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resumo 
 

 

A Proteína Fosfatase Tipo1 (PP1) é uma proteína ubíqua, especifica para 
resíduos de serina/treonina, que interage de uma forma mutuamente exclusiva 
com uma variedade de proteínas reguladoras. Estas actuam como substratos, 
inibidores, chaperoninas, proteínas âncora ou indutoras de especificidade e 
são muitas vezes multifuncionais, mediando um vasto conjunto de eventos 
celulares. Uma maior complexidade é originada pela existência de três genes 
que codificam várias isoformas da PP1, organizadas tanto espacialmente 
como temporalmente e cuja localização intracelular pode ser alterar de forma 
dinâmica. A PP1 está envolvida em múltiplos processos de grande relevância 
fisiológica (por ex. aprendizagem, memória e neurotransmissão) e patológica 
(envelhecimento, doença de Alzeimer e outras doenças neurodegenerativas). 
No entanto, ainda não estão completamente esclarecidas todas as importantes 
interacções de relevância fisiológica, bem como a localização intracelular onde 
essas interacções ocorrem.  
Esta tese teve como objectivo a identificação de proteínas expressas no 
cérebro humano que interagem com a isoforma α da PP1, usando o sistema 
Dois-Híbrido (YTH) de Levedura. Através desta técnica foram obtidos 298 
clones positivos, permitindo a identificação de 74 proteínas que ligam a PP1α. 
Entre as quais algumas eram proteínas já conhecidas por interagirem com a 
PP1, outras nunca antes tinham sido associadas à PP1 e várias eram 
proteínas ainda não caracterizadas. Foi feito um estudo mais detalhado para o 
clone mais abundante neste rastreio, Chr9orf75, que corresponde a uma 
proteína não descrita até agora. A ligação da proteína Chr9orf75 à PP1 foi 
confirmada através de várias técnicas e a sua localização subcelular e co-
localização com a PP1α foi estudada por imunocitoquímica. Os resultados aqui 
obtidos abrem novas perspectivas para o estudo da proteína Chr9orf75, a sua 
ligação à PP1 e localização subcelular. De modo geral, pode-se concluir que 
os resultados deste rastreio permitiram definir o interactoma do cérebro 
humano da PP1α, validando a técnica YTH como um meio de estudo para 
melhor compreender as funções da PP1 e a sua regulação em diferentes 
eventos celulares. 

 



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

abstract 

 
The ubiquitous serine/threonine-specific Protein Phosphatase  1 (PP1) interacts 
in a mutually exclusive manner with a variety of proteins that function as 
substrates, inhibitors, chaperones, anchoring proteins, or substrate-specifiers 
and are often multifunctional, mediating a wide range of cellular events. Further 
complexity is provided by the existence of three PP1 genes encoding various 
isoforms that are organized both spatially and temporally, and can change their 
intracellular localization dynamically. PP1 is involved in multiple processes of 
great physiological (e.g. learning, memory and neurotransmitter signaling) and 
pathological (aging, Alzheimer’s disease and other neurodegenerative 
conditions) relevance. However, many physiologically important interactions 
remain to be established, as well as the exact intracellular locations where 
those interactions take place.  
This thesis focused on the identification of human brain PP1α interacting 
proteins using the Yeast Two-Hybrid (YTH) system. With this technique 298 
positive clones were recovered, allowing the identification of 74 proteins that 
bind PP1α. Among them are some already well known PP1 interacting proteins, 
other proteins never before associated with PP1 and several uncharacterized 
proteins.  A more detailed study was performed for the most abundant clone in 
the screen, Chr9orf75, a novel and undescribed protein. Chr9orf75 binding to 
PP1 was confirmed by several techniques and its subcellular localization and 
co-localization with PP1α studied by immunocytochemistry. The results 
obtained provided new insights on Chr9orf75 protein binding to PP1 and 
subcellular localization. In general, it may be conclude that the results of this 
screen allowed an initial characterization of the human brain PP1α interactome, 
simultaneously validating the YTH system as a mean to study and understand 
PP1 functions and regulation in different cellular events. 
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1  INTRODUCTION 
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1.1 PROTEIN PHOSPHORYLATION 

 

 

The correct targeting and localization of proteins to specific subcellular compartments 

represent an important biological mechanism for regulating cellular function. Increasing 

evidence underlines the importance of macromolecular signalling complexes, where 

functionally related proteins are arranged in close proximity. Therefore, elucidating the 

molecular composition of these signalling complexes represents a fundamental step 

toward understanding the function of biological systems. Protein kinases and 

phosphatases are key players in the regulation of numerous cellular processes, and they 

exert their effects precisely through those signal transduction processes. 

One of the most widespread mechanisms for the post-translational regulation of proteins 

involves either the addition of phosphate groups via the transfer of the terminal phosphate 

from ATP to an amino acid residue by protein kinases, or their removal by protein 

phosphatases (Figure 1).  

 

 

 
Figure 1- Reversible protein phosphorylation, covalent modification via the transfer of the 

terminal phosphate from ATP to an amino acid residue of the target protein. 

 

The human genome encodes approximately 30000 proteins, one third of which is believed 

to be regulated by reversible protein phosphorylation (Johnson and Hunter 2005). Thus, 

the antagonistic actions of protein kinases and protein phosphatases are of equal 

importance in determining the degree of phosphorylation of each substrate protein.  
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The reversible phosphorylation of proteins is a post-translational modification and 

ubiquitous cellular regulatory mechanism that can regulate activity, subcellular localization 

and the binding affinity or association of the phosphorylated molecule, by inducing 

conformational changes. Protein kinases and protein phosphatases are often themselves 

phosphorylated in response to a myriad of extracellular and intracellular signals. An 

important feature of kinases and phosphatases is that a single molecule is able to activate 

many substrate molecules, thus allowing for amplification of the initial signal. 

Virtually, all signal transduction pathways are regulated, at some level, by 

phosphorylation, making phosphorylation relevant to most, if not all, areas of cell 

signalling and neuroscience research. Different classes of protein kinases and 

phosphatases act specifically on serine/threonine residues or tyrosine residues. All protein 

kinases belong to a single gene superfamily but, in contrast, protein phosphatases are 

divided into distinct and unrelated protein/gene families.  

Cellular health and vitality are dependent on the fine equilibrium of protein 

phosphorylation systems, since reversible protein phosphorylation is the major metabolic 

control mechanism of eukaryotic cells. Not surprisingly, many diseases and dysfunctional 

states are associated with the abnormal phosphorylation of key proteins. Indeed, cancer 

and other proliferative diseases, inflammatory diseases, metabolic disorders and 

neurological diseases are among those in which protein phosphorylation plays an 

important role. Thus, kinases and phosphatases are of interest to researchers involved in 

drug discovery, because of their broad relevance to health and disease. 

In neurodegenerative diseases such, as Alzheimer’s disease, there is evidence for 

abnormal regulation of protein phosphorylation. Altered activities and protein levels of 

several specific kinases suggest that abnormal phosphorylation contributes to the 

pathogenesis of these diseases. In Alzheimer’s disease, neurofibrillary degeneration 

results from the aggregation of abnormally phosphorylated Tau protein into paired helical 

filaments. Protein kinase A and glycogen synthase kinase 3 β are likely to be key kinases 

involved (Delobel et al. 2002), and protein phosphatase 2A is thought to be the main Tau 

phosphatase (Planel et al. 2001). Furthermore, activation of protein kinase C, or 

inactivation of  protein phosphatase 1, leads to a relative increase in the utilization of the 

non-amyloidogenic pathway for Alzheimer’s amyloid precursor protein processing (Gandy 

and Greengard 1994; da Cruz e Silva et al. 1995a).  

Other neurodegenerative diseases that may result from abnormal phosphorylation include 

Parkinson’s disease and Huntington’s disease. α-Synuclein has been implicated in the 

pathogenesis of Parkinson’s disease, and is a major component of Lewy bodies (a major 
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anatomical hallmark of Parkinson’s disease). α-Synuclein was demonstrated to be 

constitutively phosphorylated indicating that its function may be regulated by 

phosphorylation/dephosphorylation mechanisms (Okochi et al. 2000). Motor and cognitive 

deficits in Huntington’s disease are likely caused by progressive neuronal dysfunction 

preceding neuronal cell death. Synapsin I is one of the major phosphoproteins regulating 

neurotransmitter release. In mice expressing the Huntington’s disease mutation synapsin I 

is abnormally phosphorylated suggesting that an early impairment in its phosphorylation 

may alter synaptic vesicle trafficking and lead to defective neurotransmission in 

Huntington’s disease (Lievens et al. 2002).  

Altered phosphorylation has also been implicated in the etiology and/or symptoms of  

many other disorders such as heart failure (Neumann 2002) and diabetes (Sridhar et al. 

2000). Therefore, protein phosphorylation systems represent attractive targets for 

diagnostics and therapeutics of several neurodegenerative and other diseases. 

 

 

1.1.1 Protein phosphatases 

 

The initial classification of protein phosphatases (PPs), according to their phospho-

aminoacid substrates, the serine/threonine (Ser/Thr-specific) and the tyrosine (Tyr-

specific) phosphatases led to the establishment of four classes of Ser/Thr-specific protein 

phosphatases, based on their enzymatic properties (Ingebritsen and Cohen 1983). Even 

though the four have overlapping substrate specificities in vitro, they can be distinguished 

by the use of inhibitor proteins and by their dependence on metal ions (Table 1). Although 

widely used, this initial classification does not reflect the actual phylogenetic relationship 

between the different Ser/Thr phosphatases. 

The elucidation of complete cDNA and amino acid sequences allowed the separation of 

the Ser/Thr-specific protein phosphatases into two distinct gene families: the 

PhosphoProtein Phosphatases or PPP family (including PP1/PP2A/PP2B) and the PPM 

family (of metal dependent phosphatases) like PP2C (Table 1). The PPP family members 

(PP1, PP2A and PP2B) display high sequence similarities between their catalytic 

domains. The application of recombinant DNA techniques to the field also led to the 

identification of new protein phosphatases (PP4, PP5, PP6, PPZ, PPY,etc) and to the 

discovery of different isoforms (Berndt et al. 1987; da Cruz e Silva and Cohen 1987a; da 

Cruz e Silva et al. 1987; Cohen et al. 1988; da Cruz e Silva et al. 1988; da Cruz e Silva et 

al. 1995b; Fardilha et al. 2004). 
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Table 1 - Gene families and corresponding functional classification of the serine/threonine-

specific protein phosphatases. 

PP1 
Dephosphorylates preferentially the beta subunit of phosphorylase kinase 

Inhibited by I-2, phospho-I-1 and phospho-DARPP-32 

PP2A 

Dephosphorylates preferentially the alpha subunit of phosphorylase kinase 

Not inhibited by I-2, phospho-I-1 or phospho-DARPP-32 

Activity not affected by divalent cations 

PPP 

PP2B 

Dephosphorylates preferentially the alpha subunit of phosphorylase kinase 

Not inhibited by I-2, phospho-I-1 or phospho-DARPP-32 

Activity dependent on calcium ions and stimulated by calmodulin 

PPM PP2C 

Dephosphorylates preferentially the alpha subunit of phosphorylase kinase 

Not inhibited by I-2, phospho-I-1 or phospho-DARPP-32. 

Activated by magnesium ions. 

 

The remarkable degree of evolutionary conservation of these enzymes is undoubtedly 

related to their essential role in the regulation of fundamental cellular processes (Barford 

et al. 1998b; Barford and Neel 1998; Cohen 2002). 

Among the Ser/Thr protein phosphatases, PP1 forms a major class and is highly 

conserved among all eukaryotes examined to date (Lin et al. 1999). Three genes are 

known to encode PP1 catalytic subunits, termed PP1α, PP1β and PP1γ, and PP1γ is 

known to undergo tissue-specific processing to yield an ubiquitously expressed PP1γ1 

isoform  and a testis enriched PP1γ2 isoform (da Cruz e Silva et al. 1995b) (Figure 2).  

Two genes are known to encond PP2A catalytic subunits (da Cruz e Silva and Cohen 

1987b), termed PP2Aα and PP2Aβ (da Cruz e Silva et al. 1987; da Cruz e Silva and 

Cohen 1987b), and three known PP2B genes (PP2Bα, PP2Bβ, PP2Bγ) are also subject to 

complex regulation to yield several alternatively spliced isoforms from each (Figure 2). 

Other previously unknown phosphatase catalytic subunit isoenzymes were also 

discovered, from a variety of tissues and species, that were termed novel phosphatases 

(da Cruz e Silva et al. 1988), such as PP4, PP5 and PP6 (Cohen 1997) that are present in 

all mammalian tissues examined. In contrast, human PP7 is tissue specific and was found 

in the human retina (Huang and Honkanen 1998). 
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Figure 2 – Phylogenic tree depicting the degree of similarity between the known phosphatases 

based on their primary amino acid sequence. PP1-PP7 belong to a single gene family (PPP) 

that is structurally distinct from the PPM family (PP2C) (Honkanen and Golden 2002). 

 

Diversification of protein Ser/Thr phosphatases during evolution can be largely attributed 

to an increase in the number of interacting proteins that determine when and where the 

phosphatases are active. On the other hand, protein Ser/Thr kinases appear to have used 

a different diversification strategy, largely based on a gradual increase in the number of 

catalytic subunits. Thus, in spite of the of the huge difference in the number of catalytic 

subunits of mammalian protein Ser/Thr kinases (ca. 1000) and phosphatases (ca. 100), 

the number of holoenzymes for these two classes of enzymes may be more or less 

balanced (Bollen 2001; Ceulemans and Bollen 2004).  

There are approximately 25 genes encoding Ser/Thr protein phosphatases (Cohen 2004), 

and each phosphatase may have more than 300 physiological substrate proteins, which 

may increase considering each protein may have various phosphorylation sites as 

substrates.  
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1.1.2 Protein phosphatase 1 - PP1 

 

PP1 is a ubiquitous eukaryotic enzyme that regulates a variety of cellular events through 

the dephosphorylation of multiple substrates. This multifunctionality of PP1 is due to its 

association with different regulators and/or targeting subunits. The levels of PP1 are 

thought not to change in response to most physiological stimuli. It was proposed that the 

general PP1 holoenzymes functions are centered on the rational use of energy, the 

recycling of protein factors and a reversal of the cell to a basal and/or energy-conserving 

state (Ceulemans and Bollen, 2004). When nutrients are abundant PP1 stimulates the 

synthesis of glycogen and also allows the recycling of transcription and splicing factors, 

the return to basal levels of protein synthesis and the relaxation of actomyosin fibers. PP1 

also is important in recovering from stress but induces apoptosis in extreme situations. 

PP1 promotes the exit from mitosis and maintains cells in G1 or G2. 

Post-translational regulation of mammalian PP1 can be accomplished in several ways:  

� PP1 binds to other proteins that modulate PP1 activity and/or target PP1 to different 

substrates. Such heterodimers may be parte of larger multimeric protein complexes 

(Hubbard and Cohen 1993; Barford et al. 1998a; Bollen 2001; Cohen 2002; Ceulemans 

and Bollen 2004); 

� Many regulatory subunits of PP1 are regulated by phosphorylation, thus also affecting 

PP1; 

� PP1 catalytic subunits can undergo direct inhibitory phosphorylation by cyclin-

dependent kinases (Cdks) (Dohadwala et al. 1994; Yamano et al. 1994; Kwon et al. 

1997; Liu et al. 1999), Nek2 (Helps et al. 2000) and KPI-2 (Wang and Brautigan 2002). 

The PP1 family, with three major 37 kDa catalytic subunit isoforms, exhibit 90% or greater 

identity in overall amino acid composition (Figure 3), is expressed in virtually all 

mammalian cells (Sasaki et al. 1990; Barker et al. 1994) and the different isoforms can all 

be expressed in the same cell (Puntoni and Villa-Moruzzi 1997).  

The PP1 isoforms are highly conserved across their large catalytic domain, but are 

divergent at the N- and C-termini (Figure 3). Thus, regulatory proteins bind to the unique 

C-terminus of the PP1 isoforms to direct their isoform specific activities. To perform 

dephosphorylation reactions that are important in time and space, the diverse functions of 

PP1 must be independently regulated. For this reason, the regulatory subunits are 

believed to be much more specific for individual functions and are therefore better targets 

for examining specific pathways.  
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PP1gamma1       MADLDKLNIDSIIQRLLEVRGSKPGKNVQLQENEIRGLCLKSREIFLSQPILLELEAPLK 60 

PP1gamma2       MADLDKLNIDSIIQRLLEVRGSKPGKNVQLQENEIRGLCLKSREIFLSQPILLELEAPLK 60 

PP1alpha        MSDSEKLNLDSIIGRLLEVQGSRPGKNVQLTENEIRGLCLKSREIFLSQPILLELEAPLK 60 

PP1beta         MADG-ELNVDSLITRLLEVRGCRPGKIVQMTEAEVRGLCIKSREIFLSQPILLELEAPLK 59 

                *:*  :**:**:* *****:*.:*** **: * *:****:******************** 

 

PP1gamma1       ICGDIHGQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 120 

PP1gamma2       ICGDIHGQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 120 

PP1alpha        ICGDIHGQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 120 

PP1beta         ICGDIHGQYTDLLRLFEYGGFPPEANYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 119 

                ********* **************:*********************************** 

 

PP1gamma1       LRGNHECASINRIYGFYDECKRRYNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 180 

PP1gamma2       LRGNHECASINRIYGFYDECKRRYNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 180 

PP1alpha        LRGNHECASINRIYGFYDECKRRYNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 180 

PP1beta         LRGNHECASINRIYGFYDECKRRFNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 179 

                ***********************:************************************ 

 

PP1gamma1       QSMEQIRRIMRPTDVPDQGLLCDLLWSDPDKDVLGWGENDRGVSFTFGAEVVAKFLHKHD 240 

PP1gamma2       QSMEQIRRIMRPTDVPDQGLLCDLLWSDPDKDVLGWGENDRGVSFTFGAEVVAKFLHKHD 240 

PP1alpha        QSMEQIRRIMRPTDVPDQGLLCDLLWSDPDKDVQGWGENDRGVSFTFGAEVVAKFLHKHD 240 

PP1beta         QSMEQIRRIMRPTDVPDTGLLCDLLWSDPDKDVQGWGENDRGVSFTFGADVVSKFLNRHD 239 

                ***************** *************** ***************:**:***::** 

 

PP1gamma1       LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQILKPAE 300 

PP1gamma2       LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQILKPAE 300 

PP1alpha        LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQILKPAD 300 

PP1beta         LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGGMMSVDETLMCSFQILKPSE 299 

                ****************************************.*****************:: 

 

PP1gamma1       KKK---------PNATRPVTPPRG------MITKQAKK-------- 323 

PP1gamma2       KKK---------PNATRPVTPPRVGSGLNPSIQKASNYRNNTVLYE 337 

PP1alpha        KNKGKYGQFSGLNPGGRPITPPRN-------SAKAKK--------- 330 

PP1beta         KKAKYQYG---GLNSGRPVTPPRT--------ANPPKKR------- 327 

                            *:            . **:****          :  :   

Figure 3 – Analysis of homology among of PP1 isoforms using a CLUSTAL W multiple sequence 

alignment. 

 

Over the last decade, PP1 has been implicated in many cellular processes, including, but 

not limited to, cell cycle control, apoptosis, transcription, adhesion, motility, metabolism, 

memory and HIV-1 viral transcription. However, very few PP1 physiological substrates 

have been established so far. Besides proteins engaged in glycogen metabolism, muscle 

contraction and protein synthesis, that were recognized as PP1 substrates early on, more 

recently, PP1 was found to dephosphorylate a number of proteins important for cell 

proliferation and survival. For example, the tumour suppressor pRb, lamin B, Bad, Aurora 

and focal adhesion kinase (Thompson et al. 1997; Ayllon et al. 2000; Helps et al. 2000; 

Hsu et al. 2000; Fresu et al. 2001; Katayama et al. 2001; Meraldi and Nigg 2001; Berndt 

2003; Margolis et al. 2003; den Elzen and O'Connell 2004). 

The three-dimensional structure of PP1c (Figure 4) was first resolved over a decade ago 

and highlighted key features of a bimetallic catalytic centre, but also an overall pattern of 
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protein  folding conserved in other protein Ser/Thr phosphatases was revealed (Griffith et 

al. 1995; Das et al. 1996; Cohen 2002; Yang et al. 2005; Xu et al. 2006; Cho and Xu 

2007).  

 

 

 

 

Figure 4 - Secondary structure elements of PP1, the catalytic site and invariant residues. Metal 

ions M1 (Fe2+) and M2 (Mn2+) are shown as purple spheres and the tungstate ion is indicated. 

(Egloff et al. 1995) 

 

Subsequent studies co-crystallized PP1c with synthetic peptides or fragments derived 

from targeting or regulator subunits (Egloff et al. 1997; Terrak et al. 2004). These 

crystallization studies identified a site, some distance from the catalytic centre, where 

sequences homologous to RVxF, found in most PP1 regulators, interact and facilitated the 

identification of additional PP1 regulators. The structures also highlighted interactions 

along the C-terminus of PP1c that impart isoform specificity to some PP1 interacting 

proteins. Some mammalian PP1c proteins have a 25-27 amino acid C-terminal region that 

contains a Cdk phosphorylation motif (T P P / Q R) (Ishii et al. 1996), the threonine 

residue of which (T320 in human PP1α) has been show to be important for G1 progression 

in cell cycle (Dohadwala et al. 1994; Berndt et al. 1997; Liu et al. 1999).  

The large majority of PP1 interacting proteins contain a degenerate, so-called RVxF-motif 

that conforms to the consensus sequence [RK]-x0-1-[VI]- [FW], where x denotes any 

residue and  any residue except proline (Bollen 2001; Wakula et al. 2003). This motif 

binds with high affinity to a hydrophobic channel that is remote from the catalytic site of 
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PP1. The binding of the RVxF-motif has itself no major effects on the conformation or 

activity of PP1 (Egloff et al. 1997). However, RVxF-mediated anchoring of PP1 promotes 

the occupation of secondary, lower affinity binding sites and this often does affect the 

activity and/or substrate specificity of PP1 (Bollen 2001; Wakula et al. 2003). The RVxF-

motif is present in about one third of all eukaryotic proteins but only a small fraction are 

PP1-binding proteins. It seems that RVxF-consensus sequences function as PP1 

interaction sites only when they are present in a flexible and exposed loop that can be 

modelled into a β-strand. Additionally, other low affinity binding regions on the PP1 

regulators further strengthen the binding. 

Another PP1 binding motif has been described, F-X-X-R-X-R, that also appears to exist in 

several PP1 interactors (Ayllon et al. 2002). Recently, another generic PP1-binding motif 

was identified, the SILK-motif: [GS]-IL-[KR]. It was first described for I2, a specific PP1 

inhibitor (Lin et al. 2005; Hurley et al. 2007).  This motif is present in nearly 10% of 

proteins containing the RVxF-motif and is normally N-terminal to it. The SILK and RVxF-

motifs are functionally interchangeable and can both be essential for PP1 anchoring. 

The existence of common binding sites for the regulatory subunits explains why a 

relatively small protein such as PP1c can interact with numerous different regulatory 

proteins and why the binding of most regulatory subunits is mutually exclusive. The 

relative abundance of each isoform may be an important factor in determining the 

composition of numerous PP1 holoenzymes and the relative contribution of each PP1c 

isoform to different biological functions. A possibility is that holoenzymes containing the 

same binding subunit but different PP1c isoforms may have distinct functions (Rudenko et 

al. 2004).  

The broad in vitro substrate specificity of PP1 leads to the idea that the enzymatic 

specificity is mainly dictated by the interacting subunits. Thus, a complete understanding 

of PP1 function requires the identification of the associated subunits that direct PP1c 

specific functions, as well as functional analysis of PP1 holoenzymes. A variety of 

approaches has identified close to 100 mammalian proteins known to interact with PP1. 

These PP1 interacting proteins function as inhibitors, substrate specifiers, and substrate 

targeting proteins, or a combination thereof. Sometimes PP1 interactors are themselves 

substrates for associated PP1 (Bollen 2001; Ceulemans and Bollen 2004). Given the 

number of protein phosphatases and phosphoprotein substrates encoded in the human 

genome, a large number of PP1 interacting proteins surely remain to be discovered. 
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1.1.3 Protein phosphatase 1α - PP1α 

 

PP1α is one of the three mammalian catalytic subunits isoforms of PP1 and by binding to 

different partners has been shown to participate in a large variety of events, such as 

metabolism, cell division, apoptosis, protein synthesis, transcription and neuronal 

signalling. PP1α, like the other PP1 isoforms, can also be inhibited by natural occurring 

toxins such as tautomycin, cantharidin, calyculin A, okadaic acid, and microcystin-LR (da 

Cruz e Silva 1997). 

PP1α activity can be modulated directly by post-translational modification of the catalytic 

subunit by phosphorylation. Some mammalian PP1 isoforms contain a TPPR sequence at 

the C-terminus that can be phosphorylated by Cdks, with concomitant inhibition of the 

catalytic activity. Indeed, PP1α catalytic subunit is phosphorylated at Thr-320, a Cdk 

consensus site, as cells approach and traverse S-phase (Dohadwala et al. 1994; Berndt 

et al. 1997; Liu et al. 1999). It has also been reported that the activities of the PP1α and 

PP2A are inhibited by tyrosine phosphorylation of the C-terminus Tyr-306 catalyzed by c-

src, v-src, and v-abl (Johansen and Ingebritsen 1986; Chen et al. 1992; Villa-Moruzzi and 

Puntoni 1996). Ionizing radiation causes dephosphorylation of Thr-320 on PP1α resulting 

in its activation (Guo et al. 2002). This event was shown to be dependent on ATM (Ataxia 

Telangiectasia Mutated) kinase, the gene product that is deficient in the human autosomal 

recessive disease (ataxia telangiectasia).  

PP1α is expressed ubiquitously. At the protein level PP1α was found to be more highly 

expressed in brain, testis and lung than in other peripheral tissues analysed as heart, 

liver, intestine, kidney, spleen, adrenal gland and skeletal muscle. PP1α was also shown 

to be extensively expressed in cortex, basal ganglia, hippocampus and thalamus (da Cruz 

e Silva et al. 1995b; Herzig and Neumann 2000; Luss et al. 2000).  

Mammalian PP1α, PP1β and PP1γ1 localize to distinct subcellular locations in 

mammalian cells (Andreassen et al. 1998; Trinkle-Mulcahy et al. 2001; Lesage et al. 

2005). In the brain the mRNAs for PP1α, PP1β and PP1γ1 were found to be particularly 

abundant in hippocampus and cerebellum (da Cruz e Silva et al. 1995b). At the protein 

level  PP1α and PP1γ1 were found to be more highly expressed in brain than in peripheral 

tissues, with the highest levels being measured in the striatum, where they were shown to 

be relatively enriched in the medium-sized spiny neurons (da Cruz e Silva et al. 1995b). At 

the electron microscopic level, PP1 immunoreactivity was demonstrated in dendritic spine 

heads and spine necks, and possibly also in the postsynaptic density (Ouimet et al. 1995). 

PP1 immunoreactivity has also been reported in human hippocampal neuronal cytoplasm 
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(Pei et al. 1994). In addition, most neuronal nuclei were not immmunoreactive for PP1γ1 

but were usually strongly immunoreactive for PP1α (Ouimet et al. 1995). It is thought that 

such specific localization and function is mediated by the regulators that bind the PP1c 

isozyme with different affinities.  

One unresolved issue is the extent to which different PP1c isoforms interact with distinct 

regulatory proteins. Neurabin I and Neurabin II/Spinophilin were identified to bind PP1γ1 

and PP1α, but not PP1β (MacMillan et al. 1999; Terry-Lorenzo et al. 2002), and several 

PP1α and PP1γ1 specific regulators have been identified in mouse fetal lung epithelial 

cells (Flores-Delgado et al. 2007). In human erythrocytes, the powerful oxidant ONOO- 

down regulates the activity of PP1α through tyrosine phosphorylation. Human erythrocytes 

express both PP1α and PP2A, but results indicate that only PP1α is a substrate of the 

peroxynitrite-activated fgr tyrosine kinase (Mallozzi et al. 2005). 

Of all mammalian tissues, the brain expresses the highest levels of protein kinases and 

phosphatases, and PP1 is highly expressed both in neurons and glia (da Cruz e Silva et 

al. 1995b; Ouimet et al. 1995). It is increasingly evident that protein phosphorylation is a 

fundamental process associated with memory, learning and brain function, with prominent 

roles in the processing of neuronal signals and in short-term and long-term modulation of 

synaptic transmission. In neurodegenerative disorders, such as Alzheimer’s disease, 

there is evidence for abnormal regulation of protein phosphorylation, which appears to 

contribute to the pathogenesis of such diseases (Wagey and Krieger 1998). An impaired 

balance of cellular phosphorylation, including abnormalities in both expression and activity 

levels of kinases and/or phosphatases, has been reported to occur in Alzheimer’s disease 

(Gandy 1994; Gandy et al. 1994; da Cruz e Silva et al. 1995a; Tian and Wang 2002). 

Even though PP1 is involved in the regulation of numerous cellular processes, relatively 

little is known about specific and nonredundant functions of the different PP1c isozymes. 

In mice, PP1γ, probably the testis-enriched splice variant PP1γ2, has a nonredundant 

function in spermatogenesis, as PP1γ knockout male mice are viable but sterile with 

defects in spermatogenesis, while knockout female mice are viable and fertile (Varmuza 

et al. 1999). Presumably, the somatic and female germ line functions of PP1γ are 

redundant with PP1α and/or PP1β. No knockout analysis exists for the other PP1c genes, 

although PP1α was shown to have a specific function in murine lung growth and 

morphogenesis (Hormi-Carver et al. 2004).  

It is important, when considering the involvement of protein phosphatases in 

neurodegenerative diseases and other disorders, to notice that phosphatases play 

important roles in numerous physiological and cellular events and exist in macromolecular 
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signalling complexes in association with specific regulatory subunits. So, it is clear the 

usefulness of considering their regulatory subunits as possible targets for therapeutic and 

diagnostic approaches. 
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1.2 YEAST TWO-HYBRID SYSTEM 

 

 

The Yeast Two-Hybrid (YTH) assay was developed by Fields and colleagues (Fields and 

Song 1989) in the late 80´s and has since become one of the most popular tools used in 

molecular biology. The original description of the YTH assay introduced the idea of 

splitting into two domains a specific transcription factor, whose activity could be 

reconstituted via the interaction of heterologous proteins fused to those two domains. The 

results of the test assay led to the suggestion that this approach might be applicable to the 

identification of new interactions, via screening of libraries of activation domain-tagged 

proteins, which was shown to be feasible (Chien et al. 1991). 

The Two–Hybrid concept also proved to be remarkably malleable, with adaptations that 

detected protein-DNA, protein-RNA, or protein-small molecule interactions that are 

dependent on post-translational modifications that occur in cell compartments other than 

the nucleus, or that yield signals other than transcription of a reporter gene (Vidal and 

Legrain 1999). 

 

 

1.2.1 Principle of the Yeast Two-Hybrid system 

 

The monosaccharide galactose is imported into the cell and converted to galactose-6-

phosphate by six enzymes (GAL1, GAL2, PGM2, GAL7, GAL10, MEL1), which are 

transcriptionally regulated by the proteins Gal80, Gal3 and Gal4, the latter of which plays 

the central role of DNA-binding transactivator. Gal80 binds Gal4 and inhibits its 

transcriptional ability. Gal3, in the presence of galactose, binds and causes a 

conformational change in Gal80, which then allows Gal4 to function as a transcriptional 

activator. Gal4 like other transcriptional activators is a modular protein that needs both 

DNA-binding (BD) and activation (AD) domains. 

In a Gal4-based Two-Hybrid assay a bait gene is expressed as a fusion with the GAL4 

DNA-BD (bait), while another gene or cDNA is expressed as a fusion with the GAL4 DNA-

AD (prey) (Fields and Song 1989; Chien et al. 1991). The Two-Hybrid technique exploits 

the fact that Gal4 cannot function as a transcription activator unless physically bound to 

an activation domain, through an interaction that does not need to be covalent. A Two-

Hybrid assay is performed by expressing the two fusion proteins in yeast. The prey and 

bait constructs are introduced, by co-transformation or mating, into yeast strains 
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containing the appropriate “Upstream Activating Sequence” (UAS) proximal to a reporter 

gene. The reporter gene is expressed if a binding interaction occurs between the DNA-BD 

fused protein and the DNA-AD fused protein. Each Gal4 responsive gene contains a UAS 

target site, when Gal4 binds the UAS transcription is activated from a downstream 

promoter.  By linking the Gal4 UAS with other metabolic genes (e.g. ADE2, HIS3, MEL1 

and lacZ) and by eliminating the wild type GAL4 gene, researchers have developed yeast 

strains that change phenotype when Gal4 is activated. Although the Gal4 DNA-BD can 

bind the UAS, it cannot activate transcription by itself. Transcription is activated only when 

the other half of the protein, Gal4 DNA-AD, joins the DNA-BD at the UAS (Figure 5).  

 

 

Figure 5 - The Yeast Two-Hybrid system. Two fusion proteins are expressed in yeast: GAL4 

DNA-binding domain (BD) fused to a bait protein, PP1α in the present work, and GAL4 activation 

domain (AD) fused to a prey protein, a human brain library in this case. The BD-bait hybrid 

protein can bind to upstream activation sites (UAS) but cannot activate transcription. The AD-

prey protein cannot recognize the UAS, thus, alone is not capable of initiating transcription. 

When the bait and the prey interact, the BD and AD are brought together and can activate 

reporter gene transcription. 

 

When using a large scale screen, a plasmid library, expressing cDNA-encoded AD-fusion 

proteins, can be screened by introduction into a yeast strain. These larger scale Two-
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Hybrid approaches typically rely on interaction by yeast mating (Finley and Brent 1994; 

Serebriiskii et al. 2001b).  

When the two transformant cultures, from compatible yeast strains, are matted to each 

other, diploid cells containing four reporter genes (HIS3, ADE2, MEL1 and lacZ) are 

originated. If the protein interaction occurs, transcription of the reporter genes is activated 

allowing growth on nutritional selection media and expression of α-galactosidase (MEL1 

product) and β-galactosidase (lacZ product). Hence, high-stringency selection uses 

medium lacking tryptophan, leucine, histidine and adenine, and also the presence of X-α-

Gal. The selection of positive clones with the five reporter genes TRP1, LEU2, HIS3, 

ADE2 and MEL1 was designed to reduce the number of false positives, since the various 

reporter genes are under the control of distinct UAS and TATA boxes. An additional 

benefit of using yeast mating is that diploid cells are more tolerant to expression of toxic 

proteins and yield less false positives, since the diploids have reporter genes less 

sensitive to transcription (Kolonin 2000). 

 

 

1.2.2 Advantages and Limitations of the Yeast Two-Hybrid System 

 

Disadvantages 

 

� An obvious problem would arise if the protein of interest was capable of activating 

transcription on its own (auto-activation). It is, therefore, imperative to test the 

transcriptional activity of the protein of interest, in preliminary experiments. 

� The use of fusion proteins may change the conformation of the prey or bait, which may 

consequently alter activity or binding. Nevertheless, few problems have been reported 

with tagged proteins, perhaps due to their modular nature, where domains can fold 

independently, often allowing the introduction of artificial modules.  

� A major concern of testing protein-protein interactions using a heterologous system 

such as yeast, is the fact that some interactions may depend on specific post-

transcriptional modifications, such as disulfide bridge formation, glycosylation, or 

phosphorylation, which may not occur properly or at all in the yeast system (Fields and 

Sternglanz 1994).  

� Since the fusion proteins in the Two-Hybrid system must be targeted to the nucleus, 

extracellular proteins or proteins with stronger targeting signals may be at a disadvantage. 
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� It has been shown that certain protein domains may interact better than the full length 

protein, perhaps due to the lack of certain folding restraints. Since library screening 

selects for optimized reactions, one may obtain a false representation. This problem can 

be minimized by using libraries enriched for full-length cDNAs in the correct reading 

frame. 

� Given that the Two-Hybrid assay relies on reporter activity, it cannot be excluded that a 

third protein may be bridging the prey and the bait. Although unlikely, this possibility 

should not be excluded. 

� Certain proteins, when expressed in the yeast system or targeted to the nucleus, may 

become toxic. Other proteins may degrade essential yeast proteins or proteins whose 

presence is required for the assay. Such genes may be counter-selected for during growth 

and may distort the results obtained. 

� The identification of false binding partners presents itself as the main disadvantage of 

the Two-Hybrid assay. Even though two proteins can interact, it is not certain that they will 

interact in physiological conditions. Therefore, the biological relevance of the proteins 

identified must always be confirmed using alternative methodology. 

 

Advantages 

 

� The yeast Two-Hybrid system has a clear advantage over classical biochemical or 

genetic methods, in that it is an in vivo technique.  

� The use of the yeast host, as it bears a greater resemblance to higher eukaryotic 

systems, is an advantage over systems based on bacterial hosts. 

� The Two-Hybrid system has minimal requirements to initiate screening, since only the 

cDNA of the gene of interest is needed. 

� In signalling cascades, weak and transient interactions are often very important. The 

YTH system provides a sensitive method for detecting those interactions because such 

interactions are significantly amplified due to transcriptional, translational and enzymatic 

events. Such interactions may not be biochemically detectable, but even so be critical for 

proper cell functions (Guarente 1993; Estojak et al. 1995). 

� The Two-Hybrid assay is also useful for the analysis of known interactions. It can be 

used to pinpoint specific residues critical for protein interaction and to evaluate protein 

variants for the relative strength of their interactions (Yang et al. 1995). 
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� Interactions can be measured semi-quantitatively using the YTH system, allowing 

discrimination between high, intermediate, and low-affinity binding, the power of which 

correlates with that of in vitro approaches . 

� Although the Two-Hybrid assay was predicted to be limited to the study of cellular 

proteins, given that extracellular proteins often undergo modifications such as 

glycosylation or disulfide cross-links that are not expected to occur in the yeast nucleus, 

there have been various reported successes with extracellular receptor/ligand complexes.  

� Two-Hybrid screens are sometimes termed "functional screens", since if at least one of 

the proteins screened has a known function in a well-defined pathway, it might provide a 

functional hint in the current interaction. 

� Although there are certain disadvantages involving the Two-Hybrid assay, the most 

convincing argument for its use is the speed and ease by which the molecular 

mechanisms of many signalling cascades have been defined using this technique. 
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1.3 AIMS OF THIS THESIS 

 

Taking into account all the roles that have been attributed to PP1 based on its binding 

subunits, it is extremely important to identify novel PP1α binding proteins which may play 

critical regulatory and targeting roles for. Moreover, relatively little is known about isoform 

specific PP1 regulators. The Yeast Two-Hybrid (YTH) systems provide a sensitive method 

for detecting relatively weak and transient protein interactions. 

The main goal of this thesis was to identify the proteins expressed in human brain that 

interact with PP1α, since it is known to be highly and specifically enriched in dendritic 

spines. Ultimately, the identification of hitherto uncharacterised PP1α interacting proteins 

may address novel functions of PP1α in brain and PP1 associated diseases. It was hoped 

that this work could lead to the potential identification of new therapeutic targets for 

neurodegenerative disorders and aging. Thus, the specific aims of this thesis were: 

 

� To identify proteins expressed in human brain that interact with the PP1α isoform using 

the Yeast Two-Hybrid system – the human brain PP1α interactome. 

 

� To select proteins of interest by careful analysis of the identified proteins by 

bioinformatic methods. 

 

� To confirm the interaction of such proteins with PP1α and other PP1 isoforms. 

 

 

In order to identify potential PP1 interacting and regulating proteins, and to characterize 

the PP1α human brain interactome a large scale screen for PP1α binding proteins was 

performed, using the Yeast Two-Hybrid (YTH) system (Fardilha et al. 2004).  A total of 76 

proteins were identified from the 298 positive clones obtained, that are expressed in 

human brain and bind PP1α. 
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2  YEAST-TWO HYBRID SCREENING BY 
YEAST MATING 
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2.1 INTRODUCTION 

 

 

In order to find new interactions between PP1α and other proteins a screen using the 

MATCHMAKER GAL4 Two-Hybrid System was carried out using a human brain cDNA 

library (Clontech). The transformants were assayed for HIS3, ADE2 and MEL1 reporter 

gene activation after first clearing bait protein expression by immunoblotting, following 

preparation of yeast protein extracts.  

The YTH screen was performed by yeast mating, instead of the more common 

cotransformation protocol. By using the yeast mating protocol more unique positive clones 

are obtained due primarily to the “jump-start” that the new diploids receive before being 

plated on selective medium. Diploid yeast cells are also more resistant than haploid cells 

and can tolerate better the expression of toxic proteins. Additionally, in diploids, the 

reporters are less sensitive to transcription activation than in haploids, thus reducing the 

incidence of false positives from transactivating baits. 

The Gal4 System identifies the interaction between two proteins by reconstituting active 

Gal4 protein. The two proteins involved are expressed as fusion proteins with the Gal4 BD 

and AD. The two plasmids containing these constructs were introduced into yeast strains 

AH109 and Y187, containing the upstream activation sequences from the GAL1-GAL10 

regions, which promote transcription of the MEL1 gene. When interaction occurs between 

the DNA-BD and DNA-AD fusion proteins, MEL1 is transcribed, resulting in the 

development of blue colour for the strain when plated in medium containing X-gal (a 

chromogenic substrate). The yeast host lacks functional GAL4 and GAL8 genes. 

The vector used to insert the bait cDNA encoding PP1α, was Clontech’s GAL4 binding 

domain expression vector pAS2-1 (see Appendix III). pAS2-1 has several characteristics 

that make it suitable for YTH usage. It has the GAL4-BD, two independent yeast and 

bacteria replication origins, confers ampicillin and cycloheximide resistance and allows the 

yeast to grow without tryptophan in the culture media. It also has a multiple cloning site 

useful for inserting the bait cDNA. 
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2.2 MATERIAL AND METHODS 

 

 

All solutions compositions are described in Appendix I. 

 

 

2.2.1 Construction of the bait plasmid 

 

The pAS2-1 vector was digested with the restriction enzymes BamHI and EcoRI. The 

PP1α coding insert was generated by PCR, with the EcoRI and BamHI restriction sites 

incorporated into the primers used. The PCR product was sequentially digested with 

BamHI and EcoRI and then ligated to the previously prepared vector. Plasmid DNA was 

analysed with a convenient restriction endonuclease, namely HindIII. The resulting 

plasmid, named pAS-PP1α, was fully sequenced to check the orientation of the PP1α 

sequence, to validate the reading frame of the fusion protein, did to ensure it did not 

contain any mutations introduced by the PCR process. This part of the work was partly 

carried out in collaboration with Ana Paula Vintém and Carla Lopes. 

 

 

2.2.2 Expression of the bait protein in yeast 

 

In order to verify the ability of the recombinant construct to drive PP1α expression, it was 

transformed into yeast strain AH109. The transformed cells were grown on appropriate 

media (see below) and PP1α expression was confirmed by immunobloting of the 

corresponding protein extracts.  

 

2.2.2.1 Yeast transformation with plasmid DNA  

 

Preparation of competent yeast cells 

One yeast colony was inoculated into 1 mL of YPD medium in a 1.5 mL microtube and 

vortexed vigorously to disperse cell clumps. The culture was transferred into a 250 mL 

flask containing 50 mL of YPD and incubated at 30º C with shaking at 230 rpm overnight, 

until it reached stationary phase with OD600nm > 1.5. Enough of this culture (20-40 mL) was 

transferred into 300 mL YPD in a 2 L flask to yield an OD600nm= 0.2-0.3. The culture was 

incubated at 30º C with shaking at 230 rpm, until OD600nm = 0.4-0.6, and then centrifuged 
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at 2,200 rpm for 5 min, at RT, and the supernatant was discarded and the cells 

resuspended in 25 mL H2O. The cells were recentrifuged and the pellet was resuspended 

in 1.5 mL of freshly prepared, sterile 1X TE/LiAc.  

 

Yeast transformation- Lithium acetate (LiAc)-mediated method 

In a microtube 200 ng of plasmid DNA were added to 100 µg of salmon testes carrier 

DNA. Then, 100 µL of freshly prepared competent cells were added to the microtube, 

followed by 600 µL of sterile PEG/LiAc (40% PEG 4000/ 1X TE/ 1X LiAc). The solution 

was incubated at 30º C for 30 min with shaking (200 rpm). After adding 70 µL of DMSO 

the solution was mixed gently and then heat-shocked for 15 min in a 42º C water bath. 

The cells were chilled on ice and pelleted by centrifugation for 5 sec at 14,000 rpm and 

resuspended in 0.5 mL of 1X TE buffer. The cells (100 µL) were then plated in the 

appropriate SD selection medium (e.g. SD/-Trp for the plasmid pAS2-1), and incubated at 

30º C for 2-4 days, until colonies appear. 

 

2.2.2.2 Expression of proteins in yeast  

 

Preparation of yeast cultures for protein extraction 

A colony of the previously transformed yeast was inoculated into 5 mL of the appropriate 

SD selection medium and incubated at 30º C with shaking at 230 rpm overnight. As a 

negative control an untransformed yeast colony was inoculated in YPD. The overnight 

cultures were vortexed and separately added to 50 mL aliquots of YPD. These cultures 

were incubated at 30º C with shaking (220 rpm) until OD600nm = 0.4-0.6. At this point the 

cultures were quickly chilled by pouring them into a prechilled 50 mL centrifuge microtube 

halfway filled with ice. The tubes were immediately centrifuged at 1,000 g for 5 min at       

4º C. The supernatant was discarded and the cell pellet was washed in 50 mL of ice-cold 

water. The pellet was recovered by centrifugation at 1,000 g for 5 min at 4º C and 

immediately frozen by placing tubes in liquid nitrogen.  

 

Preparation of protein extracts 

The cell pellet, prepared as previously described, was quickly thawed by resuspending 

each one in 100 µL of prewarmed cracking buffer (60º C) per 7.5 OD600 units of cells 

(OD600 of a 1 mL sample multiplied by the culture volume). The samples were briefly 

thawed in a 60º C water bath. After 15 min an additional aliquot (1 µL of 100X PMSF per 

100 µL of cracking buffer) of the 100X PMSF stock solution was added to the samples 



Characterization of Human Brain Protein Phosphatase 1α Interacting Proteins Using the Yeast Two Hybrid System 

Mestrado em Microbiologia Molecular 2008 
- 36 -   Centro de Biologia Celular 

and every 7 min thereafter during the procedure. Each cell suspension was transferred 

into a 1.5 mL microtube containing 80 µL of glass beads per 7.5 OD600 units of cells. The 

samples were heated at 70º C for 10 min to release the membrane-associated proteins. 

Then, the microtubes were vortexed vigorously for 1 min and centrifuged at 14,000 rpm 

for 5 min at 4º C. The supernatants were transferred to fresh microtubes and placed on 

ice. The pellets were boiled for 5 min, vortexed for 1min and centrifuged again, with the 

resulting supernatants being combined with the previous. The samples were boiled and 

loaded immediately on a gel. 

 

SDS-PAGE  

In order to visualize the fusion protein GAL4-BD/PP1α, with a calculated molecular weight 

around 58 kDa, a 12% acrylamide gel was used (Table 2). 

 

Table 2 - Composition of the running and stacking gels for SDS-PAGE. 

Components Running gel (12%) Stacking gel (3.5%) 

Water 10.35 mL 6.60 mL 

30%Acryl./8%Bisacryl. 12.00 mL 1.20 mL 

4X LGB 7.50 mL - 

5X UGB - 2.00 mL 

SDS 10% - 100.0 µL 

10% APS 150.0 µL 100.0 µL 

TEMED 15.0 µL 10.0 µL 

 

The 12% running gel was prepared by sequentially adding the components indicated on 

Table 2 (APS and TEMED were added last, as they initiate the polymerising process). The 

solution was then carefully pipetted down the spacer into the gel sandwich, leaving some 

space for the stacking gel. Then, water was carefully added to cover the top of the gel and 

the gel was allowed to polymerise for 1 hr. The stacking gel was prepared according to 

Table 2. The water was poured out and the stacking gel was added to the sandwich; a 

comb was inserted and the gel was allowed to polymerise for 30 min. Then, the samples 

were prepared by the addition of ¼ volume of loading gel (LB) buffer. The microtube was 

boiled and centrifuged, the combs removed and the wells filled with running buffer. The 

samples were carefully applied into the wells that were filled with running buffer, and the 
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samples were run at 45 mA until the bromophenol blue from the LB reached the bottom of 

the gel. 

 

2.2.2.3 Immunoblotting 

 

For immunoblotting the tank transfer system was used as follows: 3MM blotter paper was 

cut to fit the transfer cassette and a nitrocellulose membrane of the gel size was also cut. 

The gel was removed from the electrophoresis device and the stacking gel removed and 

discarded. The transfer sandwich was assembled under transfer buffer to avoid trapping 

air bubbles. The cassette was placed in the transfer device filled with transfer buffer. 

Transfer was allowed to proceed overnight at 200 mA. Afterwards, the transfer cassettes 

were disassembled; the membrane carefully removed and allowed to air dry prior to 

further manipulations.  

 

Immunodetection by enhanced chemiluminescence (ECL)  

ECLTM is a light emitting non-radioactive method for the detection of immobilised antigens, 

conjugated directly or indirectly with horseradish peroxidase-labelled antibodies. In order 

to visualize the fusion protein GAL4 DNA-BD/PP1α the blots was probed with a polyclonal 

antibody (CBC2C), which recognizes human PP1α (da Cruz e Silva et al. 1995b). 

The membrane was soaked in 1X TBS for 10 min. Non-specific binding sites were blocked 

by immersing the membrane in 5% low fat milk in TBST for 1 hr. After washing with 1X 

TBST, the membrane was incubated with a solution of the primary (anti-PP1α) antibody 

diluted in 3% low fat milk in TBST for 1 hr with shaking. After three washes of 10 min each 

in 1X TBST the membrane was incubated with a solution of the anti-rabbit secondary 

antibody diluted (1:5000) in 3% low fat milk in TBST for 1 hr with shaking. The membrane 

was then washed 3 times for 10 min. 

Subsequently the membrane was incubated for 1 min at RT with the ECL detection 

solution (a mixture of equal volumes of solution 1 and solution 2 from the ECL kit 

(Amersham), approximately 0.125 mL/cm2 membrane). Inside the dark room, the 

membrane was gently wrapped with cling-film, eliminating all air bubbles and placed in a 

film cassette and an autoradiography film (XAR-5 film, KODAK) was placed on the top. 

The cassette was closed and the blot exposed for short periods of time. The film was then 

removed and developed in a developing solution, washed in water and fixed in fixing 

solution. If needed, a second film was exposed more or less time according to the first 

result. 
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2.2.3 Library screening by yeast mating 

 

A human brain cDNA library was screened to identify neuronal interacting partners for 

PP1α. By using a pretransformed library the most costly and time-consuming steps of 

library screening are optimized. These include, constructing the library, amplifying the 

library in E. coli, isolating the library DNA, performing the library-scale transformation of 

yeast strain Y187, plating the transformation mixture and harvesting the transformants at 

high viability and density in freezing medium. 

A concentrated overnight culture of the bait strain (AH109 + pAS-PP1α) was prepared by 

inoculating a colony of the bait strain into 50 mL of SD/-Trp medium and incubating it at 

30º C overnight with shaking at 250 rpm. The next day, when OD600>0.8, the culture was 

centrifuged at 1,000 g for 5 min, the supernatant was decanted and the pellet was 

resuspended in the residual liquid (5 mL) by vortexing. Just prior to use, a frozen aliquot 

(1 mL) of the library culture (Pretransformed Human Brain MATCHMAKER cDNA Library, 

Clontech) was thawed in a room temperature water bath. The library was gently mixed 

and 10 µL were set aside for later tittering (see below). The entire bait strain culture was 

combined with the 1 mL library aliquot in a 2 L sterile flask, 45 mL of 2X YPDA were 

added and gently swirled. This culture was incubated at 30º C for 20-24 hr, with shaking 

at 40 rpm. After 20 hr of mating a drop of the mating culture was checked under a phase-

contrast microscope to check for the presence of zygotes, thereafter allowing the mating 

to proceed for more 4 hr. The mating mixture was transferred to a sterile 50 mL tube and 

the cells spun at 1,000 g for 10 min. The mating flask was rinsed twice with 2X YPDA     

(50 mL) and the rinses were combined and used to resuspend the first pellet. The cells 

were centrifuged again at 1,000 g for 10 min, the pellet resuspended in 10 mL of 0.5X 

YPDA and the total volume (cells + medium) was measured. Half of the library mating 

mixture was plated on SD/QDO (SD without Leu, Trp, Ade and His), and the other half on 

SD/TDO (SD without Leu, Trp and His), at 200 µL per 150 mm plate. For mating efficiency 

controls, 100 µL of 1:10,000, 1:1,000; 1:100 and 1:10 dilutions of the mating mixture were 

plated in 100 mm SD/-Leu, SD/-Trp and SD/-Leu/-Trp plates. All plates were incubated at 

30º C until colonies appeared, generally 3-8 days on TDO and 8-21 days on QDO 

medium. Then, growth of the control plates was scored and the mating efficiency and 

number of clones screened were calculated. All positive clones were replated twice in 

SD/QDO medium containing X-α-Gal and incubated at 30º C for 3-8 days. True positives 

form blue colonies. The master plates were sealed with parafilm and stored at 4º C. 

Glycerol stocks were prepared for all the positive clones. 
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2.2.3.1 Library tittering 

 

A library aliquot (10 µL) was transferred to 1 mL of YPDA in a 1.5 mL microtube – dilution 

A (dilution factor 10-2). 10 µL from dilution A were added to 1 mL of YPDA in another 

microtube and mixed gently – dilution B (dilution factor 10-4). From dilution B, 100 µL were 

spread onto three SD/-Leu plates. All the plates were incubated at 30º C for 3 days after 

which the number of colonies was counted. The titter of the library was calculated using 

the following expression: [#colonies]/[plating volume (mL)x dil factor] = cfu/mL. 
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2.3 RESULTS 

 

 

The plasmid pAS-PP1α was fully sequenced to check the orientation of the PP1α 

sequence, in order to validate the reading frame of the fusion protein (Figure 6) 

 

 

 

 

Figure 6 – pAS-PP1α construct sequence analysis, EcoRI restriction sequence used for insertion 

with the starting codon ATG in frame is  highlighted in blue colour.  

 

 

The fusion protein GAL4-BD-PP1α from the protein extracts was detected with an anti-

PP1α antibody (da Cruz e Silva et al. 1995b) and an anti-rabbit secondary antibody 

conjugated to peroxidase. A protein extract from rat brain was used as a positive control 

and as a negative control the protein extract from the untransformed yeast strain (Figure 

7). 

 

 

 

 

Figure 7 – Immunoblot analysis of AH109 

yeast protein extracts, probed with anti-PP1α 

antibody. Lane 1: protein extract from rat 

cortex; lane 2: untransformed yeast control; 

lane 3: yeast transformed with pAS-PP1α. The 

arrows indicate PP1α in lane 1, at 37 kDa and 

BD-PP1α fusion protein in lane 3, at 58 kDa. 

 

  1        2        3 
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When probed with the anti-PP1α antibody, PP1α was detected in rat cortex (Figure 6, lane 

1). Unspecific bands were also detected in the protein extract from untransformed yeast 

cells (Figure 6, lane 2). A band of the expected molecular mass (58 KDa) was only 

detected in the protein extract from yeast cells containing the pAS-PP1α plasmid (Figure 

6, lane 3), demonstrating that this strain expresses the fusion protein. 

The BD-PP1α protein was also tested for transcriptional activation of the reporter genes. 

The bait construct did not activate transcription from the UAS (the DNA sequence that is 

recognized by GAL4-BD), as detected by lack of growth of yeast cells containing the bait 

plasmid pAS-PP1α on selective media SD/-Trp-His, SD/-Trp-His-Ade and SD/-Trp-His-

Ade/X-α-Gal (data not shown). 

Once yeast cell expression of the fusion protein GAL4-BD-PP1α was confirmed as well as 

its inability to initiate transcription of the reporter genes by it self, the Yeast Two-Hybrid 

screen was performed. After transforming the bait plasmids into the appropriate yeast 

strain, AH109 (mat a), the next step was to obtain the desired library pretransformed in a 

yeast strain of the opposite mating type. A pretransformed pACT-2 library in the yeast 

strain Y187 (mat α) containing human brain cDNA sequences fused to the GAL4 

transactivation domain was used. 

The mating culture was checked under a phase-contrast microscope to check for the 

occurrence of zygotes (Figure 8), indicative that mating was occurring as expected. 

 

 

 

 

Figure 8 – Zygote formation in the mating 

mixture with its typical three-lobed shape. The 

small lobe in the middle is the budding diploid 

cell (arrow), the other two lobes are the two 

haploid (parental) cells. This picture was taken 

using an inverted microscope in phase 

contrast mode, during the mating event (40X 

magnification). 

 

To calculate de number of clones screened the following equation was used [# cfu/mL of 

diploids X resuspension volume]. To calculate the mating efficiency the following equation 

was used [# cfu (in SD –Leu/-Trp) X 1000µL/mL/ volume plated (µL) x dilution factor] / [# 
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cfu (in SD -Trp) X 1000µL/mL/ volume plated (µL) X dilution factor] X 100. A summary of 

the results obtained is presented below in Table 3. 

 

Table 3 - Results from the Yeast Two-Hybrid screen. 

Positive clones 
Mating efficiency 

(% diploids) 
Clones screened 

298 30.25 1,72×107 

 

In the YTH screen 495 clones were initially obtained, 446 from SD/TDO and 49 from 

SD/QDO media. All the colonies were re-streaked in SD/QDO plates in order to test for 

the expression of the nutritional reporter genes HIS3 and ADE2. These clones were 

further tested for MEL1 expression, another reporter gene, by growing these putative 

primary positive clones in SD/QDO medium with X-α-Gal. True positive clones produce a 

blue colour (Figure 9), resulting in a total of 298 true positive clones, thus identified in this 

screen. Of these, 258 were originated from SD/TDO and 40 from SD/QDO media. The 

positive clones were named 1-298 T or Q as they were obtained from TDO or QDO 

media, respectively. 

 

 

 

 

Figure 9 – Positive clones identified in the 

YTH screen, recovered from the original 

SD/TDO or SD/QDO plates. MEL-1 expression 

of the positive clones obtained in the YTH 

screen is detected by the formation of blue 

colonies in the presence of X-α-GAL. White 

colonies represent false positives that grew on 

SD/QDO medium but could not turn blue in the 

presence of X-α-GAL. 
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2.4 DISCUSSION 

 

 

As with all detection methods, the YTH system is known to result in the detection of some 

false positives. This was a relatively serious problem in the early days of the YTH method 

but the elimination of such false positive results has been greatly improved in recent 

times. False positive signals result from cells in which the reporter genes are active even 

though the bait and prey do not interact. There are several classes of false positives. For 

example, false positives may arise from a prey that interacts with DNA upstream of the 

reporter genes or with proteins that interact with promoter sequences. These two classes 

of false positives can be eliminated by the use of more than one reporter gene under the 

control of different promoters, as was the case with the present work. Another inherent 

problem with the system is that not all proteins will be efficiently folded and/or post-

translationaly modified in the yeast nucleus, which may result in the protein not interacting 

with the true partner. In the same way, the protein may adopt a different tertiary structure 

when expressed as fusions with the transcription factor domains. Also, some proteins may 

be toxic when expressed as fusions in yeast, inhibiting growth when expressed at high 

levels. This can be avoided to some extent by the use of inducible expression plasmids. 

Other false positive results include interactions that occur in the YTH screen but not in a 

physiological context, because the partners are not expressed in the same cellular or 

subcellular environment at the same time. 

The credibility of interactions identified in an YTH screen should be evaluated through 

supplementary data from other sources. By this means, the verification of a putative 

interaction can be achieved in a variety of ways. One approach is to mix the recombinant 

proteins and verify binding in vitro through a variety of biochemical assays. Another 

approach is to express both proteins in mammalian cells by transfection and analyse 

interactions by immunoprecipitation studies. However, even if co-immunoprecipitation is 

successful, there is still the possibility that the proteins only interact under the conditions 

used. So, a crucial validation of the Two-Hybrid results is to prove that the two proteins 

exist in the same subcellular environment, by doing immunoprecipitation in the tissue of 

interest. 

In the present work, the PP1α bait vector was successfully constructed, shown to drive 

PP1α expression in yeast and to be unable to drive reporter gene expression  by it self. It 

was then used successfully to screen a human brain cDNA library, thus defining the 

human brain PP1α interactome. By screening 1,72×107 clones from a human brain cDNA 
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library with PP1α as bait 298 positive clones were obtained as accessed by their ability to 

grow on SD/QDO selective media and to turn blue in the presence of X-α-Gal. 

The following chapter will deal with the analysis and the characterization of the positives 

obtained. Although it was expected most of the 298 positives to encode true PPα 

interacting proteins, some may prove to be false positives. Further work will be required to 

define the relevant physiological interactors. 
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3  CHARACTERIZATION OF THE POSITIVE 
CLONES 
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3.1 INTRODUCTION 

 

 

The majority of the PP1 binding proteins that have been identified to date were discovered 

using the YTH method. Frequently, when performing a YTH screen, only few clones are 

selected and further characterized. Using such an approach many of the rarer positive 

clones are never analyzed, and some important potential interacting proteins may be 

missed. 

In this screen, 298 positive clones were obtained and we decided to analyse all in order to 

identify not only the most abundant interactions but also the more interesting ones, even 

though they may have been detected only once or twice in the screen. This does not 

mean they are not important but may simply reflect the low abundance of the mRNA in the 

library used or its low abundance in the tissue from which the library was made.  

All positive clones were partially sequenced, their identity was verified by comparison to 

the Genbank database and preliminary analysis was performed on all the positives 

identified. Some of the identified PP1α interacting proteins were chosen for further study. 
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3.2 MATERIALS AND METHODS 

 

 

All solutions compositions are described in Appendix I. 

 

 

3.2.1 Plasmid isolation from yeast 

 

3.2.1.1 Yeast plasmid extraction by the “Boiling” method 

 

A single yeast colony was grown in SD/QDO medium and 3 mL of yeast cells were 

pelleted for 3 min at 14000 rpm and resuspended in 100 µL of STET solution. About     

300 µL of 0.5 mm acid-washed glass beads (Sigma) were added and vortexed on high for 

6-8 min. After adding 100 µL of STET solution  the tubes were boiled for 3 min. After chill 

on ice, the tubes were centrifuged for 10 min at 14000 rpm at 4º C.  The supernatant was 

transferred into a new microtube, 500 µL of ammonium acetate 7.5 M was added and 

mixed briefly and the tubes were incubated for 1-2 hrs at -20º C. The tubes were, then, 

centrifuged for 20 min at 14000 rpm and 4º C and the supernatant transferred to new 

tubes containing 200 µL of ice cold ethanol. After spinning down for 10 min at 14000 rpm 

and 4º C, the supernatant was removed and the tubes rinsed with 200 µL of 70% ethanol. 

Another 5 min centrifugation was performed and the pellet was dried in a vacuum device. 

The pellet was resuspended in 15 µL of sterile 20 µg/mL RNase solution.    

 

 

3.2.2 Bacteria transformation 

 

3.2.2.1 Preparation of E. coli competent cells 

 

A single colony of E. coli XL1-Blue was incubated in 10 mL of SOB medium at 37º C 

overnight. Then, 1 mL of this culture was used to inoculate 50 mL of SOB and the culture 

was incubated at 37º C with shaking at 220 rpm for 1-2 hr, until OD550nm=0.3. The culture 

was cooled on ice for 15 min and centrifuged at 4,000 rpm at 4º C for 5 min. The 

supernatant was discarded and the pellet resuspended in 15 mL of Solution I. After 

standing on ice for 15 min, the cells were centrifuged at 4,000 rpm for 5 min at 4º C and   
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3 mL of Solution II were added to resuspend the cell pellet. The cells were immediately 

divided in 100 µL aliquots and stored at -80º C. 

 

3.2.2.2 Bacteria transformation with plasmid DNA 

 

Competent cells (100 µL) were thawed on ice and 1-50 ng of DNA were added to the cells 

and gently swirled. The microtube was incubated on ice for 20 min and heat shocked at 

42º C for 90 sec. The microtubes were then incubated on ice for 30 min before adding     

0.9 mL of SOC medium. The tubes were subsequently incubated at 37º C for 30 min with 

shaking at 220 rpm. The culture was centrifuged at 14,000 rpm and the supernatant 

discarded. The cells were then resuspended in 100 µL of the selective medium and 

spread on the appropriate agar medium. The plates were incubated at 37º C for 16 hr until 

colonies appeared. Control transformations were also performed in parallel. These always 

included a negative control transformation without DNA and a positive control 

transformation with 1 ng of a control plasmid, such as pAS2-1. 

 

 

3.2.3 Analysis of the positive plasmids by restriction digestion and 

sequencing  

 

In order to screen for the recombinant plasmid in the transformants, the plasmid DNA was 

extracted from several isolated bacterial colonies and digested with the restriction 

endonuclease HindIII, and the fragments produced were separated by agarose gel 

electrophoresis. 

The vector used (pACT-2) produces a characteristic pattern of fragments that allows its 

differentiation from colonies resulting from transformation by the bait vector. Plasmids 

generating DNA fragments characteristic of the pACT-2+library insert digested with HindIII 

were further analysed by sequencing  with the GAL4-AD primer (Clontech; see Appendix 

IV). 

A search for similar sequences in the Genbank database was performed using the BLAST 

algorithm [Basic Local Alignment Search Tool, (Altschul et al. 1990)]. 
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3.2.3.1 Isolation of plasmids from transformants 

 

Method 1 – Alkaline lysis “mini-prep” 

A  single bacterial colony was transferred into 3 mL of LB medium containing ampicillin 

(100 µg/mL) and incubated overnight at 37º C with vigorous shaking (220-250 rpm).      

1.5 mL of this culture were transferred into a microtube and centrifuged at 14,000 rpm for             

1 min at 4º C and the supernatant was discarded. The cell pellet was resuspended in      

100 µL of ice-cold solution I by vigorous vortexing. Then, 200 µL of freshly prepared 

solution II were added to the microtube that was mixed by inverting several times. 

Keeping the microtube on ice, 150 µL of ice-cold solution III were added and again the 

microtube inverted several times. The microtube was then allowed to stand on ice for 5 

min, centrifuged at 14,000 rpm for 10 min at 4º C and the supernatant transferred to a 

clean microtube. The DNA was precipitated by adding 2 volumes of ice-cold ethanol. The 

mixture was vortexed and placed at -20º C for 30 min. After centrifugation at 14,000 rpm 

for 10 min at 4º C, the supernatant was completely removed and the pellet washed with 

70% ethanol. Following centrifugation, the pellet was allowed to air-dry for 10 min. The 

DNA was dissolved in DNAase-free H2O containing RNAase (20 µg/mL) and stored at -

20º C. 

 

Method 2 – QIAGEN “miniprep” 

The bacterial pellet was obtained as described above. The pellet was then resuspended in 

250 µL of buffer P1, 250 µL of buffer P2 were added and the microtube was mixed by 

gently inverting until the solution became viscous and slightly clear. Afterwards, 350 µL of 

buffer N3 were added and the microtube was repeatedly inverted until the solution 

became cloudy. The microtube was centrifuged for 10 min and the resulting supernatant 

was applied to a QIAprep spin column placed in a microtube. After a 1 min centrifugation 

the flow-through was discarded. The column was washed by adding 0.75 mL of buffer PE 

and centrifuged for 1 min to discard the flow-through, and then a subsequent 1 min 

centrifugation to remove residual wash buffer. Finally, the column was placed in a clean 

microtube and 50 µL of H2O were added to elute the DNA by centrifuging for 1 min having 

let it stand for 1 min. This method gives a cleaner DNA preparation than Method 1 and 

with better yields. This method was used when the DNA was subsequently to be 

processed for DNA sequencing. For enzymatic restriction the first method was more 

commonly employed. 
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3.2.3.2 Restriction fragment analysis of DNA 

 

Plasmid DNAs were analysed through the digestion with a convenient restriction 

endonuclease, namely HindIII (New England Biolabs). For plasmid DNA digestion the 

manufacturer’s instructions were followed. In a microtube the following components were 

added: 

 

100 µg/mL DNA 

1X reaction buffer (specific for each restriction enzyme)  

1 U/µg DNA of restriction enzyme 

 

The mixture was incubated at the appropriate temperature (37º C for HindIII) for a few hrs. 

 

3.2.3.3 Electrophoretic analysis of DNA 

 

The electrophoresis apparatus was prepared and the electrophoresis tank was filled with 

enough 1X TAE to cover the agarose gel. The appropriate amount of agarose was 

transferred to an Erlenmeyer with 50 mL 1X TAE. The slurry was heated until the agarose 

was dissolved and allowed to cool to 60º C before adding ethidium bromide to a final 

concentration of 0.5 µg/mL. The agarose solution was poured into the mold and the comb 

was positioned. After the gel became solid the comb was carefully removed and the gel 

mounted in the tank. The DNA samples were mixed with the 6X loading buffer (LB) and 

the mixture was loaded into the wells of the submerged gel using a micropipette. Marker 

DNA (1kb ladder or λ-HindIII fragments) of known size was also loaded onto the gel. The 

lid of the gel tank was closed and the electrical cables were attached so that the DNA 

migrated towards the anode. The gel was run until the bromophenol blue had migrated the 

appropriate distance through the gel. At the end, the gel was examined under UV light and 

photographed or otherwise analysed on a Molecular Imager (Biorad).   

 

3.2.3.4 DNA sequencing 

 

All the DNA samples to be sequenced followed the same protocol. If the DNA had been 

obtained by the “alkaline lysis miniprep” method and had not been purified by QIAGEN 

miniprep spin column, then it was purified in a QIAquick spin column (QIAGEN DNA 

Purification Kit) as described bellow, before being processed for sequencing. 
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QIAGEN DNA Purification 

Briefly, 5 volumes of buffer PB were added to 1 volume of the solution to be purified and 

mixed. The QIAquick spin column was placed in a collection microtube and the sample 

was applied to the column and centrifuged for 1 min at 14000 rpm to bind the DNA. The 

flow-through was discarded and the column was washed with 0,75 mL of buffer PE, 

centrifuged for 1 min at 14000 rpm and the flow-through discarded. The column was 

placed back in the same microtube and centrifuged again to remove traces of washing 

buffer. Then, the column was placed in a clean microtube, 50 mL of H2O were added and 

allowed to stand for 1 min. To elute the DNA the column was centrifuged for 1 min at 

14000 rpm. The DNA was stored at -20º C. 

 

Sequencing PCR reaction 

In a 0,2 mL microtube the following components were mixed: 

 

500 ng dsDNA  

4 µL Ready Reaction Mix* 

10 pmol primer 

H2O to a final volume of 20 µL 

 

* Ready Reaction Mix is composed of dye terminators, deoxynucleoside triphosphates, 

AmpliTaq DNA polymerase, FS, rTth pyrophosphatase, magnesium chloride and buffer 

(Applied Biosystems). 

 

This reaction mixture was vortexed and spun down for a few seconds. The PCR was then 

performed using the following conditions: 

 

 96º C 1 min 

96º C 30 sec 

 42º C 15 sec          

 60º C 4 min              25 cycles 

 

Afterwards, the samples were purified by ethanol precipitation. Briefly, 2.0 µL of 3 M 

sodium acetate (pH 4.6) and 50 µL of 100% ethanol were added to the reaction 

microtube. The microtube was vortexed and incubated at RT for 20 min to precipitate the 
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extension products. The microtube was then centrifuged at 14,000 rpm for 20 min at RT. 

After discarding the supernatant 250 µL of 70% ethanol were added, the microtube was 

briefly vortexed and recentrifuged for 5 min at 14000 rpm at RT. The supernatant was 

discarded and the pellet dried. After this procedure the DNA was sent to the sequencing 

facility where there is an Automated DNA Sequencer (ABIPRISM 310, Applied 

Biosystems). 

 

 

3.2.4 Yeast colony hybridization 

 

In order to reduce the number of clones that needed to be sequenced, all positives 

resulting from the screen were subjected to colony hybridization using appropriate 

oligonucleotides. 

 

3.2.4.1 Filter preparation 

 

The nitrocellulose filter was placed on an agar plate containing the nutritional selective 

media QDO. Using autoclaved toothpicks isolated colonies were patched onto the filter, 

including positive and negative controls, already confirmed by sequencing. The filter was 

incubated overnight at 30º C. Pieces of 3MM Whatman paper were cut, with the same 

size of the filters, placed in Petri dishes and then soaked with 6 mL of freshly made 

SCE/DTT/Lyticase solution. The filters were lifted from the growth media and placed (cell 

side up) on the satured paper avoiding the formation of air bubbles. The Petri dish was 

covered and placed into a plastic bag and incubated overnight at 30º C. Filter sized pieces 

of 3MM paper were cut, placed in Petri dishes and soaked, avoiding the formation of 

bubbles, with 6 mL of each one of the different treatment solutions. Then the filters were 

placed on the following solutions, for the given times: Lysis solution, 5 min; Denaturing 

solution, 10 min; Neutralizing solution, 5 min and Washing solution, 3 times 5 min. The 

filters were placed on a sheet of 3MM paper to dry for an hr and then were UV cross 

linked (2 times autocross link for 30 sds) or baked for 1 hr in a 80º C vacuum oven, 

between pieces of 3MM paper. The filters were stored between pieces of 3MM paper and 

kept in the dark. 
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3.2.4.2 Probe preparation and labelling 

 

The probe DNA was separated in a 1% low melting agarose gel at 4º C and 50 V. Part of 

the gel was stained with etidium bromide (0.2 µg/mL) and aligned with the non stained 

part of the gel in order to cut the appropriate band. The cutted band was placed in a pre-

weighted tube. Water was added in a ratio of 3 mL/g of gel slice and placed in a boiling 

water bath for 7 min and stored at -20º C. Just before use the sample was re-boiled for 3 

min and stored at 37º C (for 10-30 min) until the labelling reaction.  

For DNA probe labelling the High Prime DNA Labeling Kit (Roche) was used to label      

25 ng of template DNA adding sterile water to a final volume of 8 µL. A control reaction 

was performed side by side with control DNA. The reaction mixture was obtained by 

mixing the 8 µL of DNA , on ice, with 4 µL of high prime reaction mixture, 3 µL of dATP, 

dGTP, dTTP mixture and 5 µL of 50 µCi [α33P]dCTP, 3000Ci/mmol, aqueous solution. 

After 2 hrs of incubation, at 37º C, the reaction was stopped by adding 2 µL of 0.2M EDTA 

(pH 8.0) solution and by heating to 65º C for 10 min. The probe was, then, purified using a 

push column beta shield device and Nuctrap probe purification columns (Stratagene).  

 

3.2.4.3 Filter Hybridization 

 

The filters were floated in destilled water and once completely wet were submerged for a 

few min. Afterwards the filters were transferred to 3xSSC/0.1%SDS/1mMEDTA solution at 

45º C for 15 min. After rubbing the filters to remove cell debris, they were left in the same 

solution for another 15 min with shaking.  Then the filters were incubated in hybridization 

solution (0.1 mL/cm2) at the hybridization temperature (65º C) in a glass hybridization 

bottle for 1 hr, making sure that there were no air bubbles and the solution was evenly 

distributed all over the filter. 

The radioactively labelled DNA probe was denatured at 100º C for 5 min and then quickly 

chilled on ice. The labelled probe was added to the hybridization solution in the proportion 

of 1-2x106 cpm/mL and the hybridization was performed overnight at 65º C. The filter was 

rinsed with wash solution 1 (2xSSC/0.05%SDS) pre-warmed to 60º C, two times for 15 

min. Then the filters were rinsed again with solution 1, at 65º C for 5 min, and with wash 

solution 2 (0.1xSSC/0.1%SDS) for another 5 min at 65º C. Then filters were removed from 

the hybridization bottles, the excess solution was removed without letting the filters dry, 

and were immediately covered with plastic wrap and exposed using a phosphor imaging 
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screen, or alternatively were exposed to X-ray films at -70º C with two intensifying 

screens. 

 

3.2.4.4 Probe Striping 

 

The filters were placed in pre-heated sterile 0.5% SDS solution to 100º C, making sure 

that the air exposal was minimal, for filters not to dry, and were incubated for 10 min with 

frequent shaking. Then the solution was left to cool down for about 10 min, the filters were 

removed and left to air dry and were finally stored at -20º C. The filters thus processed 

may be re-hybridized several times with different probes. 

 

 

3.2.5 Verifying protein interactions by yeast co-transformation 

 

To verify protein interactions, a small-scale LiAc yeast transformation procedure was 

performed, as previously described, combining the bait plasmid pAS-PP1α with specific 

positive clones isolated from the AD/library. The AD/library and pAS-PP1α plasmids to be 

tested were co-transformed into AH109 and selected on SD/-Leu-Trp. In parallel, co-

transformation with the vectors pAS2-1 and pACT-2 was performed as a negative control. 

The association of murine p53 (encoded by plasmid pVA3) and SV40 large T antigen 

(plasmid pTD1) served as a positive control. To confirm protein-protein interactions, the 

fresh diploid colonies were assayed for growth on SD/QDO plates and for X-α-Gal activity.  

 

 

3.2.6 Preparation of the  pC9orf75-GFP  construct 

 

For a translational fusion of the clone Chr9orf75 cDNA with a reporter gene encoding GFP 

(pEGFP vector, Appendix III), the cDNA of Chr9orf75 was amplified by PCR using specific 

primers (Appendix IV). To that end, cDNA of clone 100T was used, since it contains the 

complete coding sequence of the corresponding protein. As the EGFP-tag is C-terminal, 

the stop codon of the protein was eliminated with the primers used.  
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3.2.6.1  PCR reaction 

 

PCR reactions were performed using Pfu DNA Polymerase (Promega), a high fidelity 

polymerase that ensures that few or no mutations are introduced as a result of the PCR. 

In a 0.2 mL microtube the following components were added: 

 

0,5 µL (50 ng) DNA template 

1 µL (10 pmol) Primer Chr9orf75-F4 

1 µL (10 pmol) Primer Chr9orf75-R5 

2 µL (10 mM) dNTPs mixture 

5 µL (10X) Pfu Buffer 

0,5 µL Pfu 

H2O to a final volume of 50 µL 

 

The PCR amplification condition used are described below: 

 

94º C 5 min 

 

94º C 1 min 

 50º C 2 min               

 72º C 2 min              10 cycles 

 

94º C 1 min                     

 72º C 4 min              15 cycles 

  

72º C 2 min                

 

Amplification was confirmed by running a 5 µL PCR reaction aliquot in a 1% agarose 

electrophoresis gel. The PCR products were ethanol precipitated, as previously described.  

 

3.2.6.2 DNA restriction digestions 

 
For subcloning of Chr9orf75 in the pEGFP mammalian expression vector, the PCR 

product and pEGFP vector were digested with EcoRI and SalI (New England Biolabs), at 

37º C. For the DNA digestion the manufacturer’s instructions were followed. 
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The digestions were performed sequentially, although in the same buffer, for several hrs. 

The first enzyme used (EcoRI) was heat inactivated, then BSA was added and also the 

second enzyme (Sal I).  In a microtube the following components were added: 

 

100 µg/mL DNA 

1X reaction buffer (appropriate for both restriction enzymes)  

1X BSA (Bovine Serum Albumin) 

1 U/µg DNA of restriction enzyme 

Water for a final volume of 150 µL 

 

Afterwards, the digested DNAs were precipitated, as described before, resuspended in 

water and quantified by analysis in a 1% agarose electrophoresis gel.  

 

3.2.6.3 DNA ligation of cohesive termini 

 

Ligation of EcoRI SalI digested pEGFP vector and Chr9orf75 was carried out overnight at 

16º C using bacteriophage T4 DNA ligase (Promega), in a final volume of 20 µL. 

Additional control reactions were also set up (Table 4). 

 

Table 4 - pEGFP vector and Chr9orf75 ligation reactions 

Tube Vector (ng) Chr9orf75 (ng) Ligase (µL) Buffer (µL) 

Negative Control - - - 2 

Positive Control 
20 

(non cutted) 
- - 2 

Vector (unligated) 20 - - 2 

Vector (ligated) 20 - 1 2 

Ligation 1:3 ratio 20 16,6 1 2 

Ligation 1:5 ratio 20 27,6 1 2 

Ligation 1:10 ratio 20 55,3 1 2 
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Bacteria transformation for each ligation product was performed as described before, and 

cells were plated on agar medium plates, with the appropriate antibiotic (Kanamycin       

30 µg/mL), and incubated at 37º C for 16-18 hrs, until colonies appeared. Control 

transformations were also carried out in parallel, as described in Table 4, including a 

negative control transformation without DNA and a positive control transformation with   

1,0 ng of the control plasmid. 

Bacterial plates were screened for transformant colonies, a single colony was transferred  

to a tube containing 5 mL of liquid LB/Kanamycin medium and incubated overnight at     

37º C and 220 rpm. Subsequently, isolation of plasmids from transformants was 

performed using the “Miniprep” method, already described. In order to confirm the 

insertion of Chr9orf75 in the pEGFP vector restriction digestion reactions were performed 

using BamHI, EcoRI and SalI restriction enzymes. The pEGFP vector was also digested 

as a control. After digestion electrophoretic analysis of the DNA was carried out to identify 

those that yielded the expected bands. The next step was to confirm the correctness of 

the open reading frame of the fusion protein, by DNA sequencing. 

 

3.2.6.4 Sequencing of the  pC9orf75-GFP  vector 

 

All DNA samples to be sequenced were processed using the same protocol, as described 

before. In this case, two additional primers, one forward and one reverse (see Appendix 

V), were also used for sequencing procedures.  

Thus the  pC9orf75-GFP DNA fusion was confirmed in the correct reading frame as well 

as the entire coding sequence. 

 
3.2.6.5  pC9orf75-GFP  DNA amplification and purification 

 

The Promega Pure YieldTM Plasmid Midiprep System was used for  pC9orf75-GFP 

construct DNA purification. A single-transformant cell 200 mL culture was pelleted by 

centrifugation at 4000 g for 10 min at RT. The cells pellet was resuspended in 6 mL of cell 

resuspension solution by manually disrupting the pellet with a pipette. Next, 6 mL of cell 

lysis solution were added to the cells; mixed by gently inverting the tube and left to 

incubate for 3 min at RT. Then, 10 mL of Neutralization Solution were added and 

immediately mixed by gentle tube inversion; the lysate was allowed to sit for 3 min. After 

this initial procedure DNA Purification by Centrifugation was the chosen protocol. A blue 

PureYieldTMClearing Column was placed on top of a 50 mL plastic tube, the lysate was 

transferred to the column and allowed to incubate for 2 min. The column assembled to the 
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tube was then centrifuged at 1500 g for 5 min, at RT.  A white PureYieldTM Binding 

Column was assembled in a new 50 mL tube and the filtered lysate was transferred to this 

column and centrifuged at 1500 g for 3 min, at RT. The column was washed by adding 5 

mL of Endotoxin Removal Wash solution and centrifugating at 1500 g for 3 min, at RT. 

After that, 20 mL of Column Wash solution were added and the column centrifuged was 

performed at 1500 g for 5 min, at RT. The flowthrough was discarded and an additional 10 

min, 1500 g centrifugation was performed, at RT. Excess ethanol was removed by tapping 

the column on a paper towel. Afterwards, the column was placed in a new 50 mL 

disposable plastic tube and 800 µl of Nuclease-Free Water were added to the centre of 

the column. After 1 min standing, the DNA was eluted by centrifugation at 1500 g for 5 

min. Two 400 µl DNA aliquots were purified by ethanol precipitation and its concentration 

and 260/280 nm purity ratio calculated by densitometry measurements. 

 

 

3.2.7 Cell culture and transfection 

 

A cervical cancer cell line (HeLa cells) was the model system used in this study. HeLa 

cells were grown in Minimal Essential Medium with Earle's salts and GlutaMAX (MEM, 

Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco), 1% MEM Non-Essential 

aminoacids (Gibco, Invitrogen) and 100 U/mL penicillin and 100 mg/mL streptomycin 

(Gibco). Cultures were maintained at 37º C and 5% CO2. Cells were subcultured 

whenever ≈ 95% confluence was reached.  

 

3.2.7.1 Transfection with Lipofectamine 2000 

 

Lipofectamine 2000 (Invitrogen) is a cationic liposome formulation that functions by 

complexing with nucleic acid molecules, allowing them to overcome the electrostatic 

repulsion of the cell membrane and to be taken by the cell. This method of DNA delivery 

in culture cell lines is well described (Dalby et al. 2004). 

Cells were grown in complete MEM until 85 - 95% confluence and on the transfection day 

the culture medium was replaced with complete medium (antibiotic/antimycotic-free). The 

appropriate amount of DNA for each plate/well was diluted in Opti-MEM (serum- and 

antibiotic/antymicotic-free) (Table 5). The Lipofectamine 2000 reagent was diluted 

appropriately in the same medium, and the tubes were left to rest for 5 min. The DNA 

solution was added to the Lipofectamine solution drop by drop, and the solution was 
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mixed by gentle bubbling with the pipette. In order to form the DNA-lipid complexes, the 

tube was allowed to rest for 25 - 30 min at RT. Then what the complexes solution was 

directly added into the cell medium, drop by drop and with gentle rocking of the plate. The 

cells were further incubated at 37º C/5% CO2 for the indicated transfection time, prior to 

cell collection or fixation. 

 

Table 5 – HeLa cells transfection reagents.  

Culture Plates 

Medium 

w/o serum 

(plate) 

DNA (µg) 
Lipofectamine 

2000 (µL) 

Medium 

w/o serum 

(tube) 

100 mm plate  15 mL 8 50 1500 µL 

35 mm 6-wells  2.0 mL 2 10 250 µL 

 

 

 

3.2.8 Immunoprecipitation procedure 

 

After 24 hrs transfection, HeLa cells were washed once with PBS 1X and then collected 

with 1.2 mL of lysis buffer containing a protease inhibitor cocktail. Using a cell scrapper, 

cells were detached from the plate and collected in a microtube already on ice. The 

samples were sonicated for 10 seconds three times intercalating the samples in order not 

to over-heat them. After BCA protein quantification described previously, mass normalized 

lysates were precleared with 25 µl Protein A Sepharose beads (Pharmacia) for 1 hr at     

4º C with agitation. After centrifuging for 5 min at 10000 g at 4º C, the supernatant was 

transferred to a new microtube with 50 µl of Sepharose beads and the primary antibody 

(anti-PP1α or anti-PP1γ) was added and incubated overnight with shaking at 4º C.  

The mixture was then centrifuged for 1 min at 4º C at 10000 g and the pellet washed four 

times with 500 µl of washing solution, for 15 min with agitation at 4º C and then 

centrifugations were performed. After the last wash, the tubes were centrifuged for 10 min 

at 18000 g and 4º C, and the supernatant was fully discarded. The beads were then 

resuspended in 60 µl of fresh Loading Buffer/1% SDS; boiled for 10 min and frozen at       

-20º C. 
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Lysates were collected and the appropriate volume of 10% SDS was added in order to 

obtain a final concentration of 1% SDS. Afterwards, they were boiled for 10 min and 

frozen. 

Immunoprecipitates and lysates were electrophoreted through in a 10% SDS-PAGE gel 

and transferred to a nitrocellulose membrane that was incubated with anti-GFP antibody, 

or anti-PP1α, or anti PP1γ1 antibodies and developed by ECL, as previously described. 

Between the use of the different antibodies (anti-GFP in 1:1000 dilution, anti-PP1α in 

1:2500 dilution and anti-PP1γ1 in 1:5000 dilution) membrane stripping was performed. 

Briefly, the membrane was incubated for 30 min with stripping solution at 50º C and 75 

rpm, washed three times with TBST, for 15 min with agitation, and two times with water 

and left to air dry. 

 

 

3.2.9 Overlay blot assay 

 

The  pC9orf75-GFP  construct, was used for transfect HeLa cells and the corresponding  

lysates containing the fusion protein was separated on a SDS-PAGE gel and transferred 

to a nitrocellulose membrane. For this procedure 25, 50 and 100 µg of total protein 

extracts were loaded on a 10% polyacrilamide gel. The membrane was blocked with 

TBST/5% non-fat milk solution for 1 hr and then overlaid with purified PP1γ1 protein (1 

µg/mL) (Watanabe et al. 2003) in TBST/3% non-fat milk for 1hr. After washing three times 

with TBST, to remove excess protein, the bound PP1γ1 was detected by incubating the 

membrane with anti-PP1γ antibody (1:5000 dilution, in TBST/3% non-fat milk) for 1 hr. 

Immunoreactive bands appeared after incubating with horseradish peroxidase conjugated 

secondary antibody (1:5000 dilution, in 3% non-fat milk in TBST), for 1 hr, and developing 

with ECL. 

 

 

3.2.10 Protein assay 

 
Total protein measurements were carried out using Pierce’s BCA protein assay kit, 

following the manufacturer’s instructions. The method combines the reduction of Cu2+ to 

Cu+ by protein in an alkaline medium (the biuret reaction), with a sensitive colorimetric 

detection of the Cu+ cation using a reagent containing bicinchoninic acid (BCA). The 

purple-coloured reaction product of this assay is formed by the chelation of two molecules 
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of BCA with one Cu+ ion. This water-soluble complex exhibits a strong absorbance at 562 

nm that is linear with increasing protein concentration over a working range of 20 µg/mL to 

2000 µg/mL. At least duplicate microtubes per sample were prepared to be assayed with 

25 µL of each sample plus 25 µL of 1% SDS, or water in the case of immunoprecipitation 

procedures. Microtubes with standard protein concentrations were prepared as described 

below (Table 6).  

Table 6 – Standard curve used in the BCA protein assay method.  

Standard BSA (µµµµL) 10% SDS (µµµµL) H2O (µµµµL) 
Protein mass 

(µµµµg) 
W.R. (mL) 

P0 - 5 45 0 1 

P1 1 5 44 2 1 

P2 2 5 43 4 1 

P3 5 5 40 10 1 

P4 10 5 35 20 1 

P5 20 5 25 40 1 

P6 40 5 5 80 1 

 

The BSA stock solution used had a concentration of 2 mg/mL. The Working Reagent 

(WR) was prepared by mixing BCA reagent A with BCA reagent B in the proportion of 

50:1. Then, 1 mL of WR was rapidly added to each microtube (standards and samples) 

and the microtubes were incubated at 37 º C for exactly 30 min. Once the tubes cooled to 

RT the absorbance was measured at 562 nm.  A standard curve was obtained by plotting 

BSA standard absorbance vs BSA concentration, and used to determine the total protein 

concentration of each sample. 

 

 

3.2.11 Immunocytochemistry procedure 

 

HeLa cells were grown in 1 M HCl pre-treated glass coverslips pre-coated with 100 µg/mL 

poly-L-ornithine. HeLa cells were cultured until 80-90% confluence was reached and 



Characterization of Human Brain Protein Phosphatase 1α Interacting Proteins Using the Yeast Two Hybrid System 

 
 

   Mestrado em Microbiologia Molecular 2008 
Centro de Biologia Celular  - 63 - 

transfected as described above. Each well was washed three times with 1mL serum-free 

MEM medium and then 1 mL of 1:1 MEM/4% paraformaldehyde fixative solution was 

gently added and left to stand for 5 min. Subsequently, 1 mL of fixative solution was gently 

added and left for 30 min. Finally, cells were washed three times with 1mL 1X PBS for 10 

min, with gentle agitation. For permeabilized cells, 1 mL of methanol was added for 2 min 

and, afterwards, 5 washes with 1 mL 1X PBS for 10 min were performed. Blocking was 

carried out for 1 hr with PBS/3%BSA, and then 100 µL of primary antibody diluted 1:500 in 

PBS/3% BSA was added drop by drop onto the cover slip and incubated at RT for 2 hrs.  

After three washes with 1X PBS, the secondary antibody (1:300 dilution) was added using 

the same methodology and incubated for 2 hrs. Finally, three washes were performed and 

coverslips were mounted on microscope glass slides with 1 drop of anti-fading reagent 

containing DAPI for nucleic acid staining (Vectashield, Vector Laboratories). 

Epifluorescence microphotographies were acquired with an Olympus IX-81 inverted 

epifluorescence microscope, equipped with EGFP (Chroma 41020) and Texas Red 

(Chroma 41004) filter cubes for fluorophore microscopy visualization. 
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3.3 RESULTS 

 

 

3.3.1 Preliminary analysis of the positive clones 

 

In order to identify the library insert present in a given positive clone, the plasmid DNA 

was first isolated from yeast. Thus, a mixture of different plasmid DNAs can be isolated 

from a single yeast clone, namely the bait plasmid and one or more library plasmids, 

being that each yeast cell can incorporate more than one library plasmid. Hence, in order 

to obtain single plasmids and pure DNA for sequence analysis, the plasmid DNA isolated 

from yeast cells was used to transform E. coli XL1-Blue. The plasmid DNA obtained from 

the resulting transformants was further analysed by restriction digestion with the 

endonuclease HindIII. The restriction fragments were then separated by agarose gel 

electrophoresis. Figure 10 exemplifies a typical result obtained with this procedure:  

 

 

Figure 10 – HindIII restriction analysis of 

YTH plasmids. Lane M, 1Kb ladder DNA 

marker; Lane 1, pAS2-1 vector 

(4.6+2.2+0.9Kb); Lane 2, pASPP1α bait 

plasmid (4.6+2.2+1.7+0.9 Kb); Lane 3, 

pACT-2 vector (7.4+0.7Kb); Lanes 4,5 and 

6, pACT-2+library inserts [(7.4+(0.7+ 

insert)Kb]. 

 

The same strategy was adopted for each of the 298 positive clones. After identifying 

transformants carrying the cDNA library plasmids, their respective inserts were sequenced 

with the GAL4-AD primer (Appendix IV).  

The nucleotide sequence of each clone (Figure 11) was then converted to FASTA format 

(Figure 12). In this format, the signal “>”in the first line precedes the name or additional 

information on the sequence and the sequence itself starts on the second line. 
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Figure 11 – Partial nucleotide sequence obtained for  positive clone 282Q. 

 

 

>Clone 282 

CTGGATGGCCACAGCCCATCTCCCACCTCAGAGAGCAGCGAACCAGACTTAGAATCCCAGTATCC

AGGCTCAGGGAGTATTCCTCCAAACCAGCCCTCTGGTGACCCTCAGCAGCCCAGCCCTGACAGTA

CTGCTGCCCAGAAAGTTGCCACAAGTCCCAAGAGTGCCCTCAAGTCTCCATCTTCCAAGCGTAGG

ACATCTCAGAACTTAAAACTGAGAGTTACCTTTGAGGAGCCTGTGGGCAGATGGAGCAGCCTAGC

CTTGAACTGAATGGAGAAAAGACAAGATAAGGGCAGGACTCTCCAGCGGGACCTCCACAAGTAAC

GAATCGGGGGGATCAACTGAAAAGGCCTTTTGGAGCCTTTCGATCTATCATGGAA 

 

Figure 12 – Partial sequence of clone 282Q converted to FASTA format. 

 

The sequence in FASTA format was then copied to the BLAST window 

(www.ncbi.nlm.nih.gov/BLAST/) (Figure 13) to be compared with the GenBank Database 

of human nucleotide sequences.  

 

 

 
Figure 13 – Blast window where the query sequence for each positive was introduced. 
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The identity of the positive clones isolated was thus obtained. Figure 14 shows a 

representative example of the results obtained for clone 282Q. 

 

 

 

Figure 14 – Blast results for clone 282Q. Alignment with protein synphilin-1A. 

 

 

 

3.3.2 Yeast colony hybridization 

 

Yeast colony hybridization is an efficient mean to screen a large collection of library 

transformants for the presence of an abundant cDNA insert. Transformants carrying the 

same or overlapping library plasmid can be easily identified. For example, to identify 

putative positive spinophilin clones among the large number of transformants obtained, 

the insert of clone 268Q was release by EcoRI digestion and radiolabeled with 32P-ATP 

and hybridised to the full collection of yeast positive colonies arrayed onto nitrocellulose 

membranes. Figure 14 is an example of the results obtained with one of the filters 

hybridized. 

This approach allowed the rapid identification of some of the most abundant positives in a 

short period of time. This method was used not only for spinophilin but also for other 

abundant positives (e.g. Chr1orf 71 and Torsin A interacting protein).  
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Figure 14 – Identification of putative 

Spinophilin positives by colony hybridization. 

 

This technique can be very helpful and fast but the results obtained in this work were not 

always as accurate as expected. In practice, more careful in the arraying of the positives 

on the filters and avoiding excessive colony growth that leads to colony overlap signal 

loss, should improve significantly the results obtained in this powerful technique.  

 

 

3.3.3 Identification of the positive clones 

 

Of the 298 positives obtained all were recovered and definitively identified by partial DNA 

sequence analysis (Table 7). 

 

Table 7 – Complete list of positive clones – The human brain PP1α interactome. 

Clone ID 
No 

Clones 
PP1BM Chr Data Base ID YTH clone ID 

Chr1orf71 25 RVRF 1 NM_152609 

4T,5T,14T,35T,37T,56T, 

71T,109T,110aT,118T,126T, 

128T,132T,146T,201T,202T,205T, 

215T,263Q,269Q,270Q, 

274Q,278Q,284aQ,285Q 

Chr9orf75 45 KISF / RAIRW 9 NM_173691 

13T,40T,41T,43T,53T,65T,74T, 

84T,91T,100T,104T,105T,110bT, 

117bT,129T,139T,142T,148T,149T, 

150T,151T,154T,155aT,164T,169T,170T,

172T,180T,181T,186T,190T,199T,209T, 

221T,223T,228T,232T,235T,237aT, 

239T,265Q,267Q,272Q,292Q,298bQ 

NEK2A 2 KVHF 1 NM_002497 80T,155bT 

PPP1R2 1 - 3 NM_006241 99T 
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PPP1R3C 5 
KRVVF / KNVSF / 

RITF / KIEF 
10 NM_005398 2T, 8T,101T, 

183T,200T 

PPP1R3D 2 RVQF 6 XM_371796 275Q,290Q 

PPP1R3E 1 RVRF 14 XM_927029 130T 

PP1R9B / Spinophilin / 

NeurabinII 
15 RKIHF 17 NM_032595 

9T,63T,87T,94T, 

254T,255T,259Q,266Q, 

268Q,276Q,277Q,279Q, 

280Q,286Q,289Q 

PP1R13A / ASPP2 / 

TP53BP2 
17 RVKF 1 NM_005426 

3T,7T,23T,67T,113T, 

127T140T,156T,173T, 

226T,231T,240T,242T, 

251T,252T,256T,287Q 

PPP1R13B / ASPP1 5 RVRF 14 NM_015316 68T,106T,119T, 

123T,296Q 

PP1R13L 2 - 19 NM_006663 1T,47T 

PPP1R15B 3 KVTF 1 NM_032833 136T,229T,258T 

PPP1R16A 1 KQVLF 8 NM_032902 187T 

KIAA1949 4 KISF 6 BC_066644 6T,81T,124T,233T 

PHACTR3 2 RNIF 20 NM_080672 66T,70T 

RIF1 9 KIAF/ RVSF 2 NM_018151 25T,11T,116T,117aT, 

167T,175T,203T,204T,206T 

STAU 16 KVTF 20 NM_017453 
29T,34T,38T,44T,51T,120T, 

125T,145T,158T,159T,160T, 

174T,176T,197T,243T,245T 

WBP11 1 RKVGF 12 NM_016312 168T 

ZAP3 8 
KEVEF / RGRW / 

RAIGF 
14 NM_019589 10T,19T,20T,58T, 

78T,157T,166T,216T 

ZFYVE9 / SARA 3 RVWF / KVIRW 1 NM_004799 152T,247T,253T 

AATK 1 KAVSF 17 NM_001080395 297Q 

ANKRD15 2 - 9 NM_015158 189T,194T 

AXIN1 4 RVAF / RVEF 3 NM_033027 115T,198T,295Q,298aQ 

BTBD10 1 RHVDF 11 NM_032320 153T 

C1QA 16 - 1 NM_015991 
21T,22T,30T,60T,114T,121T, 

134T,135T,191T,193T,208T, 

213T,214T,218T,227T,241T 

CEP170 1 RILF 1 NM_014812 28T 

CLTC 1 - 17 NM_004859 217T 

CNTN1 2 - 12 NM_001843 85T,92T 

CLCN2 1 - 3 NM_004366 49T 

CKB 1 - 14 NM_001823 103T 

CNP1 1 KIFF 17 NM_033133 179T 

CRKII 1 - 17 NM_005206 250T, 270T 

CXXC1 1 - 18 NM_014593 46T 

CYCS 1 KGIIW 7 NM_018947 246T 

DEAF1 1 - 11 NM_021008 77T 

DCTN1 2 KIKF  /  KVTF 2 
NM_004082 

NM_023019 
138T,171T 

FRMPD4 1 KVRF / KVSF X NM_014728 26T 

GLTSCR2 1 - 19 NM_015710 95T 

IBTK 1 KVSF 6 NM_015525 42T 

IIP45 1 RVTF 1 NM_021933 89T 
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JPH3 1 - 16 NM_020655 55T 

KCTD20 3 RHVDF 6 NM_173562 143T,230T,238T 

LPIN2 1 - 18 NM_014646 108T 

MAP4K4 2 - 2 NM_004834 39T,210T 

NDP 2 - X NM_000266 15T,33T 

PHC1 2 - 12 NM_004426 131T,225T 

PRR16 2 RVRF 5 NM_016644 107T,211T 

PIAS1 1 - 15 NM_016166 73T 

PIAS3 1 - 1 NM_006099 122T 

PREX1 1 KVCF / KVIF 20 NM_020820 64T 

RANBP9 20 RMIHF 6 NM_005493 

11T,69T,79T,82T, 

86T,133T,162T,162T, 

163T,165T,178T,182T, 

207T,212T,224T,236T, 

237bT,244T,248T,249T 

SH3RF2 4 KTVRF 5 NM_152550 141T,144T,177T,264Q 

SLC45A1 1 RNVTF 1 NM_001080397 219T 

SPRED1 1 RHVSF 15 NM_152594 24T 

SNCAIP-1A 6 RVTF 5 DQ_227317 27T,90T,222T, 

281Q,282Q,288Q 

MAL2 1 - 8 NM_052886 112T 

TOR1AIP1 14 
REVRF/ KVNF/ 

KVKF 
1 NM_015602 

12T,31T,36T,45T,50T, 

61T,76T,96T,184T,192T, 

261Q,262Q,271Q,273Q 

UBE2Z 1 - 17 NM_023079 17T 

ULK1 1 - 12 NM_003565 220T 

MAFG 1 - 17 NM_002359 137T 

ZBTB11 1 - 3 NM_014415 52T 

Chr11orf32 1 - 11 BC_040643 185T 

FLJ35856 1 - 12 AK_093175 257T 

KIAA0460 1 RVGW 1 NM_015203 93T 

KIAA1377 9 KLRW 11 NM_020802 59T,75T,97T,102T,260Q, 

188T,195T,196T,284bQ 

LOC648791 1 - 6 XR_018474 291Q 

ZNF827 1 - 4 NM_178835 32T 

C-2190G12 1 - 14 AL_139194 16T 

C2genomic 1 - 2 NW_001838769 54T 

C2genomic 1 - 2 NW_001838818 62T 

C2genomic 1 - 2 NW_001838863 283Q 

C3genomic 1 - 3 NW_001838877 18T 

C4genomic 1 - 4 NW_001838915 48T 

C17genomic 3 - 17 NW_001838448 72T,293Q,294Q 

16S ribosomal RNA 1 - Mit AM_263191.1 88T 

IDH2 1 - 15 NM_002168 57T 

The occurrence of a consensus PP1 binding motif (PP1 BM) is indicated by the corresponding 

sequence. Letters a and b corresponde to two different prey plasmids extracted from the same 

positive clone. 
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The identified positive clones, corresponding to a total of 76 proteins, were divided in five 

groups: proteins already known to interact with PP1 (blue); proteins known in other 

contexts (green); proteins of unknown function present in the database (purple); clones 

present in the database only at the genomic level (yellow) and mitochondrial proteins 

(orange). Inasmuch as several positives corresponded to independent hits on the same 

protein, the human brain PP1α interactome thus defined comprised 74 different proteins, 

two were considered potential false positives. 

All clones were subject to the same analysis: they were partially sequenced, the full length 

sequence present in the database was searched for special features of the amino acid 

sequence using motif search databases and specially for a consensus PP1 binding motif 

([RK]-x0-1-[VI]-{P}[FW]). The number of clones for each identified binding protein varied 

considerably, from 1 clone to 45 clones, and every group type includes positives 

recovered from high and low stringency selection media. 

 

3.3.3.1 Proteins matching known PP1 interactors 

 

In this YTH screen, of the 298 clones identified, 167 (56%) could be assigned to 

previously known PP1 interactors (Table 7, blue), among these there are some well 

established PP1 regulators, such as NEK2A, Spinophilin and ASPP1 (PPP1R13B). This 

group of positives includes also various proteins identified as PP1 interactors, but the 

means by which they regulate PP1 are not yet completely or even at all described. That is 

the case of Chr9orf75, Chr1orf71 and SARA (ZFYVE9). Chr9orf75 and SARA will be 

further discussed below.  

Interestingly, the two most abundant interactors detected in this screen were Chr9orf75, 

with a total of 45 and Chr1orf71, with 25 positives; proteins identified only as mRNAs in 

the GenBank database. 

 

3.3.3.2  Proteins matching other known proteins 

 

With this screen, 41 proteins never before related to PP1 were identified as potential 

PP1α regulators encoded by 108 of the positive clones. This corresponds to 36% of the 

total positives.  RAN binding protein 9 (RANBP9) was the most abundant positive with a 

total of 20 clones identified, Complement component 1, q subcomponent, A chain (C1QA) 

and torsin A interacting protein 1 (TOR1AIP1) were other two abundant positives, with 16 
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and 14 clones, respectively. Two interesting proteins were analysed more toughly and are 

discussed below, they are dynactin-1 (DCTN1) and synphilin-1A (SNCAIP). 

 

3.3.3.3 Unknown proteins 

 

In various cases database searching yielded homologies with sequences annotated in the 

Genbank database as ORFs encoding proteins of unknown function (Table 7, purple). 

This was the case for 14 positives (approximately 5%) encoding 6 proteins. The most 

abundant with in this group was KIAA1377 that was encoded by 9 of the isolated 

positives. 

 

3.3.3.4 Genomic clones 

 

Table 7 (yellow) also lists several positives that only allowed significant homology to 

human genomic clones. While it can not be excluded that these may represent hitherto 

unknown genes encoding novel proteins, further work would be necessary to confirm this. 

In this category fit 9 (approximately 3%) of the independent positives isolated, 

corresponding to homologies to human chromosomes 2, 3, 4, 14 and 17. 

  

3.3.3.5 Mitochondrial clones 

 

Two clones, 88T and 57T, were identified using the GenBank database as 16S ribosomal 

RNA and mitochondrial isocitrate dehydrogenase 2 (IDH2). Isocitrate dehydrogenases 

catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate, is found in the 

mitochondria and plays a role in intermediary metabolism and energy production. This 

protein may tightly associate or interact with the pyruvate dehydrogenase complex. 

Although IDH2 is a nuclear-encoded mitochondrial protein, the interaction with PP1α is 

unlikely to occur in a physiologically relevant context, because the partners are not 

expressed in the same subcellular environment. Mitochondrial clones, including 16S 

rRNA, have previously been described as common false positives in YTH screens 

(Serebriiskii et al. 2001a; Serebriiskii et al. 2001b). The emergence of only two false 

positives can be considered a very good outcome of this screen, in what concerns the 

reliability of the results and considering the high number of clones screened and identified. 
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3.3.4 Functional analysis of the human brain PP1α interactome 

 

In the present work, 74 different human brain proteins were identified by the YTH 

technique that bind and regulate PP1α. The functional distribution of the identified proteins 

is shown in Figure 15. The potential false positive clones (Table 3, in orange) were left out 

of this analysis. The unidentified proteins encoded by the genomic clones (7; Table 7, in 

yellow) plus 6 proteins (Table 3, in purple) have unknown function. Clones matching 

proteins of unknown function correspond to 25% of the total proteins identified. For the 

remainder 75%, the most abundant group corresponds to proteins involved in cell 

signalling processes (18%) followed by proteins involved in splicing and transcription 

(11%), and proteins involved in apoptosis (8%). Known PP1 regulators make up 8% of the 

proteins identified. Other protein functions include components of the cytoskeleton, 

cellular transport, metabolism and energy and cell cycle. 
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Figure 15 – Functional distribution of the human brain PP1α binding proteins identified by the 

Yeast Two-Hybrid method. 

 

 

 

3.3.5 Proteins selected for further study 

 

Four interacting proteins were selected for further confirmation of their interaction with 

PPα. This selection had in consideration several factors, including that all four proteins 
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have at least one canonical PP1 binding motif and two were already reported to be PP1 

interactors. 

The four proteins selected were Chr9orf75, Synphilin-1A, SARA and dynactin-1. 

Chr9orf75 was the most abundant positive in the YTH screen and was reported as a PP1 

interactor, while this work was in progress, although no further information exists 

regarding protein function. Synphilin-1A (Synuclein alpha interacting protein – 1A), an 

alternative splice variant of synphilin-1, interacts with α-synuclein in neuronal tissue and is 

an aggregation-prone protein that causes neuronal toxicity and is involved in 

neurodegenerative disorders. SARA (Smad Anchor for Receptor Activation), is an 

anchoring protein, which recruits Smad2 and Smad3 to the vicinity of the TGF-β receptor, 

being an essential component of Smad-dependent signalling through TGF-β.  SARA was 

previously described as a PP1 interacting protein, nevertheless the means by which that 

interaction occurs is not yet known. Finally, dynactin-1 is a dynein activator that binds to 

both dynein and microtubules. The dynein/dynactin complex is essential for a diversity of 

cellular trafficking events and was related to human neurodegenerative diseases. 

In order to verify the interactions between the four proteins described above (Chr9orf75, 

synphilin-1A, SARA and dynactin) and PP1α, but also to test if they could interact with 

PP1 isoforms γ1 and γ2, a yeast co-transformation assay was performed. Clones 

corresponding to the mentioned proteins (as prey; in the pACT-1 vector) and the three 

PP1 isoforms (as bait; in the pAS2-1 vector) were co-transformed in yeast strain AH109 

and tested in SD/QDO/X-α-gal medium. Additionally, the same clones were co-

transformed with the vector pAS2-1 alone to see if they alone would be capable of 

initiating transcription, in the absence of PP1α. That was not the case for any of them, as 

none was able to grow in SD/QDO and turn blue in the presence of X-α-gal (data not 

shown). 
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3.3.5.1 Synphilin-1A (Synuclein alpha interacting protein – 1A – SNCAIP-1A) 

 

In this YTH screen six positive clones were identified as synphilin-1, by partial sequencing 

(Table 8). Further sequencing of the C-terminus, using the reverse primer 3`-Amplimer 

(Appendix IV), revealed that they correspond to the novel isoform synphilin-1A 

(DQ227317) (Figure 16).   

 

Table 8 - Independent synphilin-1A clones isolated in the YTH screen. 

First Nucleotide (DQ_227317) Positive clones 

946  (in frame) 90T 

1381  (in frame) 27T, 222T, 281T, 282T, 288Q 

 

The first gene linked to Parkinson’s disease encodes α-synuclein, a presynaptic protein 

(Maroteaux et al. 1988), so far with unknown physiological functions. Three missense 

mutations in α-synuclein and gene locus triplication have been found to cause autosomal 

dominant Parkinson’s disease (Polymeropoulos et al. 1997; Kruger et al. 1998; Singleton 

et al. 2003; Zarranz et al. 2004). α-Synuclein was also identified as a major constituent of 

Lewy bodies in sporadic Parkinson’s disease patients (Spillantini et al. 1997) and also in 

inclusions characteristic of other neurodegenerative disorders, such as Diffuse Lewy Body 

disease (Takeda et al. 1998).  

Synphilin contains several protein-protein interaction domains, including ankyrin-like 

repeats, a coiled-coil domain, an ATP/GTP-binding motif, and interacts with α-synuclein in 

neuronal tissue and may play a role in the formation of cytoplasmic inclusions and 

neurodegeneration. Mutations in this gene have been associated with Parkinson's 

disease.  Synphilin-1A is an alternative splice variant of synphilin-1 that lacks exons 3 and 

4 and contains a previously unidentified exon 9A of the SNCAIP gene (Figure 17A). 

However, the transcripts of synphilin-1A and synphilin-1 differ not only by their exon 

content but also by their start codon and initial reading frame. Synphilin-1A lacks exons 3 

and 4 found in synphilin-1, and displays an extra exon between exons 9 and 10. 

Interestingly, the translation of synphilin-1A occurs in a different initial reading frame than 

that of synphilin-1. Nevertheless, the merge of exon 2 with 5 results in a frame shift 

leading to an identical reading frame for both synphilin-1A and synphilin-1 after exon 2. As 

a result, synphilin-1A amino acid sequence differs from synphilin-1 at the N-terminus but 

is the same between exons 5 and 9. Moreover, synphilin-1A has an additional 51 amino 

acid stretch at the C-terminus because of exon 9A insertion (Figure 17B). 
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cgcccgcggccgggccgcattgtgacgtagcggggccgcggcagcgcctccaccgcccgc 

ctacttcggctgaggctgttctgctcctgccgctgcggtccgtcggtcggtcagtcagtc 

ccttcgcgctcctgagccgccggcgcgccgggcgccccgggaatttataagtatttgacc 

gtactcaaaatgtgcaaggaagaataatggaagcccctgaataccttgatttggatgaaa 

ttgactttagtgatgacatatcttattcagtcacatcactcaagacgatcccagaactgt 

             M  T  Y  L  I  Q  S  H  H  S  R  R  S  Q  N  C 

gccgaagatgtgatacgcaaaacgaagacagatcagaatggtcagttggagtgcgtacgc 

 A  E  D  V  I  R  K  T  K  T  D  Q  N  G  Q  L  E  C  V  R 

tggatggtgagcgaaacagaagccattgcagaactgagttgttctaaggattttccaagc 

 W  M  V  S  E  T  E  A  I  A  E  L  S  C  S  K  D  F  P  S 

cttattcattacgcaggttgctatggccaggaaaagattcttctgtggcttcttcagttt 

 L  I  H  Y  A  G  C  Y  G  Q  E  K  I  L  L  W  L  L  Q  F 

atgcaagaacagggcatctcgttggatgaagtagaccaggatggcaacagtgccgttcac 

 M  Q  E  Q  G  I  S  L  D  E  V  D  Q  D  G  N  S  A  V  H 

gtagcctcacagcatggctaccttggatgcatacagaccttggttgaatatggagcaaat 

 V  A  S  Q  H  G  Y  L  G  C  I  Q  T  L  V  E  Y  G  A  N 

gtcaccatgcagaaccacgctggggaaaagccctcccagagcgccgagcggcaggggcac 

 V  T  M  Q  N  H  A  G  E  K  P  S  Q  S  A  E  R  Q  G  H 

accctgtgctccaggtacctggtggtggtggagacctgcatgtcgctggcctctcaagtg 

 T  L  C  S  R  Y  L  V  V  V  E  T  C  M  S  L  A  S  Q  V  

gtgaagttaaccaagcagctaaaggaacaaacagtagaacgtgtcacgctgcagaaccaa 

 V  K  L  T  K  Q  L  K  E  Q  T  V  E  R  V  T  L  Q  N  Q 

ctccaacaatttctagaagcccagaaatcagagggcaagtcactcccttcttcacccagt 

 L  Q  Q  F  L  E  A  Q  K  S  E  G  K  S  L  P  S  S  P  S 

tcaccatcctcacctgcctccagaaagtcccagtggaaatctccagatgcagatgatgat 

 S  P  S  S  P  A  S  R  K  S  Q  W  K  S  P  D  A  D  D  D 

tctgtagccaaaagcaagccaggagtccaagaggggattcaggttcttggaagcctgtca 

 S  V  A  K  S  K  P  G  V  Q  E  G  I  Q  V  L  G  S  L  S 

gcctccagccgggctagacccaaagcaaaagatgaagattctgataaaatcttacgccag 

 A  S  S  R  A  R  P  K  A  K  D  E  D  S  D  K  I  L  R  Q 

ttattgggaaaggaaatctcagaaaatgtctgcacccaggaaaaactgtccttggaattc 

 L  L  G  K  E  I  S  E  N  V  C  T  Q  E  K  L  S  L  E  F 

caggatgctcaggcttcctctagaaattctaaaaagatcccactggagaagagggaactg 

 Q  D  A  Q  A  S  S  R  N  S  K  K  I  P  L  E  K  R  E  L 

aagttagccaggctgagacagctgatgcagaggtcactgagtgagtctgacacagactcc 

 K  L  A  R  L  R  Q  L  M  Q  R  S  L  S  E  S  D  T  D  S 

aacaactctgaggaccccaagactaccccagtgaggaaggctgaccgaccaaggccgcag 

 N  N  S  E  D  P  K  T  T  P  V  R  K  A  D  R  P  R  P  Q 

cccattgtagaaagcgtagagagtatggacagcgcagaaagcctgcacctgatgattaag 

 P  I  V  E  S  V  E  S  M  D  S  A  E  S  L  H  L  M  I  K 

aaacacaccttggcatcagggggacgcaggtttcctttcagcatcaaggcctccaaatcc 

 K  H  T  L  A  S  G  G  R  R  F  P  F  S  I  K  A  S  K  S 

ctggatggccacagcccatctcccacctcagagagcagcgaaccagacttagaatcccag 

 L  D  G  H  S  P  S  P  T  S  E  S  S  E  P  D  L  E  S  Q 

tatccaggctcagggagtattcctccaaaccagccctctggtgaccctcagcagcccagc 

 Y  P  G  S  G  S  I  P  P  N  Q  P  S  G  D  P  Q  Q  P  S 

cctgacagtactgctgcccagaaagttgccacaagtcccaagagtgccctcaagtctcca 

 P  D  S  T  A  A  Q  K  V  A  T  S  P  K  S  A  L  K  S  P  

tcttccaagcgtaggacatctcagaacttaaaactgagagttacctttgaggagcctgtg 

 S  S  K  R  R  T  S  Q  N  L  K  L  R  V  T  F  E  E  P  V 

gtgcagatggagcagcctagccttgaactgaatggagaaaaagacaaagataagggcagg 

 V  Q  M  E  Q  P  S  L  E  L  N  G  E  K  D  K  D  K  G  R 

actctccagcggacctccacaagtaacgaatcgggggatcaactgaaaaggccttttgga 

 T  L  Q  R  T  S  T  S  N  E  S  G  D  Q  L  K  R  P  F  G 

gcctttcgatctatcatggagacactaagtggcaaccaaaacaataataataactaccag 

 A  F  R  S  I  M  E  T  L  S  G  N  Q  N  N  N  N  N  Y  Q 

gcagccaaccagctgaaaacctctacattgcccttgacctcacttgggaggaagacagat 

 A  A  N  Q  L  K  T  S  T  L  P  L  T  S  L  G  R  K  T  D 

gccaagggaaaccctgccagctccgctagcaaaggaaagaataaggcagaaatgtacagc 

 A  K  G  N  P  A  S  S  A  S  K  G  K  N  K  A  E  M  Y  S 

agctgcatcaatctttcctctaacatgctgattgaagagcatctgtgtaacgacacacgg 

 S  C  I  N  L  S  S  N  M  L  I  E  E  H  L  C  N  D  T  R 

cataatgacatcaatagaaaaatgaagaaatcctacagcataaagcacattgctgagcca 

 H  N  D  I  N  R  K  M  K  K  S  Y  S  I  K  H  I  A  E  P 

gagtcaaaagaactcttcttgtaaatcactttttaaattttctctcactgatgccctttg 

 E  S  K  E  L  F  L 

gaaattattggaaatttctggactatcctctttggaaagagaaccatgaaaacaatgcct 

caccagcagaagaacagaatatcaggatgccttaaatttatagtagtagactgtaaaaga 

ttcattttggggtgatatctgtatatataacttgtttttttaaaagatgccgtttaaaag 

catgattgggaaaatgtacgttttttaagagtagattgattcaccctacccacaggacat 

tcaccaagccactgataccattttatatttcatcaattgcatgagtatttgctaatgttg 

attgaacctccctttccccataatgtgggcagatttggctcagctccttcatgagatcag 

gtcagtggtattgtttctgtcaagagtgttttttctgtcatttctactttttgtataaag 

gaaataaaacaatgttaacagccaaaaaaaaaaaaaaaaaaaaa 

Figure 16 – Nucleotide and 

corresponding amino acid sequence 

of synphilin-1A (DQ_227317). PP1 

binding motifs are highlighted in blue 

color (positions 449-452 in a.a. 

sequence). The first nucleotides of 

the positive clones are highlighted in 

red color.  

 

 

Synphilin-1A, a novel synphilin isoform, is an aggregation-prone protein that causes 

neuronal toxicity. The presence of synphilin-1A was demonstrated in Lewy bodies and in 

the insoluble fraction of protein samples obtained from the brains of Diffuse Lewy Body 
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Disease patients (Eyal et al. 2006). Synphilin-1A also binds to α-synuclein, but displays a 

much higher tendency to aggregate compared to synphilin-1. It spontaneously aggregates 

in human dopaminergic cells, recruiting a-synuclein into intracellular inclusions (Eyal and 

Engelender 2006).The findings suggest an important role for synphilin-1A in inclusion-

body formation and its possible involvement in the pathogenesis of Parkinson’s disease. 

 

A

 

 

B 

Figure 17 – Synphilin-1 and synphilin-1A differ in their exon organization and are translated from 

different start codons. (A) Exon organization of the SNCAIP gene, demonstrating the position of 

the previously unidentified exon 9A. (B) Exon organization of synphilin-1A and synphilin-1, with 

the different start codons used for translation. The synphilin-1 transcript via start codon 1 results 

in the generation of a 919-aa protein (gray shading). The synphilin-1A transcript via start codon 2 

results in a different initial amino acid sequence (horizontal stripes), which, distal to the exons 2 

and 5 splice junction, is identical to that of synphilin-1 (gray shading). The 51 amino acids present 

in the C-terminus of synphilin-1A are encoded by exons 9A and 10 (dots), (adapted from Eyal et 

al. 2006). 

 

Synphilin-1, whose function is currently unknown, was initially identified as an α-synuclein-

interacting protein. In normal or physiological conditions, synphilin-1 is predominantly 

expressed in neurons, located in the cytoplasm and presynaptic nerve terminals, and 

associated with synaptic vesicles (Engelender et al. 1999; Ribeiro et al. 2002). However, 

in several neurodegenerative disorders called α-synucleinopathies, such as Parkinson’s 

disease, dementia with Lewy bodies, and multiple system atrophy, synphilin-1 is mainly 

localized in neuronal and glial cytoplasmic inclusions (Wakabayashi et al. 2000; 

Wakabayashi et al. 2002), in which α-synuclein (Spillantini et al. 1997; Wakabayashi et al. 

1997), ubiquitin (Takahashi and Wakabayashi 2001), and the proteasome (Iwatsubo et al. 

1996; Ito et al. 2003) are also present. 
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It was recently found that synphilin-1 is ubiquitylated by the E3 ubiquitin ligase SIAH (Liani 

et al. 2004), which is also present in Lewy bodies of Parkinson’s disease patients. When 

synphilin-1 and SIAH-1 ubiquitin ligase are coexpressed in cells and proteasomal function 

is inhibited, ubiquitylated synphilin-1 inclusions are found in the vast majority of cells (Liani 

et al. 2004) and this process is modulated by GSK3β phosphorylation of synphilin-1 

(Avraham et al. 2005). Two findings further highlight the importance of synphilin-1 in the 

study of Parkinson’s disease. First, synphilin-1 is present in Lewy bodies of Parkinson’s 

disease patients, as well as in inclusion bodies characteristic of other α-synucleinopathies 

(Wakabayashi et al. 2003). Second, two sporadic Parkinson’s disease patients were found 

to carry a missense mutation, R621C, in the gene encoding synphilin-1 (Marx et al. 2003). 

Furthermore, synphilin-1 is a substrate of parkin (Chung et al. 2001) and it is thought to 

link the ubiquitin proteasome system with synaptic function. Synphilin-1 seems to play an 

important role in the formation of Lewy Bodies since coexpression of α-synuclein, 

synphilin-1 and parkin results in the formation of cytoplasmic inclusions which resemble 

Lewy Bodies (Engelender et al. 1999; Chung et al. 2001). 

The identity of the individual molecules that may affect α-synuclein aggregation, the 

molecular etiology of Lewy Body formation, and the resulting impact on neuronal survival 

are still obscure. However, the evidence that the co-expression of α-synuclein and 

synphilin-1 leads to Lewy Body-like inclusion body formation in cultured cells may suggest 

that the functional interaction between these factors is crucial for this process (Engelender 

et al. 1999). Therefore, it is reasonable to predict that the identification of factors that 

regulate the physical and functional interactions between α-synuclein and synphilin-1 will 

help to uncover the molecular etiology of Lewy Body formation and Parkinson’s Disease 

pathogenesis. Casein kinase II (CKII) has been recently reported as a potent kinase that 

phosphorylates both α-synuclein and synphilin-1 and regulates the binding between these 

two proteins (Okochi et al. 2000; Lee et al. 2004). Significantly, the CKII inhibitor, 5,6-

dichrolo-1-β-D-ribofuranosylbenzimidazole, abolishes this interaction and reduces 

inclusion body formation in cell cultures (Figure18). 

Synphilin-1 and synphilin-1A, provide a new model regarding the role of ubiquitylation and 

inclusion body formation in Parkinson`s disease (Figure 18). Synphilin-1A has similar 

phosphorylation sites as synphilin-1 and it is possible that synphilin-1A aggregation is also 

controlled by phosphorylation (Eyal and Engelender 2006; Eyal et al. 2006). Marked 

neurotoxicity was observed with synphilin-1A but not with synphilin-1, indicating that 

synphilin-1A is directly involved in cell death. The attenuation of synphilin-1A toxicity by 

the formation of intracellular inclusions should shed some light on the controversial role of 
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inclusion bodies in neurodegenerative disorders. To date, it is still debatable whether 

inclusion bodies promote or inhibit neuronal toxicity. These findings could suggest a 

cytoprotective role for inclusion bodies (Eyal and Engelender 2006; Eyal et al. 2006). 

 

 

Figure 18 –Schematic representation of synphilin inclusion body formation and the contribution 

of the ubiquitin proteasome system. Ubiquitylation of synphilin-1 by SIAH is essential for its 

accumulation into inclusions upon proteasome inhibition. Parkin also mediates synphilin-1 

ubiquitylation, but it is less efficient than SIAH (Lim et al. 2005). Synphilin-1 inclusions further 

resemble Lewy bodies since they are able to recruit a-synuclein and parkin. Phosphorylation of 

synphilin-1 by GSK3β and CK II was shown to modulate the formation of synphilin inclusions, 

suggesting that phosphorylation of critical proteins, in concert with ubiquitylation, might play a 

role in Lewy body formation. The new synphilin-1 isoform, synphilin-1A, promotes striking 

neuronal toxicity and death, and spontaneously aggregates in dopaminergic cells and neurons. 

Upon addition of proteasome inhibitors, synphilin-1A accumulates into more organized inclusions 

within neurons leading to a marked decrease of its toxicity, and recruiting synphilin-1 and α-

synuclein. It is still unknown whether synphilin-1A requires ubiquitylation for inclusion formation 

or if it is also a target for Siah-1 and parkin. Since proteasomal dysfunction has been implicated 

in the pathogenesis of Parkinson`s disease, accumulation of synphilin proteins into inclusions 

might work as core for Lewy body formation. (Eyal and Engelender 2006) 
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The interaction of all clones with PP1α was corroborated and all interacted also with the 

others two PP1 isoforms (Figure 19).  Light blue colonies also represent positive 

interactions, but took longer to turn blue in the presence of X-α-GAL. Synphilin-1A has a 

PP1 BM (RVTF) predicted by bioinformatic analysis of its sequence that is present in all 

the synphilin-1A positives isolated. 

 

 

Figure 19 – Analysis of the interaction of the 

different positive clones encoding synphilin-1A 

with various PP1 isoforms: α, γ1 and γ2. The 

interaction was tested in SD/QDO/x-α-gal 

medium. Plus and minus represent the 

positive and negative controls, respectively. 
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3.3.5.2 Smad Anchor for Receptor Activation (SARA / ZFYVE9)  

  

Three alternatively spliced transcripts encoding distinct isoforms have been found for this 

gene (ZFYVE9, zinc finger, FYVE domain containing 9) and the three positive clones 

found in this screen (Table 9) encode isoform 3 of SARA (Figure 20), the longest isoform 

(NM_004799). 

 

Table 9 – Independent SARA clones isolated in the YTH screen. 

First Nucleotide (NM_004799) Positive clones 

867  (out of frame) 152T 

998  (out of frame) 253T 

2408  (in frame) 247T 

 

This gene encodes a double zinc finger (FYVE domain) protein (Figure 20) that interacts 

directly with Smad2 and Smad3, which may be involved in Alzheimer's disease (Lee et al. 

2006; Ueberham et al. 2006). Smad proteins transmit signals from transmembrane 

Ser/Thr kinase receptors to the nucleus. The FYVE domains have been identified in a 

number of unrelated signalling molecules and are zinc-containing modules of 60–80 

amino acid residues (Burd and Emr 1998; Patki et al. 1998; Lawe et al. 2000; Gillooly et 

al. 2001; Stenmark et al. 2002).  

Transforming growth factor (TGF)-β is a ubiquitously expressed cytokine that has different 

roles, affecting cellular processes including proliferation, differentiation, apoptosis, fibrosis 

and tumorigenesis (Roberts 1990). TGF-β signalling is initiated when ligand-bound TGF-β 

type II receptor, with a constitutively active kinase, binds to and phosphorylates TGF-β 

type I receptor (Piek et al. 1999; Attisano and Wrana 2000; Wrana 2000; Shi and 

Massague 2003). This phosphorylation, in the type I receptor cytoplasmic GS region, 

leads to its activation and its ability to activate the receptor-regulated Smads (R-Smads), 

Smad2 and Smad3, by C-terminal serine phosphorylation, which then translocate to the 

nucleus and regulates gene expression (Massague 1998; Massague and Chen 2000; 

Massague and Wotton 2000; Wrana 2000; Attisano and Wrana 2002). Once 

phosphorylated, R-Smads associate with Smad4 (Lagna et al. 1996; Zhang et al. 1997), 

and mediate nuclear translocation of the heteromeric complex. In the nucleus, Smad 

complexes then activate specific genes through cooperative interactions with DNA and 

other DNA-binding proteins such as FAST1, FAST2, and Fos/Jun (Chen et al. 1996; Liu et 

al. 1997; Labbe et al. 1998; Zhang et al. 1998; Zhou et al. 1998).  
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a 

tgctgaagcggaggcggccgctgctcgaggatcaaacagagcatactgaatcagcaggac 

tggctggtggtgcagcagacatcatgagtaagcaccgagaagtctgttccttatcacgtg 

tgtaaggggaaaaaggtttaaacaagtctcttaagtggtgtttcctcaccgatggagaat 

                                                    M  E  N   

tacttccaagcagaagcttacaacctggacaaggtgttagatgaatttgaacaaaacgaa 

 Y  F  Q  A  E  A  Y  N  L  D  K  V  L  D  E  F  E  Q  N  E   

gatgaaacagtttcttctactttattggatacaaagtggaataagattctagatccccct 

 D  E  T  V  S  S  T  L  L  D  T  K  W  N  K  I  L  D  P  P  

tctcaccggctgtcatttaaccctactttggccagtgtgaatgaatctgcagtttctaat 

 S  H  R  L  S  F  N  P  T  L  A  S  V  N  E  S  A  V  S  N   

gagtcacaaccacaactgaaagtcttctccctggctcattcagctcccctgaccacagag 

 E  S  Q  P  Q  L  K  V  F  S  L  A  H  S  A  P  L  T  T  E   

gaagaggatcactgtgctaatggacaggactgtaatctaaatccagagattgccacaatg 

 E  E  D  H  C  A  N  G  Q  D  C  N  L  N  P  E  I  A  T  M 

tggattgatgaaaatgctgttgcagaagaccagttaattaagagaaactatagttgggat 

 W  I  D  E  N  A  V  A  E  D  Q  L  I  K  R  N  Y  S  W  D   

gatcaatgcagtgctgttgaagtgggagagaagaaatgtggaaacctggcttgtctgcca 

 D  Q  C  S  A  V  E  V  G  E  K  K  C  G  N  L  A  C  L  P   

gatgagaagaatgttcttgttgtagccgtcatgcataactgtgataaaaggacattacaa 

 D  E  K  N  V  L  V  V  A  V  M  H  N  C  D  K  R  T  L  Q   

aacgatttacaggattgtaataattataatagtcaatcccttatggatgcttttagctgt 

 N  D  L  Q  D  C  N  N  Y  N  S  Q  S  L  M  D  A  F  S  C   

tcactggataatgaaaacagacaaactgatcaatttagttttagtataaatgagtccact 

 S  L  D  N  E  N  R  Q  T  D  Q  F  S  F  S  I  N  E  S  T   

gaaaaagatatgaattcagagaaacaaatggatccattgaatagaccgaaaacagagggg 

 E  K  D  M  N  S  E  K  Q  M  D  P  L  N  R  P  K  T  E  G   

agatctgttaaccatctgtgtcctacttcatctgatagtctagccagtgtctgttcccct 

 R  S  V  N  H  L  C  P  T  S  S  D  S  L  A  S  V  C  S  P   

tcacaattaaaggatgacggaagtataggtagagacccctccatgtctgcgattacaagt 

 S  Q  L  K  D  D  G  S  I  G  R  D  P  S  M  S  A  I  T  S   

ttaacggttgattcagtaatctcatcccagggaacagatggatgtcctgctgttaaaaag 

 L  T  V  D  S  V  I  S  S  Q  G  T  D  G  C  P  A  V  K  K   

caagagaactatataccagatgaggacctcactggcaaaatcagctctcctaggacagat 

 Q  E  N  Y  I  P  D  E  D  L  T  G  K  I  S  S  P  R  T  D   

ctagggagtccaaattccttttcccacatgagtgaggggattttgatgaaaaaagagcca 

 L  G  S  P  N  S  F  S  H  M  S  E  G  I  L  M  K  K  E  P   

gcagaggagagcaccactgaagaatccctccggtctggtttacctttgcttctcaaacca 

 A  E  E  S  T  T  E  E  S  L  R  S  G  L  P  L  L  L  K  P   

gacatgcctaatgggtctggaaggaataatgactgtgaacggtgttcagattgccttgtg 

 D  M  P  N  G  S  G  R  N  N  D  C  E  R  C  S  D  C  L  V  

cctaatgaagttagggctgatgaaaatgaaggttatgaacatgaagaaactcttggcact 

 P  N  E  V  R  A  D  E  N  E  G  Y  E  H  E  E  T  L  G  T  

acagaattccttaatatgacagagcatttctctgaatctcaggacatgactaattggaag 

 T  E  F  L  N  M  T  E  H  F  S  E  S  Q  D  M  T  N  W  K  

ttgactaaactaaatgagatgaatgatagccaagtaaacgaagaaaaggaaaagtttcta 

 L  T  K  L  N  E  M  N  D  S  Q  V  N  E  E  K  E  K  F  L   

cagattagtcagcctgaggacactaatggtgatagtggaggacagtgtgttggattggca 

 Q  I  S  Q  P  E  D  T  N  G  D  S  G  G  Q  C  V  G  L  A 

gatgcaggtctagatttaaaaggaacttgcattagtgaaagtgaagaatgtgatttctcc 

 D  A  G  L  D  L  K  G  T  C  I  S  E  S  E  E  C  D  F  S   

actgttatagacacaccagcagcaaattatctatctaatggttgtgattcctatggaatg 

 T  V  I  D  T  P  A  A  N  Y  L  S  N  G  C  D  S  Y  G M  

caagacccaggtgtttcttttgttccaaagactttaccctccaaagaagattcagtaaca 

 Q  D  P  G  V  S  F  V  P  K  T  L  P  S  K  E  D  S  V  T   

gaagaaaaagaaatagaggaaagcaagtcagaatgctactcaaatatttatgaacagaga 

 E  E  K  E  I  E  E  S  K  S  E  C  Y  S  N  I  Y  E  Q  R   

ggaaatgaggccacagaagggagtggactacttttaaacagcactggtgacctaatgaag 

 G  N  E  A  T  E  G  S  G  L  L  L  N  S  T  G  D  L  M  K   

aaaaattatttacataatttctgtagtcaagttccatcagtgcttgggcaatcttccccc 

 K  N  Y  L  H  N  F  C  S  Q  V  P  S  V  L  G  Q  S  S  P  

aaggtagtagcaagcctgccatctatcagtgttccttttggtggtgcaagacccaagcaa 

 K  V  V  A  S  L  P  S  I  S  V  P  F  G  G  A  R  P  K  Q   

ccttctaatcttaaacttcaaattccaaagccattatcagaccatttacaaaatgacttt 

 P  S  N  L  K  L  Q  I  P  K  P  L  S  D  H  L  Q  N  D  F   

cctgcaaacagtggaaataatactaaaaataaaaatgatattcttgggaaagcaaaatta 

 P  A  N  S  G  N  N  T  K  N  K  N  D  I  L  G  K  A  K  L  

ggggaaaactcagcaaccaatgtatgcagtccatctttgggaaacatctctaatgtcgat 

 G  E  N  S  A  T  N  V  C  S  P  S  L  G  N  I  S  N  V  D   

acaaatggggaacatttagaaagttatgaggctgagatctccactagaccatgccttgca 

 T  N  G  E  H  L  E  S  Y  E  A  E  I  S  T  R  P  C  L  A  

ttagctccagatagcccagataatgatctcagagctggtcagtttggaatttctgccaga 

 L  A  P  D  S  P  D  N  D  L  R  A  G  Q  F  G  I  S  A  R   

aagccattcaccactctgggtgaggtggctccagtatgggtaccggattctcaggctcca 

 K  P  F  T  T  L  G  E  V  A  P  V  W  V  P  D  S  Q  A  P   

aattgcatgaaatgtgaagccaggtttacattcaccaaaaggaggcatcactgcagagca 

 N  C  M  K  C  E  A  R  F  T  F  T  K  R  R  H  H  C  R  A  

tgtgggaaggttttctgtgcttcctgctgtagcctgaaatgtaaactgttatacatggac 

 C  G  K  V  F  C  A  S  C  C  S  L  K  C  K  L  L  Y  M  D   

 

agaaaggaagctagagtgtgtgtaatctgccattcagtgctaatgaatgctcaagcctgg 

 R  K  E  A  R  V  C  V  I  C  H  S  V  L  M  N  A  Q  A  W   

gagaacatgatgagtgcctcaagccagagccctaaccctaacaatcctgctgaatactgt 

 E  N  M  M  S  A  S  S  Q  S  P  N  P  N  N  P  A  E  Y  C   

tctactatccctcccttgcagcaagctcaggcctcaggagctctgagctctccacctccc 

 S  T  I  P  P  L  Q  Q  A  Q  A  S  G  A  L  S  S  P  P  P   

actgtgatggtacctgtgggagttttaaagcaccctggagcagaagtggctcagcccaga 

 T  V  M  V  P  V  G  V  L  K  H  P  G  A  E  V  A  Q  P  R   

gagcagaggcgagtttggtttgctgatgggatcttgcccaatggagaagttgctgatgca 

 E  Q  R  R  V  W  F  A  D  G  I  L  P  N  G  E  V  A  D  A   

gccaaattaacaatgaatggaacttcctctgcaggaaccctggctgtgtcacacgaccca 

 A  K  L  T  M  N  G  T  S  S  A  G  T  L  A  V  S  H  D  P  

gtcaagccagtaactaccagtcctctaccagcagagacggatatttgtctattctctggg 

 V  K  P  V  T  T  S  P  L  P  A  E  T  D  I  C  L  F  S  G  

agtataactcaggttggaagtcctgttggaagtgcaatgaatcttattcctgaagatggc 

 S  I  T  Q  V  G  S  P  V  G  S  A  M  N  L  I  P  E  D  G   

cttcctcccattctcatctccactggtgtaaaaggagactatgctgtggaagagaaacca 

 L  P  P  I  L  I  S  T  G  V  K  G  D  Y  A  V  E  E  K  P   

tcacagatttcagtaatgcagcagttggaggatggtggccctgacccacttgtatttgtt 

 S  Q  I  S  V  M  Q  Q  L  E  D  G  G  P  D  P  L  V  F  V  

ttaaatgcaaatttgttgtcaatggttaaaattgtaaattatgtgaacaggaagtgctgg 

 L  N  A  N  L  L  S  M  V  K  I  V  N  Y  V  N  R  K  C  W   

tgtttcacaaccaagggaatgcatgcagtgggtcagtctgagatagtcattcttctacag 

 C  F  T  T  K  G  M  H  A  V  G  Q  S  E  I  V  I  L  L  Q 

tgtttaccggatgaaaagtgtttgccaaaggatatctttaatcactttgtgcagctttat 

 C  L  P  D  E  K  C  L  P  K  D  I  F  N  H  F  V  Q  L  Y   

cgggatgctctggcagggaatgtggtgagcaacttgggacattccttcttcagtcaaagt 

 R  D  A  L  A  G  N  V  V  S  N  L  G  H  S  F  F  S  Q  S   

ttccttggcagtaaagaacatggtggattcttatatgtgacatctacctaccagtcactg 

 F  L  G  S  K  E  H  G  G  F  L  Y  V  T  S  T  Y  Q  S  L  

caagacctagtactcccaaccccaccttacttgtttgggattcttatccagaaatgggaa 

 Q  D  L  V  L  P  T  P  P  Y  L  F  G  I  L  I  Q  K  W  E   

actccttgggctaaagtatttcctatccgtctgatgttgagacttggagctgaatatcga 

 T  P  W  A  K  V  F  P  I  R  L  M  L  R  L  G  A  E  Y  R   

ctttatccatgcccactattcagtgtcagatttcggaagccattgtttggagagacgggg 

 L  Y  P  C  P  L  F  S  V  R  F  R  K  P  L  F  G  E  T  G   

cataccatcatgaatcttcttgcagacttcagaaattaccagtataccttgccagtagtt 

 H  T  I  M  N  L  L  A  D  F  R  N  Y  Q  Y  T  L  P  V  V  

caaggtttggtggttgatatggaagttcggaaaactagcatcaaaattcccagcaacaga 

 Q  G  L  V  V  D  M  E  V  R  K  T  S  I  K  I  P  S  N  R  

tacaatgagatgatgaaagccatgaacaagtccaatgagcatgtcctggcaggaggtgcc 

 Y  N  E  M  M  K  A  M  N  K  S  N  E  H  V  L  A  G  G  A   

tgcttcaatgaaaaggcagactctcatcttgtgtgtgtacagaatgatgatggaaactat 

 C  F  N  E  K  A  D  S  H  L  V  C  V  Q  N  D  D  G  N  Y   

cagacccaggctatcagtattcacaatcagcccagaaaagtgactggtgccagtttcttt 

 Q  T  Q  A  I  S  I  H  N  Q  P  R  K  V  T  G  A  S  F  F 

gtgttcagtggcgctctgaaatcctcttctggataccttgccaagtccagtattgtggaa 

 V  F  S  G  A  L  K  S  S  S  G  Y  L  A  K  S  S  I  V  E  

gatggtgttatggtccagattactgcagagaacatggattccttgaggcaggcactgcga 

 D  G  V  M  V  Q  I  T  A  E  N  M  D  S  L  R  Q  A  L  R   

gagatgaaggacttcaccatcacctgtgggaaggcggacgcggaggaaccccaggagcac 

 E  M  K  D  F  T  I  T  C  G  K  A  D  A  E  E  P  Q  E  H  

atccacatccagtgggtggatgatgacaagaacgttagcaagggtgtcgtaagtcctata 

 I  H  I  Q  W  V  D  D  D  K  N  V  S  K  G  V  V  S  P  I   

gatgggaagtccatggagactataacaaatgtgaagatattccatggatcagaatataaa 

 D  G  K  S  M  E  T  I  T  N  V  K  I  F  H  G  S  E  Y  K  

gcaaatggaaaagtaatcagatggacagaggtgtttttcctagaaaacgatgaccagcac 

 A  N  G  K  V  I  R  W  T  E  V  F  F  L  E  N  D  D  Q  H  

aattgcctcagtgatcctgcagatcacagtagattgactgagcatgttgccaaagctttt 

 N  C  L  S  D  P  A  D  H  S  R  L  T  E  H  V  A  K  A  F  

tgccttgctctctgtcctcacctgaaacttctgaaggaagatggaatgaccaaactggga 

 C  L  A  L  C  P  H  L  K  L  L  K  E  D  G  M  T  K  L  G   

ctacgtgtgacacttgactcagatcaggttggctatcaagcagggagcaatggccagccc 

 L  R  V  T  L  D  S  D  Q  V  G  Y  Q  A  G  S  N  G  Q  P  
cttccctcgcagtacatgaatgatctggacagcgccttggtgccggtgatccatggaggg 

 L  P  S  Q  Y  M  N  D  L  D  S  A  L  V  P  V  I  H  G  G   

gcctgccagcttagtgagggccccgttgtcatggaactcatcttttatattctggaaaac 

 A  C  Q  L  S  E  G  P  V  V  M  E  L  I  F  Y  I  L  E  N  

atcgtataaacagagaagacttcatttttttctgttcagacttgttgcaacagcagtcat 

 I  V 

acccaaatcatttgcactttaaaactggaagattaagcttttgttaacactattaatggg 

gtggggaatagggtgggagtgggggtttgggagacgggtgggaaagggtggttgggggga 

ccgatgttccataattctaagtcttctatgcattgtccaccaagaagatctgggcagctt 

ctgttcctgcacaacagttatgctatccttgcagctaatccccttctgttactgtttaga 

caagaattccgctcctctctcaagatttacttatggtcatgtgctcagaaatgctcaaat 

gggtacaaccatcaccaagggtgggatgggagggcagaggggaaataaaatataaagcat 

cagttcttgcactctttgtacagaattggtataaaaaggataattccacactgaaaaaaa 

aaaaaaaaa 

Figure 20 – Nucleotide and corresponding amino acid sequence of isoform 3 of SARA. PP1 binding 

motifs are highlighted in blue colour (positions 827-830 and 1307-1311 in a.a. sequence). The first 

nucleotides of the positive clones isolated are highlighted in red colour. The FYVE domain, which is 

thought to bind phosphatidylinositol 3-phosphatase and so to localize SARA to the membrane 

(Tsukazaki et al. 1998), is in green and the minimal Smad-binding domain (Wu et al. 2000) is 

underlined. 
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Although several protein kinases in the TGF-β pathway are known, including the receptors 

themselves, the relevant phosphatases are not yet identified. Serine/threonine protein 

phosphatases are likely involved in the dephosphorylation of these phosphorylated 

signalling components. Also little is known of how Smad interaction with receptors is 

controlled. 

SARA was first described as a novel Smad2 and Smad3 interacting protein, that functions 

as an anchoring protein to recruit Smad2 to the TGF-β receptor complex (Tsukazaki et al. 

1998). The FYVE domain is required to maintain the normal localization of this protein but 

is not involved in mediating interaction with Smads. The C-terminal domain of this protein 

interacts with the TGF-β receptor. As a component of the TGF-β pathway, SARA controls 

the subcellular localization of Smad and brings the Smad substrate to the receptor, 

increasing the efficiency of its phosphorylation (Tsukazaki et al. 1998).  

SARA also contains a phosphatidylinositol 3-phosphate (PI3P)-binding FYVE domain 

(Stenmark et al. 1996), which localizes it predominantly to the early endocytic 

compartment (Stenmark and Aasland 1999). Activated receptors internalized into the early 

endocytic compartment might encounter the SARA-Smad complex there, initiating signals 

from this compartment (Hayes et al. 2002; Panopoulou et al. 2002). Alternatively, small 

amounts of SARA are known to localize to the plasma membrane by binding to the 

receptor; the SARA-Smad complex might encounter activated receptors there, initiating 

signals at this location. Following internalization into the early endosome, signalling could 

then continue in a SARA-enriched environment (Di Guglielmo et al. 2003). 

The isolation of a Drosophila melanogaster homolog of SARA (Sara) in a screen for 

proteins that bind PP1c was already reported (Bennett and Alphey 2002; Colland et al. 

2004). The disruption of the identified PP1c-binding motif in Sara reduced its ability to bind 

PP1c. The expression of this non-PP1c-binding mutant resulted in hyperphosphorylation 

of the type I receptor and stimulated expression of a target of TGF-β signalling (Bennett 

and Alphey 2002). These data demonstrate that the relevant substrate of PP1c is the type 

I receptor or some intracellular element upstream of the type I receptor. The only known 

upstream element, however, is the type II receptor kinase. This phosphorylates the type I 

receptor, but its own kinase activity is constitutive (Wrana et al. 1992; Wrana et al. 1994; 

Massague 1998). Thus, type I receptor is implicated as the relevant substrate of PP1c. 

Smad is thought to dissociate from the complex after phosphorylation, so it is an unlikely 

target for a receptor-bound protein phosphatase. 

The additive effect of loss of PP1 and induction by TGF-β suggests that the key role of 

PP1 bound to Sara is to minimize the uninduced signal. The type II receptor is a 
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constitutively active kinase (Lin et al. 1992), which will occasionally encounter and 

phosphorylate the type I receptor even in the absence of the extracellular ligand (Ventura 

et al. 1994; Chen et al. 1995). It is critical that this background signal be minimized, as the 

system must be able to respond accurately to a very small number of ligand molecules 

relative to the number of receptors. Therefore, it is suggested that the role of PP1c in the 

receptor complex is to antagonize the type II receptor, ensuring that the presence of the 

ligand is required for continued signal transduction (Figure 21). 

 

 
Figure 21 – A model of PP1c in the TGFβ receptor complex. The two known activating 

phosphorylations by the receptor kinases are shown. PP1c has an inhibitory role, suggesting that 

it may antagonize one or both of these kinases. a, In the absence of the ligand, occasional 

phosphorylation and activation of the type I receptor is rapidly reversed by PP1c, leading to very 

low signalling through phospho-Smad. b, In the presence of the ligand, the type II receptor forms 

a stable complex with the type I receptor, which favours phosphorylation of the type I receptor 

over dephosphorylation. PP1c bound to Sara therefore acts as a check for the presence of the 

ligand. This may seem energetically inefficient, but allows tight regulation of signalling. Similar 

instances of complexes containing PP1, its substrate and an antagonistic kinase, and a scaffold 

protein that brings them together, have been described (Printen et al. 1997; Westphal et al. 

1999). SBD, Smad-binding domain; PBD, phosphatase-binding domain; CTD, carboxy-terminal 

domain; NTD, amino-terminal domain, (adapted from Bennett and Alphey, 2002). 

 

By functioning to recruit Smad2 to the TGF-β receptor, SARA is located in an important 

regulatory position in the pathway. Thus, control of SARA localization, protein levels, or 

interactions with Smad2 could potentially modulate TGF-β signalling. 

Recently, it was reported that the TGF-β-induced Smad7 can interact with the growth 

arrest and DNA damage protein 34 (GADD34) (Hollander et al. 1997), which is a 

regulatory subunit of PP1. The Smad7- GADD34 complex was shown to recruit PP1c to 
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TGF-β type 1 receptor, and thereby dephosphorylate and inactivate it (Shi et al. 2004). 

PP1c is recruited to ALK5 via a Smad7-GADD34 complex and then dephosphorylates 

activated ALK5. SARA enhances the recruitment of PP1c to the Smad7-GADD34 complex 

by enhancing the availability of PP1c to the Smad7-GADD34 complex. Which regulatory 

subunit of PP1α holoenzyme cooperates with Smad7 to interact with ALK1 remains to be 

investigated. It was also suggested that Smad7, induced by ALK1 activation, recruits 

PP1α to ALK1 and thereby inhibits TGF-β/ALK1-induced Smad1/5 phosphorylation in 

endothelial cells (Valdimarsdottir et al. 2006).  

The interaction of the isolated positive clones encoding SARA with PP1α was tested in 

SD/QDO/x-α-gal medium and was reconfirmed for all. They also interacted with the other 

PP1 isoforms: PP1γ1 and PP1γ2 (Figure 22). Two PP1 BMs were predicted by 

bioinformatic analysis of the SARA sequence (RVWF / KVIRW) and all three clones have 

both, although the three miss part of the N-terminus and only 247T is in the correct 

reading frame. 

 

 

Figure 22 – Analysis of interaction of the 

isolated positives for the protein SARA with 

various PP1 isoforms: α, γ1 and γ2. The 

interaction was tested in SD/QDO/x-α-gal 

medium. Plus and minus represent the 

positive and negative controls, respectively. 
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3.3.5.3 Dynactin 1  (DCTN1 ) / p150Glued 

 

The gene DCTN1 encodes the largest subunit of dynactin, a macromolecular complex 

consisting of 10-11 subunits ranging in size from 22 to 150 kD. Transcript variant 1, of this 

gene, consists of at least 32 exons and encodes a larger isoform than variant 2. This 

isoform contains three binding domains: microtubule (N-terminus), dynein and Arp-1 (C-

terminus). Transcript variant 2 lacks exons 1-5, but contains intron 5 sequence. The intron 

5 sequence introduces an alternative translation start site, which is located 12 nucleotides 

immediately upstream of exon 6.  

Two clones out of the 298 positives were identified as dynactin by data base searching 

(Table 10). Both align with regions of the sequence common to the two splice variants 

(NM_004082 and NM_023019;), thus it is not possible to know to which one they 

correspond (Figure 23). 

 

Table 10 – Independent Dynactin clones isolated in the YTH screen. 

First Nucleotide 

Isoform 1 (NM_004082)                     Isoform 2 (NM_023019) 
Positive clones 

1819  (in frame) 3021  (out of frame) 171T 

2350  (out of frame) 3552  (out of frame) 138T 

 

Dynein is the major molecular motor protein responsible for a variety of microtubule-based 

minus-end–directed movements of vesicles and organelles, as well as several steps in 

mitosis (Paschal and Vallee 1987; Hirokawa et al. 1990; Karki and Holzbaur 1999; Mallik 

and Gross 2004; Pilling et al. 2006). The dynein/dynactin complex is essential for a 

diversity of cellular trafficking events, such as vesicular trafficking from the endoplasmic 

reticulum to the Golgi and lysosomal motility (Caviston and Holzbaur 2006).  

Dynactin (Figure 23) binds to both microtubules and cytoplasmic dynein. It is involved in a 

diverse array of cellular functions, including ER-to-Golgi transport, the centripetal 

movement of lysosomes and endosomes, spindle formation, chromosome movement, 

nuclear positioning, and axonogenesis. Understanding the role of dynactin in dynein 

function has recently become more important with the realization that these proteins may 

be targets in human neurodegenerative diseases (Hafezparast et al. 2003; Puls et al. 

2003). Yet, in spite of the importance of this issue, definitive evidence on the in vivo role of 

dynactin in dynein attachment to membranes does not exist. 
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MAQSKRHVYSRTPSGSRMSAEASARPLRVGSRVEVIGKGHRGTVAYVGAT 50 

-------------------------------------------------- 

                                                                                    

LFATGKWVGVILDEAKGKNDGTVQGRKYFTCDEGHGIFVRQSQIQVFEDG 100 

-------------------------------------------------- 

                                                                                    

ADTTSPETPDSSASKVLKREGTDTTAKTSKLRGLKPKKAPTARKTTTRRP 150 

----------------------------------MMRQAPTARKTTTRRP 16 

                                    ::************               

 

KPTRPASTGVAGASSSLGPSGSASAGELSSSEPSTPAQTPLAAPIIPTPV 200 

KPTRPASTGVAGASSSLGPSGSASAGELSSSEPSTPAQTPLAAPIIPTPV 66 

************************************************** 

 

LTSPGAVPPLPSPSKEEEGLRAQVRDLEEKLETLRLKRAEDKAKLKELEK 250 

LTSPGAVPPLPSPSKEEEGLRAQVRDLEEKLETLRLKRAEDKAKLKELEK 116 

************************************************** 

 

HKIQLEQVQEWKSKMQEQQADLQRRLKEARKEAKEALEAKERYMEEMADT 300 

HKIQLEQVQEWKSKMQEQQADLQRRLKEARKEAKEALEAKERYMEEMADT 166 

************************************************** 

 

ADAIEMATLDKEMAEERAESLQQEVEALKERVDELTTDLEILKAEIEEKG 350 

ADAIEMATLDKEMAEERAESLQQEVEALKERVDELTTDLEILKAEIEEKG 216  

************************************************** 

 

SDGAASSYQLKQLEEQNARLKDALVRMRDLSSSEKQEHVKLQKLMEKKNQ 400 

SDGAASSYQLKQLEEQNARLKDALVRMRDLSSSEKQEHVKLQKLMEKKNQ 266  

************************************************** 

 

ELEVVRQQRERLQEELSQAESTIDELKEQVDAALGAEEMVEMLTDRNLNL 450 

ELEVVRQQRERLQEELSQAESTIDELKEQVDAALGAEEMVEMLTDRNLNL 316  

************************************************** 

 

EEKVRELRETVGDLEAMNEMNDELQENARETELELREQLDMAGARVREAQ 500 

EEKVRELRETVGDLEAMNEMNDELQENARETELELREQLDMAGARVREAQ 366  

************************************************** 

SFAAGLVYSLSLLQATLHRYEHALSQCSVDVYKKVGSLYPEMSAHERSLD 700 

SFAAGLVYSLSLLQATLHRYEHALSQCSVDVYKKVGSLYPEMSAHERSLD 566  

************************************************** 

 

KRVEAAQETVADYQQTIKKYRQLTAHLQDVNRELTNQQEASVERQQQPPP 550 

KRVEAAQETVADYQQTIKKYRQLTAHLQDVNRELTNQQEASVERQQQPPP 416  

************************************************** 

 

ETFDFKIKFAETKAHAKAIEMELRQMEVAQANRHMSLLTAFMPDSFLRPG 600 

ETFDFKIKFAETKAHAKAIEMELRQMEVAQANRHMSLLTAFMPDSFLRPG 466  

************************************************** 

 

GDHDCVLVLLLMPRLICKAELIRKQAQEKFELSENCSERPGLRGAAGEQL 650 

GDHDCVLVLLLMPRLICKAELIRKQAQEKFELSENCSERPGLRGAAGEQL 516  

************************************************** 

 

FLIELLHKDQLDETVNVEPLTKAIKYYQHLYSIHLAEQPEDCTMQLADHI 750 

FLIELLHKDQLDETVNVEPLTKAIKYYQHLYSIHLAEQPEDCTMQLADHI 616  

************************************************** 

 

KFTQSALDCMSVEVGRLRAFLQGGQEATDIALLLRDLETSCSDIRQFCKK 800 

KFTQSALDCMSVEVGRLRAFLQGGQEATDIALLLRDLETSCSDIRQFCKK 666  

************************************************** 

 

IRRRMPGTDAPGIPAALAFGPQVSDTLLDCRKHLTWVVAVLQEVAAAAAQ 850 

IRRRMPGTDAPGIPAALAFGPQVSDTLLDCRKHLTWVVAVLQEVAAAAAQ 716  

************************************************** 

 

LIAPLAENEGLLVAALEELAFKASEQIYGTPSSSPYECLRQSCNILISTM 900 

LIAPLAENEGLLVAALEELAFKASEQIYGTPSSSPYECLRQSCNILISTM 766  

************************************************** 

 

NKLATAMQEGEYDAERPPSKPPPVELRAAALRAEITDAEGLGLKLEDRET 950 

NKLATAMQEGEYDAERPPSKPPPVELRAAALRAEITDAEGLGLKLEDRET 816  

************************************************* 

 

VIKELKKSLKIKGEELSEANVRLSLLEKKLDSAAKDADERIEKVQTRLEE 1000 

VIKELKKSLKIKGEELSEANVRLSLLEKKLDSAAKDADERIEKVQTRLEE 866  

************************************************** 

 

TQALLRKKEKEFEETMDALQADIDQLEAEKAELKQRLNSQSKRTIEGLRG 1050 

TQALLRKKEKEFEETMDALQADIDQLEAEKAELKQRLNSQSKRTIEGLRG 916  

************************************************** 

 

PPPSGIATLVSGIAGEEQQRGAIPGQAPGSVPGPGLVKDSPLLLQQISAM 1100 

PPPSGIATLVSGIAGEEQQRGAIPGQAPGSVPGPGLVKDSPLLLQQISAM 966  

************************************************** 

 

RLHISQLQHENSILKGAQMKASLASLPPLHVAKLSHEGPGSELPAGALYR 1150 

RLHISQLQHENSILKGAQMKASLASLPPLHVAKLSHEGPGSELPAGALYR 1016  

************************************************** 

 

KTSQLLETLNQLSTHTHVVDITRTSPAAKSPSAQLMEQVAQLKSLSDTVE 1200 

KTSQLLETLNQLSTHTHVVDITRTSPAAKSPSAQLMEQVAQLKSLSDTVE 1066  

************************************************** 

 

KLKDEVLKETVSQRPGATVPTDFATFPSSAFLRAKEEQQDDTVYMGKVTF 1250 

KLKDEVLKETVSQRPGATVPTDFATFPSSAFLRAKEEQQDDTVYMGKVTF 1116  

************************************************** 

 

SCAAGFGQRHRLVLTQEQLHQLHSRLIS 1278 

SCAAGFGQRHRLVLTQEQLHQLHSRLIS 1144 

**************************** 

 

Figure 23 – Alignment of the amino acid sequence of the two isoforms of Dynactin using a 

CLUSTAL W multiple sequence alignment. PP1 binding motifs are highlighted in blue colour. The 

first amino acid of the positive clones is highlighted in red colour. (Isoform 1: NM_004082.2; 

isoform 2: NM_023019.1).   

 

A key gap in the understanding of dynein function is how this motor protein interacts with 

membrane compartments. The multiprotein complex  dynactin is a candidate factor 

proposed to link dynein to membrane compartments (Schroer 2004). Although the original 

work on dynactin suggested that highly purified dynein could mediate vesicle attachment 

to microtubules in the absence of dynactin, a more recent and relatively small number of 

in vitro experiments have led to the generally accepted model that the attachment of 

dynein to membrane vesicles requires dynactin (Waterman-Storer et al. 1997; Karki and 

Holzbaur 1999; Muresan et al. 2001). 

 An alternative model suggests that dynein light and intermediate chain subunits may link 

dynein to other membrane associated proteins independently of dynactin (Tai et al. 1999; 
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Tynan et al. 2000; Yano et al. 2001). In this competing view, dynactin plays a role in 

regulating or coordinating dynein functions such as processivity (King and Schroer 2000).  

Phosphorylation may directly modulate enzymatic or motor activity. Phosphorylation of 

dynein or of an accessory factor may also regulate the affinity of the motor with its cargo, 

the organelle which is being transported. Studies on the microtubule motor kinesin have 

provided evidence for both types of regulatory mechanisms (Sato-Yoshitake et al. 1992; 

Hollenbeck 1993; Matthies et al. 1993; McIlvain et al. 1994). 

It should be noted that, when examined in whole-cell extracts, a significant fraction of the 

p150 isoform does not bind to microtubules (Tokito et al. 1996). The differential affinity 

may reflect differences in the posttranslational modification of the dynactin complex. The 

binding of the related polypeptide CLIP-170 to microtubules has been shown to be 

modulated by its phosphorylation state (Rickard and Kreis 1991);  p150 may be regulated 

in a similar manner. It was determined that p150Glued is a phosphoprotein (Farshori and 

Holzbaur 1997), although the effects of phosphorylation on the affinity of p150Glued for 

microtubules has yet to be determined. It has been proposed that the phosphorylation site 

of CLIP-170 may map to a cluster of serine residues near the microtubule-binding motif 

(Pierre et al. 1992) and p150Glued also has a number of serine residues adjacent to the 

microtubule-binding motif. 

The interaction between dynein and dynactin becomes attenuated with aging, although it 

remains unclear why several studies have shown that the activity of dynein was affected 

by phosphorylation of its subunit (Dillman and Pfister 1994; Lin et al. 1994; Allan 1995; 

Niclas et al. 1996). Other studies have shown that aging affects the activity of protein 

phosphatases in brain (Norris et al. 1998; Jiang et al. 2001; Jouvenceau and Dutar 2006), 

and it was also reported that the activity of protein phosphatases decreased in 

Alzheimer’s Disease brains (Gong et al. 1993; Gong et al. 1995; Ladner et al. 1996; 

Vogelsberg-Ragaglia et al. 2001). Then, age dependent alterations in the activity of 

protein phosphatases or other unknown modulator might affect the dynein-dynactin 

interactions. Recent findings suggest that aging attenuates the dynein-dynactin interaction 

(Kimura et al. 2007), representing one of the risk factors for age-related impaired dynein 

function and even for accumulation of disease proteins.  

Dynactin 1 has two potential PP1 BMs (KIKF / KVTF) as determined by bioinformatic 

analysis, but the clones isolated only have the one nearest to the C-terminus. The 

interaction of the two clones with PP1α was supported when tested in SD/QDO/X-α-Gal 

medium; the same being true for the two other PP1 isoforms tested (Figure 24). These 
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results suggest that it is precisely the PP1 binding motif KVTF, nearest to the C-terminus, 

that is functionally active. 

 

 

Figure 24 – Analysis of interaction of the 

isolated dynactin positives with the various 

PP1 isoforms: α, γ1 and γ2. The interaction 

was tested in SD/QDO/x-α-gal medium. Plus 

and minus represent the positive and 

negative controls, respectively. 
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3.3.5.4 Chr9orf75 

 

Chr9orf75 was the most abundant positive clone in the YTH screen with a total of 45 

clones, corresponding to approximately 15% of all positives isolated (Table 11). The 

mRNA (NM_173691) corresponding to this ORF record is supported by experimental 

evidence; however, the coding sequence is predicted. 

 

Table 11 – Independent Chr9orf75 clones isolated in the YTH screen. 

First Nucleotide Positive clones 

- 90  (out of frame) 40T, 41T  

-15  (out of frame) 91T, 151T, 170T 

102  (in frame) 13T 

184  (out of frame) 209T 

189  (in frame) 100T, 169T 

201  (in frame) 117T, 186T 

206  (out of frame) 181T 

274  (out of frame) 65T, 223T 

325  (out of frame) 104T, 110T, 190T 

373  (out of frame) 
43T, 74T, 84T, 139T, 154T, 221T, 228T, 

239T, 272Q 

374  (out of frame) 142T, 172T 

375  (in frame) 129T 

496  (out of frame) 180T 

577  (out of frame) 53T 

622  (out of frame) 148T, 149T 

670  (out of frame) 
105T, 155T, 164T, 199T, 232T, 235T, 237T, 

265Q, 267Q, 292Q, 298T 

701  (out of frame) 150T 

 

Chr9orf75 was described as a PP1 interactor but there is no knowledge of its physiologic 

function (Trinkle-Mulcahy et al. 2006). The nucleotide and the corresponding amino acid 

sequence of Chr9orf75 are presented in Figure 25. 
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                            ccgggaccccgagtgccactccagcctcaccc 

cctgccagtgccactcctagccagcgccagtgcgtctccgcagccaccagcaccaacgaa 

ctccttcaccgtccacccccggggtctgcaccgcggcgcgggcgcccgcctgctctccaa 
cgggcactcggcccctgagccccgggccggccctgccaaccgcctcgcgggctccccgcc 
tgggtcgggacagtggaagccaaaggtggagtcgggggatccctccctccacccgccccc 
cagccccgggaccccgagtgccactccagcctcaccccctgccagtgccactcctagcca 
gcgccagtgcgtctccgcagccaccagcaccacgactccttcgagatacggccggccccc 
aagccagttatggagaccatccccttgggggacctccaggcccgggcgctggccagcctc 
          M  E  T  I  P  L  G  D  L  Q  A  R  A  L  A  S  L  

cgcgcaaactctcgaaattctttcatggtcatccccaagagcaatgcctccggggctcct 
 R  A  N  S  R  N  S  F  M  V  I  P  K  S  N  A  S  G  A  P   
cctcctgaggggaggcagtccgtggagctgccaaagggagacctgggcccggcctccccg 
 P  P  E  G  R  Q  S  V  E  L  P  K  G  D  L  G  P  A  S  P   
agccaggagctcggatcccagccggtgcctggaggggatggtgcgcctgccctcgggaag 
 S  Q  E  L  G  S  Q  P  V  P  G  G  D  G  A  P  A  L  G  K  

agccccctggaggtcgaggcacagtgggcagtcgaggagggggcctgtcccaggacagcc 
 S  P  L  E  V  E  A  Q  W  A  V  E  E  G  A  C  P  R  T  A   

accgccctcgctgaccgggctattaggtggcagaggccgtcctcaccgccccccttcctg 
 T  A  L  A  D  R  A  I  R  W  Q  R  P  S  S  P  P  P  F  L   
ccggctgcttcggaagaagctgagcctgctgagggcctcagggttcctggcttggccaag 
 P  A  A  S  E  E  A  E  P  A  E  G  L  R  V  P  G  L  A  K   
aatagccgggaatatgtgaggccggggctgcctgtcaccttcatcgatgaggtagactcg 
 N  S  R  E  Y  V  R  P  G  L  P  V  T  F  I  D  E  V  D  S 
gaggaggccccccaagcagccaaactaccctacctcccgcaccctgccaggcctctgcac 
 E  E  A  P  Q  A  A  K  L  P  Y  L  P  H  P  A  R  P  L  H  

cctgccaggcccgggtgcgtggcagagcttcagccccggggcagcaacaccttcacagtg 
 P  A  R  P  G  C  V  A  E  L  Q  P  R  G  S  N  T  F  T  V   
gtgcccaagaggaagccagggactctgcaggaccagcacttcagtcaggccaacagggag 
 V  P  K  R  K  P  G  T  L  Q  D  Q  H  F  S  Q  A  N  R  E   
cctcggccacgggaggccgaggaggaggaggctagttgcctcctggggcccacgttgaag 
 P  R  P  R  E  A  E  E  E  E  A  S  C  L  L  G  P  T  L  K  

aagcgctaccccaccgtgcatgagatcgaggtgattggcggctacctggccctgcagaag 
 K  R  Y  P  T  V  H  E  I  E  V  I  G  G  Y  L  A  L  Q  K   
tcctgcctcaccaaggctggctcctcaagaaagaagatgaagatctccttcaacgacaaa 
 S  C  L  T  K  A  G  S  S  R  K  K  M  K  I  S  F  N  D  K   
agcctgcagaccacatttgagtacccttccgagagctccctagagcaggaggaagaggtg 
 S  L  Q  T  T  F  E  Y  P  S  E  S  S  L  E  Q  E  E  E  V   
gaccagcaggaggaggaggaggaggaggaggaggaagaggaagaggaggaagagggatcc 
 D  Q  Q  E  E  E  E  E  E  E  E  E  E  E  E  E  E  E  G  S   
ggctcagaggagaagccctttgcactcttcctgccccgggccacgtttgtgagcagcgtg 
 G  S  E  E  K  P  F  A  L  F  L  P  R  A  T  F  V  S  S  V   
agacccgagagctctcggctgccagagggtagctcaggcctgtccagctacaccccgaag 
 R  P  E  S  S  R  L  P  E  G  S  S  G  L  S  S  Y  T  P  K 

cactctgtggccttcagcaagtggcaggagcaggcgctggagcaggccccgagggaggca 
 H  S  V  A  F  S  K  W  Q  E  Q  A  L  E  Q  A  P  R  E  A   
gagcccccgcccgtggaggccatggtgagatgcgggggagtggagcgctggggggagtct 
 E  P  P  P  V  E  A  M  V  R  C  G  G  V  E  R  W  G  E  S   
gacacccgggcgagcccatgtgtccacattctgtcctctcactttcagctcacacccgcc 
 D  T  R  A  S  P  C  V  H  I  L  S  S  H  F  Q  L  T  P  A   
agtcagaatgacctctcggacttccgcagcgagccagccctgtatttctaagcccagcac 
 S  Q  N  D  L  S  D  F  R  S  E  P  A  L  Y  F 
tgccaggaccaaggctgagcccagctgtgggagtcccggaagctgggcagtagccaggga 
ctactgcacccgcttctgccttgtttggcctcactgtatcccacccacccctcctggccc 
tggaagcagctagggtgcctcctgccatcggggccaggtctgggtctcactccccggccc 
tggtttgggagggtccaagggggaagtggggtggggaactgcctgtgggtgagtgccagg 
ggcctgctgggtggtggccatctgcgacccggcagggggctgtgcagattctgcacctgg 
ccattccctgtcctgtctcctcagcctgcctcacagtggccatggggtgtcggggtgaag 
ggctgtcccagctacttgtcctctgcaggaccctaagcccctgcccgcagcccacatgcc 
ctctgtgatgagtggcgtctttcctgcctctgatgatggactcaataaacagcactggac 
aaggct 
 

Figure 25 - Nucleotide and 

corresponding amino acid 

sequence of Chr9orf75. PP1 

binding motifs are highlighted in 

blue color (positions 103-107 and 

269-275 in a.a. sequence).The 

first nucleotide of Chr9orf75 

transcript variant 1 (NM_173691) 

is in green and the first 

nucleotides of the several positive 

clones are highlighted in red 

color. Upstream of the first 

nucleotide of transcript variant 1 

(green), are the 90 nt derived 

from clones 91T, 151T and 170T.  

 

 

Of all the 45 positives obtained for this protein five contained 15 (clones 91T, 151T and 

170T) and 90 (clones 40T and 41T) nucleotides upstream of the first nucleotide of the 

sequence present in the Genbank entry. However, a very recent update of the Chr9orf75 

Genbank entry describes a new transcript variant, transcript variant 2, starting at an 

upstream ATG codon (NM_173691.3). Transcript variant 1 (in Figure 25) lacks a segment 

in the 3' coding region, compared to variant 2, which results in a shorter protein (isoform 1, 

in Figure 26). The two proteins are encoded in the same reading frame.  
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Chr9orf75_isoform1  ------------------------------------------------------------ 

Chr9orf75_isoform2  MLLEAERRRGGGAAGARLLERYRRVPGVRALRADSVLIIETVPGFPPAPPAPGAAQIRAA 

                                                                                 

 

Chr9orf75_isoform1  ------------------------------------------------------------ 

Chr9orf75_isoform2  EVLVYGAPPGRVSRLLERFDPPAAPRRRGSPERARPPPPPPPPAPPRPPPAAPSPPAAPG 

                                                                                 

 

Chr9orf75_isoform1  ------------------------------------------------------------ 

Chr9orf75_isoform2  PRGGGASPGARRSDFLQKTGSNSFTVHPRGLHRGAGARLLSNGHSAPEPRAGPANRLAGS 

                                                                                 

 

Chr9orf75_isoform1  ------------------------------------------------------------ 

Chr9orf75_isoform2  PPGSGQWKPKVESGDPSLHPPPSPGTPSATPASPPASATPSQRQCVSAATSTNDSFEIRP 

                                                                                 

 

Chr9orf75_isoform1  -----METIPLGDLQARALASLRANSRNSFMVIPKSNASGAPPPEGRQSVELPKGDLGPA 

Chr9orf75_isoform2  APKPVMETIPLGDLQARALASLRANSRNSFMVIPKSKASGAPPPEGRQSVELPKGDLGPA 

                         *******************************:*********************** 

 

Chr9orf75_isoform1  SPSQELGSQPVPGGDGAPALGKSPLEVEAQWAVEEGACPRTATALADRAIRWQRPSSPPP 

Chr9orf75_isoform2  SPSQELGSQPVPGGDGAPALGKSPLEVEAQWAVEEGACPRTATALADRAIRWQRPSSPPP 

                    ************************************************************ 

 

Chr9orf75_isoform1  FLPAASEEAEPAEGLRVPGLAKNSREYVRPGLPVTFIDEVDSEEAPQAAKLPYLPHPARP 

Chr9orf75_isoform2  FLPAASEEAEPAEGLRVPGLAKNSREYVRPGLPVTFIDEVDSEEAPQAAKLPYLPHPARP 

                    ************************************************************ 

 

Chr9orf75_isoform1  LHPARPGCVAELQPRGSNTFTVVPKRKPGTLQDQHFSQANREPRPREAEEEEASCLLGPT 

Chr9orf75_isoform2  LHPARPGCVAELQPRGSNTFTVVPKRKPGTLQDQHFSQANREPRPREAEEEEASCLLGPT 

                    ************************************************************ 

 

Chr9orf75_isoform1  LKKRYPTVHEIEVIGGYLALQKSCLTKAGSSRKKMKISFNDKSLQTTFEYPSESSLEQEE 

Chr9orf75_isoform2  LKKRYPTVHEIEVIGGYLALQKSCLTKAGSSRKKMKISFNDKSLQTTFEYPSESSLEQEE 

                    ************************************************************ 

 

Chr9orf75_isoform1  EVDQQEEEEEEEEEEEEEEEGSGSEEKPFALFLPRATFVSSVRPESSRLPEGSSGLSSYT 

Chr9orf75_isoform2  EVDQQEEEEEEEEEEEEEEEGSGSEEKPFALFLPRATFVSSVRPESSRLPEGSSGLSSYT 

                    ************************************************************ 

 

Chr9orf75_isoform1  PKHSVAFSKWQEQALEQAPREAEPPPVEAMVRCGGVERWGESDTRASPCVHILSSHFQLT 

Chr9orf75_isoform2  PKHSVAFSKWQEQALEQAPREAEPPPVEAMVRCGGVERWGESDTRASPCVHILSSHFQLT 

                    ************************************************************ 

 

Chr9orf75_isoform1  PASQNDLSDFRSEPALYF 

Chr9orf75_isoform2  PASQNDLSDFRSEPALYF 

                    ****************** 

 

Figure 26 – Alignment of the amino acid sequence of the two isoforms of Chr9orf75 using a 

CLUSTAL W multiple sequence alignment. PP1 binding motifs are highlighted in blue colour. 
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Since Chr9orf75 has two potential PP1 BMs (RAIRW / KISF), several clones were 

selected for analysis of interaction with PP1. Clones 13 and 100 have the complete coding 

sequence of the corresponding protein in the correct frame. Clones 40 and 170 are also 

complete clones, but out of frame, and with 90 and 15 nucleotides more, respectively, 

than the predicted sequence for Chr9orf75. Clone 150 does not have the RAIRW PP1 BM 

and is out of frame, and clone 148 misses part of that PP1 BM and is also out of frame. All 

have the second PP1 BM corresponding to the aminoacids KISF.  

All clones tested were found to interact with PP1α, as expected, but also revealed a 

positive interaction with PP1γ1 and PP1ү2 (Figure 27). Light blue colonies also represent 

positive interactions that took longer to turn blue in the presence of X-α-GAL. Interestingly, 

the fact of some clones being incomplete or out of frame was not sufficient to impede 

interaction with the PP1 isoforms. 

 

 

Figure 27 – Analysis of interaction of the 

protein Chr9orf75 with the PP1 isoforms: α, γ1 

and γ2, by yeast co-transformation. The 

interaction was tested in SD/QDO/x-α-gal 

medium. Plus and minus represent the 

positive and negative controls, respectively. 

 

Almost all of the PP1 interacting proteins contain a degenerate RVxF-motif. The 

Chr9orf75 protein has two PP1 BMs predicted by bioinformatic analysis of its sequence. 

However, while the predicted KISF motif has a sequence very similar to the PP1 BMs that 

usually are present in the PP1 binding proteins, the other one BM (RAIRW) differs more 

from the known PP1 BMs and is less likely to be physiologically functional. 

 

 

 

 

 

 

 

 

 

PP1α 

+ 

- 

PP1γ1 

PP1γ2  
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3.3.6 Analysis of Chr9orf75 and PP1 interaction 

 

3.3.6.1 pC9orf75-GFP expression in HeLa Cells 

 

The cDNA corresponding to Chr9orf75 was subcloned into the pEGFP vector in frame 

with the GFP (Green Fluorescent Protein) protein. Thus, the GFP-tag was used as a 

biological marker, overcoming the need for an antibody against Chr9orf75. It was an 

important resource, allowing the employment of several techniques described below, by 

expression of pC9orf75-GFP fusion protein in human HeLa cells, a cervical cancer cell 

line (Figure 28). 

 

 

 

A 

 

 

B 

Figure 28 – pC9orf75-GFP expression in HeLa cells. The lanes correspond to non transfected 

(NT) cells and cells transfected with 0,5 µg, 1 µg and 2 µg of pC9orf75-GFP DNA. A. Immunoblot 

analysis of pC9orf75-GFP in lysates of transfected HeLa cells, using an antibody against the 

GFP tag. B. Immunoblot analysis of endogenous PP1α levels with increasing amounts of 

transfected Chr9orf75. Detection was performed with an anti-PP1α antibody (CBC2C). 

 

The expression of pC9orf75-GFP in HeLa cells was successful and as can be observed in 

Figure 28A pC9orf75-GFP fusion protein transfection revealed two bands, when the anti-

GFP antibody was used. The immmunoreactive proteins have apparent molecular mass 

of 86,6 kDa and 66,4 kDa, respectively. As the theoretical molecular mass of the 

Chr9orf75 protein is 47,3 kDa and the GFP-tag has approximately 30 kDa, the expected 

molecular mass for the fusion protein would be around 77 kDa. The observed higher 

molecular mass protein (86,6 kDa) probably represents the full length fusion protein. The 

abnormal migration observed may be due to post-translational modifications of the 

protein. The smaller band has a corresponding molecular mass of 66,4 kDa that may 

result  from proteolytic cleavage of the higher molecular mass protein.  When the 

immunoblot was probed with an anti-PP1α antibody, an apparent increase of PP1α 

cellular protein levels could be observed with increasing amounts of transfected pC9orf75-

GFP.  

 

NT   0,5µg  1µg   2µg 

75 kDa Chr 9 orf 75 

NT   0,5µg  1µg   2µg 

37 kDa PP1α 
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3.3.6.2 Co-immunoprecipitation of Chr9orf75 with PP1 

 

With the purpose of confirming and provide an ex vivo evidence for the interaction of 

Chr9orf75 with PP1, immunoprecipitation of protein extracts obtained from HeLa cells 

transfected with pC9orf75-GFP was performed, using highly specific anti-PP1α (CBC2C) 

and anti-PP1γ (CBC3C) antibodies. Proteins from cells lysates and immunoprecipitates 

(IPs) were separated on a 10% SDS-PAGE gel and transferred to a nitrocellulose 

membrane, immunobloted with anti-GFP and anti-PP1 antibodies and developed by ECL 

(Figure 29).  

 

A 

 

 

B 

 

 

Figure 29 – Co-immunoprecipitation of Chr9orf75 with PP1. Immunoblot analysis of HeLa cells 

tranfected with pC9orf75-GFP (or APP-GFP, as a control) and immunoprecipitated with anti-

PP1α and anti-PP1γ1antibodies. A. Membrane immunoblotted with anti-GFP antibody. B. 

Membrane immunoblotted with anti-PP1α (CBC2C) and anti-PP1γ (CBC3C) antibodies. NT, non-

tranfected cells; APP, cells transfected with APP-GFP; Chr9orf75, cells transfected with 

pC9orf75-GFP; IP Ab, immunoprecipitation antibody; and IB Ab, immunoblot antibody. 
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From the analysis of Figure 29 it is obvious that Chr9orf75 co-immunoprecipitates with 

PP1α and PP1γ. Appropriate controls were included in parallel: immunoprecipitation from 

non-transfected cells and from cells transfected with APP (Alzheimer’s amyloid precursor 

protein). 

In agreement with the observed in Figure 28, two bands were again observed for 

pC9orf75-GFP construct, with the previously refered molecular mass.  Since protein 

degradation is an unlikely explanation, given the use of protease inhibitors during the 

process of immunoprecipitation, this observation leads to believe that the complete protein 

may have been cleaved in vivo. This cleavage must occur on the N-terminus side of the 

protein, since the GFP tag is on the C-terminus and detection was achieved with an anti-

GFP antibody. This experiment clearly shows that Chr9orf75 interacts with PP1 isoforms α 

and γ, in agreement with the yeast co-transformation assays (Figure 27). This interaction 

is likely to be direct, given the presence of a canonical PP1 binding motif (KISF) in the 

Chr9orf75 protein.  
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3.3.6.3 Overlay assay of Chr9orf75 with PP1 

 

In order to further confirm the interaction of Chr9orf75 with PP1, a blot overlay analysis 

was performed. For this purpose, protein extracts from pC9orf75-GFP transfected HeLa 

cells were loaded on a 10% SDS-PAGE gel and transferred to nitrocellulose membrane. 

Lysate from non-transfected cells was used as negative control. The membrane was 

incubated with PP1γ1 (1 µg/mL; purified in our laboratory by A. P. Vintém), immunobloted 

with the anti-PP1γ1 antibody (CBC3C) and developed by ECL (Figure 30). 

 

 

 

 

Figure 30 – Overlay assay of Chr9orf75 

with PP1γ1. The total protein amounts of 

HeLa cell lysate loaded on each well are 

indicated on top. NT, lysate from non 

transfected cells; Chr9orf75-GFP , lysate 

from cells transfected with the pC9orf75-

GFP construct. 

 

The results obtained from this experiment confirm that, as expected, the interaction of the 

Chr9orf75 protein with PP1γ1, must be direct (i.e. without the need for a bridging protein). 

Again, these results are in agreement with the presence of a functional PP1 BM in 

Chr9orf75.    
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3.3.6.4 Subcellular localization of Chr9orf75 in HeLa cells 

 

With the purpose of studying the subcellular localization of Chr9orf75, HeLa cells were 

transfected with the pC9orf75-GFP construct. The expression of the fusion protein allowed 

the analysis of its subcellular localization and its co-localization with PP1α. HeLa cells 

were transfected with the referred plasmid and subjected to immunocytochemistry with the 

anti-PP1α antibody, detected with anti-rabbit Texas Red-conjugated antibody. Confocal 

fluorescence microscopy analysis revealed that pC9orf75-GFP distribution is almost 

exclusively nuclear and apparently excluded from nucleolar structures (Figure 31). 

Specific nucleoli markers, or co-localization with PP1γ1 (enriched in nucleoli), should 

clarify this observation. 

 
 

 

Figure 31 – Subcellular localization of pC9orf75-GFP and co-localization with PP1α. A, nucleic 

acids were stained using DAPI (blue). B, green fluorescence of the exogenous pC9orf75-GFP 

protein. C, endogenous PP1α (red) detected with anti-rabbit Texas Red-conjugated antibody. D, 

nuclear co-localization of PP1α and Chr9orf75 can be observed in the merge (yellow/orange). 

Bar, 10 µm. 

 

 

 

C D 
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Around 68% of the pC9orf75-GFP population has an exclusively nuclear distribution, while 

in 32% of the population pC9orf75-GFP was found not only in the nucleus of HeLa cells, 

but also distributed throughout the cytoplasm (Figure 32). Of note is that neither of these 

two distribution patterns was apparently dependent on the levels of transfection. 

 

 

 
Figure 32 – Subcellular localization of pC9orf75-GFP and co-localization with PP1α. A, nucleic 

acids were stained using DAPI (blue). B, pC9orf75-GFP green fluorescence. C, endogenous 

PP1α (red) detected with Texas Red-conjugated anti-PP1α antibody. D, co-localization observed 

in the merged image (yellow/orange). Bar, 10 µm. 
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Cells with high pC9orf75-GFP cytoplasmic distribution exhibited a less rounded 

morphology; around 90% of this population (Figures 32 and 33), and pC9orf75-GFP could 

also be observed in the plasma membrane and in fillopodia-like structures (ROIs in Figure 

33). Very interestingly, while in non-transfected cells cytoplasmic PP1α is not observed in 

the plasma membrane (under the conditions used), Chr9orf75 cytoplasmic presence 

relocates PP1α to the referred structures (Figure 32 and 33), where they co-localize. 

 

 

 

Figure 33 – Subcellular localization of pC9orf75-GFP and co-localization with PP1α. A, nucleic 

acids were stained using DAPI (blue). B, pC9orf75-GFP green fluorescence. C, endogenous 

PP1α (red) detected with Texas Red-conjugated anti PP1α antibody. D, co-localization observed 

in the merged image (yellow/orange). ROI, Region of interest. Bar, 10 µm. 
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Co-localization analysis using an anti-PP1α antibody revealed a high degree of nuclear 

pC9orf75-GFP/PP1α co-localization. Interestingly, PP1α nuclear staining apparently 

increased in pC9orf75-GFP transfected cells, in comparison to non-transfected cells, in a 

pC9orf75-GFP dose-dependent manner (Figure 34). Nonetheless, in the more highly 

transfected cells not only the nuclear abundance of PP1α increases but its cytoplasmic 

amounts also appear to increase slightly, suggesting that PP1α protein levels may be up-

regulated by Chr9orf75. 

 

 

 

Figure 34 – Subcellular localization of pC9orf75-GFP and co-localization with PP1α. A, nucleic 

acids were stained using DAPI (blue). B, pC9orf75-GFP green fluorescence. C, endogenous 

PP1α (red) detected with Texas Red-conjugated anti PPα antibody. D, co-localization observed in 

the merged image (yellow/orange). Bar, 10 µm. 
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3.4 DISCUSSION 

 
 
The involvement of PP1α in diverse cellular processes is correlated with its binding to a 

diverse set of regulatory subunits. Using the YTH system, new PP1α interactors from 

human brain were identified in order to gain insight into the various roles of PP1α in 

several cellular processes, brain function and neurodegeneration.  

The 1.72×107 human brain cDNA clones screened originated 298 positive clones, two of 

which were assigned as false positives, while the others correspond to 74 different 

proteins. Of those 20 are known PP1 interactors and 41 are putative proteins so far never 

associated with PP1. The results obtained validated the method as a promising approach 

to understand the multiple functions of the PP1α catalytic subunit, being a method of 

choice to screen a large number of proteins for putative interactions. The identification of 

all the positive clones obtained in the screen was an established objective of the analysis 

since the beginning of this study. This strategy turned out to be very successful because 

several novel and interesting PPα interacting proteins could be identified, which would 

never be found if only the more abundant positives were studied. Some “bonafide”, 

previously characterized, PP1 binding proteins were identified in this screen, like Nek2A 

and spinophilin. These findings validated the YTH technique, by confirming that 

expression of the reporter genes was due to a specific interaction between the bait protein 

(PP1α) and the identified library protein. 

Some of the positive clones isolated encoded proteins found to be fused out of frame to 

the GAL4-BD. It would therefore be expected that the wrong reading frame might code for 

an artificial protein that would not bind PP1α. This was the case even for some of the well 

known PP1 binding proteins identified. Thus, the fact that several “bonafide” PP1 

regulators were fused to the GAL4-BD in a wrong reading frame strongly suggests that 

the correct protein might still be produced by a well known mechanism in yeast, called 

programmed translational frame shift or translational recoding (Shah et al. 2002). Some 

specific sequences, 7 nucleotides long, are known to induce ribosomal frame shifting. This 

is a directional and reading frame specific event. Several programmed frame shift 

heptanucleotides have been identified: CUU-AGG-C, CUU-AGU-U and GGU-CAG-A 

(Shah et al. 2002). So it is concluded that translational recoding may be a feasible 

explanation for these observations. Moreover, this mechanism could be enhanced 

because of the use of selective media without some amino acids. Thus, the yeast 

translation machinery might be using alternative codons favouring the activation of the 

nutritional reporter genes, allowing growth in the selective media. 
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In what concerns PP1α and brain associated cellular events, this screen provided a large 

amount of data that will be useful in the search for brain-specific PP1α binding proteins 

that may be used in therapeutic and diagnostic approaches regarding neurodegenerative 

disorders and aging. 

For example two novel interactors for PP1α were described, dynactin-1 and synphilin-1A, 

which assign new roles to PP1α in physiological processes such as cellular processes 

involving the motor protein dynein and might suggest its involvement in 

neurodegenerative disorders. Interactions with two previously known PP1 interactors were 

also described: SARA and Chr9orf75. The first associates PP1α with the TGF-β receptor 

signalling pathway while for the second no function is yet assigned. The interaction 

between PP1α and these four proteins was confirmed by co-transformation in yeast strain 

AH109, were interactions with other PP1 isoforms were also analysed. In all cases 

quantitative analysis would be the logical next step, in order to better understand the 

strength of the interactions among these proteins and the different PP1 isoforms.  

The interactions should also be confirmed by other biochemical approaches such as 

immunoprecipitation, overlay or pull-down assays. A more detailed analysis of binding to 

PP1 was performed for Chr9orf75, the most abundant interaction identified on the screen 

and also the least characterised. Very recently, a new transcript variant was described for 

this protein but at the time of this study, the only isoform known was the shorter one. 

Positive clones 40T and 41T contain 90 nucleotides upstream of the first nucleotide 

presented in the Chr9orf75 Genbank entry and considered at the time of analysis, and 

clones 91T, 151T and 170T contain 15 nucleotides upstream. These results are now 

corroborated by the update of the Genbank information, since the new isoform (isoform 2) 

described has a longer 5` sequence. 

The various techniques used revealed that the corresponding Chr9orf75 protein may 

occur as a precursor protein, given that it suffers a proteolytic cleavage near its N-

terminus. This apparent cleavage originates a fragment reduced in ≈ 20 kDa, which 

corresponds to approximately 178 aminoacids (Figure 35). This being the case, the 

smaller protein fragment lacks the most N-terminal PP1 BM, but conserves the canonical 

motif, thus being still able to bind PP1. This was confirmed by all the binding assays used: 

yeast co-transformation, immunoprecipitation and overlay. As a result, the simplest 

interpretation of this results indicates that the binding likely occurs directly and not through 

binding to a third bridging protein.  
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Figure 35 – Analysis of the observed Chr9orf75 protein forms. A The two detected forms of the 

Chr9orf75 protein: the full-length 86,6 kDa protein on the top and the cleaved one below, 

originating a shorter fragment of about 66,4 kDa. Cleavage occurs N-terminally and leads to the 

loss of approximately 178 aminoacids and one of the PP1 BMs (indicated in light green and 

purple). GFP, C-terminal tag. B The estimated position of cleavage in the aminoacid sequence of 

Chr9orf75 protein is underlined and the PP1 BMs highlighted in green and purple 

 

Although both this fragments can bind PP1 the higher abundance of the full-length protein 

in transfected cells (Figures 27 and 30), contrast the smaller fragment enriched in the co-

immunoprecipitates (Figure 28A). This suggests that either the Chr9orf75 N-terminally 

truncated form is the favoured PP1 binding partner, or that proteolitic cleavage occurred 

during the immunoprecipitation. As previously mentioned, Chr9orf75 exists as full-length 

and an N-terminal truncated protein. In all of the analyses performed the C-terminus was 

detected using the GFP antibody, and it would be very interesting to be able to analyse if 

the two protein forms are targeted to different subcellular compartments. 

Another important validation of the putative interactions discovered with the YTH system 

is the confirmation of co-expression of the two binding partners either in the same cell-

type or in the same subcellular compartment. A condition for in vivo interaction of two 

proteins is their simultaneous presence in the same subcellular compartment. It is, 

therefore, important to determine the subcellular localization of these proteins, the 
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particular structures to which they associate and the processes where they are involved. 

With this intent, the subcellular distribution and co-localization with PP1α was evaluated 

for Chr9orf75. The expression of the protein Chr9orf75 fused to GFP in HeLa cells 

revealed that Chr9orf75 is mainly nuclear, and co-localizes with PP1α in this subcellular 

compartment. Increasing expression of Chr9orf75 enhances the amount of PP1α in the 

cell, although it remains to verify if this is due to a gene transactivation effect or to an 

alteration on mRNA/protein half-life. Furthermore, cytoplasmic/plasma membrane 

localization of Chr9orf75 recruits PP1α  to the same subcellular compartments (Figures 32 

and 33).    

It will be of crucial interest to perform functional assays for both the nuclear and the 

cytoplasmic Chr9orf75 pools.   
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The regulation of the subcellular localization of signalling pathway components is a key 

determinant in the effective initiation and maintenance of signalling cascades. Regulation 

of signal transduction pathways through protein/protein interactions can thus make 

possible the activation of a particular pathway by co-localizing protein kinases and 

phosphatases with their downstream substrates. Therefore, the identification and 

characterization of the proteins implicated in neuronal pathways are imperative as a mean 

to understand these cellular events and associated pathologies. 

PP1 is involved in several important physiological processes, such as cell cycle control, 

apoptosis, transcription, motility, metabolism and memory, regulating them through the 

dephosphorylation of multiple key substrates. This plasticity of PP1 is due to interaction 

with diverse regulators and targeting subunits that function as inhibitors, substrate 

specifiers and substrate targeting proteins. 

Several previously known PP1 regulator proteins were identified in the screen here 

described, among them are Nek2, spinophilin and ASPP1, thus validating the method 

used. Also, other less characterised PP1 interactors were also found, like SARA and 

Chr9orf75. Additionally, proteins known in other contexts were here identified as putative 

PP1 regulators and some had the interaction reconfirmed.  That was the case for 

dynactin-1 and synphilin-1A. Even more interesting was the fact that a great number of 

the proteins identified were completely new proteins. These results provide new 

perspectives of PP1α function in the human brain and several neuronal processes and 

validate the Yeast Two-Hybrid System as a tool to understand the roles played by PP1 in 

several cellular regulatory events.  

The majority of the recovered clones encoded partial cDNA sequences but each showed 

specific interaction with PP1α in the YTH system. The large number of totally new putative 

PP1α binding proteins opens new fields of study. The uncharacterized proteins need to be 

further analysed in order to identify their functions, allowing new roles to be attributed to 

PP1α, not only in human brain processes but also in other cellular functions. For the 

known proteins it is also needed a more comprehensive study in order to establish their 

binding and regulation by PP1α. That is already ongoing in our laboratory with synphilin-

1A, dynactin-1 and SARA. 

Chr9orf75, a totally uncharacterized protein and the most abundant positive in this screen, 

was further studied and some further insights were obtained: protein physiological form, 

binding to PP1 and subcellular localization. Chr9orf75 was detected in two protein forms, 

a full-length protein and a smaller form, apparently resulting from N-terminal cleavage. 

Both proteins forms bind strongly to PP1, through a canonical PP1 BM. In HeLa cells 
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Chr9orf75 was most often found enriched in the nucleus, but also distributed throughout 

the cytoplasm, and could also be observed in the plasma membrane and in fillopodia-like 

structures. Cellular co-localization of Chr9orf75 with PP1α was observed and, apparently, 

increasing amounts of Chr9orf75 concomitantly increase nuclear and cytoplasmic 

abundance of PP1α.  

For therapeutic approaches a complete understanding of PP1 regulation is essential for 

the development of drugs that interfere with PP1 function. Of all mammalian tissues, the 

brain expresses the highest levels of protein kinases and phosphatases. Phosphatases 

play important roles in numerous physiological and cellular events and exist in 

macromolecular signalling complexes in association with specific regulatory subunits. 

PP1c subunits are thought to always occur associated with regulatory and scaffold 

subunits that change PP1c conformation, targeting it to distinct subcellular locations and 

regulate its activity and substrate specificity. So, since such PP1 regulatory proteins are 

often tissue or cell type specific (unlike PP1c itself), they should provide much better and 

specific targets for therapeutic and diagnostic approaches. For this reason PP1 

holoenzymes are potential drug targets to be investigated for pharmacological intervention 

and diagnosis in disease.  

The PP1α interactome thus defined constitutes an important extension of the knowledge 

of PP1α physiological involvement in various brain processes. The number of proteins 

known to bind and regulate PP1α has been significantly extended and this may hopefully 

lead to significant insights into PP1α regulation. Given the number of protein 

phosphatases and phosphoprotein substrates encoded in the human genome, a large 

number of PP1 interacting proteins certainly remain to be discovered. In conclusion, the 

results obtained opened new and interesting insights that will need to be explored in detail 

in the future. 
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I. CULTURE MEDIA AND SOLUTIONS 

 

 

 

LB (Luria-Bertani) Medium 

 

To 950 mL of deionised H2O add: 

LB 25 g 

Agar 20 g (for plates only) 

Shake until the solutes have dissolved. Adjust the volume of the solution to 1 liter with 

deionised H2O. Sterilize by autoclaving. 

 

 

SOB Medium 

 

To 950 mL of deionised H2O add: 

25,5 g SOB Broth 

Shake until the solutes have dissolved. Add 10mL of a 250mM KCl (prepared by 

dissolving 1.86g of KCl in 100 mL of deionised H2O). Adjust the pH to 7.0 with 5N NaOH. 

Adjust the volume of the solution to 1 liter with deionised H2O. Sterilize by autoclaving. 

Just prior to use add 5 mL of a sterile solution of 2M MgCl2 (prepared by dissolving 19 g of 

MgCl2 in 90 mL of deionised H2O; adjust the volume of the solution to 1000 mL with 

deionised H2O and sterilize by autoclaving). 

 

 

SOC Medium 

 

SOC is identical to SOB except that it contains 20 mM glucose. After the SOB medium 

has been autoclaved, allow it to cool to 60ºC and add 20mL of a sterile 1M glucose (this 

solution is made by dissolving 18 g of glucose in 90 mL of deionised H2O; after the sugar 

has dissolved, adjust the volume of the solution to 1 L with deionised H2O and sterilize by 

filtration through a 0.22-micron filter). 
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Yeast Media 

 

10X dropout solution (DO10X) 

 

This solution contains all but one or more of the following components: 

 

             10X concentration (mg/L)    SIGMA # 

L-Isoleucine     300       I-7383 

L-Valine     1500      V-0500 

L-Adenine hemisulfate salt   200      A-9126 

L-Arginine HCl    200      A-5131 

L-Histidine HCl monohydrate              200      H-9511 

L-Leucine     1000      L-1512 

L-Lysine HCl     300      L-1262 

L-Methionine     200      M-9625 

L-Phenylalanine    500      P-5030 

L-Threonine     2000      T-8625 

L-Tryptophan                200      T-0254 

L-Tyrosine     300      T-3754 

L-Uracil     200      U-0750 

 

10X dropout supplements may be autoclaved and stored for up to 1 year. 

 

 

YPD medium 

 

To 950mL of deionised H2O add:  

50 g YPD 

20 g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 1 L with deionised H2O and 

sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% (50mL of a 

sterile 40% stock solution).  
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SD synthetic medium 

 

To 800mL of deionised H2O add:  

6.7g Yeast nitrogen base without amino acids (DIFCO)  

20g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 850mL with deionised H2O 

and sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% (50mL 

of a sterile 40% stock solution) and 100mL of the appropriate 10X dropout solution. 

 

2X YPDA 

 

Prepare YPD as above. After the autoclaved medium has cooled to 55ºC add 15mL of a 

0.2% adenine hemisulfate solution per liter of medium (final concentration is 0.003%). 

 

 

Solutions 

 

50X TAE Buffer 

 

242 g Tris base 

57.1 mL glacial acetic acid 

100 mL 0.5M EDTA (pH 8.0) 

 

TE Buffer (pH 7.5) 

 

10 mM Tris-HCl (pH 7.5) 

1 mM EDTA, pH 8.0 

 

Loading Buffer (LB) 

 

0.25% bromophenol blue 

30% glycerol 
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STET 

 

8% Sucrose 

5% Triton X-100 

50 mM Tris-HCl (pH 8,5) 

50 mM EDTA 

 

 

Competent Cell Solutions: 

 

Solution I (1L) 

 

9.9 g MnCl2.4H2O 

1.5 g CaCl2.2H2O 

150 g glycerol 

30 mL KHAc 1M; 

adjust pH to 5.8 with HAc, filter through a 0.2µm filter and store at 4ºC 

 

Solution II (1L) 

 

20 mL 0.5M MOPS (pH 6.8) 

1.2 g RbCl 

11g CaCl2.2H2O 

150 g glycerol;  

filter through a 0.2µm filter and store at 4ºC  

 

 

Miniprep Solutions: 

 

Solution I 

 

50 mM glucose 

25 mM Tris.HCl (pH 8.0) 

10 mM EDTA 
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Solution II 

 

0.2 N NaOH 

1% SDS  

 

Solution III 

 

3 M potassium acetate 

2 M glacial acetic acid 

 

Midiprep Solutions 

  

Cell Resuspension Solution 

 

50 mM Tris-HCl (pH 7.5) 

10 mM EDTA 

100 µg/mL RNAase A  

 

Cell Lysis Solution  

 

0.2 M NaOH 

1% SDS 

 

Neutralization Solution 

 

4.09 M Guanidine hydrochloride (pH 4.8) 

759 mM potassium acetate  

2.12 M Glacial acetic acid 

 

Column Wash Solution 

 

60 mM potassium acetate 

8.3 mM Tris-HCl (pH 7.5) 

0.04 mM EDTA 

60 % ethanol 
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SDS-PAGE and Immunobloting Solutions  

 

LGB (Lower Gel Buffer) 

 

To 900 mL of deionised H2O add:  

181.65 g Tris  

4 g SDS  

Mix until the solutes have dissolved. Adjust the pH to 8.9 and adjust the volume to 1L with 

deionised H2O. 

 

UGB (Upper Gel Buffer) 

  

To 900 mL of deionised H2O add:  

75.69 g Tris  

Mix until the solute has dissolved. Adjust the pH to 6.8 and adjust the volume to 1L with 

deionised H2O. 

 

30%Acrylamide/0.8% Bisacrylamide 

 

To 70 mL of deionised H2O add: 

29.2 g Acrylamide  

0.8 g Bisacrylamide  

Mix until the solutes have dissolved. Adjust the volume to 100mL with deionised H2O. 

Store at 4ºC. 

 

Loading Gel Buffer 

 

250 mM Tris-HCl (pH 6.8) 

8% SDS 

40% Glycerol 

2% 2-mercaptoethanol 

0.01% Bromophenol blue 

 

 

 

 



Characterization of Human Brain Protein Phosphatase 1α Interacting Proteins Using the Yeast Two Hybrid System 

 
 

   Mestrado em Microbiologia Molecular 2008 
Centro de Biologia Celular  129 

1X Running Buffer 

 

25 mM Tris-HCl (pH8.3) 

250 mM Glycine 

0.1% SDS 

 

1X Transfer buffer 

 

25 mM Tris-HCl (pH8.3) 

192 mM Glycine 

20% Methanol 

 

1X TBS  

 

10 mM Tris-HCl (pH 8.0) 

150 mM NaCl 

 

1X TBST 

 

10 mM Tris-HCl (pH 8.0) 

150 mM NaCl 

0.05% Tween 

 

Membrane Stripping Solution 

 

2% SDS 

62.5 mM Tris-Hcl (pH= 6.7) 

100 mM  β-Mercaptoethanol 
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Yeast Two-Hybrid Solutions 

 

Yeast plasmid rescue – Breaking buffer 

 

2 % Triton X-100 

1 % SDS 

100 mM NaCl 

10 mM Tris-HCl (pH 8.0) 

 

Solutions for preparation of yeast protein extracts 

 

� Protease inhibitor solution 

 

Always prepare solution fresh just before using. Place on ice to prechill. To prepare 688µl 

add in a microfuge tube: 

66µl Pepstatin A (1 mg/mL stock solution in DMSO) 

2µl Leupeptin (10.5 mM stock solution) 

500µl Benzamidine (200 mM stock solution) 

120µl Aprotinin (2.1 mg/mL stock solution) 

 

� PMSF (phenylmethyl-sulfonyl fluoride) stock solution (100X) 

 

Dissolve 0.1742g of PMSF in 10mL isopropanol. Wrap tube in foil and store at RT. 

 

� Cracking buffer stock solution 

 

To 80mL of deionised H2O add:  

48g Urea  

5g SDS 

4mL 1M Tris-HCl (pH6.8) 

20µl 0.5M EDTA  

40mg Bromophenol blue  

Mix until the solutes have dissolved. Adjust the volume to 100mL with deionised H2O. 
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� Cracking buffer 

 

To prepare 1.13mL add in a microfuge tube: 

1 mL Cracking buffer stock solution (recipe above) 

10 µl β-mercaptoethanol  

70 µl Protease inhibitor solution (recipe above) 

50µl 100X PMSF stock solution 

 

 

Immunoprecipitation solutions 

 

Lysis Buffer 

 

50 mM Tris-HCl (pH 8) 

120 mM NaCl 

4% CHAPS 

 

Lysis Buffer + Protease inhibitors 

 

Add to 4 mL of Lysis buffer the following quantities for a final volume of 5 mL: 

23,8 µl Pepstatin A (1 mg/mL stock solution in DMSO) 

0,72 µl Leupeptin (5 mg/mL stock solution) 

180 µl Benzamidine (200 mM stock solution) 

43,2 µl Aprotinin (2.1 mg/mL stock solution) 

176 µl PMSF 100X 

 

Washing solution 

 

50 mM Tris-HCl  

120 mM NaCl  

 

 

 

 

 



Characterization of Human Brain Protein Phosphatase 1α Interacting Proteins Using the Yeast Two Hybrid System 

Mestrado em Microbiologia Molecular 2008 
132   Centro de Biologia Celular 

Cell Culture Solutions and Immunocytochemistry  

 

PBS (1x) 

 

For a final volume of 500 mL, dissolve one pack of BupH Modified Dulbecco’s Phosphate 

Buffered Saline Pack (Pierce) in deionised H2O. Final composition: 

8 mM Sodium Phosphate   

2 mM Potassium Phosphate  

40 mM NaCl  

10 mM KCl  

Sterilize by filtering through a 0.2 µm filter and store at 4 ºC 

 

1 mg/mL Poly-L-ornithine solution (10x) 

 

To a final volume of 100 mL, dissolve in deionised H2O 100 mg of poly-L-ornithine (Sigma-

Aldrich, Portugal).  

 

4% Paraformaldehyde Fixative solution 

 

For a final volume of 100 mL, add 4 g of paraformaldehyde to 25 mL deionised H2O. 

Dissolve by heating the mixture at 58 ºC while stirring. Add 1-2 drops of 1 M NaOH to 

clarify the solution and filter (0.2 µm).  

Add 50 mL of 2X PBS and adjust the volume to 100 mL with deionised H2O. 

 

Complete MEM + GLUTAMAX 

 

For a final volume of 500 mL, add:  

50 mL (10% v/v) Fetal Bovine Serum (FBS) (Gibco BRL, Invitrogen)  

5 mL Non-Essential aminoacids (100x) 

100 U/mL penicillin 

100 mg/mL streptomycin 5 mL 

FBS is heat-inactivated for 30 min at 56 ºC. For cells maintenance, prior to pH adjustment 

add 100 U/mL penicillin and 100 mg/mL streptomycin [10 mL Streptomycin/ 

Penicilin/Amphotericin solution (Gibco BRL, Invitrogen) 
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MEM  + GLUTAMAX Components     

 

Amino Acids:                                                   Concentration (mg/L) 

L-Alanyl-Glutamine 406 

L-Arginine hydrochloride 126 

L-Cystine 24 

L-Histidine hydrochloride 42 

L-Isoleucine 52 

L-Leucine 52 

L-Lysine hydrochloride 73 

L-Methionine 15 

L-Phenylalanine 32 

L-Threonine 48 

L-Tyrosine 10 

L-Valine 46 

Vitamins: 

Choline chloride 1 

D-Calcium pantothenate 1 

Folic Acid 1 

Niacinamide 1 

Riboflavin 0.1 

Thiamine hydrochloride 1 

i-Inositol 2 

Inorganic Salts: 

Calcium Chloride (CaCl2.2H2O) 264 

Magnesium Sulfate (MgSO4.7H2O) 200 

Potassium Chloride 400 

Sodium Bicarbonate 2200 

Sodium Chloride 6800 

Sodium Phosphate monobasic 

(NaH2PO4.2H2O) 
158 

Other components: 

D-Glucose 1000 

Phenol Red 10 
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II. BACTERIA AND YEAST STRAINS 

 

 

 

� E. coli XL1- blue: recA endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’ proAB 

lacZ∆M15 Tn10(Tetr)] 

 

� S. cerevisiae AH109: MATa, trp1-901, leu2-3, 112 ura3-52, his3-200, gal4∆, gal 80∆, 

LYS2:: GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-

lacZ, MEL1 

 

� S. cerevisiae Y187: MATα ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, 

met-, gal 80∆, URA3:: GAL1UAS-GAL1TATA-lacZ, MEL1 
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III. PLASMIDS 

 

 

 

 

 

 

 

pACT2 (Clontech) map and MCS. Unique sites are coloured blue. pACT2 is used to generate a 

hybrid containing the GAL4 AD, an epitope tag and a protein encoded by a cDNA in a fusion 

library. The hybrid protein is expressed at medium levels in yeast host cells from an enhanced, 

truncated ADH1 promoter and is target to the nucleus by the SV40 T-antigen nuclear localization 

sequence. pACT2 contains the LEU2 gene for selection in Leu
-
 auxotrophic yeast strains. 
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pAS2-1 (Clontech) map and MCS. Unique sites are coloured blue. pAS2-1 is a cloning vector used 

to generate fusions of a bait protein with the GAL4 DNA-BD. The hybrid protein is expressed at 

high levels in yeast host cells from the full-length ADH1 promoter. The hybrid protein is target to the 

yeast nucleus by nuclear localization sequences. pAS2-1 contains the TRP1 gene for selection in 

Trp
-
 auxotrophic yeast strains. 
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pEGFP-N1 vector map and MCS (Clontech). This eukaryotic exppression vector was used to 

express pC9orf75-GFP fusion protein in HeLa cells. 
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IV. PRIMERS 

 

 

 

Primer Sequence (5’:::: 3’) 
Nt 

No. 

MT 

(ºC) 

GAL4 AD TACCACTACAATGGATG  17 48 

GAL4 BD TCATCGGAAGAGAGTAG  17 50 

Amplimer 3’ (reverse)  ATCGTAGATACTGAAAAACCCCGCAAGTTCAC                       32 84 

C9orf75-F4 CCCGGAATTCCGATGGAGACCATCCCCTTG 30 96 

C9orf75-R5 ACGCGTCGACGTGAAATACAGGGCTGGCTC 30 96 

pEGFP-N1-FW GTAGGCGTGTACGGTGGGAG 20 54 

pEGFP-N1-RV GCCGTCCAGCTCGACCAGG 19 60 

 

 

 

 




