeuRS-tRNALeu complex, A73 is recognized by the amino 

acid residue 504 of the editing domain and the interaction is disrupted when A73 is replaced 

by G73 (Fukunaga and Yokoyama, 2005). Whether or not the C. albicans LeuRS evolved a 
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novel mechanism for recognizing both G and A at position 73 is yetknown. Regarding the 

failure of LeuRS to edit mischarged leu-tRNACAG
Ser, the LeuRS binds its cognate amino 

acid (leucine), activates it (as normal) and transfers it to the tRNACAG
Ser. In other words, 

both leucine and tRNACAG
Ser are cognate substrates for the LeuRS and consequently the 

post-transfer editing mechanism is not activated.  This is supported by the high degree of 

amino acid conservation between LeuRS of C. albicans and other yeasts, particularly 

within the editing domain. Functionally, the S. cerevisiae CDC60 (LeuRS) gene could be 

also complemented by its C. albicans homologue (O'Sullivan et al., 2001b). 

 

Concerning the recognition of the serine tRNAs by the cognate SerRS, in E. coli it is 

achieved through interactions with the variable-arm, whose length and tertiary structure are 

crucial for serylation (Himeno et al., 1990; Asahara et al., 1994). In yeast in vitro 

aminoacylations and footprinting experiments revealed that the discriminator base is not 

crucial and that the variable-arm functions as the major identity element (Dock-Bregeon et 

al., 1990; Soma et al., 1996; Himeno et al., 1997). Indeed, the role of the discriminator G73 

varies within the different organisms: i) it acts as an identity antideterminant against 

LeuRS in bacteria (Asahara et al., 1993) and lower eukaryotes (Himeno et al., 1990; Soma 

et al., 1996); and ii) it is an essential identity requirement for human tRNASer (Breitschopf 

et al., 1995; Breitschopf and Gross, 1994; Achsel and Gross, 1993). However, in E. coli, 

apart from the discriminator base, the SerRS recognizes directly acceptor-stem bases from 

positions 1-72 to 5-68, with the major recognition cluster located between positions 2-71 

and 4-69 (Saks and Sampson, 1996; Normanly et al., 1992; Sampson and Saks, 1993). The 

crystal structure of the SerRS–tRNASer complex from Thermus thermophilus supported the 

notion that recognition of tRNASer depends on specific contacts with the variable-arm of 

tRNASer, which is achieved through the sugar–phosphate backbone interactions by the N-

terminal α-helical arm of SerRS (Cusack et al., 1996). Such discrimination mechanism was 

also reported in yeast (Lenhard et al., 1999), in archeal (Bilokapic et al., 2004) and in 

human SerRS (Achsel and Gross, 1993), indicating that the recognition of the variable arm 

of tRNASer by SerRS is evolutionarily conserved in the three kingdoms of life. With 

respect to the C. albicans tRNACAG
Ser, its extra variable arm and its G73 discriminator base 

are both characteristic of the serine-family of tRNAs. 
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An interesting feature of the C. albicans tRNACAG
Ser is the presence of a unique 

guanosine in the turn of its anticodon-loop (G-turn) – a conserved position occupied by U33 

(U-turn), which reduces the leucylation efficiency of the tRNACAG
Ser (Suzuki et al., 1997), 

therefore, the G33 can be regarded as an anti-determinant of leucine identity. It is not yet 

clear how and when this G33 appeared and why it was kept, though it is possible that such 

change decreased the toxicity of the mutant tRNACAG
Ser, by lowering its leucylation in the 

early stages of CUG identity alteration (Perreau et al., 1999; Santos et al., 1996).  

 

As demonstrated in chapter-3, within the C. albicans cytoplasm there are two 

charged forms of the tRNACAG
Ser: the leu-tRNACAG

Ser and the ser-tRNACAG
Ser, and both 

compete for the CUG codon decoding at the ribosome A-site. However, it has also been 

demonstrated that the leucine incorporation at CUG codons varies under different 

physiological conditions. Therefore, it is important to unveil the regulatory mechanisms 

that modulate the levels of CUG ambiguity in vivo. In an attempt to understand how such 

CUG decoding ambiguity can be regulated and shed new light on the evolutionary pathway 

of CUG reassignment, a study of the enzymes responsible for the ambiguous charging of 

the tRNACAG, namely the LeuRS and the SerRS, was carried out.  

 

 

 

5.2. Results 

 

5.2.1. Quantification of SerRS and LeuRS expression in C. albicans 

 

A putative regulatory mechanism for CUG ambiguity is the differential expression of 

the SerRS and LeuRS. In order to test this hypothesis, the expression of LeuRS and SerRS 

was monitored by Western-blot in cells grown in conditions for which leucine 

misincorporation was quantified by mass-spectrometry (Figure 5. 1). A total of three 

independent experiments were carried out for each condition, and for each experiment 

Western-blots were done in duplicate. 
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Figure 5. 1– LeuRS and SerRS protein expression under different physiological conditions. 
Western-blot against LeuRS and SerRS of whole protein extracts, from cells grown in the different 
physiological conditions indicated. Actin was used to normalize the data  

 

 

 
Figure 5. 2 – SerRS and LeuRS expression 
Fold variation of protein expression of either (A) SerRS or (B) LeuRS in the different physiological 
conditions, in relation to their levels in white cells. 
 
 
 

 
Figure 5. 3– SerRS/LeuRS expression ratio. 
The ratio between the SerRS and the LeuRS expression for the different physiological conditions is indicated. 
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The intensity of each signal was determined using the Quantity One software 

(BioRad) and the variation between each condition was then assessed (Figure 5. 1). Since it 

was not possible to use the anti-LeuRS and anti-SerRS antibodies in the same Western-

blot,  actin, whose expression fluctuates very little, was used to normalize the data. Fold-

variation of expression for both SerRS and LeuRS were determined relative to their 

expression levels in white cells (Figure 5. 3). 

 

No significant variation in LeuRS and SerRS expression was detected, suggesting 

that CUG ambiguity is not regulated by differential expression of the SerRS and LeuRS. 

Indeed, the SerRS/LeuRS ratio (Figure 5. 3) did not show significant difference between 

the tested conditions, although SerRS expression is apparently higher than that of the 

LeuRS. 

 
 

Interestingly, the LeuRS antibody detected 2 bands while the SerRS antibody 

detected a single band. Since in S. cerevisiae the LeuRS enzyme is cleaved by the yscB 

protease  (Larrinoa and Heredia, 1991) it is possible that the two bands detected in the C. 

albicans extracts also resulted from protease cleavage of the full length LeuRS enzyme, 

raising the possibility that the cleaved LeuRS is not active or is less active than the full 

length enzyme. However, no significant variation in the ratio between the full length and 

the cleaved protein (Figure 5. 4), among the tested growth conditions was detected, 

indicating that LeuRS processing is not involved in regulation of CUG decoding 

ambiguity.  

 

 
Figure 5. 4 – Ratio between the cleaved and the native LeuRS 
The ratios between the intensity of bands corresponding to the full length and the cleaved protein, measured 
by Western-blot, in different physiological conditions. 
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5.2.2. The study of SerRS and LeuRS genes 

 

As the published sequences for both synthetase genes deposited in the NCBI 

genebank database were obtained from C. albicans strain 2005 (Annexes E and F), which 

was not the strain used in the above studies (it was the used CAI-4 strain); the genes of 

both synthetases were re-sequenced and the results compared with the sequence available 

on the NCBI genebank database. Surprisingly, the sequence of the LeuRS gene of CAI-4 

strain had several polymorphisms when compared with the sequence deposited in 

genebank. For this reason, a single nucleotide polymorphism (SNP) screen was carried out 

using five C. albicans strains. For this, the LeuRS gene (CaCDC60) was amplified from 

genomic DNA, by PCR, and then sequenced. SNPs were detected by analysis of the 

sequencing output, using the BioEdit software. 

 

5.2.2.1. SNPs analysis 

 
The SNPs were either heterozygous, when two different nucleotides for the same 

position were present within the same strain; or homozygous, when there was a clear 

alteration of nucleotide relative to the reference strain (Figure 5. 5). 

 

 
Figure 5. 5 – Single Nucleotide Polymorphism analysis. 
Polymorphism detection in the gene encoding the LeuRS. Example of its nucleotides 394 and 395. Strain 
C316 is heterozygous, while the other strains are homozygous at these positions. 
 

 

 To standardize the analysis, whenever a polymorphic position was found, it was 

assigned to one of the two alleles of the CaCDC60 gene (alleles a and b). For such 

GC 

IGC 1006 2005 CAI4 C316 

GC 
AT 

GC GC AT 
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attribution, the sequence in question was always compared with the respective sequence 

deposited in the NCBI genebank database. As the public sequences were obtained after 

cloning the respective genes (O'Sullivan et al., 2001b; O'Sullivan et al., 2001a), they were 

always designated as allele a, whereas the alternative nucleotides where considered as 

allele b.  

 

5.2.2.2. SNP analysis of the C. albicans  LeuRS gene  

 
For SNP detection, the coding sequence of LeuRS gene was amplified from genomic 

DNA of 5 different strains of C. albicans: CAI-4, C316, IGC, 1006 and 2005. Afterwards, 

the amplification products were sequenced and the polymorphic sites were detected by 

analysis of the sequencing output. 
 

 
Figure 5. 6 – Polymorphisms identified in the LeuRS from different strains of Candida albicans. 
Alignment of the LeuRS gene sequence from different C. albicans strains. The dots correspond to the 
identities of the first sequence (from the NCBI). The non-silent polymorphisms are framed, and the 
corresponding amino acid alterations are indicated.  From all SNPs identified on the gene sequence, only six 
of them are not silent and lead to a change of the protein sequence.  
 

The SNPs were distributed over 24 different positions of the LeuRS gene (Figure 5. 

6). The SNP distribution is uneven, as both the number and localization of the polymorphic 

sites were not the same in all the tested strains, even though some of them were common to 
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different strains. Interestingly, there is a single neutral SNP in strain 1006. The impact of 

the SNPs in aaRS structure is softened because of the 24 polymorphisms discovered only 6 

of them involve amino acid changes (Figure 5. 6), in other words, only a quarter of such 

alterations are non-synonymous. 

 

These data clearly show that, with the exception of strain 1006, there are two 

isoforms of the LeuRS protein in the strains tested. Moreover, there is an intrinsic variety 

between strains: while the allele a is common to strains CAI-4, IGC and C316, the allele b 

varies in strain C316; and none of the isoforms of strain 2005 were found in the other 

strains. That is, there are at least 6 different LeuRS isoforms and only 2 strains encoded the 

same isoforms. Moreover, the promoter of the LeuRS gene is different in both alleles  

(Annexe G)  suggesting the existence of a control mechanism in the transcription of the 

different alleles. 

 

5.2.2.3. SNP analysis of the C. albicans  SerRS gene  

 

SNP screening of the C. albicans SerRS gene (CaSES1) was carried out as described 

above for the LeuRS. Several SNPs were detected for the SerRS gene, which are 

distributed over 9 positions, within the analysed strains (Figure 5. 7). Again, the pattern of 

SNPs distribution was uneven. 

 

 
Figure 5. 7 – Polymorphisms identified in SerRS gene from different strains of Candida albicans. 
Alignment of the DNA sequence of SerRS gene of different C. albicans strains. Only in the C316 strain did 
the SNPs lead to a change of the amino acid in the protein sequence. The non-silent polymorphisms are 
framed, and the corresponding amino acid alterations are indicated. 

 

The majority of the SNPs detected in the SerRS gene are neutral, the only exception 

was found in strain C316 (Figure 5. 7), where amino acid changes were detected at the 

heterozygotic nucleotide 382, and at the homozygotic nucleotide 1200.  
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5.2.2.4. The natural variability of aminoacyl-tRNA synthetases 

 

To assess whether polymorphic variation was an intrinsic characteristic of LeuRS and 

SerRS genes only, another synthetase gene was screened for the existence of SNPs. This 

control SNP screen was carried out using the tryptophanyl-tRNA synthetase gene.  

 
Figure 5. 8 – Polymorphisms identified in the C. albicans TrpRS gene. 
Alignment of the DNA sequence of the TrpRS gene from different C. albicans strains. Only in the 2005 
strain did the SNPs lead to a change of the amino acid in the protein sequence. The non-silent polymorphisms 
are framed, and the corresponding amino acid alterations are indicated. 
 

SNPs were found among the five strains screened, distributed over 9 positions. 

However, of all the polymorphisms found in the gene sequence, only one corresponded to 

a change of the encoded amino acid and, this change appeared in strain 2005 only. This 

heterozygotic change in position 810 changed the serine TCA to the alanine GCA codon 

(Figure 5. 8).  

 

Finally, to evaluate whether the high genetic diversity observed in the C. albicans 

aminoacyl-tRNA synthetase genes was specific of this fungus or a common feature in the 

fungal world, SNPs were also screened in LeuRS genes of four strains of S. cerevisiae: two 

of them were laboratory strains – CEN-PK2 and W303, and the other two were clinical 

isolates – MAS-4 and MAS-5. 

 

The number of SNPs detected in S. cerevisiae was lower than that observed in C. 

albicans. Nucleotide changes were found at only 8 different positions, all of them on the 

pathogenic S. cerevisiae strains. However, in terms of protein sequence, only one of such 

SNPs found lead to an amino acid alteration, namely the heterozygotic change at 

nucleotide position 720 which results in substitution of an alanine for a threonine (Figure 
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5. 9). 

 

 
Figure 5. 9 – Polymorphisms identified in SerRS gene of S. cerevisiae. 
Alignment of the sequenced LeuRS gene from different S. cerevisiae strains. Interestingly, none of the 
laboratory strains had SNPs, but the clinical MAS-4 and MAS-5 strains were polymorphic. In MAS-5 the 
SNPs lead to an amino acid change in the protein sequence. The non-silent polymorphisms are framed, and 
the corresponding amino acid alterations are indicated. 
 
 

In order to access the natural variability among the synthetases in C. albicans, the 

number of SNPs found for each gene was normalized for gene length and then compared. 

The C. albicans genes had similar number of polymorphic rates, namely 7.3, 6.0 and 7.0 

per 1000 bp for the LeuRS, SerRS and TrpRS, respectively. All strains displayed several 

SNPs, indicating high mutation rate in this pathogenic fungus (Figure 5. 10 A). However, 

in S. cerevisiae the LeuRS gene from pathogenic/clinical strains was 2.4 / 1000 bp (Figure 

5. 10 A). It was also interesting that the two non-pathogenic S. cerevisiae strains did not 

have SNPs. 

 

 

 
Figure 5. 10 – C. albicans has a naturally high SNPs rate 
 (A) Rate of SNPs in the sequenced genes of both C. albicans and S. cerevisiae. (B) The non-silent SNPs in 
LeuRS, SerRS and TrpRS. Each strain of C. albicans has its characteristic LeuRS isoform.  
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Nevertheless, most of those mutations were neutral because a base change did not 

correspond to a change on the encoded amino acid. From the genes analysed, the one 

encoding the LeuRS in C. albicans was, by far, the one with higher number of non-

synonymous polymorphisms (Figure 5. 10 B). In fact, all but 1006 strain had two isoforms 

of the LeuRS protein. Conversely, only one of the strains of S. cerevisiae screened had a 

SNP that lead to an amino acid change, namely the MAS-5 strain. In the case of both SerRS 

and TrpRS genes only the C. albicans strains C316 and 2005, respectively, showed two 

isoforms of the proteins (Figure 5. 10 B).  

 

 

5.2.2.5. Structural analysis of the non-synonymous SNPs in the LeuRS 
 
 
 

The LeuRS is a class Ia aminoacyl-tRNA synthetase with a molecular mass of 

133kDa and contains the highly conserved HA(I)HG,  TLRPET  and KMSKS signature 

motifs. In order to have a global view of the impact of the non-synonymous SNPs on the 

LeuRS structure, the amino acid substitutions resulting from the SNPs identified were 

located in the tertiary structure of the protein (Figure 5. 11).  

 

Briefly, the substitution of base 132, from alanine to isoleucine, is located 

downstream of the HAGH motif; both the 302 and 374 substitutions are located on the 

editing domain; the amino acid alterations at positions 557 and 952 are on regions of the 

protein that apparently do not have specific functional roles and, finally, the alteration of 

residue 801 is located on the tRNA binding domain of the synthetase. 

 
 

Regarding the chemical properties of the altered amino acids introduced by 

polymorphic variation, none are conservative. This indicates that the side chains of these 

amino acids are chemically different, which may cause distortion of the structure of the 

protein and consequently alter its activity. The non-conservative substitutions found in 

residue positions 374, 801 and 952 in the C. albicans LeuRS, involved isoleucine, which is 

hydrophobic, and threonine, which is hydrophilic. At position 132 alanine was replaced 

with isoleucine. Semi-conservative changes were identified in residues 302 and 557, where 

an asparagine and an alanine are replaced by a serine and a valine, respectively. 
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Figure 5. 11 – Impact of polymorphic variation on the 3D structure of LeuRS 
Identification of the positions of non-synonymous polymorphisms (blue) on the 3D structure of the LeuRs 
was carried out using molecular modelling techniques. For this, the structure of the C. albicans LeuRS was 
modelled by RasMol using the crystal structure of the T. thermophilus LeuRS. The strains where each SNP 
was identified are indicated below each polymorphic residue. Some of the most important domains of 
LeuRS, such as Class I signature (red), the editing domains (yellow), the Leucine specific domains (orange) 
and the tRNA binding domain (pale yellow), are represented. Amino acid change in position 952 is not seen 
in this figure because it is located in a region of the LeuRS of C. albicans that does not exist in the T. 
thermophilus LeuRS. 
 

 

 

5.2.2.6. The phylogeny of the different alleles of the C. albicans LeuRS 

 

The polymorphic variability of the C. albicans LeuRS gene prompted one to carry 

out a phylogenetic analysis of the different alleles. With this, one hoped to highlight 

relationships between the alleles (Figure 5. 12).  

 

Interestingly, this phylogenetic analysis revealed a division between both allelic 

forms a and b, as each of them form a cluster, suggesting that there is an evolutionary 

relation between these forms. The only exception is the 1006 strain, where alleles a and b 

are very close because this strain showed only one polymorphic position. 

Leu-specific domain 

Editing domain 

tRNA binding domain 

T801I 

A557V N302S 

T374I 

Class I signature 
         (HAGH) 

A132I C316 
2005 

CAI4 
C316 
IGC 
2005 

CAI4 
IGC 
2005 
1006 

CAI4 
C316 
IGC 
2005 

CAI4 
IGC 



                                                            The role of the Leucyl- and Seryl- tRNA Synthetases in CUG ambiguity 

  167 

 
Figure 5. 12 – Phylogeny of the LeuRS isoforms 
The phylogenetic tree was constructed using the Mega3 and is based on the LeuRS isoforms. The sequences 
were aligned and their phylogenetic relationship was analysed using the NJ algorithm. A bootstrap analysis 
with 100 repetitions was also carried out and its values are shown at key nodes. 

 

 

5.2.3. Functional insights of the LeuRS and SerRS polymorphisms. 
 
 

The existence of non-silent SNPs in the C. albicans LeuRS prompted the question of 

whether such polymorphisms have an impact on the kinetics of aminoacylation of the 

cognate tRNAs. Further, as both the SerRS and LeuRS genes contain one CUG codon, 

which can be ambiguously decoded as serine or leucine, 2 or 4 forms of the SerRS and 

LeuRS, respectively, are present in C. albicans. Therefore, a comprehensive analysis of the 

LeuRS and SerRS isoforms was carried out. 

 

 
5.2.3.1. The LeuRS from C. albicans  

 

Since the above studies on CUG ambiguity were carried out using the C. albicans 

strain CAI-4, the LeuRS isoforms of this strain were chosen for characterization. In order 

to predict the impact of the amino acid changes on the global activity of the enzyme, its 

structure was modelled, based on the known structure of the LeuRS of Pyrococcus 

horikoshii (Fukunaga and Yokoyama, 2005) and the putative structural changes induced by 

the amino acid substitutions were analysed. This analysis showed a superficial location of 
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the polymorphic amino acids in structural domains that do not interact with the tRNA 

(Figure 5. 13). 

 

 
Figure 5. 13 – Polymorphic amino acid residue localization on the structure of the complex LeuRS-
tRNALeu. 
The polymorphic amino acid residues are represented as green spheres, on both the surface of the LeuRS 
(A and B) and on the cartoon of the LeuRS tertiary structure (C). The tRNA interacting with the protein 
is represented by the orange ribbon. The structures were modelled with Pymol, based on the structure of  
the LeuRS from Pyrococcus horikoshii, deposited on the PDB under the code 1WZ2  (Fukunaga and 
Yokoyama, 2005). 
 

 

 

Also, the alignment of the amino acid sequence of LeuRS from several yeasts 

showed that the threonine residue at position 801 is highly conserved, thus indicating that 

its change to isoleucine may have a stronger negative impact on the LeuRS structure than 

the other four amino acid changes in strain CAI-4 (Figure 5. 14). 

 

 

 

 
Figure 5. 14 – Model of the amino acid substitutions and their phylogeny. 
(At right) 
(A) The asparagine/serine polymorphism at position 302, is located in a non-conserved position. Likewise, 
(B) the threonine/isoleucine polymorphism is on position 374, and (C) the valine/alanine polymorphism is on 
position 557. They are both located in non-conserved regions of the protein. (D) Conversely, the threonine 
residue at position 801 is highly conserved. The cartoons for each amino acid substitution are on the right 
panels. The residues of allele a are represented in green, and those of allele b in blue. The protein structures 
were obtained with Pymol and the protein sequence alignments were obtained using ESPript, with the 
Blosum62 algorithm (Gouet et al., 2003). 
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Concerning the amino acid residue encoded by the CUG codon (Figure 5. 15), it is 

located on the C- terminal protein domain, which was not possible to model from the 

structure of the LeuRS of P. horikoshii due to sequence divergence in this domain. Still, 

the C- terminal domain is rather similar among the yeasts, so it was possible to perform a 

primary sequence alignment of this region of the protein. Indeed, this analysis revealed that 

the residues encoded by the CUG codon in C. albicans are on a rather conserved region of 

the C-terminal domain of the LeuRS and, surprisingly, even those species whose CUG 

codon is decoded as serine have a leucine at this position, encoded by a standard leucine 

codon. 

 

 

 
Figure 5. 15 – CUG localization on the C. albicans LeuRS primary structure 
The amino acid residue number 919 of the LeuRS is a highly conserved leucine. However, in C. albicans and 
C. tropicalis this residue is encoded by a CUG codon, which is decoded mainly as serine (yellow). 
Interestingly, in both D. hansenii, C. guilliermondii and C. lusitanea, whose CUG codon has also changed its 
identity, the leucine at this position is conserved, as it is encoded by other leucine codons. The protein 
sequence alignments were carried out using ESPript with the Blosum62 algorithm (Gouet et al., 2003). 
 
 

 

5.2.3.2. The SerRS from C. albicans 
 

The C. albicans SerRS also has one CUG codon in its coding sequence, indicating 

that there are two forms of this protein in vivo, due to the ambiguous CUG decoding. A 

multispecies alignment showed that this codon is located in a non-conserved region, thus 

there is some flexibility in this residue (Figure 5. 16). Concerning the tertiary and 

quaternary structure, it was modelled on the basis of the crystal structure of the T. 

thermophilus SerRS (Cusack et al., 1996). The serine encoded by the CUG codon is 

inserted in a highly structurally conserved region of the protein, namely in the interface of 
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the dimmer where there are a number of direct interactions between both subunits (Figure 

5. 17). This raises the hypothesis that the SerRS may be unstable in C. albicans due to 

CUG ambiguity.  

 

 

 

 
Figure 5. 16 – CUG localization on the C. albicans SerRS primary structure 
The residue encoded by the CUG codon in C. albicans is highlighted in yellow, for the species that have 
undergone the CUG codon reassignment. This is a non-conserved residue among the other yeasts SerRSs. 

 

 

 

 

 

 

 
Figure 5. 17 – CUG localization on SerRS tertiary structure 
The structure of the protein dimmer was modelled with Pymol, from the structure deposited in the PDB 
under the 1SES code (Belrhali et al., 1994). The offset is a zoom in of the region of the protein with the 
residue encoded by the CUG codon, which is in orange. The two molecules of the dimmer are represented in 
blue and green. 
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5.2.4. The aminoacylation of C. albicans tRNACAG by the LeuRS and SerRS 
 

 

In order to study the activity of the LeuRS and SerRS from C. albicans, both genes 

were overexpressed in E. coli. The LeuRS protein was overexpressed using the plasmid 

pUKC1710, which was previously constructed by O’Sullivan  (O'Sullivan et al., 2001b). In 

order to facilitate purification of the recombinant LeuRS, a 6 histidine tag was inserted 

immediately after the initiation codon of the LeuRS gene from strain 2005. This gene 

sequence was available in the laboratory and was mutated by site-directed mutagenesis to 

remove polymorphisms and reconstruct the LeuRS gene sequence from strain CAI-4, 

which was used in the CUG ambiguity experiments described in Chapter-3.  Also, the 

CUG codon was mutated to the TCA-serine codon to ensure that serine and not leucine 

was inserted at the CUG position in the recombinant protein in E. coli. In total, 4 different 

plasmids, coding for 4 LeuRS isoforms were constructed: i) pUA74 encoded the most 

abundant allele a; ii) pUA81 encoded the most abundant allele b, both pUA74 and pUA81 

had the CUG codon changed to the serine-TCA codon; iii) pUA82 encoded the least 

abundant allele a and iv) pUA83 encoded the least abundant allele b, where both pUA82 

and pUA83 retained the CUG codon, which is decoded as leucine in E. coli (Figure 5. 18 

and Table 5. 1). 

 

Regarding the C. albicans SerRS, a plasmid (pUKC1722) containing the CaSES1 

gene was also constructed by O’Sullivan (O'Sullivan et al., 2001a). As before, the CaSES1 

gene sequence was from C. albicans strain 2005. This plasmid was used to overexpress the 

SerRS with a leucine residue at the CUG codon position, the minor isoform of the SerRS 

protein in C. albicans. In order to produce the major form of the SerRS in E. coli 

containing serine at the CUG position, this codon was altered to the TCA-serine codon by 

site directed mutagenesis, resulting in plasmid pUA301. 

 

Overexpression of the various isoforms of the C. albicans LeuRS and SerRS was 

carried out in E. coli BL21-CodonPlus® cells. These cells contain a plasmid that encodes 
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extra copies of the argU and proL tRNA genes, which enhances the expression in E. coli of 

proteins encoded by genes with high content of rare codons. The protein expression was 

induced by the addition of IPTG to a final concentration of 0.1 mM, for 5h at 30ºC, then 

the protein extracts were prepared and the proteins purified (Figure 5. 18 and Figure 5. 19), 

as described in Material and Methods.  

 

 
 
Figure 5. 18 – Purification of the recombinant LeuRS isoforms 
Overexpression in E. coli and subsequent purification of C. albicans LeuRS isoforms, with a nickel chelating 
resin (Ni-NTA, Qiagen). The protein purification process was monitored by 10% SDS-PAGE, stained with 
coomassie-blue. The W1.1 and W1.2 fractions refer to column washing with 20 mM Imidazol. Fractions 1.1 
and 1.2 refer to the protein elution with 20 mM Imidazol, and fractions 2.1 and 2.2 refer to the protein elution 
with 40 mM Imidazol. 
 
 

 
Figure 5. 19 – Purification of the recombinant  SerRS 
Overexpression, in E. coli, and subsequent purification of C. albicans SerRS, with a nickel chelating resin 
(Ni-NTA, Qiagen). The protein purification process was monitored by 12% SDS-PAGE, stained with 
coomassie-blue. The W1 and W2 fractions refer to column washing with 20 mM and 40 mM Imidazol, 
respectively. Fractions 1.1 and 1.2 refer to the protein elution with 60 mM Imidazol, and fractions 2.1 and 2.2 
refer to the protein elution with 100 mM Imidazol. 
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The efficiency of the protein purification process was monitored by SDS-PAGE. The 

purest fractions were selected for the aminoacylation kinetics assays (Figure 5. 1), and the 

protein present in the selected fractions was quantified using the BCA assay (from Pierce).  

 
Table 5. 1 – Overview of the protein fractions purified 

 Plasmid CUG 
decoding Isoform Selected 

Fraction 
Volume 

(mL) 

Protein 
concentration  

(µg.µL-1) 
SerRS pUA301 Serine - - 2.2 4.5 0.40 

SerRS pUKC1722 Leucine - - 2.1 4.5 0.34 

LeuRS pUA74 Serine a 1.1 4.5 1.05 

LeuRS pUA82 Leucine a 1.1 4.5 0.21 

LeuRS pUA81 Serine b 2.1 4.5 1.06 

LeuRS pUA83 Leucine b 1.2 4.5 0.56 

 
 

5.2.4.1. tRNA purification 
 
 

For aminoacylation assays, the C. albicans tRNACAG
Ser was also purified to near 

homogeneity. The determination of the kinetics of tRNA aminoacylation reactions is 

normally carried out using in vitro transcribed tRNAs (Sampson and Uhlenbeck, 1988), 

however, the modified bases in the anticodon of the tRNACAG
Ser are very important to 

maintain its structure (Santos et al., 1996). For example, the C. albicans’ tRNACAG has 

m1G37 which is directly recognized by the LeuRS and influences the aminoacylation 

kinetics (Suzuki et al., 1997). For this reason, it was important to obtain a fully modified 

fraction of the tRNA to ensure its correct aminoacylation. For these assays, two positive 

controls were used, namely the abundant leucine-CAA and serine-AGA tRNAs. 

 

Since the abundance of the tRNACAG
Ser is low in wild type C. albicans cells due to 

the low copy of its gene (1 copy/haploid genome), the latter was cloned into plasmid  

pUA12 as a single fragment containing 3 of its copies in tandem, this yielded the plasmid 

pUA77 (Section 2.2.2.2). The tRNACAG
Ser was then purified from C. albicans cells 

transformed with the pUA77. (Figure 5. 20 A). Regarding the tRNAAGA
Ser and the 

tRNACAA
Leu, they are very abundant tRNAs, with 4 and 6 genome copies, respectively, and 
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their purification was carried out directly from C. albicans total tRNA preparations  

(Figure 5. 20 B). 

 

Purification of the tRNAs was carried out by affinity chromatography as described by 

Tsurui and colleagues (Tsurui et al., 1994; Suzuki et al., 1996). For this, total tRNA 

extracts prepared as described in 2.4 were hybridized with a specific solid-phase DNA 

probe immobilized on agarose beads, as described in section 2.4.1. In the first step, 120 mg 

and 90 mg of total tRNA were extracted from both 180 g of wild type and from 120 g of 

pUA77 transformed C. albicans cells, respectively (Figure 5. 20). 

 
 

               
 

Figure 5. 20 – Total tRNA extracts. 
Total tRNA extracts from (A) CAI-4-pUA77 and (B) CAI-4 wild type cells. The integrity of total tRNA 
extracts was analysed by electrophoresis on a denaturing 8M Urea-TBE 10% acryl:bisacrylamide gel. Gels 
were stained with ethidium bromide for tRNA visualization stained with ethidium bromide by UV. 

 

 

The tRNAAGA
Ser and the tRNACAA

Leu were purified from the same total tRNA extract, 

which was divided in two batches. One was used for two independent purifications of the 

tRNAAGA
Ser ( Figure 5. 21 B) and the other for the purification of the tRNACAA

Leu (Figure 

5. 21 C). The tRNACAG
Ser was purified from 90 mg of total tRNAs from the C. albicans-

pUA77 cells. Again, this total preparation was divided into two batches of 45 mg each, that 

were used twice (Figure 5. 21A). At the end, the fractions containing the purified tRNAs 

were pulled together, and run in denaturing 8M urea:TBE 10% Acryl:Bisacrylamide (19:1) 

gels, in order to access tRNA purity and integrity (Figure 5. 22).  

 

 

A B
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Figure 5. 21 – tRNA purification by chaplet column chromatography 
(At left) 
(A) tRNACAG

Ser. (B) tRNAAGA
Ser. (C) tRNACAA

Leu. The purification was performed using the BioLogic LP 
chromatography system (BioRad), coupled with a TCC-100 column oven (Dionex). The purification 
procedure is indicated on the chromatogram. The elution products were run on semi-denaturing TBE-4M 
Urea  15% acryl:bisacrylamide mini-gels, which were stained with ethidium bromide and visualized with an 
UV lamp source. The fractions containing the purified tRNAs were pulled together and precipitated. 
 
 

 

 
Figure 5. 22 – Monitoring tRNA purification by denaturing TBE-Urea acrylamide gel 
The final purified fractions were applied onto a TBE-8M Urea 15% acryl:bisacrylamide gel, which was left 
to run overnight at 700 V. 
 

 
The purified tRNA fractions were precipitated overnight with 0.1 vol of 3M NaOAc. 

and 2.5 vol of absolute ethanol, and then resuspended in TE buffer. Their concentration 

was determined by measuring their optical density at 260 nm (Table 5. 2). Pure tRNAs 

were then frozen at -80ºC for later use in the aminoacylation kinetics assays. 

 
Table 5. 2– Pure tRNA obtained through the purification process 

 Mw (Da) [tRNANNN] (µM) Volume (µL) 

tRNACAG
Ser 28,384 97.8 15 

tRNAAGA
Ser 28,340 135 60 

tRNACAA
Leu 29,293 112 65 

 
 
 
5.2.5. Aminoacylation assays 
 
 

The aminoacylation of tRNAs by their cognate aminoacyl-tRNA synthetases 

undergoes two steps (Section 1.3.2), whose kinetics can be independently measured by two 

different approaches. In the first step, the cognate amino acid is activated by the active site 

of the protein and in the second step the activated amino acid is loaded onto the acceptor 

stem of the cognate tRNA (Figure 1. 7). The first step of the reaction can be monitored by 
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the addition of radio-labelled [γ32P]PPi. In the absence of tRNAs and in the presence of an 

excess of PPi, the reverse reaction is favoured, hence the γ-PO4 of the PPi is transferred to 

the AMP, resulting in the formation of radiolabelled [γ32P]ATP, which can be detected by 

scintillation counting methods (Section 2.5). The second step of tRNA charging reaction 

can be monitored by the addition of radiolabelled amino acids. In the presence of an excess 

of amino acid charging of the tRNA is favoured and the radiolabelled aa-tRNA can also be 

detected by scintillation counting methods (Section 2.5).  

 

Surprisingly, initial studies with the purified LeuRS showed that neither total tRNA 

nor purified tRNACAA
Leu or tRNACAG

Ser could be in vitro charged with leucine. Conversely, 

serine charging by the SerRS was efficient (Figure 5. 23). 

 

 

 
Figure 5. 23 – tRNA charging with LeuRS and SerRS 
The overall aminoacylation mechanism was studied by tRNA charging assays with either [3H]Leucine or 
[3H]Serine. The tested LeuRSs (pUA74, pUA81, pUA82 and pUA83) failed to charge the leucine tRNAs. 
Both total tRNA extracts of C. albicans and purified tRNAs (tRNACAA and tRNACAG) were tested. 
Conversely the SerRS was able to charge the serine tRNAs from the total tRNA extracts. 

 
 

In order to clarify the failure of the LeuRS to aminoacylate the leucine tRNAs, the 

activity of the enzyme was tested by studying the first step of the aminoacylation reaction. 

That is, the ability of the active site of the protein to activate the amino acids (Figure 5. 

24). Indeed, these studies showed that the active sites of all the four LeuRS isoforms were 

fully active, hence indicating that whatever was affecting tRNA charging with leucine, it 

was not related with a possible loss of activity during the process of protein purification. 

Considering that the protein was cloned into an E. coli expression vector with a 6-Histidine 
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tag at the N-terminus, which was not removed prior to the kinetics assays, it is probable 

that the tag interfered with binding of the tRNA to the enzyme. 

 
 
 

 
 

Figure 5. 24 – Amino acid activation by LeuRS and SerRS active sites. 
The amino acid activation assays were performed to assess the activity of the active site of both SerRS and 
LeuRS. The SerRS from T. cruzi was used as a positive control. As the goal of this assay was to determine 
whether or not the LeuRS was active, an excess of this protein was used. The LeuRSs had fully active sites, 
as the amino acids were readily activated. 

 
 

 Since the two isoforms of the C. albicans SerRS were fully functional, it was 

possible to determine their aminoacylation kinetic parameters. The kcat values for each 

protein isoform were obtained through tRNA charging assays with increasing 

concentration of the proteins, with tRNA concentration kept constant. For these 

experiments, the exact concentration of the tRNA and the enzyme were determined. The 

tRNA was titrated by a tRNA charging assay in the presence of an excess of the enzyme, 

so that the aminoacylation reaction was limited by the amount of tRNA and reached a 

plateau, which indicated the total amount of tRNA present in the assay. The exact 

concentration of the enzyme was determined by an active site titration assay. Once the 

exact concentrations of tRNAAGA, tRNACAG, SerRSpUA301 and SerRSpUKC1722 were known, 

the kcat values were calculated (Table 5. 3).  
 

Table 5. 3 –   Kcat of SerRS isoforms. 
 kcat (s-1) 

 
SerRSpUA301 

(CUG=Ser) 

SerRSpUKC1722 

(CUG=Leu) 

tRNACAG
Ser 0.16±0.04 0.69±0.03 

tRNAAGA
Ser 0.16±0.04 0.89±0.01 
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Interestingly, the kcat of the SerRS isoform with leucine at the CUG position was 

higher than that of the isoform with serine (the more abundant isoform in C. albicans). 

Furthermore, the kcat of the SerRS isoform with leucine at the CUG position for the 

tRNAAGA
Ser is higher than for the tRNACAG

Ser. However, the kcat only provides information 

of the reaction turn over and does not permit taking conclusions about the kinetics of the 

serylation of both tRNACAG and tRNAAGA by the two isoforms of SerRS. Indeed, one can 

only conclude that tRNAAGA
Ser/SerRS(CUG=Leu) pair had the highest turn-over. In order to 

fully characterise the serylation kinetics it is necessary to determine its km, that is, the 

enzyme affinity for the substrate, which was not possible in this project due to lack of time. 

 

 

5.3. Discussion 
 

In this chapter one tried to elucidate how CUG ambiguity is regulated in vivo in C. 

albicans, and clarify whether the CUG codon evolved to tolerate its ambiguity. Initially, 

one assessed whether the expression level of both enzymes was correlated to leucylation 

rates under different physiological conditions. For this, the amount of LeuRS and SerRS in 

cells grown at different physiological conditions was determined by Western-blot. 

However, no significant variation in the amount of both proteins or on the ratio 

LeuRS/SerRS was detected. These results indicate that the differential expression of these 

proteins is not responsible for cellular regulation of CUG ambiguity. Further, since it has 

been described that in S. cerevisiae the LeuRS enzyme is cleaved by the yscB protease 

(Larrinoa and Heredia, 1991), it is likely that the two bands detected in the C. albicans 

extracts also result from protease cleavage of the full length LeuRS enzyme, raising the 

hypothesis that the cleaved LeuRS is not active or is less active than the full length 

enzyme. However, the ratio full length/cleaved enzyme was the same in the growth 

conditions tested, indicating that regulation of CUG ambiguity does not result from a 

partial post-translational inactivation of the LeuRS by proteolytic cleavage. 

 

The aminoacyl-tRNA synthetases are the enzymes responsible for the covalent bond 

between the amino acids and their cognate tRNA, therefore, it is necessary high specificity 
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in the selection of their cognate substrates in order to ensure faithful protein translation. 

Indeed, accumulation of error in the aminoacylation process will decrease the fidelity of 

protein synthesis and, eventually, lead to cell death. For this reason, this class of enzymes 

is highly conserved and is under an evolutionary pressure to maintain their sequence. 

Surprisingly, while studying the gene coding for the LeuRS (CDC60), in C. albicans, 

several SNPs were discovered. As some of them were non-silent nucleotide changes C. 

albicans cells contain various LeuRS isoforms.  

 

Furthermore, a screen of the CDC60 sequence in five different strains of C. albicans 

revealed that such polymorphisms were widely spread because 6 LeuRS isoforms were 

detected in 5 strains. This observation raised the question of whether or not protein 

diversity generated through polymorphic variation is a unique characteristic of the LeuRS, 

in C. albicans.  To clarify this question the genes coding for the SerRS and TrpRS were 

also screened for presence of SNPs. Interestingly, SNPs were detected but they were silent, 

indicating that they do not generate protein isoforms. Also, the CDC60 gene from 4 strains 

of S. cerevisiae was screened for the existence of SNPs, and again, all but one where 

silence. Taken together, the data collected for the SerRS and TrpRS gene from C. albicans, 

and for the LeuRS from S. cerevisiae, go in line with the existence of an evolutionary 

pressure for maintaining the protein sequence. However, this does not apply to the LeuRS 

gene in C. albicans, which raises the hypothesis of a more active role of this enzyme in the 

regulation of ambiguous CUG decoding. Interestingly, the only SNP found in the 

S. cerevisiae LeuRS gene was from a pathogenic strain, raising the intriguing hypothesis 

that pathogenic strains might have increased levels of mistranslation to generate 

phenotypic diversity  (Miranda, 2007). 

 

 Moreover, the different LeuRS isoforms had divergent promoters, which suggests 

that the expression of the different alleles is regulated by transcription. In the general 

discussion (section 6.3), a model for such regulation is further exploited. These 

observations prompted the study of the aminoacylation reaction by both LeuRS and SerRS, 

as different affinities for the tRNA among the protein isoforms could be responsible for the 

regulation of CUG ambiguous decoding.  

 



Molecular evolution of a genetic code alteration                

182 

In C. albicans, the nucleotide polymorphisms are not the only source of protein 

variation, because ambiguous CUG decoding generates protein diversity. Therefore, in C. 

albicans cells there are 4 different LeuRS proteins and 2 different SerRS proteins. To 

clarify the functional role of such diversity one determined the substrate affinity (km) and 

the reaction turn-over (kcat) of these enzymes with tRNACAG
Ser, tRNAAGA

Ser and 

tRNACAA
Leu. For this, overexpression plasmids, encoding all these proteins isoforms, were 

built, and the proteins were expressed in E. coli and purified. Similarly, an overexpression 

system for tRNACAG
Ser in C. albicans was built, and the native tRNACAG

Ser, tRNAAGA
Ser 

and tRNACAA
Leu were purified. The purified proteins and tRNAs were used to determine 

the aminoacylation kinetics, but it was not possible to complete these studies in the time 

frame of this thesis. Nevertheless, the hypothesis that each pair enzyme-substrate has 

different aminoacylation kinetic parameters and that it is possible to regulate the 

expression of each LeuRS isoform is as a good model for regulation of CUG ambiguous 

decoding under different physiological conditions. So, it is important to obtain the kinetics 

parameters for these aminoacylation reactions. Also, if there are differences in the 

aminoacylation kinetics of the proteins that contain leucine and serine at the CUG position, 

suggesting a feed-back regulation mechanism of CUG ambiguous decoding, this should be 

exploited.  

 

 

 

 

 

 

 

 



 

   

 

6. General Discussion 
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6.1. The uniqueness of the C. albicans genetic code 
 

In order to explain the evolutionary mechanism of genetic code alterations, two 

distinct theories have emerged – the Codon Capture Theory (Osawa and Jukes, 1989); 

and the Ambiguous Intermediate Theory (Schultz and Yarus, 1994). The Codon Capture 

Theory postulates that under a strong CG- or AT- pressure, codons poor in AT- or CG-, 

respectively, tend to disappear, which allows for the loss of the tRNAs that decode them. 

These lost codons can be re-assigned at later stages, by mutant tRNAs from different 

isoacceptor families. Such tRNAs direct codon reassignment. This theory is supported by 

the unassignment of CGG codons in Mycoplasma capricolum, and of AGA and AUA 

codons in Micrococcus luteus, whose CG- genome content is of 25% and 75%, 

respectively (Osawa et al., 1992). On the other hand, the Ambiguous Intermediate Theory 

postulates that a structural change in the translational machinery is the key element in a 

genetic code change. Such structural change could occur on a tRNA molecule, allowing it 

to recognize near-cognate codons and creating codon ambiguity. This theory is strongly 

supported by reassignment of the leucine CUG codon to serine in some species of the 

Candida genus (Sugita and Nakase, 1999; Santos and Tuite, 1995). 

 

Candida albicans is an excellent model system to study the evolution of genetic 

code alterations, and, in particular to test the Ambiguous Intermediate theory. In Candida 

spp, the CUG codon is decoded by a tRNACAG
Ser, which has appeared due to altered 

splicing of a tRNAIGA, about 272 My ago – prior to the divergence between the 

Saccharomyces and Candida genus. This tRNA competed for approximately 100 My with 

the wild type tRNACAG
Leu for CUG decoding (Massey et al., 2003; Yokogawa et al., 

1992). However, when the Saccharomyces and the Candida genus diverged, the 

tRNACAG
Ser was lost in the ancestral lineage of Saccharomyces spp, hence these 

organisms reverted CUG identity to its original meaning due to the presence of a cognate 

tRNACAG
Leu, while the ancestors of Candida spp lost the tRNACAG

Leu and retained the 

mutant tRNACAG
Ser. This CUG codon identity change imposed a negative pressure on the 

CUG codon usage, which triggered massive mutational change of CUG codons to UUG 

or UUA leucine codons. This mutational force was so intense, that 98% of the CUG 
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codons of the Candida ancestor mutated. Simultaneously, the tRNACAG
Ser has also created 

a positive selective pressure for the capture of new CUG codons, from the serine UCN 

codon family (Massey et al., 2003). Altogether, the appearance of the novel tRNACAG
Ser 

and the massive CUG codon redistribution in the genome of the Candida ancestor, 

strongly corroborate the synergistic effects of the Ambiguous Intermediate and Codon 

Capture theories in genetic code alterations. 

 

Interestingly, CUG decoding in the Candida genus is highly heterogeneous. 

C. glabrata maintained the standard CUG decoding as leucine, C. cylindracea fully 

reassigned the CUG decoding from leucine to serine, and other Candida species decode it 

ambiguously (Sugita and Nakase, 1999; Suzuki et al., 1997; Santos et al., 1997). Such 

heterogeneity in CUG decoding has been explained by specific changes in the structure of 

the tRNACAG
Ser in the different Candida species (Santos et al., 2004). Considering that 

several species of the Candida genus, namely Candida albicans and Candida tropicalis 

are major fungal human pathogens (De Backer et al., 2000), it is of utmost importance to 

fully understand their fundamental molecular biology.  Therefore, the aim of this thesis 

was to study the decoding properties of the CUG codon in C. albicans, and to understand 

both the mechanism of genetic code alterations and the biology and physiology of 

C. albicans. 

 

The studies presented in this thesis proved unequivocally that CUG codons are 

ambiguously decoded in vivo in C. albicans. Such ambiguity results from random 

insertion of 97% serine and 3% leucine at CUG positions. This data is in agreement with 

previous in vitro data which showed that the tRNACAG
Ser could be charged with both 

leucine and serine (Suzuki et al., 1997). Also, this study revealed that the levels of CUG 

ambiguity go beyond the basal cell’s physiology, and is dynamically manipulated in 

response to the external stimuli. The leucine incorporation rate at the CUG codons varies 

between 0.66% to 4.95%, in opaque cells and in cells grown at pH 4.0, respectively. 

However, one should not exclude the hypothesis that in other physiological conditions the 
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leucine incorporation might be even higher. Indeed, we showed in this study that 

C. albicans tolerates up to 30% CUG ambiguity without visible effects in growth rate. 

 
 

 
 

6.2. CUG ambiguity and the evolution of the C. albicans genome 
 

 

The double identity of the CUG codon implies that each C. albicans protein is 

represented by a mixture of molecules containing leucine or serine at CUG positions. This 

indicates that proteome complexity is much greater than that expected for the 6438 

C. albicans genes. The 13,074 CUG codons in of haploid genome of C. albicans, 

distributed over 66% of its genes, at a frequency of 1 to 38 CUGs per gene have the 

potential to generate 2n polypeptides (n = total number of CUGs per gene), thus increasing 

the size of the C. albicans proteome exponentially. This work unveiled that the 6438 

protein encoding genes of C. albicans have the potential to produce 283,000 million of 

combinatorial proteins. In other words, the C. albicans proteome has a statistical nature. 

So, when considering the biology of C. albicans, one should think in terms of probability 

rather than absolute numbers. For instance, the probability of a protein encoded by a gene 

with 3 CUGs to contain 1 leucine in cells grown at 30ºC, 37ºC, pH 4.0 and H2O2 is 8.36%, 

10.8%, 13.4% and 11.1%, respectively; whereas in the engineered highly ambiguous cells, 

43% of the proteins have at least 1 leucine incorporated at one of the CUG positions.  

 

 

The real impact of CUG ambiguity in protein diversity can only be determined by 

taking into consideration both the number of CUG codons and the expression level of each 

gene. In this work, a tentative model to determine the number of different proteins in a cell 

was built and, although it is based on three important assumptions, provides an 

approximate estimate of the real impact of CUG ambiguity on the proteome. According to 

this model, the number of novel proteins encoded by C. albicans for CUG ambiguity levels 

of 2.9% is of 6.7x106, and it ranges from 1.56 x106 up to 10.7 x106, in opaque cells and in 

cells grown at pH 4.0, respectively. Still, these numbers are below the 42.8x106 novel 
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proteins present in highly ambiguous cells (28% ambiguity), which illustrate the plasticity 

of C. albicans proteome. 

 

 

Previous studies have shown that only 2% of the original CUG codons are still 

present in the genes of S. cerevisiae and S. pombe and that the remaining 98% are located 

in positions that correspond to serine or amino acids with similar chemical properties to 

serine (Massey et al., 2003). The most recent assembly of the C. albicans genome 

permitted a detailed study of CUGs distribution according to chromosome localization, 

gene ontology, protein domains and gene evolution. For this, a comprehensive analysis of 

the usage of both CUG and AGC codons in the ORFs of C. albicans was carried out, and 

compared with each other. However, this approach did not unveil classes of genes with a 

unique CUG usage. Despite this, it highlighted a group of genes with high potential level 

of interest on further studies (Group 1 and 6, Annexe D). 

 

 

6.3. Hypothetical models for regulation of leucine incorporation at the CUG 
codon 

 

 
The ambiguous CUG decoding in C. albicans, resulting from tRNACAG

Ser 

mischarging is rather interesting from a structural perspective because it is not yet clear 

how this novel tRNA is recognized by the LeuRS. Archeal and most eukaryotic LeuRSs 

recognize the long variable arm of cognate tRNALeu (Fukunaga and Yokoyama, 2005), 

while the yeast LeuRS makes direct contact with the methyl group of m1G37 and with A35 

in the anticodon-loop and non-specific contacts with the phosphate backbone of the 

anticodon-stem (Soma et al., 1996; Suzuki et al., 1997). Like canonical tRNALeu, 

tRNACAG
Ser

 contains A35 and m1G37 in its anticodon-loop. However, the discriminator 

base is G73 (as in other tRNASer) and not A73 (as in tRNALeu), which should prevent its 

recognition by the C. albicans LeuRS, as its role as an anti-determinant for leucylation 

has been shown in both yeast (Soma et al., 1996)  and human tRNALeu (Breitschopf et al., 

1995; Breitschopf and Gross, 1994). It is possible that the C. albicans LeuRS evolved a 

novel mechanism for recognizing both G and A at position 73. Another unique feature of 
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this tRNACAG
Ser is the nature of the nucleotide at the position 33 – in all tRNAs there is a 

U at this position, but in this tRNACAG
Ser there is a G. Such G33 has been described to play 

an important role in decreasing the affinity of the LeuRS, hence lowering its leucylation 

(Suzuki et al., 1997). 

 

 

Once leucine incorporation at CUG positions varies under different physiological 

conditions and the C. albicans’ genome was proved to be extremely malleable, 

characterization of the charging mechanism of the tRNACAG
Ser by SerRS and LeuRS is 

very important. Also, the LeuRS gene sequence of strain CAI-4 was different from the 

published sequence from strain 2005. Such differences were non-synonymous and it is 

likely that the isoforms have different aminoacylation properties. Further, 4 SNPs were 

identified in the CAI-4 strain, indicating that the C. albicans LeuRS is highly 

polymorphic, as confirmed by further sequencing of the LeuRS genes from strains 1006, 

C316 and IGC. This diversity in protein sequences is unique for the LeuRS in C. albicans, 

which might correlate with the observed differences in leucine incorporation at the CUG 

codons, especially as the obtained preliminary data suggest the existence of two distinct 

promoters for each allele. Those SNPs and the divergent promoters of the LeuRS suggest 

that leucine incorporation at the CUG codons may be modulated by LeuRs-tRNA affinity 

differences and by different expression levels of each LeuRS isoform (Figure 6. 1). 

 

 

According to the above model, one of the isoforms would have a higher affinity for 

the tRNACAG
Ser and its expression would be controlled by a transcription factor sensitive 

to external stimuli. So, in a stress condition it would become more expressed, leading to a 

higher amount of the leu-tRNACAG
Ser, which would compete with the ser-tRNACAG

Ser for 

CUG decoding at the ribosome, hence the leucine incorporation at CUG codons would be 

increased.  
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Figure 6. 1 – Model for the transcriptional control of LeuRS expression 
Under normal growth conditions (A) one LeuRS isoform may be expressed, but not the other; whereas under 
stress conditions (B) the promoter of the latter isoform would be activated, so that it would became 
expressed.  

 

 

In order to test this model, the various LeuRS isoforms were overexpressed in 

E. coli, and the tRNACAG
Ser, the tRNAAGA

Ser and the tRNACAA
Leu were purified to 

determine the kinetics of the aminoacylation reaction. Unfortunately, the time available 

for these experiments did not allow one to finish them. Nevertheless, it would be 

important to further exploit this model by determining the kinetic parameters of the 

reaction and study the expression levels of each isoform under different physiological 

conditions by RT-qPCR. Also, it could be very interesting to study the activation of the 

LeuRS divergent promoters. For this, it will be important to sequence them from various 

strains and then analyse the sequences in silico. This may uncover specific enhancers that 

control LeuRS transcription. If such elements are identified, the promoters could be fused 

to the green fluorescent protein (GFP) gene to monitor promoter activation in vivo under 

different physiological conditions. 

 

Both the SerRS and LeuRS genes contain a CUG codon, however, these genes 

complement S. cerevisiae SerRS and LeuRS gene knockouts without significant decrease 

in growth rate (O'Sullivan et al., 2001b; O'Sullivan et al., 2001a). This is probably due to 

the localization of the CUG codon in the non-conserved positions, so that such 

complementation is possible because both leucine and serine can be accommodated in the 

A 
Normal growth conditions 

LeuRS x

+ 

B 
Stress growth conditions 

LeuRS z

- 

LeuRS x

+ 

LeuRS z

+ 
?
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position without major structural disruption. Nevertheless, one can not exclude some 

alterations in aminoacylation kinetics in the leucine isoforms. This could in fact provide 

an important regulatory mechanism of CUG ambiguity because the SerRS could work as 

a sensor for leucine incorporation levels through a negative feed-back mechanism. This 

would be possible if the SerRS isoform containing leucine at the CUG codon had higher 

affinity for the tRNA. Again, to test this hypothesis it is necessary to determine the kinetic 

parameters of the aminoacylation reaction for each enzyme, which was not achieved in 

the present work.  

 

Another interesting feature of the polymorphic variation observed in the LeuRS and 

SerRS was the superficial location of the amino acid residues encoded by the SNPs. This 

may indicate that the SNPs do not affect the aminoacylation kinetics, but, as aminoacyl-

tRNA synthetases form macrocomplexes by interacting with translational and non-

translational factors, the SNPs may compromise protein-protein interactions and affect 

cellular networks. This hypothesis is also very interesting and should be tested 

experimentally. A preliminary analysis of the interactome of both LeuRS and SerRS, in 

S. cerevisiae, unveiled some interesting interactions.  

 

According to the Database of Interacting Proteins (DIP, http://dip.doe-

mbi.ucla.edu/dip/Main.cgi) (Salwinski et al., 2004) the LeuRS interacts with 4 proteins 

(Figure 6. 2 A), namely with an arginase (Car1p), responsible for arginine degradation; 

with a RNA polymerase subunit, common to RNA polymerase I and III (Rpc40p); with 

the translation initiation factor eIF1 (Sui1p); and with a phosphoprotein phosphatase type 

2C (Ptc6p). On the other hand, the SerRS interacts with 9 different proteins (Figure 6. 2 

B): with Sen15p, a subunit of the tRNA splicing endonuclease; with Rvs167p, which is 

involved in regulation of actin cytoskeleton; with Air2p, a RING finger protein that 

interacts a methyltransferase and hence may regulate methylation of some genes; with 

Hrr25p, which is a casein kinase that binds the C-terminal domain (CTD) of RNA 

polymerase II, and is involved in regulating diverse events including gene expression, 

DNA repair and chromosome segregation; with Lys14p, a transcriptional activator 

involved in the regulation of genes of the lysine biosynthesis pathway; with Hrp1p, which 

is a nuclear ribonucleoprotein,  involved in the cleavage and polyadenylation of pre-
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mRNA 3' ends; with YBL036C, a racemase; the Sir3p, which is  involved in the 

establishment of the transcriptionally silent chromatin state; and with YOL087C, an 

hypothetical protein. Nevertheless, the yeast interactome is not yet fully established, 

indeed, a comparison of the protein interaction networks between different public 

databases (e.g. the DIP vs. the BioGRID (http://www.thebiogrid.org/index.php) vs. iHOP 

(http://www.ihop-net.org/UniPub/iHOP/)) shows that there are divergences among them. 

 

 

 

 

 
 

 

Figure 6. 2 – Interactome of LeuRS and SerRS 
The interactome of (A) LeuRS and (B) SerRS, obtained from the Database of Interacting Proteins (DIP; 
http://dip.doe-mbi.ucla.edu/dip/Main.cgi)  
 

 

 

Also, regulated expression of the tRNACAG
Ser may provide an additional mechanism 

for controlling CUG ambiguity. A preliminary analysis of the tRNACAG
Ser gene showed 

that it is located in the promoter region of the orf19.954, a homolog of the S. cerevisiae 

YDJ1 gene, which encodes a protein of the DnaJ/Hsp40 family (Figure 6. 3). These 

proteins  are  chaperones involved in protein translation, folding, unfolding, translocation, 

and degradation, primarily by stimulating the ATPase activity of chaperone proteins, 

namely Hsp70 and Hsp90 (Qiu et al., 2006).  

A B 



          General Discussion 

  193 

 

 

 
Figure 6. 3 – The localization of the tRNACAG

Ser in the genome 
The localization of the gene encoding the tRNACAG

Ser, in the chromosome 5 of C. albicans, as predicted in 
the assembly 20 (http://www.candidagenome.org/). 
 

  

Such proximity of the tRNACAG
Ser gene to the promoter of a protein of the 

DnaJ/Hsp40 family is interesting, because in S. cerevisiae strains expressing the [PSI+] 

prion the overexpression of Ydj1 has a prion-curing effect (Kryndushkin et al., 2002), 

hence it has been related with mistranslation events. Further, transcription of tRNA genes 

can suppress transcription of nearby RNA polymerase II genes (Wang et al., 2005; Hull et 

al., 1994). Therefore, it would be very interesting to study the expression of this 

tRNACAG
Ser/YDJ1 system, by using reporter genes, such as GFP or β-Galactosidase. 

 

 

6.4. Conclusion 
 

Apart from the mechanistic aspects of CUG ambiguity, this work provides new 

insights into the evolution of the genetic code. In yeasts, codon ambiguity successfully 

induces the stress response and increases tolerance to high temperature, lethal doses of 

heavy metals and drugs (Santos et al., 1999). Previous work from the laboratory has 

shown that high ambiguity levels of CUG codons results in the generation of phenotypic 

diversity (Miranda, 2007), illustrating the positive effects of genetic code ambiguity and 

its negative effects on the proteome. Also, inactivation of the Hsp90 molecular chaperone 

in Drosophila melanogaster and Arabidopsis thaliana, allowed the expression of 

polymorphic proteins involved in cell signalling pathways and generated phenotypic 

diversity (Queitsch et al., 2002; Rutherford and Lindquist, 1998; Sollars et al., 2003; True 

and Lindquist, 2000). In S. cerevisiae and C. albicans, Hsp90 has a critical role in drug 

resistance by maintaining mutant drug resistance genes in a functional state (Cowen and 

A- 
box 

B- 
box 

tRNACAG
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193 nt 69 nt 50 nt ATG 
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Lindquist, 2005). Yet, in another published study, generalized stop codon readthrough of 

genes and pseudogenes by the yeast [PSI+] prion, disrupted the proteome, but resulted in 

morphological variation (Tuite and Lindquist, 1996).  

 

All the above cases, genetic code ambiguity, Hsp90 inhibition and [PSI+] prion 

induction, have similar destabilizing impacts on the proteome - all lead to large scale 

synthesis/accumulation of aberrant proteins - and increased phenotypic variation. Indeed, 

these data clearly indicate that the negative effect of codon ambiguity on the proteome 

may be overcome by its capacity to generate novel adaptive traits. Recent experiments on 

introduction of non-natural amino acids into the genetic code confirm the hypothesis that 

organisms can be  highly tolerant to genetic code changes and readily adapt to genetic 

code ambiguity (Bacher et al., 2003; Bacher and Ellington, 2001; Balashov and 

Humayun, 2002; Ren et al., 1999; Slupska et al., 1996).  

 

This thesis shows how genetic code ambiguity generates unanticipated proteome 

expansion. The data supports the hypothesis that earlier expansion of the genetic code 

from a small number of amino acids existent in primordial life forms, to the 22 encoded 

by extant organisms, could have been driven by selection through codon ambiguity. 

Further, the statistical proteome described herein for C. albicans supports the hypothesis 

that gradual codon identity changes create genetic barriers, such as the decrease in the 

sporulation and mating efficiency in S. cerevisiae lineages carrying the C. albicans 

tRNACAG
Ser (Silva et al., 2007), resulting in the evolution of new species. This is 

confirmed by the inability to express heterologous genes in C. albicans. In other words, 

the Candida genus should have arisen as a direct consequence of this genetic code 

alteration. Indeed, the exponential expansion of the C. albicans proteome is of profound 

biological significance as arrays of proteins are generated from single mRNAs creating a 

statistical proteome. It implies that the probability of finding identical C. albicans cells in 

nature is extremely small.  
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6.5. Future work 
 
 

This thesis showed that C. albicans has an ambiguous genetic code, which is sensitive to 

external stimuli. Such ambiguity expands the proteome on an unforeseen scale. But, how can 

the cell regulate such ambiguous decoding? Does it have an impact on the structure and function 

of the C. albicans proteins? These are still unanswered questions that are important to clarify. 

Therefore, the results described in this thesis define three future working lines, as follows: 

 

1) To further study the LeuRS and SerRS proteins. It is imperative to determine the 

kinetic parameters of the aminoacylation reaction and clarify the existence of different 

promoters of the LeuRS. Their activation under different physiological conditions should also 

be studied. It is also important to study the interactome of the LeuRS and SerRS.  

 

2) To study the expression of the tRNACAG
Ser under the different growth conditions, and 

the co-expression of the tRNACAG
Ser/YDJ1. 

 

3) To expand the SNPs screen, not only to more C. albicans strains, but also to more 

pathogenic strains of S. cerevisiae, and evaluate the impact of the polymorphisms in the LeuRS 

and SerRS structure by crystallizing both proteins. 
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7. Annexes 
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Annexe A: Map of the Plasmids 

 
 
A.1 – Plasmids used in the chapter 3, for the in vivo determination of leucine 
incorporation at the CUG codon in C. albicans 
  

 

 

pUA12, based on pRM1, constructed by Miranda, I 
(2007). 
 

pUA15, plasmid bearing a mutant tRNACAG
Leu from 

S. cerevisiae, built to increase the leucine incorporation 
in C. albicans. Based on pUA12, constructed by 
Miranda, I (2007). 
 

 

pUA61, E. coli plasmid based on the pSL1190 vector. 
This plasmid was used to assemble the CUG reporter 
system used for measuring CUG ambiguity in C. 
albicans. For this, the reporter gene was assembled in 
three sequential steps, firstly, the promoter was cloned 
using the Hind III and Xho I restriction sites, the 
sequence coding for the reporter peptide, the core of the 
CaPGK1 and the 6-Histidines Tag on the C- terminal, 
using the Xho I and Nru I restriction sites, and finally, 
the terminator sequence, from the CaeEF-1α gene at the 
Nru I and Pst I. restriction sites. 
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pUA63, C. albicans plasmid, based on the pUA12 
shuttle vector. The whole reporter gene was extracted 
from pUA61, using the Hind III and Pst I restriction 
sites, and was inserted at the same restriction sites of 
pUA12.  

pUA65, C. albicans plasmid based on pUA15. Contains 
copy the S. cerevisiae tRNAUAG

Leu gene. Again, for this 
plasmid, the whole reporter gene was transferred from 
pUA61 as a Hind III and Pst I fragment and inserted in 
pUA15. 
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A.2 – Plasmids used in the chapter 5, for protein overexpression in E. coli 
  

 

pUA74, pUA81, pUA82 and pUA83. 
These plasmids were used to overexpress the 4 
different LeuRS isoforms in E. coli. They are based 
on pUKC1710, which was built by O’Sullivan 
(2001). Several site directed mutagenesis were 
carried out in order to obtain the 4 isoforms of the 
protein. Below is a scheme of the differences 
between these plasmids. 

 
 
 
 
 
 

  
pUKC1722, plasmid for the overexpression of the 
SerRS protein in E. coli, built by O’Sullivan (2001). 

pUA301, plasmid for the overexpression of the 
SerRS protein in E. coli, with a serine at the CUG- 
position. 
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A.3 – Plasmids used in the chapter 5, for tRNACAG

Ser overexpression in C. albicans 
  

pUKC701
6268 bps

Spe-I
Sma-I

Leu2

LacZ

tRNA-CAG
TT

ori

Amp CEN/ARS4

 

pUKC701, constructed by Santos (1999). It is based 
on pRS315, which contains the LEU2 auxotrophic 
marker for S. cerevisiae and the AmpR marker for 
selection of E. coli in ampicillin media. This is a low 
copy plasmid in S. cerevisiae. The C. albicans 
tRNACAG

Ser was cloned in the Sma I and Spe I sites 
of this vector’s multicloning site. 

  

pUA72
6318 bps

EcoR V
BstX I
EcoR I

Kpn I
Cla I

Nae I

Pvu I
Pvu II

Sac I
Spe I

Sma I
Xho I

Hind III
Apa I

Pvu II

Pvu I
Sca I

Aat II

LEU2

f1(+)

Z

2 x tRNA-CAG

ori

Amp R

 

pUA73
6568 bps

EcoR V
BstX I
EcoR I

Kpn I
Cla I

Nae I
Pvu I

Pvu II
Sac I

Spe I
Sma I

Pst I
Xho I

Hind III
Apa I

Pvu II

Pvu I
Sca I

Aat II

LEU2

f1(+)

Z

3 x tRNA-CAG

ori

Amp R

 
pUA72, plasmid based on the pUKC701, where an 
extra copy of the C. albicans tRNACAG

Ser was cloned 
in the Hind III and Xho I sites 

pUA73, plasmid built on pUA72, where a third copy 
of the C. albicans tRNACAG

Ser was cloned in the 
Xho I and Pst I sites 

pUA77
8190 bps

Pst-I
Spe-I

Bam-HI
Sma-I

Bsm-I

Bss-HII
Mlu-I

Stu-I
Dra-III

Nae-I
Bsp-MII

Acc-IAvaIII
Apa I

Sac I
XhoI

Hind-III

ARS1

CaURA3

ARS2 
3 x tRNA-CAG

CaLeu2 (without promoter)

Amp

 

pUA77, plasmid built on pUA12, for the tRNACAG
Ser 

overexpression in C. albicans. The DNA fragment 
containing the 3 copies of tRNACAG

Ser was extracted 
from the pUA73, using Xho I  and Apa III restriction 
sites and then cloned in the same restriction sites of 
pUA12. 
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Annexe B: Reporter protein data 

 
  
B.1  - Sequence of the designed reporter protein, with primers annotations, as well as 
indications of both endonucleases and proteases cleavage sites. 
 
                
         attaggaagcttagtgttgcgtgtgtgtcaggaggcatgcgaaatatggagcgttcttcc 
      1  ---------+---------+---------+---------+---------+---------+   60 

   HindIII 
 
          ccgggataaactcaatcgaggtattttttttttcttcacttgaacacgagacgctttgac 
     61  ---------+---------+---------+---------+---------+---------+   120 
 
         attgaccaaatatgacgcaaacattatgatttggtgattgtttagctatagggaaggcaa 
    121  ---------+---------+---------+---------+---------+---------+   180 
 
         ttggaataggtgtcatatgatctagggctacaattgatcaatttgagcaaaaataataga 
    181  ---------+---------+---------+---------+---------+---------+   240 
          
         cgtagacactaattattaatcttgatttcattatacgtatgttcaaatttgttttctctc 
    241  ---------+---------+---------+---------+---------+---------+   300 
 
         tcttccagttgtgcgtctactgactcctgattgaattttttttttgttcactttctacaa 
    301  ---------+---------+---------+---------+---------+---------+   360 
 
 
         aaatatataaatcctcttttaattccaactcaattcactcctcatttcattcaattgaat 
    361  ---------+---------+---------+---------+---------+---------+   420 
         
         ttttttttctttcttctttctttttttatttcttatattttctaattcaatttttcaatc 
    421  ---------+---------+---------+---------+---------+---------+   480 
 
         aagcgattatcaattgcagaagaataactatcaaaatgtcattatctaacaaattatcag 
    481  ---------+---------+---------+---------+---------+---------+   540 
                                            MetSerLeuSerAsnLysLeuSerV 
 
         tcaaagacttagacgttgctggaaagagagtctttatcagagttgacttcaacgtcccat 
    541  ---------+---------+---------+---------+---------+---------+   600 
         alLysAspLeuAspValAlaGlyLysArgValPheIleArgValAspPheAsnValProL 
 
 
         tggacggtaagactatcaccaacaaccaaagaattgttgctgctttgccaaccatcaaat 
    601  ---------+---------+---------+---------+---------+---------+   660 
         euAsnGlyLysThrIleThrAsnAsnGlnArgIleValAlaAlaLeuProThrIleLysT 
 
         acgttgaagaacataaaccaaaatacattgtcttggcttcccacttgggtagaccaaacg 
    661  ---------+---------+---------+---------+---------+---------+   720 
         yrValGluGluHisLysProLysTyrIleValLeuAlaSerHisLeuGlyArgProAsnG 
 
 
     gtctcgagctagttccaagaggttctCTGccgcgggattataaagatgatgatgataag 
    721  ---------+---------+---------+---------+---------+---------+   779 
           XhoI  Trombin site      CTG SacII  Flag-Tag Enterokinase      

   lyLeuGluLeuValProArgGlySerLeuProArgAspTyrLysAspAspAspAspLys 
 

oUA 201 

oUA 224 

oUA 234 oUA 202 
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   aacgacaaatactcattagctccagttgctactgaattggaaaaattgttgggtcaaaaa 

    780  ---------+---------+---------+---------+---------+---------+   839 
         AsnAspLysTyrSerLeuAlaProValAlaThrGluLeuGluLysLeuLeuGlyGlnLys 
 
 
         gtcaccttcttgaacgattgtgttggtccagaagtcaccaaggctgttgaaaacgccaaa 
    840  ---------+---------+---------+---------+---------+---------+   899 
         ValThrPheLeuAsnAspCysValGlyProGluValThrLysAlaValGluAsnAlaLys 
 
 
         gatggtgaaatctttttgttggaaaacttgagataccacattgaagaagaaggttcttcc 
    900  ---------+---------+---------+---------+---------+---------+   959 
         AspGlyGluIlePheLeuLeuGluAsnLeuArgTyrHisIleGluGluGluGlySerSer 
 
 
         aaagacaaggatggtaagaaagtcaaggctgatccagaagccgttaagaaattcagacaa 
    960  ---------+---------+---------+---------+---------+---------+   1019 
         LysAspLysAspGlyLysLysValLysAlaAspProGluAlaValLysLysPheArgGln 
 
 
         gaattgacttcattggctgatgtctacattaacgatgcctttggtactgctcacagagcc 
   1020  ---------+---------+---------+---------+---------+---------+   1079 
         GluLeuThrSerLeuAlaAspValTyrIleAsnAspAlaPheGlyThrAlaHisArgAla 
 
 
         cactcctctatggttggtctcgaagttccacagagagctgctggtttcttaatgtccaaa 
   1080  ---------+---------+---------+---------+---------+---------+   1139 
         HisSerSerMetValGlyLeuGluValProGlnArgAlaAlaGlyPheLeuMetSerLys 
 
 
         gaattggaatactttgctaaggctttggaaaacccagaaagaccattcttggccattttg 
   1140  ---------+---------+---------+---------+---------+---------+   1199 
         GluLeuGluTyrPheAlaLysAlaLeuGluAsnProGluArgProPheLeuAlaIleLeu 
 
 
         ggtggtgctaaagtttctgacaagattcaattgattgacaacttgttggacaaggttgat 
   1200  ---------+---------+---------+---------+---------+---------+   1259 
          GlyGlyAlaLysValSerAspLysIleGlnLeuIleAspAsnLeuLeuAspLysValAsp 
 
 
         atgttgattgttggtggtggtatggccttcactttcaagaaaatcttgaacaaaatgcca 
   1260  ---------+---------+---------+---------+---------+---------+   1319 
         MetLeuIleValGlyGlyGlyMetAlaPheThrPheLysLysIleLeuAsnLysMetPro 
 
 
         attggtgattctcttttcgatgaagccggtgctaaaaacgttgaacacttggttgaaaaa 
   1321  ---------+---------+---------+---------+---------+---------+   1379 
         IleGlyAspSerLeuPheAspGluAlaGlyAlaLysAsnValGluHisLeuValGluLys 
 
 
         gctaagaaaaacaatgttgaattgatcttgccagttgattttgtcactgctgataaattc 
   1380  ---------+---------+---------+---------+---------+---------+   1439 
         AlaLysLysAsnAsnValGluLeuIleLeuProValAspPheValThrAlaAspLysPhe 
 
 
         gacaaagatgccaaaacttcttctgctactgatgctgaaggtattccagacaactggatg 
   1440  ---------+---------+---------+---------+---------+---------+   1499 
         AspLysAspAlaLysThrSerSerAlaThrAspAlaGluGlyIleProAspAsnTrpMet 

oUA 225 

oUA 217 
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         ggtttggactgtggtccaaaatctgtcgaattgttccaacaagctgttgccaaagctaag 
   1500  ---------+---------+---------+---------+---------+---------+   1559 
         GlyLeuAspCysGlyProLysSerValGluLeuPheGlnGlnAlaValAlaLysAlaLys 
 
 
         accattgtttggaacggtccaccaggtgttttcgaatttgaaaaattcgccaacggtact 
   1560  ---------+---------+---------+---------+---------+---------+   1619 
         ThrIleValTrpAsnGlyProProGlyValPheGluPheGluLysPheAlaAsnGlyThr 
 
 
         aaatccttattggatgctgctgtcaaatctgctgaaaatggtaacattgttatcattggt 
   1620  ---------+---------+---------+---------+---------+---------+   1679 
         LysSerLeuLeuAspAlaAlaValLysSerAlaGluAsnGlyAsnIleValIleIleGly 
 
 
         ggtggtgatactgctactgttgctaagaaatacggtgtcgttgaaaaattatcgcacgtt 
   1680  ---------+---------+---------+---------+---------+---------+   1739 
         GlyGlyAspThrAlaThrValAlaLysLysTyrGlyValValGluLysLeuSerHisVal 
 
 
 
         tctactggtggtggtgcttcattggaattattagaaggtaaagacttgccaggtgtagtt 
   1740  ---------+---------+---------+---------+---------+---------+   1799 
         SerThrGlyGlyGlyAlaSerLeuGluLeuLeuGluGlyLyaAspLeuProGlyValVal 
 
          
                                                                      
         gctctttccaacaaaaaccatcaccatcaccatcactaaTCGCGAgctagttgaatatta 
   1800  ---------+---------+---------+---------+---------+---------+   1859 
                                 6 His           NruI 
         AlaLeuSerAsnLysAsnHisHisHisHisHisHisEnd 
 
                                                                                
         tgtaagatctgttagagtttttattttgtattcatttatttagtttattttcttattata 
   1860  ---------+---------+---------+---------+---------+---------+   1919         
  
                                                                             
         tttgaaatataatatatattttaaaaaaaaaatttacagtgtagaatttttggtagtccg 
   1920  ---------+---------+---------+---------+---------+---------+   1979 
 
                                                                               
         gtttgttttgaaatcagtggtggtattcaatatttgattaaattttggtatgaatttgtg 
   1980  ---------+---------+---------+---------+---------+---------+   2039 
                                                                               
                                                                               
         ttgaaaaataaaaaataagcgagaaatttgcgtggcatattatttgtaatgttcgaatat 
   2040  ---------+---------+---------+---------+---------+---------+   2099 
 
          
         tctctcgtacaccaaaaggctgcagccaatt 
   2100  ---------+---------+---------+-                                2131 
                             PstI 
 
 
 
 

oUA 216 oUA 207 oUA 205 

oUA 204 
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B.2  -: Count codon of the reporter protein 

 
(440 codons) 

 
fields: [triplet] [frequency: per thousand] ([number])  

 
UUU 13.6(     6)  UCU 25.0(    11)  UAU  2.3(     1)  UGU  4.5(     2) 
UUC 27.3(    12)  UCC 13.6(     6)  UAC 15.9(     7)  UGC  0.0(     0) 
UUA 20.5(     9)  UCA 11.4(     5)  UAA  0.0(     0)  UGA  0.0(     0) 
UUG 68.2(    30)  UCG  2.3(     1)  UAG  0.0(     0)  UGG  4.5(     2) 
 
CUU  4.5(     2)  CCU  0.0(     0)  CAU  9.1(     4)  CGU  0.0(     0) 
CUC  4.5(     2)  CCC  0.0(     0)  CAC 20.5(     9)  CGC  0.0(     0) 
CUA  2.3(     1)  CCA 40.9(    18)  CAA 13.6(     6)  CGA  0.0(     0) 
CUG  2.3(     1)  CCG  2.3(     1)  CAG  2.3(     1)  CGG  2.3(     1) 
 
AUU 29.5(    13)  ACU 27.3(    12)  AAU  4.5(     2)  AGU  0.0(     0) 
AUC 15.9(     7)  ACC 11.4(     5)  AAC 47.7(    21)  AGC  0.0(     0) 
AUA  0.0(     0)  ACA  0.0(     0)  AAA 72.7(    32)  AGA 22.7(    10) 
AUG 15.9(     7)  ACG  0.0(     0)  AAG 34.1(    15)  AGG  0.0(     0) 
 
GUU 59.1(    26)  GCU 65.9(    29)  GAU 45.5(    20)  GGU 79.5(    35) 
GUC 27.3(    12)  GCC 22.7(    10)  GAC 29.5(    13)  GGC  0.0(     0) 
GUA  2.3(     1)  GCA  0.0(     0)  GAA 68.2(    30)  GGA  2.3(     1) 
GUG  0.0(     0)  GCG  0.0(     0)  GAG  2.3(     1)  GGG  0.0(     0) 
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Annexe C: MS-MS of both synthetic and reporter peptides 
 
C1. MS-MS spectra of the synthetic serine peptide. 

 
 
C.2- MS-MS spectra of the serine peptide purified from C. albicans cell extracts. 
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C3. - MS-MS spectra of the synthetic leucine peptide 

 
 
C.4 - MS-MS spectra of the leucine peptide purified from C. albicans cell extracts. 
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 Annexe D: Results from the clustering analysis 
 

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

   
Group 1   
orf19. 14137    
orf19. 11132 MMS4 putative transcriptional co-activator 
orf19. 8637 WAR1 transcription factor activity 
orf19. 5870 CTP1 citrate transport protein 
orf19. 3153 MSS4 phosphatidylinositol 4-phosphate kinase 
orf19. 10914 BUD17 involved in bud site selection 
orf19. 332 CLF1 pre-mRNA splicing factor 
orf19. 11718    
orf19. 11841 SGD1 suppressor of glycerol defect 

orf19. 6891 RFC1 
replication factor C subunit 1 | processivity factor for DNA polymerase delta and 
epsilon 

orf19. 7792    
orf19. 11755 MNN1 mannosyltransferase 

     
    

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

    
Group 2   

orf19. 1144   
orf19. 6291 FUN30 helicase of the Snf2/Rad54 family 
orf19. 1166   
orf19. 11485 DUN1 DNA damage response 
orf19. 4192 CDC14 protein phosphatase required for mitosis 
orf19. 5894   
orf19. 6866 SNP1 U1 small nuclear ribonucleoprotein 
orf19. 814 SSY1.5 transcriptional regulator of multiple amino acid permeases 
orf19. 1624 MAK10 glucose-repressible protein 
orf19. 12155   
orf19. 801 TBF1 telomere TTAGGG repeat-binding factor 
orf19. 12434 KEM1 multifunctional nuclease 
orf19. 5584 PEP3 vacuolar membrane protein 
orf19. 2921 PAC2 tubulin folding cofactor E 
orf19. 6387 HSP104 heat shock protein 104 
orf19. 9420   
orf19. 9541 SNX4 Sorting NeXin 
orf19. 6233   
orf19. 3689   
orf19. 3458 VSP68 conserved protein involved in vacuolar targeting 
orf19. 7781   
orf19. 2828 ALF1 alpha-tubulin foldin, cofactor B 

orf19. 11319 EFB1 
translation elongation factor eEF1beta | GDP/GTP exchange factor for 
Tef1p/Tef2p 

orf19. 7838   
orf19. 7862 MED7 RNA polymerase II holoenzyme/mediator subunit 
orf19. 8417 BAT2 branched-chain amino acid transaminase 
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orf19. 6773 ECM29 protein Involved in cell wall biogenesis and architecture 
    
    

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

    
Group 3   

orf19. 10092 CDC60 cytosolic leucyl tRNA synthetase 
orf19. 1434 DPB11 DNA polymerase II complex component 
orf19. 1217   
orf19. 8919 CPY1 serine carboxypeptidase Y precursor 
orf19. 13164 ALS9-1 misassembled agglutinin-like protein 9 
orf19. 11314 TFC3 RNA polymerase III transcription factor 
orf19. 10309 BBC1 associates with the Bee1p-Vrp1p-Myo3/5p complex 

orf19. 9129 SAC3 
involved in processes affecting the actin cytoskeleton and mitosis | leucine 
permease transcriptional regulator 

orf19. 10878 UBP10 ubiquitin-specific protease 
orf19. 8304   
orf19. 13154 NOG2 nuclear/nucleolar GTP-binding protein 2 
orf19. 8660   

    
    

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

    
Group 4   

orf19. 4337 ESBP6 monocarboxylate permease 

orf19. 12233 IPT1 
necessary for synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C) | 
inositolphosphotransferase 1 | mannosyl diphosphorylinositol ceramide synthase 

orf19. 1693 TAO3 transcriptional activator 
orf19. 12690 PKH2 ser/thr protein kinase, phosphorylates, activates YPK1 
orf19. 2739 RLF2 chromatin assembly complex, subunit p90 
orf19. 4958 EMC25 protein involved in cell wall biogenesis and architecture 

orf19. 9556 REG1 
RNA processing | negative regulator of glucose- repressible genes | regulatory 
subunit for protein phosphatase Glc7p 

orf19. 10238 HIT1 required for growth at high temperature 
orf19. 3956   
orf19. 13314 RIP1 component of ubiquinol cytochrome- c reductase complex 
orf19. 1802   
orf19. 3705   
orf19. 11221 KAR4 transcription factor similar to pheromone-induced protein 
orf19. 1991 PTM1 member of the major facilitator superfamily 
orf19. 8671 RPN4 Regulatory Particle Non-ATPase 
orf19. 1182 VAM7 vacuolar morphogenesis protein 
orf19. 1886 RCL1 RNA 3 -terminal phosphate cyclase 
orf19. 5378 SCL1 20S proteasome subunit YC7ALPHA/Y8 
orf19. 12982 AMD3 putative amidase 
orf19. 13612 NPR1 nitrogen permease reactivator protein 
orf19. 1515 CHT4 chitinase 
orf19. 5046 RAM1 protein farnesyltransferase, beta subunit 
orf19. 12023 MAK32 necessary for structural stability of L-A dsRNA-containing particles 
orf19. 9266 BZZ1 cortical patch protein involved in actin organization 
orf19. 9088 FAB1 phosphatidylinositol 3-phosphate 5-kinase 
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orf19. 506 YDJ1 dnaJ homolog and heat shock protein 
orf19. 8972   
orf19. 10005 TMT1 trans-aconitate methyltransferase 1 
orf19. 1514 UBP1 ubiquitin-dependent protease 
orf19. 8967 SGN1 poly(A) RNA binding protein 
orf19. 3363 VTC4 polyphosphate synthetase 

orf19. 1029 RPP1 
 nuclear ribonuclease P subunit (RNase P)| required for processing of tRNA and 
35S rRNA 

orf19. 5147   
orf19. 8088 UBP2 ubiquitin-specific protease 
orf19. 5328 GCN1 translational activator of GCN4 
orf19. 9953 MSE1 glutamyl-tRNA synthetase, mitochondrial 

    
    

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

    
Group 5   

orf19. 1557   
orf19. 10588 TVP15 conserved hypothetical protein 
orf19. 11272 PAT1 topoisomerase II- associated protein 
orf19. 7773 VPS15 vacuolar protein sorting protein kinase 
orf19. 7787 YAK2 serine-threonine protein kinase, PKA suppressor 
orf19. 290 KRE5 UDPglucose- glycoprotein glucose phosphotransferase 
orf19. 2455   
orf19. 3141 SMY2 related to kinesins 
orf19. 8377   
orf19. 8458   
orf19. 8870 MEC1 cell cycle checkpoint protein 
orf19. 3724   
orf19. 12214 RSM25 mitochondrial ribosome small subunit component 
orf19. 13020   
orf19. 8101 TAF12 TFIID and SAGA subunit 
orf19. 8717 MTR10 involved in nuclear protein import 
orf19. 1299 RPN6 proteasome regulatory particle subunit 
orf19. 522 PIM1 mitochondrial ATP-dependent protease 

   

   

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

    
Group 6    

orf19. 9349 YOR1 oligomycin resistance ATP-dependent permease | ABC transporter 
orf19. 3954 PSD2 phosphatidylserine decarboxylase 
orf19. 11970 KTR2 mannosyltransferase 
orf19. 4295 HIR2 histone transcription regulator 
orf19. 1712 GEA2 GDP/GTP exchange factor for ARF 
orf19. 11515 RPN5 non-ATPase unit of 26S proteasome complex 
orf19. 1373 INP51 phosphatidylinositol phosphate 5-phosphatase 
orf19. 4335 TNA1 high affinity nicotinic acid plasma membrane permease 
orf19. 12208 JIP5 Jumonji Interacting Protein 
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orf19. 11421    
orf19. 1298 NUP84 nuclear pore complex subunit 
orf19. 12199 DHA12 membrane transporter of the MFS-MDR family 
orf19. 10350    
orf19. 8419 STE4 beta subunit of heterotrimeric G protein 
orf19. 4858 VSP41 vacuolar protein sorting 
orf19. 2665 MSN5 supressor of snf1 mutation 
orf19. 5059 GSH1 gamma-glutamylcysteine synthetase 
orf19. 2135 TAF2 component of TFIID complex 
orf19. 13292 SNF5 component of SWI/SNF transcription activator complex 
orf19. 313 DAL4 allantoin permease 
orf19. 261 SEC59 dolichol kinase required for core glycosylation 
orf19. 4403 VSP11 vacuolar peripheral membrane protein 
orf19. 8678 ATM1 mitochondrial ABC transporter 

    
    
    

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

    
Group 7   

orf19. 4398   
orf19. 6240 CYK3 involved in CYtoKinesis 
orf19. 6011 SIN3 transcription regulatory protein 
orf19. 11823 SEC16  multidomain vesicle coat protein  
orf19. 8539 THR1 homoserine kinase 
orf19. 1229 CSE1 specific exportin for Srp1p 
orf19. 5365   
orf19. 1238 TUB4 gamma tubulin 
orf19. 11071 REC12 required for chromosome pairing 
orf19. 4723 FAD1 flavin adenine dinucleotide (FAD) synthetase 
orf19. 135 EXO84 exocyst complex component and pre-mRNA splicing factor 
orf19. 12808 TPS3 alpha,alpha-trehalose-phosphate synthase, regulatory subunit 
orf19. 5892 HUL4 ubiquitin-protein ligase 
orf19. 10228 MSH5 meiosis-specific mutS homolog 
orf19. 4753 FRK26 6-phosphofructose-2-kinase 

    
    
    

ORF 
(assembly 19) 

S. cerevisiae 
gene Function 

    
Group 8   

orf19. 262 SMC3 chromosome condensation and segregation protein 
orf19. 2116 NAT2 N-acetyltransferase for N- terminal methionine 
orf19. 12615 CDC35 adenylate cyclase 
orf19. 2404 POP1 nuclear RNase P and RNase MRP component 
orf19. 9430 MEK1 serine/threonine protein kinase 
orf19. 2532 PRS3 prolyl-tRNA synthetase, cytoplasmic 
orf19. 10369   
orf19. 11617   
orf19. 3996 GPI10 glycosyl phosphatidylinositol (GPI) synthesis 
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orf19. 10912 SED4 involved in vesicle formation at the endoplasmic reticulum 
orf19. 8728 CKU70 Ku family DNA binding and repair protein 
orf19. 5954 AMA1 activator of meiotic anaphase promoting complex 
orf19. 1026 CSL4 exosome 3'->5exonuclease | involved in kinetochore-related function 
orf19. 12983 WSC2 cell wall integrity, stress response 
orf19. 8385 SCY1 conserved protein 
orf19. 14146 NUP145 nucleoporin 
orf19. 3556 KAP104 karyopherin beta 2 | transportin 
orf19. 8347 TSC11 TOR binding protein 
orf19. 567 TFB3 TFIIH subunit 
orf19. 9896 URA2 multifunctional pyrimidine biosynthesis protein 
orf19. 5526 SEC20 secretory pathway protein 
orf19. 12110 PWP1 beta-transducin superfamily with periodic tryptophan residues 
orf19. 2942 DIP52 dicarboxylic amino acid permease 
orf19. 11964 SWI3 general RNA polymerase II transcription factor 
orf19. 8292   
orf19. 11419 SDF1 Sporulation DeFiciency 
orf19. 3722 FAP1 FKBP12-associated protein | transcription factor homolog 
orf19. 5544 SAC6 actin filament bundling protein - fibrim homolog 
orf19. 4937 CHS3 chitin-UDP acetyl-glucosaminyl transferase 3 
orf19. 2859 SRP40 nonribosomal protein of the nucleolus and coiled bodies 
orf19. 2733 VPS30 involved in vacuolar protein sorting and autophagy 
orf19. 7748 RIM9 low similarity to a regulator of sporulation 
orf19. 4867 SWE1 serine/tyrosine dual-specificity protein kinase that inhibits G2/M transition 
orf19. 2029 RFC5 DNA replicationn factor C | leading strand elongation mismatch repair  (ATPase) 
orf19. 6538 TFP3 hydrogen-transporting ATPase 
orf19. 1390 PMI1 mannose-6-phosphate isomerase 
orf19. 4426 PEX3 peroxisomal integral membrane protein 
orf19. 706 NMD3 nonsense mRNA degradation; ribosomal assembly 
orf19. 795 VSP36 defective in vacuolar protein sorting | regulator of G-protein signaling activity 
orf19. 1526 SNF2 component of SWI/SNF global transcription activator complex 
orf19. 12523 APC10 anaphase promoting complex component 
orf19. 5535 FEN2 member of allantoate permease family 
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Annexe E: Leucyl – tRNA synthetase 
 
E.1  - Sequence of the Leucy-tRNA synthetase in the genebank 
 
LOCUS       AF293346     3987 bp    DNA             PLN       20-AUG-2000 
DEFINITION  Candida albicans cytosolic leucyl-tRNA synthetase (CDC60) 
gene, 
ACCESSION   AF293346 
VERSION     AF293346.1  GI:9858189 
KEYWORDS    . 
SOURCE      Candida albicans. 
ORGANISM    Candida albicans 
            Eukaryota; Fungi; Ascomycota; Saccharomycotina; 

Saccharomycetes; Saccharomycetales; mitosporic 
Saccharomycetales; Candida. 

REFERENCE   1  (bases 1 to 3987) 
  AUTHORS   O'Sullivan,J.M., Mihr,M.J. and Tuite,M.F. 
  TITLE     Candida albicans leucyl-tRNA synthetase 
  JOURNAL   Unpublished 
REFERENCE   2  (bases 1 to 3987) 
  AUTHORS   O'Sullivan,J.M., Mihr,M.J. and Tuite,M.F. 
  TITLE     Direct Submission 
  JOURNAL   Submitted (03-AUG-2000) Department of Biosciences, University 

of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK 
FEATURES             Location/Qualifiers 
     source          1..3987 
                     /organism="Candida albicans" 
                     /strain="2005E" 
                     /db_xref="taxon:5476" 
     mRNA            <617..>3910 
                     /gene="CDC60" 
                     /product="cytosolic leucyl-tRNA synthetase" 
     gene            <617..>3910 
                     /gene="CDC60" 
     CDS             617..3910 
                     /gene="CDC60" 
                     /codon_start=1 
                     /transl_table=12 
                     /product="cytosolic leucyl-tRNA synthetase" 
                     /protein_id="AAG01037.1" 
                     /db_xref="GI:9858190" 
                     /translation="MSGPVTFEKTFRRDALIDIEKKYQKVWAEEKVFEVDAPTFE 

ECPIEDVEQVQEAHPKFFATMAYPYMNGVLHAGHAFTLSKVEFATGFQRMNGKRALFPLGFHCTGMPIK
AAADKIKREVELFGSDFSKAPIDDEDAEESQQPAKTETKREDVTKFSSKKSKAAAKQGRAKFQYEIMMQ
LGIPREEVAKFANTDYWLEFFPPLCQKDVTAFGARVDWRRSMITTDANPYYDAFVRWQINRLRDVGKIK
FGERYTIYSEKDGQACLDHDRQSGEGVGPQEYVGIKIRLTDVAPQAQELFKKENLDVKENKVYLVAATL
RPETMYGQTCCFVSPKIDYGVFDAGNGDYFITTERAFKNMSFQNLTPKRGYYKPLFTINGKTLIGSRID
APYAVNKNLRVLPMETVLATKGTGVVTCVPSDSPDDFVTTRDLANKPEYYGIEKDWVQTDIVPIVHTEK
YGDKCAEFLVNDLKIQSPKDSVQLANAKELAYKEGFYNGTMLIGKYKGDKVEDAKPKVKQDLIDEGLAF
VYNEPESQVISRSGDDCCVSLEDQWYIDYGEEVWLGEALECLKNMETYSKETRHGFEGVLAWMKNWAVT
RKFGLGTKLPWDPQYLVESLSDSTVYMAYYTIDRFLHSDYYGKKAGKFDIKPEQMTDEVFDYIFTRRDD
VETDIPKEQLKEMRREFEYFHPLDVRVSGKDLIPNHLTFFIYTHVALFPKRFWPRGVRANGHLLLNNAK
MSKSTGNFMTLEQIIEKFGADASRIAMADAGDTVEDANFDEANANAAILRLTTLKDWCEEEVKNQDKLR
IGDYDSFFDAAFENEMNDLIEKTYQQYTLSNYKQALKSGLFDFQIARDIYRESVNTTGIGMHKDLVLKY
IEYQALMLAPIAPHFAEYLYREVLGKNGSVQTSKFPRASKPVSKAILDASEYVRSLTRSIREAEGQALK
KKKGKSDVDGSKPISLTVLVSNTFPEWQDNYIELVRELFEQNKLDDNNVIRQKVGKDMKRGMPYIHQIK
TRLATEDADTVFNRKLTFDEIDTLKNVVEIVKNAPYSLKVEKLEILSFNNGETKGKNIISGEDNIELNF
KGKIMENAVPGEPGIFIKNVE" 
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BASE COUNT     1348 a    635 c    830 g   1174 t 
ORIGIN       
        1 ttatacggca gaagattttg atggtgtgaa aacaattggg ctttgtggat tggacccttc 
       61 attaaatttc cagcaagtga agacaatttt tgaggaaagg tttgggaagg ttgctaaagt 
      121 tttgttgttc ccagaagaca aacaagcttt ggtagagttt gtgaaacctg gagatgctgg 
      181 caagacgagt atgagtaata attttgtgaa actaggcgaa agcgaagcaa aaatagtgac 
      241 caaggaagag ataacaatgg gtaaaagtgc tatttcaaat acaactacaa ctccatcggc 
      301 acctcttaca atgattccca ccacagttag acgaaaaaaa tccaaaaaat agaccaaaga 
      361 tgtaattagt gattagtcac ttaacaaccc taaatagttt tgaaacctcc cgtaatagtt 
      421 attctaattg tctcgttagt gcgagtagga gtgcctcacg taatataaat tgttgtgata 
      481 caatcaagtt ctcttaataa aaaaaaaata cagagagcga gagagtttgt gtgagagtaa 
      541 gaaaaagaaa atttttcact tcttgagtca ttcttgtaac cataatccac ttttgtttcc 
      601 aacaaactat aaaatcatga gtggtcctgt tacttttgaa aagacatttc gtagagatgc 
      661 cttaatcgat atagaaaaga aatatcaaaa ggtatgggca gaagagaaag tttttgaagt 
      721 tgatgcccca acttttgaag aatgtcctat tgaagatgtt gaacaagttc aagaagcaca 
      781 tccaaaattc tttgccacta tggcttatcc ttacatgaat ggtgtcttgc acgccggtca 
      841 tgcctttaca ttgtctaaag ttgaatttgc aactgggttc caaagaatga atggtaagag 
      901 agcattattc ccattgggtt tccattgtac gggtatgcca attaaagcag ctgccgataa 
      961 aatcaaaaga gaagttgaat tgtttggatc tgatttttct aaagctccta ttgatgacga 
     1021 agatgcagaa gaaagccaac aaccagctaa aaccgaaact aaaagagaag atgtcaccaa 
     1081 attctcttcc aaaaaatcca aggctgctgc caaacaaggt agagccaagt tccaatatga 
     1141 gatcatgatg caattaggaa tcccaagaga agaagttgcc aagtttgcta acaccgacta 
     1201 ctggttagag tttttcccac cattgtgtca aaaagatgta actgcttttg gggctagagt 
     1261 tgattggaga cgttctatga tcacaaccga tgctaatcct tattatgatg catttgttag 
     1321 atggcaaatt aatagattga gagatgttgg taaaattaag tttggtgaaa gatataccat 
     1381 ttattctgaa aaggatggcc aagcatgttt ggatcacgat agacaatctg gtgaaggtgt 
     1441 tggtccacaa gaatatgttg gtataaaaat cagattaact gatgtagcac cacaagcaca 
     1501 agaacttttc aagaaagaga atctcgatgt gaaggagaac aaagtttact tggttgctgc 
     1561 aactttaaga ccagaaacta tgtatggtca aacttgttgt tttgtgagtc caaaaattga 
     1621 ttatggtgtt tttgatgctg gtaatggtga ctatttcatt accactgaac gtgctttcaa 
     1681 aaatatgtct ttccaaaact tgactccgaa aagaggatat tataaaccac ttttcactat 
     1741 caatggtaag acattgattg gatctcgaat tgatgctcca tatgctgtca acaaaaactt 
     1801 gagagttttg cctatggaaa cagttcttgc aaccaaaggt actggtgtgg tcacttgtgt 
     1861 tccatcagat tctccagatg attttgttac cacaagagac ttggccaata aaccagagta 
     1921 ctatggaatt gaaaaagact gggtacaaac agatattgtt cctattgtcc ataccgaaaa 
     1981 atacggtgat aagtgtgctg agtttttggt taatgatttg aagatacagt caccaaaaga 
     2041 ttctgtgcag ttggccaacg ccaaggaatt ggcttataaa gaaggttttt acaatggtac 
     2101 tatgcttatt ggtaaataca aaggtgataa agttgaagac gccaagccta aagtcaaaca 
     2161 agacttaatt gatgaaggtc ttgcttttgt ttacaatgaa ccagaatccc aagttatttc 
     2221 tagatctggt gatgattgtt gtgtatcatt ggaagatcaa tggtatattg attatggtga 
     2281 agaagtttgg ttgggtgaag ccttagaatg tcttaagaac atggaaacat actccaagga 
     2341 aaccagacat ggcttcgaag gtgttttagc ttggatgaag aactgggctg tcaccagaaa 
     2401 atttggtttg ggtactaaat tgccttggga tcctcaatat ttggtcgaat ctttgtcaga 
     2461 ttctactgtc tatatggctt attatactat tgatcgtttc ttgcattcag attattacgg 
     2521 taagaaggca ggtaagttcg acattaagcc agagcaaatg actgatgaag tatttgatta 
     2581 catctttact cgtcgtgatg acgttgaaac tgacattcca aaggaacaat tgaaggaaat 
     2641 gagaagagag tttgaatatt ttcacccatt agacgtcaga gtttcaggaa aagatttaat 
     2701 cccaaatcat ttgacattct tcatctatac ccatgtcgcc ttgttcccaa aaagattttg 
     2761 gccaagaggt gttagagcca acggacattt gttgttgaac aatgctaaga tgtccaaatc 
     2821 aactggtaac tttatgactt tagaacaaat cattgaaaaa ttcggagctg atgcctctag 
     2881 aattgctatg gccgatgcag gtgacactgt tgaagatgcc aactttgacg aagccaatgc 
     2941 taatgctgca atcttgagat tgacaacttt gaaagattgg tgtgaagaag aagtgaaaaa 
     3001 ccaagacaag ttaagaattg gtgactacga ttccttcttt gacgctgctt ttgaaaatga 
     3061 aatgaatgat ttgattgaaa agacttacca acaatacact ttgagtaatt acaaacaagc 
     3121 attgaaatcg ggattgtttg atttccaaat cgccagagat atttatagag aaagtgtaaa 
     3181 cacaacaggg attggtatgc acaaggatct tgttttgaaa tacattgaat accaagcatt 
     3241 gatgttagct ccaattgctc ctcattttgc cgaatacctt tacagagaag ttttaggtaa 
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     3301 aaatggaagt gttcaaacta gcaagttccc aagagcctca aagcctgttt ccaaagctat 
     3361 tcttgatgct ctggaatatg tcagaagcct taccagatct atccgtgaag cagaaggtca 
     3421 agctttgaaa aagaagaaag gaaagtctga tgttgatggg tcaaaaccaa tcagcttgac 
     3481 agttttggtt tccaacactt tcccagaatg gcaagataac tatattgaac ttgtcagaga 
     3541 attgtttgaa caaaacaagt tggacgacaa taatgttata agacaaaagg ttggcaagga 
     3601 catgaaacgt ggtatgccat acatccacca aattaaaact agattggcaa ctgaagatgc 
     3661 tgacactgtt ttcaacagaa aattgacttt tgatgaaatc gatacattga aaaatgttgt 
     3721 tgaaattgtc aagaatgccc catactctct taaagttgaa aaattggaga ttcttagttt 
     3781 caataacggt gaaactaagg ggaagaatat tattagtggt gaagacaata ttgagctcaa 
     3841 tttcaagggt aaaataatgg aaaatgctgt acctggtgag cctggtatct ttattaaaaa 
     3901 tgtcgaataa atagagtctt gtttaggttg cttttaatac ataacttttt gtttagagat 
     3961 atcaataata ctatgagccc tggcttt 
// 
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Annexe F: Seryl – tRNA synthetase 
 
F.1  - Sequence of the Seryl-tRNA synthetase in the genebank 
 
LOCUS       AF290915     3098 bp    DNA             PLN       19-MAR-2001 
DEFINITION  Candida albicans seryl-tRNA synthetase (SES1) gene, complete 
cds. 
ACCESSION   AF290915 
VERSION     AF290915.1  GI:9931531 
KEYWORDS    . 
SOURCE      Candida albicans. 
  ORGANISM  Candida albicans 
            Eukaryota; Fungi; Ascomycota; Saccharomycotina; 
Saccharomycetes; 
            Saccharomycetales; mitosporic Saccharomycetales; Candida. 
REFERENCE   1  (bases 1 to 3098) 
  AUTHORS   O'Sullivan,J.M., Mihr,M.J., Santos,M.A.S. and Tuite,M.F. 
  TITLE     Seryl-tRNA synthetase is not responsible for the evolution of 
CUG 
            codon reassignment in Candida albicans 
  JOURNAL   Yeast 18 (4), 313-322 (2001) 
   PUBMED   11223940 
REFERENCE   2  (bases 1 to 3098) 
  AUTHORS   O'Sullivan,J.M., Mihr,M.J. and Tuite,M.F. 
  TITLE     Direct Submission 
  JOURNAL   Submitted (27-JUL-2000) Biosciences, University of Kent, 
Giles 
            Lane, Canterbury, Kent CT2 7NJ, UK 
FEATURES             Location/Qualifiers 
     source          1..3098 
                     /organism="Candida albicans" 
                     /strain="CBS 5736" 
                     /db_xref="taxon:5476" 
                     /chromosome="3" 
     mRNA            1841 
                     /gene="SES1" 
                     /product="seryl-tRNA synthetase" 
     gene            1841 
                     /gene="SES1" 
     CDS             453..1841 
                     /gene="SES1" 
                     /note="aminoacyl-tRNA synthetase" 
                     /codon_start=1 
                     /transl_table=12 
                     /product="seryl-tRNA synthetase" 
                     /protein_id="AAG02209.1" 
                     /db_xref="GI:9931532" 

/translation="MLDINAFLVEKGGDPEIIKASQKKRGDSVELVDEIIAE
YKEWVKLRFDLDEHNKKLNSVQKEIGKRFKAKEDAKDLIAEKEKLSNEKKEIIEKEAEADKNLRSKI
NQVGNIVHESVVDSQDEENNELVRTWTPENYKKPEQIAAATGAPAKLSHHEVLLRLDGYDPERGVRI
VGHRGYFLRNYGVFLNQALINYGLSFLSSKGYVPLQAPVMMNKEVMAKTAQLSQFDEELYKVIDGED
EKYLIATSEQPISAYHAGEWFESPAEQLPVRYAGYSSCFRREAGSHGKDAWGIFRVHAFEKIEQFVL
TEPEKSWEEFDRMIGCSEEFYQSLGLPYRVVGIVSGELNNAAAKKYDLEAWFPFQQEYKELVSCSNC
TDYQSRNLEIRCGIKQQNQQEKKYVHCLNSTLSATERTICCILENYQKEDGLVIPEVLRKYIPGEPE
FIPYIKELPKNTTSVKKAKGKN" 
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BASE COUNT     1107 a    515 c    545 g    931 t 
ORIGIN       
        1 atagctgttt cctacatata aaccattcct aaggaaatgg ttgtcgcact ttgtcgcact 
       61 ttgtctcttt gtttgttaat cgaattgaat tgaatgaaaa tagtgaaaaa aaaaaaaaat 
      121 tacaggtcgt aaagaataga aaaatttttt tgttccacgt aataatcacc atacaaattt 
      181 aaaccaaacc caccaccaca accccctaag ttacattcta gatacatagc tgtttcctac 
      241 atataaacca ttcctaagga aatggttgtc agcactttgt cgcactttgt ctctttgttt 
      301 gttaatcgaa ttgaattgaa tgaaaatagt gaaaaaaaaa aaaaattaca ggtcgtaaag 
      361 aatagaaaaa tttttttgtt ccacgtaata atcaccatac aaatttaaac caaacccacc 
      421 accacaaccc cctaagttac attctagata ccatgttaga cattaatgca tttctcgttg 
      481 aaaagggagg tgacccagaa attattaaag catcccaaaa gaaaagaggt gactccgtcg 
      541 aattagttga tgaaatcatc gccgaatata aagaatgggt taaattaaga ttcgatttag 
      601 atgaacacaa caagaaattg aattcagtac aaaaagaaat tggtaaaaga ttcaaagcta 
      661 aagaagatgc taaagattta attgctgaaa aggaaaaatt gagtaatgaa aaaaaggaaa 
      721 ttattgaaaa agaagctgaa gcagataaga atttacgtag taaaatcaat caagttggta 
      781 acatcgttca tgaatcagtt gttgattctc aagatgaaga aaacaatgaa ttggttagaa 
      841 cctggactcc agaaaattac aaaaaaccag aacaaattgc tgcagctact ggtgcaccag 
      901 ccaaattatc tcatcatgaa gtattgttaa gattagatgg ttacgatcca gaaagagggg 
      961 ttagaattgt tggtcatcgt ggttatttct taagaaacta tggggtattt ttgaaccaag 
     1021 ctttaatcaa ctacggttta ctgtttttga gtagcaaagg atacgttcca ttgcaagcac 
     1081 cagttatgat gaataaagaa gtcatggcta aaaccgcaca attgtctcaa tttgacgaag 
     1141 aattgtataa agtcattgat ggtgaagatg aaaaatattt aattgccact tcagaacaac 
     1201 caattagtgc ttaccatgcc ggtgaatggt ttgaatcacc agcagaacaa ttgccagttc 
     1261 gttatgctgg ttattcatca tgtttcagaa gagaagctgg atcacacggt aaagatgctt 
     1321 ggggtatttt ccgtgtccat gcttttgaaa agattgaaca atttgttttg actgaaccag 
     1381 aaaaatcatg ggaagaattt gatagaatga ttggatgttc agaagaattt tatcaatcat 
     1441 taggattgcc atacagagtt gttggtattg tttcaggtga attgaacaat gctgctgcta 
     1501 agaaatacga tttggaagct tggttcccat tccaacaaga atacaaagaa ttggtttcat 
     1561 gttcaaactg tactgattat caatcaagaa atttggaaat cagatgtggt ataaaacaac 
     1621 aaaaccaaca agaaaagaaa tacgtccatt gtttgaactc aactttaagt gctactgaaa 
     1681 gaactatctg ttgtatttta gaaaactacc aaaaggaaga tgggttggtt attcctgaag 
     1741 tattgagaaa atacattcct ggtgaaccag aatttattcc atacattaag gaattgccaa 
     1801 aaaacaccac ttctgttaaa aaagctaaag gtaagaatta gatgtttata gtgcatgtta 
     1861 tactccattt tattaaaaca ttataatagt atgtcatttt ctttttatct ttgtattctt 
     1921 aaaaactggt gatatgtatc agaaaaagga aaatcacacg acacgtcatg aatggatgga 
     1981 tggtgcacag ccttgccttg tatgcaatac tgacatcatc gccacttagt gctactacca 
     2041 ccgaccccac cacaaccaac aaaaccgcat tgacgacccg aaattcaaac gaaaacgtag 
     2101 gcaaaacatc aacaactcaa tcgaagaagg aaaaaaaaaa taaccttaaa aatatatttt 
     2161 gcaaaacaaa tatccacatt atccattatt cgatagctga atatttgttt tcattcgagc 
     2221 ttccactacc acgtttattt aaatatacta tctagcaagc catgtcaaat atggaatcat 
     2281 cccatgtgaa taatgtggaa tcaccaccag aatatgtatc tcaaccacca ccaaaatatg 
     2341 tacctcgaca gtcatcatcg tcgtcatctt caatatcaga tcaggaatca gatattcaca 
     2401 atccaccaca aagggccagt gaaaatcaat tatcgacttg ttgttctgat tgttggtgta 
     2461 attgttttga tagttgttct ggcactaatt gtactgcttc cgataagaat atttgtggca 
     2521 gtatactagt tgttttgtgt tgtggaagca caattgggta tgcccactaa tgcttgaata 
     2581 acagctttat tgtcccgttg tcaaccatag aattattaat atctattcat tcaaatgtat 
     2641 atagtattgt ggggtttgtt aggatatgtt cttttaatga attaatggtt tttatgttat 
     2701 ccctctgtaa gttataggaa atcttctgat tcgaattatt cagtactgtg agcaatacgt 
     2761 atatagcgaa gtcgcattaa agtgccgaga cactagaagc agtaaaaatt tgattgctac 
     2821 taaaatacag catgacatag ttaacacttt tagtgtatac cattgttaac ctgaaacgat 
     2881 cctacattag agctctacaa ctgattggct tctttagttt tctattgttt tgtaaattgc 
     2941 aattggggga gaggtcccgg tccagctcac aagaaacaat agtccattgt ttttctgggg 
     3001 aacataaaat cgcgggagct tcctaattaa gtttataccc gaaagaaata taaggaatta 
     3061 aagctgatat gcaggtattg ctaacactaa taagattt 
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Annexe G: Sequencing of the promoter regions of Leucyl-tRNA 
synthetase 

 
The sequence polymorphisms found on these strains are indicated by the arrows. 

3’                

Promoter 
3’                

G.1 – C. albicans CAI4 strain 

G.2 – C. albicans IGC strain 
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