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Resumo 
 
 

Apesar dos estudos de microcosmo e mesocosmo terem um papel importante 
no procedimento de registo dos pesticidas, a extensão pelos quais os 
resultados dos diferentes estudos de modelos de ecossistema poderem ser 
extrapolados para outros casos é ainda um assunto de debate. Esta tese 
pretende contribuir para a discussão sobre a influência local, temporal e dos 
factores metodológicos nos resultados dos estudos do microcosmo. Para este 
efeito, foram efectuados estudos do microcosmo com água doce em condições 
experimentais distintas e os efeitos do tratamento e o destino comparados com 
os reportados em experiências similares. 
As experiências com pequenos microcosmos laboratoriais com aplicações 
únicas de clorpirifos, linurão e carbendazim nem sempre previram as respostas 
exactas, tal como observado em experiências com modelos de ecossistema 
em larga escala. Uma vez que os sistemas utilizados eram fechados e não 
continham sedimento nem macrófitas, os pesticidas eram mais persistentes e 
os valores de toxicidade calculados tornaram-se mais comparáveis com os 
estabelecidos nas experiências com exposição prolongada. As implicações e 
as recomendações para a metodologia de estudos de avaliação de risco 
aquático são discutidos na secção discussão geral. 
Uma experiência do microcosmo na Tailândia, lidando com múltiplas 
aplicações de clorpirifos, conduziu à conclusão que o tempo de aplicação tem 
uma elevada influência nos efeitos do insecticida nas comunidades de água 
doce. Isto é explicado em relação às fases da população das comunidades de 
zooplâncton no momento da aplicação. 
Os valores de toxicidade calculados nos estudos do microcosmo tropical 
depois de aplicações únicas de pesticida estavam dentro da gama (clorpirifos e 
carbendazim) ou mais elevado (linurão) que os reportados em estudos 
temperados. Assim, estes resultados suportam o uso de dados de toxicidade 
de estudos de ecossistemas modelo levados a cabo em zonas temperadas 
para a avaliação de risco ambiental em países tropicais. 
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Abstract 
 

Although micro- and mesocosm studies play an important role in the 
registration procedure of pesticides, the extent by which the results of different 
model ecosystem studies may be extrapolated to one another is still a matter of 
debate. This thesis aims to contribute to the discussion concerning the 
influence of spatial, temporal and methodological factors on the outcome of 
microcosm studies. For this purpose, freshwater microcosm studies were 
carried out under different experimental conditions and fate and treatment 
effects compared with those reported in similar experiments. 
Small indoor microcosm studies with single applications of chlorpyrifos, linuron 
and carbendazim did not always predict the exact responses as was observed 
in larger-scale model ecosystem studies. Since closed systems were used that 
did not contain sediment and macrophytes, pesticides were more persistent 
and calculated toxicity values were therefore generally more comparable with 
those reported in studies with long-term exposure. Implications and 
recommendations for the methodology of aquatic risk assessment studies are 
discussed in the general discussion section. 
A microcosm study in Thailand dealing with multiple chlorpyrifos applications 
led to the conclusion that the time of application has a large influence on the 
effects of the insecticide on freshwater communities. This is explained in 
relation to the population phase of zooplankton communities at the time of 
application. 
Threshold values calculated in tropical microcosm studies after single pesticide 
applications were well in range (chlorpyrifos and carbendazim) or higher 
(linuron) than those reported in temperate studies. These findings thus support 
the use of toxicity data from model ecosystem studies carried out in the 
temperate zone for the environmental risk assessment in tropical countries. 
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CHAPTER 1  

 

GENERAL INTRODUCTION 

 

 

 

With the modernization and intensification of agricultural practices in the past century, the use 

of pesticides was initiated to increase productivity of yields. As a consequence, adjacent water 

courses surrounding agricultural fields were reported to become contaminated via spray drift, 

drainage and run-off and/ or accidental spills (Capri and Trevisan, 1998). To protect sensitive 

freshwater ecosystems against pesticide side-effects, jurisdictions of many countries have set 

water quality criteria and started to require a prospective Environmental Risk Assessment 

(ERA) before registration of a pesticide (e.g., EU: EU, 1997; US: Zeeman and Gilford, 1993; 

Canada: Environment Canada, 1997).  

 

Tiered risk assessment approach 

 

In the past decades, a wide array of aquatic toxicity tests have been developed and applied to 

determine side effects posed by chemicals like pesticides on freshwater community structure 

and functioning. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Different levels of ecotoxicological testing and their advantages and shortcomings; 

microcosms and mesocosms provide a bridge between the laboratory and the field (Picture 

redrawn from Brock et al., 2000a). 
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These tests range from relatively simple laboratory bioassays to large complex field studies 

(Figure 1.1). Evaluating the fate and effects under field conditions may be considered ideal for 

an ecological realism point of view. On the other hand, such studies are rather costly and the 

higher level of complexicity implies that causal-effect relationships are more difficult to 

establish. Therefore, the use of tiers or steps in the process of criteria setting and ERA has 

frequently been recommended in risk assessments of pesticides (e.g., Suter et al., 1993; 

Campbell et al., 1999). 

The initial use of conservative (lower or first-tier) assessment criteria allows substances that do 

not present a risk to be eliminated from the risk assessment early, thus allowing the focus of 

resources and expertise on more problematic substances. From lower to higher tiers, the 

exposure and effect estimates become more realistic and hence, the uncertainty in the 

extrapolation of effects is reduced (Solomon et al., accepted). In the EU, for example, the 

first-tier conservative ERA as laid down in the Uniform Principles for the registration of 

pesticides on the market is based on the ratio of the toxicity (NEC: No Effect Concentration) 

and the predicted exposure (PEC: Predicted Environmental Concentration. EU, 1997). The 

PEC is usually calculated using computer programs like TOXSWA (Adriaanse, 1996), using 

pesticide characteristics, the recommended pesticide dose and a simulated landscape scenario 

as input parameters. The NEC is based on toxicity threshold values from laboratory bioassays 

with a limited number of standard test species, usually Daphnia, an algae and a fish. Since the 

threshold value is normally a point estimate derived from a concentration-response series, an 

uncertainty factor (UF) is applied to protect against lower concentrations of response in the 

same organism as well as the possibility of higher sensitivity of other non-tested sensitive 

aquatic organisms. The UF in the EU is usually 100 for acute L(E)C50 values and 10 for 

chronic NOECs, whereas the U.S. EPA uses UFs from 1 to 20 depending on the response 

measured (EU, 1997; Solomon et al., accepted). 

If this first-tier risk assessment indicates potential risks, ecologically more relevant approaches 

are needed in a higher-tier ERA to assure an adequate protection of aquatic life. Additional 

information needed depends on the uncertainty in the first-tier risk assessment and may thus 

range from a better estimation of the sensitivity of susceptible aquatic organisms to a more 

realistic calculation of the exposure to the chemical (Van den Brink, 1999). 
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The use of microcosms and mesocosms in ERA 

 

Microcosm and mesocosm experiments have frequently been performed for a higher-tier risk 

assessment of pesticides (Campbell et al., 1999; see Brock et al., 2000a and Van Wijngaarden 

et al., 2005 for recent reviews). Microcosms and mesocosms provide a bridge between 

laboratory and the field, in that they allow replication and hence an experimental set-up on the 

one side and provide ecological realism on the other side (Figure 1.1; Brock et al., 2000a). The 

difference between microcosms and mesocosms is their size and hence often their complexity 

(Van den Brink, 1999). Microcosms are man-made test systems with a water volume of less 

than 15 m3 or experimental streams less than 15 m in length, while microcosms are defined as 

model ecosystems containing more than 15 m3 water or experimental streams longer than 15 

m (Crossland et al., 1992). 

Unlike the first-tier laboratory test procedures, which are highly protocolized in for instance 

OECD and US EPA guidelines (OECD, 2006; US EPA, 1996), no defined general protocol 

exists for model ecosystems. The most standardized test systems are of the “generic” type, 

which do not mimic any natural system in particular, but rather bring together some basic 

components of ecosystems. Most aquatic model ecosystems used for effect evaluations of 

pesticides are of the “semi-realistic” type and are intended to mimic real ecosystems as 

discussed by Van Wijngaarden (2006). This author also stipulates that this type of test systems 

may be further classified according to the type of freshwater ecosystem they represent (e.g. 

tropical vs. temperate and plankton- vs. macrophyte-dominated), and whether they are 

situated indoors or outdoors. For outdoor model ecosystems, a distinction may be made 

between constructed systems, e.g. concrete or glass-fiber tanks, and enclosed parts of existing 

ecosystems, e.g. plastic bags or polycarbonate cylinders (Van Wijngaarden, 2006). 

Due to this large diversity in microcosm and mesocosm test systems, toxic effects and 

recovery of freshwater communities in different model ecosystem studies testing the same 

compound may be different (e.g. chlorpyrifos: Brock et al., 1992 a, 1992b, 1993; Leeuwangh, 

1994; Leeuwangh et al., 1994, Caquet et al., 2001, Van Wijngaarden et al., 2005). Thus, 

although model ecosystem approaches provide ecologically more realistic assessments, 

interpretation and extrapolation to other (model) ecosystem types may be problematic (Boxall 

et al., 2002). Evaluation and interpretation of these studies has become the subject of wide-

ranging discussions (ECETOC, 1997; Campbell et al., 1999; Giddings et al., 2002; Van 

Wijngaarden, 2006). 
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For example, the issue of model ecosystems scale has been recognized as a critical issue and 

underpins conceptual frameworks of how we understand ecologic phenomena (Flemer et al. 

1997). Although larger and consequently more complex model ecosystems may be ecologically 

more realistic than smaller systems, smaller model ecosystems are easier to replicate and are 

less costly (Figure 1.1). The development of reliable smaller test systems was therefore 

recommended by the European Workshop on Freshwater Field Tests (Crossland et al., 1994) 

and the Higher-tier Aquatic Risk Assessment for Pesticides (HARAP) workshop (Campbell et 

al. 1999). However, only a small number of reliable small test systems have been used so far 

for pesticide risk assessment (Leeuwangh et al. 1994; Brock et al. 2000a, 2000b). 

Recently, the question to what extent ecotoxicological data can be extrapolated from one 

geographical region to another has been raised (Van Wijngaarden, 2006; Kwok et al., 2007; 

Brock et al., accepted). The utmost importance of this may be stressed by the fact that 

ecotoxicological research has mainly focused on temperate regions, while little is known about 

the fate and effects of chemicals like pesticides in tropical regions (Bourdeau et al., 1989; 

Castillo et al., 1997; Lam and Wu, 1999; Gopal, 2005; Racke, 2003). Consequently, many 

tropical water quality criteria rely on extrapolations from temperate data even though physical 

and chemical environmental parameters in the tropics can be very different (Jungbluth, 1996; 

Lacher and Goldstein, 1997; Kwok et al., 2007). There is thus an urgent need to validate 

whether ecotoxicological principles and data developed in the temperate zone are applicable to 

countries in the tropical zone. 

Besides the above mentioned differences in experimental design of the test systems used and 

geographical (spatial) factors, variation in study outcomes may be due to temporal factors like 

seasonal (Willis et al., 2004; Van Wijngaarden et al., 2006) or successional (Hanazato and 

Yasumo, 1990) differences in the state of the freshwater communities at the time of the 

pesticide treatment. Thus, although model ecosystems studies play an important role in the 

registration procedure of pesticides (EU, 1997; Campbell et al., 1999), the extent by which the 

results of different model ecosystem studies may be extrapolated to one another is still largely 

unknown. 

 

 

 

 

 



 5 

Aims of the thesis 

 

This thesis aims to contribute to the discussion concerning the influence of spatial, temporal 

and test system scale factors on the outcome of model ecosystem studies. Four specific aims 

are distinguished: 

 

1) To validate the use of small indoor test microcosms for the risk assessment of pesticides; 

2) To gain insight in the fate and effects on ecosystem structure and functioning following 

single-peak pesticide stress under tropical semi-field conditions; 

3) To evaluate the influence of repeated insecticide exposure on ecotoxicological effects in a 

tropical (model) ecosystem; 

4) Ultimately, to quantify to which extent temperate toxicity data may be used for tropical 

ERA based on obtained results (under 2 and 3). 

 

Benchmark compounds and model ecosystems 

 

To the ends described in the previous section, case studies were performed with three 

pesticides with different modes of action, namely: 

i) the acetylcholinesterase inhibiting insecticide chlorpyrifos, 

ii) the beta-tubulin synthesis inhibiting fungicide carbendazim, and 

iii) the photosynthesis inhibiting herbicide linuron. 

These compounds were chosen because they are used worldwide (FAO/WHO, 1995, 2005; 

Sørensen et al., 2005) and larger-scale model-ecosystem studies carried out in temperate 

countries are available as references (Table 1.1). Treatment levels in the experiments presented 

in this thesis were chosen based on (threshold) treatment levels in these reference studies to 

ensure the inclusion of a sufficiently low concentration and to facilitate comparison of 

obtained test results. 

The pesticides were evaluated with three different test systems. Small 8.5-liter microcosms 

situated in a laboratory at Alterra (Wageningen, The Netherlands) were used to address the 

first aim (Figure 1.2). The microcosms were maintained under controlled conditions of 21 ± 1 

°C with an artificial 14 hours daily photoperiod using fluorescent lamps resulting in a light 

intensity of approximately 45 µE/m2.s in the middle of the chambers. For the second and 

third aim of this thesis, circular and rectangular microcosms were set up outdoors at the 
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hatchery of AIT (Asian Institute of Technology) in Thailand (Figure 1.2). These freshwater 

(model) ecosystems were thus subject to the tropical climatically conditions in the period the 

experiments were performed as presented in figure 1.3. 

 

Table 1.1 Toxicity data (in µg/L) from first-tier laboratory toxicity tests with standard test 

species and higher-tier model ecosystem studies carried out in temperate countries. 

 Chlorpyrifos Carbendazim Linuron 

Laboratory toxicity tests 

   L(E)C50 Daphnia 

   NOEC Daphnia 

   Reference    

 

1 (LC50, 48h) 

0.1 (NOEC, 21d) 

Kersting and Van 

Wijngaarden, 1992 

 

320 (LC50, 48h) 

25.8 (NOEC, 25d) 

Van Wijngaarden et al., 

1998 

 

310 (LC50, 24h) 

- 

Stephenson and Kane, 

1984 

   L(E)C50 algae 

   NOEC algae 

   Reference 

> 1000 (EC50, 72h) 

- 

Van Donk et al., 1992 

340 (EC50, 48h) 

- 

Canton, 1976 

6 (EC50, 72h) 

1.2 (NOEC, 72h) 

Snel et al., 1998 

   L(E)C50 fish 

   NOEC fish 

   Reference 

4.7 (LC50, 96h) 

- 

Van Wijngaarden et al., 

1993 

370 (LC50, 96h) 

- 

Palawski and Knowles, 

1986 

3200 (LC50, 96h) 

- 

Crommentuijn et al., 

1997 

Model ecosystem studies* 

(NOEC – LOEC) 

Single-peak exposure 

   Test system 

    

 

   Reference 

 

 

 

Chronic exposure 

   Test system 

 

   Reference 

 

 

0.1 – 0.9 

Outdoor macrophyte-

dominated experimental 

ditches 

Van Wijngaarden et al., 

1996; Van den Brink et 

al., 1996; Kersting and 

Van den Brink, 1997 

0.01 – 0.05 

Indoor plankton-

dominated microcosms 

Cuppen et al., 2002; 

Van den Brink et al., 

2002 

 

 

2.2 – 21 

Outdoor 

Microcosms** 

 

Slijkerman et al., 2004 

 

 

 

3.3 – 33 

Indoor macrophyte-

dominated microcosms 

Cuppen et al., 2000; 

Van den Brink et al., 

2000 

 

 

<20 - 20 

Outdoor 

Microcosms*** 

 

Slijkerman et al., 2005 

 

 

 

0.5 – 5 

Indoor macrophyte-

dominated microcosms 

Van den Brink et al., 

1997; Cuppen et al., 

1997 

* For more reference model ecosystem threshold values for the pesticides tested: see the corresponding chapters 

and the general discussion. ** Not mentioned whether macrophytes were present or not. *** Two bunches of the 

macrophyte Elodea sp. were deployed the day before dosing. Presence of other macrophytes not mentioned.
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Figure 1.2 Overview of the microcosms used: small laboratory microcosms at Alterra (left), 

outdoor circular (top right) and rectangular (bottom right) microcosms in Thailand. 

 

Climatically conditions during the microcosms experiments in Thailand 

 

The tropical climate in Thailand is regulated primarily by the monsoon winds that produce 

three seasons: the cool, hot and rainy season. From May through mid-October the Southwest 

Monsoon brings warm moist air across Southeast Asia. The surface temperature of the land is 

higher than the arriving air mass, resulting in thunderstorm formations and the start of the 

rainy season (June – October). Rainfall is intense but of short duration, accompanied by much 

lightning and high winds. The rainfall has a moderating effect on the air temperature and 

direct sunlight is often blocked by cloud cover. Except immediately before and during 

thunderstorms, surface winds are very light during the wet monsoon. Beginning in July, 

rainfall of longer duration and greater regularity replaces the less dependable thunderstorm 
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precipitation. In mid-October the Southwest winds are replaced by winds from the Northeast, 

which brings cool, dry air from Central Asia across Thailand. The rains abruptly cease, and the 

cool season (November – February) follows. The air becomes clear and the direct sunlight 

warms the earth rapidly. The cool season is followed by the hot season (March – May). A 

gradual decrease in wind velocity begins in February, leading eventually to a period of air 

stagnation and high daytime temperatures. The hot season ends with the arrival of the 

Southwest Monsoon in May. This annual seasonal cycle occurs with great regularity 

(Heckman, 1979). 

The experiments evaluating single and repeated chlorpyrifos applications were carried out 

from mid July till the end of October 2003. These experiments were thus carried out during 

the rainy season, with average daily temperatures of 29 ± 0.6 °C and a cumulative rainfall of 

116 mm. Sunlight was often blocked by the relatively high cloud cover values (4.8 ± 1.7 octas), 

resulting in a radiation levels of 18.8 ± 2.5 mJ/m2. Linuron and carbendazim were evaluated in 

Thailand between mid-January and the end of April 2005, so the experimental period covered 

a part of the cool season (January – February) and a part of the hot season (March - April). 

Average daily temperatures increased accordingly in the course of the experiments from 24 °C 

at the start to 33 °C by the end of the experiments (Figure 1.3). To compensate for the 

preceding unusual dry period, the cloud seeding technique described in European Patent 

Office (2004) was applied in the first semester of 2005 by the Thai government to artificially 

produce rain. Consequently, cloud cover showed a rather high variation and ranged from 1.4 

to 6.7 octas, accompanied with low radiation levels for the time of the year (15.1 ± 2.7 

mJ/m2). 

 

Outline of the thesis in relation to the aims set 

 

Chapter 2 evaluates the effects of a single application of chlorpyrifos (insecticide), 

carbendazim (fungicide) and linuron (herbicide) on the ecology of a small indoor microcosm. 

Treatment effects are compared with effects observed in larger scale model ecosystem studies 

and discussed in an ecotoxicological and methodological context (aim 1). 
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Figure 1.3 Meteorological conditions and physical/chemical water characteristics during the 

course of the experiments in 2003 (left) and 2005 (right). Data were obtained from the 

meteorological station at AIT. 

 

Chapters 3, 5, 6 and 7 present the results of the microcosm studies in Thailand with single 

applications of chlorpyrifos, carbendazim and linuron. Direct and indirect effects on 

ecosystem structure and functioning are discussed. Study findings are compared with studies 

evaluating single applications of these pesticides in temperate regions to determine the 

influence of spatial factors on the toxic effect of chlorpyrifos on ecosystem functioning (aim 

2). 
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Chapter 4 deals with the outcomes of a microcosm study in Thailand with multiple 

chlorpyrifos applications. The impact of temporal factors on the ecotoxicology of chlorpyrifos 

under tropical climatically conditions is discussed in the discussion section of this chapter (aim 

3). 

 

Chapter 8 discusses the contents of the other chapters and the extent by which temperate 

first-tier and higher-tier toxicity data may be used for tropical ERA (aim 4). Concluding 

remarks and suggestions for future research are also made in this chapter. 
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CHAPTER 2 

 

EFFECTS OF CHLORPYRIFOS, CARBENDAZIM AND LINURON ON THE 

ECOLOGY OF A SMALL INDOOR AQUATIC MICROCOSM 

(Published in Archives of Environmental Contamination and Toxicology 53(1): 22-35.) 

 

 

Abstract 

 

To validate the use of small indoor microcosms for the risk assessment of pesticides, the fate 

and effects of chlorpyrifos, carbendazim and linuron were studied in 8.5-liter indoor 

freshwater microcosms. Functional and structural responses to selected concentrations were 

evaluated and compared to responses observed in larger-scale model ecosystem studies. 

Overall, the microcosms described the chain of effects resulting from the application 

adequately, although they did not always predict the exact fate and responses that were 

observed in larger semi-field studies. Since closed systems were used that did not contain 

sediment and macrophytes, pesticides were relatively persistent in the present study. 

Consequently, calculated toxicity values were generally more comparable with those reported 

in studies with long-term than short-term exposure. Carbendazim had a higher overall NOEC 

compared to experiments performed in larger systems because macroinvertebrate taxa, the 

most sensitive species group to this fungicide, were not abundant or diverse. 

Future refinements to the test system could include the addition of a sediment compartment 

and sensitive macroinvertebrate taxa. However, the simple design offers the potential to 

perform experiments under more controlled conditions than larger and consequently more 

complex model ecosystems, whilst maintaining relatively high ecological realism compared to 

standard laboratory tests. Further implications for risk assessment studies are discussed in an 

ecotoxicological and methodological context. 

 

Introduction 

 

Microcosms and mesocosms have often been used as a higher tier study for the ecological risk 

assessment of pesticides. They provide a bridge between laboratory and the field in terms of 

being manageable and allowing replication and hence a robust experimental design on the one 
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hand and by providing realism in terms of ecological processes and exposure to the chemical 

on the other (Brock et al. 2000a). 

In recent years the question of scale in ecological studies has been widely recognized as a 

critical issue and underpins conceptual frameworks of how we understand ecological 

phenomena (Flemer et al. 1997). Larger and consequently more complex model-ecosystems 

are not necessarily preferable over smaller ones. A research question can only be solved if the 

dimensions of the test system meet the requirements needed to solve this question. Larger and 

consequently more complex model-ecosystems are ecologically more realistic than smaller 

systems. On the other hand, smaller model-ecosystems are easier to replicate and manipulate 

and therefore prove to be more useful in elucidating the chain of events following chemical 

stress than large test-systems (Leeuwangh et al. 1994). 

The development of reliable, validated, more cost-effective, smaller test-systems was 

recommended by the European Workshop on Freshwater field tests (Crossland et al. 1992) 

and the HARAP workshop (Campbell et al. 1999). However, only a small number of reliable 

small test-systems have been used so far for pesticide risk assessment (Leeuwangh et al. 1994, 

Brock et al. 2000a, Brock et al. 2000b). 

In this study, the effects of the insecticide chlorpyrifos, the fungicide carbendazim and the 

herbicide linuron on the ecology of an 8.5-litre microcosm were evaluated. The fate and 

effects of the pesticides were compared with experiments performed in larger scale model-

ecosystems and discussed in an ecotoxicological and methodological context. This was done 

to validate the use of small model-ecosystems for the risk assessment of pesticides. 

 

Materials and methods 

 

Experimental design 

 

Twelve microcosms were situated in a room disposed of daylight and a maintained 

temperature of 21 ± 1 ºC. Each microcosm consisted of a glass chamber (diameter 24.5 cm; 

height 36 cm. Figure 2.1), filled with 8.5 litre of pond water, obtained from a pond next to the 

building of the research institute Alterra. The pond water was sieved over a 0.75 mm mesh 

before addition to the microcosms in order to exclude Chaoborus larvae, a known predator on 

zooplankton communities (Fedorenko 1975, Black and Hairston 1988). 
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Figure 2.1 Schematic representation (left) and overview (right) of the microcosm. 

 

The systems were stirred for 5 minutes every 30 minutes at 20 rpm by means of a MCS-101L 

biological stirrer to achieve water movement in the system in order to prevent settling out of 

planktonic algae. A fluorescent lamp (Philips TL’E 40W/33) was placed around the 

microcosms, resulting in a light intensity of approximately 45 µE/m2.s in the middle, and 60 

µE/m2.s at the edge of the chambers. The daily photoperiod was 14 hours (9.15 till 23.15). 

Besides an opening for the stirrer, the microcosms contained five smaller openings of which 

four were closed with air-tight screw caps and one was connected to a compressed air line 

(Figure 2.1). To take water samples, one of the screw cap was replaced by one containing a 

rubber ring through which a glass pipette was put to 10 cm below the water surface. By adding 

compressed air into the system, water was forced through the glass pipette into a sampling 

cup. 

In the preparatory phase of the experiments, additional plankton was introduced into the 

microcosms, together with the pond water. Moreover, in the experiments with carbendazim 

and linuron, eight individuals of respectively Bithynia leachii and Lymnaea palustrus were added to 

control periphyton growth on the vessel walls. A nutrient addition of 0.115 mg N (as 

NaNO3), 0.014 mg P (as KH2PO4) and 0.7 mg HCO3 (as NaHCO3) was applied twice in the 

pre-treatment period and twice a week in the treatment period. Microcosms were allowed to 

stabilise for 1 week, which was defined as the pre-treatment period, after which the systems 

lamp 
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closed tubes 
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were treated. The systems were monitored for several endpoints over an experimental period 

of two weeks for chlorpyrifos and three weeks for carbendazim and linuron. 

 

Pesticide application and analysis 

 

Chlorpyrifos was applied as Dursban® 4E (nominal concentrations: 0.005, 0.05, 0.5 and 5 µg 

a.i./L) to two microcosms for each concentration, while four other systems served as controls. 

On day 0 (directly after application), 3 and 14, 250-ml water samples were taken at mid-depth 

and extracted with octadecyl (C-18, Bakerbond) Solid Phase Extraction (SPE) columns. The 

columns were conditioned with 5 ml methanol and 5 ml distilled water. After extraction of a 

certain volume of water, the chlorpyrifos was eluted from the column with two successive 

portions of 2 ml hexane into glass test-tubes. The samples were then evaporated by placing 

them in a heated water-bath and supplying compressed air into the tubes. The residue was 

taken up in exactly 1.5 ml hexane. After shaking the samples thoroughly by hand, the hexane 

layer was transferred to GC-cups and stored at -22°C until analysis. Chlorpyrifos 

concentrations were determined by splitless injection on a HP 5890 Gas Chromatograph (as 

described in Brock et al. 1992). The detection limit and recovery of chlorpyrifos were 0.01 

µg/L and 83.3% ± 8.4% (mean ± sd, n=6), respectively. 

For the experiment with the fungicide derosal (active ingredient carbendazim) the treatment 

concentrations of 3.3, 33, 100 and 1000 µg a.i./L were applied to two microcosms each. Four 

other systems were used as untreated controls. Water samples were taken on day 0 (directly 

after application), 3, 7, 14 and 21, stored at 4 ºC and analysed directly with high performance 

liquid chromatography (HPLC) using an external standard as described in Van Wijngaarden et 

al. (1998). 

Linuron was applied to eight microcosms, in four duplicate doses (0.5, 5, 50, 150 µg/L), while 

four other systems served as controls. Water samples were taken on day 0 (directly after 

application), 3, 7, 14 and 21. Those taken from microcosms with the two lowest linuron 

applications were extracted according to the method as described for chlorpyrifos. Linuron 

was eluted from the SPE columns with three successive aliquots of 1 ml methanol, diluted 

with distilled water to a fixed volume of 5 ml and stored at 4°C. Water samples from the 

higher linuron concentrations (50 and 150 µg/L) were analysed without a concentration step. 
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Analysis was carried out with HPLC as described in Cuppen et al. (1997). Linuron recovery 

from water was 105.9 ± 5.8% (mean ± sd, n = 8).  

The half-life for the disappearance of the pesticides (DT50) was calculated assuming a first 

order dissipation kinetics, i.e. by linear regression using logarithmic transformed measured 

pesticide concentrations. 

 

DO-pH-alkalinity-conductivity syndrome 

 

Dissolved oxygen (DO), pH and temperature were measured every working day at the start of 

the photoperiod and seven hours later. By measuring the difference in DO during the first 

seven hours of the light period, 90 to 95% of the oxygen production can be determined 

(Beyers and Odum 1993). After stirring the microcosms for 5 minutes at 20 rpm, 50 ml water 

samples were taken with a glass pipette as described previously. In this water sample, DO was 

measured with a WTW oxygen meter (OXI 196) connected to a WTW oxygen probe (EO 

196). The pH and temperature were measured with a WTW pH meter (pH 323) and a LF 91 

temperature meter, respectively. Alkalinity was measured three times a week by titrating a 25-

ml water sample with 0.01 N HCl until pH 4.2. Conductivity was measured with a WTW 

conductivity meter. 

 

Chlorophyll-a and nutrients 

 

Chlorophyll-a measurements were made three times a week by filtering a 250-ml water sample 

over a Whatman GF/C glass fibre filter (mesh: 1.2 µm). Extraction of the pigments was 

performed according to the method described by Moed and Hallegraeff (1978). Subsamples of 

the filtrate were transferred to centrifuge-tubes and stored at 4º C prior to analyses for 

ammonium, nitrate and orthophosphate using a Tecator 5042 detector connected to a Tecator 

5027 sampler and a Tecator 5011 analyser (nitrate and ammonium) or Tecator 5010 analyser 

(orthophosphate). 

 

Decomposition 

 

In the experiments with carbendazim and linuron, decomposition of particulate organic matter 

(POM) was studied using dried Populus leaves. The Populus leaves were obtained from a stock 
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of previously leached (three times for two days) and dried (60 °C, 72 hours) leaves. 

Approximately 0.4 grams of pretreated leaves were weighed and placed in stainless steel tea 

strainers, then leached for 3 days in distilled water. One tea strainer was incubated in each 

microcosm at mid-height on the day of application. At the end of the experiment (day 21), the 

content of a tea strainer was gently washed in the corresponding microcosm to separate algae 

and invertebrates from POM. The leaf material was transferred to aluminium dishes to 

determine dry weight (105°C, 24 hours). 

 

Zooplankton and phytoplankton 

 

Zooplankton samples were taken at the end of each experiment. After stirring the 

microcosms, 6-L samples were passed over a 40-µm mesh net. Formalin was added to a final 

concentration of 4% v/v to preserve the samples. After 2 days, the upper liquid was removed 

and the remainder was transferred to pre-weighed plastic bottles. The micro-zooplankton was 

identified (to species level where possible) in a weighed subsample with an inverted 

microscope. For macro-zooplankton, total samples were identified using a binocular 

microscope since their density was always relatively low. In the experiment with linuron, the 

phytoplankton community was also sampled at the end of the experiment. A 1-L sample was 

taken, stained with Lugol’s solution and concentrated after sedimentation for 6 days. The 

concentrated sample was preserved with formaline and cell counts were made. This was done 

in ten counting fields of a subsample. Zooplankton and phytoplankton data were expressed as 

number of individuals per litre. 

Furthermore, at five occasions during the course of the experiment, the total numbers of 

cladocerans were determined in a 250-ml water sample. After counting, the water samples 

were returned to the corresponding microcosm. 

 

Snails 

 

At the end of the carbendazim and linuron experiments, the sublethal effects on respectively 

Bithynia leachii and Lymnea palustrus were determined. The sublethal effects were screened by 

evaluating the grazing activity, measured as numbers of individuals grazing. Effects on B. 

leachii were also determined by attempts to open the operculum with a pair of forceps. 
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Data analysis 

 

NOECs were calculated for all parameters using the parametric Williams test. The Williams 

test is an ANOVA test that assumes an increasing effect for an increasing dose. Abundance 

data were Ln(Ax + 1) transformed, where x stands for the abundance value and Ax makes 2 

when taking the lowest abundance value higher than zero for x (e.g. if lowest number above 

zero is 1, A becomes 2; for rationale, see Van den Brink et al. 2000). This was done to down-

weight high abundance values and approximate a normal distribution of the data. Analyses 

were performed with Community Analysis, version 3.5 (Hommen et al. 1994). Statistical 

significance was accepted at p < 0.05. Only NOECs calculated for at least two consecutive 

sampling dates were considered in the interpretation of the data. 

The differences in structure of the zooplankton communities between the microcosms as 

sampled at the end of the experiments and the phytoplankton community of the linuron 

experiment were visualised with the ordination technique called Principal Component Analysis 

(PCA) (Ter Braak 1995, Van Wijngaarden et al. 1995). Ordination is able to express 

differences in species composition between samples without the use of measured 

environmental or explanatory variables. In such an analysis, ordination constructs imaginary, 

latent explanatory variables which maximise the variation in species composition between 

sites, i.e. which best represent the underlying structure in the data set (Ter Braak 1995). The 

first latent variable is constructed in such a way that it explains the largest part of the total 

variance, the second one the largest part of the remaining variance etc. The first two latent 

variables are normally used to construct an ordination diagram of which they form the axes. 

Samples and species are represented in the diagram by points (or arrows) plotted at the scores 

(values) they have on the latent variables (See Figure 2.5 as an example). Samples with nearly 

identical species composition lie close together in the diagram, while samples that lie far apart 

have very different species composition. In the diagrams (biplots), species arrows point in the 

direction of higher values. For examples on the application of ordination techniques in 

ecotoxicology the reader is referred to Van den Brink et al. (2003). Before analyses with 

CANOCO for windows (version 4. Ter Braak and Smilauer 1998), the abundance data of the 

communities were Ln(Ax + 1) transformed (see above for rationale). 

The NOEC at community level for the phytoplankton community at the end of the linuron 

experiment, as well as the zooplankton communities at the end of the three experiments, were 
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calculated by applying the Williams test to the sample scores of the first principal component 

(for rationale, see Van den Brink et al. 1996). 

 

Results 

 

Pesticide concentrations 

 

In all three experiments, the initial concentrations deviated by less than 10% of the nominal 

concentrations (Table 2.1). Linuron and carbendazim were very persistent; pesticide 

concentrations measured at the end of the experiment were similar to initial concentrations. 

Therefore, no DT50 for the disappearance of carbendazim and linuron could be estimated.  

Chlorpyrifos concentrations decreased over the experimental period and the rate of dissipation 

was found to be dose dependent; chlorpyrifos disappeared faster in the highest two 

concentrations compared to the 0.05 µg/L treatment (Table 2.1). The half-life was 

approximately 10 days for the 0.05 µg/L treatment level and 6 to 7 days for the two highest 

treatment levels. The chlorpyrifos concentration in the 0.005 µg/L dosed microcosms 

dropped below detection level quickly after application so no half-life could be calculated. 

 

Table 2.1 Nominal concentrations and initial concentrations of the pesticides for the 

experiments with chlorpyrifos, carbendazim and linuron. Concentrations at the end of the 

experiments and the dissipation rate from the water layer (DT50) are also noted. Presented 

concentrations are in µg/L. The detection limit (DL) for chlorpyrifos was 0.01 µg/L. A “-” 

implies that no DT50 could be calculated. SD = standard deviation.  

 
 
Pesticide 

Nominal 
Concentrations 
 

Initial 
Concentrations 
mean ± SD 

Concentration at end 
of  experiment  
mean ± SD 

DT50 
(days)  
mean ± SD 

Duration 
experiment 
(days) 

Chlorpyrifos 0.005 < DL < DL - 14 
 0.05 0.053 ± 0.0057 0.018 ± 0.004 9.6 ± 0.0  
 0.5 0.47 ± 0.085 0.035 ± 0.006 6.1 ± 0.2  
 5 4.92 ± 0.47 0.35 ± 0.06 6.6 ± 0.2  
Carbendazim 3.3 3.5 ± 0.1 3.7 ± 0.1 - 21 
 33 33.5 ± 1.6 36 ± 1.3 -  
 100 97.8 ± 1.3 107.5 ± 3.5 -  
 1000 976.5 ± 4.9 1003 ± 48.1 -  
Linuron 0.5 0.5 ± 0 0.4 ± 0.1 - 21 
 5 5.1 ± 0 4.3 ± 0.2 -  
 50 45.1 ± 0.9 40.1 ± 1.5 -  
 150 146.6 ± 0.5 146.6 ± 0.5 -  
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Water quality parameters 

 

The overall effects of the pesticides on the water quality parameters are presented in Table 2.2. 

Application of chlorpyrifos led to an increase in dissolved oxygen (DO) and DO production 

(Figure 2.2) in all but the lowest treatment and increased pH levels in all treatments. 

Significantly higher pH levels in all treatments were the result of a decrease in pH in the 

control microcosms from 10.3 to 9.7 during the course of the experiment. From 10 days post 

application onwards conductivity increased in the 0.5 and 5 µg/L-applied microcosms. 

Application of chlorpyrifos had no significant treatment effect on alkalinity or nutrient 

concentrations. 
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Figure 2.2 Dynamics in dissolved oxygen production (A), chlorophyll-a (B) and numbers of 

cladocera (C) of the chlorpyrifos experiment. 

 

The highest carbendazim treatment led to an immediate and prolonged increase in DO 

production (Figure 2.3). Although DO levels were generally higher at this treatment level, this 

difference was not significant. Furthermore, pH increased in the highest and conductivity in all 

but the lowest concentration from one week post application onwards. Carbendazim did not 

lead to significant treatment effects on alkalinity and nutrient levels (Table 2.2).
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Table 2.2 NOECs and LOECs (in µg/L) found in the present study and studies with a single load and constant exposure of chlorpyrifos, 

carbendazim and linuron. Arrows indicate a significant increase (↑) or decrease (↓) compared to controls. The study numbers refer to the 

studies as given under this table. nm = not measured. 

Chlorpyrifos Carbendazim Linuron  
Endpoint/ pesticide load Single peak Constant This study Single peak Constant This study Single peak Constant This study 

Community metabolism 
DO 
DO production 
pH 
EC 
Alkalinity 
Ammonium 
Nitrate 
Phosphate 
 
Decomposition 
Breakdown of POM 
 
Zooplankton 
community 
 
Phytoplankton 
community 
chlorophyll-a 
 
Overall NOEC 
 
Study number * 

 
6-44↑ 
6-44↓ 
6-44↑ 
6-44↓ 
6-44↓ 
nm 
nm 
nm 
 
 

nm 
 
 

0.1-0.9↓ 
 
 

nm 
nm 
 

0.1-0.9 
 
1 

 
0.1-0.5↑ 

nm 
0.05-0.1↑ 
0.05-0.1↓ 
0.01-0.05↓ 

nm 
nm 
>0.5 

 
 

0.01-0.05↓ 
 
 

0.01-0.05↓ 
 
 

0.05-0.1↑ 
0.05-0.1↑ 

 
0.01-0.05 

 
2 

 
0.005-0.05↑ 
0.005-0.05↑ 
ctr-0.005↑ 
0.05-0.5↑ 

> 5 
> 5 
> 5 
> 5 

 
 

nm 
 
 

0.005-0.05↓ 
 
 

nm 
0.05-0.5↑ 

 
0.005-0.05 

 
 

 
21-226 

nm 
>226 
>226 
nm 
nm 
nm 
nm 
 
 

nm 
 
 

2.2-21↓ 
 
 

nm 
21-226↑ 

 
2.2-21 

 
3 

 
>1000 
nm 

>1000 
>1000 
>1000 
>1000 
>1000 
>1000 

 
 

100-330↓ 
 
 

33-100↓ 
 
 

33-330↑ 
33-330↑ 

 
3.3-33 

 
4 

 
> 1000 

100-1000↑ 
100-1000↑ 
3.3-33↓ 
> 1000 
> 1000 
> 1000 
> 1000 

 
 

100-1000↓ 
 
 

33-100↓ 
 
 

nm 
33-100↑ 

 
33-100 

 
 

 
0.5-5 
5-15 
0.5-5 
nm 
nm 
nm 
nm 
nm 
 
 

nm 
 
 

>50 
 
 

>50 
>50 

 
5-15 

 
5 

 
0.5-5↓ 
nm 

0.5-5↓ 
0.5-5↑ 
0.5-5↑ 
>150 

50-150↑ 
>150 

 
 

>150 
 
 

5-15↓ 
 
 

0.5-5↓ 
50-150↑ 

 
0.5-5 

 
6 

 
0.5-5↓ 
0.5-5↓ 
0.5-5↓ 
5-50↑ 

50-150↑ 
5-50↑ 
5-50↑ 
5-50↑ 

 
 

50-150↑ 
 
 

5-50↓ 
 
 

50-150↓ 
5-50↓ 

 
0.5-5 

 
 

* 1.    Van Wijngaarden et al. 1996, Van den Brink et al. 1996, Kersting and Van den Brink 1997  
2. Cuppen et al. 2002, Van den Brink et al. 2002     
3. Slijkerman et al. 2004 
4. Cuppen et al. 2000, Van den Brink et al. 2000 
5. Kersting and Van Wijngaarden 1999, Van Geest et al. 1999 
6. Van den Brink et al. 1997, Cuppen et al. 1997 
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Figure 2.3 Dynamics in dissolved oxygen production (A), chlorophyll-a (B) and numbers of 

cladocera (C) of the carbendazim experiment. 
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Figure 2.4 Dynamics in dissolved oxygen production (A), chlorophyll-a (B) and numbers of 

cladocera (C) of the linuron experiment. 
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Effects on water quality were most prominent in the linuron experiment. Immediately after 

treatment, DO production (Figure 2.4) was significantly decreased compared to controls at all 

linuron concentrations but the lowest (Table 2.2). This resulted in a drop in DO in even the 

lowest concentration at the end of the dark period between 14 and 17 days post application. 

The DO levels in the afternoon were lower in all but the lowest treatment for a prolonged 

period of time. DO remained above 6.8 mg/L in all microcosms, so no anoxic conditions 

occurred. At the end of the experimental period, only the microcosms with the highest two 

linuron concentrations were still significantly different from controls. The drop in DO was 

accompanied by a drop in pH in the higher treatment levels. At the end of the experiment, the 

microcosms treated with 5 µg/L regained normal “control” pH levels, whereas those with 

higher concentrations remained lower than in controls. Corresponding with the decrease in 

pH and DO, application of 50 and 150 µg/L led to an increase in conductivity and the highest 

concentration to an increased alkalinity. Although alkalinity was only increased during the 

second week post application, conductivity remained increased until the end of the 

experiment. The two highest linuron treatments resulted in an increase in concentrations of 

ammonium, nitrate and phosphate compared to controls. 

 

Zooplankton 

 

In the bulk sample taken at the end of the chlorpyrifos experiment, a total number of 21 

invertebrate taxa were identified and their abundance determined. In terms of numbers of 

taxa, the most important taxonomic groups were Rotatoria, Cladocera, Copepoda, Insecta and 

Ostracoda (not identified at species level). Treatment-related dynamics in densities of 

Cladocera in the course of the experiment are presented in Figure 2.2. In the controls and 

0.005 µg/L microcosms densities of Cladocera increased in time, while in test systems treated 

with higher concentrations Cladocera were eliminated. 

A biplot resulting from the PCA on the zooplankton dataset is given in Figure 2.5. The 

diagram summarises the treatment effects in the dataset, while still indicating the approximate 

species composition for all samples. Samples with nearly identical species compositions lie 

close together, while samples with very different species compositions lie far apart. If an 

imaginary line is drawn through a species point and the origin of the plot, the relative 

abundance of that species in all samples can be derived by perpendicularly projecting the 

sample point on this imaginary line. The samples projecting on the “species line” far away 
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from the origin but on the same side of the origin as the species point contain relatively high 

numbers of this species. If a sample projects on the other side of the origin compared to the 

species point, numbers of this species are relatively low in this sample (Van den Brink et al. 

2003). 
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Figure 2.5 Ordination diagram (PCA) indicating effects of a single application of the 

insecticide chlorpyrifos on the zooplankton per treatment level. Of all variance, 36% is 

displayed on the horizontal axis and another 26% on the second one. 

 

The PCA of the chlorpyrifos zooplankton dataset revealed treatment related differences in 

species composition, with the effect of the treatment decreasing in the order 5 ≈ 0.5 ≈ 0.05 > 

0.005 µg/L ≈ controls (Figure 2.5). The direction of the treatment vector in the diagram is 

from the right to the left, meaning that taxa less abundant in the treated microcosms are 

situated at the right and the unaffected and positively affected taxa at the centre and left side 

of the diagram. 

Numbers of Chydorus sphaericus, Simocephalus vetulus and Lepadella patella were significantly 

decreased at the higher treatment levels (Table 2.3). Chydorus sphaericus and Simocephalus vetulus 

were eliminated in the three highest concentrations. Taxa that occurred in significantly higher 

densities than in the controls were the rotifers Cephalodella gibba, Lecane bulla and Trichocerca. 
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Overall, the Williams test on the PCA coordinates showed a significant treatment effect on the 

invertebrate community at all chlorpyrifos applications but the lowest (NOECcommunity = 

0.005 µg/L). 
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Figure 2.6 Ordination diagram (PCA) indicating effects of a single application of carbendazim 

on the zooplankton per treatment level. Of all variance, 37% is displayed on the horizontal 

axis and another 20% on the second one. 

 

In the samples taken at the end of the experiment evaluating carbendazim, a total number of 

23 different zooplankton taxa were identified. The control community was dominated by 

Rotifera, followed by Cladocera, Cyclopoida, Insecta and Ostracoda (not identified at species 

level). Treatment-related dynamics in densities of Cladocera in the course of the experiment 

are presented in Figure 2.3. In test systems treated with the two highest concentrations (100 

and 1000 µg/L) Cladocera declined and were even eliminated at the end of the experiment. 

The PCA biplot of the zooplankton dataset reveals a clear dose-related deviation of the 100 

and 1000 µg/L carbendazim treatments from the controls (Figure 2.6). The visual differences 

were confirmed by the NOECcommunity calculation (NOECcommunity = 33 µg/L). Taxa 

negatively affected by the application are situated on the left side of the diagram, whilst 
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unaffected taxa are situated at the upper right (100 µg/L samples) and lower right quadrant 

(1000 µg/L samples). In the two highest concentrations, cladocerans were completely 

eliminated and, consequently, abundances of Simocephalus vetulus, Grabtoleberes testudinalis, Alona 

rectangular, ephippia and also the rotifer Lepadella patella were significantly lower than in 

controls. In addition, the highest carbendazim dose also had pronounced effects on rotifers. 

Total numbers of individuals were only one third of those in the controls (Williams test, p < 

0.05) and Colurella uncinata and nauplii abundances were significantly reduced (Table 2.3). 

Branchionus angularis occurred in higher densities at this treatment compared to controls.  

 

Table 2.3 NOECs (µg/L) as calculated by the Williams Test (P ≤ 0.05) for the abundances of 

zooplankton taxa for the three different experiments as well as phytoplankton taxa for the 

linuron experiment. All measurements were performed at the end of the experiments.  

Chlorpyrifos 

Zooplankton 

Carbendazim 

Zooplankton 

Linuron 

Zooplankton 

Linuron 

Phytoplankton 

Decrease: 

0.005 Simocephalus vetulus 

0.005 Chydorus sphaericus 

0.5     Lepadella patella 

 

 

 

 

 

Increase: 

0.005 Cephalodella gibba 

0.05   Lecane bulla 

0.5     Trichocerca sp. 

Decrease: 

33   Simocephalus vetulus 

33   Graptoleberis testudinaria 

33   Lepadella patella 

33   Alona rectangula 

33   Ephippia 

100 Nauplii 

100 Colurella uncinata 

 

Increase: 

100 Brachionus angularis 

 

Decrease: 

0   Lecane bulla  

5   Daphnia galeata 

5   Daphnia magna  

5   Ephippia 

50 Simocephalus vetulus 

 

 

 

Increase: 

None 

Decrease: 

5   Scenedesmus 

5   Monoraphidium 

50 Pediastrum 

50 Tetraedon 

 

 

 

 

Increase: 

0   Epithemia 

5   Navicula 

50 Closterium 

 

In the experiment with linuron, a total number of 23 different taxa were identified dominated 

by Rotifera, followed by Cladocera, Copepoda (Cyclopoida and nauplii) and Ostracoda (no 

identification on taxon level). Total number of Cladocera as counted during the course of the 

experiment was lower in the two highest treatments only at the end of the experiment (Figure 

2.4). 

The PCA diagram presented in Figure 2.7 summarises the treatment effects on the 

zooplankton community on day 21. The diagram reveals a decrease in abundance of especially 
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Cladocera species for the highest two applications, as these sample points are positioned at the 

upper left quadrant, and the Cladocera species points at the lower right quadrant. Although 

these visual effects could not be confirmed with NOECcommunity calculations (> 150 µg/L), 

negative treatments effects were found for several species (Table 2.3). Abundances of the 

cladocerans Daphnia galeata, Daphnia magna together with ephippia were decreased in the 

highest two concentrations and Simocephalus vetulus in the highest only. Lecane bulla showed 

decreased numbers at all linuron applications on this day (Table 2.3). 
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Figure 2.7 Ordination diagram (PCA) indicating effects of a single application of linuron on 

the zooplankton per treatment level on day 21. Of all variance, 35% is displayed on the 

horizontal axis and another 20% on the vertical axis. 

 

Phytoplankton 

 

After the start of the treatment, chlorophyll-a values decreased in controls and the lowest 

chlorpyrifos application during the course of the experiment (Figure 2.2). In the higher 

chlorpyrifos concentrations chlorophyll-a levels did not alter, leading to a concentration-

dependent increase compared to controls (NOEC = 0.005 µg/L, Table 2.2). 
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Application of the highest two carbendazim concentrations led to a time-related increase in 

chlorophyll-a content (Figure 2.3). Four days post application, chlorophyll-a values in these 

treatment levels were twice and at the end of the experiment four times higher than in 

controls. 

During the course of the linuron experiment, chlorophyll-a content increased in controls and 

microcosms applied with the two lowest linuron concentrations (Figure 2.4). At the end of the 

experiment, chlorophyll-a levels were tripled in these microcosms compared to pre-treatment 

values. Application of the two highest linuron concentrations led to a decrease in chlorophyll-

a levels. Five days post treatment, no chlorophyll-a could be detected in samples from 

microcosms treated with these concentrations. In the 50 µg/L treated microcosms, 

chlorophyll-a re-appeared one week after the treatment but did not regain normal values 

within the experimental period. Chlorophyll-a levels in the highest concentration remained 

zero until the end of the experiment. 
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Figure 2.8 Ordination diagram (PCA) indicating effects of a single application of linuron on 

the phytoplankton per treatment level. Of all variance, 38% is displayed on the horizontal axis 

and another 20% on the vertical axis. 
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The PCA-biplot (Figure 2.8) visualises the overall effect of linuron on the phytoplankton 

community. The diagram reveals that the phytoplankton community of the 150-µg/L 

microcosms and, to a lesser extent, the 50 µg/L microcosms diverged from controls. Most 

species that were affected by linuron application decreased in numbers, although Navicula, 

Epithemia and Closterium individuals increased significantly in abundance (Table 2.3). The 

direction of the treatment vector is from the left to the right part of the diagram, i.e. those taxa 

negatively affected by the treatment are situated at the left and insusceptible and positively 

affected taxa are situated at the right side of the biplot (Figure 2.8).  

The NOECphytoplankton community as calculated by a Williams test on the PCA 

coordinates was 50 µg/L for linuron (Table 2.2). The taxa Scenedesmus and Monoraphidium were 

significantly less abundant in the highest two linuron applications compared to controls. In 

addition, Pediastrum and Tetraedon were significantly reduced at the highest application. 

Reduction of total number of phytoplankton individuals was also most prominent in the 150 

µg/L samples. In these samples, numbers were only one quarter of control levels. 

 

Snails 

 

Application of carbendazim did not result in lethal treatment effects on Bithynia leachii at the 

concentrations applied. However, grazing behaviour was affected in the two highest 

carbendazim concentrations. In addition, in microcosms dosed with 1000 µg/L, the 

operculum reflex was decreased compared to control animals. The NOEC for the sublethal 

effects on B. leachii was therefore determined to be 33 µg/L (Data not shown). 

The application of linuron did not result in any significant treatment effect on Lymnaea 

palustrus. 

 

Decomposition experiment 

 

The residual dry weights of the Populus leaves in control and the lower carbendazim treatments 

amounted to approximately 60% of the initial dry weight (data not shown). Application of 

1000 µg/L led to a slight though significant decrease in decomposition compared to controls 

(Table 2.2).  

The decomposition of the Populus leaves in all but the highest linuron treatments were 

comparable with the carbendazim experiment: residual dry weights were approximately 60% 
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of initial values. The rate of decomposition in the highest dosed microcosms was 10% higher 

than in controls (Table 2.2). 

 

Discussion 

 

Fate of the pesticides 

 

Chlorpyrifos was relatively persistent and the DT50 varied between 10 days for the 0.05 µg/L 

treatment and 6 to 7 days for the higher treatments (Table 2.1). This dependence of DT50 on 

treatment level is most probably due to higher pH values in the higher treatment levels, as the 

stability of chlorpyrifos decreases rapidly as pH increases (Macalady and Wolfe 1983). The 

relatively slow disappearance of chlorpyrifos in the present study compared to other 

microcosm studies (Racke 1993, Giesy et al. 1999) is presumably the result of the absence of 

macrophytes and sediment, which are known to substantially absorb chlorpyrifos from the 

water (Crum and Brock 1994). 

The concentrations of carbendazim and linuron remained constant over the experimental 

period for all doses applied (Table 2.1). In an indoor macrophyte-dominated microcosm 

experiment with carbendazim, Cuppen et al. (2000) found a DT50 between 6 and 25 weeks, 

which decreased with the treatment level. The authors suggested that the dependence on 

treatment level was probably not the result of changes in physico-chemical conditions, since 

no differences were observed between the different treatments. It is therefore unlikely that the 

absence of breakdown in the present study was caused by water quality parameters. A more 

plausible explanation was the fact that closed systems were used that did not contain sediment 

and macrophytes. 

Van den Brink et al. (1997) and Cuppen et al. (1997) performed a microcosm study in indoor 

macrophyte-dominated systems with linuron and found a half-life of 11 days for 0.5 µg/L 

dosed up to 49 days for 150 µg/L dosed microcosms. They concluded that the difference in 

DT50 was due to differences in pH regime between the different treatments as Cserhati et al. 

(1976) found a significant slower hydrolysis of linuron at pH 6 and 8 compared to pH 4 and 

10. In the present study, the pH ranged from 7.8 to 8.1 for the different treatments so, based 

on the above, a DT50 of around 50 days could be expected, which is considerably longer than 

the duration of this study. 
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Effects on ecosystem structure and functioning 

 

The primary response of the chlorpyrifos application was a decline in the number of 

zooplankton species and abundances (Cladocera in particular). The consequent reduction of 

the grazing pressure indirectly caused an increase in chlorophyll-a levels, resulting in an 

increase in pH, dissolved oxygen (DO), DO-production and conductivity (Table 2.2, Figure 

2.2 and 2.5). A decrease in the conductivity due to increased photosynthesis was, however, 

expected (Brock et al. 1993). The small increase in conductivity (280 to 300 µS/cm) after 

chlorpyrifos treatment can be explained by the release of dissolved substances that were until 

then part of the biomass of the zooplankton. All other direct and indirect effects are 

comparable with effects found in other microcosm studies with chlorpyrifos (Kersting and 

Van den Brink 1997) and other insecticides (see Brock et al. 2000b and Van Wijngaarden et al. 

2005 for reviews). The order of susceptibility of the zooplankton groups was Cladocera > 

Copepoda and Ostracoda > Rotifera, which is in accordance with other model ecosystem 

studies (Van den Brink et al. 1996, 2002, Brock et al. 1992). The Rotifera (which are of low 

sensitivity to chlorpyrifos) have frequently been reported to increase in numbers in insecticide-

stressed aquatic systems as a result of a lower competition and grazing pressure caused by a 

decline in cladocerans (Brock et al. 2000b). In the current study, rotifer abundances were 30% 

higher in the 0.5 µg/L applied microcosms and doubled in the highest two treatments. 

Though this increase was not significant due to a high variation in controls, a significant 

increase in numbers of the individual species Cephalodella gibba, Lecane bulla and Trichocerca sp. 

was demonstrated for higher chlorpyrifos concentrations (Table 2.3). 

Direct effects of carbendazim have been reported on zooplankton and macroinvertebrates in 

model ecosystem studies after single (Slijkerman et al. 2004) and chronic (Cuppen et al. 2000, 

Van den Brink et al. 2000) exposure. In line with this, the higher carbendazim applications in 

the present study had negative treatment effects on zooplankton and Bithynia leachii. Cladocera 

and Rotifera were found to be the most susceptible zooplankton groups (Figure 2.3 and 2.6). 

In a former microcosm experiment, Copepoda were found to be more sensitive than rotifers. 

This only became apparent three weeks after application since the effect on Cyclopoida 

resulted from a decrease in the numbers of their immature stage, nauplius, rather than of 

direct toxicity (Van den Brink et al. 2000). Indeed, a decrease in nauplius larvae was also found 

in the present study (NOEC = 100 µg/L), but the experimental period was probably too short 

to show a prolonged effect on mature Cyclopoida. 
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The reduction in zooplankton abundance and the consequent increased growth of planktonic 

algae resulted in an increase in pH and oxygen production as discussed for chlorpyrifos. As 

observed in a macrophyte-dominated microcosm study with chronic carbendazim exposure, 

no increase in dissolved oxygen concentrations was observed (Cuppen et al. 2000). The 

authors of that study attribute this to the fact that the water was saturated with dissolved 

oxygen, so a possible movement of oxygen to the air could have caused unnoticed additional 

oxygen production. Oxygen levels were near saturation in the present study too (8.8 ± 0.7; 

saturation is 100% at 9.4 mg/L) so this could have masked a possible increase. Carbendazim 

application, however, led to decreased conductivity values in the two highest concentrations, 

most probably due to the increase in chlorophyll-a (Figure 2.3). Carbendazim had a significant 

treatment effect on decomposition, which may have resulted in decreased levels of breakdown 

products and, consequently, also contributed to a lower conductivity. 

In microcosms treated with the highest carbendazim concentration, the operculum reflex of 

Bithynia leachii was disrupted and grazing was even affected at 100 µg/L carbendazim. In line 

with this, Cuppen et al. (2000) found a NOEC based on number of individuals caught on 

artificial substrates of 100 µg/L for Bithynia leachii and 33 µg/L for Bithynia tenticulata. In a 

laboratory bioassay, Van Wijngaarden et al. (1998) reported a NOECreproduction of 103 

µg/L for the latter species. 

The general effect chain of linuron application in the present study was the same as described 

for macrophyte dominated freshwater microcosm studies with linuron (Van den Brink et al. 

1997, Cuppen et al. 1997) and other herbicides (for a review see Brock et al. 2000a). The 

primary effect of linuron is an inhibition of the photosynthetic efficiency of the primary 

producers (Snel et al. 1998), leading to decreased dissolved oxygen and pH levels and an 

increase in alkalinity and conductivity (Table 2.2). A decrease in sensitive phytoplankton 

population densities caused an increase of the non-sensitive or rapidly adapted species 

Ephitemia, Navicula and Closterium by reduced competition (Figure 2.8). Increased levels of 

ammonium, nitrate and ortho-phosphate, as a consequence of an overall decrease in primary 

production and the decomposition of the sensitive phytoplankton biomass, further stimulated 

the growth of these species.  

The EC50 of Daphnia galeata for linuron (360 µg/L; Stephenson and Kane 1984) is 

considerably higher than the concentrations used in the current experiment. Numbers of the 

cladocerans D. galeata, D. magna and S. vetulus and total numbers of Cladocera had significantly 

decreased three weeks after application (Table 2.3, Figure 2.4). Cladocerans are more efficient 
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grazers than rotifers (Hanazato 1998) so they could survive the decreasing phytoplankton 

biomass over a longer period. The eventual decrease in D. galeata, D. magna and S. vetulus can 

be further explained by the phytoplankton community composition as identified in the higher 

treatment level three weeks post application. The phytoplankton community was dominated 

by the diatoms Epithemia and Navicula, taxa that possess a tough cover probably making them 

less edible for (young) Cladocera (Figure 2.8). Indeed, Starr et al. (1999) found a reduction in 

the reproductive success of a planktonic copepod (Calanus finmarchicus) after a monospecific 

diet of a Navicula species. 

Despite the lower oxygen concentrations, the decomposition of Populus leaves was significantly 

higher in the highest dosed microcosms. The dissolved oxygen concentrations above the 

substrate were probably high enough to prevent an inhibition of microbial activity. In 

macrophyte-dominated freshwater microcosms treated with the same concentration of 

linuron, no effect on the decomposition of Populus leaves was noted (Cuppen et al. 1997). 

However, increased decomposition rates after herbicide treatment have been reported for 2,4-

D (Sherry 1994) due to changes in the micro-organism species composition. Since micro-

organisms were not studied, we can not verify whether this also occurred in the present study. 

A possible explanation of the faster decomposition of particulate organic matter (POM) might 

be that invertebrates increased their grazing of micro-organisms associated with POM, 

because of the decline in food in the form of phytoplankton. 

No treatment effects of linuron were observed on the grazing behaviour of Lymnaea palustrus. 

In line with this, the LC50 of some macroinvertebrates, such as Dugesia tigrina (10 mg/L), 

Lymnaea (70 mg/L) and Tubifex (10 mg/L) are too high to expect any treatment effects (Maier-

Bode and Härtel 1981). 

 

Comparison of safety thresholds with other microcosm studies  

 

In Table 2.2, the NOECs of former microcosm studies by our department dealing with the 

risk assessment of chlorpyrifos, carbendazim and linuron are compared with the NOECs 

found in the current study. For chlorpyrifos the overall NOEC was set at 0.005 µg/L, 

although a small effect on pH was observed in this study at this concentration (Table 2.2). 

This effect was dismissed because the differences were small (less than 0.5 unit) and not 

caused by an increase in pH in the treated systems but a decrease in the control systems. The 

NOECcommunity for the zooplankton community was therefore used as an overall NOEC. 
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Also for carbendazim the zooplankton community proved to be the most sensitive endpoint 

and therefore also its NOEC was used as an overall NOEC. For the linuron experiment two 

NOECs at the control level were calculated for day 21, an increase in all systems of the algal 

species Epithemia and a decrease for the zooplankton species Lecane bulla (Table 2.3). The 

increase in the algal species Epithemia at the lowest concentration is probably not treatment 

related because no species are decreased at this concentration and no effects on pH and DO 

were reported (Table 2.2). The decrease of L. bulla was only significant for one sampling date, 

for all other sampling dates this species was not even present. We therefore set the overall 

NOEC of the linuron study at 0.5 µg/L (NOEC of DO and pH; Table 2.2). 

With reference to chlorpyrifos, the absence of sediment and macrophytes resulted in a 

prolonged exposure. So although a single application of chlorpyrifos is evaluated in this study, 

the effects are more comparable to those evaluating chronic exposure due to a lower 

dissipation compared to “normal” circumstances where sorption to sediment and 

macrophytes is present. Indeed in this study, a lower NOEC for functional as well as 

structural endpoints was found as compared to other microcosm studies with single 

chlorpyrifos application (Table 2.2). In a microcosm study with chronic exposure to 

chlorpyrifos and lindane, an overall NOEC of 0.01 µg/L was found (Van den Brink et al. 

2002), which is comparable to this study.  

In the experiment with carbendazim, macroinvertebrates were not present in large numbers 

nor taxa compared to other microcosm studies. Since macroinvertebrates, with Oligochaeta, 

Turbellaria and Hirudinea as the most sensitive groups, is the most susceptible animal group to 

carbendazim (Cuppen et al. 2000, Van Wijngaarden et al. 1998), a higher overall NOEC was 

found in the present study compared to studies using more complex ecosystems (Table 2.2). 

The sensitivity of the zooplankton community was comparable with laboratory toxicity tests 

(NOEC Daphnia magna = 26 µg/L, Van Wijngaarden et al. 1998) and microcosm studies with 

chronic carbendazim exposure (Cuppen et al. 2000). The microcosms used in the present 

study were more susceptible for effects on functional endpoints than reported in macrophyte-

dominated microcosms (Table 2.2). This may have been the result of the absence of 

macrophytes and sediment reducing the complexity of the ecosystem and the fact that the 

systems were closed. 

The overall NOEC for linuron in this study was lower than the NOEC found by Van Geest et 

al. (1999, Table 2.2), who also evaluated a single application. However, it matched the NOEC 

as noted in a microcosm study with chronic exposure of linuron (Table 2.2) which may be a 



 

 40 

result of the persistence of linuron in the present study (Table 2.1). The phytoplankton 

community in this study was a bit less sensitive than in the microcosm study by Van den Brink 

et al. (1997) and Cuppen et al. (1997) (Table 2.2). They found the most severe effects only 

after 4 weeks of exposure and explained this late response by assuming that phytoplankton 

species can survive until their energy reserves are depleted. The experimental period in the 

present study was only 3 weeks so presumably the autotrophic organisms dosed with the 

lower concentrations could survive this time by using their energy reserves. As expected, 

chlorophyll-a levels were lowered in the higher dosed microcosms (Table 2.2). In the 

microcosm study with chronic exposure, chlorophyll-a levels were elevated due to a bloom of 

the insensitive Chlamydomas, a species not found in the present study. Effect on ecosystem 

functioning were comparable between our study and the study in the macrophyte-dominated 

microcosms (Table 2.2).   

 

Implications for risk assessment and final conclusions 

 

Due to differences in experimental design, NOECs were not always consistent with the results 

of former experiments. The fate of the pesticides was more comparable with constant than 

single peak exposure, mainly due to the lack of sediment. Including a sediment compartment 

would lead to a more realistic fate of the pesticide applied. On the other hand this would 

reduce the simplicity of the test system and hence the reproducibility and interpretability of 

the results.  

In the carbendazim experiment, a higher overall NOEC was found due to the absence of 

macroinvertebrates, the most susceptible species group for carbendazim. Possibilities to 

include (sensitive taxa) of macroinvertebrates will have to be studied, though the small size of 

the test systems will not allow the development of a very rich macroinvertebrate community. 

Therefore, a pesticide risk assessment study should be conducted in larger microcosms or 

mesocosms if major effects are expected on macroinvertebrates or macrophytes. 

The general effect chains of chlorpyrifos, carbendazim and linuron were the same as described 

in larger scale microcosm studies. The simple design of the microcosm offers the possibility to 

perform experiments with a relatively high ecological realism when compared to laboratory 

tests under more controlled conditions and much cheaper than larger scale model ecosystems. 

This makes these systems ideal for investigating ecological processes and the chain of effects 

after stress, e.g. pesticides. Recovery of a certain species can only be studied if the stressor 
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does not lead to a complete disappearance of that species and the life-cycle can be completed 

in water. Furthermore, these test-systems are useful in selecting treatment concentrations for 

larger scale model ecosystem studies. 
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CHAPTER 3 

 

FATE AND EFFECTS OF THE INSECTICIDE CHLORPYRIFOS IN OUTDOOR 

PLANKTON-DOMINATED MICROCOSMS IN THAILAND 

(Submitted to Environmental Toxicology and Chemistry) 

 

 

Abstract 

 

The fate and effects of the insecticide chlorpyrifos were studied in plankton-dominated 

freshwater microcosms in Thailand. Single applications of 0.1, 1, 10 and 100 µg/L were 

applied to two tanks each, while four other tanks were untreated to serve as controls. The aim 

of the study was to compare the fate and effects of chlorpyrifos under tropical conditions with 

those found in previous studies in temperate regions. 

Disappearance rates of chlorpyrifos from the water column observed in this study were similar 

to those found in temperate regions. Insecticide accumulation in the sediment was relatively 

low, the major part being found in the top layer. 

The application of chlorpyrifos led to significant changes in freshwater biological 

communities. Clam shrimps (Conchostraca) and the cladoceran Moina micrura were the most 

susceptible species (NOEC = 0.1 µg/L), macroinvertebrates the most sensitive community 

(NOEC = 0.1 µg/L). These results are in agreement with results from semi-field experiments 

with chlorpyrifos in temperate regions. The results of an in-situ bioassay were used to calculate 

a NOEC of 0.1 µg/L and a 48h-LC50 of 0.6 µg/L for M. micrura, values which are similar to 

toxicity values reported for Daphnia magna in studies in temperate regions. 

Overall, these findings support the use of toxicity data from temperate regions for the risk 

assessment of low-persistent insecticides like chlorpyrifos for aquatic communities in tropical 

regions. 

 

Introduction 

 

The tropical climate in Thailand makes the country ideal for agriculture but also results in the 

occurrence of various pests that can cause significant damage to crops. Rapid economic and 

population growth has led to an intensification of agricultural practices and, consequently, 
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heavy use of pesticides to increase yields. Since 1960, following the “Green Revolution”, 

increasing amounts and varieties of chemicals have been introduced into the country, in 

particular those classified as organochlorines (OC), organophosphates (OP) and carbamates 

(Staring, 1984; Jungbluth, 2000). 

Ecotoxicological studies to determine effects of pesticide stress on freshwater ecosystems 

have focused almost exclusively on countries and ecosystems in the temperate zone. 

Techniques and procedures developed for temperate regions are often applied to tropical 

countries, even though community compositions and environmental conditions there may be 

very different (Lacher and Goldstein, 1997). Also, very few studies have been performed on 

the fate of pesticides in tropical freshwater environments. The need for studies into the fate 

and effects of pesticides under tropical conditions has long been recognized (Bourdeau et al., 

1988; Castillo et al., 1997; Racke, 2003). 

Aquatic microcosms and mesocosms have often been used for the (higher-tier) risk 

assessment of pesticides. Compared to laboratory bioassays, they provide more ecological 

realism in terms of ecological processes and exposure to the chemical. At the same time, they 

allow replication and hence an experimental set-up, making these test systems ideal to assess 

the influence of climatic conditions on the fate and effects of pesticides. 

The present study aimed to evaluate the fate and effects of the organophosphorus insecticide 

chlorpyrifos in outdoor microcosms under tropical conditions and to set safety threshold 

values for susceptible indigenous freshwater communities. Furthermore, since various model 

ecosystem studies with chlorpyrifos have been conducted in temperate regions (e.g. Van den 

Brink et al., 1996; Biever et al., 1994; Brazner et al., 1989; Pusey et al., 1994; Van Wijngaarden 

et al., 2005a; 2005b), we compared these threshold values with those reported in the literature. 

Ultimately, this study aimed to validate whether toxicity data obtained from experiments with 

chlorpyrifos in temperate regions can be used to ensure adequate protection of freshwater 

populations in tropical regions like Thailand. 

 

Materials and methods 

 

Experimental design 

 

The experiment was performed in twelve outdoor microcosms at the hatchery of the Asian 

Institute of Technology (AIT), located 42 km north of Bangkok (Thailand). Each microcosm 
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consisted of a concrete tank (length 1 m, width 1 m, height 1.15 m, water volume 1000 L) 

coated with non-toxic epoxy paint. The tanks were filled with a 10-cm layer of sediment and a 

1-m water column, taken from the canal surrounding AIT. The canal water was passed though 

a net (mesh size 0.1 mm) to avoid fish and prawns entering the systems. The microcosms were 

intended to model the community of Thai farm canals. 

In the preparatory phase of the experiment, zooplankton and macroinvertebrates were 

collected from the AIT canal and introduced into the microcosms. Over an acclimation period 

of 6 weeks, a biocoenosis was allowed to develop in the microcosms. In this period, the water 

was circulated twice a week by exchanging 100 litres between the microcosms by means of a 

Perspex tube to achieve similarity between the communities in the systems. A nutrient 

addition of N (1.4 mg/L as urea) and P (0.35 mg/L as TSP) was added twice a week during 

the entire experimental period. 

 

Chlorpyrifos application, sampling and analysis 

 

On the day of application, the organophosphorus insecticide Dursban (active ingredient 

chlorpyrifos) was applied once to 8 microcosms, in 4 duplicate doses (nominal levels: 0.1, 1, 

10 and 100 µg/L). Treatments were assigned randomly to the tanks, and applied by pouring a 

solution of Dursban into the tanks. The systems were gently stirred immediately after 

application to mix the compound with the water column while preventing an upflow of 

sediment particles. Four other systems only received water, and served as controls. Nominal 

chlorpyrifos concentrations were calculated from an analysis of subsamples of the treatment 

solutions and the water volume in the microcosms. 

Depth-integrated water samples of approximately 10 L were collected in a glass container at 

various moments during the experiment, using a Perspex tube. Subsamples of 750 mL were 

transferred to glass bottles and shaken with 50 mL n-hexane (HPLC grade) for one hour. A 

part of the upper liquid was collected and transferred to GC vials for analysis by splitless 

injection of 3 µl on a HP 5890 Gas Chromatograph. GLC operating parameters were as 

follows: capillary column coated with HP-5, length 30 m, internal diameter 0.32 mm, film 

thickness 0.25 µm; initial oven temperature 70°C, increasing by 20°C/ min to a final 

temperature of 280°C, which was kept constant for 10 min (total run time 20.5 min); detector: 

Electron Capture Detector; nitrogen flow: 1.5 mL/min. The detection limit for chlorpyrifos 
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was 0.07 µg/L and the recovery rate was 108 ± 9% (mean ± s.d., n = 9). Correction for the 

recovery was made when calculating chlorpyrifos residues in water. 

Sediment cores were collected by means of a Perspex tube (internal diameter 3.6 cm) and 

stored in a freezer until analysis. Chlorpyrifos was extracted from the upper 1.5 cm of a 

sediment core with 35 mL acetonitrile. The suspension was shaken for two hours. After 

centrifugation (2600 rpm; 5 min), subsamples of the liquid layer were transferred to GC vials 

and analysed directly on GC-ECD as described above for the water samples. Chlorpyrifos 

recovery from sediment samples was 93 ± 2% (mean ± s.d., n = 12). Sediment chlorpyrifos 

residue levels were calculated based on dry weight (24 h; 105 °C) and corrected for recovery.  

Stratification of the insecticide in the sediment compartment was studied in the microcosms 

dosed with the highest chlorpyrifos concentration. Sediment cores were divided into layers of 

1.5 cm and extracted separately as described above. 

 

Endpoints 

 

Dissolved oxygen was measured approximately 10 cm below the water surface at 1-week 

intervals with a YSI 58 oxygen meter connected to a YSI 5739 probe. Together with the 

oxygen, conductivity and pH were measured with a WTW conductivity meter and a 

CONSORT pH meter, respectively. Alkalinity was measured at weekly intervals in a 100-mL 

subsample from the bulk sample described below, by titrating with 0.05 N HCl until pH 4.2. 

The concentrations of ammonia, nitrate, nitrite, total nitrogen, ortho-phosphate and total 

phosphate were analysed at two-week intervals in a 1-L sample taken at approximately 10 cm 

below the water surface using the method described in APHA (1992). 

At several moments during the experiment, a 10-L bulk water sample was collected in a bucket 

by taking several depth-integrated water samples, using a Perspex tube. From this bulk sample, 

a 1-L subsample was taken for phytoplankton chlorophyll-a and alkalinity analysis. The bucket 

was then partially emptied, leaving 5 L, which was passed through a zooplankton net (mesh 

size 60 µm) to examine treatment effects on the zooplankton community.  

The concentrated zooplankton sample obtained from the 5-L sample as described above was 

fixed with formalin to a final concentration of 4%. Subsamples were counted with an inverted 

microscope and numbers were converted to numbers per litre of microcosm water.  

On the day of chlorpyrifos application, a bioassay was performed by placing 25 individuals of 

Moina micrura into circular Perspex enclosures (length 30 cm, diameter 10 cm), with the 



 

 51 

bottom and top covered by a nylon net. One enclosure was suspended in each microcosm, 

with its bottom at a fixed depth of approximately 20 cm. The numbers of individuals were 

counted 24 and 48 hours after the application to determine the direct effects of the pesticide. 

The chlorophyll-a content of the phytoplankton was sampled by filtering a known volume of 

microcosm water though a Whatman GF/C glass fibre filter (mesh size 1.2 µm) until the filter 

was saturated. Periphyton was sampled from glass slides that served as an artificial substratum. 

The slides were positioned in a glass frame that was suspended at approximately 10 cm below 

the water surface. Periphyton chlorophyll-a was sampled at two-week intervals by brushing 

five slides visually clean, after which the slides were re-introduced in their original microcosm. 

Pigments were extracted using the ethanol method described by Moed and Hallegraeff (1987). 

Macroinvertebrates were studied by means of pebble stone baskets that served as artificial 

substrates. Two baskets were incubated in each microcosm on top of the sediment. Macro-

invertebrates were sampled every other week by gently retrieving the substrates using a net to 

prevent the escape of animals. The macroinvertebrates were collected by washing the artificial 

substrates in a container, after which they were identified and counted alive and subsequently 

released in their original microcosm. Since few studies on macroinvertebrate taxonomy have 

so far been made in Thailand, and expertise and knowledge are still limited (Dudgeon, 2003), 

identification was only made to class level, to prevent misidentification. The data from the two 

baskets were pooled for statistical analysis. 

 

Statistics 

 

NOECs were calculated for all parameters using the Williams test, which assumes an 

increasing effect with increasing dose (Williams, 1972). Abundance data were Ln(Ax + 1) 

transformed, where x stands for the abundance value and Ax makes 2 by taking the lowest 

abundance value higher than zero for x. This was done to down-weight high abundance values 

and approximate a normal distribution of the data (for rationale, see Van den Brink et al., 

2000). Analyses were performed with Community Analysis, version 4.3.05 (Hommen et al., 

1994). Statistical significance was accepted at p < 0.05. Effects were considered to be 

consistent when found on two consecutive sampling dates. 

The zooplankton and macroinvertebrate data sets were analysed by PRC (Principal Response 

Curves) using the CANOCO software package, version 4.5 (Ter Braak and Smilauer, 2002). 

PRC is based on the Redundancy Analysis ordination technique (RDA), the constrained form 
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of Principal Component Analysis. The analysis results in a diagram showing the sampling day 

on the x-axis and the first Principal Component of the treatment effects on the community on 

the y-axis (see Figure 3.3 for an example). This yields a diagram showing the deviations in time 

of the treatments compared to the control. In this way, PRC shows the most dominant 

community response to the treatment present in the data set. The species weights are shown 

in a separate diagram, and indicate the affinity the species have with this dominant response. 

The species with a high positive weight are indicated to show a response similar to that 

indicated by PRC, while those with a negative weight one that is opposite to the response 

indicated by PRC. Species with a near zero weight are indicated to show a response very 

dissimilar to that indicated by PRC or no response at all. The significance of the PRC diagram 

was tested by Monte Carlo permutation of the microcosms, i.e., by permuting entire time 

series in the partial redundancy analysis from which PRC is derived (Van den Brink and Ter 

Braak, 1999).  

Permutation tests were performed per sampling date using Ln-transformed treatment levels as 

explanatory variables to determine the significance of the treatment regime per sampling date. 

The NOEC values at community level for the zooplankton and macroinvertebrate 

communities were calculated for each individual sampling date by applying the Williams test to 

the sample scores of the first principal component of each sampling date (for rationale, see 

Van den Brink et al., 1996). The LC50 calculations on the results of the in situ bioassay with 

Moina micrura were done according to Van den Brink et al. (2000). 

 

Results 

 

Chlorpyrifos concentrations 

 

Chlorpyrifos concentrations in the water compartment decreased rapidly (Figure 3.1). After 1 

week, approximately 25% and after two weeks less than 10% of the applied dose was found in 

the water column. The rapid disappearance of chlorpyrifos from the water was accompanied 

by a slight accumulation of chlorpyrifos in the sediment over time (Figure 3.1). In the first 

week post application, the top 1.5 cm of sediment accounted for approximately 90% of the 

total amount of chlorpyrifos detected in the sediment compartment (Figure 3.2). From two 

weeks post application onwards, relative amounts of chlorpyrifos in deeper layers of sediment 

increased, though the major part was always found in the top layer(s).  
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Figure 3.1 Dynamics of chlorpyrifos 

concentrations in water and sediment as a 

percentage of the dose applied in the 100 

µg/L microcosms. 

Figure 3.2 Relative contributions of the 

different sediment layers to the total 

amount of chlorpyrifos in all layers 

combined.  

 

Zooplankton 

 

In terms of abundances, the microcosms were dominated by Rotifera and Copepoda, followed 

by Cladocera and Ostracoda in the pre-treatment period. Rotifera were also the most diverse 

group, represented by 7 different taxa. The effects of the chlorpyrifos application on the 

zooplankton community are visualised in the PRC diagram presented in Figure 3.3. The 

diagram shows that the three highest treatment levels led to a deviation from the controls. 

Only the zooplankton communities in the 1 µg/L microcosms returned to a state resembling 

that of the controls within the experimental period. The diagram indicates that Moina micrura 

decreased in numbers due to the treatment, while Filinia longiseta, Ceriodaphnia cornuta and 

Calanoid copepods increased. The Monte Carlo permutation tests indicated significant 

treatment effects for all post-treatment sampling dates. The Williams test indicated a 

significant treatment effect for the two highest chlorpyrifos treatment levels only 

(NOECcommunity = 1 µg/L). 

The dynamics of the 4 most discriminating taxa from the PRC analysis are shown in Figure 

3.4, whilst all taxa for which a NOEC was calculated are presented in Table 3.1. The most 

severely affected species was the cladoceran Moina micrura, which was completely eliminated by  
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Figure 3.3 Principal response curves resulting from the analysis of the zooplankton data set, 

indicating the treatment effects of chlorpyrifos on the zooplankton community. Seventeen 

percent of all variance could be attributed to sampling date; this is displayed on the horizontal 

axis. Thirty-six percent of all variance could be attributed to treatment level. Of this variance, 

31% is displayed on the vertical axis. The lines represent the course of the treatment levels 

over time. The species weight (bk) can be interpreted as the affinity of the taxon with the 

Principal Response Curves. A Monte Carlo permutation test indicated that a significant part of 

the variance explained by treatment level is displayed in the diagram (P = 0.011). 

 

the higher chlorpyrifos concentrations (Figure 3.4A; NOEC = 0.1 µg/L). Another cladoceran, 

Ceriodaphnia cornuta, decreased in numbers one week post application, but increased eight 

weeks post application in the tanks with higher chlorpyrifos concentrations (Figure 3.4B). A 

similar pattern was observed for nauplii and mature stages of copepods. Rotatoria taxa 

decreased (Keratella tropica) or increased (Hexarthra mira, Filinia longiseta, and Asplanchna sp.) in 

abundance (Table 1; Figure 3.4C). 

The Moina micrura bioassay resulted in LC50 values of 0.7 µg/L (24h) and 0.6 µg/L (48h). A 

NOEC of 0.1 µg/L was calculated for both 24 hours and 48 hours post application. 
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Table 3.1 NOECs (No Observed Effect Concentration) for invertebrates that showed a 

significant response in the Williams test calculations (p ≤ 0.05). Concentrations (µg a.i./L) 

showed significant increases (+) or decreases (-); nm = not measured; > indicates a NOEC of 

> 100 µg/L. 

                                                       Sampling week 

 Effect -3 -1 0 1 2 3 4 5 6 7 8 9 10 

Arthropoda 

   Crustacea  

      Conchostraca 

      Ostracoda 

      Cladocera 

         Ceriodaphnia cornuta 

         Moina micrura 

 

      Copepoda (nauplii) 

      Copepoda (mature) 

         Calanoid 

         Cyclopoid 

       

   Insecta 

      Corixidae I 

      Corixidae II 

 

Rotifera 

         Keratella trópica 

         Hexarthra mira 
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Platyhelminthes 
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Annelida 
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Mollusca 
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   Planorbidae I 
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Figure 3.4 Dynamics in terms of numbers of the 4 zooplankton taxa that discriminated best 

in the PRC: Moina micrura (A), Ceriodaphnia cornuta (B), Filinia longiseta (C) and calanoid 

copepods (D). In the figures, a value of 0.1 denotes absence of the taxon. 

 

Macroinvertebrate substrates 

 

Over the experimental period, a total of 13 different taxonomic groups were identified from 

the pebble stone baskets. Besides insects, which were the most diverse group with 8 different 

families, also flatworms, clam shrimps, oligochaetes, leeches and ostracods were found. In the 

pre-treatment period, ostracods and clam shrimps (Conchostraca) were the most abundant 

organisms. The effects of the chlorpyrifos application on the macroinvertebrate community 

are visualised in the PRC diagram presented in Figure 3.5. The diagram shows large deviations 

from the controls for the two highest treatment levels and smaller ones for the 1 µg/L level.  
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Figure 3.5 Principal response curves resulting from the analysis of the macroinvertebrate data 

set, indicating the treatment effects of chlorpyrifos on the macroinvertebrate community. Of 

all variance, 21% could be attributed to sampling date; this is displayed on the horizontal axis. 

Forty-nine percent of all variance could be attributed to treatment level. Of this variance, 50% 

is displayed on the vertical axis. The lines represent the course of the treatment levels over 

time. The species weight (bk) can be interpreted as the affinity of the taxon with the Principal 

Response Curves. A Monte Carlo permutation test indicated that a significant part of the 

variance explained by treatment level is displayed in the diagram (P = 0.003). 

 

All treated tanks more or less returned to a state resembling that of the controls within the 

experimental period. The diagram indicates that Ostracoda, Conchostraca and Corixidae 

decreased in numbers due to the treatment, while Turbellaria increased. The Monte Carlo 

permutation tests indicated significant treatment effects for the post-treatment sampling dates 

up to day 58. The Williams test indicated a significant treatment effect for the three highest 

chlorpyrifos levels only (NOECcommunity = 0.1 µg/L). 

All taxa identified from the macroinvertebrate substrates for which a NOEC was calculated 

are summarised in Table 3.1. The most prominent effect was a complete elimination of 

Conchostraca one week post application (Figure 3.6A; NOEC = 0.1 µg/L). Only in the 1 

µg/L microcosms, individuals of Conchostraca were found again at the end of the experiment. 
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Ostracods disappeared from the highest dosage tanks (Figure 3.6B). At the two highest 

treatment levels, water boatmen (Corixidae) decreased in numbers relative to the controls, 

whereas flatworms (Turbellaria) increased. Even though Corixidae were completely eliminated 

at these concentrations, they returned to normal levels 8 weeks after application (Figure 3.6C). 

Turbellaria were absent or present in very low numbers in controls and at the lower 

chlorpyrifos dosages. Applications of 10 and 100 µg/L led to a large increase in numbers of 

flatworms up to 4 weeks post application, after which numbers declined to the low numbers 

found in the controls (Figure 3.6D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Dynamics in terms of numbers of the 4 groups of animals from the macro-

invertebrate substrates that showed significant treatment effects of chlorpyrifos: Conchostraca 

(A), Ostracoda (B), Corixidae (C) and Turbellaria (D). A value of 0.1 denotes absence of the 

taxon.  
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Snails 

 

Snails were represented by 3 families: Physidae, Planorbidae (2 species) and Ancylidae. 

Increased abundances of snails were found at several moments in the experiment, though no 

NOECs for two consecutive sampling dates could be calculated (Table 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Dynamics of chlorophyll-a 

levels in the course of the experiment. 

 

 

 

 

 

 

Chlorophyll-a 

 

Chlorophyll-a values of the phytoplankton increased in all microcosms during the 

experimental period (Figure 3.7). The increase was substantially higher in the microcosms with 

the highest dosage than in controls, leading to significantly higher chlorophyll-a levels in these 

systems. 

Chlorophyll-a content of the periphyton on glass slides varied substantially between sampling 

dates and treatments (from 1 to 500 µg/dm2), but no consistent treatment effects were found. 

Six weeks post application, periphyton chlorophyll-a levels at the highest treatment level were 

as much as 10 times higher than in controls (significant, data not shown). 

 

Water quality parameters 

 

No consistent treatment effects were recorded for dissolved oxygen, pH, conductivity or 

alkalinity. Dissolved oxygen (3 wks p.a.) and conductivity levels were significantly lower than 

those of the controls at the highest treatment level on two sampling dates (6 and 8 wks p.a.). 
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Discussion 

 

Fate of chlorpyrifos 

 

Chlorpyrifos disappeared rapidly from the water column, with disappearance rates similar to 

those found in studies in temperate regions (Figure 3.1, Crum and Brock, 1994; Leeuwangh, 

1994). Initially, a faster decline of chlorpyrifos concentrations in the water compartment was 

expected under tropical conditions, since higher temperatures and light intensity have been 

reported to decrease the half-lives of organophosphorus insecticides (Schaefer and Dupras, 

1970). The decrease in chlorpyrifos concentrations in water from approximately day 1 to day 

10, however, is thought to be governed especially by partitioning processes (Leeuwangh, 

1994). Macrophytes have been demonstrated to adsorb approximately 40% of the dose 

applied in macrophyte-dominated microcosm and mesocosm studies in temperate regions 

(Crum and Brock, 1994). Hence, the higher than expected chlorpyrifos concentrations in the 

water compartment are likely to be due to the absence of macrophytes. Instead, the high algal 

biomass in the plankton-dominated test systems of the present study (Figure 3.7) presumably 

bound a large part of the insecticide dose. Since unfiltered water samples were used for 

analysis, chlorpyrifos adsorbed to algae was included in the water compartment. Furthermore, 

the microcosms in the present study were approximately twice as deep as the test systems used 

in reference studies (Crum and Brock, 1994; Leeuwangh, 1994), meaning that the surface to 

volume ratio of the water was relatively low. This implies less evaporation of chlorpyrifos 

from the water, which has been demonstrated to play a significant role in the loss of 

chlorpyrifos from aquatic systems (Racke, 1993). The sediment surface to water volume was 

also low, so adsorption of chlorpyrifos from the water to the sediment could have played a 

smaller role than in the studies in temperate regions. This may explain why only a relatively 

small proportion of the insecticide became associated with the sediment (Figure 3.1). Relative 

contributions of deeper sediment layers gradually increased over time (Figure 3.2) due to 

processes like diffusion and bioturbation (Ruiz et al., 2001). 

 

Effects of chlorpyrifos on invertebrates 

 

The primary response to chlorpyrifos was a decline in arthropod invertebrate abundances. 

Clam shrimps (Conchostraca) and the cladoceran Moina micrura were the most susceptible to 
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chlorpyrifos (Table 3.1). Results of the in situ bioassay corresponded well with the effects on 

the Moina micrura population observed in the microcosms, as an NOEC of 0.1 µg/L was 

found for both. 

The relatively small cladoceran Ceriodaphnia cornuta declined in numbers only at the highest 

chlorpyrifos concentration, and increased in numbers at the 1 and 10 µg/L dosages. In line 

with this, smaller cladoceran species have been found to be less sensitive to insecticides than 

larger species (Hanazato, 1998).  

Ostracods and the rotifer Keratella tropica were moderately sensitive to chlorpyrifos. Their 

abundances were only significantly decreased relative to controls at the highest treatment level 

(Table 3.1). In the case of Keratella tropica, it is questionable if this was a direct effect of 

chlorpyrifos, because Keratella species are not known to be sensitive to insecticides (Van 

Wijngaarden et al., 2005b). The rotifers Hexarthra mira, Filinia longiseta and Asplanchna sp. 

increased in numbers in the higher dosage tanks. In line with this, non-sensitive Rotifera have 

frequently been reported to increase in numbers in insecticide-stressed aquatic systems, as a 

result of reduced competition and grazing pressure caused by the decline in cladocerans 

(Brock et al., 2000; Fleeger et al., 2003; Van Wijngaarden et al., 2005b). 

Copepods as a group, i.e. cyclopoids and calanoids combined, as well as their immature stages 

(nauplii), decreased in numbers one week post application in the highest dosage tanks. 

Apparently, they recovered quickly, since increased abundances of calanoids and cyclopoids 

were found at several moments in the course of the experiment (Table 3.1). 

Among the insects, numbers of Corixidae were significantly reduced relative to controls at the 

higher treatment levels, starting four weeks post application (Figure 3.6C). No significant 

treatment effects were observed on other insect species, mainly due to their low abundances in 

the control microcosms. 

Overall, the NOECecosystem was set at 0.1 µg/L. This is based on the PRC diagram and the 

NOECcommunity calculated for the macroinvertebrates, and the PRC diagram for 

zooplankton. Although the NOEC calculations for the zooplankton community revealed a 

NOECcommunity of 1 µg/L, this is most likely due to the high level of variation in the 

controls, since deviations from the control were also found for the 1 µg/L treatment and to a 

lesser extent also for the 0.1 µg/L treatment level (Figure 3.3). These differences were, 

however, not confirmed by the univariate analysis (Table 3.1). Prolonged significant treatment 

effects on the dominant zooplankton (Moina micrura) and dominant species from the macro-

invertebrate substrates (Conchostraca) were found at chlorpyrifos levels of 1 µg/L and higher. 
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Table 3.2 No observed effect concentration (NOEC), lowest observed effect concentration (LOEC) and time to recovery of the zooplankton 

and macroinvertebrate communities corresponding to the LOEC reported in microcosm and mesocosm studies after short-term exposure 

(single pulse in artificial streams and single application in lentic test systems) to chlorpyrifos. nm = not measured. 

Study Type of system Reference NOEC / LOEC ecosystem 

(µg/L) 

Time to recovery 

zooplankton (wk) 

Time to recovery 

Macroinvertebrates (wk) 

Temperate 

The Netherlands 

USA (Kansas) 

USA (Minnes.) 

Australia 

The Netherlands 

 

 

Lentic, outdoor, experimental ditches 

Lentic, outdoor, microcosms 

Lentic, outdoor, littoral enclosures 

Lotic, outdoor, artificial streams 

Lentic, indoor, laboratory microcosms 

   Mesotrophic; cool (16 - 18 °C) 

   Mesotrophic; warm (24 - 28 °C) 

   Eutrophic, warm (25 - 28 °C) 

 

Van den Brink et al. (1996) 

Biever et al. (1994) 

Siefert et al. (1989) 

Pusey et al. (1994) 

 

Van Wijngaarden et al. (2005a) 

Van Wijngaarden et al. (2005a) 

Van Wijngaarden et al. (2005a) 

 

0.1 / 0.9 

0.1 / 0.3 - 1 

< 0.5 / 0.5 

0.1 / 5 

 

0.1 / 1 

0.1 / 1 

0.1 / 1 

 

4 

≤ 4 

< 1 

nm 

 

5 

5 

> 5 

 

4 - >55 

4-6 

< 1 

< 6 

 

nm 

nm 

nm 

Tropical 

Thailand 

 

Lentic, outdoor, microcosms 

 

This study 

 

0.1 / 1 

 

9 

 

6-8 
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Ecological effect chain 

 

The chlorpyrifos application led to a decline and elimination of several zooplankton and 

macroinvertebrate taxa. The resulting reduction in grazing pressure led to increased 

chlorophyll-a levels in phytoplankton. This increase in food availability resulted in an increase 

in snails and tolerant invertebrates. The higher algal densities also led to an occasional drop in 

conductivity and dissolved oxygen levels in the morning, due to increased respiration during 

the night. Similar ecological effect chains have been reported in various studies in temperate 

regions (e.g. Hanazato, 1998; Brock et al., 2000; Fleeger et al., 2003). 

 

Comparison of thresholds in tropical and temperate zones 

 

The sensitivity of the microcosm biocoenosis to chlorpyrifos was comparable to that found in 

studies in temperate regions (Table 3.2). Irrespective of the geographic position, a 

NOECcommunity of 0.1 µg/L is found. The same threshold level was found, irrespective of 

climatic test conditions, in laboratory microcosm studies by Van Wijngaarden et al. (2005a). 

The authors explained this from the fact that microcrustaceans are amongst the species that 

are the most sensitive to organophosphate exposure, and that these species are usually 

abundant in different types of test systems. The crustaceans in the present study appeared to 

be as sensitive as those in temperate zone studies, with Cladocera as the most sensitive group. 

The most abundant cladoceran in the present study, Moina micrura, exhibited a sensitivity in the 

bioassay (LC50 48h = 0.6 µg/L) comparable to Daphnia magna, a standard test species in 

temperate countries (LC50 48h = 1 µg/L; Kersting and Van Wijngaarden, 1992). In line with 

this, no major differences in species sensitivity distributions have been found between tropical 

and temperate freshwater arthropods (Maltby et al., 2005; Kwok et al., 2007). 

The recovery of the zooplankton community was slower in our study under tropical 

conditions than has been observed under temperate conditions (Table 3.2). Even though one 

may expect a faster recovery of affected communities because of the high chlorophyll-a levels 

and high temperatures, the excessive increase in copepod and especially rotifer abundances 

probably hampered the recuperation of the cladoceran community. The recovery of the 

Corixidae took approximately 6 to 8 weeks, which is slightly longer than the 4 to 6 weeks 

reported for macroinvertebrate species in studies in temperate regions (Table 3.2). However, 

significant treatment effects and hence recovery were only found for one macroinvertebrate in  
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the present study. In a mesocosm study by Van den Brink et al. (1996), recovery of 

macroinvertebrates took between 4 and > 55 weeks, which made them conclude that the 

recovery of macroinvertebrates mostly depends on life strategies and infrastructural 

characteristics of the ecosystem.  

The above findings support the use of temperate zone toxicity data for the risk assessment of 

pesticides for aquatic communities in tropical regions. However, more ecological data is 

required to improve our understanding of indirect effects and recovery of tropical freshwater 

communities. 
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CHAPTER 4 

 

IMPACT OF SINGLE AND REPEATED APPLICATION OF THE INSECTICIDE 

CHLORPYRIFOS ON FRESHWATER PLANKTON COMMUNITIES UNDER 

TROPICAL CONDITIONS 

(Submitted to Ecotoxicology) 

 

 

Abstract 

 

This paper describes the effects of a single and a repeated application of the 

organophosphorus insecticide chlorpyrifos on zooplankton and phytoplankton communities 

in outdoor microcosms in Thailand. Treatment levels of 1 µg/L were applied once or twice 

with a two-week interval. Both treatments led to a significant decrease in cladocerans followed 

by an increase in rotifers, although the extent by which species were affected was different. 

Ceriodaphnia cornuta was the most responding cladoceran after the first treatment, while most 

pronounced effects of the second treatment were found for Moina micrura. This is explained by 

differences in population dynamics at the time of application and the increase of Microcystis 

abundance over the course of the experiment. Several phytoplankton taxa either increased or 

decreased as a result of the chlorpyrifos-induced changes in zooplankton communities. Even 

though chlorpyrifos disappeared fast from the water column, effects on plankton communities 

persisted till the end of the experiment (42 days) when the insecticide concentrations had 

dropped below the detection limit. 

 

Introduction 

 

Before the late 1960s, the traditional agricultural practices in Thailand were in close 

interrelationship with the local environment. Occasional floods of rivers during the rainy 

season assured a continual fertility of the land and pesticides were hardly used (Heckman, 

1979; Tonmanee and Kanchanakool, 1999). The Green Revolution led to an intensification of 

agricultural practises and the use of pesticides and fertilizers increased considerably 

throughout the years (Jungbluth, 2000). As a consequence, pesticide contamination of soil, 
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water and agricultural products have been reported throughout the country (Thapinta and 

Hudak, 2000). 

Little research has been carried out, however, evaluating the environmental side-effects of 

agrochemicals in tropical countries like Thailand (Lacher and Goldstein, 1997; Gopal, 2005). 

The Thai ecotoxicological literature consists almost entirely of determinations of LC50 values 

for various freshwater species, invariably conducted using static tests, and basic freshwater 

community interactions are still largely unknown (Campbell and Parnrong, 2001). 

In the present study, the fate and effects of a single and repeated application of the 

organophosphorous insecticide chlorpyrifos was evaluated in outdoor plankton-dominated 

microcosms in Thailand. Microcosms and mesocosms have frequently been used for the 

environmental risk assessment of several chemicals, like insecticides (see Maltby et al., 2005 

and Van Wijngaarden et al., 2005 for reviews). These test systems provide more ecological 

realism as compared to laboratory bioassays since they include ecological processes like 

interactions between plankton populations while still allowing an experimental set-up.  

In a previous microcosm experiment using larger test systems, the fate and effects of a single 

chlorpyrifos application was studied (Daam et al., subm.). However, farmers in Thailand 

administer pesticides with a high frequency on their land, whereby a biweekly interval is not 

uncommon (Van den Brink et al., 2003; Satapornvanit et al., 2004). 

We, therefore, evaluated the effects of a single and repeated application of 1 µg chlorpyrifos/L 

on zooplankton and phytoplankton communities and its interactions in outdoor microcosms 

in Thailand. The interval between the two applications was set at two weeks to mimic local 

agricultural practices. 

 

Materials and Methods 
 

Experimental set-up 

 

Ten circular experimental microcosms, each with a diameter of 0.76 m and a water depth of 

0.56 m (water volume approximately 250 liters), were used for the experiment. The concrete 

tanks were coated with watertight non-toxic epoxy paint and set up outdoors at the hatchery 

of the Asian Institute of Technology (AIT), located approximately 42 km north of Bangkok 

(Thailand). The test systems were filled with water from the canal surrounding AIT after 

filtering though a net (mesh size 0.1 mm) to avoid fish and prawns entering the systems. No 
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sediment was added to keep the experimental set-up as simple as possible and, consequently, 

to facilitate interpretation of the (in)direct treatment effects. In the preparatory phase of the 

experiment (1 week prior to application), zooplankton was collected from the AIT canal and 

introduced into the microcosms. In this period, the water was circulated two times by 

exchanging 100 litres between the microcosms using a Perspex tube to achieve similarity 

between the communities in the systems. A nutrient addition of N (1.4 mg/L as urea) and P 

(0.35 mg/L as TSP) was applied twice a week during the entire experimental period. 

 

Application and fate of the test substance 

 

Chlorpyrifos was applied as an aqueous solution of Dursban to six microcosms at a 

concentration of 1 µg/L. This concentration was chosen because it corresponds with the 

LC50 of the cladoceran Daphnia magna (Kersting and Van Wijngaarden, 1992) and on the basis 

of an earlier experiment in similar systems, treatment effects were expected without 

completely eliminating the zooplankton community (Daam et al., subm.). Four other systems 

were untreated to serve as controls. Two weeks after the first application, three of the six 

applied tanks received a second application of 1 µg/L chlorpyrifos. After applications, the 

water in the microcosms was gently stirred in order to mix the insecticide over the water 

column. Subsamples of the treatment solutions were taken and subsequently analysed as 

described below for calculations of nominal concentrations. 

Depth-integrated water samples of approximately 10-L were collected in a glass container 

using a Perspex tube one hour after application (initial concentration) and at various moments 

during the experiment. Of these samples, 750 mL were transferred to glass bottles and shaken 

with 50 ml n-hexane (HPLC grade) for one hour. A part of the upper liquid was collected and 

transferred to GC-vials for analysis by splitless injection of 3 µl on a HP 5890 Gas 

Chromatograph. GLC operating parameters: capillary column coated with HP-5, length 30 m, 

internal diameter 0.32 mm, film thickness 0.25 µm; initial oven temperature 70°C, increasing 

with 20°C/ min until a final temperature of 280°C which was kept constant for 10 min (total 

run time 20.5 min); detector: Electron Capture Detector; nitrogen flow 1.5 mL/min. The 

detection limit and recovery of chlorpyrifos were respectively 0.07 µg/L and 93.5 ± 6.7% 

(mean ± s.d., n = 6). Correction for the recovery was made when calculating chlorpyrifos 

residues in water. 
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Endpoints 

 

Dissolved oxygen was measured in the morning at 1-week intervals with an YSI model 58 

oxygen meter connected to an YSI 5739 probe approximately 10 cm under the water surface. 

Together with the oxygen, conductivity and pH were measured with a WTW conductivity 

meter and a CONSORT pH meter respectively. 

At several moments during the course of the experiment, a bulk water sample of 10-L was 

collected in a bucket by taking several depth-integrated water samples using a Perspex tube. 

From this bulk sample, a subsample of 1-L was taken to study the phytoplankton community 

and another 1-L for determination of the phytoplanktonic chlorophyll-a concentation. Then, 

the bucket was emptied until a remainder of 5 litres was obtained which was transferred 

through a zooplankton net (mesh size 60 µm) to examine treatment effects on the 

zooplankton community.  

The concentrated zooplankton sample was fixed with formol in a final concentration of 4%. 

The 1-L phytoplankton sample was stained with lugol and concentrated after sedimentation of 

6 days. Additional lugol was added when needed to assure conservation of the samples. 

Subsamples of the zooplankton and phytoplankton samples were counted with an inverted 

microscope (magnification 100 - 400) and numbers were recalculated to numbers per litre 

microcosm water. Colony forming algae except Microcystis aeruginosa and Microcystis incerta were 

quantified by counting the number of colonies. M. aeruginosa and M. incerta form large 3-

dimensional colonies that, especially when occurring in high abundances, are difficult to 

quantify with high precision. Therefore, these two species were quantified as single cells in 

subsamples of the phytoplankton samples after disintegration of the colonies by 

ultrasonication as described by Kurmayer et al. (2003). 

Phytoplanktonic chlorophyll-a measurements were made using the 1-L water sample taken as 

described above. A known volume was concentrated over a Whatman GF/C glass fibre filter 

(mesh size 1.2 µm) until the filter was saturated. Filters were then air dried and extracted the 

same day using the method of Moed and Hallegraeff (1987). 

 

Data analysis 

 

Abundance data of zooplankton and phytoplankton were Ln(Ax + 1) transformed prior to 

analysis, where x stands for the abundance value and Ax makes 2 by taking the lowest 
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abundance value higher than zero for x. This was done to down-weight high abundance values 

and approximate a normal distribution of the data (for rationale, see Van den Brink et al., 

2000). 

Until the second chlorpyrifos application (14 days post first application), statistical significance 

of differences between the treatment and the control were calculated for all parameters using 

ANOVA. Analyses were performed with Community Analysis, version 4.3.05 (Hommen et al., 

1994). Statistical significance was accepted at p < 0.05. After the second application, statistical 

significance between the treatments and the control were calculated using the Dunnett’s test 

and expressed as NOECs. 

The zooplankton and phytoplankton data sets were analysed by PRC (Principal Response 

Curves) using the CANOCO software package version 4.5 (Ter Braak and Smilauer, 2002). 

PRC is based on the Redundancy Analysis ordination technique (RDA), the constrained form 

of Principal Component Analysis. The analysis results in a diagram showing the sampling day 

on the x-axis and the first Principal Component of the treatment effects on the community on 

the y-axis (see Figure 4.2 for an example). This yield a diagram showing the deviations in time 

of the treatments compared to the control. In this way PRC shows the most dominant 

community response to the treatment present in the data set. The species weights are shown 

in a separate diagram, and indicate the affinity the species have with this dominant response. 

The species with a high positive weight are indicated to show a response similar to the 

response indicated by PRC, those with a negative weight, one that is opposite to the response 

indicated by PRC. Species with a near zero weight are indicated to show a response very 

dissimilar to the response indicated by PRC or no response at all. The significance of the PRC 

diagram was tested by Monte Carlo permutation of the microcosms, i.e., by permuting entire 

time series in the partial redundancy analysis from which PRC is derived (Van den Brink and 

Ter Braak, 1999). After the first PRC component, more can be extracted from the remaining 

variation analogous to as described by Van den Brink and Ter Braak (1998). The second PRC 

shows the most important deviations from the first PRC, present in the data set. 

Monte Carlo permutation tests were performed to assess the significance of the differences in 

community composition between the treatments and the controls. This was done by testing 

every treatment against the controls per sampling date. 
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Results 

 

Fate of chlorpyrifos 

 

The standard deviations within treatments for initial and nominal concentrations as well as the 

concentrations during the course of the experiment were mostly lower than 5% and always 

lower than 10% of the respective concentrations. The concentrations of chlorpyrifos 

decreased rapidly after both applications (Figure 4.1). Four and seven days after application, 

mean chlorpyrifos concentrations were respectively 28 - 21 % and 17 – 10 % (first - second 

application) of nominal concentrations. 

 

 

Figure 4.1 Dynamics of the chlorpyrifos 

concentrations in the water as a percentage 

of the dose applied. The dashed line 

indicates the chlorpyrifos concentrations 

following application of 1 µg/L as 

measured in a microcosm study using 

larger test systems (Daam et al., subm.; for 

explanation: see text). 

 

Zooplankton 

 

Before application, the dominant species in the zooplankton samples belonged to the groups 

of Rotifera and Copepoda, while Cladocera and Ostracoda occurred in low numbers. During 

the course of the experiment, Cladocera and Ostracoda increased in numbers in the control 

systems while Copepoda showed the opposite trend. By the end of the experiment, Cladocera 

and Ostracoda, and to a lesser extent the Rotifera, dominated the control zooplankton 

community.  

Analysis using the PRC method indicated that forty-two percent of all variance could be 

attributed to the treatments. Of this variance, 40% is displayed on the vertical axis of a first 

PRC (Figure 4.2A, p ‹ 0.01) and another 18% on the vertical axis of a second PRC (Figure 

4.2B, p ‹ 0.01). 
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Figure 4.2 First (A) and second (B) Principal response curves resulting from the analysis of 

the zooplankton data set, indicating the effects of one or two applications of 1 µg/L of the 

insecticide chlorpyrifos on the zooplankton community. Of all variance, 20% could be 

attributed to sampling date; this is displayed on the horizontal axis. Forty-two percent of all 

variance could be attributed to treatment level. Of this variance, 40% is displayed on the 

vertical axis of the first PRC (A) and 18% on the vertical axis of the second PRC (B). The lines 

represent the course of the treatment levels in time. The species weight (bk) can be interpreted 

as the affinity of the taxon with the Principal Response Curves. A Monte Carlo permutation 

test indicated that the treatment regime had a significant influence on the community structure 

(p = 0.011) and that a significant part of the variance explained by treatment level is displayed 

in the first (p = 0.024) and second (p = 0.001) PRC. 
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The PRC diagrams of the zooplankton dataset show that both chlorpyrifos treatments led to 

deviations from the controls, which are confirmed by the results of the Monte Carlo 

permutation tests (Table 4.1). 

 

Table 4.1 Results of Monte Carlo permutation performed per sampling date for the 

zooplankton data set. NP means calculation is not possible. 

Day 1 application 2 applications 

-3 0.308 NP 
0 0.083 NP 
4 0.016 NP 
7 0.014 NP 
11 0.041 NP 
14 0.261 NP 
18 0.309 0.030 
21 0.030 0.030 
25 0.030 0.030 
28 0.030 0.030 
32 0.075 0.058 
35 0.051 0.105 
42 0.051 0.124 

 

After the first treatment, the first PRC diagram does not show a large deviation from control 

in the two weeks following application, whereas the curve of the second PRC clearly drops 

immediately after application. From two to three weeks onwards, both PRCs show deviations 

in zooplankton community from control for microcosms treated once with chlorpyrifos. The 

curve of the first PRC rises considerably after the second treatment, whereas the curve in the 

second PRC stays close to zero. The broad pattern that emerges from this is that the dominant 

short-term effects of the first chlorpyrifos application are best described by the second PRC 

and longer-term effects by a combination of the two PRCs, whereas effects of the second 

application are mainly shown by the first PRC. 

The indicated response pattern for individual species is obtained by multiplying the respective 

species weights with the treatment (cdt) scores in the corresponding PRCs and then summing 

the two products (Van den Brink and Ter Braak, 1998). This is thus especially relevant for the 

longer term effects of the first application. To facilitate the subtraction of the indicated 

response on species level, a plot of the weights of the different species on the first and second 

PRC is given in figure 4.3. 
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Figure 4.3 Two dimensional plot of the weights of the zooplankton taxa on the first 

(horizontal axis) and second (vertical axis) PRC, as given in Figure 4.2. The diagram in the 

corner applies to the taxa that have equal weights on the two PRC's. 

 

Furthermore, calculated response curves with a ray of +45° and -45° from the horizontal axis 

are included in this diagram. Species coordinates that lay near the origin indicate that the 

corresponding species did not show a large response to the treatments. The species that are 

positioned along one of the axis have a response curve as indicated by the corresponding 

PRC. For instance, Hexarthra mira is located on the right side of the horizontal axis and thus 

has a response curve similar to the first PRC. Streblocerus pygmaues has a positive weight in the 

first PRC and a negative weight in the second PRC, so its response curve is a combination of 

the first PRC and the inversed curve of the second PRC (Figure 4.3). 
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Figure 4.4 Dynamics in numbers of the zooplankton taxa with a species weight higher than 

1.5 or lower than -1.5 in the two PRCs of the zooplankton dataset. Figures 4A through 4F 

show the geometric means of the abundances of the cladocerans Ceriodaphnia cornuta (A), 

Moina micrura (B), and Streblocerus pygmaues (C); the rotifers Brachionus calyciflorus (D) 

and Hexarthra mira (E); and cyclopoid copepods (F). In the figures, a value of 0.1 denotes the 

absence of the taxon. 
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Table 4.2 NOECs (No Observed Effect Concentration) for zooplankton and phytoplankton 

populations that showed a significant response (p ≤ 0.05). 0: NOEC = control; 1: NOEC = 1 

application; >: NOEC ≥ 1 application (days -3 till 14) or 2 applications (days 18 till 42); (+): 

significant increase compared to controls; (-): significant decrease compared to controls; nm: 

not measured. 

 Days post start first application 

  -3 0 4 7 11 14 18 21 25 28 32 35 42 Fig 

ZOOPLANKTON               

Cladocera > > 0 (-) > > > 1 (-) > > > > > >  

Ceriodaphnia cornuta > > 0 (-) 0 (-) 0 (-) > > > > > > > > 4A 

Moina micrura > > 0 (-) > > > 1 (-) 1 (-) > 1 (-) > > > 4B 

Streblocerus pygmaues > > > > > > > > 1 (+) 1 (+) > > > 4C 

Rotifers 0 (-) > 0 (+) > 0 (+) > 1 (+) 0 (+) 0 (+) 0 (+) 1 (+) > >  

Brachionus calyciflorus > > > > > > 1 (+) 1 (+) 0 (+) 0 (+) > > 1 (+) 4D 

Brachionus urceolaris > > > 0 (-) > > > 1 (+) > > > > >  

Colurella sp. > > > > 0 (+) > > > > > > > >  

Hexarthra mira > > > > > > > 1 (+) 1 (+) > 0 (+) > > 4E 

Keratella tropica > > > > > > > 1 (+) > > > > >  

Trichocerca sp > > > > > > > 1 (+) > > > > >  

Copepoda > > > > > > > > > > > > >  

Calanoid copepod > > 0 (-) > > > > > > > > > >  

Cyclopoid copepod > > 0 (-) > > > > > > > > > > 4F 

Ostracoda > > > > > > > > > > 0 (+) 0 (+) >  

PHYTOPLANKTON               

Scenedesmus quadricauda (4) > > nm 0 (-) nm > nm 1 (+) nm > nm > nm 6B 

Coelastrum astroideum > > nm 0 (-) nm > nm 0 (+) nm > nm > nm 6C 

Coelastrum microporum > > nm 0 (-) nm 0 (-) nm > nm > nm > nm  

Oocystis borgei > > nm 0 (-) nm > nm > nm 1 (+) nm > nm 6D 

Microcystis aeruginosa/incerta > > nm  nm > nm 1 (-) nm > nm > nm 6A 

Nitzschia palea > > nm  nm > nm 1 (+) nm > nm > nm  

Chlorophyll-a > 0(-) nm > nm > nm 1(-) nm 1(-) nm > > 7A 

WATER QUALITY               

Dissolved oxygen > > nm > > > nm > nm 1(+) nm > > 7B 

 

The dynamics of the taxa with a weight higher than 1.5 or lower than -1.5 with either one of 

the two PRCs are given in Figure 4.4A though 4.4F, whilst all taxa for which a statistical 

significance of difference was calculated are presented in Table 4.2. The most susceptible taxa 

belonged to the Cladocera, although they were affected differently by the two chlorpyrifos 

applications. The first application led to a complete elimination of Ceriodaphnia coruta, and only 

a slight (though significant) decrease in numbers of Moina micrura (Figure 4.4A and 4.4B). 

However, M. micrura was completely eliminated by the second application, while numbers of 

Streblocerus pymaues increased in abundances compared to controls (Figure 4.4C). Except an 

isolated case of decreased abundance of Brachionus urceolaris 7 days after the first application, 
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rotifer species increased in abundances after the first and, more pronounced, after the second 

application (Table 4.2; Figure 4.4D and 4.4E). Calanoid and cyclopoid (Figure 4.4F) copepods 

decreased in numbers four days after the first application and ostracod abundances were 

higher in all treated microcosms compared to controls at the end of the experiment (Table 

4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 First Principal response curves resulting from the analysis of the phytoplankton 

data set, indicating the effects of one or two applications of 1 µg/L of the insecticide 

chlorpyrifos on the phytoplankton community. Of all variance, 58% could be attributed to 

sampling date; this is displayed on the horizontal axis. Ten percent of all variance could be 

attributed to treatment level. Of this variance, 42% is displayed on the vertical axis of the first 

PRC. The lines represent the course of the treatment levels in time. The species weight (bk) 

can be interpreted as the affinity of the taxon with the Principal Response Curves. A Monte 

Carlo permutation test indicated that the treatment regime had a significant influence on the 

community structure (p = 0.001) and that a significant part of the variance explained by 

treatment level is displayed in the first (p = 0.005) PRC. (2): 2-cell colony; (4): 4-cell colony. 

 

 
Coelastrum microporum

Scenedesmus quadricauda (4)

Micractinium pusillum

Oocystis borgei

Coelastrum astroideum

Scenedesmus bicaudatus (4)

Scenedesmus buijagatus

Scenedesmus dispar

Scenedesmus bicaudatus (2)

Scenedesmus bijuga var alternans

Scenedesmus quadricauda (2)

Oocystis lacustris

Nitzschia palea

Crucigenia apiculata

Oscilatoria limnetica

Scenedesmus dimorphus

Schroederia sp

Tetrastrum staurogeniaeforme

Coelastrum cambricum

Cryptomonas ovata

Microcystis aeruginosa / incerta
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

b
k

-1

-0.5

0

0.5

-5 0 5 10 15 20 25 30 35

Days post first application

C
d

t

Control 1 application 2 applications

Coelastrum microporum

Scenedesmus quadricauda (4)

Micractinium pusillum

Oocystis borgei

Coelastrum astroideum

Scenedesmus bicaudatus (4)

Scenedesmus buijagatus

Scenedesmus dispar

Scenedesmus bicaudatus (2)

Scenedesmus bijuga var alternans

Scenedesmus quadricauda (2)

Oocystis lacustris

Nitzschia palea

Crucigenia apiculata

Oscilatoria limnetica

Scenedesmus dimorphus

Schroederia sp

Tetrastrum staurogeniaeforme

Coelastrum cambricum

Cryptomonas ovata

Microcystis aeruginosa / incerta
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

b
k

Coelastrum microporum

Scenedesmus quadricauda (4)

Micractinium pusillum

Oocystis borgei

Coelastrum astroideum

Scenedesmus bicaudatus (4)

Scenedesmus buijagatus

Scenedesmus dispar

Scenedesmus bicaudatus (2)

Scenedesmus bijuga var alternans

Scenedesmus quadricauda (2)

Oocystis lacustris

Nitzschia palea

Crucigenia apiculata

Oscilatoria limnetica

Scenedesmus dimorphus

Schroederia sp

Tetrastrum staurogeniaeforme

Coelastrum cambricum

Cryptomonas ovata

Microcystis aeruginosa / incerta
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

b
k

-1

-0.5

0

0.5

-5 0 5 10 15 20 25 30 35

Days post first application

C
d

t

Control 1 application 2 applications



 

 81 

Phytoplankton 

 

The PRC diagram resulting from the analysis of the phytoplankton data set is presented in 

Figure 4.5, whilst the results of the Monte Carlo permutation tests are given in Table 4.3. Most 

species have a positive weight in the diagram, indicating that most species decreased in 

abundances after the first application and increased slightly after the second application. Only 

Microcystis aeruginosa/incerta has a relatively high negative weight and is thus expected to show 

the opposite trend. These findings are confirmed by the univariate analysis, which calculated 

four negative treatment-related responses after the first application and four positive-related 

treatment effects after the second application (Table 4.2). In addition, a negative response on 

abundances of Microcystis aeruginosa/incerta was found after the second treatment (Figure 4.6A). 

Interestingly, Scenedesmus quadricauda, Coelastrum astroideum and Oocystis borgei were found to 

decrease after the first application and to increase the second application. Their dynamics are 

presented in figure 4.6B through 4.6D. 

 

Table 4.3 Results of Monte Carlo permutation tests performed per sampling 

date for the phytoplankton data set. NP means calculation is not possible. 

Day 1 application 2 applications 

-3 0.962 NP 
0 0.803 NP 
7 0.005 NP 
14 0.409 NP 
21 0.265 0.030 
28 0.574 0.183 
35 0.669 0.888 

 

Chlorophyll-a 

 

Chlorophyll-a contents in control and microcosms that received only one application of 1 

µg/L chlorpyrifos were high and rather constant during the experimental period (Figure 4.7A). 

The second insecticide application resulted in a decrease in chlorophyll-a content. Although 

levels remained lower than controls and once applied microcosms until the end of the 

experimental period, significant differences in chlorophyll-a levels between the different 

treatments were noted only up to three weeks after the second treatment (Table 4.2). 
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Figure 4.6 Dynamics in numbers of Microcystis aeruginosa / incerta (A), which dominated 

the phytoplankton community, as well as the dynamics in numbers of the three phytoplankton 

species that showed a decrease after the first chlorpyrifos application and an increase after the 

second treatment: Scenedeesmus quadricauda 4-cell colonies (B), Coelastrum astroideum (C) 

and Oocystis borgei (D). A value of 10-1 denotes absence of the taxon. 

 

Physicochemical Conditions 

 

The overall trend in dissolved oxygen (DO) concentration during the experiment is visualized 

in figure 4.7B. By the end of the experiment, oxygen levels were lower compared to the initial 

phase of the experiment in controls and singly applied tanks. Microcosms that received two 

chlorpyrifos treatments, remained high levels of DO leading to a significant increase over 

controls until three weeks after the second treatment. No other significant treatment effects 

were found on physicochemical parameters. 
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Figure 4.7 Dynamics of chlorophyll-a values (A) and morning dissolved oxygen levels (B). 

 

Discussion 

 

Fate of chlorpyrifos in the water 

 

Chlorpyrifos disappeared fast from the water layer with disappation rates slightly higher than 

those reported in a microcosm study carried out in Thailand evaluating single chlorpyrifos 

applications (Daam et al., subm. Figure 4.1). This may be explained by the fact that in the 

latter study, deeper test systems (length 1m, width 1m, water depth 1m) were used, meaning 

that the surface to volume ratio of the water in the present study was higher (2.3 times). This 

implies a relatively higher surface area for evaporation of chlorpyrifos from the water to the 

air, which has been demonstrated to play a significant role in the loss of chlorpyrifos from 

aquatic systems (Racke, 1993). 

 

Representativeness of the zooplankton and phytoplankton communities 

 

Rotifera was the most biodiverse group, among others represented by 5 Brachionus taxa and 3 

Lecana taxa. Rotifera have indeed been reported to generally dominate tropical zooplankton 

communities (Segers, 2001). Furthermore, the warm water adapted Rotifera species Filinia 

opoliensis, Hexarthra mira and Keratella tropica (Kutikova, 2002) were found regularly in the 

zooplankton samples. Cladocera had a composition characteristic for tropical Asian 

freshwaters, i.e. Daphnia was absent and the smaller limnetic species Moina micrura and 
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Ceriodaphnia cornuta dominated the cladoceran community (Dumont, 1994). All zooplankton 

species identified in the present study were previously recorded in Thailand (Sanoamuang, 

2001). Furthermore, from a study by Boonsom (1984), who associated zooplankton species 

with different habitats in Thailand, it can be concluded that the zooplankton communities 

were characteristic for Thai irrigation tanks and to a lesser extent for fish fields, rather than 

rivers and reservoirs. 

In the phytoplankton samples, 27 of a total number of 41 taxa belonged to the phylum 

Chlorophyta. In line with this, chlorophyte biomass in the tropics has been reported to be 

high (Kalff and Watson, 1986) and Chlorophyta was the most diverse phytoplankton phylum 

in field studies carried out in different parts of Thailand (Pongswat et al., 2004; Ariyadej et al., 

2004; Peerapornpisal, 1996). The cyanophyte Microcystis aeruginosa became the dominant species 

along the course of the experiment (Figure 4.6A). This dominance may be explained by the 

fact that lentic systems were used, since water bodies with a high degree of water column 

stability favour Microcystis. This is because Microcystis colonies can regulate their buoyancy, 

implying that during periods of water stability they have an advantage over other 

phytoplankton for nutrients and especially light (Dokulil and Teubner, 2000; Bonnet and 

Poulin, 2002). The experiment was carried out at the end of the rainy season, when direct 

sunlight is often blocked by cloud cover (Heckman, 1979), indicating that light may indeed be 

a limiting factor during this time of the year. In line with this, Vijanakorn et al. (2004) found 

Microcystis blooms in a reservoir in Thailand in the rainy season of 2002. 

 

Direct treatment effects of chlorpyrifos on zooplankton 

 

Both chlorpyrifos applications had pronounced but different effects on the zooplankton 

community. After the first application, the cladoceran Ceriodaphnia cornuta was eliminated and 

only a relatively small effect on Moina micrura was found (Figure 4.4A and 4.4B, Table 4.2). 

After the second application, however, M. micrura was the most responding zooplankton 

species and C. cornuta started to re-emerge even though this species was absent in control and 

singly applied microcosms at that time. This may be explained by differences in growth phase 

between these species at the time of application. Abundances of C. cornuta were relatively low 

at the time of the first application and showed a decreasing trend in controls, while M. micrura 

was relatively abundant and showed an increasing trend. In the period before the second 

application, C. cornuta was still absent and abundances of M. micrura were decreasing. In line 
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with this, Hanazato and Yasumo (1990) demonstrated that zooplankton populations were less 

susceptible for the insecticide carbaryl when applied in their growth phase than in their 

decreasing phase. A possible explanation for this is that increasing cladoceran populations 

contain more neonates, who have been demonstrated to be less sensitive to chlorpyrifos that 

older animals (Naddy et al., 2000). This may also elucidate why the first chlorpyrifos 

application significantly reduced the numbers of mature stages of copepods (cyclopoid, 

calanoid), while numbers of their immature stages (nauplii) were unaffected. No negative 

treatment effects were found after the second application on either mature or immature stages 

of copepods because they were absent in the controls. 

Another reason for the larger impact on M. micrura after the second application compared to 

the first application may be the increased dominance over the experimental period by 

Microcystis aeruginosa/incerta (Figure 4.6A). This is because growth and reproduction of M. 

micrura has been reported to be severely reduced when reared with Microcystis, even when 

mixed with Chlorella (Hanazato and Yasuno, 1987). Other studies also concluded that 

cladocerans are affected by Microcystis, while rotifers and copepods are less vulnerable 

(Lampert, 1987; Ferrão-Filho, 2002). These studies report toxic effects of microcystins and 

mechanical interference of small colonies and filaments with the filtering process as possible 

underlying mechanisms. 

 

Indirect effects of the insecticide 

 

The decrease in zooplankton abundances led to increased abundances of several rotifers, 

followed by ostracods as a result of decreased competition and mechanical interference. The 

cladoceran population was more affected after the second chlorpyrifos application and 

therefore led to more pronounced effects on rotifers compared to the first application as well 

as an increase of the tolerant cladoceran Streblocerus pygmaues.  

Although cladoceran and copepod populations seemed recovered within three weeks after 

each application, rotifers and ostracods remained significantly increased in numbers up to five 

weeks post application (Table 4.2). This was presumably due to the increasing population 

trend of M. aeruginosa/incerta over the course of the experiment, which favoured rotifers over 

cladocerans as explained above. Ostracods have been reported to be indicative of stressed 

environments (Victor, 2002), implying that the plankton community was affected for a 

prolonged period even after the pesticide had completely disappeared from the microcosms. 
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Abundances of Scenedesmus quadricauda (4-cell colonies), Coelastrum astroideum, C. microporum and 

Oocystis borgei decreased in applied tanks one week after the first chlorpyrifos treatment. It is 

unlikely that this was the result of direct toxicity of chlorpyrifos since reported EC50 values of 

chlorpyrifos for algae are more than a thousand-fold higher than the concentration tested 

(Van Donk et al., 1992). The decrease of these phytoplankton taxa was probably the result of 

an increased grazing pressure by Moina micrura to maintain its population size. In line with this, 

three of these species (S. quadricauda, C. astroideum and O. borgei; Figure 4.6B through 4.6D), 

increased in abundances after M. micrura was completely eliminated by the second chlorpyrifos 

application. This further stimulated the growth of the tolerant cladoceran Streblocerus pygmaues. 

Growth of the rotifers, however, is not likely to have increased further due to the increase in 

these phytoplankton taxa, which may be explained by differences in edible phytoplankton 

particles between rotifers and cladocerans. M. micrura and other small cladocerans have been 

considered to feed on particles smaller than 40 µm (Hanazato and Yasuno, 1987), while 

rotifers can handle particles up to 25 µm (Bergquist et al., 1985). O. borgei occurred in the 

phytoplankton samples as broad ellipsoidal colonies of mostly 4 cells with a length between 30 

and 40 µm, indicating that this species could indeed be grazed by cladocerans, but not by 

rotifers. S. quadricauda 4-cell colonies had a maximum length of approximately 20 µm, which 

implies that these colonies could be grazed upon by cladocerans as well as rotifers. However, 

this species has two spines of 10 to 15 µm on each terminal cell, presumably hampering the 

grazing by rotifers. This is supported by Bergquist et al. (1985), who recorded an increase in S. 

quadricauda in the presence of small zooplankton and also ascribed this to the presence of its 

spines. C. astroideum and C. microporum formed compact colonies of mostly 16 and 32 cells and 

occasionally colonies with 8 cells and, only for C. microporum, 64 cells occurred. Although size 

varied considerably, colony size was around 30 µm for 16-cell colonies and 50 µm for 32-cell 

colonies, indicating that rotifers and cladocerans could filter colonies up to 16 and 8 cells, 

respectively. Interestingly, colony size of C. microporum increased from 17 ± 1 in controls to 30 

± 7 (means ± SD; data not shown) in applied microcosms one week after the first application, 

which is in agreement with the hypothesis that M. micrura grazing increased on this species to 

recover its population size. The increase in C. astroideum after the second application, however, 

was calculated for all treated microcosms (NOEC = control) and no differences in colony size 

between treatments were found. This indicates that a factor other than M. micrura grazing was 

involved since abundances of the latter species in once applied tanks were comparable to 

controls. As a result of its elongated shape, the increase in numbers of N. palea (Length ± 30-
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60 µm; Width ± 3-5 µm) is also not likely to be the result of decreased M. micrura grazing 

alone.  

The increased abundances of rotifers led to increased grazing on Microcystis aeruginosa/incerta, 

which subsequently decreased in abundance. Although the PRC indicates a decrease for both 

chlorpyrifos applications on day 21 and 28 (Figure 4.5), a statistical significant decrease could 

only be demonstrated for two applications on day 21 (Dunnett’s test, p ‹ 0.05). This 

corresponded to a decrease in abundance of approximately 40% compared to controls. 

Though not significant in the Dunnett’s test, abundances of Microcystis aeruginosa/incerta in once 

applied microcosms were as much as 20% and 40% lower than control values on day 21 and 

28, respectively. 

Thus, as a result of decreased competition with Microcystis aeruginosa/incerta, numbers of N. 

palea and C. astroideum, as well as S. quadricauda and O. borgei, increased in numbers. In addition, 

as a consequence of the decreased M. aeruginosa/incerta biomass, chlorophyll-a levels decreased. 

This may have further stimulated N. palea growth since diatoms have been reported to be 

indicative of clean water environments (Brönmark and Hansson, 2005). Numbers of N. palea 

were indeed negatively correlated with chlorophyll-a levels over the experimental period 

(Pearson correlation test, r = 0.47; p < 0.05). The decreased phytoplankton biomass as 

indicated by the chlorophyll-a levels led to increased DO levels as measured in the morning 

due to reduced respiration in the night (Figure 4.7B). 

 

Implications for risk assessment and recommendations for future research 

 

The assessment of the risk of pesticides to the aquatic environment is currently based on 

dose-effect response studies using either single or continuous exposure regimes (e.g., EU, 

1997). In normal agricultural practises, however, pesticides are generally applied repeatedly to 

ensure a sufficient protection of their crops. Hence, aquatic ecosystems surrounding 

agricultural fields are subject to repeated pesticide loads, which may influence toxic effect 

cascades on aquatic life. Indeed, Hanazato and Yasuno (1990) reported an increase in the 

magnitude of effects on the zooplankton community in experimental ponds after repeated 

applications compared to a single application of the insecticide carbaryl. After a single 

application of carbaryl, cladocerans were reduced but recovered soon and consequently 

suppressed rotifers through competition. Repeated applications suppressed cladocerans for a 
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prolonged period, which induced the occurrence of abundant rotifers (Hanazato and Yasuno, 

1990). 

Also in the present study, different effect patterns were observed after the first and second 

chlorpyrifos application. It appeared, however, that the larger impact of chlorpyrifos on the 

cladoceran Moina micrura after the second treatment was a result of its population dynamics at 

the time of application and the increase in Microcystis dominance, rather than an accumulation 

of toxicity. Due to the relatively larger reduction in total numbers of cladocerans, indirect 

effects on rotifers and the phytoplankton community composition were indeed more 

pronounced after the second treatment.  

The apparent absence of increased toxicity on the cladoceran populations after the second 

application may be explained by a combination of the rapid degradation rate of chlorpyrifos 

and the time interval between the applications. In the experiment by Hanazato and Yasuno 

(1990), the repeated carbaryl application regime consisted of ten applications every other day. 

The interval of two weeks used in the present study to mimic realistic Thai agricultural 

practises appears to be sufficient to allow recovery of the cladoceran populations although 

effects on zooplankton community level lasted longer. In line with this, Naddy et al. (2000) 

demonstrated that daphnids could survive two 6-h 0.5 µg/L chlorpyrifos pulses if a minimum 

interval of 3 days was used between the treatments. These authors further stipulated that 

relationships among variables of pulsed exposures, including concentration, duration, interval, 

and frequency, need to be better evaluated and understood. This will not only allow 

investigating the response of organisms under more environmentally pragmatic exposure 

conditions, but may also provide additional information, such as the potential for recovery, 

resistance, or latent effects. This may be especially relevant for agricultural common practises 

in tropical countries like Thailand, where application frequency is high (Van den Brink et al., 

2003; Satapornvanit et al., 2004). Thus, additional experimental research is required evaluating 

repeated applications of pesticides with different degradation rates and application intervals 

relevant for local agricultural practices to come to a better understanding of pesticide 

freshwater ecotoxicology in tropical countries like Thailand. In addition, since several 

pesticides are often applied together as a mix to specific crops (Jungbluth, 2000; Van den 

Brink et al., 2003; Satapornvanit et al., 2004), crop-based experiments mimicking specific 

pesticide treatment packages are needed to evaluate the actual ecological risk of pesticides for 

freshwater life. 
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CHAPTER 5 

 

EFFECTS OF THE FUNGICIDE CARBENDAZIM ON THE ECOLOGY OF 

OUTDOOR FRESHWATER MICROCOSMS IN THAILAND 

(To be submitted to Aquatic Toxicology) 

 

 

Abstract 

 

The aim of this study was to analyse the effects of the benzimidazole fungicide carbendazim 

on the ecology of tropical freshwater model ecosystems and compare them with the effects 

observed in similar studies carried out in temperate regions. Plankton-dominated outdoor 

microcosms containing indigenous species were set up in Thailand and treated once with 

nominal concentrations of 3.3, 33, 100 and 1000 µg carbendazim/L. Carbendazim was less 

persistent in the water layer than in studies performed in the temperate zone, which is 

explained by higher pH, radiation levels and temperature in the present study. The 

macroinvertebrate community was most severely affected by the carbendazim application, 

with water boatmen (Corixidae) as the most sensitive group. Overall, the safety factors for 

toxicity values used by the European Union (Uniform Principles), obtained from standard 

toxicity tests with temperate species, also appear to ensure adequate protection for the 

freshwater community in tropical countries like Thailand. However, since macroinvertebrates 

are the most sensitive animals to carbendazim and these are not represented among the 

standard test species currently in use, laboratory toxicity tests using indigenous species should 

be included in the risk evaluation of fungicides like carbendazim. 

 

Introduction 

 

Environmental degradation of Asian tropical ecosystems has become a major focus for 

researchers and funding agencies alike. The region’s wetlands are under particular pressure, 

and their status is of concern to many national and international bodies and environment 

agencies (e.g. UNEP, EU) as well as conventions (e.g. RAMSAR) (Satapornvanit et al., 2004; 

Van den Bosch et al., 2006; Berg et al., 2007). Although it is generally agreed that there is an 

urgent need for guidelines for good land-use practices that reduce or obviate the use of 
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agrochemicals, little is currently known about the fate and impact of these compounds in 

tropical environments (Bourdeau et al., 1988; Castillo et al., 1997; Racke, 2003).  

In Thailand, 6,732 tons of fungicides were imported in 2003, approximately 13% of the total 

pesticide import (Chunyanuwat, 2005). Fungicides are mainly used for fruit and vegetables, 

and their use is expected to increase significantly in the coming years, due to falling prices for 

rice and a production restructuring programme by the Ministry of Agriculture to convert land 

currently used to cultivate rice, cassava, coffee and pepper into fruit orchards (Jungbluth, 

1996).  

In Thailand, each pesticide has to be tested by means of a risk-benefit assessment (to 

determine the recommended dose) and for its effects on humans and the environment. If a 

product has already been tested elsewhere, only missing toxicological data are requested 

(Jungbluth, 1996). Only paraquat is produced in Thailand itself; the USA and Germany are the 

two major countries from which pesticides are imported into Thailand (Jungbluth, 2000). This 

means that the ecotoxicological risk assessment is mostly based on toxicity values obtained 

from tests performed in temperate countries. Furthermore, water quality standards have not 

been established for many of the non-organochlorine compounds, which are generally present 

in relatively high concentrations in field samples (Thapinta and Hudak, 2000). 

The aim of this study was to obtain a better understanding of the fate and effects of fungicides 

on tropical freshwater ecosystems, using carbendazim as a model substance. Carbendazim was 

chosen because it is commonly used in Thailand (Jungbluth, 1996) and because reference 

model ecosystem studies are available for temperate regions testing carbendazim (single-peak 

exposure: Slijkerman et al., 2004; chronic exposure: Cuppen et al. 2000, Van den Brink et al. 

2000). Ultimately, this study aimed to validate whether toxicity threshold values derived from 

experiments with carbendazim in temperate regions can be applied to ensure adequate 

protection of freshwater populations in tropical regions like Thailand. 

 

Materials and methods 

 

Experimental design 

 

On 28 February 2005, the fungicide Bavistin FL (active ingredient carbendazim) was applied 

once to 8 microcosms, in 4 duplicate doses (nominal levels: 3.3, 33, 100 and 1000 µg/L). Four 

other systems served as controls, and were therefore only treated with water. Treatments were 



 

 95 

assigned randomly to the tanks, and applied by carefully pouring a solution of Bavistin FL into 

the tanks. Immediately after the application, the systems were gently stirred to mix the 

compound with the water column, while preventing an upflow of sediment particles. 

Twelve plankton-dominated microcosms (length 1 m, width 1 m, height 1.15 m, water volume 

1000 L) at the hatchery of the Asian Institute of Technology (AIT), 42 km north of Bangkok 

(Thailand), were allocated to the experiment. The tanks were freshly coated with a non-toxic 

epoxy paint to avoid any influence of previous experiments. The microcosms were filled with 

a 10-cm layer of sediment and a 1-m water column, taken from the canal surrounding AIT. 

The canal water was passed though a net (mesh size 0.1 mm) to avoid fish and prawns 

entering the systems.  

In the preparatory phase of the experiment, zooplankton and macroinvertebrates were 

collected from the AIT canal and introduced into the microcosms. Over an acclimation period 

of 6 weeks, a biocoenosis was allowed to develop in the microcosms. In this period, the water 

was circulated twice a week by collecting 100 L from each microcosm into a container and 

gently pumping 100 L back to each microcosm, to achieve similarity between the communities 

in the systems. A nutrient addition of N (1.4 mg/L as urea) and P (0.18 mg/L as TSP) was 

added twice a week during the entire experimental period. 

 

Fate of carbendazim 

 

Nominal concentrations were calculated from an analysis of subsamples of the treatment 

solutions and the water volume of the microcosms. Concentrations in the tanks were 

determined 1 hour (initial concentration), 1 and 2 days as well as 1, 2, 4 and 8 weeks after 

application. This was done by collecting a 10-L depth-integrated water sample in a glass 

container, after which a subsample of approximately 300 mL was poured into a glass bottle 

and taken to the laboratory. 

After filtering over Whatman GF/C filters, 250 mL water was extracted with octadecyl (C-18, 

supelco) solid phase extraction columns. The extraction columns were conditioned with 5 mL 

methanol and 5 mL distilled water. After extraction, the carbendazim was eluted from the 

column with 2 successive portions of 1.25 mL acetonitrile into glass test tubes. The samples 

were then diluted with water to a fixed volume of 5 mL and analysed with high performance 

liquid chromatography (HPLC). Subsamples of 100 µL were injected with a Hitachi L-7200 

autosampler. The mobile phase (water:acetonitrile = 40:60) was set at a flow rate of 0.7 
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mL/min. The analytical column used was a ZORBAX ODS (length 250 mm, width 4.6 mm) 

provided with a guard column of the same origin. The column was mounted in a Hitachi L-

7300 oven, which was set at 40°C. Carbendazim was detected using a Hitachi L-7400 UV 

detector set at a wavelength of 220 nm. Under these conditions, the retention time for the 

carbendazim peak was 8 min and the detection limit in water was 2 µg/L. Carbendazim 

recovery from the water was 97 ± 1.2%  (mean ± sd, n = 6). Carbendazim concentrations were 

calculated using a calibration series based on external standards. Carbendazim concentrations 

presented here have been corrected for recovery. 

 

Macroinvertebrate community 

 

Two pebble baskets, incubated on top of the sediment in each microcosm, were used to study 

the effect of carbendazim on the macroinvertebrate community. Macroinvertebrates were 

sampled at approximately two-week intervals by gently retrieving the substrates using a net to 

prevent animals escaping. To collect the macroinvertebrates, the substrates were washed in a 

container, after which the content of the net was added. The animals were then identified, 

counted and subsequently released into their original microcosm. Since expertise and 

knowledge on macroinvertebrate identification in Thailand are still limited (Dudgeon, 2003), 

identification was only made to class level, to prevent misidentification. The data from the two 

baskets were pooled for statistical analysis. 

 

Zooplankton and phytoplankton 

 

At several moments during the experiment, a 10-L water sample was collected in a bucket by 

taking several depth-integrated subsamples using a Perspex tube. One litre was used for 

phytoplankton chlorophyll-a and alkalinity analysis. The bucket was then partially emptied into 

the microcosm from which it had been taken, leaving 5 L in the bucket. This remainder was 

passed through a zooplankton net (mesh size 60 µm) and preserved with formalin (final 

concentration: 4% V/V) to examine treatment effects on the zooplankton community. 

Subsamples of the zooplankton sample were counted with an inverted microscope 

(magnification 100-400). Rotifers and cladocerans were identified to the lowest taxonomic 

level possible. Copepods were divided into nauplii (immature stages), calanoids and cyclopoids 
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(mature stages). Ostracoda were not further identified. Numbers were recalculated to numbers 

per litre of microcosm water.  

Phytoplanktonic chlorophyll-a measurements were made using the 1-L water sample taken as 

described above. A known volume was concentrated over a Whatman GF/C glass fibre filter 

(mesh size 1.2 µm) until the filter was saturated. Filters were then air dried and extracted the 

same day using the method developed by Moed and Hallegraeff (1987). 

 

Periphyton 

 

Glass slides were used as an artificial substratum to study the treatment effects of carbendazim 

on chlorophyll-a content of periphyton. The slides were positioned in a glass frame that was 

suspended at approximately 10 cm below the water surface. Periphyton chlorophyll-a was 

sampled at two-week intervals by brushing five slides visually clean. Extraction of the 

pigments was performed using the ethanol method described by Moed and Hallegraeff (1987). 

 

Community metabolism 

 

Dissolved oxygen, pH, electrical conductivity (EC) and temperature were measured 

approximately 10 cm below the water surface two weeks before application and on a weekly 

basis after application. On sampling days, measurements were made in the morning (just after 

sunrise) as well as at the end of the afternoon (just before sunset). DO and pH measurements 

were made using a YSI model 58 oxygen meter connected to a YSI 5739 probe and a Consort 

C523 pH meter, respectively. EC and temperature were both measured with a Consort C532 

conductivity meter. Alkalinity levels were determined at weekly intervals in 100-mL 

subsamples taken from a 1-L water sample obtained as described above, by titrating with 0.05 

N HCl until pH 4.2. 

The concentrations of ammonia, nitrate and ortho-phosphate were analysed at two-week 

intervals in a 1-L sample taken at approximately 10 cm below the water surface using the 

methods described in APHA (1992). 
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Decomposition 

 

Effects of carbendazim treatment on the decomposition of particulate organic matter (POM) 

were studied using litter bags filled with Musa (banana) leaves. To this end, Musa  leaves were 

collected from banana trees on the AIT campus, which are not treated with pesticides. Leaves 

were leached three times for two days to remove the more easily soluble humic compounds, 

and were dried in an oven at 60°C for three days. Subsequently, subsamples were dried at 

105°C to establish the 60°C/105°C dry weight ratio. 

A portion of 2 g dry weight (60°C) of Musa leaves was enclosed in a nylon bag with a mesh 

size of 200 µm (non-accessible to macroinvertebrates), closed with a stainless steel wire. Three 

litter bags were introduced into each microcosm at a depth of 20 cm on the day of fungicide 

application. A litter bag was retrieved from each microcosm 2, 4 and 8 weeks post application. 

The content was transferred to a white tray and gently washed to separate POM from other 

particles. Subsequently, the plant material was dried in aluminium foil to determine its dry 

weight (24 h; 105°C). 

 

Data analysis 

 

NOECs were calculated for all parameters using the Williams test, which assumes an 

increasing effect with increasing dose (Williams, 1972). Abundance data were Ln(Ax + 1) 

transformed, where x stands for the abundance value and Ax makes 2 by taking the lowest 

abundance value higher than zero for x. This was done to down-weight high abundance values 

and approximate a normal distribution of the data (for rationale, see Van den Brink et al., 

2000). Analyses were performed with Community Analysis, version 4.3.05 (Hommen et al., 

1994) and statistical significance was accepted at p < 0.05. Effects were considered to be 

consistent when found on two consecutive sampling dates. 

The zooplankton and macroinvertebrate data sets were analysed by PRC (Principal Response 

Curves) using the CANOCO software package, version 4.5 (Ter Braak and Smilauer, 2002). 

PRC is based on the Redundancy Analysis ordination technique (RDA), the constrained form 

of Principal Component Analysis. The analysis results in a diagram showing the sampling day 

on the x-axis and the first Principal Component of the treatment effects on the community on 

the y-axis (see Figure 5.2 for an example). This yields a diagram showing the deviations in time 

of the treatments compared to the control. In this way, PRC shows the most dominant 
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response to the treatment present in the data set. The species weights are shown in a separate 

diagram, and indicate the affinity the species have with this dominant response. The species 

with a high positive weight are indicated to show a response similar to that indicated by PRC, 

while those with a negative weight show one that is opposite to the response indicated by 

PRC. Species with a near zero weight are indicated to show a response very dissimilar to that 

indicated by PRC or no response at all. The significance of the PRC diagram was tested by 

Monte Carlo permutation of the microcosms, i.e., by permuting entire time series in the partial 

redundancy analysis from which PRC is derived (Van den Brink and Ter Braak, 1999).  

Permutation tests were performed per sampling date using Ln-transformed treatment levels as 

explanatory variables to determine the significance of the treatment regime per sampling date. 

The NOEC values at community level for the zooplankton and macroinvertebrate 

communities were calculated for each individual sampling date by applying the Williams test to 

the sample scores of the first principal component of each sampling date (for rationale, see 

Van den Brink et al., 1996). 

 

Results 

 

Climatic conditions during the experiment 

 

Figure 5.1 shows the meteorological conditions and water characteristics during the 

experimental period. The average air temperature during the time span of the experiment was 

30°C (average min – max: 24 -36 °C), resulting in average water temperatures of 28°C in the 

morning and 32°C in the afternoon. These high temperatures, together with a high air 

humidity (69 ± 23%), are characteristic of the monsoon climate of the equatorial zone (McKay 

and Thomas, 1989). The experiment was performed between mid-January and the end of 

April 2005, i.e. partly in the cool season (November – February) and partly in the hot season 

(March - May).  

Rain showers did not occur until mid-March, with an average daily evaporation of 5.9 mm, 

resulting in a negative net water balance (Figure 5.1). Based on these measurements by the 

meteorological station at AIT, the decrease in water level in the microcosms was 

approximately 6.6 cm over the entire experimental period.  

To compensate for the preceding dry period, the cloud seeding technique described in 

European Patent Office (2004) was applied in the beginning of 2005 by the Thai government  
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Figure 5.1 Meteorological conditions and physical/chemical water characteristics during the 

course of the experiment. Water parameter values are average values from the control 

microcosms. Data were obtained from the meteorological station at AIT. 
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to artificially produce rain. Compared to the same period in 2003, when microcosm studies 

with chlorpyrifos were carried out (Daam et al., subm.), cloud cover in 2005 was 6% higher, 

with approximately one hour of sunshine less per day. This resulted in relatively low radiation 

levels in the present study (Figure 5.1).  

The water in the control microcosms was alkaline, with average pH values fluctuating between 

around 8.5 in the morning and 9.5 at the end of the afternoon. Dissolved oxygen (DO) levels 

in the morning were very low, with an average of 4 mg/L, which corresponds to a DO 

saturation of approximately 50%. DO measured in the afternoon was on average 7.5 ± 3.1 

mg/L (mean ± SD) higher than morning values. Electrical conductivity (EC) and alkalinity 

decreased slightly over the course of the experiment (Figure 5.1). 

The microcosms were representative of hypereutrophic Thai plankton-dominated drainage 

ditches. As an indication of the nutrient status, mean ortho-phosphate levels increased during 

the experiment from 0.1 to 0.4 mg/L, levels that are characteristic of hypereutrophic water 

bodies (Brönmark and Hansson, 2005). Ammonia levels decreased rapidly in the pre-treatment 

period to < 0.8 mg/L and nitrate concentrations fluctuated slightly, between approximately 

0.4 and 0.7 mg/L. 

 

Carbendazim concentrations 

 

Initial carbendazim concentrations measured 1 h after application were approximately 20% 

lower than the nominal carbendazim concentrations calculated from an analysis of the dose 

solutions and the water volumes in the microcosms (Table 5.1). 

 

Table 5.1 Mean nominal and initial carbendazim concentrations (in µg/L ± SD) and half-lives 

for the disappearance from the water phase per treatment level (t½) as calculated over the 

experimental period. 

Nominal concentration (µg/L) Initial concentration (µg/L) t½ (days) 

3.3 ± 0.1 2.5 ± 0.1 - 

32.9 ± 0.1  25.2 ± 2.8 17 ± 1 

99.0 ± 3.1 81.5 ± 4.5 15 ± 1 

991.3 ± 18.5 832.5 ± 67.8 16 ± 0 
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Standard deviations within treatments were 8 ± 5% (mean ± SD) over the course of the 

experiment. Irrespective of the dose applied, the half-life determined over the experimental 

period for the disappearance of carbendazim from the water phase (t½) was 15 to 17 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Principal response curves resulting from the analysis of the macroinvertebrate data 

set, indicating the effects of carbendazim treatment on the macroinvertebrate community. Of 

all variance, 35% could be attributed to sampling date; this is displayed on the horizontal axis. 

Forty percent of all variance could be attributed to treatment level; 45% of this is displayed on 

the vertical axis. The lines represent the course of the treatment levels over time. The species 

weight (bk) can be interpreted as the affinity of the taxon with the Principal Response Curves. 

A Monte Carlo permutation test indicated that a significant part of the variance explained by 

treatment level is displayed in the diagram (P = 0.002). The results of the Monte Carlo 

permutation tests and Williams test on the PCA coordinates as performed for each individual 

sampling date for the macroinvertebrate data set are presented in the table accompanying the 

PRC diagram. 
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Macroinvertebrates 

 

A total of 20 macroinvertebrate taxonomic groups were identified in the experiment. Insects 

were the most diverse macroinvertebrate class, with 10 different families. Most groups 

occurred in very low numbers, making it difficult to demonstrate statistically significant effects 

on many macroinvertebrate families and classes. Over the experimental period, 92% of the 

community in the control microcosms consisted of water boatmen (Corixidae), baetid mayflies 

(Baetidae), oligochaets, ostracods and apple snails (Ampullariidae). 

 

 

Figure 5.3 Dynamics in numbers of the four most important macroinvertebrates in the PRC 

analysis. Geometric means of Corixidae (A), Oligochaeta (B), Ampullariidae (C) and 

Hydrophilidae larvae (D) are shown in the figures, with a value of 0.1 denoting absence of the 

macroinvertebrate. 
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Statistical analysis of the PRC revealed that the community composition of the 33, 100 and 

1000 µg/L microcosms differed significantly from that in the controls (Figure 5.2; Monte 

Carlo permutation test and Williams test, p < 0.05). The PRC also indicated a more 

pronounced effect with increasing doses of carbendazim. The water boatmen (Corixidae) had 

a relatively high positive weight in the diagram, indicating a major reduction in the abundance 

of this macroinvertebrate family in the treated microcosms compared to the controls. Indeed, 

Corixidae were found to have the lowest NOEC: 3.3 µg/L (Table 5.2, Fig. 5.3A). Other 

negatively affected species were Oligochaeta (Fig. 5.3B), Ampullariidae (Fig. 5.3C) and 

Baetidae, though NOECs could only be calculated for one or two sampling dates (NOECs 33 

– 100 µg/L, Table 5.2). Water scavenger beetle larvae (Hydrophilidae) had a relatively high 

negative weight, indicating an increase in numbers relative to control values. This was 

confirmed with the Williams test, which calculated an increase at the two highest treatment 

levels (NOEC 33 µg/L; Fig. 5.3D). 

 

Zooplankton 

 

In terms of overall abundance, the control zooplankton community was dominated by 

rotifers, copepods and cladocerans, followed by ostracods. Rotifera were the most diverse 

group with 11 species, 4 of which belonged to the Brachionus family, while Cladocera were 

represented by 4 taxa. Immature stages of copepods (nauplii) had a high abundance 

throughout the experimental period in the controls, with an average of 380 per litre. In these 

microcosms, cyclopoid copepods increased over time, leading to slightly higher numbers 

compared to calanoid copepods at the end of the experiment. 

The PRC of the zooplankton data shows a clear deviation from controls at the highest 

treatment level (Fig. 5.4). This visual difference was confirmed by the permutation tests and 

NOECcommunity calculations (NOEC = 100 µg/L). This NOEC was confirmed at the 

species level for several taxa (Williams test, Table 2). Cladocerans Moina micrura (Fig. 5.5A), 

Ceriodaphnia cornuta (Fig. 5.5B) and Diaphanosoma sp. occurred in significantly lower numbers at 

the highest treatment level. The rotifer Keratella tropica decreased in numbers (Fig. 5.5C), whilst 

the rotifers Brachionus caudatus (Fig. 5.5D) and, though less pronounced, Lecane closterocerca and 

Euchlanis sp., increased in numbers (Table 5.2). Ostracoda also had higher abundances and 

copepods were negatively affected mostly at a later stage in the experiment (Table 5.2). 
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Table 5.2 NOECs (No Observed Effect Concentration) per sampling week for invertebrates 

that showed a significant response in the Williams test calculations (p ≤ 0.05). Concentrations 

(µg a.i./L) showed significant increases (↑) or decreases (↓); nm – not measured; > indicates a 

NOEC of > 1000 µg/L. 

                                                       Sampling week 

 -1 0 0.1 1 2 3 4 5 6 7 8 Figure 

Arthropoda             

   Crustacea              

      Cladocera > > > 100↓ 100↓ 100↓ 100↓ > > > 100↓  

         Moina micrura > > > 100↓ > 100↓ > > 33↑ > 100↓ 5.5A 

         Diaphanosoma sp. > > > > > > > 100↓ 100↓ > 3.3↓  

         Ceriodaphnia cornuta > > > > 100↓ > 100↓ 100↓ 100↓ > 100↓ 5.5B 

             

      Ostracoda > > > > > > > > 33↑ 33↑ >  

             

      Copepoda > > > > > > 100↑ 33↑ 100↓ 100↓ 100↓  

         Nauplii > > > > > > > > 100↓ 100↓ 100↓  

         Calanoid > > > > > > 100↑ > > > 33↓  

         Cyclopoid > > 100↓ > > > > > 100↓ 100↓ 33↓  

                   

   Insecta             

      Corixidae Nm > nm nm 3.3↓ nm 3.3↓ nm 3.3↓ nm 3.3↓ 5.3A 

      Baetidae Nm > nm nm > nm 33↓ nm > nm >  

      Hydrophilidae larvae Nm > nm nm > nm 33↑ nm > nm > 5.3D 

             

Rotifera > > > > > > > > 100↓ 100↓ >  

      Brachionus caudatus > > > > > 100↑ 100↑ 100↑ 100↑ > > 5.5D 

      Lecane closterocerca  > > > > 100↑ > > > > > >  

      Keratella trópica > > 33↓ 100↓ 100↓ 100↓ 100↓ 100↓ > 100↓ > 5.5C 

      Lepadella patella 100↑ > > > > > > > > > >  

      Euchlanis sp. > > > 100↑ > > > > > > >  

                  

Annelida             

      Oligochaeta Nm > nm nm > nm > nm 33↓ nm 100↓ 5.3B 

             

Mollusca Nm > nm nm 100↓ nm 100↓ nm > nm 33↓  

   Ampullariidae Nm > nm nm 100↓ nm > nm > nm > 5.3C 

   Ancylidae Nm > nm nm 33↓ nm 100↓ nm > nm >  
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Figure 5.4 Principal response curves resulting from the analysis of the zooplankton data set, 

indicating the effects of carbendazim treatment on the zooplankton community. Of all 

variance, 21% could be attributed to sampling date; this is displayed on the horizontal axis. 

Forty-two percent of all variance could be attributed to treatment level; 40% of this is 

displayed on the vertical axis. The lines represent the course of the treatment levels over time. 

The species weight (bk) can be interpreted as the affinity of the taxon with the Principal 

Response Curves. A Monte Carlo permutation test indicated that a significant part of the 

variance explained by treatment level is displayed in the diagram (P = 0.024). The results of 

the Monte Carlo permutation tests and Williams test on the PCA coordinates as performed 

for each individual sampling date for the zooplankton data set are presented in the table 

accompanying the PRC diagram. 

 

 

Keratella tropica

Ceriodaphnia cornuta

Moina micrura
Diaphanosoma sp

Cyclopoid copepod

Nauplii

Dadaya macrops

Calanoid copepod

Ostracada

Brachionus calyciflorus

Brachionus caudatus

-2

-1

0

1

2

3

b
k

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 3.3 µg/L 33 µg/L 100 µg/L 1000 µg/L

Keratella tropica

Ceriodaphnia cornuta

Moina micrura
Diaphanosoma sp

Cyclopoid copepod

Nauplii

Dadaya macrops

Calanoid copepod

Ostracada

Brachionus calyciflorus

Brachionus caudatus

-2

-1

0

1

2

3

b
k

Keratella tropica

Ceriodaphnia cornuta

Moina micrura
Diaphanosoma sp

Cyclopoid copepod

Nauplii

Dadaya macrops

Calanoid copepod

Ostracada

Brachionus calyciflorus

Brachionus caudatus

-2

-1

0

1

2

3

b
k

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 3.3 µg/L 33 µg/L 100 µg/L 1000 µg/L

1000.00456

1000.02848

330.0143

1000.00336

1000.03127

> 10000.08722

> 10000.25115

1000.0658

> 10000.1241

> 10000.905-1

> 10000.797-6

NOECcommunityp-valueWeek

1000.00456

1000.02848

330.0143

1000.00336

1000.03127

> 10000.08722

> 10000.25115

1000.0658

> 10000.1241

> 10000.905-1

> 10000.797-6

NOECcommunityp-valueWeek



 

 107 

 

Figure 5.5 Dynamics of the four zooplankton taxa found to be the most discriminating ones 

in the PRC analysis. Figures 5.5A to 5.5D show geometric means for Moina micrura (A), 

Ceriodaphnia cornuta (B),  Keratella tropica (C) and Brachionus caudatus (D). In the figures, a 

value of 0.1 denotes the absence of the taxon. 
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#
/L

Days post application

C 

0.1

1

10

100

1000

-7 0 7 14 21 28 35 42 49 56

0.1

1

10

100

1000

-7 0 7 14 21 28 35 42 49 56

B 

0.1

1

10

100

1000

-7 0 7 14 21 28 35 42 49 56

#
/L

0.1

1

10

100

1000

-7 0 7 14 21 28 35 42 49 56

#
/L

A 
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Table 5.3 Geometric means of chlorophyll-a levels in phytoplankton (µg/L) and periphyton 

(µg/dm2) during the experiment. Significant increases and decreases (Williams test, p < 0.05) 

relative to controls are indicated by a ↑ and a ↓, respectively. 

Phytoplanktonic chlorophyll-a (µg/L) Periphytonic chlorophyll-a (µg/dm2)  

Week Control 3.3 µg/L 33 µg/L 100 

µg/L 

1000 

µg/L 

Week Control 3.3 µg/L 33 µg/L 100 

µg/L 

1000 

µg/L 

-1 

1 

2 

3 

4 

5 

6 

7 

8 

2.1 

5.1 

4.7 

4.7 

3.9 

0.2 

2.1 

4.9 

55.0 

0.6 

0.3 

1.3 

0.0 

3.7 

0.0 

1.2 

2.6 

25.9 

0.0 

0.0 

0.8 

0.0 

0.3 

0.0 

4.1 

2.8 

60.8 

7.5 

12.1 

40.5 

91.3 

3.9 

19.0 

27.0 

103.8 

113.2 

2.1 

14.0 

101.0 

92.1 

39.0 

81.3↑ 

46.8 

0.0 

0.0↓ 

0 

2 

4 

6 

8 

75.4 

299.1 

172.0 

145.2 

133.1 

89.8 

156.8 

129.8 

94.6 

441.1 

66.6 

173.2 

39.1 

32.9 

80.4 

100.0 

80.9 

35.9 

47.0 

140.7 

113.6 

178.5 

331.7↑ 

106.1 

135.6 

 

Water quality parameters 

 

Several effects on water quality parameters were found, especially in the last 3 weeks of the 

experiment (Table 5.4). Dissolved oxygen and oxygen production, as well as pH, temperature 

and nitrate were significantly lower especially at the highest carbendazim concentration. At the 

highest treatment level, DO was even below 5 mg/L after day 43 (Figure 5.6). Alkalinity 

showed an increase at this treatment level (Table 5.4). 

 

 

Figure 5.6 Dynamics of dissolved oxygen values as measured in the morning (A) and 

afternoon (B) at a depth of 10 cm. 
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Table 5.4 NOECs calculated for water quality endpoints in the microcosms. Significant 

treatment effects (Williams test, p < 0.05) resulted in either increased (↑) or decreased (↓) 

values in affected microcosms. In the table, > indicates p values > 0.05 and NOECs > 1000 

µg/L; nm = not measured. Dissolved oxygen production was calculated as the difference 

between morning and afternoon values.  

 Sampling week 

Endpoint -2 -1 0 1 2 3 4 5 6 7 8 

Dissolved oxygen 

     Morning 

     Afternoon 

     Production 

pH 

     Morning 

     Afternoon 

Electrical conductivity 

     Morning 

     Afternoon 

Temperature 

     Morning 

     Afternoon 

Alkalinity 

Ammonia 

Nitrate 

Ortho-phosphate 

 

> 

> 

> 

 

> 

> 

 

> 

> 

 

> 

> 

> 

> 

> 

> 

 

> 

> 

> 

 

> 

> 

 

> 

> 

 

> 

> 

> 

> 

> 

> 

 

> 

> 

> 

 

> 

> 

 

> 

> 

 

> 

> 

> 

> 

> 

> 

 

> 

> 

> 

 

> 

> 

 

> 

> 

 

> 

> 

> 

> 

> 

> 

 

> 

> 

> 

 

> 

> 

 

> 

> 

 

> 

> 

> 

> 

> 

> 

 

> 

> 

> 

 

3.3↓ 

> 

 

> 

100↓ 

 

> 

> 

> 

> 

> 

> 

 

> 

> 

> 

 

3.3↓ 

> 

 

> 

> 

 

> 

33↓ 

> 

> 

> 

> 

 

> 

> 

> 

 

> 

> 

 

> 

100↓ 

 

33↓ 

> 

> 

> 

> 

> 

 

> 

100↓ 

100↓ 

 

> 

100↓ 

 

> 

100↓ 

 

> 

100↓ 

100↑ 

> 

100↓ 

> 

 

100↓ 

100↓ 

100↓ 

 

> 

100↓ 

 

> 

> 

 

> 

100↓ 

> 

> 

> 

> 

 

> 

100↓ 

100↓ 

 

100↓ 

100↓ 

 

> 

> 

 

> 

100↓ 

100↑ 

> 

> 

> 

 

Table 5.5 Residual dry weights of Musa leaves per treatment level as % of initial biomass. The 

decay periods were 2, 4 and 8 weeks. The microcosms treated with the highest carbendazim 

concentration had significantly (Williams test, p < 0.05) lower decomposition levels after 8 

weeks of incubation (indicated with an *). 

Week Control 3.3 µg/L 33 µg/L 100 µg/L 1000 µg/L 

0 - 2 64.5 66.8 61.7 74.3 67.0 

0 - 4 49.6 48.0 38.1 62.9 53.5 

0 - 8 12.6 0.9 4.4 12.0   33.6 * 
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Decomposition 

 

Table 5.5 shows the residual dry weights of the Musa (banana) leaves from the litter bags after 

decay periods of 2, 4 and 8 weeks. The residual dry weights of the leaves in the control test 

systems amounted to approximately 65, 50 and 13%, respectively. The microcosms treated 

with 1000 µg carbendazim/L had significantly higher residual dry weights after an 8-week 

incubation (Table 5.5). 

 

Wolffia sp. 

 

Five weeks after application, the floating plant Wolffia sp. started to emerge in the microcosms 

treated with the highest carbendazim concentration. Within a week, this resulted in the water 

surface becoming completely covered by this species. In the other microcosms, Wolffia sp. 

only covered a small part (<10%, data not shown) and only by the end of the experiment (i.e. 

8 weeks p.a.).  

 

Discussion 

 

Influence of artificial rainmaking on ecosystem structure 

 

As described above, radiation levels during the experimental period were relatively low for the 

time of the year as a result of artificial rainmaking (Figure 5.1). As a result, phytoplankton 

biomass was relatively low in the control and low-dose carbendazim microcosms, with rather 

large variation between the tanks (Table 5.3). As a consequence, abundances of several 

zooplankton taxa were low, and Moina micrura was even completely eliminated in the lowest 

treatment microcosm 4 weeks post application (Figure 5.5A). The abundance values of Moina 

micrura in the control and in all but the highest carbendazim dosage tanks correlated with the 

phytoplanktonic chlorophyll-a levels (Pearson correlation test, r = 0.65; p < 0.05). No 

significant correlation was found when the 1000 µg/L microcosms were included in this 

relation, confirming the toxic effect of this carbendazim concentration (see the results of the 

Williams tests and permutation tests on PRC). 
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Fate of carbendazim 

 

Carbendazim was moderately persistent in the water layer, with a half-life for the 

disappearance of carbendazim from the water phase of 15 to 17 days (Table 5.1). This 

breakdown is relatively fast compared to a microcosm study performed by Slijkerman et al. 

(2004) in the Netherlands, which evaluated the fate and effects of a single carbendazim 

application. In the latter study, a carbendazim loss of 6 to 32%, was found four weeks after 

application, which is considerably lower than the 66 ± 4% (mean ± SD) found in the present 

study. 

This difference can be explained by the rather constant high pH values (a.m. 8.4 ± 0.6, p.m. 

9.3 ± 0.5; mean ± SD) in our treated microcosms, since the degradation rate of carbendazim 

has been reported to be accelerated in alkaline solutions (especially at a pH of 9 and higher) 

with higher irradiation levels (Boudina et al., 2003). Although radiation levels were relatively 

low for the time of the year (see above), light intensity was presumably higher in the present 

study than in the outdoor microcosm study performed in the Netherlands by the end of 

September and October 2000. Furthermore, the higher temperatures in Thailand as compared 

to temperate regions may result in a higher microbial activity, which has been demonstrated to 

contribute greatly to the degradation of carbendazim (Tomlin, 2000). 

 

Ecological effect chain 

 

The hypothesised direct and indirect effect chains of carbendazim application on the structure 

and functioning of the ecosystem in the microcosms are visualised in Figure 5.7. The 

macroinvertebrate community was more sensitive to the fungicide than the zooplankton 

community (with NOECcommunity values of 3.3 and 100 µg/L., respectively; Figures 5.2 

through 5.5). Most effects emerged a week after application or later. Carbendazim has indeed 

been shown in the laboratory (Van Wijngaarden et al., 1998), as well as in the field (Cuppen et 

al., 2000; Van den Brink et al., 2000), to have a very slow mode of action. Of the several 

invertebrates affected (Table 5.2), Corixidae were the most susceptible, with complete 

elimination at 33 µg/L (Figure 5.3A). The reduced grazing pressure as a result of the decline 

and elimination of several invertebrates led to increased levels of periphyton and 

phytoplankton (Table 5.3). Tolerant invertebrates increased in numbers, due to this increased 

food availability and reduced competition by sensitive invertebrates (Table 5.2). 
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Figure 5.7 Schematic overview of the hypothesised direct and indirect effect chains of 

carbendazim application on ecosystem structure and functioning. 
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A bloom of the floating plant Wolffia sp. was observed in the microcosms treated with 1000 µg 

carbendazim/L at the end of the experiment. Van den Brink et al. (2000) also found an 

increase in macrophytes (Elodea nuttallii) after carbendazim applications of 330 and 1000 µg/L, 

and explained this by a reduced presence of pathogens of these macrophytes, directly or 

indirectly caused by carbendazim. In the present study, however, the Wolffia outbreak is more 

likely to have resulted from the complete elimination of apple snails (Ampullariidae). Apple 

snails are known to be efficient grazers of aquatic macrophytes and have even been reported 

to leave the water column to forage for plants (Carlsson et al., 2004; Dudgeon, 1999).  

The complete covering of the water surface by Wolffia sp. led to a decrease in several water 

quality parameters (dissolved oxygen, pH, electrical conductivity and temperature) as well as 

phytoplankton biomass (Figure 5.6; Tables 5.3 and 5.4). This reduction in algal biomass 

further increased the effects on the physico-chemical parameters, as a result of a decrease in 

primary production (decreased DO and pH levels) and an increased decomposition of the 

phytoplankton biomass (increase in alkalinity). At the same time, primary production by 

Wolffia led to a decrease in nitrate levels but did not compensate for the decrease in dissolved 

oxygen levels. Presumably, a large part of the gas exchange by the dense Wolffia mat occurred 

with the ambient air, rather than with the water column. A study by Morris and Barker (1977) 

did indeed indicate that much of the oxygen produced by Wolffia mats is lost to the 

atmosphere. 

The extremely low dissolved oxygen concentrations in the water column led to a decrease in 

total numbers of rotifers and copepods. Interestingly, the abundance of ostracods increased in 

zooplankton samples from the tanks treated with the highest doses (Table 5.2). Ostracods 

have previously been reported to be very resilient and indicative of stressed environments 

where most zooplankton is eliminated, such as anoxic water conditions (Green, 1959; Victor, 

2002; Corbari et al., 2004). 

Decomposition of the Musa leaves was reduced in the highest treatment tanks after a decay 

period of 8 weeks (Table 5.5). It is unlikely that this is the direct result of carbendazim, since 

no effect was observed after a 4-week decay period, when most of the fungicide had already 

been broken down. A more plausible explanation for this phenomenon is a decrease in 

microbial activity as a consequence of the very low oxygen concentrations. Since micro-

organisms were not studied in the present experiment, we can not confirm this hypothesis.  
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Ecological risk assessment and comparison with temperate toxicity data 

 

One of the aims of this study was to validate the use of the EU’s ecological risk assessments 

for tropical countries like Thailand. This was done by determining the effects of carbendazim 

on macroinvertebrates, zooplankton, phytoplanktonic and periphytonic biomass and 

ecosystem functioning, using microcosms. The macroinvertebrate community was the most 

sensitive endpoint (NOECcommunity 3.3 µg/L; Figure 5.2), with Corixidae as the most 

susceptible group (Figure 5.3; Table 5.2). Therefore, the overall NOECecosystem is set at 3.3 

µg/L. The same NOEC was calculated for the macroinvertebrate community and the 

ecosystem as a whole in a microcosm experiment performed by Cuppen et al. (2000) and Van 

den Brink et al. (2000) to evaluate the treatment effects of chronic (4 weeks) carbendazim 

exposure.  

The zooplankton community in the present study appeared to be less sensitive than that in 

microcosm studies performed in the Netherlands (Table 5.6). This is probably the result of the 

limited number of cladoceran species and their relatively low abundances, since cladocerans 

have been reported to be the most sensitive zooplankton group (Van den Brink et al., 2000; 

Slijkerman et al., 2004). 

Indirect effects of the carbendazim treatment on phytoplanktonic and periphytonic 

chlorophyll-a, as well as on functional parameters, differed from previously reported effects 

(Table 5.6). Indirect effects of pesticides, especially at higher concentrations, are known to 

vary considerably between different microcosm and mesocosm experiments (Van Wijngaarden 

et al., 2005; Fleeger et al., 2003). 

Values of EC50 (96 hours) and chronic NOEC (25 days) for Daphnia magna, which is the most 

susceptible standard laboratory test species for carbendazim used in temperate regions, are 87 

and 26 µg/L, respectively (Van Wijngaarden et al., 1998). Therefore, applying safety factors of 

0.01 and 0.1 to these toxicity values, as laid down in the Uniform Principles (EU, 1997), also 

appears to ensure adequate protection for the tropical microcosm community observed in this 

study. However, as discussed by Cuppen et al. (2000), the use of the standard test organisms 

from temperate countries (i.e. Daphnia, fish, algae) for compounds like carbendazim is 

questionable, since the most susceptible taxa are macroinvertebrates, which are not adequately 

represented. We therefore recommend including indigenous macroinvertebrate species in the 

local risk assessment of fungicides. Standard laboratory toxicity tests and in-situ field tests 

have already been developed for indigenous chironomids (Domingues et al., 2007) and 
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Macrobrachium species (Satapornvanit, 2006). Future research should focus on the taxonomy 

and ecology of Thai macroinvertebrate communities and the sensitivity of these taxa to 

pesticide (fungicide) stress. 

 

Table 5.6 NOECs - LOECs (in µg/L) per endpoint found in the present study and those 

reported in other microcosm studies. For community metabolism, the table presents the 

lowest LOEC – NOEC combination from the following endpoints: dissolved oxygen (DO), 

electrical conductivity (EC), pH, temperature (T), alkalinity, ammonia, nitrate and ortho-

phosphate. nm = not measured 

Endpoint/ pesticide load This study Single peak Constant 

Macroinvertebrate community 3.3 – 33 ↓ nm 3.3 – 33 ↓ 

Zooplankton community 100 – 1000 ↓ 2.2 – 21 ↓ 33 – 100 ↓ 

Phytoplanktonic chlorophyll-a 100 – 1000 ↑ * 21 – 226 ↑ 33 – 330 ↑ 

Periphytonic chlorophyll-a 100 – 1000 ↑ nm > 1000 

Community metabolism 

     Based on: 

3.3 – 33 ↓ * 

pH a.m. 

21 – 226 ↑ 

DO 

> 1000 

Decomposition 100 – 1000 ↓ * nm 100 – 330 ↓ 

Overall NOECecosystem 3.3 – 33 2.2 – 21 3.3 – 33 

Reference – Slijkerman et al., 2004 Cuppen et al., 2000; 

Van den Brink et al., 

2000 

Type of model ecosystem Lentic, outdoor 

Plankton-dominated 

Lentic, outdoor 

? 

Lentic, indoor 

Macrophyte-dominated 

Concentrations tested (µg/L) 3.3, 33, 100, 1000 2.1, 21, 226 3.3, 33, 100, 1000 

Location Thailand The Netherlands The Netherlands 

* Effects on decomposition and main effects on community metabolism in the present study were most 

likely the result of the complete covering of the microcosms with the highest dosage by Wolffia sp., rather than of 

the carbendazim application. Furthermore, at the end of the experiment, a significant (Williams test, p < 0.05) 

decrease in phytoplanktonic chlorophyll-a was observed. See text for a detailed explanation. 
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CHAPTER 6 

 

ECOLOGICAL EFFECTS OF THE HERBICIDE LINURON IN TROPICAL 

FRESHWATER MODEL-ECOSYSTEMS: I. PRIMARY PRODUCERS 

(Submitted to Ecotoxicology and Environmental Safety) 

 

 

Abstract 

 

Effects of a single application of the photosynthesis inhibiting herbicide linuron (0, 15, 50, 150 

and 500 µg/L) on the ecology of outdoor plankton-dominated microcosms was studied in 

Thailand. This paper is the first in a series of two and discusses the effects on the primary 

producers up to 8 weeks after application. Herbicide concentrations in higher doses declined 

relatively slow in the initial phase following application due to a decrease in pH and herewith 

also in the hydrolysis of linuron. Degradation of linuron in the water column of lower dosed 

microcosms was slightly faster than reported in a microcosm study evaluating a single-peak 

treatments of linuron carried out in a temperate country, probably because of the high tropical 

temperatures in the present study. 

The control phytoplankton community was dominated by Chlorophyta, which was also the 

most sensitive to the herbicide stress. Several chlorophytes belonging to the genera Scenedesmus, 

Coelastrum and Pediastrum were eliminated in higher linuron concentrations, whereas other 

chlorophytes increased in abundance. Diatom and cryptophyte taxa were tolerant and 

increased in numbers, while the cyanobacterium Merismopedia tenuissima initially decreased and 

in a later stage increased in abundance. Chamaesiphon sp. (Cyanophyta) dominated the 

periphyton community and was the most susceptible periphyton species. Succession of 

colonization in controls was from Chamaesiphon sp. to a community consisting of chlorophytes 

and diatoms. In higher linuron treatments, insensitive cyanobacteria and diatom taxa increased 

in abundances. As a consequence of functional redundancy, effects of the herbicide on the 

chlorophyll-a content of periphyton and especially phytoplankton did not always reflect the 

effects noted on community level. Thus, chlorophyll-a turned out not to be a sensitive 

indicator of herbicide stress. 
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Introduction 

 

Numerous risk assessment studies have been performed over the past decades to evaluate 

potential risks of pesticides to aquatic organisms, ranging from toxicity tests with standard test 

species in the laboratory to field studies. These studies were almost exclusively carried out in 

temperate regions and hence, the fate and effects of agrochemicals on the aquatic ecosystem 

in the tropical zone are largely unknown (Castillo et al., 1997; Lacher and Goldstein, 1997; 

Racke, 2003). The chemical industry has grown rapidly in many developing tropical countries 

following the “Green Revolution” and the amount and variety of chemicals used has increased 

considerably (Bourdeau et al., 1989). There is thus an urgent need to validate whether 

ecotoxicological principles developed in the temperate zone are applicable to countries in the 

tropical zone.  

Microcosm and mesocosms studies have often been used as test systems to determine the 

environmental fate of pesticides and their side-effects on aquatic ecosystems (see Van den 

Brink et al., 2006 for studies performed with herbicides). These test systems include more 

ecological realism than lower-tier laboratory single-species tests while still allowing an 

experimental set-up. For these reasons, microcosms and mesocosms have been proven a 

useful tool for the evaluation of pesticide stress including the experimental validation of the 

safety factors used to calculate no effect concentrations from laboratory toxicity threshold 

values (Van den Brink, 1999). 

The present study aimed to evaluate the impact of the herbicide linuron on outdoor plankton-

dominated in Thailand. This was done to validate the use of toxicity values for the herbicide 

linuron from studies performed in the temperate zone for countries in the tropical zone like 

Thailand. This paper is the first in a series of two and deals with the effects on the primary 

producers. The second paper summarizes the effects of the herbicide application on 

zooplankton and community functioning and focuses on the hazard assessment of linuron for 

tropical freshwater ecosystems (Chapter 7). 
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Materials and Methods 

 

Experimental design and linuron application 

 

The experiment was performed at the hatchery of the Asian Institute of Technology (AIT), 

located approximately 42 km north of Bangkok (Thailand). The twelve outdoor microcosms 

used for the experiment consisted of circular concrete tanks (diameter 0.75 m, height 0.65 m), 

newly coated with watertight non-toxic epoxy paint to avoid any influence from a previous 

experiment. The test systems contained a water layer of 0.55 m (water volume approximately 

250 liters). Water was collected from the canal surrounding AIT after filtering though a net 

(mesh size 0.1 mm) to avoid fish and prawns entering the systems. No sediment was added to 

keep the experimental set-up as simple as possible and, consequently, to facilitate 

interpretation of the (in)direct treatment effects. In addition, a relatively low sorption of 

linuron was expected to the sediment because of the relatively low octanol-water partitioning 

coefficient of linuron (logKow = 3). This is supported by Crum et al. (1998), who recorded a 

maximum of 6% of the linuron dose applied to experimental ditches to become associated 

with the sediment, despite its relatively high organic content (20 to 25%).  

Additional zooplankton was collected from the AIT canal and introduced into the 

microcosms in the preparatory phase of the experiment. Over an acclimatization period of 5 

weeks, a biocoenosis was allowed to develop in the microcosms. During this period, the water 

was circulated twice a week by collecting 100 L from each microcosm into a container and 

gently pumping 100 L back to each microcosm after mixing, to achieve similarity between the 

communities in the systems. A nutrient addition of N (1.4 mg/L as urea) and P (0.18 mg/L as 

TSP) was made twice a week during the entire experimental period. 

 

Application and fate of the test substance 

 

On the day of application, the treatment doses of linuron (nominal levels: 15, 50, 150, 500 

µg/L), applied as Afalon Flow, were distributed evenly over the water surface of two 

microcosms for each concentration and mixed by stirring. Subsamples of the treatment 

solutions were taken to calculate nominal concentration levels. Four systems were untreated to 

serve as controls. The microcosms were randomly assigned to the different treatment levels. 
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Linuron concentrations in the microcosms were determined 1 hour (initial concentration), 1 

and 2 days as well as 1, 2, 4 and 8 weeks after application. To this end, a 10-L depth-integrated 

water sample was collected in a glass container. After stirring, a subsample of approximately 

300 mL was poured into a glass bottle and taken to the laboratory. 

After filtering over Whatman GF/C filters, 250 mL water was extracted with octadecyl (C-18, 

supelco) solid phase extraction columns. The extraction columns were conditioned with 5 mL 

methanol and 5 mL distilled water. After extraction, the linuron was eluted from the column 

with 2 successive portions of 1.25 mL acetonitrile into glass test tubes. The samples were then 

diluted with water to a fixed volume of 5 mL and analysed with high performance liquid 

chromatography (HPLC). Subsamples of 100 µL were injected with a Hitachi L-7200 

autosampler. The mobile phase (water:acetonitrile = 60:40) was set at a flow rate of 1.0 

mL/min. The analytical column used was a ZORBAX ODS (length 250 mm, width 4.6 mm) 

provided with a guard column of the same origin. The column was mounted in a Hitachi L-

7300 oven, which was set at 40°C. Linuron was detected using a Hitachi L-7400 UV detector 

set at a wavelength of 254 nm. Under these conditions, the retention time for the linuron peak 

was 23 min with a detection limit in water of 0.2 µg/L. Linuron recovery from the water was 

102 ± 2%  (mean ± sd, n = 6). 

 

Primary producers community structure 

 

A depth-integrated water sample of 10-L was collected by means of a Perspex tube at several 

moments during the course of the experiment. A subsample of 1-L was used for the 

determination of the phytoplanktonic chlorophyll-a concentration. Another 1-L was stained 

with lugol and concentrated after sedimentation of 6 days. Additional lugol was added when 

needed, to assure conservation of the samples. Subsamples were counted with an inverted 

microscope (magnification 400 x) and densities were calculated as numbers per litre 

microcosm water. Colony forming algae except Microcystis species were quantified by counting 

the number of colonies. M. aeruginosa and M. incerta form large irregular colonies but appeared, 

although they were not frequently found, as fractions as well as individual cells. Transport, age, 

and/or fixation of the samples had apparently caused disaggregation of colonies. Therefore, to 

prevent overestimation of Microcystis species abundance in samples with many small clusters 

and underestimation in samples with a few larger colony fractions, M. aeruginosa and M. incerta 

were quantified by making cell number estimates. 
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Effects of linuron on the periphyton communities were studied with glass slides that served as 

artificial substratum. The slides were positioned in a glass frame that was suspended two 

weeks before application at approximately 10 cm below the water surface. At two-week 

intervals, the periphyton biomass of five slides was collected by brushing the slides visually 

clean. Preservation and identification of the samples was done as described for phytoplankton. 

For chlorophyll-a analysis, another five slides were brushed and collected periphyton biomass 

transferred to tap water. 

 

Phytoplanktonic and periphytonic chlorophyll-a content 

 

A known volume of phytoplankton and periphyton chlorophyll-a samples, prepared as 

described above, was concentrated over a Whatman GF/C glass fibre filter (mesh size 1.2 µm) 

until the filter was saturated. Filters were air dried and extracted the same day using the 

method described by Moed and Hallegraeff (1987). 

 

Univariate and multivariate data analysis 

 

NOECs (no observed effect concentrations) were calculated for all parameters using the 

Williams test, which assumes an increasing effect with increasing dose (Williams, 1972). 

Abundance data were Ln(Ax + 1) transformed, where x stands for the abundance value and 

Ax makes 2 by taking the lowest abundance value higher than zero for x. This was done to 

down-weight high abundance values and approximate a normal distribution of the data (for 

rationale, see Van den Brink et al., 2000). Analyses were performed with Community Analysis, 

version 4.3.05 (Hommen et al., 1994) and statistical significance was accepted at p < 0.05. 

The phytoplankton and periphyton data sets were analysed by PRC (Principal Response 

Curves) using the CANOCO software package, version 4.5 (Ter Braak and Smilauer, 2002). 

PRC is based on the Redundancy Analysis ordination technique (RDA), the constrained form 

of Principal Component Analysis. The analysis results in a diagram showing the sampling day 

on the x-axis and the first Principal Component of the treatment effects on the community on 

the y-axis (see Figure 6.2 as an example). This yields a diagram showing the deviations in time 

of the treatments compared to the control. In this way, PRC shows the most dominant 

response to the treatment present in the data set. The species weights are shown in a separate 

diagram, and indicate the affinity the species have with this dominant response. The species 
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with a high positive weight are indicated to show a response similar to that indicated by PRC, 

while those with a negative weight show one that is opposite to the response indicated by 

PRC. Species with a near zero weight are indicated to show a response very dissimilar to that 

indicated by PRC or no response at all. The significance of the PRC diagram was tested by 

Monte Carlo permutation of the microcosms, i.e., by permuting entire time series in the partial 

redundancy analysis from which PRC is derived (Van den Brink and Ter Braak, 1999).  

Permutation tests were performed per sampling date using Ln-transformed treatment levels as 

explanatory variables to determine the significance of the treatment regime per sampling date. 

The NOEC values at community level for the phytoplankton and periphyton communities 

were calculated for each individual sampling date by applying the Williams test to the sample 

scores of the first principal component of each sampling date (for rationale, see Van den Brink 

et al., 1996). 

 

Results 

 

Linuron concentrations 

 

Linuron concentrations in lower doses during the entire experimental period and until 4 weeks 

post application for the two highest doses had standard deviations within treatments that were 

always lower than 10% and mostly lower than 5%. Deviations in linuron concentrations 

between the two replica´s of 150 µg/L and 500 µg/L dosed microcosms were 11% and 13% 

(4 weeks p.a.) and 18% and 32% (8 weeks p.a.), respectively. 

Linuron disappeared moderately fast from the water (Figure 6.1). Concentrations decreased 

slower in the initial period after application in the two highest treatments. The half-life for the 

disappearance of linuron from the water-phase (DT50) as calculated over the experimental 

period was therefore slightly higher for the higher treatments (16 – 22 days) than for lower 

doses (8 – 10 days; Figure 6.1). 

 

Phytoplankton 

 

A total of 77 different phytoplankton taxa were identified from the phytoplankton samples. In 

terms of numbers of taxa as well as total abundances, control microcosms were dominated by 
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Chlorophyta, followed by Cyanophyta and Bacillariophyta. With a total of 16 taxa identified, 

Scenedesmus was the most diverse phytoplankton genus. 

 

 

Figure 6.1 Dynamics of linuron concentrations as a percentage of the dose applied. Half 

lifetime for the disappearance of the herbicide from the water-phase per treatment ranged 

from 8 to 22 days, depending on the dose applied.  

 

The PRC of the phytoplankton data set shows that the 500 µg/L, 150 µg/L and, to a lesser 

extent, the 50 µg/L treatments deviated from controls (Figure 6.2). These visual differences 

were confirmed by the permutation tests, which indicated significant treatment effect from 

two weeks post application onwards (p < 0.01; Table 6.1). The lowest NOECphytoplankton 

community was 15 µg/L and was calculated three weeks after the linuron treatment. 

 

Table 6.1 Results of Monte Carlo permutation tests (P-value) and Williams test on the PCA 

set. coordinates (NOECcommunity) as performed for each sampling date for the 

phytoplankton data 

Day P-value NOEC 

-7 0.373 ≥ 500 

-2 0.658 ≥ 500 

7 0.049 ≥ 500 

14 0.005 50 

21 0.001 15 

26 0.001 50 

35 0.002 50 

42 0.001 50 

47 0.005 50 

55 0.003 150 

0

20

40

60

80

100

120

0 7 14 21 28 35 42 49 56

L
in

u
ro

n
 (

%
/d

o
s
e

)

0

20

40

60

80

100

120

0 7 14 21 28 35 42 49 56

L
in

u
ro

n
 (

%
/d

o
s
e

)

Days post application

15 µg/L

50 µg/L

150 µg/L

500 µg/L

Treatment DT50

10

8

22

16



 

 128 

  

 

Figure 6.2 Principal response curves resulting from the analysis of the phytoplankton data set, 

indicating the treatment effects of linuron on the phytoplankton community. Of all variance, 

20% could be attributed to sampling date; this is displayed on the horizontal axis. Thirty-six 

percent of all variance could be attributed to treatment level. Of this variance, 28% is 

displayed on the vertical axis. The lines represent the course of the treatment levels in time. 

The species weight (bk) can be interpreted as the affinity of the taxon with the Principal 

Response Curves. A Monte Carlo permutation test indicated that a significant part of the 

variance explained by treatment level is displayed in the diagram (P = 0.003). 

 

The dynamics of the 4 taxa with the highest species weight and the 4 taxa with the lowest 

species weight in the PRC are shown in Figure 6.3. The most seriously affected taxa were the 

chlorophytes Scenedesmus dispar (Figure 6.3A), Pediastrum tetras (Figure 6.3B), Scenedesmus 

bicaudatus (Figure 6.3C) and Coelastrum cambricum (Figure 6.3D). The taxa that were indicated to 

increase most in abundances were the chlorophytes Ankistrodesmus falcatus (Figure 6.3E) and 

Oocystis pusilla (Figure 6.3F), and the diatoms Nitzschia palea (Figure 6.3G) and Cyclotella sp. 

(Figure 6.3H). 
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Figure 6.3 Dynamics in geometric means of the phytoplankton taxa with the highest positive 

(Scenedesmus dispar (A), S. bicaudatus (B),  Pediastrum tetras (C) and Coelastrum cambricum 

(D)) and negative (Ankistrodesmus falcatus (E), Oocystis pusilla (F), Nitzschia palea (G) and 

Cyclotella sp. (H)) species weights in the PRC. In the figures, a value of 0.1 denotes the 

absence of the taxon. 

Control 15 µg/L 50 µg/L 150 µg/L 500 µg/LControl 15 µg/L 50 µg/L 150 µg/L 500 µg/L

10 -1

10 1

10 3

10 5

10 7

-10 0 10 20 30 40 50 60

#
/L

10 -1

10 1

10 3

10 5

10 7

-10 0 10 20 30 40 50 60

#
/L

A 

10 -1

10 1

10 3

10 5

-10 0 10 20 30 40 50 60

#
/L

10 -1

10 1

10 3

10 5

-10 0 10 20 30 40 50 60

#
/L

C 

10 -1

10 1

10 3

10 5

-10 0 10 20 30 40 50 60

#
/L

10 -1

10 1

10 3

10 5

-10 0 10 20 30 40 50 60

#
/L

Days post application

G 

10 -1

10 1

10 3

10 5

10 7

-10 0 10 20 30 40 50 60

#
/L

10 -1

10 1

10 3

10 5

10 7

-10 0 10 20 30 40 50 60

#
/L

E 

-10 0 10 20 30 40 50 60-10 0 10 20 30 40 50 60

Days post application

H 

-10 0 10 20 30 40 50 60-10 0 10 20 30 40 50 60

B 

-10 0 10 20 30 40 50 60-10 0 10 20 30 40 50 60

F 

-10 0 10 20 30 40 50 60-10 0 10 20 30 40 50 60

D 



 

 130 

Table 6.2 NOECs (No Observed Effect Concentration) calculated per sampling date for individual phytoplankton taxa in microcosms treated 

with linuron. Concentrations (µg a.i./L) showed significant increases (+) or decreases (-) compared to controls. In case of a complete elimination 

of a taxon, the table also indicates the lowest linuron concentrations and the sampling week this occurred as well as the sampling date of 

reappearance of the eliminated taxon for the different treatments. > indicates a NOEC of > 500 µg/L; NE = not eliminated. 

 Days post application Lowest concentration of 

 -8 -2 7 14 21 26 35 42 47 57 elimination and sampling date 

CHLOROPHYTA            

Scenedesmus maximus > > > 15 (-) 15 (-) 15 (-) 50 (-) 50 (-) 50 (-) > 50 (day 14) 

Scenedesmus aristatus > > 150 (-) 15 (-) 15 (-) 50 (-) 50 (-) 50 (-) > > 50 (day 21) 

Scenedesmus quadricauda > > > > 15 (-) > > 150 (+) > > 50 (day 14) 

Scenedesmus dispar > > 150 (-)  15 (-) 50 (-) 50 (-) 50 (-) > > 50 (day 14) 

Scenedesmus tropicus > > > 50 (-) > > > > > > 150 (day 14) 

Scenedesmus bicaudatus > > 50 (-) 15 (-) 15 (-) 150 (-) 50 (-) > > > 150 (day 7) 

Scenedesmus denticulatus > > > > 15 (-) > > > > > 150 (day 21) 

Scenedesmus opoliensis > 150 (-) > > > > > > > > NE 

Scenedesmus dimorphus 50 (+) > > > > > > > > > NE 

Coelastrum reticulatum > 150 (+) > > > > > > > > NE 

Coelastrum cambricum > > > 150 (-) 15 (-) 50 (-) > 50 (-) 50 (-) 50 (-) 50 (day 21) 

Pediastrum tetras > 150 (+) > > 15 (-) 50 (-) 50 (-) 50 (-) 50 (-) 150 (-) 150 (day 21) 

Pediastrum duplex > > > > 50 (-) 50 (-) > > > > 150 (day 21) 

Pediastrum simplex 150 (+) > > > > > > > > > NE 

Oocystis pusilla > > > > > > 50 (+) > > > NE 

Oocystis lacustris > > > > > > > > 150 (+) > NE 

Tetraedron caudatum > 150 (+) > > > > > > > > NE 

Botryococcus braunnii > > 150 (+) > > > > > > > NE 

Elakatothrix gelatinosa > > > > > > > 50 (+) > > NE 

Ankistrodesmus falcatus > > > > > 50 (+)  50 (+) > > NE 

Ankistrodesmus nannoselene > > > > > > > > 150 (+) > NE 

Monoraphidium sp > > > > > > > > > 15 (-) NE 
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All taxa for which a NOEC was calculated are listed in Table 6.2. Many chlorophyte species, 

especially those belonging to the genera Scenedesmus, Pediastrum and Coelastrum, decreased 

significantly in numbers compared to control values. Several of these taxa were even 

eliminated at higher linuron doses. 

Other chlorophytes, namely Oocystis pusilla (Figure 6.3F), Botryococcus braunnii, Elakatothrix 

gelatinosa, Ankistrodesmus falcatus (Figure 6.3E) and A. nannoselene had significantly higher 

numbers in the two highest linuron doses (Table 6.2). The cyanophyte Merismopedia tenuissima 

was eliminated in the two highest applied microcosms one week post application, while its 

numbers were increased over controls in a later stage of the experiment. Abundances of the 

diatoms Nitzschia palea (Figure 6.3G), Cocconeis sp., Surirella tenera and Cyclotella sp. (Figure 6.3G) 

increased in higher linuron treatments. Remarkably, N. palea had significantly higher numbers 

in the 500 µg/L dose in weeks 2, 4, 6 and 8, while this species was eliminated at this dose in 

weeks 3 and 5 (Figure 6.3G). The cryptophytes Chilomonas paramecium and Cryptomonas 

pyrenoidifera were profited from the linuron stress in a later stage of the experiment; their 

abundances increased in the highest treatment (Table 6.2). Besides NOECs noted after the 

application of linuron, significant increased and decreased abundances of several species were 

randomly calculated in the pre-treatment period (Table 6.2). 

 

 

Figure 6.4 Dynamics of the chlorophyll-a content of phytoplankton (A) and periphyton (B) in 

the course of the experiment. 

 

The chlorophyll-a content of the phytoplankton increased in the course of the experiment 

(Figure 6.4A). The dynamics of the 15 µg/L treatment resemble that of the control, while 

deviations were found for higher treatments. The Williams test revealed a significant decrease 
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in chlorophyll-a levels at the highest concentration in week 2 and 7, and for all but the lowest 

concentration in week 8. 

 

Figure 6.5 Relative contributions (% of total counts) of Chlorophyta (A), Bacillariophyta (B), 

the dominant cyanophyte Chamaesiphon sp. (C), other Cyanophyta (D), and Euglenophyta 

(E) for the different treatments in the periphyton community.  
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Periphyton 

 

The succession of the periphyton community is visualized in Figure 6.5. After an incubation 

of 2 weeks, i.e. on day -3, the periphyton community in controls consisted of comparable 

numbers of Chlorophyta (Figure 6.5A), Bacillariophyta (Figure 6.5B) and Cyanophyta (Figures 

6.5C and 6.5D). Euglenophyta, represented by Euglena pisciformis and Phacus longispina, were 

absent and were only found in very low numbers as compared to the other periphyton 

divisions during the entire experimental period (Figure 6.5E). Microscopic slides that were 

incubated for 4 to 6 weeks were completely (99.5%) dominated by the cyanobacterium 

Chamaesiphon sp. This species, however, completely disappeared after an incubation period of 8 

and 10 weeks in control microcosms and replaced by chlorophytes and diatoms. Over the 

entire incubation period, a total number of 28 chlorophyte, 10 cyanophyte, 6 diatom and 2 

euglenoplyte taxa were found. 

The diagram resulting from the PRC analysis of the periphyton dataset is given in figure 6.6. 

Of all variance, 28% and 36% could be attributed to sampling date and treatment level, 

respectively. The variance explained by sampling date is displayed on the x-axis, while 60% of 

the variance explained by treatment level is displayed on the y-axis. The diagram reveals that 

two and four weeks after application, the periphyton community of the three highest linuron 

concentrations deviated from controls (Figure 6.6). Indeed, Monte Carlo permutation tests 

and Williams test on the PCA coordinates calculated a NOEC of 15 µg/L for these sampling 

days (Table 6.3). Chamaesiphon sp. and Nitzschia palea have a species weight higher than 6 and 

lower than -1, respectively, while all other species have a species weight between -1 and 1 

(Figure 6.6). This implies that N. palea is indicated to have increased most strongly in the 

higher treatment levels compared to the controls, Chamaesiphon sp. decreased even to a higher 

extent, and that the other species only showed a slight response to linuron or no response at 

all. Lowest NOECs were indeed calculated for Chamaesiphon sp. and N. palea (15 and 0 µg/L, 

respectively; Table 6.4), and their dynamics are presented in figure 6.7. During the first four 

weeks after application, numbers of Chamaesiphon sp. in controls and lowest dosed test systems 

increased, while numbers in the 50 µg/L dose remained constant and higher dosed systems 

even showed an elimination of this taxon (Figure 6.7A). For N. palea, intermediate 

concentrations had high numbers two weeks post application, while this species was absent in 

control, high- and low-dose treatments (Figure 6.7B). Two weeks later, N. palea was only 
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absent in controls with intermediate to high numbers in other treatments, leading to the 

calculation of a NOEC of 0 µg/L.  

 

 

Figure 6.6 Principal response curves resulting from the analysis of the periphyton data set, 

indicating the treatment effects of linuron on the periphyton community. Of all variance, 28% 

could be attributed to sampling date; this is displayed on the horizontal axis. Thirty-six percent 

of all variance could be attributed to treatment level. Of this variance, 60% is displayed on the 

vertical axis. The lines represent the course of the treatment levels in time. The species weight 

(bk) can be interpreted as the affinity of the taxon with the Principal Response Curves. A 

Monte Carlo permutation test indicated that a significant part of the variance explained by 

treatment level is displayed in the diagram (P = 0.002). 

 

The only other diatom for which a NOEC could be calculated was Gomphonema sp., which 

decreased in abundance two weeks post application at the highest dose. Chlorophytes 

decreased (Pediatrum tetras and Cosmarium sp) or increased (Scenedesmus quadricauda and S. 
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Chamaesiphonsp

Gomphonemasp
Pediastrum tetras
Cocconeis sp
Euglena pisciformis

Stigeocloniumsp

Oscillatoria tenius

Nitzschia palea

-1

0

1

2

3

4

5

6

7

b
k

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 5 µg/L 15 µg/L 50 µg/L 150 µg/L

Chamaesiphonsp

Gomphonemasp
Pediastrum tetras
Cocconeis sp
Euglena pisciformis

Stigeocloniumsp

Oscillatoria tenius

Nitzschia palea

-1

0

1

2

3

4

5

6

7

b
k

Chamaesiphonsp

Gomphonemasp
Pediastrum tetras
Cocconeis sp
Euglena pisciformis

Stigeocloniumsp

Oscillatoria tenius

Nitzschia palea

-1

0

1

2

3

4

5

6

7

b
k

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 15 µg/L 50 µg/L 150 µg/L 500 µg/L

Chamaesiphonsp

Gomphonemasp
Pediastrum tetras
Cocconeis sp
Euglena pisciformis

Stigeocloniumsp

Oscillatoria tenius

Nitzschia palea

-1

0

1

2

3

4

5

6

7

b
k

Chamaesiphonsp

Gomphonemasp
Pediastrum tetras
Cocconeis sp
Euglena pisciformis

Stigeocloniumsp

Oscillatoria tenius

Nitzschia palea

-1

0

1

2

3

4

5

6

7

b
k

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 5 µg/L 15 µg/L 50 µg/L 150 µg/L

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 5 µg/L 15 µg/L 50 µg/L 150 µg/L

Chamaesiphonsp

Gomphonemasp
Pediastrum tetras
Cocconeis sp
Euglena pisciformis

Stigeocloniumsp

Oscillatoria tenius

Nitzschia palea

-1

0

1

2

3

4

5

6

7

b
k

Chamaesiphonsp

Gomphonemasp
Pediastrum tetras
Cocconeis sp
Euglena pisciformis

Stigeocloniumsp

Oscillatoria tenius

Nitzschia palea

-1

0

1

2

3

4

5

6

7

b
k

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 15 µg/L 50 µg/L 150 µg/L 500 µg/L

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 15 µg/L 50 µg/L 150 µg/L 500 µg/L



 

 135 

Chamaesiphon sp., effects calculated for other cyanobacteria taxa revealed increased abundances, 

namely for Oscillatoria tenius, Aphanocapsa sp. and Merismopedia tenuissima (Table 6.4). 

 

Table 6.3 p-values calculated with the Monte Carlo permutation tests and no observed effect 

concentrations (NOECcommunity) calculated by the Williams test on the PCA coordinates 

for the periphyton community data set. 

Day P-value NOEC 

-4 0.997 ≥ 500 

13 0.001 15 

24 0.002 15 

43 0.748 ≥ 500 

54 0.187 ≥ 500 

 

Table 6.4 NOECs (No Observed Effect Concentration) per sampling week for periphyton 

taxa that showed a significant response in the Williams test calculations (p ≤ 0.05). 

Concentrations (µg a.i./L) showed significant increases (+) or decreases (-); > indicates a 

NOEC of > 500 µg/L. 

 Days post application 

 -4 13 24 43 54 

CHLOROPHYTA > > > > > 

Scenedesmus quadricauda > > > > 150 (+) 

Scenedesmus bicaudatus > > > > 150 (+) 

Pediastrum tetras > 150 (-) > 15 (-) > 

Tetraedron minimum 150 (+) > > > > 

Cosmarium sp > 150 (+) > > 150 (+) 

CYANOPHYTA > > > > > 

Oscillatoria tenius > 50 (+) > > > 

Chamaesiphon sp > 15 (-) 50 (-) > > 

Aphanocapsa sp > 150 (+) > > 150 (+) 

Merismopedia tenuissima > > > > 150 (+) 

BACILLARIOPHYTA > > > > > 

Nitzschia palea > > 0 (+) > > 

Gomphonema sp > 150 (-) > > > 

 

Effects of linuron on relative contributions of Chamaesiphon sp and periphyton groups are 

given in figure 6.5. The lowest concentration showed a succession similar to controls; initial 

dominance of Chamaesiphon sp., followed by chlorophytes and diatoms. In the 50 µg/L dose, 

the decrease in Chamaesiphon sp. abundances was accompanied with an increase in 

chlorophytes. At a linuron concentration of 150 µg/L, the complete elimination of 

Chamaesiphon sp. led to increases in subsequently diatoms and chlorophytes, after which 

Chamaesiphon sp. returned to dominate the periphyton community. In the highest dose, 
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Chamaesiphon sp. elimination caused a different succession pattern: dominance by other 

cyanophyta was followed by diatom domination and, from 6 weeks post application onwards, 

chlorophyta (Figure 6.5). 

 

 

Figure 6.7 Dynamics in numbers (geometric means) of the taxon that dominated the 

phytoplankton community, Chamaesiphon sp. (A), and the taxon with the lowest species 

weight in the PRC of the periphyton dataset, Nitzschia palea (B). In the figures, a value of 0.1 

denotes the absence of the taxon. 

  

The dynamics in chlorophyll-a levels of the periphyton are presented in figure 6.4B. Linuron 

doses higher than 15 µg/L had decreased chlorophyll-a concentrations on day 13 (Williams 

test, p < 0.05). 

 

Discussion 

 

Fate of linuron in the water column 

 

Linuron disappearance from the higher dosed microcosms followed a two-phase sequence 

(Figure 6.1). The initial loss of linuron was slower than that after two weeks post application. 

This may be explained by the drop in pH from values above 9 in control and lower doses to 

values near or just below 8 in the higher doses (Chapter 7) since hydrolysis of linuron has been 

reported to be slower at pH 6 and 8 than at pH 4 and 10 (Cserhati et al., 1976). In line with 

this, Van den Brink et al. (1997) also attributed the concentration-dependent rate of linuron 
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disappearance from the water phase they noted in laboratory microcosms to differences in pH 

regime. 

A priori, the authors hypothesized a faster decline in linuron concentrations in the present 

study than observed in studies carried out in temperate countries since higher temperatures 

and nutrient levels have been demonstrated to accelerate the decomposition of herbicides 

(Cserhati et al., 1976; Lozano and Pratt, 1994; Pratt and Barreiro, 1998). Since the rate of 

herbicide loss appeared to be dose-dependent and pulsed or chronic treatment regimes may 

imply a loading of the herbicide, we can only compare the fate of linuron in the present study 

with that reported in a microcosm study by Slijkerman et al. (2005), evaluating single peak 

linuron concentrations comparable to those in the present study. In the study by Slijkerman et 

al. (2005), a decrease in concentration of 21%, 35% and 36% was noted 28 days after 

application of 20, 60 and 180 µg linuron/L. In our study, corresponding values (for 15, 50 and 

150 µg/L) were 53%, 55% and 37%, which indeed suggests a slightly faster decomposition for 

the lower doses.  

 

Representativeness of primary producer communities for tropical (Thai) freshwater ecosystems 

 

Chlorophyta was the most abundant and diverse phytoplankton group in control 

communities. In line with this, Kalff and Watson (1986) reported that the fraction of 

chlorophyte biomass in the tropics is generally higher than in temperate lakes. Furthermore, 

approximately 40% (author’s calculation) of the species recorded in a checklist of freshwater 

algae in Thailand belong to the division Chlorophyta (Wongrat, 1995). Several identified 

species belonging to the genera Scenedesmus were not recorded in the latter report nor in several 

field studies carried out in different parts of Thailand (Peerapornpisal et al, 2000a; Ariyadej et 

al., 2004; Pongswat et al., 2004). These include S. bicaudatus and S. dispar, which combined 

numbers made up approximately two-third of total phytoplankton numbers in controls 

throughout the present study. Based on a comparison between the number of phytoplankton 

species known in the world and in Thailand, Baimai (1995) concluded that the discovery of 

new species for Thailand may indeed be expected. This is supported by the fact that in recent 

studies of the Mae Sa stream in Chiang Mai (Northern Thailand), a total of 68 new species 

were recorded in field samples between 1997 and 1998 and another 51 between 1998 and 1999 

(Peerapornpisal et al., 2000a; Pekthong and Peerapornpisal, 2001). In addition, S. bicaudatus has 
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previously been recorded in Asia (Ling and Tyler, 2000) and several varieties of S. dispar were 

even first described for Vietnam and India (Hegewald and Silva, 1988). 

Dominance of the periphyton community changed from Chamaesiphon sp. to chlorophytes and 

diatoms in the course of the experiment (Figure 6.5). In temperate freshwaters, the 

colonization of periphytic algae on a pristine surface is from small, flat cells with a large 

surface area attached to the substrate like diatoms to standing or stalked forms and eventually 

filamentous forms (Brönmark and Hansson, 2005). Based on this succession pattern, 

dominance of diatoms and Chamaesiphon sp would be expected to be reversed. However, 

Brönmark and Hansson (2005) also noted that the succession stages as described above are 

reversed at high grazing pressure. Fish were absent in the microcosms so the consequently 

high abundances of zooplankton (see part II) presumably led to a first dominance of 

Chamaesiphon. In addition, Chamaesiphon investiens has been reported as a grazer-resistant species 

by Rosemond et al. (2000).  

Chamaesiphon guilleri has been recorded in Thailand, and this species was found to be indicative 

of the oligo-mesotrophic zone of a stream in Thailand (Peerapornpisal et al., 2000b). Diatoms 

have been reported to be characteristic for high pH and may become dominant irrespective of 

the nutrients status of the water (Brönmark and Hansson, 2005). The average pH was 

approximately 0.5 unit lower during the dominance period of the Chamaesiphon sp. compared to 

the period diatoms and chlorophytes dominated the periphyton community. In addition, 

concentrations of several nutrients increased over the course of the experiments as a result of 

nutrient additions (Chapter 7). Thus, the increasing trend in pH and nutrient levels over the 

course of the experiment led to a competitive advantage of diatoms over Chamaesiphon sp. in 

time and consequently a shift in dominance by Chamaesiphon sp. to diatoms. 

 

Pre-treatment NOECs for phytoplankton species 

 

The NOECs in the pre-treatment period were always only calculated on individual sampling 

dates, and indicated increases in numbers compared to controls except S. opoliensis (Table 6.2). 

The latter species was indeed absent in both microcosms of the highest linuron dose. 

However, an absence was also noted in one of the control replicas. The NOECs indicating 

increased abundances for higher linuron doses were calculated for species that were mostly 

absent in controls and lower linuron doses on the corresponding sampling date. In addition, in 

two-third of the cases, the abundance of the species was also zero in one of the two replicates 
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and evidently sufficiently high in the other replicate to indicate significance. Based on the 

tropical weather conditions (e.g. high temperature: 30 ± 2 °C) and nutrient input, the 

microcosms exhibited a high productivity. This presumably caused opportunistic species to 

bloom occasionally, leading to relatively high single peak abundances in individual microcosms 

and consequently the calculation of random NOECs in the pre-treatment period. 

 

Sensitivity of phytoplankton 

 

Chlorophyta was the most affected phytoplankton division, followed by Cyanophyta (only 

Merismopedia tenuissima), whereas Bacillariophyta and Cryptophyta were tolerant to linuron 

stress and increased in abundances. Chlorophytes have indeed been reported to be more 

sensitive and diatoms and cryptophytes more tolerant to photosynthesis inhibitors (see Bérard 

et al., 1999 for several reference studies). 

Of the Bacillariophyta, the pennate diatom Nitzschia palea and the centric diatom Cyclotella sp. 

were the most discriminate diatom taxa in the PRC (Figure 6.2) and the lowest NOECs were 

calculated for these diatoms (50 µg/L; Table 6.2). N. palea was found to be insensitive to the 

herbicides simetryn and pretilachlor and is assumed to be tolerant to various pollutants (Kasai, 

1999). Centric diatoms remained predominantly longer in ponds treated with simetryn than in 

control ponds (Kasai and Hanazato, 1995). Cryptomonas pyrenoidifera was the cryptophyte with 

the most pronounced increase (Table 6.2, Figure 6.2). In line with this, predominance of 

Cryptomonas and Mallomonas species were associated with increased phytoplankton community 

tolerance after exposure to atrazine (deNoyelles et al., 1982). Although no NOECs on species 

level were calculated for Mallomonas species in the present study, the PRC did indeed indicate a 

(slight) increase for these Crysophyta species (Figure 6.2). 

Toxic effects on chlorophytes increased with time, with a lowest NOECphytoplankton 

community of 15 µg/L calculated three weeks after application (Table 6.1). Effects of 

photosynthesis inhibiting herbicides are indeed known to increase with exposure duration 

(Gustavson et al., 2003), and Van den Brink et al. (1997) attributed this to survival of algae on 

their storage energy so effects only become apparent when this is exhausted. 

Also on species level, a time-dependent treatment effect was found. Scenedesmus bicaudatus was 

the most severely affected species one week after application and a NOEC of 15 µg/L was 

calculated after two weeks. For most other Scenedesmus species, Coelastrum cambricum and 

Pediastrum tetras, this NOEC was only calculated on day 21 while the NOEC for P. duplex was 
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only 50 µg/L on that day (Table 6.2). Weiner et al. (2004) found that smaller phytoplankton 

taxa with greater surface area to volume ratios incorporated a larger part of the herbicide 

atrazine, and are consequently more sensitive to atrazine exposure. S. bicaudatus was indeed the 

smallest affected Scenedesmus taxon in the present study. Other Scenedesmus species were not 

always smaller than 4-cell colonies of P. tetras and young colonies of C. cambricum. However, 

the colony shape of Scenedesmus is rectangular whereas colonies of P. tetras and C. cambricum are 

spherical to circular, implying a larger surface area to volume ratio for Scenedesmus species and 

hence a larger herbicide sensitivity. Colonies of P. duplex measured up to 80 µm in diameter, 

which explains why a response was only found at the two highest linuron doses three and four 

weeks post application. 

For the chlorophytes Oocystis pusilla, O. lacustris, Ankistrodesmus falcatus, A. nannoselene Botryococcus 

braunnii, Elakatothrix gelatinosa and the cyanobacterium Merismopedia tenuissima, NOECs of 50 

µg/L or 150 µg/L indicating increased abundances were calculated at different sampling dates 

(Table 6.2). B. braunni was the most tolerant chlorophyte and increased in abundance one week 

after application in the highest applied tanks, which at that time contained 434 µg/L linuron. 

Kasai (1999) observed a high tolerance of Dictyosphaerium and ascribed this to a prevention of 

pretilachlor entering the cells because of the mucilaginous sheath of this species. The cells of 

B. braunnii are embedded in a tough mucilage, and may thus be the reason of the high linuron 

tolerance of this species. 

Four weeks post application, A. falcatus had increased numbers over controls in the 150 µg/L 

and 500 µg/L treatments, corresponding to linuron concentration levels of respectively 94 

µg/L and 230 µg/L. LC50 and NOEC values reported in laboratory tests for linuron are 4.9 

and 2.5 µg/L, respectively (Crommentuijn et al., 1997), and A. falcatus has also been reported 

to be sensitive to other photoinhibitors, like atrazine (DeLorenzo et al., 2004). This thus 

implies that this species developed herbicide-tolerant populations in the present study. 

Other increased numbers of chlorophytes at the higher linuron doses were subsequently 

found for O. pusilla (5 wks; NOEC 50 µg/L), E. gelatinosa (6 wks; NOEC 50 µg/L), A. 

nannoselene and O. lacustris (7 wks; NOEC 150 µg/L). This indicates that the order of tolerance 

level (or competitive fitness at a similar tolerance level) was O. pusilla > E. gelatinosa > A. 

nannoselene ≈ O. lacustris. Since linuron concentration levels were not analyzed on sampling 

dates corresponding to these NOECs and linuron laboratory toxicity studies are not known to 

the authors for these species, we can not evaluate whether these species are generally tolerant 

to linuron or if this tolerance was induced in the present study. 
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The PRC indicated a recovery of the phytoplankton community in the 50 µg/L treatment on 

day 26. From day 26 up to day 47, a NOECphytoplankton community of 50 µg/L was 

calculated, while this was 150 µg/L on day 55. This indicates recovery of the 150 µg/L 

treatment at the end of the experiment, while the phytoplankton community in the highest 

applied microcosms did not recover within the experimental period (Table 6.1).   

 

Effects on periphyton community 

 

The cyanophyte Chamaesiphon sp. was the most sensitive periphyton species, while the 

cyanophytes Oscillatoria tenius and Aphanocapsa sp., and, like in the phytoplankton community, 

the diatom N. palea increased in abundances (Figure 6.6 and 6.7; Table 6.4). This relatively 

high sensitivity of Chamaesiphon sp. may be explained by the fact that cells are (i) small and 

individually attached to a substrate (ii) enclosed only by a thin envelope and (iii) not embedded 

in a mucilaginous sheath (Ling and Tyler, 2000). In addition, the ultrastructure of Chamaesiphon 

confervicola has been reported to possess numerous pores in the mureic layer of the cell wall 

(Gromov and Mamkaeva, 1980), which may enhance the penetration of the cells by herbicides. 

In the 150 µg/L treatment, the dominance by Chamaesiphon sp. was replaced by diatoms 

followed by chlorophytes and a recovery of Chamaesiphon sp. (Figure 6.5). In the highest 

linuron concentration, however, the succession pattern of colonization was from other 

cyanobacteria to diatoms to chlorophytes. The chlorophyll-a of the phytoplankton was as low 

as 0.6 µg/L in the highest linuron dosed microcosms, while this was still 11 µg/L and not 

significantly reduced in the 150 µg/L on day 14. This implies that the grazing pressure of the 

zooplankton populations on the periphyton community was probably very high in the 500 

µg/L applied microcosms. As discussed above for the succession of periphyton community, 

the enhanced grazing pressure in these microcosms presumably favored the large filamentous 

colonies of Oscillatoria tenius and Aphanocapsa sp. rather than the unicellular diatoms as observed 

in the 150 µg/L. 

Effects on periphyton at the community level were calculated for all but the lowest linuron 

concentrations on day 13 and 24, while on later sampling dates a NOECperiphyton 

community > 500 µg/L was calculated (Table 6.3). This implies a recovery of the periphyton 

community within 6 weeks in all affected microcosms. However, the response curves of the 

50 µg/L (on day 43 and 54) and the 150 µg/L treatments (on day 54) lay higher than the 

control curve (i.e., the horizontal axis; Figure 6.6). This indicates periphyton communies 
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opposite to the affected community. This may be explained by the relatively high contribution 

of Chamaesiphon sp. to the periphyton community in these treatments by the end of the 

experiment (Figure 6.5C) and the high species weight of this species. 

 

Chlorophyll-a 

 

As a consequence of functional redundancy, i.e. the alteration of the phytoplankton 

community from sensitive to tolerant taxa, NOECs calculated for the chlorophyll-a content of 

the phytoplankton did not reflect the impact of linuron stress. For periphyton, the NOEC for 

effects on chlorophyll-a resembled the NOECperiphyton community on day 13 but did not 

indicate the change in periphyton community on day 24, presumably due to the increase in N. 

palea on that day (Tables 6.3 and 6.4). Thus, chlorophyll-a turned out not to be a sensitive 

indicator for herbicide stress, especially regarding the effects on phytoplankton. 
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CHAPTER 7 

 

ECOLOGICAL EFFECTS OF THE HERBICIDE LINURON IN TROPICAL 

FRESHWATER MODEL-ECOSYSTEMS: II. ECOSYSTEM FUNCTIONING, 

ZOOPLANKTON AND HAZARD ASSESSMENT 

(Submitted to Ecotoxicology and Environmental Safety) 

 

 

Abstract 

 

A microcosm study was carried out to evaluate the effects of linuron (nominal levels: 0 15, 50, 

150 and 500 µg/L) on the ecology of surrogates for tropical Thai freshwaters. Structural 

effects on primary producers and chlorophyll-a levels were discussed in a previous paper. The 

aim of the present paper was three-fold: Firstly, effects on ecosystem functioning and the 

zooplankton community were assessed and discussed in relation to the effects noted on algae. 

Secondly, threshold values for the different endpoints were compared with those reported in 

microcosm and mesocosm studies performed in the temperate zone. Thirdly, implications for 

the use of toxicity data derived from studies in temperate countries for tropical countries like 

Thailand are discussed in the discussion section. It is concluded that in terms of ecosystem 

sensitivity, the use of temperate toxicity data ensure sufficient protection of the freshwater 

ecosystem in tropical Thailand. However, since higher pesticide concentrations may be 

expected after application in flooded rice fields than in temperate ditch-dike systems, care 

should be taken when extrapolating hazard assessments of herbicides like linuron from 

temperate to tropical countries. 

 

Introduction 

 

Pesticides sprayed on agricultural fields to control pests may enter surrounding aquatic 

ecosystems and may therefore result in undesirable side-effects on aquatic organisms (Capri 

and Trevisan, 1998; Hill et al., 1994). To prevent adverse side effects on the aquatic 

environment, authorities in many countries require an assessment of the potential ecological 

risks before registration of a pesticide. The (first-tier) evaluation is usually based on laboratory 

toxicity tests with standard test species (algae, macrophye, Daphnia, fish), eg EU (1997). Also in 



 

 148 

Thailand, each pesticide has to be tested for effects on the environment prior to placing them 

on the market, as laid down in the Hazardous Substances act B.E. 2535 (1992). However, if a 

product has been tested elsewhere, only missing toxicological data are requested (Jungbluth, 

1996). All pesticides except paraquat are imported to Thailand mainly from countries located 

in the temperate zone, where most of the ecotoxicity testing has been conducted (Bourdeau et 

al., 1989; Lacher and Goldstein, 1997; Abdullah et al., 1997; Jungbluth, 2000). Also in other 

tropical countries, water quality criteria (WQC) have been reported to rely on extrapolations 

from data obtained from studies carried out in countries from the temperate zone (Kwok et 

al., 2007). It thus becomes imperative to validate whether toxicity values obtained from these 

studies are applicable to tropical countries like Thailand. 

This paper is the second in a series of two dealing with the effects of the herbicide linuron on 

outdoor plankton-dominated microcosms in Thailand. The first paper dealt with effects on 

phytoplankton and periphyton (Chapter 6). The purpose of the present paper was three-fold. 

Firstly, the effects on ecosystem functioning and the zooplankton community are discussed in 

detail the more since basic community interactions in Thai freshwaters are still largely 

unknown (Campbell and Parnrong, 2001). Secondly, the overall ecological effects noted in the 

present study are compared with those reported in microcosm and mesocosm studies 

performed in the temperate zone. Thirdly, implications for the use of toxicity data derived 

from studies in temperate countries for tropical countries like Thailand are discussed in the 

discussion section. 

 

Materials and Methods 

 

Experimental set-up 

 

The outdoor microcosm study was conducted with twelve circular concrete tanks (diameter 

0.75 m; total depth 0.65 m; water depth 0.55 m; water volume 250 L) at the hatchery of the 

Asian Institute of Technology (AIT). After a pre-treatment period of 5 weeks, linuron dose 

solution (nominal levels: 15, 50, 150, 500 µg/L; applied as Afalon Flow) were gently poured 

added in two microcosms for each concentration and mixed by stirring. Four other systems 

did not receive any treatment and served as controls. To stimulate phytoplankton growth and 

to compensate for losses, nutrient additions of N (1.4 mg/L as urea) and P (0.18 mg/L as 

TSP) were made twice a week during the entire experiment. 
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Details on the experimental design, application and fate analysis of the herbicide are described 

in part I (Chapter 6).  

 

Water quality parameters 

 

Two weeks before application and on a weekly basis after application, dissolved oxygen (DO), 

pH, electrical conductivity (EC) and temperature (T) were measured in the morning (just after 

sunrise) as well as at the end of the afternoon (just before sunset). On sampling days, 

measurements were made approximately 10 cm below the water surface using a YSI 58 oxygen 

meter connected to a YSI 5739 probe (DO), a Consort C523 pH meter (pH) and a Consort 

C532 conductivity meter (EC and T). Alkalinity levels were determined at weekly intervals in 

100-mL subsamples taken from a 1-L water sample obtained as described below, by titrating 

with 0.05 N HCl until pH 4.2. 

The concentrations of ammonia, nitrate, nitrite, total Kjehldahl nitrogen (TKN), soluble 

reactive phosphate (SRP) and total phosphorous were analysed at two-week intervals in a 1-L 

sample taken at approximately 10 cm below the water surface using the methods described in 

APHA (1992). 

 

Zooplankton 

 

From one week prior to application up to 8 weeks post application, depth-integrated water 

sample of 10-L were collected on a weekly basis using a Perspex tube. One liter was used for 

determination of treatment effects on the phytoplankton community structure, as described in 

part I. Another liter was transferred to plastic bottles for phytoplanktonic chlorophyll-a 

determination (see part I) and alkalinity (see above). The bucket was then partially emptied 

into the microcosm from which it had been taken, leaving 5 L in the bucket. This remainder 

was passed through a zooplankton net (mesh size 60 µm) and preserved with formalin (final 

concentration: 4% V/V) to examine treatment effects on the zooplankton community. 

Subsamples of the zooplankton sample were counted with an inverted microscope 

(magnification 100-400). Rotifers and cladocerans were identified to the lowest taxonomic 

level possible. Copepods were divided into nauplii (immature stages), calanoids and cyclopoids 

(mature stages). Ostracoda were not further identified. Numbers were recalculated to numbers 

per litre of microcosm water. 
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Data analysis 

 

A detailed description and rationale for the data analysis of the abundance values of 

phytoplankton and periphyton data sets are given in part I (Chapter 6). Since the same 

methods were used for the zooplankton dataset, only a brief description is given in this 

section. 

NOECs were calculated for all parameters using the Williams test, which assumes an 

increasing effect with increasing dose (Williams, 1972). Abundance data were Ln(Ax + 1) 

transformed, where x stands for the abundance value and Ax makes 2 by taking the lowest 

abundance value higher than zero for x. Analyses were performed with Community Analysis, 

version 4.3.05 (Hommen et al., 1994) and statistical significance was accepted at p < 0.05. 

The response of the zooplankton community to the linuron application was analysed by the 

Principal Response Curves method (PRC) using the CANOCO software package, version 4.5 

(Ter Braak and Smilauer, 2002). The significance of the PRC diagram was tested by Monte 

Carlo permutation of the microcosms, i.e., by permuting entire time series in the partial 

redundancy analysis from which PRC is derived (Van den Brink and Ter Braak, 1999). In 

addition, permutation tests were performed per sampling date using Ln-transformed treatment 

levels as explanatory variables to determine the significance of the treatment regime per 

sampling date. The NOEC values at community level for the zooplankton community were 

calculated for each individual sampling date by applying the Williams test to the sample scores 

of the first principal component for each sampling date separately (for rationale, see Van den 

Brink et al., 1996). 

 

Results 

 

DO-pH-alkalinity-conductivity syndrome 

 

In control microcosms, DO ranged between 5.1 mg/L in the morning and 12.4 mg/L at the 

end of the afternoon, leading to an average DO production of 7.3 mg/L. pH was alkalic with 

morning values (8.9 ± 0.3; mean ± SD) lower than those measured in the afternoon (9.6 ± 

0.3; mean ± SD). Late afternoon levels of electrical conductivity (EC) were on average 11 

µS/cm higher than in the morning. EC values dropped on day 21, with average EC values 165 

- 177 µS/cm (afternoon – morning) lower in the period before day 21 than the period 
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thereafter. Alkalinity decreased over the experimental period in controls from 2.9 meq/L in 

the pre-treatment period to 1.7 meq/L on the last day of the experiment. 

 

Table 7.1 No observed effect concentrations (NOECs; Williams test, p < 0.05) per sampling 

date (weeks p.a.) for water chemistry parameters. Concentrations (µg a.i./L) showed 

significant increases (+) or decreases (-); > indicates a NOEC of > 500 µg/L; DO = dissolved 

oxygen; EC = electrical conductivity; TKN = Total Kjehldahl Nitrogen; TP = Total 

Phosphorus; SRP = soluble reactive phosphorus. 

 -4 -2 -1 0 1 2 3 4 5 6 7 8 

DO am NM > NM NM 15 (-) > > 15 (+) 150 (+) 150 (+) > > 

DO pm NM > NM NM 15 (-) 15 (-) > > > > > > 

DO prod NM > NM NM 150 (-) 15 (-) 15 (-) 15 (-) > 150 (-) 150 (-) > 

pH am NM > NM NM 15 (-) 150 (-) > > > > > > 

pH pm NM > NM NM 15 (-) 15 (-) > 150 (-) > > > > 

EC am NM > NM NM 50 (+) 15 (+) 50 (+) > > > > > 

EC pm NM > NM NM 150 (+) 15 (+) > > > > > > 

Alkalinity NM NM 150 (+) NM 15 (+) 15 (+) 50 (+) 150 (+) 150 (+) 15 (+) 15 (+) > 

Ammonia > > > NM NM 15 (+) NM > NM > NM > 

Nitrate > > > NM NM > NM 150 (+) NM 150 (+) NM > 

Nitrite > > 150 (+) NM NM 150 (+) NM 50 (+) NM 150 (+) NM 150 (+) 

TKN > > > NM NM 150 (+) NM > NM > NM > 

TP > > > NM NM 15 (+) NM 150 (+) NM 150 (+) NM > 

SRP > > > NM NM 15 (+) NM 150 (+) NM 50 (+) NM 150 (+) 

 

The NOECs calculated with the Williams test per sampling date on physicochemical 

parameters are presented in Table 7.1. Morning and afternoon DO levels (Figure 7.1A and 

7.1B), as well as DO production (Figure 7.1C), were decreased at all but the lowest linuron 

concentration. Interestingly, DO measured in the morning increased over control values 4 

weeks post application at these doses, while 5 and 6 weeks after application this was only 

noted for the 500 µg/L (Table 7.1). For pH, the lowest NOEC calculated was also 15 µg/L, 

although decreased levels returned faster to control levels (Figure 7.1D). The decrease in DO 

and pH was accompanied with an increase in EC (Figure 7.1E) and, more prolonged, alkalinity 

(Figure 7.1F). No NOEC < 500 µg/L was calculated on the last sampling day, indicating that 

DO, pH, EC and alkalinity levels regained control levels within the experimental period. 
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Figure 7.1 Dynamics of the measurements on the DO-pH-alkalinity-conductivity syndrome. 

Figures 7.1A through 7.1C show means of measurements per treatment level of dissolved 

oxygen (DO) concentrations measured in the morning (A), by the end of the afternoon (B) 

and the difference between these two levels; DO production (C). Dynamics in late afternoon 

values of pH (D) and electrical conductivity (E), as well as alkalinity measured at a depth of 10 

cm (F) are shown in Figures 7.1D through 7.1F.  
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Nutrients 

 

The drop in alkalinity in the control microcosms as described above was accompanied with a 

drop in total Kjehldahl nitrogen (TKN). Inorganic nitrogen levels over the experimental 

period were made up of mostly ammonia (mean: 0.12 mg/L), followed by nitrate (mean: 0.05 

mg/L), while nitrite concentrations were always lower than 0.01 mg/L and averaged 0.005 

mg/L. Total phosphorus (TP) and soluble reactive phosphate (SRP) concentrations increased 

during the experimental period from 0.42 mg/L to 0.85 mg/L and from 0.24 mg/L to 0.38 

mg/L, respectively. SRP made up approximately half of the TP concentration. 

 

 

 

Figure 7.2 Dynamics of ammonia (A), nitrate (B), nitrite (C) and soluble reactive phosphate 

(SRP; D) concentrations per treatment level. 
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Two weeks post application, ammonia concentrations were increased in all but the lowest 

treatment (Figure 7.2A), while nitrite (Figure 7.2C) and TKN were increased on that day in the 

highest treatment only (Table 7.1). Although nitrite remained increased in the higher linuron 

applied microcosms, ammonia and TKN returned to control values within 4 weeks after 

application. Nitrate increased in concentration only at the highest dose 4 and 6 weeks after 

application. Linuron also had a prolonged effect on TP and SRP concentrations (Figure 7.2D). 

Lowest NOECs for both parameters were calculated two weeks post application (i.e., 15 

µg/L). Effects on TP were calculated up to 6 weeks for the highest linuron concentration, 

while effects on SRP levels remained at this treatment level till the end of the experiment 

(Table 7.1).  

 

Figure 7.3 Principal response curves resulting from the analysis of the zooplankton data set, 

indicating the treatment effects of linuron on the zooplankton community. Of all variance, 

32% could be attributed to sampling date; this is displayed on the horizontal axis. Twenty-four 

percent of all variance could be attributed to treatment level. Of this variance, 24% is 

displayed on the vertical axis. The lines represent the course of the treatment levels in time. 

The species weight (bk) can be interpreted as the affinity of the taxon with the Principal 

Response Curves. A Monte Carlo permutation test indicated that a non-significant part of the 

variance explained by treatment level is displayed in the diagram (P = 0.804). 

 

Moina micrura

Cyclopoid copepod
Brachionus calyciflorus

Calanoid copepod

Brachionus urceolaris

Lecane bulla
Ostracada
Filinia longiseta
Diaphanosoma sp

Trichocerca sp
Ceriodaphnia cornuta

Nauplii-1

0

1

2

3

b
k

-1.5

-1

-0.5

0

0.5

1

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 5 µg/L 15 µg/L 50 µg/L 150 µg/L

Moina micrura

Cyclopoid copepod
Brachionus calyciflorus

Calanoid copepod

Brachionus urceolaris

Lecane bulla
Ostracada
Filinia longiseta
Diaphanosoma sp

Trichocerca sp
Ceriodaphnia cornuta

Nauplii-1

0

1

2

3

b
k

Moina micrura

Cyclopoid copepod
Brachionus calyciflorus

Calanoid copepod

Brachionus urceolaris

Lecane bulla
Ostracada
Filinia longiseta
Diaphanosoma sp

Trichocerca sp
Ceriodaphnia cornuta

Nauplii-1

0

1

2

3

b
k

-1.5

-1

-0.5

0

0.5

1

-10 0 10 20 30 40 50 60

Days post application

C
d

t

Controls 5 µg/L 15 µg/L 50 µg/L 150 µg/LControls 15 µg/L 50 µg/L 150 µg/L 500 µg/L



 

 155 

Zooplankton 

 

A total number of 11 rotifer taxa were identified from the zooplankton samples, with 

Brachionus (4 taxa) and Lecane (3 taxa) as most diverse genera. Cladocera was represented by 

Moina micrura, Diaphanosoma sp., Ceriodaphnia cornuta and Streblocerus pygmaues, while Copepoda 

(Cyclopoida, Calanoida, nauplii) and Ostracoda were not identified to the species level. In 

terms of total abundances, the control microcosms changed from rotifer-dominated to 

cladoceran-dominated in time. Total numbers of copepods were high in the pre-treatment 

period and decreased over the experimental period. Abundances of ostracods slightly 

increased throughout the experiment although total numbers remained low. 

 

Table 7.2 Results of Monte Carlo permutation tests (P-value) and Williams test on the PCA 

coordinates (NOECcommunity) as performed for each sampling date for the zooplankton 

data set. 

Day P-value NOEC 

-7 0.946 ≥ 150 

-2 0.939 ≥ 150 

7 0.005 15 

14 0.002 5 

21 0.286 ≥ 150 

26 0.038 50 

35 0.148 ≥ 150 

42 0.431 ≥ 150 

47 0.219 ≥ 150 

55 0.322 ≥ 150 

 

The PRC of the zooplankton data set is presented in figure 7.3, whilst the results of the Monte 

Carlo permutation tests are given in Table 7.2. Thirty-two percent of all variance could be 

attributed to sampling date and is thus displayed on the horizontal axis. Of the total variance, 

24% could be attributed to treatment level. Although a Monte Carlo permutation test 

indicated that the part displayed on the vertical axis was non-significant (24%; p = 0.804), the 

PRC reveals a clear concentration-dependent effect with an increasing effect in the order 500 

µg/L > 150 µg/L > 50 µg/L > 15 µg/L ≈ control. 

The species weight (bk), which is shown on the right side of the PRC diagram, can be 

interpreted as the affinity of the taxon with the Principal Response Curves. Species with a high 

positive weight, thus Moina micrura, Brachionus calyciflorus, and cyclopoid and calanoid copepods 
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(combined the mature copepods), are indicated to have decreased most strongly in the higher 

treatment levels (Figure 7.3). 

 

 

Figure 7.4 Dynamics in numbers of the most discriminate zooplankton taxa in the PRC 

analysis. Figures 7.4A through 7.4D show the geometric means of the numbers per liter 

counted er treatment level of Moina micrura (A), Brachionus calyciflorus (B), immature 

copepod stages; Nauplii (C) and mature copepods, i.e. the sum of abundances of cyclopoid 

and calanoid copepods (D). In the figures, an abundance of 0.1 denotes absence of the taxon. 

 

Nauplii (immature copepod stages) has a relative high negative weight and thus increased most 

strongly as a result of linuron. These effects were confirmed by the univariate NOEC 

calculations using the Williams test (Table 7.3) and their dynamics presented in Figure 7.4. 

Abundances of M. micrura (Figure 7.4A) were decreased compared to controls in the two 

highest concentrations. Besides the negative treatment effect on B. calyciflorus (Figure 7.4B), the 

rotifers Lecane closterocerca and Trichocerca sp. increased in abundances at higher linuron doses 
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(Table 7.3). The decrease in mature copepods (calanoids and cyclopoids) was accompanied 

with an increase in immature copepod stages (nauplii) in all but the lowest treatment (Figures 

7.4C and 7.4D). 

 

Table 7.3 No observed effect concentration (NOEC) of zooplankton taxa per sampling date 

calculated by the Williams test (p < 0.05). Concentrations (µg a.i./L) showed significant 

increases (+) or decreases (-); > indicates a NOEC of > 500 µg/L. 

 Days post application 

 -7 -2 7 14 21 26 35 42 47 55 

CLADOCERA > > > 15 (-) > 150 (-) > > > > 

Moina micrura > > 50 (-) 50 (-) > 150 (-) > > > > 

ROTIFERA > > > > > > > > > > 

Brachionus calyciflorus > > 50 (-) > > > > > > > 

Lecane closterocerca > > 150(+) > > > > > > > 

Trichocerca sp > > > > > > 50 (+) > > > 

COPEPODA > > 150(+) > > > > > > > 

Nauplii > > 15 (+) 50 (+) > > > > > > 

Cyclopoid copepod > > 50 (-) 150 (-) 50 (-) > > > > > 

Calanoid copepod > > > 15 (-) > > > > > > 

Copepoda mature stages > > 50 (-) 150 (-) 150 (-) > > > > > 

 

Discussion 

 

Effects of linuron on ecosystem functioning 

 

The primary effect of linuron is an inhibition of the photosystem II electron flow (Snel et al., 

1998). Consequently, dissolved oxygen (DO) production was suppressed as a result of the 

herbicide application (Figure 7.1C), leading to the decreased DO concentrations in the higher 

linuron doses (Figures 7.1A and 7.1B). The increased DO morning values in a later stage of 

the experiment may be explained by a decreased respiration during the night resulting from a 

decrease in algal and zooplankton abundances. 

Uptake of CO2 and biologically available forms of nitrogen and phosphorus from the water 

decreased as a result of the reduction in primary production and may thus explain the decrease 

in pH and the increase in ammonia, nitrate and soluble reactive phosphate (Figure 7.2A, 7.2B 

and 7.2D). The increase in nitrite most likely resulted from the decrease in DO levels (Figure 

7.2C). The low DO concentrations presumably hampered a full nitrification to nitrate, while 

levels were apparently still high enough to prevent denitrification to N2 and consequently a 

loss of excess nitrogen to the atmosphere. The release of dissolved substances from the death 
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of primary producers (see part I) further increased nutrient concentrations and led to 

increased levels of alkalinity and electrical conductivity (EC). 

The above does not explain the increase in TKN (total Kjehldahl nitrogen) and TP (total 

phosphorus) since in these parameters inorganic forms as well as organically bound 

phosphorus and nitrogen are included. Thus, although inorganic forms increased in higher 

doses, this would be expected to be compensated by organic forms, i.e. embedded in primary 

producers, in controls and lower doses. A possible explanation for this may be that higher 

nitrogen and phosphorus losses occurred in control and lower dosed microcosms due to 

ecological processes such as algal biomass renewal and energy transfer between primary 

producers and zooplankton. 

 

Responses of the zooplankton community to linuron stress 

 

The decline in abundances of the cladoceran Moina micrura in the 150 µg/L and 500  µg/L 

treatments were relatively fast (Table 7.3), indicating a possible role of direct toxicity. The EC50 

(24h) and EC50 (96h) values of linuron reported for the standard cladoceran species Daphnia 

magna are respectively 310-590 µg/L (Stephenson and Kane, 1984) and 7000 µg/L (Hernando 

et al., 2003), implying that if direct toxicity played a role this was slight and only for the highest 

linuron dose. 

A more likely explanation for the decrease in abundances of M. micrura, however, is the 

decrease in planktonic and epiphytic algal communities as discussed in chapter 6. Although 

several phytoplankton and periphyton species indeed decreased in abundances, other 

(insensitive) taxa increased in abundance. Algal biomass, measured as chlorophyll-a content, 

was therefore only slightly affected, especially for phytoplankton (see part I). Apparently, the 

tolerant primary producers were less edible species than the species that had disappeared. To 

test this hypothesis, the phytoplankton species were divided in edible and inedible algae and 

their dynamics compared between the controls and treatments that showed effects on M. 

micrura (Figure 7.5). M. micrura has been considered to feed on particles smaller than 40 µm in 

size (Hanazato and Yasuno, 1987), so algal species > 40 µm were regarded inedible. In 

addition, heavily spined Scenedemus taxa smaller than 40 µm in colony size were excluded as 

edible algae since spines have been reported to hamper the filtration process by mechanical 

interference, like for S. quadricauda (Bergquist et al., 1985). For the 500 µg/L, the decrease in 

edible algae reflects the decrease in abundances of M. micrura.  
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Figure 7.5 Dynamcs in numbers of Moina micrura (upper figures), total numbers of edible 

phytoplankton (central figures) and combined numbers of Scenedesmus dispar and 

Scenedesmus bicaudatus (lower figures) in the 150 µg/L (left) treatment and 500 µg/L (right) 

compared to control values. An abundance of 0.1 denotes absence of the taxon. 

10

100

1000

10000

-10 0 10 20 30 40 50 60

10

100

1000

10000

-10 0 10 20 30 40 50 60

0.1

1

10

100

1000

-10 0 10 20 30 40 50 60

0.1

1

10

100

1000

-10 0 10 20 30 40 50 60

Days post treatment

0.1

1

10

100

1000

10000

-10 -3 4 11 18 25 32 39 46 53 60

0.1

1

10

100

1000

10000

-10 -3 4 11 18 25 32 39 46 53 60

Control 500 µg/L

0.1

1

10

100

1000

10000

-10 -3 4 11 18 25 32 39 46 53 60

#
/L

0.1

1

10

100

1000

10000

-10 -3 4 11 18 25 32 39 46 53 60

#
/L

Control 150 µg/L

Moina micrura

0.1

1

10

100

1000

10000

-10 0 10 20 30 40 50 60

#
/m

L

0.1

1

10

100

1000

10000

-10 0 10 20 30 40 50 60

#
/m

L

Edible phytoplankton

0.1

1

10

100

1000

-10 0 10 20 30 40 50 60

#
/m

L

0.1

1

10

100

1000

-10 0 10 20 30 40 50 60

#
/m

L

Days post treatment

S. dispar + S. bicaudatus



 

 160 

Furthermore, the abundance peaks in edible species on day 14 and, more pronounced, on day 

26 are followed by increased numbers of M. micrura on day 21 and a recovery to control levels 

on day 35, respectively (Figure 7.5). The dynamics of edible species in the 150 µg/L treatment, 

however, does not show decreased numbers following application. In addition, the recovery of 

M. micrura goes along with an increasing trend of edible species abundances to levels higher 

than in controls. The decrease in M. micrura at this treatment level appears to be more related 

with the decrease in S. dispar and S. bicaudatus, the small chlorophyte species that dominated 

the control phytoplankton community (Figure 7.5). Apparently, the species that replaced S. 

dispar and S. bicaudatus in the first two weeks after linuron application may be considered edible 

for a mechanical point of view, but had a lower nutritious value. Although no significant 

increases were noted on day 7 and 14 for phytoplankton species, several taxa had peak 

abundances in one of the replicas in the 150 µg/L treatment. The chlorophytes Oocystis borgei, 

O. pusilla, and Tetraedron minimum, and the diatoms Gomphonema parvulum and Cyclotella sp. 

combined made up almost 65% of the phytoplankton community on these sampling days, 

while this was only 13% in controls. Diatoms possess a tough frustule, and high grazer 

pressure has been reported to induce silicification of this frustule (Pondaven et al., 2007). Also 

the small T. minimum is surrounded with a thick cell wall. Oocystis colonies were found to be 

grazing resistant in a study by Vanni and Temte (1990), which may be explained by the 

protective sheet around the cells of this colonial species. Indeed, thick cell walls and protective 

sheets have been reported as mechanisms allowing cells or colonies to pass the gut of the 

zooplankton unaffected (Brönmark and Hansson, 2005). 

Interestingly, S. dispar and S. bicaudatus only seemed to recover fully after complete recovery of 

M. micrura. Grazing pressure stabilized after recovery of M. micrura, so species with energy-

costly specialized defense adaptations presumably lost their competitively advantage over small 

fast growing algae without any protection, like S. bicaudatus and S. dispar. 

The decrease in numbers of S. bicaudatus and S. dispar may have caused a decrease in 

abundances of the euplanktonic rotifer Brachionus calyciflorus (Figure 7.4B). The periphytic 

rotifer species Lecane closterocerca and Trichocerca sp., however, were found to increase at higher 

linuron concentrations 1 week and 5 weeks post application, respectively (Table 7.3). At least 

for L. closterocerca, this was not due to an increase in food, since periphyton biomass was largely 

reduced at the highest linuron dose on day 14, as indicated with a chlorophyll-a content was 

0.7 µg/dm2. A possible explanation for the increased rotifer abundances may be an increase in 

detritus as a result of death of primary producers or the edible micro-organisms induced by 
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this, since rotifers have been reported to consume organic detritus and bacteria (Kutikova, 

2002). 

Although exceptions are common, most Calanoida are planktonic fine particle filter feeders, 

while Cyclopoidae belong to the micro-predators and feed on small invertebrates but also eat 

algae (Alekseev, 2002). Thus, the decline in mature copepod abundances (Figure 7.4D) 

resulted from the reduced availability of algae and/or decreased zooplankton abundances. 

Interestingly, immature stages of copepods (nauplii) increased in abundances (Figure 7.4C). 

Feeding habits of nauplii have not been studied intensively, but in tropical marine water a 

similar effect pattern was found as in the present study. Naupliar growth rates appeared to be 

uncoupled from chlorophyll concentration, while adults became food-limited, indicating a 

difference in diet between nauplii and later copepod stages (Hopcroft and Roff, 1998). 

Although Roff et al (1995) indeed concluded that nauplii can strive on a diet of bacteria and 

picoplankton, Finlay and Roff (2004) concluded that copepod nauplii have a similar diet as 

later copepod stages. In case micro-organisms were an edible food source for the nauplii in 

the present study, their increased abundance may be explained by a proliferation of micro-

organisms as discussed for rotifers. In case of the contrary, the development of nauplii to 

mature stages may have been delayed as a result of decreased food availability while hatching 

of resting eggs was unaffected, consequently leading to increased numbers of nauplii. 

 

Ecological effect chain 

 

A schematic overview of the direct and indirect effects of the linuron application is presented 

in Figure 7.6. The direct effect of linuron was the blockage of the electron transport in the Hill 

reaction of photosystem II. As a result of the decreased photosynthesis, DO and pH 

decreased while EC, alkalinity and nutrient concentrations increased. Furthermore, since 

primary producers could no longer support their energy need, several algal taxa decreased in 

abundances or were even eliminated. The consequently reduced respiration overnight led to 

increased DO morning values. 

As a result of decreased competition and increase in nutrients, tolerant primary producers 

increased in abundances. The decrease in food caused by the death of primary producers and 

because the altered algal community contained less digestable species for zooplankton taxa, 

which consequently decreased in numbers. Copepod nauplii, however, had higher numbers at 

higher linuron concentrations, which may be due to i) increased detritus and/or edible micro-
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organisms resulting from primary producer death or ii) a delay in copepod development as a 

result of decreased food availability in combination with unaffected hatching of resting eggs. 

 

 

 

Figure 7.6 Schematic overview of the hypothesised direct and indirect effect chains of 

carbendazim application on ecosystem structure and functioning. 

 

Comparison of results with other microcosm and mesocosm studies 

 

In Table 7.4, the no observed effect concentrations (NOECs) and lowest observed effect 

concentrations (LOECs) for the different endpoints are compared with those noted in 

microcosm and mesocosm studies evaluating linuron performed in temperate regions. Toxicity 
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values reported in a study by Stephenson and Kane (1984) were not included since only one 

high linuron concentration (1000 µg/L) was tested so no LOEC – NOEC could be estimated. 

Effects of herbicides in microcosm and mesocosm studies evaluating herbicides depend on 

system structure and exposure regime, which may impede the comparison of threshold values 

(Brock et al., 2000; Van den Brink et al., 1997; Gustavson et al., 2003). For example, 

submerged macrophytes are reported to be more sensitive than algae to the auxin-simulater 

2,4-D but equally vulnerable to photosynthesis-inhibiting herbicides, which may be explained 

by their difference in toxicological mode of action (Van den Brink et al., 2006). Compared 

with systems dominated by macrophytes, plankton communities are usually characterized by a 

higher proportion of short-lived species (phytoplankton, zooplankton), lower biomass but 

higher turnover rates, and a less diverse macroinvertebrate community (Brock and Budde, 

1994). Thus, although sensitivity may be similar for plankton and macrophytes, recovery and 

adaptation (recovery of functionality) in plankton-dominated systems is more rapid and 

indirect effects on higher trophic levels (zooplankton) are only observed at higher 

concentrations (Brock et al., 2000). Although the threshold values for the zooplankton 

community in the present study were in line with those from the reference studies (Table 7.4), 

effects were indeed clearly different from those in the macrophyte-dominated systems carried 

out in The Netherlands. In the latter studies, linuron application led to an increase in 

cladocerans (Slijkerman et al., 1999) and a decrease in rotatoria (Cuppen et al., 1997). An 

increase in the size of the dominant zooplankton species has also been reported for other 

photosynthesis inhibitors, e.g. atrazine (Hamilton et al., 1989) and simazine (Jenkins and 

Buikema, 1990). Cuppen et al. (1997) explained the increase in cladocerans after linuron stress 

with the increased numbers of the small phytoplankter Chlamydomonas, a readily edible 

chlorophyte. In the present study, an opposite effect was found: abundances of the cladoceran 

M. micrura decreased in the higher linuron applied microcosms. In the laboratory microcosm 

study by Daam and Van den Brink (2007), a slight decrease in total numbers of cladocerans 

was noted, but only after chlorophyll-a levels had been 0-1.7 µg/L for over two weeks. In the 

present study, however, effects on the zooplankton community were instantaneous, more 

pronounced and occurred at chlorophyll-a concentrations of approximately 1.5 µg/L (in 500 

µg/L dose) as well as 10 µg/L (in 150 µg/L dose). This may be explained by the fact that the 

tolerant algal species were less edible and/ or had a lower nutritious value, and the order of a 

magnitude higher threshold food concentration for tropical cladocera than for their temperate 

counterparts (Sarma et al., 2005). 
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Table 7.4 No observed effect concentrations (NOEC; in µg/L) and lowest observed effect concentrations (LOEC; in µg/L) for different 

endpoints calculated in the present study and those reported in other microcosm studies. NM = not measured; NR = not recorded; NP = not 

present. 

Endpoint/ pesticide load Single peak Single peak Single peak Pulsed 
(3x at 4-wk intervals) 

Constant (4 wk) 

Phytoplankton 
     Community 
     Chlorophyll-a 

 
15 - 50 
15 - 50 

 
No clear dose-effect 1 

>180 

 
50 - 150 
5 – 50 

 
> 50 
> 50 

 
15 - 50 5 
50 – 150 

Periphyton 
     Community 
     Chlorophyll-a 

 
15 - 50 
15 - 50 

 
NM 
NM 

 
NM 
NM 

 
> 50 
> 50 

 
15-50 5 
15 – 50 

Macrophytes NP NR 2 NP > 50 0.5 – 5 6 
Community metabolism 
     Based on: 

15 - 50 
DO, pH, EC, nutrients 

<20 - 20 
DO, pH 

0.5 - 5 
DO, pH 

0.5 - 5 
DO, pH 

0.5 - 5 
DO, pH 

Zooplankton community 15 - 50 20 - 60 3 5 - 504 > 50 5 – 15 7 
Overall NOEC - LOECecosystem 15 -50 <20 - 20 0.5 - 5 0.5 - 5 0.5 - 5 
Reference This paper; 

Part I 
Slijkerman et al., 2005 Daam and Van den Brink. 

(2007) 
Kersting and Van 
Wijngaarden, 1999; 

Van Geest et al., 1999 

Van den Brink et al., 1997; 
Cuppen et al., 1997 

Type of model ecosystem Lentic, outdoor 
Plankton-dominated 
Microcosms (250 L) 

Lentic, outdoor 
Macrophyte-dominated 
Microcosms (3000 L) 

Lentic, indoor 
Plankton-dominated 
Microcosms (8.5 L) 

Lentic (0-1 wk p.a.)/ lotic (1-4 
wk p.a.), outdoor, macrophyte-

dominated experimental 
ditches (mesocosms; 60000 L) 

Lentic, indoor 
Macrophyte-dominated 
Microcosms (600 L) 

Duration (weeks) 8 4 3 22 10 
Concentrations tested (µg/L) 15, 50, 150, 500 20, 60, 180 0.5, 5, 50, 150 0.5, 5, 15, 50 0.5, 5, 15, 50, 150 
Location Thailand The Netherlands The Netherlands The Netherlands The Netherlands 
1 Besides increase in cyanobacteria after three weeks in all treated tanks, effects did not increase with increasing dose 

2 Growth of the macrophyte Elodea recorded as “reduced” but statistical significance of different treatments unclear 

3 Only slight effect; increase in rotifers and cladocerans on day 6 and 13, respectively 

4 Based on decrease in total numbers of cladocerans. 

5 Based on multivariate analysis. The authors also reported a decrease in Chroomonas sp. in phytoplankton and Cocconeis sp. in periphyton with lowest NOEC = 0.5 µg/L. 

6 Based on in-situ bioassay. Standing stock of Elodea nutallii in microcosms: NOECbiomass reduction = 15 µg/L. 

7 Based on decrease in Rotatoria 
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In the laboratory plankton-dominated microcosm study by Daam and Van den Brink (2007), 

linuron was more persistent than in the present study. Nevertheless, threshold values for the 

phytoplankton communities in the present study were lower compared to that study and 

comparable with those of the study evaluating chronic linuron exposure (Table 7.4). 

Periphyton was not studied in the single-peak reference studies, and was also equally 

vulnerable on community level in the present study after a single-peak application as in the 

chronic linuron study. It thus appears that the algal communities in the present study were 

relatively sensitive compared to the studies carried out in the temperate zone. Differences in 

community structure between the studies may be a possible explanation for this. The 

phytoplankton and periphyton communities in the present study at the time of application 

were dominated by sensitive Scenedesmus taxa and Chamaesiphon sp., respectively. In the chronic 

linuron study by Van den Brink et al. (1997), the algal communities were dominated by 

diatoms, which have been reported to be relatively tolerant to herbicide stress (Bérard et al., 

1999). In addition, the phytoplankton community in the laboratory study by Daam and Van 

den Brink (2007) was only studied three weeks after application, by which time adaptation of 

phytoplankton taxa may have occurred. The chlorophyte Monoraphidium sp. dominated the 

phytoplankton community in the latter study and this genus has been reported to obtain 

tolerance to the photosynthesis inhibitor simetryn (Kasai, 1999). 

Effects on community metabolism were less pronounced in the present study compared to the 

macrophyte-dominated as well as the plankton-dominated reference studies (Table 7.4).  This 

may be related with the high tropical temperatures (average water temperature ± 30°C), since 

a temperature-dependent detoxification of atrazine has been demonstrated in laboratory 

experiments (Bérard et al., 1999). The authors attributed this to increased turnover rates of the 

DI protein, which is the specific target of photosynthetic inhibitors, with increasing 

temperature. Thus, high turnover rates in the present study may have resulted in a quick 

detoxification of the PSII activity at the lowest linuron concentration, and consequently an 

absence of effects on community metabolism at this treatment level. 

The overall NOEC in the present study was set at 15 µg/L, since this threshold was calculated 

for all endpoints tested (Table 7.4). In other microcosm and mesocosm experiments, the 

NOECcommunity was mostly 0.5 µg/L. In those studies, this NOEC was calculated for 

community metabolism, which was less sensitive in the present study as described above. 
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Recovery 

 

Table 7.5 summarizes the time in weeks to recovery for the different endpoints. Only the 

phytoplankton community and the community metabolism of the highest linuron dose did not 

return to controls within the experimental period, i.e. 8 weeks. 

 

Table 7.5 Time to recovery (in weeks) per endpoint as noted in the present study. 

Treatment/endpoint Phytoplankton Periphyton Zooplankton Community 

metabolism 

50 µg/L 4 >8 3 5 

150 µg/L 8 >8 3 5 

500 µg/L >8 >8 5 >8 

 

A comparison of recovery observed in the present study with the reference studies evaluating 

linuron is hampered because i) endpoints were only measured at the end of the experiment 

(i.e., 3 wks p.a.; Daam and Van den Brink, 2007), ii) no effects were noted at concentrations 

tested (Kersting and Van Wijngaarden, 1999; Van Geest et al., 1999), iii) the experimental 

period was too short to demonstrate recovery (i.e., 3 wks; Slijkerman et al., 2005), iv) a chronic 

exposure of 4 weeks was evaluated so recovery of most endpoints did not occur within the 5 

weeks following the end of the treatment (Van den Brink et al., 1997; Cuppen et al., 1997). 

In Brock et al. (2000), the effects and recovery of herbicides on freshwater microcosms and 

mesocosms are reviewed and compared. To enable a good comparison, the reported test 

concentrations were transformed to “toxic units” (TU) by dividing these concentrations by the 

(geometric mean of) EC50 value(s) of the most sensitive standard algal species recommended 

by the OECD (1984): Scenedesmus subspicatus, Selenastrum capricornutum or Chlorella vulgaris. For 

linuron, the lowest EC50 of the latter species is recorded for S. subspicatus; 16 µg/L 

(Crommentuijn et al., 1997). This implies than the treatment levels in the present study, i.e. 15 

µg/L, 50 µg/L, 150 µg/L and 500 µg/L, correspond to respectively 0.9, 3.1, 9.4 and 31.3 

TU´s.  

The effects and recovery of community metabolism, phytoplankton, periphyton and 

zooplankton in the present study are compared in Table 7.6 with other photosynthesis 

inhibiting herbicide studies reviewed in Brock et al. (2000) using the toxic unit approach 

explained above. The relatively high NOEC for community metabolism (0.9 TU compared to 

a range of 0.01 – 1 TU´s) is confirmed, while recovery appears to occur at comparable 
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concentrations. Periphyton did not recover within the experimental period, which also would 

not be expected based on the reference studies at the TU´s tested. Phytoplankton recovery 

within 8 weeks as found for the 150 µg/L dose (9.4 TU´s) lies at the end of the range (1.7 – 

8.9 TU´s) of photosynthesis inhibiting herbicides, indicating that recovery at this treatment 

level was relatively fast. For the zooplankton communities this is more prominent: recovery 

within 8 weeks in the present study occured at TU´s much higher than reported in reference 

studies (Table 7.6). 

 

Table 7.6 Range of classified effects (In toxic units. For explanation: see text) following single 

application of photosynthetic inhibitors in model ecosystem studies and those observed in the 

present study. Reference ranges were derived from Brock et al. (2000). 

Endpoint No effect Clear short-term effect 
(< 8 wks) 

Clear long-term effect 
(>8 wks) 

Community metabolism 
   Reference studies 
   This study 

 
0.007 – 1.2 

0.9 

 
0.28 – 37**  
3.1 & 9.4 

 
3 – 75 
31.3 

Phytoplankton 
   Reference studies 
   This study 

 
0.28 – 4.3*** 

0.9 

 
1.7 – 8.9 
3.1 & 9.4 

 
0.75 – 217 

31.3 
Periphyton 
   Reference studies 
   This study 

 
0.075 (0.03 – 1.5)*  

0.9 

 
0.28 (0.28 – 15)* 

- 

 
1 – 5.7 

3.1 & 9.4 & 31.3 
Zooplankton 
   Reference studies 
   This study 

 
0.15 - 15 

0.9 

 
2 (1.1 – 5.4)* 

3.1 & 9.4 & 31.3 

 
217 (not available)* 

- 

* only one reference study with single application available. Range in brackets for single, multiple or 

continuous exposure. 

**  an outlier of 370 TU was also noted. 

***  an outlier of 63 TU was also noted. 

 

Brock et al. (2000) discussed that recovery of systems strongly depending on macrophytes may 

take longer than in plankton-dominated test systems. This may thus explain why the recovery 

of the phytoplankton community was found to be at the end of the range observed for the 

reviewed studies since these studies used either plankton-dominated or macrophyte-

dominated test systems. In addition, higher rates of population increase have been reported 

for tropical cladocerans, like M. micrura, than for temperate cladocerans (Sarma et al., 2005). 

This implies that tropical cladoceran populations may regain control abundances quicker after 

environmental conditions are favorable again and may thus explain the recovery of the 

zooplankton community at relatively high TU´s in the present study. 
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Implications for risk assessment of linuron in Thailand 

 

Currently, uncertainty factors applied to ecosystem generated threshold values for setting 

regulatory acceptable concentrations range from 1 (US EPA) to a variable factor, which is 

based on a case-by-case evaluation of studies (EU) (Van Wijngaarden, 2006). For atrazine, a 

well studied photosynthesis inhibitor (see Brock et al., 2000 for a review), an uncertainty factor 

of 2.5 was determined (Brock et al., in press). We assumed that the protection goal was to 

protect ecosystems from any significant effect observed in the microcosms. Significance was 

accepted at p<0.05, indicating that an effect smaller than 5% was determined not to harm the 

aquatic environment. The Regulatory Acceptable Concentration (RAC, Brock et al., 2006) was 

calculated by applying an uncertainty factor of 2.5 to the lowest NOEC in the present study 

(15 µg/L), making 6 µg/L. 

The EC50 for the most susceptible temperate standard test species (according to OECD, 

1984) is 16 µg/L, which was calculated for Scenedesmus subspicatus (Crommentuijn et al., 1997). 

By multiplying the EC50 with a safety factor of 0.1, as indicated by the Uniform Principles 

(EU, 1997), the no effect concentration (NEC) is 0.16 µg/L. Thus, the threshold values 

calculated from temperate laboratory toxicity values appear to ensure adequate protection for 

the aquatic community in tropical countries like Thailand in the case of a single-peak exposure 

to the photosynthesis inhibitor linuron. 

However, it should be noted that even though the effect assessment of linuron on the tropical 

aquatic ecosystem in Thailand may be sufficiently covered by the temperate NEC, this does 

not automatically imply that the hazard of this herbicide is the same between temperate and 

tropical conditions. Herbicides in Thailand are frequently used on rice plantations (Jungbluth, 

1996). In case pesticides are applied to flooded rice fields, this implies that pesticides are 

sprayed directly in the water. Consequently, spray drift will be much higher (100%) than in 

ditch-dike systems in for instance the Netherlands, where only a relatively small part on the 

pesticide will enter the ditches surrounding the agricultural fields. Thus, for an exposure 

assessment point of view, the predicted environmental concentration (PEC) is very likely to be 

higher in (tropical) flooded rice fields and consequently the hazard, even though the sensitivity 

of the ecosystem may be the same.   
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CHAPTER 8 

 

GENERAL DISCUSSION  

 

 

 

Influence of experimental set-up of microcosms on the effect assessment of pesticides  

 

In the present thesis, the influence of the experimental set-up on the fate and effects of 

pesticides with different modes of action were studied by performing microcosm studies 

ranging from small indoor laboratory test systems in The Netherlands (Chapter 2) to larger-

scale outdoor test systems under tropical conditions in Thailand (Chapters 3 through 7). The 

organophosphorous insecticide chlorpyrifos was chosen as a model substance for 

acetylchlolinesterase inhibiting insecticides, the benzimidazole fungicide carbendazim for beta-

tubulin synthesis inhibitors and the phenylureum herbicide linuron for photosynthesis 

inhibiting herbicides. These pesticides were chosen since reference model ecosystem studies 

were available, enabling an evaluation of the degree in similarity of the observed fate and 

effects. 

In tables 8.1 to 8.3, the threshold values on ecosystem level noted in the experiments with 

respectively chlorpyrifos, carbendazim and linuron are compared with those reported in other 

microcosm and mesocosm studies carried out with these compounds. To facilitate 

comparisons, the effects are classified into five “effect classes” as used by Brock et al. (2000a, 

b): class 1 = no effect; class 2 = slight effect; class 3 = clear short-term effect (recovery < 8 

wks); class 4 = clear effect but experimental period too short to demonstrate recovery; class 5 

= clear long-term effect (recovery > 8 wks). 

The sensitivity of the tropical freshwater ecosystem to chlorpyrifos appeared to be comparable 

to temperate freshwater ecosystems (Table 8.1). This may be explained with the fact that 

cladocerans are the most susceptible species to organophosphates, and sensitivity to 

chlorpyrifos of the dominant cladoceran in the tropical microcosms, Moina micrura (LC50 = 0.6 

µg/L. Chapter 3), was found to be in the range of response variability of 3 or more reported 

for standard laboratory test species (Sprague, 1985; Baird et al., 1989) with the temperate 

standard test species Daphnia magna (LC50 = 1 µg/L. Kersting and Van Wijngaarden, 1992).  
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Table 8.1 Comparison of threshold values noted in the studies carried out with the 

insecticide chlorpyrifos in this thesis with those reported in other microcosm and 

mesocosm studies. Class 1: no effect; Class 2: slight effect; Class 3: clear effect, recovery < 8 

wks p.a.; Class 4: clear effect but experimental period too short to demonstrate complete 

recovery within 8 wks p.a.; Class 5: clear effect, recovery > 8 wks. 

Pesticide 
treatment 

Test system Location 
Reference 

Effect 
class 1 

Effect 
class 2 

Effect 
class 3 

Effect 
class 4 

Effect 
class 5 

Single 
 
 
Single 
 
 
Single 
 
 
 
Pulsed 
(6 hrs) 
 
Single 
 
 
Single/ 
Repeated 
 
Single 
 
 
Single 
 
 
 
SingleC 
 
 
Continuous (7 
wks) 
 
Continuous (3 
wks) 
 

Outdoor, lentic, 
microcosms 
 
Outdoor, lentic, 
littoral enclosures 
 
Outdoor, lentic, 
experimental ditches 
 
 
Outdoor, lotic, 
artificial streams 
 
Outdoor, lentic, 
microcosms 
 
Outdoor, lentic, 
microcosms 
 
Indoor, lentic, 
laboratory microcosms 
 
Indoor, lentic, 
laboratory microcosms 
 
 
Indoor, lentic, 
laboratory microcosms 
 
Indoor, lentic, 
microcosms 
 
Outdoor, lotic, 
experimental streams 

USA (Kansas) 
Biever et al. (1994) 
 
USA (Minnes.) 
Brazner et al. (1989) 
 
The Netherlands 
Van den Brink et al. 
(1996) 
 
Pusey et al. (1994) 
 
 
Thailand 
Chapter 3 
 
Thailand 
Chapter 4 
 
USA (Minnes.) 
Stay et al. (1989) 
 
The Netherlands 
Van Wijngaarden et 
al. (2005) 
 
The Netherlands 
Chaper 2 
 
The Netherlands 
Van den Brink et al. 
(1995) 
 
Australia 
(Queensland) 
Ward et al. (1995) 

0.1 
 
 
- 
 
 

0.1 
 
 
 

0.1 
 
 

0.1 
 
 
- 
 
 
- 
 
 

0.1 
 
 
 

0.005 
 
 
- 
 
 
- 

0.3 
 
 
- 
 
 
- 
 
 
 
- 
 
 
- 
 
 
- 
 
 

0.5 
 
 
- 
 
 
 
- 
 
 
- 
 
 
- 

1.0 
 
 

0.5 
 
 

0.9 
 
 
 

5.0* 
 
 

1.0** 
 
 

1.0 
 
 
- 
 
 

1.0A 
 
 
 
- 
 
 
- 
 
 

0.1 

- 
 
 

6.3 
 
 
- 
 
 
 
- 
 
 
- 
 
 
- 
 
 

5.0 
 
 

1.0B 
 
 
 

0.05 
 
 

0.1 
 
 
- 
 

3.0 
 
 
- 
 
 

6.0 
 
 
 
- 
 
 

1.0** 
 
 
- 
 
 
- 
 
 
- 
 
 
 
- 
 
 
- 
 
 

5.0 

* Relatively fast recovery due to continuous input of propagulus. 

** Recovery of communities in multivariate analyses < 8 wks, but recovery of the dominant cladoceran Moina 

micrura > 8 wks. 

A Under “temperate” (16°C; relatively low light intensity 14h; productive) conditions. 

B Under “mediterranean” (26°C; relatively high light intensity 12h; highly productive) conditions. 

C Study without sediment, resulting in a relatively slow disappearance of chlorpyrifos from the water phase 
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Table 8.2 Comparison of threshold values noted in the studies carried out with the fungicide 

carbendazim in this thesis with those reported in other microcosm and mesocosm studies. 

Class 1: no effect; Class 2: slight effect; Class 3: clear effect, recovery < 8 wks p.a.; Class 4: 

clear effect, but experimental period too short to demonstrate complete recovery within 8 wks 

p.a.; Class 5: clear effect, recovery > 8 wks. 

Pesticide 
treatment 

Test system Location 
Reference 

Effect 
class 1 

Effect 
class 2 

Effect 
class 3 

Effect 
class 4 

Effect 
class 5 

Single 
 
 
Single* 
 
 
Single* 
 
 
Continuous 
(4 wks) 

Outdoor, lentic, 
microcosms 
 
Outdoor, lentic, 
microcosms 
 
Indoor, lentic, 
microcosms 
 
Indoor, lentic, 
microcosms 

Thailand 
This thesis (Chapter 5) 
 
The Netherlands 
Slijkerman et al. (2004) 
 
The Netherlands 
This thesis (Chapter 2) 
 
The Netherlands 
Cuppen et al. (2000); Van 
den Brink et al. (2000) 

3.3 
 
 

2.2 
 
 

33 
 
 

3.3 

- 
 
 

21 
 
 
- 
 
 
- 

- 
 
 
- 
 
 
- 
 
 
- 

- 
 
 

226 
 
 

100 
 
 
- 

33 
 
 
- 
 
 
- 
 
 

33 

* Effects based on zooplankton community; macroinvertebrate community not studied. 

 

Table 8.3 Comparison of threshold values noted in the studies carried out with the herbicide 

linuron in this thesis with those reported in other microcosm and mesocosm studies. Class 1: 

no effect; Class 2: slight effect; Class 3: clear effect, recovery < 8 wks p.a.; Class 4: clear effect, 

but experimental period too short to demonstrate complete recovery within 8 wks p.a.; Class 

5: clear effect, recovery > 8 wks. 

Pesticide 
treatment 

Test system Location 
Reference 

Effect 
class 1 

Effect 
class 2 

Effect 
class 3 

Effect 
class 4 

Effect 
class 5 

Single 
 
 
Single 
 
 
 
Single 
 
 
Single 
 
 
Pulsed 
(3X at  
4-wk 
intervals) 
 
Continuous 
(4 wks) 

Outdoor, lentic, 
microcosms 
 
Outdoor, lentic, 
pond enclosures 
 
 
Outdoor, lentic, 
microcosms 
 
Indoor, lentic, 
microcosms 
 
Outdoor, lentic (0-1 
wk p.a.) - lotic (1-4 
wk p.a.), 
experimental ditches 
 
Indoor, lentic, 
microcosms 

Thailand 
This thesis (Chapter 6 & 7) 
 
UK 
Stephenson and Kane (1984) 
 
 
The Netherlands 
Slijkerman et al. (2005) 
 
The Netherlands 
This thesis (Chapter 2) 
 
The Netherlands 
Kersting and Van Wijngaarden 
(1999); Van Geest et al. (1999) 
 
 
The Netherlands 
Van den Brink et al. (1997); 
Cuppen et al. (1997) 

15 
 
 
- 
 
 
 
- 
 
 

0.5 
 
 

0.5 
 
 
 
 

0.5 

- 
 
 
- 
 
 
 
- 
 
 
- 
 
 
5 
 
 
 
 
- 

- 
 
 
- 
 
 
 
- 
 
 
- 
 
 

15 
 
 
 
 
5 

- 
 
 

1000 
 
 
 

20 
 
 
5 
 
 
- 
 
 
 
 
- 

50 
 
 
- 
 
 
 
- 
 
 
- 
 
 
- 
 
 
 
 

15 
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The extent by which a freshwater community responds to pesticide stress depends on a 

combination of ecosystem sensitivity and the (biologically available) concentration of a 

compound. Because closed systems without macrophytes and sediment were used in the 

laboratory experiment described in chapter 2, chlorpyrifos was found to be more persistent 

compared to larger-scale studies also evaluating single-peak chlorpyrifos treatments. Thus, 

although the zooplankton (cladoceran) community in the laboratory microcosms was similar 

in the latter studies, effects were found to be more comparable with those observed in studies 

with a chronic chlorpyrifos exposure regime (Table 8.1). This is supported by Van 

Wijngaarden et al. (2005), who noted the same threshold values for chlorpyrifos as those 

reported in larger-scale outdoor microcosms and mesocosms using “open” small laboratory 

test systems containing sediment. 

Non-arthropod macroinvertebrates are the most sensitive taxa to carbendazim. Therefore, 

lower threshold values were noted in the study by Slijkerman et al. (2004) and the laboratory 

microcosm experiment described in chapter 2 since these studies did not evaluate effects on 

this animal group (Table 8.2). The macroinvertebrate community in Thailand appeared to be 

as sensitive as reported in indoor macrophyte-dominated microcosms with chronic 

carbendazim exposure in The Netherlands (Cuppen et al., 2000), although most susceptible 

taxonomic groups were not the same. In the latter study, as well as in laboratory bioassays 

carried out with temperate macroinvertebrate taxa (Van Wijngaarden et al, 1998), “worm”-like 

taxonomic groups such as Oligochaeta, Turbellaria and Hirudinae were the most sensitive 

macroinvertebrates (NOEC 3.3-3.4 µg/L). In Thailand, however, oligochaetes were found to 

be moderately sensitive (NOEC 33 µg/L), possibly because a single-peak exposure regime was 

applied, whereas the water boatmen Corixidae was the most susceptible macroinvertebrate 

group (NOEC 3.3 µg/L). 

Evidently, the primary producers (algae, macrophytes) and ecosystem metabolism (e.g., 

dissolved oxygen, pH) are the most severely affected endpoints after treatment with the 

photosynthesis inhibiting herbicide linuron. The overall sensitivity observed in the laboratory 

study was in agreement with that reported in reference studies, whereas the Thai microcosms 

appeared less sensitive (Table 8.3). This may be explained by the fact that community 

metabolism was less affected by linuron due to higher turnover rates of the DI protein, the 

specific target of photosynthesis inhibiting herbicides, at higher temperatures (Chapter 5).  
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Recommended experimental set-up of microcosm studies with different pesticides 

 

As described in the general introduction, larger test systems are closer to the real-world, 

whereas smaller test systems are less complex and results are therefore easier to interpret. 

Thus, the choice of the experimental set-up of a test system should depend on the research 

question (Chapter 2; Leewangh et al., 1994). For studies that are initiated with the purpose of 

estimating an ecologically or regulatory acceptable concentration, lowest NOEC(s) and 

consequently direct effects on most sensitive endpoints are of utmost importance. Thus, based 

on the data generated in this thesis and reported in the literature as discussed in the previous 

section, minimum requirements for the experimental set-up of model ecosystems assuring that 

most sensitive endpoints are adequately taken into account may be elucidated (Table 8.4). 

 

Table 8.4 Recommended model ecosystem for the three pesticides tested, based on the most 

sensitive endpoints(s) and disappearance rates of the compounds. 

Pesticide      Most sensitive endpoint Disappearance  
rate 

Recommended microcosm 

Chlorpyrifos 
Carbendazim 
 
Linuron 

     Zooplankton (Cladocera) 
     Macroinvertebrate community 
 
     Primary producers/community         
     metabolism 

Fast 
Slow 
 
Slow 

Small-scale indoor microcosm 
Larger-scale outdoor 
microcosm/mesocosms 
Small- (algae) to intermediate-scale 
(macrophyte) indoor/outdoor 
microcosms 

 

For organophosphorous insecticides like chlorpyrifos, small indoor test systems may be 

considered suitable because i) most sensitive taxa belong to the Cladocera, which can be easily 

reared in smaller laboratory test systems ii) the robustness of the NOECecosystem for 

reported microcosm and mesocosm studies (Table 8.1). Closed microcosms without sediment 

may lead to an overestimation of the sensitivity of the ecosystem, and should therefore only be 

used if sediment is not that important for exposure and/or if lakes are the ecosystems of 

concern. 

Small test-systems will not allow the development of a very rich community of 

macroinvertebrates, which were discussed to contain the most susceptible taxa to fungicides 

like carbendazim (Chapter 3). Consequently, larger microcosms or mesocosms are required for 

an appropriate risk assessment of fungicides. Since reproduction and oviposition of insects are 

hampered in laboratory rooms (Cuppen et al., 2000), outdoor systems are preferable over 

indoor systems. Plankton-dominated model ecosystems have been reported to have a less 
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diverse macroinvertebrate community than test systems where macrophytes dominate the 

primary producer community (Brock and Budde, 1994). Also in the AIT canal, which was the 

source of water, sediment and additional zooplankters and macroinvertebrates for the 

microcosms, macroinvertebrates were noted to be concentrated in the roots of the floating 

plant Pistia stratiotes, an originally South American species that has become pan-tropical 

(Mitchell and Gopal, 1991). Other macrophytes in this canal were confined to another floating 

plant, Wolffia sp., and the rooted Nelumbo nucifera and Typha augustifolia, plants that use their 

expansigenous aerenchyme to supply their roots with atmospheric oxygen (Große, 1996; 

Seago Jr. et al., 2005). Free floating plants have indeed been reported to be abundant in 

tropical freshwaters, as a result of extensive asexual vegetative reproduction, potentially 

exponential population increase and horizontal mobility (Talling and Lemoalle, 1998). As we 

saw in chapter 5, the bloom of Wolffia sp. in higher treated carbendazim led to a complete 

coverage of the water surface and consequently an extensive reduction in ecosystem structure 

and functioning. The inclusion of floating plants in microcosms is therefore not 

recommendable. Furthermore, macrophytes in general were noted to be very scarce in Thai 

farm canals. Macrophytes have been discussed to be susceptible to tropical hydrological 

regimes that produce marked changes in water level (Talling and Lemoalle, 1998). Thus, the 

extensive drainage regimes and the use of little boats passing through the irrigation canals, 

sometimes pulled forward by walking through the canal and subsequently disturbing the 

sediment (personal observations), may explain this scarcity of macrophytes. For risk 

assessment purposes, the irrigation canals are the most direct contamination sites and are 

consequently intended to be simulated in model-ecosystems. Thus, the inclusion of 

macrophytes in Thai model ecosystems may be questionable and hence the use of plankton-

dominated microcosms is recommended.  

Most sensitive endpoints for photosynthesis inhibiting herbicides like linuron are community 

metabolism and primary producers (algae, macrophytes). Effects on these endpoints in the 

small laboratory microcosms were comparable with those observed in more complex test 

systems (Table 8.3). In the same way as discussed for chlorpyrifos, the fact that the systems 

were closed led to a more prolonged exposure. Since effects of herbicides have been reported 

to increase with exposure duration (Gustavson et al., 2003; Van den Brink et al., 1997), this 

should be taken into account when interpreting results from closed test systems. The 

phytoplankton community in the microcosm study evaluating repeated chlorpyrifos 

applications was highly dominated by the cyanobacteria Microcystis. This was explained by the 
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fact that the experiment was carried out at the end of the rainy season, when Microcystis has a 

competitive advantage over other algae due to limited light conditions (Chapter 4). Indeed, the 

microcosms of the linuron microcosm study in Thailand, which was carried out at the end of 

the cold season and the beginning of the hot season, exhibited a diverse phytoplankton 

community dominated by chlorophytes (Chapters 6). Thus, to ensure an adequate 

representation of the most sensitive endpoint, future outdoor model ecosystems studies 

evaluating herbicides in Thailand should be carried out in the end of the cold season or the 

beginning of the hot season. For the same reason, outdoor microcosm and mesocosm studies 

in temperate countries are recommended to be carried out in spring to mid-summer (Giddings 

et al., 2002). For indoor herbicide effect assessments, this limitation may be overcome by 

seeding test systems from mixed algae cultures.  

For evaluation of herbicide stress using macrophyte-dominated test systems, the microcosms 

as described in chapter 1 are evidently too small to allow a diverse macrophyte community. 

Medium-sized indoor and outdoor microcosms, however, have been proven to sustain a 

suitable macrophyte community for the evaluation of effects on this endpoint following 

herbicide stress (e.g., Van den Brink et al., 1997 and Slijkerman et al., 2005). 

 

The use of temperate toxicity data for tropical risk assessment of pesticides 

 

One of the aims of this thesis was to validate whether toxicity data generated in the temperate 

zone can be used for the tropical risk assessment of pesticides. This was done by carrying out 

microcosm experiments in Thailand and comparing (semi-field) ecosystem sensitivities with 

those reported in similar studies performed in temperate countries (chapters 3 to 7). 

Previous studies aiming at a validation of the protective value of temperate toxicity threshold 

values for tropical freshwaters have focused mainly on a species (assemblage)-level based 

approach by comparing sensitivities of species between temperate and tropical freshwaters 

using Species Sensitivity Distributions (SSDs). For example, Dyer et al (1997) compared the 

SSDs of temperate, coldwater and tropical fish for 6 compounds (carbaryl, DDT, lindane, 

malathion, PCP and phenol). Temperate fish appeared to be more sensitive for DDT than 

tropical fish, while for the other compounds no significant difference in sensitivity was found. 

Maltby et al. (2005) compared sensitivities of temperate and tropical arthropods to the 

insecticides chlorpyrifos, fenitrothion and carbofuran. Although they reported that HC5 

values of these pesticides were generally lower for tropical arthropods, these differences were 
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not statistically significant. Based on the comparison of Australian and non-Australian 

organisms exposed to the organochlorine insecticide endosulfan, Hose and Van den Brink 

(2004) indicated that the sensitivity of organisms to toxicants appears to be independent of 

their geographic origin. The most extensive comparison of temperate and tropical species 

sensitivities was made in a recent study by Kwok et al. (2007). In this study, SSDs of 

temperate and tropical species assemblages without separation into taxonomic groups were 

constructed for 18 chemical substances (ammonia, 9 metals, 2 narcotics and 6 pesticides: 

carbaryl, chlordane, chlorpyrifos, DDT, lindane and malathion). The authors noted 

confounding influences on results because i) the best fit parametric SSD model was only valid 

for 10 chemicals with a satisfactory goodness of fit; ii) tropical tests were conducted at a 

significant higher temperature than temperate tests for 13 of the tested chemicals; iii) the 

quantity and quality of the tropical data was lower (Kwok et al., 2007). These factors may be 

the reasons why overall differences in sensitivities appeared not to be consistent, although 

trends in species sensitivities to different chemicals between tropical and temperate aquatic 

organisms could be demonstrated. For 6 chemicals (among which the insecticides chlordane 

and chlorpyrifos), tropical organisms tended to be more sensitive than their temperate 

counterparts. However, for several other chemicals, especially metals, the opposite trend was 

noted. Based on their findings, Kwok et al. (2007) recommended the use of an extrapolation 

factor of 10 for coverage of 95% of the chemicals with a 90% protection level if the water 

quality standard is primarily based on temperate species and a priori knowledge of the 

sensitivity of tropical species is very limited or not available. 

The consistency of threshold values from model ecosystem studies performed in different 

parts of the world has recently been studied by Van den Brink et al. (2006) for herbicides and 

Van Wijngaarden (2006) for insecticides. Van den Brink et al. (2006) concluded that there is a 

surprising degree in threshold values from studies evaluating herbicides performed in different 

parts of the world (i.e. USA, Canada, Europe) and different application regimes (i.e. single, 

repeated, constant).  A similar conclusion was made by Van Wijngaarden (2006) for the 

insecticides chlorpyrifos and lambda-cyalothrin, who reported that concentrations leading to 

‘no’ to ‘slight and transient’ effects (Effect classes 1 and 2) were remarkably consistent among 

reviewed model ecosystem studies performed in Europe, the USA, and a study by Pusey et al. 

(1994) carried out in southeastern Queensland, Australia, just south of the tropic of Capricorn. 

Brock et al. (accepted) calculated the spread (i.e. the ratio of upper and lower limits of the 95% 

confidence interval) in effect classes 1 and 2 threshold values from the same studies reported 
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in Van Wijngaarden (2006) as well as studies performed in Europe and the USA with the PSII 

inhibitor atrazine as a measure of geographical variability. In this way, calculated uncertainty 

factors for the geographical extrapolation of threshold values for chlorpyrifos, lambda-

cyalothrin and atrazine were respectively 2.9, 2.6 and 2.5 (Brock et al., accepted). That these 

values are relatively low may be illustrated with the fact that, as mentioned earlier, variability in 

responses in standard single species tests with similar compounds may be a factor 3 or more 

(Sprague, 1985; Baird et al., 1989). 

From the data generated in this thesis, it appears that the consistency in threshold values 

across the temperate zone, i.e. mostly Europe and USA, is also valid for the tropical zone. 

Effect classes 1 and 2 threshold values from the microcosm studies with chlorpyrifos and 

carbendazim in Thailand are well in the range of those reported in studies carried out in the 

temperate zone (Tables 8.1 and 8.2). For linuron, the class 1 threshold value is even relatively 

high compared to reference values due to the discussed lower threshold values for the 

community metabolism (Table 8.3). These findings thus support the use of temperate toxicity 

data from model ecosystem studies carried out in the temperate zone for the ERA in tropical 

countries. Evidently, additional tropical model ecosystem studies are required to evaluate 

whether this is also valid for a wider array of compounds and on a larger tropical geographical 

scale. Special attention should be paid to herbicides due to the influence of experimental 

design and fate on the impact of these chemicals. 

 

Implications for tropical pesticide hazard assessment 

 

The hazard assessment of pesticides is based on a comparison of a predicted no effect 

concentration and the predicted concentrations of the pesticides in aquatic ecosystems 

surrounding agricultural areas following pesticide application. Thus, although from an effect 

assessment point of view the use of temperate toxicity data may be validated, this does not 

automatically mean that the hazard assessment of pesticides may be directly extrapolated from 

temperate to tropical regions. In other words, due to eventual discrepancies in estimated 

exposure assessments between temperate and tropical situations, the determined hazard of a 

pesticide may be lower or higher. 

The Predicted Environmental Concentration (PEC) in the EU is usually calculated with the 

help of a computer model (e.g. TOXSWA) for a standardized freshwater system on the basis 

of the recommended dose used for pest control and the expected drift percentage and runoff 
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or drainage fractions (FOCUS, 2001). The application of pesticides to flooded rice fields 

implies 100% spray drift, whereas in the European scenarios (e.g. Dutch ditches) only a 

relatively small part on the pesticide is expected to enter the ditches surrounding the 

agricultural fields (chapter 7). Also in Thai mixed fruit and vegetable farms spray drift may be 

expected to be relatively high, since pesticides are sprayed on small strips of land closely 

surrounded by water using boat application methods or knapsack spraying (Van den Brink et 

al., 2003). In line with this, spray drift in TOXSWA scenario’s for mixed fruit and rice fields in 

Thailand and Sri-Lanka were set at 30 to 100% (Satapornvanit et al., 2004; Van den Brink et 

al., 2003), whereas this was set at only 3% for ditches in The Netherlands (Adriaanse, 1996). 

More research is thus required to quantify pesticide concentrations in aquatic ecosystems 

surrounding Thai farms following pesticide application. 

 

Final considerations 

 

The microcosm experiments described in this thesis support the extrapolation of temperate 

toxicity data for the risk evaluation of pesticides in Thailand. However, the use of temperate 

toxicity data is often disputed as a sustainable way to assess chemical hazards. For example, 

Do Hong et al. (2004) noted that the common standard organisms used for aquatic 

ecotoxicology tests, Daphnia magna and Ceriodaphnia dubia, do not exist in Vietnam. Daphnia has 

indeed been reported to be largely absent in the tropics (e.g., Dumont, 1994), and D. magna 

and C. dubia are also not listed in reviews of zooplankton species existing in Thailand 

(Boonsom, 1984; Sanoamuang, 2001). Do Hong et al. (2004) developed a toxicity test with the 

autochthonous organism Ceriodaphnia cornuta and noted higher sensitivities for this species 

compared to D. magna to potassium dichromate, diazinon, methyl parathion and mercury. 

Lahr (2000) assessed the ecological risks of insecticides to temporary pond ecosystems in the 

Sahel and concluded that the invertebrate communities in general did not have a higher 

vulnerability or more resilience compared to their temperate counterparts. However, the fate 

and effects varied according to the type of insecticide, although there was no general trend. 

The author therefore discussed that the effect assessment for pesticides should be based on 

toxicity tests with representative, preferably indigenous test species and not (solely) on the 

type of standard data which is currently used in industrialized countries (Lahr, 2000). 

Potential differences in sensitivity of aquatic organisms are acknowledged and incorporated in 

the ERA of some jurisdictions. For instance, the Canadian water quality guidelines require 
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toxicity data of at least one coldwater species, e.g. trout, and one warm water species, e.g. 

fathead minnow (Canadian Council of ministers of the Environment, 1991). Australia and 

New Zealand exhibit a wide range of ecosystem types, including tropical, temperate, arid, 

alpine and lowland ecosystems. Therefore, the use of site-specific ERA has been promoted 

and applied by the authorities in Australia and New Zealand (ANZECC and ARMCANZ, 

2000; Van Dam et al., 2004). 

Also in the microcosm studies described in this thesis, differences in fate and effects on 

individual species were noted. For instance, the most susceptible taxonomic group to 

carbendazim in Thailand was Corixidae, whereas worm-like species are reported as most 

sensitive in temperate regions. The dissipation rates of lower linuron concentrations were 

indicated to be relatively fast and the ecosystem appeared less sensitive than reported in 

temperate studies. Therefore, although the use of temperate toxicity data may be validated as 

an immediate measure, the replacement by data generated with local fate and toxicity data may 

be necessary for a sustainable tropical risk assessment especially when indirect effects and 

recovery are of concern. 

Surrogates for Daphnia magna may be the above mentioned C. cornuta, to which Moina micrura 

may be added the more as this species appeared to be more sensitive than C. cornuta to the 

pesticides tested. Both species were abundant in the microcosms and are frequently recorded 

for Thailand (Boonsom, 1984; Sanoamuang, 2001) and other tropical Asian freshwater bodies 

(Dussart et al., 1984). 

Using local test species may be especially relevant when assessing the effects of fungicides. As 

discussed in chapter 5, it is questionable whether D. magna may fully represent the macro-

invertebrate community and Corixidae was found to be the more susceptible to carbendazim 

than the present cladoceran species. Dudgeon (1999) reported that in several Asian countries, 

an unusual rich assemblage of Corixidae is found. Thus, the development of a laboratory 

toxicity test with a local representative of this macroinvertebrate family is highly 

recommended when evaluating the risk of fungicides in Thailand. Standard laboratory toxicity 

tests and in-situ field tests were already developed for indigenous chironomids (Domingues et 

al., 2007) and Macrobrachium species (Satapornvanit, 2006). 

Regarding algal test species, there is a paucity of exclusively tropical phytoplankton species in 

the tropics (Kalff and Watson, 1986). Furthermore, the Scenedesmus species assemblage in the 

present study appeared to be adequately protected based on the laboratory toxicity data from 

the standard temperate algal species S. subspicatus. Higher water temperatures and 
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(consequently) different exposure durations were shown to influence sensitivity of primary 

producers to the herbicide linuron (Cserháti et al., 1976; Gustavson et al., 2003; Van den Brink 

et al., 1997). Thus, laboratory tests under tropical test conditions using for instance S. dispar, 

which was the dominant Scenedesmus taxon in the linuron microcosm study, may be expected to 

lead to higher threshold values compared to those generated under temperate test conditions. 

The influence of temperature on threshold values in bioassays has been reported to be both 

species and chemical specific (Kwok et al., 2007). Other herbicides, and pesticides in general, 

may thus lead to lower or higher threshold values when tested under tropical conditions 

compared to those generated in the temperate zone. 
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