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Resumo 
 
 

Um dos papéis mais importantes dos vírus em sistemas aquáticos é a sua 
capacidade de agir como vectores para a transferência de genes, sendo a 
lisogenia o mecanismo-chave neste processo. A lisogenia pode ajudar os vírus 
a sobreviver a períodos de reduzida abundância de hospedeiro e / ou 
escassez de nutrientes, contribuindo também para o aumento de “fitness” do 
hospedeiro. Devido à sua localização, na interface entre a hidrosfera e a 
atmosfera, a microcamada superficial está exposto a elevada intensidades de 
radiação solar, elevadas concentrações de poluentes e metais pesados e 
flutuações de temperatura e salinidade. Representa, portanto, um ambiente de 
stress para os microrganismos, pelo que estes poderão ter desenvolvido 
estratégias adaptativas à sobrevivência neste microhabitat, nomeadamente a 
lisogenia. Por outro lado, sendo a radiação UV um importante indutor da 
lisogenia, a sua elevada intensidade na microcamada poderá resultar numa 
maior frequência de células lisogénicas neste compartimento. 
O objectivo deste trabalho foi o estudo da importância da lisogenia na 
microcamada superficial e água subsuperficial na zona marinha e salobra da 
Ria de Aveiro (Portugal), tendo a fracção de células lisogénicas sido 
determinada após indução dos profagos com mitomicina C. Neste estudo 
também foi quantificado o número de bactérias que são contados como vírus 
quando a abundância viral é determinada por microscopia de epifluorescência.  
A percentagem de células lisogénicas na microcamada superficial da zona 
marinha variou entre 1,2% e 3,1% e na água subsuperficial entre 1,0% e 5,3%. 
Na zona salobra, a proporção de células lisogenicas na SML variou entre 0,9% 
e 6,0% e na coluna de água entre 1,0% e 4,7%. A fracção de bactérias 
lisogénicas foi semelhante na microcamada superficial e na água subjacente.  
Não foi observado um perfil de variação sazonal nítido para a lisogenia, mas a 
fracção de bactérias lisogénicas foi maior, em ambos os compartimentos, 
quando as condições ambientais foram mais adversas. Os perfis de DGGE 
mostraram que alguns grupos de bactérias desapareceram após a indução da 
lisogenia, mas outros grupos de bactérias, não observados no controle, 
apareceram após a adição da mitomicina. Na zona marinha do sistema 
estuarino da Ria de Aveiro 27% das partículas contadas como vírus são 
bactérias, mas na zona salobra apenas 14% dessas partículas são bactérias. 
Embora a ocorrência de lisogenia no sistema estuarino da Ria de Aveiro não 
seja muito alta, a variação sazonal da fracção de bactérias lisogénicas sugere 
que a lisogenia pode ser influenciada por variações de temperatura, salinidade 
ou intensidade de radiação UV. Quando a microscopia de epifluorescência, é 
usado para contar partículas virais, a abundância viral pode ser sobrestimada, 
nomeadamente na área marinha.  
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Abstract 

 

Acting as gene transfer vectors constitutes one of the main roles played by 
viruses in aquatic systems, being lisogeny a key mechanism in this process. 
Lisogeny can help viruses withstand low host abundance periods and/or 
nutrient limitation, potentially contributing to increased fitness of the host as 
well. Due to its location, at the air-water interface, the surface microlayer (SML) 
is exposed to high intensities of solar radiation, enhanced concentrations of 
pollutants and heavy metals and strong temperature and salinity fluctuations. 
Therefore, it represents a stressful environment for microorganisms, which 
might have developed adaptative strategies for survival at this interface, 
including the presence of prophages. On the other hand, as UV radiation is an 
important lisogeny inducer, intense UV levels at this layer might result in 
increased lisogenic cell frequency in the SML. The aim of this work was to 
study the role of lisogeny at the SML and underlying waters (UW) of the marine 
and brackish water sections of Ria de Aveiro (Portugal), using the mitomycin C 
method to induce prophage. In this study was also quantified the number of 
bacteria that are counted as viruses when viral abundance is determined by 
epifluorescence microscopy. The proportion of lisogenic bacteria in the marine 
zone ranged from 1.2% to 3.1% at the SML and from 1.0% e 5.3% in the UW. 
At the brackish water site, the fraction of lisogenic bacteria ranged from 0.9% to 
6.0% at the SML and 1.0% to 4.7% at the UW. The fraction of lisogenic 
bacteria was similar in SML and in UW. It was not observed a clear pattern of 
seasonal variation of lisogenic bacteria, but the high values of lisogeny were 
observed, for both compartments, when the environmental conditions were 
more adverse. The DGGE profiles show that some groups of bacteria 
disappeared after the induction of lisogeny but other groups, not detected in the 
controls, appears after the incubation with mitomycin. 
In the marine zone of the estuarine system Ria de Aveiro 27% of particles 
counted as viruses are bacteria but in the brackish water zone only 14% of 
those particles are counted as viruses. Although the occurrence of lysogeny in 
the estuarine system Ria de Aveiro is not high, seasonal variation in the 
fraction of lisogenic cells suggests that lisogeny can be influenced by changes 
in temperature, salinity and in the intensity of UV radiation. When 
epifluorescence microscopy is used to count viral particles, viral abundance 
can be overestimated, namely in the marine area. 
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1.Introduction 
 

1.1 Importance of bacteria in the marine environment 
 

For many years, bacteria were not considered an essential component of the 

biogeochemical processes of the aquatic system. However, this view has changed and 

now it is well known that microorganisms play an important role in biogeochemical 

cycles. (Azam, Fench et al. 1983) 

Bacteria are the most important biological components involved in the turnover 

(transformation and remineralisation) of organic matter in aquatic systems (Pomeroy et 

al., 1991) (Pommeroy 1991). Heterotrophic bacteria often represent 10-30% of the living 

carbon biomass (Holligan et al., 1984 (Holligan 1984; Cho 1990) and may utilize as much 

as 40% of the carbon fixed by the primary producers ((Cho 1990); (DUCKLOW 1992)By 

converting dissolved organic carbon into a particulate form, potentially useable by higher 

trophic levels, heterotrophic bacteria represent a key link in the cycles of energy and 

carbon in the aquatic systems, as depicted in the concept of the microbial loop proposed 

by Azam et al (1983). Studies in several aquatic environments have indicated that the 

microbial loop can process about as much energy as the classical grazing food chain 

(Riemann and Søndergaard 1986)However, the current description of the microbial loop 

is not a simple task as new players, namely viruses, have been added. The importance of 

viruses in the microbial loop is still uncertain, but it is known that they influence the cycle 

of organic matter when infect and destroy bacteria, algae and cyanobacteria. When cell 

lysis occurs, particulate organic matter is lost from the food chain but becomes available 

to heterotrophic bacteria.  

1.2.  Bacterioplankton abundance, diversity and production in 
the marine environment 
 

During the last forty years it has become clear that bacterioplankton makes a 

significant contribution to planktonic abundance ((Holligan 1984): (del Giorgio and Cole 

1998) and productivity (Cole 1988; Goosen 1997) in aquatic systems. Bacteria are the 

second most abundant biological entity (after viruses) and the first in terms of biomass 
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(Smith, Sorial et al. 1996),and their production has been found to average 20% of primary 

production ((Williams 1981); (Cole 1988)), and about twice the production of 

macrozooplankton (Cole et al., 1988). Furthermore, microbial communities are influenced 

by several factors that operate with different strength in oceanic and estuarine 

environments. These factors act also differently within an aquatic system, creating 

vertical, longitudinal, seasonal and tidal patterns of variation.  

The abundance and productivity of the bacterial community in aquatic systems 

vary according to the temperature range ((Heinanen and Kuparinen 1991; Siervi, Mariazzi 

et al. 1995)), depth of the water column (Pace and Cole, 1994; Talbot et al., 1997 (Pace 

and Cole 1994; Talbot 1997) and, in estuaries, with the proximity to the sea (Almeida 

1994; Goosen 1997; Konstantinos Ar, Konstantinos et al. 1998; Almeida, Cunha et al. 

2001) and with tidal water circulation (Almeida et al, 2001;(Shiah 1995; Hoppe 1996)  

Bacterial abundance in aquatic environments is in the range of 108 to109 cells mL-1 

del Giorgio et al., 1996; Hoppe et al., 1996). In estuarine environments, bacterial 

abundance is 1 to 3 times higher in comparison with open waters (Hall and Vincent, 1990; 

Børsheim, 2000). Bacterial abundance in open waters shows a clear vertical profile of 

variation, with the density of cells decreasing below the photic zone (Bianchi and Juliano., 

1996). In coastal waters the highest abundance occurs at surface waters (Heinamen, 

1991; Almeida et al, 2001, Santos et al, 2009), but in shallow estuarine systems bacterial 

abundance can be homogenous along the water column (Ducklow and Shiah, 1993) or 

even higher in the bottom (Amon and Benner, 1998). In the cold seasons, total bacterial 

abundance decreases in open waters and in coastal waters (Hoppe, 1978). In estuarine 

systems, longitudinal profiles in bacterial abundance also occur, with an increase from the 

outer to the inner (konstantinos et al, 1998; Almeida et al, 2001; Almeida et al, 2005) or 

mid (Cunha et al, 2000: Almeida et al, 2001; Almeida et al, 2005) estuarine sections. In 

these systems, bacterial abundance increases when near low tide when compared to high 

tide (Almeida et al, 2001). 

Only a fraction of the total bacteria is active (Almeida et al, 2001) and, 

consequently, the total number of bacteria may not be a useful ecological parameter, 

because only the active bacteria are responsible for the growth, nutrient uptake and 
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transformation of organic carbon substrates. This fraction of active cells can be selectively 

grazed (del Giorgio et al, 1996) or infected by viruses (Proctor and Fuhrman, 1990). Total 

bacterial number gives important information of standing stock without, however, 

reflecting the real metabolic activity. The number of active cells varies more than the 

total number among and within systems (del Giorgio and Scarbough, 1995), but the trend 

of the variation is similar. 

In aquatic environments, bacterial communities are represented by a limited 

number of individual bacteria (Murray et al., 1998; Pinhassi et al., 2000). Salinity, nutrient 

concentration, organic matter composition and the structure of the bacteriovore 

community are thought to influence the composition of natural bacterioplankton 

communities (Crump et al, 2003). Besides salinity, geographic variability in estuarine 

bacterial community composition is mainly governed by dynamic events like algal blooms, 

temperature change and upwelling (Fukami et al., 1985; Hagstrom et al., 2000). Seasonal 

variations in bacterial community composition have been attributed to changes in 

inorganic nutrient concentrations (Pinhassi and Hagstrom 2000) and in the nature of the 

dissolved organic matter (DOM) pool (Cottrell and Kirchman 2000a). Typically, estuaries 

are characterized by a shift in the dominant bacterial groups along the salinity gradient 

from α- and β-Proteobacteria, Gram-positive bacteria and Verrucomicrobia to α- and γ-

Proteobacteria (Crump et al. 1999; Henriques et al, 2006). Environmental factors, such as 

precipitation and temperature, can also affect the estuarine bacterial community 

composition (Kan et al, 2006) 

In aquatic systems, bacterial productivity by heterotrophic bacterioplankton is in 

the range of 0.0003-26.2 µg C l-1 h-1 (Hoppe et al., 1998; Kisand and Noges, 1998, Shiah et 

al., 1999; Almeida et al, 2001; Almeida et al, 2005). In estuarine systems the values are 

often high when compared to the adjacent coastal areas and open sea (Ducklow and 

Shiah, 1993; Di Siervi et al., 1995; Almeida et al, 2005). The highest values have been 

registered during summer months and the lowest during the winter in both estuarine and 

oceanic waters (Di Siervi et al., 1995; Almeida et al, 2002). Vertical profiles of bacterial 

production in oceanic waters are usually characterised by decreasing values from surface 

to the deeper water layers (1996; Talbot et al., 1997; Almeida et al, 2001). In estuarine 
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systems bacterial production is, in general, higher at surface waters (Heinanen, 1991;) but 

in shallow estuaries bacterial productivity can be similar throughout the water column 

(Ducklow and Shiah, 1993) or even higher near the bottom sediment (Amon and Benner, 

1998). Frequently bacterial productivity increases up to 10 times from the lower to the 

mid-upper sections of the estuary (Goosen et al., 1997;, Cunha et al., 2000; Almeida et al, 

2001). In these systems, the highest values of bacterial productivity have been observed 

near low tide (Shiah and Ducklow, 1995; Hoppe et al., 1996; Cunha et al., 2000; Almeida 

et al, 2001). 

 

1.3.  Factors affecting bacterioplankton in the marine 
environment 
 

Longitudinal profiles of bacterioplankton abundance, production and diversity in 

the marine environment are clear in coastal waters and result from physical, chemical, 

nutritional and biological pressures that are in different balance in marine and brackish 

water zones (Almeida et al, 2001, Henriques et al, 2004). Higher values of nutrients and 

low values of salinity in the mid and upper sections of estuarine systems stimulate 

bacterioplankton growth. However, in these estuarine sections, biological control, namely 

viral lysis, affects bacteria negatively (Almeida et al, 2001). 

The seasonal variation of bacterioplankton depends on the region. In temperate 

systems, variation of bacterioplankton peaks during the warm season and the lowest 

values are observed during the cold season (Almeida et al, 2001,). This pattern of 

variation is clear in coastal waters, but oceanic environments show seasonally stable 

regimes. Temperature and salinity are the parameters that control this profile of variation 

(Shultzand Ducklow, 2000).  

Bacterioplankton tidal variation is due to water circulation, which affects salinity, 

temperature and nutrient concentration, namely in coastal waters. Water circulation and 

wind can also change estuarine conditions in a smaller temporal scale, in comparison with 

the open ocean (Shultz and Ducklow, 2000). Clear patterns of tidal variation are observed 

in estuarine systems, showing increasing density, activity and diversity near low tide 

relatively to high tide (Almeida et al, 2001).  
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These factors controlling bacterioplankton can, therefore, be classified as 

nutritional (availability of organic and inorganic substrates), physical (e.g temperature, 

water circulation), chemical (e.g. salinity) and biological (predation and viral lysis). 

 

1.3.1. Availability of organic and inorganic nutrients 
 

It is well known that nutrients represent a major factor regulating 

bacterioplankton in aquatic systems (Ducklow and Carlson, 1992; Proctor, 1992; Shiah et 

al., 1999).  

In aquatic systems, nutrients supporting bacterial heterotrophic growth can be 

classified according to their origin as autochthonous or allochthonous. Autochthonous 

nutrients are produced in the ecosystem by primary producers - phytoplankton. 

Phytoplankton can directly supply bacteria with organic matter, through exudation from 

healthy cells and lysis of senescent and dead cells (Vadstein et al., 1993; Panzenbock et 

al., 2000). Indirect supply occurs via viral lysis or grazing by herbivorous zooplankton 

(Peduzzi and Herndl, 1992; Bratbak et al., 1998; Noble and Fuhrman, 1999). However, in 

coastal systems, primary production may not be sufficient to support bacterial growth 

(Almeida et al, 2005). In these systems, bacterial growth is largely dependent on non-

phytoplanktonic carbon sources, including allochthonous sources, such as river 

transported materials, terrestrial runoff, anthropogenic discharges, benthic fluxes and 

sediment resuspension (Lee et al., 2001; Almeida et al, 2001). Findlay et al. (1992) 

estimated that the amount of allochthonous carbon inputs needed to support bacterial 

productivity in the Hudson Estuary was three to six times greater than the net carbon 

fixed by phytoplankton. An identical trend was also observed in Lawrence Lake (Coveney 

and Wetzel, 1995). However, the original allochthonous compounds undergo partial 

degradation and transformation before entering the aquatic system and might be less 

labile than the autochthonous substrates originated from phytoplankton production 

(Hobbie, 1988). So, allochthonous organic matter can provide stability to 

bacterioplankton, in the sense that the large pool of recalcitrant organic matter supports 
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continuous slow growth, independent of the intermittent growth associated with the less 

constant presence of autochthonous labile organic matter (Wetzel, 1984; Hobbie, 1988). 

In recent years, the theory that bacterial growth rates are dictated solely by 

available organic carbon has changed and the role of inorganic nutrients, such as nitrogen 

and phosphorus in the regulation of bacterial production in aquatic ecosystem has been 

recognized (Thingstad et al., 1993; Rivkin and Anderson1997; Torréton et al., 2000). In 

fact, several studies have shown that bacterial growth increases with increasing 

availability in inorganic nutrients (Kroer, 1993; Pace and Cole, 1996; Torréton et al., 

2000). Moreover, heterotrophic bacteria have been shown to compete successfully with 

phytoplankton for inorganic nutrients (Currie and Kalff, 1984; Thingstad et al., 1993). 

Blackburn et al. (1998) showed that bacteria have nutrient uptake potentials around 100 

times faster than that of phytoplankton. At low concentrations, the competitive 

advantage of bacterioplankton over phytoplankton for inorganic nutrients is a consensual 

idea (Dufour and Berland, 1999; Torréton et al., 2000). 

 

1.3.2 Water properties 
 

It has been shown that bacterial growth is affected by temperature (Shiah et al., 

1999), particularly in eutrophic and mesotrophic systems, where substrate availability 

plays a smaller role (Shiah and Ducklow, 1995). A reciprocal interaction between 

temperature and substrate has also been observed (Wiebe and Pomeroy 1992). 

Salinity is a selecting agent that influences the bacteria that may proliferate in an 

ecosystem (Rheinmheirmer, 1985). Bacteria that need salt for their growth are unable to 

thrive in estuarine environments with strong freshwater inputs (Campbell, 1983). In 

contrast, it is unlikely that inflowing freshwater bacterial populations may survive within 

an estuary (Valdés and Albright, 1981; Painchaud et al., 1987). In estuarine systems 

bacterioplankton exhibit a higher abundance and activity at low salinities (Murrel et al., 

1999), with decreasing values towards higher salinity values (Murrell et al., 1999). 

Although there are only a few reports of light effects on bacterioplankton, 

photoinhibion of heterotrophic bacteria has been reported (Pakulski et al., 1998; Pausz 
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and Herndl, 1999; Mousseau et al., 2000). For example, the bacterial production in the 

Adriatic Sea surface was inhibited by as much as 40% by UV-radiation (Mousseau et al., 

2000). Bacterial photoadaptation does not seem to occur, since bacteria below the photic 

zone are as sensitive to light as bacteria in the euphotic zone (Lindelland Edling, 1996). 

Although photoinhibition results in decreased bacterial activity, photolysis of recalcitrant 

organic matter can actually stimulate bacterial growth (Bushaw-Newton and Moran, 

1999). In surface waters, photochemical transformation of recalcitrant organic matter 

into labile compounds can occur, resulting in enhanced local and transient growth of 

active bacteria (Bano et al., 1997; Bushaw-Newton and Moran, 1999). Organic matter 

exposed to natural solar irradiation enhanced 11-13 times the activity of bacterial 

community of the estuarine system Ria de Aveiro (ongoing PhD thesis). However, organic 

matter phototransformation can also lead to the formation of photoinhibitory 

compounds, such as reactive oxygen species and free radicals (ROS) that may inhibit the 

activity of bacterioplankton.  

Light effects on phytoplankton and on virioplankton can also influence bacterioplankton 

growth. UV-radiation can reduce phytoplankton photosynthesis (Helbling et al., 1996a) 

and growth (Jokiel and York, 1984), enhance phytoplankton exudation (Zlotnik and 

Dubinsky, 1989; Feuillade et al., 1990) and even modify the structure of the 

phytoplankton community (Helbling et al., 1996b). Solar radiation is a major cause of 

decline in viral infectivity in surface waters (Noble and Fuhrman, 1997), reducing virus-

mediated mortality of bacterioplankton. 

 

1.3.3. Water circulation 

 

Water circulation in estuarine environments is capable of changing estuarine 

conditions in a much smaller temporal scale than that occurring in the open ocean (Shultz 

and Ducklow, 2000). The abundance and productivity of bacterial communities in the 

estuarine environment can be affected by water circulation, as it supplies allochthonous 

organic matter and concentrates locally produced organic matter within the estuary 

(Ducklow and Shiah, 1993). 
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The water circulation in estuaries is forced by riverine inflow, tides, rainfall and 

evaporation (Wolanski, 2007). Tidal currents interfere with vertical distribution patterns 

while tidal currents can destratify the water column (Haas, 1977), stimulating total 

bacterial production (Ducklow, 1982). 

 

1.3.4. Mortality through predation and viral infection 

  

One of the major factors of mortality in aquatic bacterial communities is predation 

(bacterial mortality of 5 to 250% per day) (Weinbauer and Hofle, 1998; Weisse and 

Muller, 1998). Heterotrophic nanoflagellates (HNF) and ciliates are often considered the 

major predators of bacteria (e.g. Sanders et al. 1989, 2imek et al. 1990, Berninger et al. 

1991). Moreover, many experimental studies have shown that protista predation and 

zooplankton grazing changes bacterioplankton communities in terms of size structure and 

community composition (Chrzanowski & Simek 1990, Jürgens 1994, Hahn et al. 1999, 

Simek et al. 1999). Selective protista bacterivory has been suggested as one of the key 

factors regulating natural bacterial community composition (BCC) (Jürgens et al. 1999, 

Simek et al. 1999, 2001b, Langenheder & Jürgens 2001). However, the interplay of 

selective and unselective predation is probably quite complex and changes in the grazer 

community may have varying effects on BCC (Simek et al., 2003). Some studies have 

shown the occurrence of highest rates of grazing on active (del Giorgio et al., 1996) and 

motile bacteria (Gonzalez et al., 1993). It has also been shown that bacteria and 

heterotrophic nanoflagellates (HNF) are not strongly coupled across systems, and, 

consequently, HNF do not always control bacterial abundance, probably because of 

predatory control of HNF by larger zooplankton (e.g., daphnids) . Ducklow and Carlson 

(1992) have argued that the control mechanisms may also change seasonally. 

In the late 80´s it was concluded that the majority of viruses are bacterial viruses 

(bacteriophages) and that viral lysis is a major cause of bacterial mortality (Weinbauer M. 

and Hofle M 1998) contributing also to the regulation of bacterial production (Weinbauer 

M. and Hofle M 1998). In many marine environments, the effect of viral lysis on bacterial 

mortality has been compared with the one of flagellate grazing and the proportion of 
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bacterial production removed by viral lysis can be as high as the proportion removed by 

grazing. Viruses can transform microbial biomass into dissolved and particulate organic 

matter (Figure 1) by lysis and export more carbon and other organic molecules out the 

water column by the accelerated sinking rates of virus-infected cells. Accelerated sinking, 

as the result of viral infection, might be a mechanism that enhances the export of the 

smallest primary producers from surface waters (Sutlle, 2005).  

 

 

Figure 1 Viruses are catalysts for biogeochemical cycling (Suttle, 2005). 
 

 

Viruses can influence bacterial diversity at the genetic level since they can mediate 

genetic exchange via transduction (Sayler and Miller, 1992; Paul, 1999). In this process, 

bacterial genomic DNA or plasmid DNA is encapsulated into phage particles during lytic 

replication of the phage in the donor cell and is transferred to the recipient cell by 

infection. This donor DNA either undergoes recombination with the host chromosome to 

produce a stable transductant or remains extrachromossal as a plasmid (Cochran and Paul 

1998). Viruses can also influence the structure of bacterial communities due to their host 

specificity (Wommack et al., 2000). 

 

1.4.  Viruses and lisogeny in the marine environment 
 

The world of prokaryotic viruses, including bacteriophages (phages) and the 

viruses of Archaea, is currently in a period of renaissance, due to metagenomic
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sequencing advances and  the isolation of diverse novel virus-host systems (Comeau et al, 

2008). The resurgence of interest in prokaryotic viruses began in the mid 90s as a 

consequence of their extraordinary abundance in the marine environment, and of the 

unchallenged acceptance of the fact that viruses represent the greatest pool of genetic 

diversity on the planet (Angly et al, 2006; Culley et al, 2006). 

Viruses are, by far, the most abundant biological entities in the aquatic systems 

(Fuhrman, 1999; Wommack and Colwell, 2000;) and their enormous abundance (around 

1010-1011 particles L-1 of water) and vast diversity still need more studies to provide the 

vital clues to their real function in natural ecosystems. The estimation of 1030-31 viruses in 

marine waters (Wommack and Colwell, 2000; Suttle, 2005) corresponds to 1023-25 viral 

infections per second (Pedulla et al, 2003; Suttle, 2007). Most marine viruses are 

bacteriophages that kill bacteria (Weinbauer, 2004), influencing the species composition 

of microbial communities (Wommack and Colwell, 2000). They have a restricted range of 

host cells and, consequently, infection by a particular virus does not act on total microbial 

assemblage but rather on specific sub-populations. Viral lysis in surface waters removes 

20-40% of the standing stocks of prokaryotes each day (Suttle, 1994) and can match 

grazing by protists as a source of mortality of bacteria (Fuhrman and Noble, 1995; 

Almeida et al, 2001; Weinbauer, 2004). However, since these lysis products are readily 

utilizable by bacteria, viral lysis can actually stimulate bacterioplankton (Middelboe et al., 

1996). Consequently, viral lysis plays a significant role in the cycling of nutrients and 

organic matter (Fuhrman, 1999).  

 In the marine environment most phages are dsDNA tailed, belonging mainly (96% 

of the total) to the Caudoviridales order (families Myoviridae, Siphoviridae and 

Podoviridae), but there are also small groups with ssDNA, ssRNA or dsRNA (Table 1) that 

can be important in the marine environment. Metagenomic approaches have shown that 

a large number of sequences (6% of the total) correspond to ssDNA phages belonging to 

Microviridae family (Angly et al, 2006). RNA phages are also present in the marine 

environment (Børsheim, 1993; Alcântara et al, 1995; Grabow, 2001; Cole, 2003) but in a 

recent metagenomic analysis of coastal waters, no RNA phages were detected (Culley et 

al, 2006). However, Culley et al. (2006) showed that the marine environment is a 
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reservoir of previously unknown RNA viruses, revealing that 98% of RNA viruses belong to 

positive-sense ssRNA viruses.  In the same study, however, most of the RNA phages were 

classified as unknown and maybe some of them are RNA phages, since there are only a 

few number of viral RNA sequences in the databases, which difficult viral diversity 

interpretation.  

 

 

 

C, circular; L, linear; S, segmented; T, superhelical; 1, single-stranded; 2, double-stranded. 

 

 

Viruses can interact with their hosts in two major and distinctive ways, the lytic and 

lysogenic cycles of infection. More sporadically, the interaction might also proceed 

through pseudolysogeny. In the lytic cycle, the phages (so-called lytic or virulent) redirect 

the host metabolisms towards the production of new phages, which are released during 

the lysis of the cell. In the lysogenic cycle, the genome of the phage (temperate or 

lysogenic) typically remains in the host in a dormant stage (prophage) and replicates 

along with the host, until the lytic cycle is induced. A lysogenic decision (Figure 2), 

whether or not to establish a prophage state, is made by the temperate phage after 

infection. Lisogeny might be a viral survival strategy to endure periods of low host density 

during nutrient starvation (Freifelder, 1983; Wilson and Mann, 1997). Lysogenic bacteria 

may also gain specific advantages from their relationship with phages that improve their 

overall fitness. These effects may occur through the process of conversion, whereby 

Shape Genera Members 
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6 3011 

3 696 

4 40 

1 3? 

1 18 

2 39 

1 1 

2 57 

1 6? 

1 2 

Pleomorphic 1 6 

1 8? 

Filaments or rods 

Envelope, lipids  

Resembles TMV 

Envelope, lipids, no capsid 

Spindle-shaped, no capsid 

Filamentous 

 

Tail contractile 

Tail long, noncontractile 

Tail short 
 

Complex, capsid, lipids 

Internal lipoprotein vesicle 

 

Envelope, lipids  

               Stphoviridae 

DNA, ds, L Tailed 

Polyhedral 

              Inoviridae 

           Lipotrixviridae 

              Rudiviridae 

            Plasmaviridae 

            Fuselloviridae 

              Podoviridae 

              Microviridae 

          Cortocoviridae 

              Tectiviridae 

              Leviviridae 

              Cystoviridae 

DNA, ss, C 

            ds,L 

            ds,L 

Dna, ds, C, T 

          ds, C, T 

DNA, ss, C 

               ds,C,T 

             ds, L 

RNA, ss, L 

              ds,L, S 

Nucleic Acid Order and families Characteristics 

Caudovirales 

              Myoviridae 

Table 1 Classification and basic properties of bacteriophages (Ackermann, 2003) 
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prophage genes are expressed in the lysogen, resulting in expanded metabolic 

capabilities, antibiotic resistance and toxin production. Most frequently, prophage gene 

expression leads to homoimmunity (Levin et al, 1983) that provides resistance to 

superinfection by the same or similar strains of phages. There are some classical data 

referring that Escherichia coli cells containing prophages grew quicker than nonlysogenic 

E. coli (Edlin et al, 1977). The lytic cycle is induced by physical or chemical agents, such as 

radiation, pollutants and changes in temperature, salinity and nutrient concentration 

(Cochran et al, 1998; Weinbauer and Suttle, 1999). 

Pseudolysogeny (i.e., false lisogeny) is described as a phenomenon where there is a 

constant production of phage in the presence of high host cell abundance (Ackermann 

and DuBow, 1987). It has been considered an environmental condition resulting from 

bacterial nutrient deprivation coexisting in an unstable relationship with infective viruses 

(Ripp and Miller, 1998). Under such condition, host cells do not provide enough energy in 

order for the phage to enter in a true lysogenic or lytic condition. The phage lysis results 

not in total host death, but rather in a state in which a high abundance of phage coexists 

with exponential host growth. Once the bacterial starvation condition is relieved, the 

bacteriophage can either proceed with lytic infection or enter a dormant intracellular 

phase (Wommack and Colwell, 2000). 

 

 

1.5.  Life cycle steps of lytic and lysogenic cycles  

 Several steps in the process of phage replication are common to all viruses. The 

first step of the infection is the adsorption of the phage to the bacterial cell, which is 

reversible and represents a possibility of the phage to decide against infection 

(Weinbauer, 2004). The second step is the formation of an irreversible attachment of the 

phage to the bacteria that is mediated by a phage structure (e.g tail fibers). After these 

first steps, the cell wall is made penetrable (e.g., by special phage enzymes in the tail or 

capsid) and the viral nucleic acid is transported into the cell, whereas the capsid remains 

outside the cell. Following injection, the genetic material is either integrated into the host 

genome or stays in the cytoplasm (Weinbauer, 2004). 
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In the lytic cycle, before the lysis, there is an eclipse period where no infectious phage 

particles can be found either inside or outside the bacterial cell. The phage nucleic acid 

takes over the host biosynthetic machinery and phage-specific mRNA and proteins are 

made, in an orderly fashion. Early mRNA code for early proteins needed for phage DNA 

synthesis and for shutting off host DNA, RNA and protein biosynthesis. After the phage 

DNA is made, late proteins, comprising the structural proteins that constitute the phage 

and the proteins needed for the bacterial lysis are synthesized. Newly synthesized nucleic 

acids and proteins are then assembled and infectious phage particles accumulate within 

the cell; this accumulation induces the beginning of cell lysis. The number of particles 

released per infected bacteria may be as high as 1000 (Murray et al., 2005). 

In the lisogenic cycle, after entrance of the phage DNA in the cell, a phage-coded 

enzyme catalyzes the recombination between a particular site on the circular phage DNA 

and a particular site on the host chromosome. The result is the integration of the phage 

DNA into the host chromosome. The second event that leads to lisogeny starts when the 

phage expresses the protein CI, that the repressor that binds to a particular site on the 

phage DNA, the operator. The repressor shuts off transcription of most phages genes 

except the repressor gene. During the lysis-lisogeny decision, the protein CI is expressed 

from a promoter termed Pre, in the lysogenic state, CI is expressed from a different 

promoter, termed Prm ( promoter for repressor maintenance), wich maintains the 

lysogenic state (Waldor et al., 2005). 

 Although the lysogenic state is highly stable, a lysogen can switch to the lytic state. 

The termination of lisogeny is called induction. Induction can be cause by desiccation, 

exposure to UV or ionizing radiation, as well as exposure to mutagenic chemicals and heat 

.Mitomycin c is an antibiotic of the family of aziridine and represents, along with UV-C 

radiation (<300 nm), one of the most powerful inducing agents (Weinbauer, 2004).  When 

the process of induction starts, a protease (Rec a) is produced, and cleaves the repressor 

protein, giving rise to the beginning of the lytic cycle (Figure 2) (Murray et al. 2005; 

Waldor et al., 2005). The decision for a phage to enter the lytic or lysogenic cycle is taken 

when the virus enters the cell. The decision is based on the concentration of the 

repressor and the phage   
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protein Cro present in the cell (Waldor et al., 2005). The Cro protein turns off the 

synthesis of the repressor and thus prevents the establishment of lisogeny. 

Environmental conditions that favor the production of Cro will lead to the lytic cycle, 

while those that favor the production of the repressor will lead to lisogeny.  

 

 

 
Figure 2. Life cycle of phage λ. An infected cell is depicted at the top, in which injected phage DNA has 

rapidly circularized. Ten to 15 min after infection, a decision made between two alternatives fates 
(Waldor et al., 2005). 

 

1.6 Role of Virus in Aquatic Ecosystems 
 

The prevalence of lytic and lysogenic infection in the marine environment is a topic of 

considerable debate. According to Freifelder (1983), over 90% of known bacteriophages 

are temperate, but other authors (Ackermann and DuBow, 1987; Cochran et al, 1998; 

Jiang and Paul, 1994) suggested that only around 50% of bacterial strains contained 

inducible prophages. This variation can be, in part, attributed to marine environment 

characteristics, since the prevalence of lisogeny has been shown to be highly variable 

across aquatic environments. Lysogenic prokaryotes were observed at proportions of (a) 
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less than 10% in temperate lakes (Colombet et al., 2006) and coastal seawaters 

(Weinbauer and Suttle, 1999); (b) from 10% to 50% in offshore waters (Jiang and Paul, 

1996; Bongiorni et al., 2005), and (c) from 50% to 100% in estuaries (Cochran and Paul, 

1998), Antarctic saline lakes (Laybourn-Parry et al., 2007) and deep marine waters 

(Weinbauer et al., 2003). However, this variation can also be related to the method used 

to determine the lisogenic fraction of prokaryotes, since two methods can be used: (1) 

the decrease in prokaryotes counts in the presence of inductants (mortality method), and 

(2) dividing the number of viruses increased by an average burst size (average burst size 

method). 

 In the first methods, according to Williamson et al (2002), the lisogenic fraction 

(LF) can be determined by (Bc-Bi)/Bc*100, where Bc and Bi are the number of prokaryotes 

enumerated in the control and induced samples after incubation, usually 18 hours, 

respectively with the inductant. In this method it is assumed that the increase in viral 

numbers and the decrease in prokaryotes numbers in the induced samples were caused 

solely by lysogenic induction.  It is no taken into account mortality by grazing and 

senescent cell death. This method ignored also mortality caused by toxicity of the 

inducing agent, overestimating lisogeny (Jiang and Paul (1994, 1996). In the second 

method, according (Williamson et al., 2002) the lisogenic fraction is determined by the 

formula LF= [(Vi-Vc)/Bz]/Bc*100 where Bc is the number of prokaryotes enumerated in 

the control sample after incubation, usually 18 hours and the Bz is the burst size the Vi is 

the number of viruses enumerated in the induced sample at 18h and the Vc is the number 

of viruses enumerated in the control sample. This method is more accurate because 

mitomycin C is not toxic for viruses, but with this method, prokaryotes containing few 

viral particles (≤ 6) are not included in the determination (Jiang and Paul,. 1996). With this 

method aggregated viruses are also counted as bursting prokaryotic cells and phage 

particles attached to prokaryotes surface may also be counted as mature particles inside 

a cell (Jiang and Paul, 996). High burst sizes may lead to the underestimation of the 

presence of lisogeny in prokaryotic communities (Jiang and Paul, 1996). This method is 

the most used in the literature because it gives more realistic values of the lisogenic 

fraction.
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1.7 Lisogeny at the Surface Microlayer  
 

 The Surface microlayer  (SML) (top 1 to 1000 µm of the water column), represents 

the interface between the atmosphere and the hydrosphere, and is characterized by 

physical, chemical and ecological properties distinct from the ones at underlying waters 

(UW) (Hardy, 1997). For prokaryotes, the SML can be an extreme environment, due to 

exposure to intense solar radiation in the ultraviolet and visible spectra, high 

concentrations of heavy metals and organic pollutants, temperature fluctuations and 

salinity changes. However, the SML also offers some advantages to microbial life, 

including high concentrations of organic and inorganic nutrients (Lion and Leckie, 1981). 

Prokaryotes abundance at the surface microlayer has been shown to be 103 to 105 higher 

comparatively to underlying waters (UW) (Bezdek and Carlucci, 1972). It has been also 

shown that lisogenic prokaryotes are more abundance at the SML, than at the UW 

(Tapper and Hicks, 1998; Bettarel et al, 2006). The frequent explanation has been the 

higher diversity of prokaryotes of the neuston that results in a larger diversity of potential 

host cells available to temperate viruses (Fehon and Oliver 1979; Carlucci et al. 1985; 

Hermansson et al. 1987). However, the percentage of viruses in the surface microlayer 

that retains their infectivity while being continuously exposed to sunlight is unknown.  

1.8  Drawbacks of bacterial and viral determination by the 
epifluorescence microscopy method 
 

The use of reliable methods for determination of bacterial abundance and 

biomass is an essential criterion for establishing the roles of bacteria in biogeochemical 

cycles and food chains. In addition, it is also important for understanding the dynamics of 

bacterial populations in natural systems. 

The available methods for determining the bacterial abundance in aquatic environments 

are transmission electron microscope (TEM), epifluorescence microscopy and flow 

cytometry. The most widely used method is epifluorescence microscopy. In this method, 

bacteria are concentrated on 0.2 µm membranes, stained with fluorochromes and 

counted under an epifluorescence microscope (Buesing, 2005).  
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It is crucial to use fluorochromes specific to nucleic acids, in order to facilitate the 

differentiation between bacteria and other particles. This is particularly important when 

the samples are rich in organic matter. Acridine Orange (AO) and 4 ', 6-diamidino-2-

phenylindole (DAPI), which stain only dsDNA, have traditionally been used for estimating 

the number of bacteria. However, in the last years, a variety of other dyes that bind to 

DNA and RNA have become commercially available. These include SYBR Green I and II, 

YOYO-1, YO-PRO-1, SYTO, and PicoGreen. The specificity and intensity of these dyes is 

much greater than that of DAPI and AO, facilitating the recognition and quantification of 

bacteria with greater accuracy (Mosier-Boss 2003) (Table 2)..  

Epifluorescence microscopy is also the most widely method used to estimate viral 

abundance in aquatic systems. Comparatively to electronic microscopy, this method is 

faster, less expensive and more affordable, allowing the processing of a great number of 

samples and, consequently, to obtain more statistically accurate data. Epifluorescence 

microscopy is about seven times more accurate than TEM for counting viruses (Danovaro 

et al, 2001). The most frequently used stains to count viruses are DAPI, YOPRO-1, 

SYBRGreen and SYBRGold (Weinbauer, 2004). Contrarily to the other fluorochromes, DAPI 

stains only dsDNA viruses. Although in the marine environment dsDNA viruses are the 

most abundant, ssDNA, dsRNA and ssRNA viruses are also find in the aquatic systems and, 

consequently, are not covered by the DAPI staining.  

As bacterial and viral abundance are determined by epifluorescence microscopy 

and the differentiation between bacteria and viruses is based on particle size, some 

bacteria can be counted as virus, namely in marine waters where bacteria are small 

(Almeida et al, 2001). Consequently, the number of viruses could be overestimated and 

the number of bacteria can be underestimated. 
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Table 2 Properties of the nucleic acid stains. Based in  Haugland,RP.( 1996) and Molecular Probes, 

BioProbes (1997) 

a ) ss 5 single stranded, ds 5 double stranded, ts 5 triple stranded; AT 5 adenine-thymine 

 

2 Thesis outline 
 

 The importance of lisogeny as an alternative to lytic infection in natural 

populations of marine bacteria is poorly understood Williamson et al., 2002). 

Wilcox and Fuhrman (1994) and Weinbauer and Suttle (1996) reported that the 

majority of viruses found in the marine environment are lytic and that lysogenic 

bacteriophages are quantitatively insignificant in coastal waters. Jiang and Paul (1994), 

however, showed that 43% of the bacteria isolated from various marine environments 

were lysogenic, as determined by prophage induction with mitomycin C. 

 With this work we tried to see if there is a significant quantitatively lisogenic 

bacteria in an estuarine environment, how bacterial community is affected and we tried 

to see variation between the two layers, SML and UW. Also in this work, the error 

associated with bacteria/viruses quantification by epifluorescence microscopy  was 

determinate. 

 

 

Stains Binding properties a 

Dapi Semi-permeant; AT selective; binds to dsDNA 

Sybr gold Permeant; binds to RNA, ssDNA, and dsDNA 

Ethidium 

bromite 

Impermeant; binds to RNA, ssRNA, dsDNA, tsDNA 

YOPO-1 Impermeant; binds to ssDNA and dsDNA 
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3. Material and Methods 
 

3.1 Sampling Site  
 

Ria de Aveiro is a coastal lagoon that stretches for 50 

km along the coast of Portugal from Mira to Ovar and is 

separated from the sea by a sandy barrier. It exchanges 

with the sea a volume of water of 89 Mm3 in tides with 1 

to 3 m of amplitude (Silva, 1994) and receives freshwater 

from several rivers, with an average water input of 1.8 

Mm3 during a tidal cycle (Barrosa, 1985). The Ria has a 

complex topography, with several channels spreading 

from the mouth towards the different streams, forming a 

complex and dynamic estuarine system (Barroso, 2000)  

 

3.2 Sampling 
 

Water samples from the surface microlayer (SML) and the underlying water (UW) 

were collected in the marine zone (I3) and in the brackish water zone (I6) of Ria de Aveiro 

(Fig.3) in November 2008, March 2009, May 2009 and September 2009, during low tide.  

SML samples were collected with a 0.25 m wide, 0.35 m long Plexiglas plate (Harvey and 

Burzell, 1972), which roughly removes the upper 60–100 µm of the water column. Before 

sampling, the Plexiglas plate was cleaned with ethanol, rinsed with sterile distilled water 

and finally with water from the sampling site. The water adhering to the plate during 

immersion was removed from both sides by introducing the plate between two Teflon 

sheets and collecting the water into a sterilized glass bottle. Samples from UW were 

collected directly into 0.5 L sterile glass bottles from the depth of 20 cm. Triplicate sub-

samples were analyzed for bacterial and viral parameters. Temperature and salinity were 

measured in the field with a WTW LF 196 Conductivity Meter (Wissenschaftlich 

Technische Werkstatten, Weilheim, Germany).

Figure 3 Sampling sites 
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3.3 Experiments of lysogenic bacteria induction 
 

 The percentage of lysogenic bacteria was estimated after induction with the 

chemical agent mitomycin C. Three sub- samples of 20 mL that were collected from the 

SML and UW. Three sub- samples were treated with mitomycin C (1µg/mL, Sigma 

Chemical Co., St. Louis, Mo.) and the others were left untreated (control). Samples were 

well mixed and incubated in the dark for 18h, at room temperature.  

In order to determine the percentage of lysogenic bacteria; the total number of 

bacteria and of viruses was determinated. The effects of lisogeny on the cultivable 

bacteria, and on the bacterial productivity were also studied. 

 

3.3.1Bacterial and Virus Direct Counts 
 

 For bacterial abundance determination, samples (1 mL) were filtered through 0.2 

μm pore-size polycarbonate membrane filter (Millipore) and stained with 400 μl of 2X 

SYBR Gold (Invitrogen) for 15 min. At least 20 fields in each duplicate of each sub-sample 

were counted per filter in a Leitz Laborlux K epifluorescence microscope with a 50 W 

mercury lamp equipped with a blue BP 450–490 exciter filter and LP 515 barrier filter. 

Samples for virus enumeration (250 µl) were filtered through 0.2 μm pore-size 

polycarbonate membrane filter and the filtrated samples were filtered by 0, 02 µm pore 

size filters (Whatman; Anodisc, 25 mm diameter). Viral particles were stained on the 

filters for 15 min using 2x SYBR-Gold (Molecular Probes) and enumerated by 

epifluorescence microscopy. At least 200 viral particles were counted per filter for each 

duplicate of each sub-sample.  

 

3.3.2 Cultivable bacteria 
 

The abundance of inducible cultivable bacteria was determined by plating in PCA 

medium of treated and untreated samples. The plaques were incubated in the dark at 

25ºC for 5 days, after which the number of colony forming units (CFU) per milliliter was 

determined 



 

 

 

39 

 

 

 

3.3.3 Bacterial Biomass Productivity  
 

Bacterial biomass productivity (BBP) was estimated by the incorporation of 3H leucine 

into bacterial protein, using 1.5 mL triplicate of each sub-samples plus a control fixed with 

TCA (2% final concentration) The samples were incubated in the presence of a saturating 

concentration (30 nM) of 3H-leucine (Amersham, specific activity of 63.0 Ci.nmol-1) for 1 

hour in dark at in situ temperature. After incubation, reactions were stopped with 2% TCA 

and the tubes were centrifuged from 10 min at 14,000 rpm. The pellet was washed two 

times with 1 mL of ice-cold 5% TCA and then with 1 ml of cold ethanol. After overnight 

drying of the pellet, 1 ml of scintillation cocktail UniverSol (ICN Biomedicals, USA) was 

added. Radioactivity was measured after a period of 3 days in a Beckman LS 6000 IC liquid 

scintillation. The conversion of leucine incorporation rates to carbon units was 

accomplished according to Simon and Azam (1989). 

 

3.3.4 Calculations of induced lysogenic fraction and burst size  

 The amount of induced prophage was calculated as VI − VC, where VI is the number of 

viruses enumerated in the induced sample at 18 h and VC is the number of viruses 

enumerated in the control sample. The lysogenic fraction (LF) of the bacterial population 

was determined by two methods. The first, termed the burst size method, was calculated 

using the following equation: LF = [(VI − VC)/BZ]/BC·100, where BC is the number of 

bacteria enumerated in the control sample at 18 h and BZ is the burst size. An average 

value of burst size of 30, derived from transmission electron microscopy observation of 

Tampa Bay samples (Jiang and Paul, 1996) was used. The second method for calculation 

of the lysogenic fraction used the following equation: LF = (BC − BI)/BC·100, where BC and 

BI are the number of bacteria enumerated in the control and induced samples at 18 h, 

respectively. This was corrected by subtracting the average mortality caused by 

mitomycin C in induced samples. Induced burst size (BZI) was calculated using the 

following equation: BZI = (VI − VC)/ (BC − BI). 
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3.3.5 DGGE (Denaturing Gradient Gel Electrophoresis) 

For the characterization of the bacterial community structure after the 18h incubation 

with mitomycin C. A 200 mL volume of test and control samples were filtered through 0.2 

µm polycarbonate filters (Poretics Products Livermore, USA). Collected cells were 

resuspended in 2 mL of TE buffer [10mM Tris HCl, 1mM ethylenediamine tetraacetic acid 

(EDTA), pH 8.0] and centrifuged. Lysozyme solution (2 mg mL-1) was added to induce cell 

lysis, followed by incubation at 37ºC for 1 h according to the procedure described by 

Henriques et al (2004). DNA extraction was performed using the Genomic DNA 

Purification kit by MBI Fermentas (Vilnius, Lithuania). DNA was resuspended in TE buffer 

and stored at –20ºC. The yield and quality of DNA were checked by electrophoresis on a 

0.8% (w/v) agarose gel. PCR amplification of an approximately 400 bp 16S rDNA fragment 

(V6-V8) was performed using the primer set F968GC and R1401 (Nubel et al., 1996). The 

reaction was carried in a Bio-Rad iCycler Thermal Cycler (Bio-Rad Laboratories, Hercules, 

CA, USA) from MIDSCI. The PCR reaction mixture (25 µL) contained, approximately 50 to 

100 ng of extracted DNA; 1x PCR buffer (PCR buffer without MgCl2: PCR buffer with KCl2, 

1:1); 2.75 Mm MgCl2; 0.2mM of each nucleotide; 0.1µM of each primer; and 1 U of Taq 

Polymerase (all reagents purchased from MBI Fermentas, Vilnius, Lithuania). Acetamide 

(50%, 0.5µl) was also added to the reaction mixture. The amplification protocol included a 

4 minute initial denaturation at 94ºC, 34 cycles of 95ºC for 1 minute, 53ºC for 1 minute 

and 72ºC for 1 minute and 30 seconds, and a final extension for 7 minutes at 72ºC. After 

amplification, 5 µL of the PCR product was subjected to electrophoresis on a 1.5% (w/v) 

agarose gel stained with ethidium bromide (0.01% v/v). DGGE was performed with the 

Decode System (CBS Scientific Company, Del Mar, CA, USA). Approximately equal 

amounts of PCR products were loaded onto 6-9% polyacrylamide gel in 1x TAE buffer (20 



41 

 

mM Tris, 10 nM acetate, 0.5 mM EDTA, pH 7.4). The 6-9% polyacrylamide gel 

(bisacrylamide: acrylamide = 37.5:1) was made with a denaturing gradient ranging from 

32 to 60% (100% denaturant contains 7 M urea and 40% formamide). Electrophoresis was 

performed at 60ºC for 16 hours at 150 V. Following electrophoresis, the gels were silver 

stained. After fixation with 0.1% (v/v) ethanol, 0.005% acetic acid for fixation, 0.3 g silver 

nitrate for 20 min, freshly prepared developing solution containing 0.003% (v/v) 

formaldehyde, 0.33% NaOH (9%) was added. The development was stopped using a0.75% 

sodium carbonate solution (Heuer et al., 2001). Gel images were acquired using a 

Molecular Image FX apparatus (Bio-Rad). The impact of the mitomycin C effect on the 

diversity of bacterial community was assessed by determination of the number of bands 

in DGGE images in the samples and controls after the incubation of 18h. 

3.5.1  Statistical Analyses  

The DGGE gels were scanned and the digitalized DGGE profiles were analyzed with the 

software package Gelcompar 4.0 program (Applied Maths) as described by Smalla et al. 

(2001). Bands were searched in the DGGE profiles by using the sets for minimal profiling 

and minimal area at 5% and 0.5%, respectively. Positioning and quantification of bands 

present in each lane was carried out by setting tolerance and optimization at 8 points, i.e. 

0.8%. The band positions and their corresponding intensities (surface) from each water 

sample treatment were exported to Excel and the band surface was converted to relative 

intensity by dividing its surface by the sum of all band surfaces in a lane. 

Based on Bray–Curtis similarities, multivariate analyses of DGGE profiles were 

performed using analysis of similarities (ANOSIM) and nonmetric multidimensional scaling 

(MDS) with the PRIMER 5 software package (Primer-E Ltd, Plymouth UK). The ANOSIM 

was used to test whether there are separation (R = 1) or not (R = 0) between bacterial 

communities from different groups of samples. The null hypothesis is that there are no 

differences in the composition of bacterial communities from the water samples from 

control and the water samples with mitomycin C after 18 h of incubation. In general 

higher R values than 0.25 will indicate greater variation between groups. Differences in 

the bacterial community structure were assessed graphically using multidimensional 

scaling (MDS) (Yannarell et al, 2005).  
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3.3.6 Experiments to determinate prokaryotes counted like virus 

To determinate the percentage of prokaryotes that are counted like viral particles 

samples were collected from station I3 and I6 and it was used Fluorescence in situ 

Hybridization (FISH) with Cy3-labeled oligonucleotide probes (Amann et al. 1990). 

Samples (1 mL) were filtered through 0.2 µm pore-size membranes and the filtrate was 

further filtered through 0.02 µm pore-size membranes. Samples were fixed with 2% 

paraformaldehyde for 30 min and rinsed with distilled water and the filters reserved in 

the dark until hybridization.  

Domain and group specific probes were used for bacteria Eub338 (Amann et al. 1990) 

and for archaea Arc 915 (Stahl et al., 1988). For each probe triplicate filter pieces were 

placed on Parafilm-covered glass slides and overlaid with 30 µL hybridization solution 

with 2.5 ng/µL of probe (final concentration). The hybridization solution contained 0.9 M 

NaCl, 20 mM Tris-HCl (pH 7.4), 0.01% SDS, and the optimum concentration of formamide 

(Eilers et al. 2000; Zarda et al. 1997). Filters were incubated in a hybridization oven at 

42°C for 90 min. After hybridization filters were washed for 20 min at 48°C in wash 

solution (20 mM Tris HCl pH 7.4, 5 mM ethylenediamine tetraacetic acid, 0.01% SDS, and 

the appropriate concentration of NaCl) (Eilers et al. 2000; Zarda et al. 1997). Rinsed and 

dried filter pieces were mounted with 4:1 Citifluor: Vectashield containing 2 µg/mL 4’, 6-

diamidino- 2-phenylindole (DAPI). Samples were analyzed in a Leitz Laborlux K 

microscope.  

Counts were made in a Leica epifluorescence microscope equipped with filter for Cy3 

(Cy3 - Y3, Leica) and a filter for DAPI (DAPI - A, Leica). For each sample observed three 

replicates, were counted 10 random optical fields in each replica. In each optical field 

proceeded to count the cells stained with DAPI and labeled cell probes. 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T30-4F3FF5T-2&_user=2459663&_coverDate=04%2F01%2F2005&_rdoc=1&_fmt=full&_orig=search&_cdi=4932&_sort=d&_docanchor=&view=c&_searchStrId=1097099199&_rerunOrigin=google&_acct=C000057389&_version=1&_urlVersion=0&_userid=2459663&md5=7d137738dfbc2aa4359d71abee20b2b9#bib25
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Results 
 

4.1 Water Properties 

Water temperature was higher during the warmer season, reaching values of 22ºC 

in the brackish water zone. The lowest values were observed in November. Salinity was 

higher in November in both sampling stations varying between 20.3 and 30.9 (Table 3). 

 

Table 3 Physic-chemical characterization of water samples collected in the Ria de Aveiro, stations I3 and 
I6 for SML and UW. 
 

 

4.2 Variation of total and cultivable bacteria during the lisogenic 

induction experiments 

Total bacterial number was highest in November for station I3 (9, 14E+06) and I6, 

(9, 03E+06) and lowest values were observed in March (Fig.4). Total bacterial abundance 

was always higher in the SML relatively to UW (Fig. 4). 

The addition of mitomycin resulted in a decrease in total bacterial abundance. In 

station I3, the decrease ranged from 35% to 71 % in the SML and from 38 % to 59% in the 

UW. In station I6, the addition of mitomycin resulted in a decrease of 49 % to 71% in SML 

and of 43 % to 71% in the UW.  

 

 

Date of  

Sampling 

I3 SML UW I6 SML UW 

27-11-2008 Salinity 29,8 29,5 Salinity 30,9 31,2 

Temperature  10,8ºC Temperature  9ºC 

26-03-2009 Salinity 23,8 26,6 Salinity 23,1 22,9 

Temperature  18ºC Temperature  17,5ºC 

08-05-2009 Salinity 29,9 31 Salinity 20,3 26,7 

Temperature  18,8ºC Temperature  19,8ºC 

22-09-2009 Salinity 27,8  29,0  Salinity 24,8 26,9 

 Temperature  18,4ºC Temperature  18,7ºC 
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Figure 4 Variation of the total number of prokaryotes in SML and UW of I3 and I6 sampling stations 
before and after the addiction of mitomycin C 

 

The abundance of cultivable bacteria varied with the sampling date (Fig5). 

Cultivable bacteria were more abundant in November both in the marine and brackish 

water zone of the estuary., The lowest abundance in cultivable bacteria were observed in 

May in the marine station (1,08E+03) and in September for the brackish water section 

(1,90E+02). Cultivable bacteria abundance was always higher in the SML for both zones. 

The station I3 presented, in general the highest values. 

The addition of mitomycin C resulted in a decrease in the abundance of cultivable 

bacteria At SML and at UW. In the marine r station I3 mitomycin-induced decrease of the 

cultivable bacteria of 16% to 90% in the SML and of 16% to 64% in the UW. The highest 

decrease in cultivable bacteria abundance in mitomycin-treated samples was observed in 

March, for both water layers. In the brackish water section I6, the addition of mitomycin 

resulted in decreases of cultivable bacteria abundance of 22 % to 77% at the SML and 12 

% to 96% in the UW. 
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4.3 Variation of Bacterial Biomass Productivity (BBP) ring 

the lisogenic induction experiments 

The highest values of BBP occurred in September for both the marine (75 µg C L-1 

h-1) and brackish water (45 µg C L-1 h-1 ) stations. In station I3, BBP ranged from 18 µg C L-1 

h-1 to 74 µg C L-1 h-1 in the SML and 18 µg C L-1 h-1 to 64 µg C L-1 h-1 in the UW. In station I6, 

the values of BBP varied from 12 to 45 in the SML and 11 µg C L-1 h-1 to 28 µg C L-1 h-1 in 

the UW (Fig.6). 

The addition of mitomycin C resulted in a decrease in BBP. In station I3, 

mitomycin-treated samples showed a 21% to 84 % decrease in the SML while in the UW 

the decrease observed ranged from 62% to 85%. In station I6, mitomycin induced a 

decrease in BBP ranging from 69 to 91% in SML and from 35 % to 90% in the UW. 

Figure 5 Variation  of cultivable bacteria in SML and UW of I3 and I6 sampling stations before 
and after the addiction of mitomycin C 
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4.4 Variation of total viral number and of burst size during the 
lysogenic induction experiments  
 

The abundance of viral particles was highest in November and lowest in March 

varying between 3, 5 x 106 and 3, 3 x 107(Fig.7) .  The viral abundance was higher in the 

SML in all the sampling dates. The addition of mitomycin C resulted in an increase in viral 

particles abundance, ranging from 24 % to 37% in the SML and 16% to 130% in the UW. In 

station I6, mitomycin C induced increases of viral particles varied between 9% to 69% in 

SML and between 30% and 47 % in the UW. 

 

 

 

 

 

 

 

Figure 6 Variation of the Bacterial Biomass Productivity in SML and UW of I3 and I6 sampling stations 
before and after the addiction of mitomycin C 
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Using the formula of the average burst size the relative abundance of lysogenic 

bacteria varied between 1.2 % and 3.1% in the SML and from 1.0% and 5.3% in the UW at 

the marine water station. In the brackish water section, the percentage of lysogenic 

bacteria varied from 0.9% to 6.0 % in the SML and from 1.0% to 4.7 % in the UW (Table.4).  

Using the mortality formula was observed that the lisogenic fraction was higher 

varying from 34.8% to 71.3% in the SML and from 38.0% to 58.7% in the UW at the 

marine zone. In the brackish water section, the percentage of lysogenic bacteria varied 

from 48.7% to 71.1 % in the SML and from42.6% to 71.3 % in the UW (Table 4). 

When we used the formula of the average burst size was observed that the higher 

percentage of lisogenic fraction in the marine zone varied between layers. In the brackish 

water station, the induction of lisogeny was in general higher in the UW (except 

November). With the prokaryotes mortality formula, it was observed that in the marine 

Figure 7 Variation of the total number of viral particles in SML and UW of I3 and I6 sampling 
stations before and after the addiction of mitomycin C 
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station, in general, the induction of lisogeny was highest at the SML (except in May). In 

the brackish water station, the induction of lisogeny was also in general higher in the SML 

(except in November). 

 

 

Table 4 Induction of lisogeny in water samples collected in the Ria de Aveiro by mitomycin C, quantified 
by the average burst size 30 and the mortality formula. 
 

Month Samples PVN ml-1 TBNml-1 Mortality 
Average Burst 

Size (30) 

November 

I3 

SML 
Control 3,31E+07 9,14E+06 

71,3 3,1 
Mitomycin C 4,16E+07 2,62E+06 

UW 
Control 1,02E+07 7,35E+06 

58,7 1,1 
Mitomycin C 1,25E+07 3,03E+06 

I6 

SML 
Control 2,35E+07 9,03E+06 

71,1 6,0 
Mitomicina C 3,97E+07 2,61E+06 

UW 
Control 7,27E+06 7,11E+06 

71,3 1,0 
Mitomycin C 9,48E+06 2,04E+06 

March 

I3 

SML 
Control 5,42E+06 4,02E+06 

54,3 1,7 
Mitomycin C 7,45E+06 1,84E+06 

UW 
Control 3,45E+06 2,82E+06 

44,9 5,3 
Mitomycin C 7,93E+06 1,55E+06 

I6 

SML 
Control ND 2,36E+06 

ND ND 
Mitomycin C ND 9,64E+05 

UW 
Control ND 2,10E+06 

ND ND 
Mitomycin C ND 9,77E+05 

May 

I3 

SML 
Control 1,04E+07 7,07E+06 

34,8 1,2 
Mitomycin C 1,29E+07 4,61E+06 

UW 
Control 7,39E+06 3,89E+06 

44,5 1,0 
Mitomycin C 8,57E+06 2,16E+06 

I6 

SML 
Control 7,99E+06 4,49E+06 

48,7 0,9 
Mitomycin C 9,18E+06 2,31E+06 

UW 
Control 5,14E+06 3,92E+06 

47,2 2,0 
Mitomycin  C 7,54E+06 2,07E+06 

September 

I3 

SML 
Control 1,48E+07 5,52E+06 

60,5 2,5 
Mitomycin 1,89E+07 2,18E+06 

UW 
Control 8,87E+06 2,11E+06 

38,0 3,4 
Mitomycin 1,10E+07 1,31E+06 

I6 

SML 
Control 1,15E+07 4,09E+06 

54,5 0,9 
Mitomycin 1,21E+07 1,86E+06 

UW 
Control 9,18E+06 3,10E+06 

42,6 4,7 
Mitomycin 1,35E+07 1,78E+06 

TBN, total prokaryotic number; PVN , total viral number; ND- Not determined. 
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4.5 Bacterial diversity in underlying water after 18h of incubation 
with and without mitomicina. 
 

The DGGE profiles resulting from the separation of fragments of 16s rDNA genes 
amplified by PCR are shown in the figures 8 and 9. 

                             
                                 Control 18h           Mito 18h 

 
 

Figure 8.  DGGE profile of the water samples of station I3 without mitomycin C (control) and with 
mitomycin C after 18h of incubation. 
 

Control  18       Mito 18h 

 

 
 

Figure 9. DGGE profile of the water samples of station I6 without mitomycin C (control) and with 
mitomycin C after 18h of incubation. 
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Analyzing the two DGGE profiles of both stations it is observed that in the samples 

with mitomycin C some bands disappeared when we compare with the control but others 

that are not observed in the DGGE profile of the control appeared in the DGGE profile of 

the samples with mitomycin C. 

Using the multidimensional scaling (MDS) it is observed that the samples with the 

mitomycin C and without mitomycin are well separated in both stations (Figures 10 and 

11). 

 

 

   
 

Figure 10.  MDS analysis in station I3. 
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Figure 11.  MDS analyses in station I6. 
 

 

Using the ANOSIM, it  was observed that there is a significant difference between 

the samples with mitomycin and without mitomycin C.  In the station I3 the R is 0, 63 and 

in the station I6 the R is 0, 37. 

 

4.6 Fraction of prokaryotes counted as viruses 
 

When the samples were filtered by membranes of 0,2 µm it was clear the 

dominance of Eubacteria in comparison to Archaea. The relative abundance of Eubacteria 

was 68 % in station I3 and 59 % in station I6, while the relative abundance of Archaea was 

8% in I3 and 11 % in I6 (Fig.12) (Table 5 and 6). When samples were filtered trough 0,02 

µm pore size it was observed that the percentage of viral particles increased and the 

percentage of prokaryotes decreased. The abundance of Eubacteria ranged from 9% in I6 

to 20% in I3, while the relative abundance of Archaea varied between 7 % in I3 and 5 % in 

I6 (Fig.12) (Table 5 and 6).  
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Table 5 Percentage of Prokaryotes and viral 
particles filtered by 0, 2 µ m     

                                                                                                       

                                                                                                         

Table 6 Percentage of Prokaryotes and              
viral particles filtered by 0, 02µm

 

 

 

 

 

 

Figure 12 Relative abundance of Prokaryotes filtered by 0,2µm and 0, 02µm 
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5. Discussion

  The study of ecological significance and role of viruses in their natural habitats is a 

fast growing field of research. It is well known that viruses are the dominant biological 

component in aquatic systems, and are; at least, 10 fold more abundant than bacteria 

and archaea (Suttle. 2007). A significant proportion of isolated bacteria from the aquatic 

systems harbour viruses in their genome and some of them are polylysogenic, that is, 

have more than on viruses integrated in the genome (Appleyard  1954). The high number 

of lysogenic prokaryotes in the environment results from the co-evolution of viruses and 

prokaryotes and it has been shown that lisogeny may be a survival strategy for viruses in 

the marine environment by preventing the destruction of their hosts (Cochran and Paul, 

1998). However, the importance of lisogeny as an alternative to lytic infection in natural 

populations of marine prokaryotes is poorly understood. 

   The results of this study show that in Ria de Aveiro, a small fraction of prokaryotes 

is lysogenic, increasing when the environmental conditions are adverse and that the 

induction of lisogeny can affect not only the prokaryotes abundance and activity but also 

the bacterial community structure. 

In the estuarine system Ria de Aveiro, the lysogenic fraction of prokaryotes varied 

from 1.0 to 5.3 % in the marine zone and from 0.9% to 6.0% in the brackish water zone. 

These values are similar to those find in other estuarine environments, using the increase 

in viral number to determine lisogeny. Weinbauer and Suttle (1999) determined lisogenic 

fractions of 0.07% for 4.4% in average 1.5%  and Cochran and Paul (1998) showed that in 

Tampa Bay the lisogenic fraction ranged from 0% to 37.3% an average of 6.9%  

prokaryotes are lisogenic. However, Jiang and Paul (1996) found that 1.5% to 38%  

average of 8.8 % of prokaryotes in Gulf of Mexico carry temperate phages and Williamson 

et al (2002) determined a lisogenic fraction of around 50% for Tampa Bay. Jiang and Paul 

(1994) found that 43% of heterotrophic bacteria isolated from estuarine environment 

contained inducible prophage. The variation observed for the percentage of lisogeny 
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detected in environment with similar characteristics can, in part, be due to the approach 

used to its determination.  

   Even when it is used the same method to determine lisogeny, decrease in 

prokaryotic counts or increase of the number of viruses, other variables influences the 

determination. For instance, when lisogeny is determined using the increase of the 

number of viruses, the way to determine the burst size is a factor of variation. In the 

majority of the lisogenic induction studies it is used an average burst size of 30 (Jiang and 

Paul, 1996) or 50 (Wommack and Colwell, 2000) but the burst size can be calculated for 

each case by counting the number of viruses infecting  prokaryotes, using transmission 

electronic microscopy. Moreover, the number of viruses can be determined by 

epifluorescence microscopy or by transmission electronic microscopy and the accuracy 

and precision of these both methods is different (Weinbauer and Suttle, 1997). In this 

study (Table 4), it was determined that 0.9 to 6.0 % (average, 2.5 %) of the indigenous 

prokaryotes present in the Ria de Aveiro are lisogenic, as calculated by dividing the 

number of viruses increased by an averaged burst size of 30. The percentage ranged from 

34.8 to 71.3% (Table 4) (average, 53 %) when prokaryotic mortality is used to determine 

the lisogenic fraction. Jiang and Paul (1994) and Cochran and Paul (1998) obtained also 

high percentages of lisogeny when they used the decrease in prokaryotic counts in the 

presence of inductants. The difference between the two methods can be due to the fact 

that the method based on prokaryotic mortality assumes that the increase in viral 

numbers and the decrease in prokaryotic numbers in the induced samples are caused 

solely by lisogenic induction. However, the toxic effects of mitomycin may be the reason 

for the high loss rates of prokaryotes. On the other hand, the low lisogenic prokaryotic 

fraction detected in this study relatively to other estuarine systems can be associated to 

the use at a standard burst size that can be not the correct one for this system.   

 Contrarily to the observed in others studies (Wilcox and Fuhrman, 1994; 

Weinbauer and Suttle. 1999), lisogeny was not less prevalent in the more nutrient-rich 

section of the estuarine system. The percentage of lisogeny was similar in both sampling 

stations, althouhg it has been demonstrated that in the brackish water sections nutrient 

concentration is double of that of the marine zone (Almeida et al, 2001). None of the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124089/#r24#r24
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environmental parameters measured in this study explain the same percentage of 

lisogeny in both zones. 

As lisogeny induction is affected by the environmental factors, it is ecologically 

important to study the lisogeny induction in the SML where prokaryotes are exposed to 

intense solar radiation, high temperature, salinity gradients, toxic organic substances and 

heavy metals (Liss and Duce, 1997), but where dissolved and particulate organic matter 

are enriched up to 1000 times compared to UW (Liss and Duce, 1997). Although 

prokaryotes in the SML are more stress exposed , they may also be protected within the 

organic matrix. With the exception of November, when SML showed higher values of 

lisogeny, the lysogenic bacteria were similar in both SML and UW or even higher in UW. 

These results are in accordance with those of Weinbauer et al (2003), but different from 

those obtained frequently in other environments, which showed a higher fraction of 

lisogeny in the SML (Tapper and Hicks, 1998; Bettarel et al., 2003 and Bettarel et al., 

2008). In general, the enhanced abundance of lisogenic prokaryotes in the SML is 

explained by the high exposure of this compartment to UV radiation and by the high 

levels of pollutants observed in this layer (Cochran and Paul, 1998). However, as UV 

radiation is a natural inductor of lisogeny and the water samples were sampled during the 

day, the correct effect of the artificial inductor may not be detected. In fact, a study about 

the impact of artificial ultraviolet-B radiation (0.4 W m-2) on the abundance and activity 

of the bacterial community of SML and of UW in Ria de Aveiro (Santos et al, 2009) 

showed that, in general, bacterioneuston is more affected by UVR exposure than 

bacterioplankton. For a better quantification of the lisogenic bacterial fraction in SML, the 

water samples must be collected during the night or before sun rising. Actually, previous 

studies in Ria de Aveiro, indicate that the differences between SML and UW are highly 

variable during the day, pointing out to the importance of the sampling moment to 

comparative studies of neuston and plankton (Santos et al, 2009). This conclusion may be 

also applied to the determination of lisogeny in prokaryotes.   

High frequency of induction events have been reported to occur in periods of low 

water temperature, rainfall, nutrient concentrations, primary productivity and bacterial 

productivity (Williamson et al., 2002). In Ria de Aveiro, the highest abundance of lisogenic 
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prokaryotes in the SML occurred in November (Table 4), for both sampling stations, when 

salinity was higher and water temperature was low. In the UW the highest value of 

lisogenic fraction at station I3 occurred in March when the bacterial production was low, 

but at station I6 the highest value occurred in September 4,7 % and none of the 

parameters studied seems to explain this high value in May. 

The results suggest that lisogeny can be frequent for cultivable heterotrophic 

bacteria, affecting their density and activity. As for the total prokaryotic community the 

number of cultivable bacteria decreases after the addition of the mitomycin as seen in 

figure 5. However, the difference between the added and non added samples in 

November and in May was not as high for the cultivable fraction of bacteria as that 

observed for the total community (Fig.5). This different pattern of variation can be due to 

differences in the prokaryotic community composition. In fact, in Ria de Aveiro it has 

been observed a clear pattern of seasonal variation in SML and in UW (unpublished data). 

It is important to note, however, that the decrease in bacterial counts and activity can be 

also due to the toxicity of the mitomycin C. In fact, the difference between the reduction 

of prokaryotic density and the increase of viral density was not proportional for both 

water layer and for both sampling stations during the sampling period. This suggests that 

the decrease in prokaryotic abundance and activity can not be due only to viral lysis, but 

also due to the toxicity of the inducing agent. Really, when prokaryotic mortality is used 

to determine the lisogenic fraction (this method assumed that the increase in viral 

numbers and the decrease in prokaryotic numbers in the induced samples were caused 

solely by lisogenic induction) the percentage of lisogeny is much higher.  

Viruses have a restricted range of host cells, often a single species or even a single 

strain of prokaryotes. Consequently, infection by a particular virus does not act on the 

total bacterial assemblage, but rather on specific subpopulations. Viruses, therefore, have 

the potential to significantly influence the species composition of microbial communities 

by selective elimination of specific subpopulations, and viruses may contribute to 

maintaining a high microbial diversity by lysing numerically dominant strains/species. The 

results of this study confirm that in the aquatic environment viruses can control the 

diversity of the bacterial community. The bacterial community structure was significantly 
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altered after lisogenic induction. The DGGE profiles show that some groups of bacteria 

disappeared after induction of lisogeny but other bacterial groups, not detected in the 

controls, appeared after lisogeny induction. It is well know that some groups of bacteria 

that resist to viral infection benefit from organic matter released during viral infection of 

other bacterial groups (Weinbauer et al., 2003), which explain the intensification of some 

bands in the DGGE profiles after lisogeny induction.  As lisogeny is a common occurrence 

among bacteria of the estuarine system Ria de Aveiro and the inducing of lisogeny is 

frequent in the marine environments, bacteriophages have an important role in 

controlling bacterial diversity. However, mitomycin C can be toxic for bacteria (Paul and 

Jiang, 1994) and, as a result, affect directly bacterial community structure. In fact, as 

mentioned above, the discrepancy between the reduction of prokaryotic density and 

activity and the increase of viruses after lisogeny induction may due to the presence of 

mitomycin C and, therefore, affect bacterial diversity ( Fig. 10 and 11). 

In order to evaluate the ecological significance and role of viruses in the aquatic 

environment a method that is simple, accurate, and suitable for routine environmental 

analysis is needed. The high counting efficiency, ease of preparation, modest equipment 

requirements, and the possibility of preparing specimens for long-term storage, make the 

epifluorescence microscopy an ideal method for routine environmental analysis. The 

results obtained with epifluorescence microscopy indicate that the concentration of 

viruses in natural waters are higher than previously recognized and imply that the TEM-

based method significantly underestimates virus abundance (Hennes and Suttle, 1995). 

However, this method is also used to enumerate prokaryotes in the aquatic environment, 

and sometimes it is difficult to distinguish prokaryotes from viruses, namely in marine 

environment where prokaryotes are small and, consequently, pass through the 0.2 µm 

membranes used to concentrate prokaryotes, being concentrated on the 0.02 µm 

membranes used to concentrate viruses, as shown in tables 5 and 6. 

The results of this study show that using epifluorescence microscopy some 

prokaryotes are counted as viruses, namely in the marine zone, overestimating viral 

density and underestimating prokaryotes density. In the estuarine system Ria de Aveiro 

14 to 27% of the particles counted as viruses are prokaryotes. The FISH results using 
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probes for bacteria and archaea show that the majority of these prokaryotes counted as 

viruses are bacteria. 

The common occurrence of lysogenic in Ria de Aveiro associated to the high numbers of 

lytic viruses and to the potential of these viruses to control bacterial density, activity and 

diversity, indicates that in Ria de Aveiro the virioplankton can have an important role in 

biogeochemical cycling of nutrients as well as in horizontal genetic exchange. 
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