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palavras-chave 
 

Rhodothermus marinus, soluto compatível, manosilgliceramida, 
manosilglicerato 
 

Resumo 
 
 

Na presença de elevadas concentrações de sal no meio de cultura a 
bactéria halotermofílica Rhodothermus marinus acumula no interior das células 
compostos orgânicos de baixo peso molecular designados solutos compatíveis. 
Nestas condições e à temperatura de 65 ºC, este organismo acumula 
elevados níveis de manosilgliceramida (MGA) e manosilglicerato (MG) 
e níveis mais baixos de trealose, glutamato e glucose. O soluto 
manosilgliceramida é um derivado de manosilglicerato no qual o OH do grupo 
carboxílico é substituído por um grupo amino. Este soluto com carga neutra foi 
detectado pela primeira vez por RMN na bactéria R. marinus  e, até ao 
momento, não há registo da sua presença ou acumulação em nenhum outro  
microorganismo. A forma como a bactéria  R. marinus gere o seu metabolismo 
por forma a sintetizar este soluto permanece uma incógnita. 

 Em R. marinus, os dois genes localizados imediatamente a seguir aos 
dois genes envolvidos na biossíntese de MG codificam duas enzimas, uma 
identificada como uma “hypothetical protein” com um domínio pertencente 
à família Acetil transferases e a outra identificada como uma aminoácido 
desidrogenase. No presente trabalho estudou-se a possibilidade de a enzima 
aminoácido desidrogenase ser responsável pela libertação de um grupo amino 
a partir de um aminoácido e a possibilidade da “hypothetical protein”  ser 
responsável pela transferência desse grupo amino para a molécula de 
manosilglicerato (molécula carregada negativamente) ou para o intermediário 
fosforilado, o manosil-3-fosfoglicerato (MPG), percursor de  manosilglicerato. 
Realizaram-se ensaios enzimáticos usando extractos celulares de R. marinus e 
testaram-se diferentes substratos com o objectivo de detectar a síntese de 
MGA. O produto das reacções foi separado e analisado por cromatografia de 
camada fina (TLC). O gene que codifica a “hypothetical protein” foi clonado e 
expresso na estirpe E. coli BL21. 

Simultaneamente, estudou-se a viabilidade de a estirpe CC-16 de T. 
thermophilus, uma estirpe naturalmente competente, ser um hospedeiro 
termofílico adequado para expressão dos genes responsáveis pela síntese de 
MG e, desta forma perspectivar também a sua utilização como hospedeiro para 
a sobreprodução do soluto raro, manosilgliceramida.   
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abstract 
 

The halothermophilic bacterium Rhodothermus marinus has been described 
to accumulate intracellular solutes at high salt concentrations in the growth medium. 
In this condition at a temperature of 65ºC this organism accumulates high levels of 
mannosylglyceramide (MGA) and mannosylglycerate (MG) and low levels of 
trehalose, glutamate and glucose. Mannosylglyceramide, an ammonia derivative of 
mannosylglycerate (MG), is an uncharged compatible solute first detected by NMR 
and, thus far, was only found to accumulate in R. marinus. However, the 
orchestration of the metabolism of R. marinus for the biosynthesis of this solute 
remains unknown.  
In R. marinus, the two genes immediately downstream the genes involved in MG 
biosynthesis encode two enzymes, one identified as a hypothetical protein with a 
motif belonging to acetyl transferases family and the other identified as an amino 
acid dehydrogenase. We investigated the possibility of the later enzyme be the 
responsible for the release of an amino group from an amino acid donor and the 
former for the transfer of amino group for MG (negative charge molecule)r for the 
mannosyl-3-phosphoglycerate (MPG) the phosphorylated precursor of MG. The 
enzyme assays to detect the production of MGA were carried out using cell extracts 
of R. marinus. Products were separated and analysed by thin layer chromatography 
(TLC). Moreover the gene encoding the hypothetical protein was cloned and 
expressed in E. coli BL21. 

In parallel, we studied the viability of the genetic amenable T. thermophilus 
strain CC-16 be a suitable thermophilic host to express genes for the synthesis of 
MG, prospecting its utilization as a host for the overproduction of the rare solute 
mannosylglyceramide.  
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1 Introduction 

1.1 Extremophiles and extreme environments 
Extremophiles are classified on the basis of the particular extreme conditions in which they 

live. For example, thermophiles and hyperthermophiles live at high (above 75ºC) and very high 

temperatures (above 115ºC), respectively, psychrophiles live at very low temperatures, acidophiles 

and alcalophiles thrive at extreme of acidic or basic values of pH, respectively and halophiles that 

proper at the presence of high salt concentrations (5-30%, v/v)  .  

The most studied group among extremophiles are the thermophilic microorganisms. 

Thermophiles are divided into moderate thermophiles, extreme thermophiles and 

hyperthermophiles (Kristjansson 1991; Lasa and Berenguer 1993). Moderate thermophiles live at 

50ºC sites, like hydrothermal areas. Unlike this group, extreme thermophiles are unable to survive 

below 50ºC due to thermophilic environment stability evolved. These microorganisms have an 

optimal growth rate above 70ºC that limit is strictly to prokaryotes, Bacteria and Archaea 

(Antranikian 2001; Rothschild and Mancinelli 2001). Microorganisms inhabiting at increased 

temperature levels (optimum growth > 85ºC) are called hyperthermophiles. Among this group, 

Pyrolobus fumarii is the most hyperthermophilic microorganism growing up to 113ºC (Blochl et al. 

1997; Stetter 1999; Rothschild and Mancinelli 2001).  

Thermophiles were isolated most from geothermal environments, like hot springs, artificial 

hot environments and from hydrothermal areas, like marine or saline hydrothermal vents. In marine 

hydrothermal environments water salinity can range from low salinity to that of seawater and 

microorganisms living in these environments are generally, halotolerant or slightly halophilic. The 

best studied examples are the thermophilic strains of Thermus thermophilus and Rhodothermus 

marinus (Nunes et al. 1995).   

The increasing interest in thermophilic bacteria is due to their evolutionary importance as 

representatives of ancient lineages of life, unusual cell components and metabolism, and because 

they possess thermostable enzymes and other molecules that can be exploited for industrial 

purposes. 

1.1.1 Rhodothermus marinus: thermophilic and slightly halophilic 
microorganism 

The microorganism used in the present study was R. marinus, first isolated from marine hot 

springs (Figure 1) (Alfredsson 1988). Rhodothermus marinus sp. are thermophilic and slightly 

halophilic, growth optimally at 65-70ºC, 2% NaCl and pH 7, moreover they can survive at 

temperature ranging from 54ºC to 77ºC and at a salt concentration of 0.5% to over 6% NaCl 

(Bjornsdottir et al. 2006).  
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Strains of R. marinus are gram-negative cells, heterotrophic and restrict aerobic and can 

only grow in very limited zones in the hot springs, close to their openings, determined by 

temperature and salt concentration as well as of content of O2 and organic material (Bjornsdottir et 

al. 2006). Since 1988, R. marinus strains have been isolated in similar habitats in geothermal 

environments distantly located: marine hot springs at Praia de Ribeira Quente (Nunes 1992) and 

Ferraria (Silva et al. 2000), on the island of São Miguel in the Azores, Portugal; in Stufe di Nerone, 

near Naples, Italy (Moreira et al. 1996) and on the island of Monserrat in the Caribbean Sea (Silva 

et al. 2000). These strains were also isolated from three additional geothermal sites in Iceland; 

coastal springs and a borehole effluent in Oxarfjordur, North East Iceland and borehole effluents 

from a powerplant at the Blue Lagoon and from a salt factory in Reykjanes, both in South West 

Iceland (Petursdottir et al. 2000). 

In 1996, Sako and collaborators described a new species belonging to the genus 

Rhodothermus, isolated from shallow marine hydrothermal vents in Japan and classified it as 

Rhodothermus obamensis. However, “R. obamensis” was later reclassified as a R. marinus strain 

based on fatty acid analysis, DNA-DNA reassociation studies and 16S-rRNA gene sequence 

comparisons (Silva et al. 2000).  Recently, a new species of Rhodothermus was isolated, 

characterized and classified as Rhodothermus profundi (type strain PRI 2902T) by Marteinssona et 

al. (2010). Several morphological, physiological and chemotaxonomic characteristics distinguish R. 

profundi from R. marinus. Unlike R. marinus, this new species is non-pigmented, non-motile, grow 

between 55 and 80ºC in a maximum salt concentration about 5% in the growth medium 

(Marteinsson et al. 2010).    
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Figure 1.The phylogenetic position of R. marinus shows the relatedness within the phylum of Bacteroidetes. 
Evolutionary distances were computed from pair wise similarities using the correction of Jukes and Cantor. 
Distance tree was constructed by the neighbour joining algorithm. Figure from Bjornsdottir et al., 2006. 

1.2 Strategies for thermo- and osmo-adaptation  
One of the most amazing properties of microorganisms is their ability to adapt to extreme 

environments, where pH, temperature, pressure and salt concentration values are higher or lower 

than what is considered standard for most living organisms (Lasa and Berenguer 1993). 

In case of microorganisms living at high temperatures their macromolecules must be 

adapted, being more thermostable than those of mesophiles (Sterner and Liebl 2001). Some of 

these macromolecular adaptations have been identified, however many remain unknown. Besides, 

thermophiles are not only adapted to high temperature but also to additional extreme conditions. 

For example, microorganisms that are both halophilic and thermophilic, like R. marinus, inhabiting 

only in a very narrow zone in the hot springs (Bjornsdottir et al. 2006).  
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Organisms that can grow at high salt concentrations reach a positive internal turgor 

pressure across the cell membrane by two principal osmotic strategies (Empadinhas and da Costa 

2008). The first consists in the accumulation of inorganic solutes (K+, Na+, Cl-) to achieve osmotic 

equilibrium and has been called the “salt-in-the-cytoplasm”. This form of osmoadaptation co-

evolved with the structural modification of many cellular components, which are important for the 

functionality of cell metabolism in high ionic strength conditions. Until now, this strategy occurs in 

some extremely halophilic archaea like Halobacteriaceae and in the extremely halophilic bacterium 

Salinibacter ruber (Oren and Mana 2002). 

The second mechanism is extensively used by bacterial halophiles and employs the 

accumulation of small organic molecules to counter balance the salt concentration in the 

environment and is known as “compatible solutes” (Santos and da Costa 2002; Lentzen and 

Schwarz 2006). Besides, the role of compatible solutes goes beyond osmotic adjustment alone, 

they also provide protection of cells and cell components from freezing, desiccation, high 

temperature and oxygen radicals. Also, in these organisms intracellular macromolecules have not 

undergone specific modifications and are, therefore, sensitive to high intracellular concentrations of 

salts and most organic solutes (da Costa et al. 1998). 

The combination of both strategies, “salt-in-the-cytoplasm” and “compatible solute”, has 

only been found in slightly and moderately halophilic methanogenic organisms. These organisms 

accumulate high levels of potassium together with neutral and anionic compatible solutes 

(Desmarais et al. 1997). 

1.3 Compatible solutes: Role and Diversity 
Compatible solutes can be accumulated to high levels by de novo synthesis or uptake from 

the environment (Poolman and Glaasker 1998). The uptake of compatible solutes is usually 

preferred to de novo synthesis because of lower energy costs. Most common compatible solutes 

are low-molecular-weight solutes, neutrally charged or zwitterionic and include amino acids and 

amino acid derivatives, sugars and sugar derivatives, polyols, betaines and ectoines (da Costa et 

al. 1998; Santos and da Costa 2002). Some are widespread among archaea, bacteria, yeast, 

filamentous fungus and algae and others are restricted to a few groups of microorganisms (da 

Costa et al. 1998; Santos and da Costa 2002).  

Compatible solutes like trehalose, α-glutamate and proline are regularly found among 

bacteria. For example, the success of trehalose is due to single physical characteristics like 

chemical stability, non hygroscopic glass formation and the absence of internal hydrogen bond 

formation, which make this disaccharide capable to protect cells and biomolecules from 

environmental stress imposed by low water activity, heat, oxidation, desiccation or freezing 

(Arguelles 2000; Elbein et al. 2003; Liang et al. 2006). Trehalose is also frequently used by 

organism as a carbon source (Strom and Kaasen 1993; Horlacher and Boos 1997; Arguelles 

2000). In yeast, trehalose can be used as a reserve compound. In insects, trehalose is the most 
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abundant sugar in the haemolymph (80-90%) and in thorax muscles, where it is consumed during 

flight (Richards et al. 2002; Elbein et al. 2003). 

  Ectoine and hydroxyectoine are compatible solutes only found in mesophilic bacteria 

(Roberts 2005). Ectoine is known as an osmoprotectant against increased external osmotic 

pressure and is the most abundant osmolyte of aerobic chemoheterotrophic bacteria (Martin et al. 

1999; Santos and da Costa 2002; Roberts 2005). This compound has been found in all halophilic/ 

halotolerant Proteobacteria of the V-subdivision, in all representatives of the genus Nocardiopsis, in 

all Gram-positive cocci examined so far, in Brevibacteria and even in Bacillus species and 

Sporosarcina halophila (Galinski 1993).  

Other compatible solutes like di-myo-inositol phosphate (DIP) are, until now, restricted to 

microorganisms living at extremely high temperatures (Figure 2) (Empadinhas and da Costa 2008). 

Di-myo-inositol phosphate was first found in Pyrococcus woesi and in Methanococcus igneus 

(Scholz et al. 1992; Ciulla et al. 1994). After that, it has been identified in hyperthermophilic 

bacteria (Thermotoga and Aquifex spp.) and archaea (Santos and da Costa 2002). This solute 

seems to be implicated in the protection of cellular components against heat denaturation, since it 

accumulates by organisms, primarily as a response to supraoptimal growth temperatures (Borges 

et al. 2006).  

Mannosylglycerate (MG) is a sugar-derived compatible solute, usually found in 

thermophiles and rarely encountered in mesophiles (Figure 2). Mannosylglycerate was initially 

discovered in red algae of the order Ceramiales (Bouveng H. et al. 1955) and it has been lately 

found in the thermophilic bacteria R. marinus and T. thermophilus, in members of the genus 

Rubrobacter, which represent a lineage of the phylum Actinobacteria, in the crenarchaeotes 

Aeropyrum pernix and Stetteria hydrogenophila, in the euryarchaeotes Archaeoglobus veneficus, 

Archaeoglobus profundus, Methanothermus fervidus and in the three genera of the order 

Thermococcales, Thermococcus, Pyrococcus, and Palaeococcus (Martins and Santos 1995; 

Lamosa et al. 1998; Goncalves et al. 2003; Neves et al. 2005; H. Santos 2007).  

Glucosylglycerate (GG) is a structural analogue to MG and was originally identified in the 

marine cyanobacterium Agmenellum quadruplicatum grown under nitrogen-limiting conditions 

(Kollman et al. 1979). This solute was initially thought to be restricted to mesophilic bacteria until 

the recently identification of GG in the thermophilic bacterium Persephonella marina, where it was 

suggested to act as a compatible solute under salt stress (Empadinhas and da Costa 2008). 

However, additional research is still essential to clarify the role of this compound as a true 

compatible solute.  

Mannosylglyceramide (MGA) an ammonia derivative of MG found in R. marinus (Silva et 

al. 1999) and two recent identified solutes, which are variations of MG, mannosylglucosylglycerate 

(MGG) and glucosylglucosylglycerate (GGG), found in Petrotoga myotherma and Petrotoga mobilis 

(Santos et al. 2007; Fernandes et al. 2010) and in Persephonella marina (Santos et al. 2007), 

respectively, are very rare compounds (Figure 2). Mannosylglucosylglycerate, however, does not 

confer protection to Petrotoga miotherma against heat and oxidative stresses (Jorge et al. 2007).  
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Figure 2.Structure representation of some compatible solutes from prokaryotes (Santos et al. 2007) . 

1.3.1 Compatible solutes accumulated by Rhodothermus marinus 

In 1995, Nunes and collaborators described in R. marinus two forms of MG, α-

mannosylglycerate and β-mannosylglycerate. Subsequently, it was demonstrated by Nuclear 

magnetic resonance (NMR) that the initial identification of α-mannosylglycerate could not be correct 

because during the purification of this compound it did not bind to anionic exchange resins as 

expected for a negatively charged compound (Silva et al. 1999). So the two forms of MG initially 

identified in R. marinus were in fact two related compounds, α-mannosylglycerate and α-

mannosylglyceramide.  

In response to salt stress, at the optimum growth temperature, R. marinus accumulated 

intracellular solutes like mannosylglycerate (MG), mannosylglyceramide (MGA) and low levels of 

trehalose, glutamate and glucose. At the highest growth temperature, MG is the major compatible 

solute and MGA is not detected. Levels of MG in R. marinus depended on growth temperature 

since it increased with growth temperature at a given NaCl concentration in the range of 3-5% 

(Figure 3) (Martins et al. 1999; Silva et al. 1999). On the other hand, the MG accumulated under 
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moderate salt stress ridge to be replaced by the neutral derivative MGA, which become the 

dominant compatible solute (Silva et al. 1999).  

 

 
Figure 3.Current knowledge of osmotic and heat-stress responses in R. marinus (Borges, 2004). 

1.4 Mannosylglycerate biosynthesis 
The characterization of metabolic pathways for the synthesis of compatible solutes is 

crucial in order to understand the regulatory mechanisms involved in the adaptation of many 

organisms to salt or temperature ranges.  

Mannosylglycerate biosynthesis was for the first time described in R. marinus and found to 

proceed via two alternative pathways (Martins et al. 1999). In one of them, called the single-step 

pathway, GDP-mannose is condensed with D-glycerate to produce MG in a reaction catalyzed by 

mannosylglycerate synthase (MGS). In the other, called two-step pathway, mannosyl-3-

phosphoglycerate synthase (MPGS) catalyzed the conversion of GDP-mannose and D-3-

phosphoglycerate into a phosphorilated intermediate, which is subsequently converted to MG by 

the action of a mannosyl-3-phosphoglycerate phosphatase (MPGP) (Martins et al. 1999; Borges et 

al. 2004). Thus far, R. marinus is the sole organism possessing the two pathways for the synthesis 

of MG (Figure 4). 
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Figure 4.The two pathways for the synthesis of mannosylglycerate in R. marinus (Roberts 2005).  

 

The single-step pathway is rare and has also been found and characterized in the 

mesophilic red algae Caloglossa leprieurii (Neves et al. 2005). On the other hand, the two-step 

pathway is common in prokaryotes, such as Pyrococcus horikoshii, T. thermophilus, Palaeococcus 

ferrophilus and Thermococcus litoralis (Figure 5) (2001; Empadinhas et al. 2003; Neves et al. 

2005).In these organisms, the mpgS and mpgP genes are organized in a similar way, the mpgP 

gene is located immediately downstream of the mpgS gene in an operon-like structure (Figure 5). 

In contrast, in an uncultured Crenarchaeote the mpgP gene was not detected downstream of the 

mpgS, indicating that mpgP gene is located elsewhere in the chromosome or that the 

dephosphorylation of the intermediate MPG might be catalyzed by an unspecific phosphatase or 

that MPG could be a precursor for unknown macromolecules (Quaiser et al. 2002; Treusch et al. 

2004) (Figure 5). Moreover, a bifunctional MGSD encoded by mgsD gene was found in the 

genome of the mesophilic bacterium Dehalococcoides ethenogenes. This gene is an unusual 

fusion between mpgS and mpgP genes combining the activities of both MPGS and MPGP (Figure 

5) (Empadinhas et al. 2004). 
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Figure 5.Schematic organization of mannosylglycerate synthesizing genes in prokaryotes. 

 

1.4.1 Specialized roles of the two pathways for the synthesis of 
mannosylglycerate in Rhodothermus marinus 

In 1999, Martins and collaborators detected that the MGS activity in cellular extracts of R. 

marinus was salt independent while the MPGS/MPGP system requires addition of NaCl or KCl to 

achieve full activity. The salt-dependence was already reported in the two-step pathway implicated 

in other compatible solutes biosynthesis such as trehalose and glucosylglycerol (Giaever et al. 

1988; Hagemann 1994). Later, Borges and collaborators (2004) demonstrated that in R. marinus 

the two pathways for MG biosynthesis are regulated by salt and temperature, physical parameters 

that affect the intracellular MG concentrations. Levels of the enzyme from the single-step pathway 

(MGS) increased in response to heat stress, while induction of the synthesis of MPGS (the 

synthase of the two-step pathway) occurs when cells were exposed to osmotic stress. However, it 

was not established the existence of a salt-dependent control mechanism of gene expression 

(Borges et al. 2004).  

1.5 Compatible solutes: biotechnological applications  

1.5.1 Enzymes stabilizers and medical applications 

For the recent years several novel low molecular weight solutes have been identified in 

hyper/thermophilic archaea and bacteria microorganisms but no occurrence were found in 

mesophilic species. For this reason there is a growing interest in their role as osmolytes and 

possible thermostabilizing agents that could be useful for the protection of enzymes, and other cell 

components.   
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For example, some methanogenic organisms accumulate cyclic-2,3-bisphosphoglycerate 

(cBPG), a compound which has a thermoprotectant role on glyceraldehyde-3-phosphate 

dehydrogenases (GADPH) (Ramos et al. 1997). Moreover it is known that cBPG is able to protect 

malate dehydrogenase and GADPH from Methanothermus fervidus and formyltransferase from 

Methanopyrus kandleri (Hensel and Konig 1988; Shima et al. 1998).  

Mannosylglycerate has been shown to have a deep effect on thermoprotection and 

protection against freeze and dry of enzymes derived from different origins (Ramos et al. 1997). 

Comparative studies using ectoines, hydroxyectoine, DIP, diglycerol phosphate (DGP), MG and 

MGA on rabbit muscle lactate dehydrogenase showed that MG and hydroxyectoine were the most 

efficient stabilizers of this enzyme from heat inactivation (Borges et al. 2002).  

Moreover, recent research for a potential tool in combating prion diseases demonstrated 

that ectoine and mannosylglyceramide inhibit aggregation of peptide fragment PrP106-126, 

preventing amyloid formation, while hydroxyectoine and MG hardly had any effect on the 

aggregation of this peptide. Moreover, ectoines and MGA reduced the PrP106-126 toxicity in 

human cells. This findings support that ectoine and mannosylglyceramide could be used as 

potential drug compounds against prion desease (Kanapathipillai et al. 2008). 

1.5.2 Thermus thermophilus as a model organism for heterologous gene 
expression 

Many studies suggest that protection of model enzymes from heat denaturation and 

freeze-drying are more effective by MG than other solutes (Ramos et al. 1997; Borges et al. 2002). 

Moreover, the production of this compatible solute appears to be suitable in T. thermophilus since 

all other thermophilic or hyperthermophilic microorganisms that produce this compatible solute 

grow very poorly for industrial production (Borges et al. 2002; Da Costa 2006).  

Frequently, enzymes from thermophilic origin cannot be expressed in a conventional 

mesophilic hosts because of differences in specific processing and requirements for chaperones 

and other factors that, in addiction to high temperatures, may be needed for enzymes to fold 

correctly so their activity can be detected and their physiologic function determined. Strains of T. 

thermophilus are naturally competent organisms suitable for genetic manipulations and have been 

successfully used for the expression of genes from different sources, either for basic research or as 

cell factories for the overproduction of enzymes with industrial application (Park et al. 2004; 

Egorova and Antranikian 2005). 

 

 



 
 
 

Identification of the key enzyme for mannosylglyceramide synthesis in Rhodothermus marinus 
 

 
 

 
11 

 

2 Objectives 
 This work aims to characterize the biosynthetic pathway of mannosylglyceramide the rare 

solute only found in R. marinus, through the identification of gene(s) and substrates involved and to 

get insights of a suitable bacterial system for the overproduction of the rare solute. 
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3 Material and methods 

3.1 Strains, plasmids and culture conditions 

The type strain of R. marinus (DSM 4252)was obtained from Deutsche Sammlung von 

Mikroorganismen und Zelkulturen, Germany. The strain was grown at 65ºC and pH 7.5 in Degryse 

medium 162 (DSMZ medium 630, 

(http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium630.pdf) supplemented with 1% 

and 5% NaCl. Growth was evaluated by measuring the turbidity of the culture at 610 nm (OD610). 

“Rhodothermus obamensis” (JCM 9785T) was obtained from the Japanese Collection of 

Microorganisms, Japan. 

Escherichia coli strains DH5α and BL-21 were used has hosts for the expression of “mga” 

gene using cloning vectors pET30a and pTRC99A (Figure 6). These strains were grown in Luria-

Bertani (LB) medium, at 37ºC and pH 7. Kanamycin (30 µg/ml) and ampicillin (100 µg/ml) were 

added to the medium for selection of plasmids pET30a and pTRC99A, respectively.  
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Figure 6.Cloning vectors pET-30a (A) and pTRC-99A (B) used for the expression of “mga” gene from R. 
marinus. 

3.2 Extraction of intracellular organic solutes 

Cells of R. marinus were grown at 65ºC in Degryse medium with 1% and 5% NaCl, 

harvested during the mid-exponential and stationary phases of growth (OD610=0.4) by 

centrifugation (10 000 x g, 10min, 4ºC) and washed twice with a NaCl solution identical in 

concentration to that of the growth medium. Cell pellets were extracted with boiling 80% ethanol. 

The extraction was repeated and the combined extracts evaporated to dryness under negative 

A 
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pressure; the residue was resuspended in water and chloroform, and centrifuged to remove lipid 

components (Silva et al. 1999). 

The protein content of the cells was determined by the Bradford assay (Bradford 1976) after 

sonication of the cells, using an aliquot of the suspension before the extraction of compatible 

solutes.  

3.3 Visualization of intracellular organic solutes by thin layer 
chromatography  

The intracellular organic solutes were separated by thin layer chromatography (TLC) on 

Silica Gel 60 plates using different solvent systems: a) hexane, chloroform, acetic acid (7:2:1, 

v/v/v); b) chloroform, methanol, acetic acid, water (30:50:8:4, v/v/v/v);  c) chloroform, methanol, 

ammonium solution at 25% (30:50:25, v/v/v), and visualized by spraying with α-naphthol sulfuric 

acid solution or ninhydrin solution followed by charring at 120ºC. Pure mannosylglycerate, 

trehalose, D-glutamate and glucose were used as standards.  

3.4 Preparation of Rhodothermus marinus protein extracts  

Cells were harvested during mid-exponential phase of growth (OD610= 0.4) and centrifuged 

(13000 rpm, 5 min, 20ºC). The cell sediment was re-suspended in Tris-HCl (25 mM, pH 7.5) and in 

BTP buffer (25mM, pH 7.5), followed by disruption in a French-press (120 MPa) (Thermo Electron 

Corporation). Cell extracts were dialysed against 25mM Tris-HCl (pH 7.5) or 25 mM BTP (pH7.5) 

buffers to remove endogenous solutes and other low molecular weight compounds prior to 

measuring enzyme activities. The protein content was determined by the Bradford assay (Bradford 

1976) using BSA as standard. 
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3.5 Enzyme assays 

Table 1. Substrates of enzyme assays. Column A, possible amino group donors; column B, possible amino 
group acceptors. 

A* B* Co-factors** 
Amino acids   

D-alanine L-histidine MPG       FeCl3    (1mM) 
L-arginine D-leucine MG         MgCl2   (5mM) 
D-aspargine L-lysine  NAD+   (5mM) 
L-aspartate D-methionine  NADP   (5mM) 
L-cysteine L-ornithine  NaCl      (100mM) 
D-glycerate L-proline   
Glycine L-serine   
D-glutamine L-valine   
L-glutamate    

Amonium Chloride    
Poliamines 
   Spermine 

Spermidine 
1,3-diaminopropane 

   

Tryptone             (20 mg/ml)    
Yeast extract      (20 mg/ml)       
Casamino acids (20 mg/ml)    

* Substrates were used at a final concentration of 5 mM 
** Final concentrations of co-factors used in enzyme assays 
 

Enzyme assays with cells extracts of R. marinus were performed by combining each 

substrate represented in column A with substrates represented in column B of Table 1. Reactions 

were performed in BTP (50 mM, pH7.5) or Tris-HCl (50 mM, pH 7.5) buffers, at 60ºC during 45 

minutes and stopped by cooled on ice.  Co-factors indicated in Table 1 were also added to the 

enzymatic reactions. Control assays were carried out using the same conditions. Products were 

separated and visualized by TLC with appropriate standards as described above (1.3.).   

3.6 DNA manipulation, cloning and analysis 

The isolation of DNA from R. marinus and “R. obamensis” was performed as described by 

Nielsen et al. (1995). PCR amplifications of the hypothetical “mga” gene (800 bp) were performed 

with GC-RICH PCR system kit (Roche). The forward primer MGAS-Nco (5´-

GACCATGGCACCGCGCATGTCCGG-3´) and the reverse primer MGAS-Hind (5´-

TACAAGCTTTTAGGCTGCTCCGTTGCCG-3´) were designed based on hypothetical “mga” gene 

sequence of R. marinus (GenBank CP001807). The PCR mixtures were pre-incubated for 5 min at 

95ºC and then subjected to 30 cycles denaturation at 95ºC for 1 min,  annealing at 55ºC for 1 min 

and primer extension reaction was at 72ºC for 1 min. The extension reaction in the last cycle was 
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prolonged for 10 min. PCR product was visualized on 1% agarose gel electrophoresis and purified 

by band excision using a DNA purification Kit (Promega) and cloned into NcoI and HindIII 

restriction sites of plasmids pET30a and pTRC-99A to give pET30A-“mga” and pTRC99A-“mga”, 

respectively. Transformations of E. coli DH5α and E. coli BL21 were carried out as described 

previously (Sambrook 1989). Ampicilin and kanamycin were added to the medium at a final 

concentration of 100 µg/ml and 30 µg/ml, respectively, for plasmid selection. The clones were 

sequenced by AGOWA GmbH (Berlin, Gemany).  

3.7 Over expression of the hypothetical “mga” gene 

Escherichia coli DH5α and BL21 containing pTRC99A-“mga” and pET30a-“mga”, 

respectively, were grown until they reached a turbidity (O.D610) of about 1.0, induced with 0.5 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG) and grown further for 16 h at 37ºC. Culture aliquots of 

1 and 2 ml were harvested by centrifugation. The culture aliquots were disrupted by sonication and 

centrifuged to remove cell debris. The active fractions were collected and concentrated in a 10-

kDa-cutoff Centricon Ultracel YM-10. 

 The over expression of the recombinant enzyme was evaluated by SDS-PAGE.  

3.8 Thermus thermophilus as thermophilic host for the over 
production of Mannosylglycerate  

Thermus thermophilus strain CC-16 was previously transformed as described by Alarico et 

al. (2007) with plasmid pMK18 carrying the constitutive promoter of the T. thermophilus S-layer 

gene (slpA) followed by the mgS gene encoding the mannosylglycerate synthase (MGS) from the 

single step of MG synthesis in R. marinus. This strain was grown at 65ºC and pH 8.2 in Thermus 

medium (DSMZ 1033) (http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1033.pdf) 

without additional NaCl or supplemented with NaCl to a final concentrations of 1 to 3% (w/v). 

Growth of this strain was also performed with the addition of filter-sterilized D-glycerate at final 

concentration of 14 mM. Cultures were grown into 300 ml metal-capped Erlenmeyer  flasks, 

containing 100 ml of medium, with an initial turbidity of 0.07 (OD610) and were incubated in a 

reciprocal-water bath shaker (120 rpm). 
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4 Results and discussion 

4.1 Mannosylglyceramide: searching for the key enzyme 
Understanding the role of compatible solutes in osmo- and thermoadaptation is directly 

correlated with the study of the mechanisms of its uptake from external environment and/or by de 

novo synthesis. The biosynthesis of compatible solutes requires essentially the study of genes, 

enzymes and metabolic pathways related with provided precursors of these compatible solutes. 

Mannosylglyceramide, structurally related to MG, has only been found in R. marinus. The 

closely related “R. obamensis” did not accumulate MGA. This inability of “R. obamensis” to 

accumulate MGA, unlike some strains of R. marinus provides important insights into the strategies 

developed by both Rhodothermus sp. to cope with salt stress (Silva et al. 1999).  

We analysed the genome of R. marinus, specifically the genes surrounding the gene(s) 

involved in the two pathways for the synthesis of MG.  Immediately downstream the mpgS and 

mpgP genes there are two genes in the opposite direction, identified as hypothetical protein 

(Rmar_0500) with a conserved motif belonging to family of Acetyltransferase_2 and as D-amino-

acid dehydrogenase (Rmar_0499), respectively (http://www.genome.jp/kegg-

bin/show_genomemap?ORG=rmr&ACCESSION=Rmar_0500) (Figure 7). Using “Promotor 2.0 

Prediction Server” program (http://www.cbs.dtu.dk/services/Promoter/) we identified a hypothetical 

promoter region upstream the gene encoding the D-amino acid dehydrogenase as shown in Figure 

7. 

 

 
 

Figure 7. Schematic representation of downstream region of mpgs/mpgp genes in R. marinus genome. 
Genes are represented by arrows: AA-dehyd, D-amino acid dehydrogenase (Rmar_0499); Ac_transf, gene 
encoding for a hypothetical protein (Rmar_0500); mpgp, gene encoding the mannosyl-3-phosphoglycerate 
phosphatase (MPGP) and mpgs, gene encoding the mannosyl-3-phosphoglycerate synthase (MPGS).  

 
The Rmar_0500 gene, from R. marinus contains 822 bp and code for a polypeptide with 273 

amino acids. A homologue of this gene was amplified from “R. obamensis” genome, using the 

same pair of primes as used for Rmar_0500 gene. The two genes were sequenced and the 

encoding enzymes showed very high sequence homology (96% amino acid identity, by NCBI 

BLAST program) (Figure 8). Several homologues enzymes, although possess high sequence 
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homology show differences in substrate specificity. For example, an α-glucosidase from T. 

thermophilus strain HB27, with high activity to hydrolyse trehalose, shares 90% of amino acid 

identity with its homologue from T. thermophilus strain GK24, which did not hydrolyse trehalose 

and the highest activity is towards isomaltose (Alarico et al. 2008). We will further investigate if 

differences in amino acid identity of these two homologues enzymes will result in different specific 

activities. This will be achieved by expression and purification of recombinant enzymes from both 

strains and comparative activity studies, which could confirm or close down the involvement of 

Rmar_0500 gene in the synthesis of MGA in R. marinus. 

 

 
Rh_mar          MAPRMSGTRQVATDEYFRFDVPGCYRTQAFQALLARHPEALQLYARHVEAQAHEPAYLQR 60 
"Rh_oba"        MAPRMSGTRQVATDEHFRFDVPGCYRTQAFQALLARHPEALQLYARHVEAQAHMPAYLQR 60 
                ***************:************************************* ****** 
 
Rh_mar          VRQLVPRLVRWLGAEVAADGRPGLCVQTSALLSRLLEELGIWNYVVAGGCVLSFVPADVR 120 
"Rh_oba"        VRQLVPRLVRWLGEEVAADGRPGLCVQASVLLSRLLEELGIWNYMVTGGCVLSFVPADVR 120 
                ************* *************:*.**************:*:************* 
 
Rh_mar          PRVFYLFDLQPVEVPHAWVVAPPYDVIDLTLRQQRYPGPEGRRIPTQVLSCRAPQVTVQP 180 
"Rh_oba"        PRVFYLFDLQPVEVPHAWVVAPPYDVIDLTLRQQRYPGPEGRRIPTQVLSCRAPQVTVQP 180 
                ************************************************************ 
 
Rh_mar          EDVCTPALLQGLLLRGWTRETLLRRAFPEFWHFLKQFPARRVQTPTVSVTYIPARLLLPP 240 
"Rh_oba"        EDVCTPALLQGLLLRGWARETLLRRAFPEFWHFLKQFPARRVQTPTVSVTYIPARLLLPP 240 
                *****************:****************************************** 
 
Rh_mar          WHEAWERMPLINGKSFVQFRSEMTLVLSGNGAA 273 
"Rh_oba"        WHEAWERMPLINGKSFVQFRSEMALVLSGNGAA 273 
                ***********************:*********  
 

Figure 8. Sequence alignment of deduced amino acid sequences of hypothetical protein (Rmar_0500) and its 
homologue from “R. obamensis”. The abbreviations are as follows: Rh_mar, R. marinus and “Rh_oba”, “R. 
obamensis”.  

4.2 Mannosylglyceramide: searching for the natural precursors  

4.2.1 Qualitative method for detection 

 
Rhodothermus marinus accumulate several compatible solutes in the presence of salt and 

heat stress.  Mannosylglyceramide was only accumulated when the organism was growing in 

media containing above 3% to 5% of NaCl and until 75ºC. In these conditions, 

mannosylglyceramide is the major solute accumulated together with mannosylglycerate (Silva et al. 

1999).  

During the present study, it has become crucial to find a method to detect and identify the 

solute MGA. This was achieved by TLC using a solvent system consisting of 

chloroform/methanol/ammonia solution 25% (30/50/25, v/v/v) (Figure 9). Silica plates containing 
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the samples were stained with ninhydrin solution to reveal compounds with amine groups, like 

glutamate (data not shown), followed by spraying with α-naphthol sulfuric acid and charring at 

120ºC to reveal glycosidic compounds. Mannosylglycerate, mannosylglyceramide and trehalose 

were the major solutes of R. marinus cellular extracts and were clearly separated and identified 

using this method (Figure 9).  

 

 
Figure 9. Thin-layer chromatography of R. marinus intracellular organic solutes using 
chloroform/methanol/ammonia solution 25% (30/50/25, v/v/v) as solvent system. Sample of intracellular 
organic solutes from R. marinus culture grown in Degryse medium with 1% NaCl and harvest at O.D.=0.4: 5 µl 
(lane 1) and 10 µl (lane 2) of sample. Sample of intracellular organic solutes from R. marinus culture grown in 
Degryse medium with 5% NaCl, harvest at O.D. = 0.4: 5 µl (lane 3) and 10 µl (lane 4) of sample, and harvest 
at O.D. =1.5: 5 µl (lane 5) and 10 µl (lane 6) of sample. Standards: mannosylglycerate (lane 7), trehalose (lane 
8) and glutamate (lane 9). 

 

4.2.2 Substrates tested in enzyme assays 

Several enzyme assays with dialysed cellular extracts of R. marinus were performed at 

60ºC, during 40 min combining amino acids, polyamines or other compounds as possible amino 

group donors with MG or MPG as possible amino group acceptors. TLC results are exhibit below. 

The efficient dialysis of cellular extracts was confirmed by TLC prior to perform the enzyme assays.  

4.2.2.1 Amino acids 
In R. marinus, gene Rmar_0499 identified as D-amino acid dehydrogenase is a NAD 

dependent enzyme. This type of enzymes is known to release amino group from amino acids. We 

tested some L- and D-amino acids (as possible amino group donors) together with MG or MPG in 

the reactions mixtures. Additionally, NAD+ or NADPH was also used as co-factors but no activity 

concerning MGA synthesis was detected by TLC (Figure 10 and Figure 11).  

Mannosylglyceramide 

  1       2        3      4       5       6         7          8         9 
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Figure 10.Thin-layer chromatography analysis of reaction assays products using several L- and D-amino 
acids. The enzyme assays were performed at 60ºC during 40 min in Tris buffer (pH 7.5) (lanes 1-7) or in BTP 
buffer (pH 7.5) (lanes 8-13) using MG and containing the amino acids: lanes (1 and 8) D-alanine; (2 and 9) D-
aspargine; (3 and 10) glycine; (4 and 11) D-glutamine; (5 and 12) D-leucine; (6 and 13) D-metionine and (7 and 
14) D-valine. Standards: mannosylglycerate (lane 15) and sample of intracellular organic solutes from R. 
marinus (lane 16): MG, mannosylglycerate; MGA, mannosylglyceramide and TRE, trehalose. Dialysed cellular 
extracts of R. marinus in Tris buffer (lane 17) and BTP buffer (lane 18).  

 

 
 

Figure 11.Thin-layer chromatography analysis of reaction assays products using several L-amino acids. The 
enzyme assays were performed in 15 mM BTP buffer (pH 7.5) at 60ºC, during 40 min using MG (lanes 1-4) or 
MPG (lanes 5-8) and the amino acids: lanes (1 and 5) L-arginine; (2 and 6) L-glutamine; (3 and 7) L-lysine and 
(4 and 8) L-ornithine. Controls: mixtures without MG or MPG and with L-arginine (lane 9), L-glutamine (lane 10) 
and L-lysine (lane 11). Standard (lane 12): sample of intracellular organic solutes from R. marinus: MG, 
mannosylglycerate; MGA, mannosylglyceramide and TRE, trehalose. 

 

4.2.2.2 Tryptone, yeast extract and casamino acids 
Some compounds used for microbiological growth have a variety of amino acids 

and some peptides in their composition. We performed enzyme reactions by testing some 

of that compounds, like tryptone, yeast extract and casamino acids combined with MG or 

MPG (Figure 12). 
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Figure 12. Thin-layer chromatography analysis of reaction assays products using tryptone, yeast extract and 
casamino acids. The enzyme assays were performed in 15 mM BTP buffer (pH 7.5) at 60ºC, during 40 min 
with MG (lane 1, 4 and 7) or MPG (lane 2, 5 and 8) and with tryptone (lane 1 and 2), yeast extract (lane 4 and 
5) and casamino acids (lane 7 and 8). Controls: mixtures without MG or MPG and with tryptone (lane 3), yeast 
extract (lane 6) and casamino acids (lane 9). Standard (lane 10): sample of intracellular organic solutes from 
R. marinus: MG, mannosylglycerate; MGA, mannosylglyceramide and TRE, trehalose. 

 

The TLC analysis revealed one spot in lane 4 and 5 with about the same solvent migration 

as MGA from the standard (lane 11). Complementary testes showed that those spots were not 

MGA but corresponded to glucose from the complete hydrolysis of trehalose present in yeast 

extract by enzyme(s) of the crude extract of R. marinus. In the control reaction (lane 6) without 

crude extract we only observed trehalose. In this solvent system, the standard glucose has 

approximately the same solvent migration as MGA (data not shown).   

4.2.2.3 Polyamines 
 

Physiological polyamines, like putrescine, spermidine and spermine are synthesized 

endogenously in the cells of all living organisms and their metabolic pathways are conserved, 

suggesting functions in transcriptional and translational regulation which affects growth, modulation 

of cell signalling, membrane stabilization and regulation of cell death (Kusano et al. 2008). 

Polyamines are also reported as ancient stress molecules as they are induced by different 

stresses, such as reactive oxygen species, heat and ultraviolet radiation (Rhee et al. 2007).  

Some polyamines like spermidine, spermine and 1,3-diaminopropane, known to exist in R. 

marinus and precursors of unusual long and branched polyamines biosynthesis (Hamana et al. 

1992) were also tested in the enzyme assays as possible amino group donors (Table 1, Material 

and Methods).  
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Figure 13.Thin-layer chromatography analysis of enzyme assays using polyamines. (A) Silica plate stained 
with ninhydrin and with (B) α-naphthol sulfuric acid. Enzyme assays with MG and polyamines: spermine (lane 
1), spermidine (lane 2), 1,3 diaminopropane (lane 3); or with MPG and polyamines: spermine (lane 4), 
spermidine (lane 5) and 1,3-diaminopropane (lane 6). Controls: mixtures without MG or MPG and with 
spermine (lane 7), spermidine (lane 8) and 1.3-diaminopropane (lane 9). Standard (lane 10): sample of 
intracellular organic solutes from R. marinus: MG, mannosylglycerate; MGA, mannosylglyceramide and TRE, 
trehalose. 

 
Although the utilization of a variety of substrates and co-factors, we were not able to attain 

to MGA synthesis, yet. We will further continue this study by testing different reaction conditions, 

such as different temperatures of incubation, different buffers, like potassium or sodium phosphate 

which are often used by amino acid dehydrogenases (Ali et al. 2003; Tanigawa et al. 2010). We will 

also test other substrates and co-factors such as NaCl and KCl that frequently increase the activity 

of enzymes in crude extracts (Martins et al. 1999). At this point, it is also crucial the purification of 

the hypothetical protein recombinant enzyme, which we suppose to be involved in the biosynthesis 

of MGA in order examine its activity.    
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4.3 Overexpression of putative “mga” gene 
The putative “mga” gene encoding for the hypothetical protein was amplified from genomic 

DNA of R. marinus, cloned into expression vectors pET30a and pTREC99A and used to transform 

E. coli BL21 and E. coli DH5α, respectively.  

SDS-PAGE analysis of cell extract from E. coli BL21 containing pET30a-“mga” clone grown 

with IPTG induction showed an extra band of a molecular mass of 31 kDa (Figure 14), which was 

not observed in non-induced crude extracts nor in cell extracts from E. coli DH5α containing 

pTREC99A-“mga” clone (data not shown) or in cell extracts from E. coli BL21 and DH5α with empty 

vectors used as controls. 

 

 
Figure 14. SDS-PAGE analysis of hypothetical protein overproduction in E. coli BL21. Crude extract from 
BL21 containing pET30a (lane 1) and BL21 containing pET30a-“mga” (lane 2) before induction with 0.5 mM of 
IPTG. 1 ml of crude extract from IPTG-induced BL21 containing pET30a (lane 3) and from IPTG-induced 
BL21 containing pET30a-“mga” (lane 4) and 2 ml of crude extract from IPTG-induced BL21 containing pET30a 
(lane 5) and from IPTG-induced BL21 containing pET30a-“mga” (lane 6). Molecular mass marker (lane 7). 

 

We will further grow the selected E. coli BL21 containing pET30a-“mga” clone to purify the 

recombinant enzyme by using a nickel HisTrap column (high-affinity column). Enzyme assays 

similar to those mentioned above and with other possible precursors for MGA synthesis will be test 

using the purified recombinant enzyme alone or in the presence of dialyzed cellular extract of R. 

marinus, since it may contain co-factors and other molecules that can be essential or can 

potentiate the synthesis of this solute. 

4.4 Thermus thermophilus as suitable organism for compatible 
solutes overproduction 

Most T. thermophilus strains accumulate as major compatible solutes, MG and trehalose 

but there are some exceptions. For example, Thermus thermophilus CC-16 is a MG-negative 

naturally occurring strain that only accumulates trehalose (by de novo synthesis or by the uptake of 

this solute from the growth media) and is unable to grow up to 1% NaCl. 



 
 
 

Identification of the key enzyme for mannosylglyceramide synthesis in Rhodothermus marinus 
 

 

 
24 

 

We have transformed strain CC-16 with a plasmid containing the “mgs” gene, from R. 

marinus, responsible for the synthesis of MG from GDP-mannose and D-glycerate in one single 

step. Strain CC-16 transformants became able to grow in media containing more than 1% up to 3% 

NaCl and to accumulate MG, however, only when D-glycerate was externally provided to the 

growth media. We concluded that D-glycerate is not a naturally occurring substrate in this strain 

and that MG is only synthesise when this compound is up taken from the growth medium.  

To improve the utilization of strain CC-16 as a suitable organism, particularly, for the 

overproduction of MG we’ll alternatively test the addiction to the growth media of glycerol and 

serine, which are precursors of D-glycerate in organisms like Thermotoga maritime (Yang et al. 

2008), attempting the indirect production of MG since D-glycerate is an expensive commercial 

product.  

If we succeed in the characterization of the biosynthetic pathway of MGA, we will also use 

this T. thermophilus strain to overproduce this unusual solute, thus far, only found in R. marinus.  
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