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“Deste modo ou daquele modo.  
Conforme calha ou não calha.  

Podendo às vezes dizer o que penso,  
E outras vezes dizendo-o mal e com misturas,  
Vou escrevendo os meus versos sem querer,  

Como se escrever não fosse uma cousa feita de gestos, 
Como se escrever fosse uma cousa que me acontecesse  

Como dar-me o sol de fora. 
 

Procuro dizer o que sinto 
Sem pensar em que o sinto. 

Procuro encostar as palavras à idéia  
E não precisar dum corredor  

Do pensamento para as palavras 
 

Nem sempre consigo sentir o que sei que devo sentir 
O meu pensamento só muito devagar atravessa o rio a nado   

Porque lhe pesa o fato que os homens o fizeram usar. 
 

Procuro despir-me do que aprendi, 
Procuro esquecer-me do modo de lembrar que me ensinaram, 

E raspar a tinta com que me pintaram os sentidos, 
Desencaixotar as minhas emoções verdadeiras, 
Desembrulhar-me e ser eu, não Alberto Caeiro,  

Mas um animal humano que a Natureza produziu. 
 

E assim escrevo, querendo sentir a Natureza, nem sequer como um homem,  
Mas como quem sente a Natureza, e mais nada.  

E assim escrevo, ora bem ora mal,  
Ora acertando com o que quero dizer ora errando,  

Caindo aqui, levantando-me acolá, 
Mas indo sempre no meu caminho como um cego teimoso. 

 
Ainda assim, sou alguém. 

Sou o Descobridor da Natureza. 
Sou o Argonauta das sensações verdadeiras. 

Trago ao Universo um novo Universo  
Porque trago ao Universo ele-próprio. 

 
Isto sinto e isto escrevo 

Perfeitamente sabedor e sem que não veja 
Que são cinco horas do amanhecer 

E que o sol, que ainda não mostrou a cabeça 
Por cima do muro do horizonte,  

Ainda assim já se lhe vêem as pontas dos dedos  
Agarrando o cimo do muro  

Do horizonte cheio de montes baixos.” 
 
 

Alberto Caeiro, in Deste modo ou daquele modo, Guardador de Rebanhos. 
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Ciclo celular, indução de embriogénese somática (ES), enzimas antioxidantes, 
Quercus suber L., stress oxidativo 

Resumo 
 

A embriogénese somática (ES) é uma técnica de propagação in vitro muito 
utilizada para a regeneração de plantas. A ES apresenta algumas vantagens 
relativamente a outras técnicas de micropropagação e tem sido bastante 
reconhecida em programas de melhoramento. O sobreiro (Quercus suber L.) é 
uma espécie lenhosa com um grande valor económico em Portugal, tendo já 
sido alvo de estudos de indução de ES. Contudo, algumas fases da ES 
necessitam ainda de ser optimizadas, e por outro lado, desconhece-se o que 
medeia a transição de tecido não-embriogénico (TNE) para tecido 
embriogénico (TE). Pretende-se estudar a) o stress oxidativo e b) a dinâmica 
do ciclo celular durante a indução de ES de sobreiro, comparando TNE vs. TE. 
Para indução de TE e TNE, embriões somáticos dicotiledonares maturos foram 
isolados e colocados em meio de cultura MS com 1,0 mg l-1 2,4-ácido 
diclorofenoxiacético e 2,0 mg l-1 Zeatina. Para avaliar o nível de stress 
oxidativo na indução de ES, procedeu-se ao estudo de enzimas antioxidantes, 
como catalase (CAT), dismutase do superóxido (SOD) e peroxidase do 
guaiacol (G-POX) assim como de outros parâmetros de monitorização de 
stress oxidativo  (peróxido de hidrogénio, prolina, malonildialdeído). Para 
avaliar o efeito dos tratamentos (meio de indução ou expressão) ao nível do 
ciclo celular recorreu-se à técnica de citometria de fluxo (FCM). Além das 
diferenças morfológicas, verificou-se que a actividade das enzimas 
antioxidantes diferem entre ambos os tecidos, sendo estatisticamente 
diferentes apenas para SOD. SOD e G-POX apresentaram tendência para 
valores mais elevados no TNE, enquanto CAT mostrou maior actividade no TE 
relativamente ao TNE. Apesar de não ter revelado diferenças significativas, TE 
mostrou maior tendência para níveis mais elevados de malonildialdeído e 
prolina. Da análise do ciclo celular verificou-se que a maioria dos núcleos se 
encontrou na fase G0/G1 independentemente do tecido e do tratamento. Não 
foram observadas diferenças significativas entre as fases S e G2. 
Este é o primeiro estudo que contempla a monitorização do stress oxidativo e 
do ciclo celular durante a indução de ES em sobreiro. Em conclusão, a partir 
dos dados apresentados neste estudo, existem algumas suspeitas quanto a 
possíveis diferenças entre TE e TNE durante a indução de ES em sobreiro 
relativamente ao stress oxidativo e ciclo celular, mas que necessitam de ser 
confirmadas, por exemplo aumentando o número de amostras para cada 
ensaio. Desta forma, é necessário proceder a mais estudos de modo a 
conhecer melhor o possíveis papeis do stress oxidativo durante a ES 
(causa/efeito), aprofundando o conhecimento deste processo para aplicação 
da produção de plantas em larga escala.  
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Antioxidant enzymes, cell cycle, oxidative stress, Quercus suber L., somatic 
embryogenesis (SE) induction. 

Abstract 
 

Somatic embryogenesis (SE) is a technique for in vitro propagation which is 
used for regeneration of whole plant. The SE has some advantages over other 
techniques of micropropagation and has been recognized in breeding 
programs. Cork oak (Quercus suber L.) is a woody species with a great 
economic value in Portugal and has also been the subject of several studies in 
SE induction. However, some SE stages still require optimization and, on the 
other hand, factors that might mediate the transition from non-embryogenic 
tissue (NEC) to embryogenic tissue (EC) are still unknown. It was evaluated a) 
the oxidative stress status and b) cell cycle dynamics during cork oak SE 
induction, comparing NEC vs. EC.  
For the induction of EC and NEC, mature dicotyledonary embryos were isolated 
and placed onto a MS culture medium supplemented with 1.0 mg l-1 2,4-
Dichlorophenoxyacetic acid and 2.0 mg l-1 Zeatin. To access the level of 
oxidative stress in SE induction, it was proceeded the study of antioxidant 
enzymes such as catalase (CAT), superoxide dismutase (SOD) and guaiacol-
peroxidase (G-POX) as well as other parameters for oxidative stress monitoring 
(hydrogen peroxide, proline, malonyldialdeyde). To evaluate the effects of 
treatments (induction or expression medium) on cell cycle, flow cytometry 
(FCM) was performed. Besides the morphological differences, it was found that 
the activity of antioxidant enzymes differ in both tissues, being statistically 
different only for SOD. SOD and G-POX showed a bias to higher values in 
NEC, while CAT revealed greater activity in EC than NEC. Although no 
significant differences were detected, EC showed a bias to higher levels of 
proline and malonyldialdeyde. Analysis of cell cycle highlighted a largest 
amount of nuclei in G0/G1 phase regardless of the tissue and treatment. No 
significant differences were observed between S and G2 phases. 
This is the first study that addresses the monitoring of oxidative stress and cell 
cycle during cork oak SE induction. In conclusion, from the data presented in 
this study, there are some clues that may indicate differences between NEC 
and EC during SE induction in cork oak in relation to oxidative stress and cell 
cycle. However, this study should be confirmed in e.g. by increasing samples 
amount in each assay. Moreover, more studies should be fulfilled to unveil the 
possible roles of oxidative stress during SE (cause/effect), deepening the 
knowledge of the process to improve plant large-scale production. 
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I. SATE OF THE ART 

 

“Life, a state of high organization or low entropy, can be maintained for a while by the consumption of a highly 

organized form of chemical energy (food) and, in the case of photosynthetic organisms, light energy, this energy is either 

converted to a less organized form of energy (heat) or utilized to perform work. However, the approach towards ultimate 

thermodynamic equilibrium is certain for every organism – death or decay.” (Palmer, 1995) 

 

The cork oak (Quercus suber L.) 

Cork oak (Quercus suber L.) species belongs to the 

subgenus Cerris, genus Quercus and amember of the family 

Fagaceae (Toribio et al. 2005) and comprises more than 600 

species, most of them trees, characterized by their fruits 

(acorns) (Pinto et al. 2002). The worldwide distribution of the 

cork oak is confined to the centre and western Mediterranean 

basin, including Spain, Portugal, France, Italy and countries of 

the North Africa (Pinto et al. 2002). Portugal is the leader of 

cork production used worldwide and the cork transformation 

industry is of great economical importance (Silva et al. 2005). 

Cork is the bark of the oak, which is a natural, renewable and 

sustainable raw material product of economic interest for a 

range of applications (Hernandéz et al. 2003b; Silva et al. 

2005). Quercus suber (Fig.1.1) is a protected species in 

Portugal (FAO 1996). The cork oak demonstrates a relevant role in avoiding soil erosion, more particularly in 

poor and extremely acid soils of abrupt topography where it is one of the very few tree species that can 

survive.  Therefore, several works have been performed in order to study this valuable material and to 

improve gene-conservation programs (Toumi and Lumaret 1998). Moreover, many efforts have been done for 

increasing the knowledge on in vitro techniques for breeding programs and large-scale tree production 

optimization. 

 

In vitro tissue culture: Somatic embryogenesis 

Propagation technologies for clonal production have been proposed as imperative tools in increasing 

breeding possibilities for oaks (Hernández et al. 2003b). Briefly, there are strategies to improve plant 

production and characteristics regarding agricultural and economical interests, which are based on sexual 

reproduction or asexual reproduction (cloning). The former introduces more genetic variability and thus might 

confer increased productivity and disease resistance. The latter, also named vegetative multiplication, is 

Figure 1.1: Cork oak tree (Quercus suber) 
(adapted from photolost.blogspot.com). 

 

 



obtained without production of seed. So, it allows the maintenance of good-quality characteristics of 

genotypes. These methods include grafting, suckering, cuttings and other procedures. 

 In the last decades, there has been a rapid progress in the development of in vitro culture techniques with 

the main objective of regenerating plants for clonal propagation purposes. These in vitro culture techniques 

allow the development of different regenerative pathways in a reproducible way from several plant tissues, 

with application to several genotypes resulting in true-to type material (Kim 2000). Briefly, in vitro plant culture 

consists in growing, under aseptic conditions, certain parts of the plant known as explants. The growth usually 

occurs in airtight containers containing nutritional media pre-sterilized. These cultures are kept under 

controlled light and temperature conditions (Benson 2000). 

Vegetative propagation by in vitro methodologies (micropropagation techniques) presents several 

advantages in comparison to traditional methods. These in vitro methodologies could be the best way to 

preserve elite cork oak genotypes, more resistant to disease, among other ecological and economical 

interests (Komamine et al. 1995). There are two main pathways to in vitro regeneration of large number of 

woody plants with industrial interest: micropropagation by nodal/axillary cuttings and somatic embryogenesis 

(SE).  This thesis will focus in SE.  

SE is the process by which somatic cells differentiate into somatic embryos, which morphologically 

resemble zygotic embryos. They are bipolar and bear typical embryonic organs, the radicle, hypocotyl and 

cotyledons. Compared with other in vitro propagation methods, SE offers several advantages. A separate 

rooting step is not required, because somatic embryos have both a shoot and a root meristem. In addition, SE 

usually forms propagules fast and at high rates per explant. Furthermore, the SE process can be automated, 

meaning that it will eventually become cheaper than other clonal propagation techniques currently in use 

(Park et al. 1998). Finally, a well-established SE protocol will allow embryogenic clonal lines to be 

cryopreserved while corresponding trees, obtained from these lines, are tested in the field as is currently 

being done for conifers (Park 2002). Thus, high value clonal varieties can be developed by retrieving 

cryopreserved clones, that show best field performance and can then be propagated (Park et al. 1998). Both 

advanced breeding programs and commercial forestry can therefore benefit from the use of elite clones. In 

the area of forest biotechnology, this propagation method is regarded as a system for genetic manipulations 

and of choice for mass propagation of superior forest tree genotypes (Kim 2000; Wilhelm 2000). Actually, cork 

oak is one of the few forest dicotyledonous species in which complete plant regeneration from adult trees has 

been obtained (Pinto et al. 2002; Toribio et al. 2005). In Q. suber, the majority of the studies in SE refer to the 

induction of SE from zygotic or very young material. Initially, many regeneration studies have been 

accomplished from juvenile material, e.g., stem fragments (El Mâataoui et al. 1990), zygotic embryos (Bueno 

et al. 1992; Manzanera et al. 1993), leaves of seedlings (Fernández-Guijarro et al. 1995; Toribio et al. 2005), 

3-years-old plants (Pinto et al. 2001). Since the last reviews from Chalupa (1995), Manzanera et al. (1996) 

and more recently Wilhelm et al. (2000), progress has been achieved in Quercus genus SE, especially using 
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mature tissue and developing reproducible SE protocols (Hernández et al. 1999, 2001, 2003a, 2003b; Toribio 

et al. 1999, 2005; Hornero et al. 2001; Pinto et al. 2002; Lopes et al 2006) and recently even using somatic 

embryos cryopreservation (Fernandes et al. 2008). 

The selected explants, the genotype, the culture medium and the growth regulators have a major influence 

in the induction of embryogenic cultures and in plant conversion (Jimenez 2005). Although there are several 

protocols available to induce SE from mature leaves, they have several similarities. Besides the differences in 

medium composition and type of the plant growth regulators (PGRs) they are in accordance that the presence 

of both auxin and cytokinin were essential to induce SE. The most widely used auxin sources are NAA 

(Naphthalene acetic acid) or 2,4-D (Dichlorophenoxyacetic acid), while BAP (Benzylaminopurine) or Zeatin 

are the most frequently used cytokinins (Taiz and Zeiger 2002; Jimenez 2005). Independently of the explant 

tissue (leaves or zygotic embryos) cork oak somatic embryos show the same developmental pattern. Somatic 

embryos appear almost directly on the surface of leaves, without a defined pattern of organization, and soon 

start to show secondary or repetitive embryogenesis. The full expression of embryogenesis occurs when 

leaves are transferred to PGRs-free medium, in which more leaves would show their embryogenic ability, and 

somatic embryos their potential to multiply themselves by secondary embryogenesis (e.g. Pinto et al. 2002; 

Hérnandez et al. 2003a; Toribio et al. 2005). 

Repetitive or secondary SE is a phenomenon whereby new somatic embryos are initiated from other 

somatic embryos. The process of SE is normally not synchronized (Wilhelm 2000; Toribio et al. 2005) (see 

Fig. 1.2). Therefore, a broad spectrum of different developmental stages can be found simultaneously. In an 

optimized procedure, this step can be automated by liquid culture (e.g. in bioreactors (Shohael et al. 2007)). 

In cork oak, secondary embryogenesis takes place continuously on media without PGRs, giving a recurrent 

process that lasts for years without apparent decline of multiplication ability, merely by monthly subculture to 

the fresh medium (Toribio et al. 2005). This phenomenon is frequently reported as typical in Quercus species 

(Fernadez-Guijarro et al. 1995; Cuenca et al. 1999; Wilhelm 2000; Pinto et al. 2002). This can be an efficient 

system to increase embryogenic callus and thus conversion frequencies (Pinto et al. 2002). Besides, somatic 

embryos may reach their full cotyledonary stage without any specific treatment of differentiation, allowing the 

isolation of somatic embryos (Toribio et al. 2005). In cork oak, secondary embryos are formed mostly next to 

the root pole and more rarely in the cotyledons (El Maâtaoui et al. 1990; Bueno et al. 1992, 2000; Fernandez-

Guijarro et al. 1995; Puigderrajols et al. 1996; Pinto et al. 2002; Hernández et al. 2003a). In general, a typical 

cotyledonary somatic embryo is a bipolar structure flanked by two cotyledons that may have a transparent to 

opaque appearance according to the degree of maturation (Fernandez-Guijarro et al. 1995; Pinto et al. 2002; 

Hernández et al. 2003a). In the literature, it is often found references to several abnormal morphologies, such 

as the presence of one or more than two cotyledons in somatic embryos or even fused embryos (Pinto et al. 

2002; Hernández et al. 2003b). Despite the occurrence of morphologically abnormal SE, Pinto et al (2002) 

reported that the plants derived from these SE showed no morphological variability when compared with 



those obtained from conversion of normal dycotiledonary embryos. Even though SE is considered to be the 

best tissue culture-based method of regenerating forest plants, particularly cork oak, some limitations hamper 

operational applications (Merkle 1995; Hernández et al. 2003a). Indeed, one of the major limitations of 

embryogenic cultures induction is woody species low conversion rates that are not proper for industrial 

purposes (Pinto 2002). 

Physiological and molecular events underlying SE as well as the dedifferentiation mechanisms remain 

hardly known (del Pozo et al. 2005; Fehér 2008). The acquisition of embryogenic competence is probably 

dependent on a range of special circumstances essentially determined by the given physiological state of the 

cells which is in turn dictated by its genotype and environmental conditions (del Pozo et al. 2005). 

 

 

 Multidisciplinary studies have been recently applied for a better understanding of underlying processes of 

SE, such as transcriptomic (Stasolla et al. 2004; Yin et al. 2007; Mantiri et al. 2008), metabolomic (Dowlatabadi 

et al. 2009) and proteomic (Winkelmann et al. 2006; Yin et al. 2007). In particular quantitative analyses of gene 

Figure 1.2: Schematic diagram of Q. suber somatic embryogenesis (SE) induction protocol. The area red lined is 
the strategy adressed for this study. PGRs (plant growth regulators); EC and NEC (embryogenic and non-
embryogenic callus (adapted from Pinto 2002). 
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expression and their putative roles in the process are of utmost importance to understand SE studies (Fehér 

et al. 2003; Zeng et al. 2007). 

 

Embryogenic and non-embryogenic callus 

During SE induction it is frequently observed a concomitant emergence of two types of callus on the 

induction medium. The non-embryogenic callus (NEC) is characterized as friable, whitish and easily 

distinguished from the yellowish and compact embryogenic callus (EC). The absence of competence for SE 

demonstrated by non-embryogenic (NE) tissue is not yet completely understood and data is missing regarding 

biochemical and molecular events during this process (Nieves et al. 2003). Furthermore, even NE cells 

appear to have no considerable function, some authors defend that there is some type of signaling between 

these cells and competent ones. Moreover, the conversion to embryogenic (E) cells might be enhanced by 

the presence of certain compounds produced by NE cells in culture (e.g. arabinogalactan proteins) (MacCabe 

et al. 1997).  

Nieves et al. (2003) have investigated the levels of certain metabolites in both lines of EC and NEC of 

sugarcane (Saccharum sp. var CP-5243). They identified significant differences in some amino acid contents, 

including free L-proline, which has been related to the promotion of SE (Armstrong et al. 1985). Moghaddam 

and Mat Taha (2005) through image analysis by electronic microscopy also reported important discrepancies 

between E and NE sugar beet calluses (Beta vulgaris). These authors defended that SE is only possible in 

tissues with low levels of endoplasmatic reticulum and polysomes. As it was already reported for carrot 

(Daucus carota L.) (Pasternak et al. 2002), E cells are densely cytoplasmed (Kadota et al. 2005) and usually 

exhibit many starch grains, an intact cell wall and a higher nucleus to cytoplasm ratio. Unlike, NE callus 

reveals critical alteration in cytoskeleton, loosening of cell-to-cell connection and probably different cell wall 

composition (Mogaddam and Mat Taha 2005). These observations might lead to the findings of abnormal 

cellular behaviors manifested by NEC, which have lost the ability to cooperate with adjacent cells for plant 

regeneration.  

 

Oxidative stress: a general introduction 

As a consequence of aerobic life, reactive oxygen species (ROS) are formed by partial reduction of 

molecular oxygen. Under normal physiological conditions there is a balance between the formation of ROS 

and the protective antioxidant mechanisms of cells. However, many environmental stresses including drought, 

temperature, flooding and post-anoxia stress, a range of gaseous pollutants (ozone, nitrogen oxides, volatile 

organic compounds, etc), nutritional imbalances, heavy metals, pathogens attack and herbicides have been 

indicated to increase oxidative stress, leading to overproduction of ROS that overcomes the cellular 

antioxidant capacity (Arora et al. 2002; Vinocur and Altman 2005) (see Fig. 1.3).  

 



 

ROS are molecules, which have an unpaired electron, thus are highly reactive, that interact non-

specifically with a variety of cellular components (Ashraf 2009). All aerobic organisms are totally dependent 

upon redox reactions and the transfer of single electrons and many life processes (e.g. oxidative respiration, 

photorespiration, photosynthesis, lipid metabolism and cell signalling) involve free radical intermediates, 

molecular oxygen and activated oxygen species such as the superoxide radical (O2!), hydrogen peroxide 

(H2O2), singlet oxygen (O2
1) and eventually hydroxyl radical (OH-) (Cassells and Curry 2001; Scandalios 

2005) (see Table 1.1). Uncontrolled ROS production may ultimately attack macromolecules such as 

polyunsaturated fatty acids (PUFAs) of the chloroplast membranes, leading to toxic breakdown products and 

Figure 1.3: Schematic representation of plant response to abiotic stress. Response mechanisms and main 
intervenient The initial stress signals trigger the downstream signaling process and transcription controls, 
which activate stress-responsive mechanisms to re-establish homeostasis and to protect and repair damaged 
proteins and membranes (adapted from Vinocur and Altman 2005). 
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trigger lipid peroxidation (Benson 2000; Ledford et al. 2005). Actually, the main concern about ROS is the 

possible reactions with biological molecules (see Table 1.2). Peroxidation injury of the cell membrane leads to 

leakage of cellular contents, rapid desiccation, loss of cell function and, eventually to a breakdown in 

structural integrity which can lead to necrosis and death (Scandalios 1993; Benson 2000).  

 

 

 

 ROS are produced basically within the chloroplast, mitochondria, plasma membrane, microbodies 

Table 1.1: Reactive Oxygen Species (ROS) of interest for oxidative stress (adapted from Scandalios 2005). 

Table 1.2: Some damages induced by Reactive Oxygen Species (ROS) on biomolecules (adapted from Scandalios 2005). 



(peroxisomes and glyoxisomes) and cell walls (see Table 1.3), during metabolic pathways as photosynthesis 

and photorespiration, which is the most obvious oxygenation pathway in the chloroplast (Arora et al. 2002). To 

prevent extensive oxidative damages, plants have developed specific mechanisms to avoid this stress 

outcome during normal metabolic processes, like the photosynthetic electron transport system (Arora et al. 

2002). 

Hydrogen peroxide (H2O2) has been considered as an interesting ROS. It has been accepted as a second 

messenger for signals generated by means of ROS as it easily diffuses through membranes and has a 

relatively long life (Arora et al. 2002). Moreover, many studies have suggested the existence of a close 

interaction between intracellular H2O2 and cytosolic calcium in response to biotic and abiotic stresses. In fact, 

environmental stress might trigger a rapid and transient increase in calcium influx, which boosts the 

generation of H2O2 (Grant et al. 2000; Yang and Poovaiah 2002). Yang and Poovaiah (2002) and other 

authors have proposed calcium/calmodulin (CaM) a controlling mechanism of H2O2 homeostasis in plants. 

They verified that increased cytosolic Ca2+ can down-regulate H2O2 levels by means of Ca2+/CaM-mediated 

stimulation of catalase activity in tobacco leaves. This reactive oxygen species will be addressed along this 

study. 

 

 

 

Many parameters can be used to characterize and monitor the extent of oxidative stress: evaluation of 

plant membranes integrity (Heath and Packer 1968), measurement of redox potencial and of stress related 

metabolites (H2O2, ascorbic acid, glutathione), lipid peroxidation estimation through thiobarbituric acid reactive 

substances, evaluation of antioxidant enzymes, enzymes associated with cell cycle, enzymes of the SOS 

response like poly(ADP-ribose)-polymerase, screening for heat-shock proteins (HSP) and pathogenesis-

related protein proteins (PR) (Cassells and Curry 2001).  

Considering the potential ROS oxidation of biomolecules (e.g. DNA) (see Table 1.2), related direct/indirect 

damages may have severe consequences to cells. Several techniques might be applied to assess ROS-

Table 1.3: Site location of ROS generation. Description of components and species involved active oxygen 
species formation and scavenging (adpated from Scandalios 1993). 
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induced DNA/chromosome injuries, such as, flow cytometry, microdensitometry (measure changes in 

chromosome number and DNA content), fluorescent in situ hybridization (FISH) (look for somatic 

recombination) or others that detect DNA sequence mutations such as microsatellites, restriction fragment 

length (RFLP), amplified fragment length polymorphism (AFLP) (Cassells and Curry 2001).  

 

Plant protection mechanisms against oxidative stress: Antioxidant defense system 

Environmental changes may condition cell signaling, with which the cell must deal and respond in a 

programmed manner, allowing the organism survival (Vandenabeele et al. 2000). Actually, higher plants 

possess a well-adapted apparatus that allow ROS-scavenging and protection to cell integrity against oxidative 

stress. ROS-scavenging is accomplished by a set of non-enzymatic antioxidants (glutathione, ascorbic acid, 

!-tocopherol, retinol) and enzymatic antioxidants (superoxide dismutase (SOD), ascorbate peroxidase (APX), 

glutathione-dependant enzymes, catalase (CAT), among others), in response to stress situations (Arora et al. 

2002; Ashraf et al. 2009). 

 

The antioxidant defense system in plats cells is manly constituted by superoxide dismutase (SOD), catalase 

(CAT), ascorbate peroxidase (APX), glutathione (GSH), ascorbate (vitamine C), tocopherol (vitamine E), 

carotenoids among others, which are also information-rich redox buffers and important redox signaling 

components that network cellular compartments (Fig.1.4). As higher plants are sessile, they develop into a 

series of pathways at different levels that combat with environmental stress, which produces more ROS (Shao 

Figure 1.4: Main antioxidant components within a plant cell. These species are distributed through the cell, where 
are present  in higher amounts in vacuoles and chloroplasts (adadpted from Scandalios 2005). 



et al. 2008). In this study it will be focused just some stress-related compounds of interest, which are SOD, 

CAT, POX, L-proline and H2O2. 

 

Antioxidant enzymes such as SOD, CAT, APX, POX (peroxidase), GR (glutathione reductase) and 

MDAHR (monodehydroascorbate reductase) are known to substantially reduce the levels of superoxide anion 

and H2O2 in plants (Ali and Alqurainy 2006; Ashraf 2009). 

Superoxide dismutase (SOD; EC 1.15.1.1) was first isolated from bovine blood as a green copper protein 

(Mann and Keilin 1938) whose biological function was after discovered by McCord and Fridovich (1969). It is 

a metalo-enzyme and catalyzes the dismutation of superoxide (O2
-) to molecular oxygen and H2O2 by 

removing superoxide and hence decreasing the risk of hydroxyl radical formation from superoxide via the 

metal-catalysed Fenton reaction. Since SOD is present in all aerobic organisms and in most subcellular 

compartments that generate activated oxygen, it has been assumed that SOD has a central role in the 

defense against oxidative stress (Shao et al. 2008). There are three main types of SOD already described in 

various plant species and prokaryotes, which are Mn-SOD (in mitochondria matrix, peroxisomes and 

prokaryotes) (Arora et al. 2002; Shao et al. 2008), Cu/Zn-SOD (in cytosol, chloroplasts, peroxisomes and 

apoplast) (Corpas et al. 2006; Iriti and Faoro 2008) and Fe-SOD (absent in animals and found mainly in 

chloroplasts) (Iriti and Faoro 2008). 

Several reviews on SOD indicate that in both prokaryotes and eukaryotes, oxidative stress induces or 

enhances the activity of SOD (Scandalios 1993). These increases arise from several stress responses to 

herbicide treatments, high temperature and light exposure, ozone, drought, chilling, anoxia and pathogenic 

injury. In model plants, such as Arabidopsis thaliana and Nicotiana tabacum, it is possible to enhance the 

levels of key components of ROS metabolism and antioxidants by genetic manipulation. Studies on 

transformed plants expressing increased activities of single enzymes of the antioxidant defense system 

indicate that it is possible to deliberate a degree of tolerance to stress (Arora et al. 2002). In view of these 

data it is plausible that high levels of oxidative stress may result in high SOD protein turnover, resulting in the 

requirement for new SOD enzyme synthesis to maintain SOD levels sufficient for effective protection.  

Catalase (CAT) (EC 1.11.1.6) is a heme-containing enzyme that catalyses the disproportion H2O2 into 

water and oxygen. The enzyme is found in all aerobic eukaryotes and is important in the removal of H2O2 

generated in glyoxysomes, peroxisomes where H2O2-generating enzymes have been found (Vandenabeele et 

al. 2000). Peroxisomes contain high amounts of catalase, however, its properties seems to be inefficient to 

remove low concentrations of H2O2 (Arora et al. 2002).  

Peroxidases  (EC 1.11.1.7) are a single-polypeptide chain and heme-containing enzymes that are present 

in large amounts in higher plants and are usually expressed as several isoforms (Balen et al. 2003). 

Isoperoxidases are thought to join in a wide range of physiological processes like H2O2 detoxification 

(Yamasaki et al. 1997), cell elongation (Liszkay et al. 2004), cell wall synthesis (De Marco et al. 1999) and 
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differentiation and the plant response to stress (Bolwell et al. 2002). They catalyze the typical reaction 2 AH + 

H2O2 ! 2 A + 2 H2O, presenting an array of reducing substrates (AH) (Ghamsari et al. 2007). They are 

categorized into two main groups: guaiacol peroxidases (G-POX) named after their usual reducing substrate, 

guaiacol (o-methoxyphenol), which are located in cytosol, vacuole, apoplast (cell wall and extracellular 

medium), but are absent in organelles (Ghamsari et al. 2007). The physiological functions of G-POX are still 

hardly known, however, they are also assumed to be involved in a series of processes related to plant growth 

and development. It was found that this enzyme is expressed during all developmental stages of saffron plant 

(Crocus sativus) suggesting important roles during this morphogenic process (Ghamsari et al. 2007). 

Furthermore, many other functions such as cell wall lignifications, cell wall stiffening, auxin metabolism and 

root elongation have been reported for G-POX. The other group is ascorbate peroxidase (APX) as it oxidizes 

ascorbic acid. They are found in chloroplast, microbodies and cytosol and their main function is to scavenge 

H2O2 and defense against oxidative stress in plant cell (Shigeoka et al. 2002). 

The antioxidant system is also constituted by non-enzymatic components that are fundamental for ROS 

scavenging and buffer cell pH between physiological levels. They are organic molecules such as ascorbate 

(AA) (vitamin C) that is the most abundant hydrophilic antioxidant in plants (Iriti and Faoro 2008). It is also 

present in chloroplasts cytosol, vacuole and apoplastic space of leaf cells in high concentrations. Glutathione 

(GSH) is a tripeptide (Glu-Cys-Glyi) and is the major low molecular weight thiol compound in most plants. It 

acts as disulphide reductant to protect thiol groups of enzymes, regenerate ascorbate and react with singlet 

oxygen and hydroxyl radicals (Shao et al. 2008). It is a great antioxidant because it can react chemically with 

singlet oxygen, superoxide and hydroxyl radicals and therefore function directly as a free radical scavenger. 

Moreover, GSH may stabilize membrane structure by removing acyl peroxides formed by lipid peroxidation 

reactions.  

The accumulation of some organic compatible compounds in plants such as polyamines (diamine 

putrescine, triamine spermidine and tetramine spermin) and L-proline play significant roles in plant adaptation 

to a variety of environmental stresses. As reported earlier, the increase of free polyamines in several plant 

species under stresses seems to result in stress tolerance (Wei et al. 2009). L-proline is usually regarded as 

an osmoprotection agent (adjusting the intracellular osmotic potential) (Tatar and Gevrek 2008) and also as 

ROS-scavenging compound that prevents oxidative damage. There is some controversy regarding proline 

function in plants. Some authors suggest that its accumulation is an indicator of drought injury (Zlatev and 

Stoyanov 2005) and others that it confers stress tolerance to oxidative damage induced by water stress 

(Vendruscolo et al. 2007), even though it is still unveiled. 

 

Conditions enhancing oxidative stress in in vitro culture 

A number of well documented problems in physiological, epigenetic and genetic quality are associated 

with the culture of plant cell, tissue and organs in vitro, namely, absence or loss of organogenic and 



embryogenic cell competence (recalcitrance), hyperhydricity and somaclonal variation (genetic and epigenetic 

variance) (Cassells and Curry 2001). Pasternak et al. (2002) states that early phases of SE depict the 

induction of many stress-related genes, which leads to the hypothesis that SE is an extreme stress response 

of cultured plant cells. After oxidative stress exposure, plant cells might acquire a less differentiated status 

(Pasternak et al. 2002). Many in vitro SE systems rely on the use of exogenous 2,4-D as an inducer, which 

evokes oxidative stress response (Fig. 1.5). 

Many previous data indicated 

that oxidative stress caused by 

radical oxygen species (ROS) 

promotes SE in many plant species 

(Luo et al. 2001; Pasternak et al. 

2002; Caliskan et al. 2004; 

Ganesan and Jayabalan 2004). 

Some variations were identified as 

a result of plant tissue culture, 

which are somehow assumed to 

outcome aside the oxidative burst 

during explant preparation, and in 

culture, due to media and other 

environmental factors. Indeed, both 

in initiating cultures and in sub culturing, explant preparation (ex: hypochlorite) involves wounding of the 

tissues, which is known to cause oxidative stress (Cassells and Curry 2001). Other agents or factors that elicit 

oxidative stress in plant tissue culture are high salt stress, water stress, mineral deficiency, excess metal ions 

and overexposure to auxin or other plant growth regulators.  

As it was already referred, auxin is believed to be one of the most important plant growth regulators in 

relation to cell division and differentiation, in particular in SE induction, acting as a prerequisite for mitotic 

activity and meristem formation (Casimiro et al. 2001; Marchant et al. 2002; Pasternak et al. 2002). In fact, 

moderated oxidative stress mimics auxin stimuli in SE (Pasternak et al. 2002, 2005), which might be 

addressed as an inherent part of 2,4-D induced SE. Low stress exposure might then result in higher 

constitutive resistance to subsequent stress, making controlled stress in vitro a reliable option to help 

overcome stress through cross tolerance. 

Certainly, a particular level of oxidative stress is required to promote the formation of E cells and to trigger 

specific morphogenic pathways involved (Kairong et al. 1999; Fehér et al. 2003; Imin et al. 2005; Pasternak et 

al. 2005; Blázquez et al. 2009). In this context, ROS could entail the complex signal transduction pathway 

required to trigger the reprogamation of the gene expression pattern, cellular metabolism and totipotency 

Figure 1.5: Oxidative stress-induced responses  and main consequences. 
There are a significant difference between high and low oxidative stress 
exposure. HSP-proteins (Heat Shock proteins) (adapted from Cassells and 
Curry 2001). !
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crucial for the embryogenic competence of somatic cells in in vitro tissue cultures (Blázquez et al. 2009). 

Other studies supported that oxidative stress is a component of micropropagation processes, including SE. It 

can be enhanced by supplementing oxidative stress-inducing agents like copper, menadione (vitamine K3), 

paraquat (methyl viologen dichloride), or alloxan to the culture medium at sublethal concentrations (Pasternak 

et al. 2002) and affects cell cycle progression (Reichheld et al. 1999).  Moreover, recently Pinto et al. (2008) 

reported for the recalcitrant woody species Eucalyptus globulus that adding antioxidants to the medium during 

induction and expression stages, could reduce explant/medium browning but also reducing SE induction 

and/or expression. These data also support previous data suggesting that regenerative pathways in plant 

tissue cultures as well as SE comprise a range of developmental processes in which H2O2 has been shown to 

be involved (Kairong et al. 1999; Tian et al. 2003). All these findings strongly support that certain levels of 

oxidative stress may function as SE promoters. Therefore, changes in antioxidant enzyme activities and 

oxidative-related metabolites have been considered as markers for the different stages of SE in plants 

(Bagnoli et al. 1998; Blázquez et al. 2009) and for oxidative stress screening.  

Besides these findings, the major bottleneck of this speculation is still the understanding of the main 

causal mechanisms of oxidative stress-induced response in in vitro culture, and at what level this oxidative 

stress is required for promoting the process without causing severe damages to cell.   

 

The plant cell cycle, growth regulators and oxidative stress: a general overview 

The cell cycle (Fig. 1.6) represents cell division time and thus the range of morphological and biochemical 

events, which are responsible for cell proliferation (Dewitte and Murray 2003). In plants, cell proliferation is 

orchestrated by the same fundamental and conserved mechanisms that operate at the cell cycle of all 

eukaryotes. However, in comparison to animals, plants have a dissimilar development and specific cell-cycle 

molecules and regulators, as they may undergo indeterminate growth and organogenesis (Dewitte and 

Murray 2003).  

Dewitte and Murray (2003) have supported the differences in cell-cycle controls, mainly due to 

developmental, environmental and growth hormone influences. The cell cycle encompasses four sequential 

and spatially organized processes. Mitosis (M phase) is the nuclear division phase, which comprises other 

four stages (prophase, metaphase, anaphase and telophase) and culminates with cytokinesis (cell division 

into two daughter cells). Thereafter cells arrive into the gap 1 (G1), first growth phase, where they are 

metabolically active and increasing their size. It follows the synthesis phase (S) in which DNA replication 

takes place. In some species, like Arabidopsis they may go into an alternative cycle named endoreduplication. 

This involves repeated S phases with no subsequent mitosis, resulting in an increase at ploidy level (Dewitte 

and Murray 2003). The gap 2 (G2), second growth phase, is when proteins and other relevant metabolites are 

synthesized to allow mitosis to occur. Sometimes, cells exit G1 phase to a quiescent one (G0). Here, cells 

remain metabolically active but no longer proliferate unless under appropriate external signals (Taiz and 



Zeiger 2002; Schmidt et al. 2006). The G1, S and G2 phases 

constitute the so-called Interphase. Plants seem to be more 

complex in this type of metabolism. This is probably 

associated with their sessile lifestyle and to become well 

adapted to changing environmental conditions (Dewitte and 

Murray 2003).  

The different stages of cell cycle must be narrowly 

coordinated with one another so that cell division occurs 

properly. This is ensured by a set of checkpoints during cell 

cycle, which prevent entry into the next stage until the 

preceding phase has been completely accomplished 

(Schmidt et al. 2006). There are three main checkpoints that 

arrest cell cycle. One major checkpoint arrests cells at G2 

when senses damaged or unreplicated DNA. Then, it 

activates a signaling pathway that may lead to cell cycle 

arrest, activation of DNA repair and, sometimes 

programmed cell death (PCD) (Schmidt et al. 2006).  Holding cell cycle at G1 phase also allows DNA 

reparation before entry into S phase. Likewise, S-phase checkpoint supplies a continual monitoring of the 

DNA integrity. This provides a quality control, preventing, e.g., the incorporation of incorrect bases within DNA 

strains (Cooper and Hausman 2004). 

 

Among the many cellular processes that oxidative stress may modulate, cell cycle is one of them, as it 

was demonstrated that oxidative stress affect cell progression and cell division (Fehér et al. 2008). This was 

supported by Reichheld et al. (1999 vide Fehér 2008), who demonstrated that the generation of ROS also 

altered cell redox potencial, influencing cell cycle progression.  

The influence of an oxidative agent on SE vs. its putative cytoxic effect is highly dependent on the agent 

concentration, duration pulse and site of action (Fehér et al. 2008). Moreover, it was found that the influence 

on cell cycle dynamics was associated with an inhibition of the activity of cyclin-dependent kinases, cell cycle 

gene expression, and a concomitant activation of stress genes (Reichheld et al. 1999). This is to say that 

defense responses against oxidative stress also depend on the phase of the cell cycle in plants, e.g. G1 cells 

seem to be most sensitive to oxidative stress, inducing defense responses or programmed cell death to 

protect themselves in plants as well as in animals and fungi (Kadota et al. 2005). 

 

Cell cycle is also intimately dependent on the presence of plant growth regulators (PGRs), which are used 

to promote cell multiplication and morphogenesis, and ultimately plant regeneration. The effects of PGRs on 

Figure 1.6: Generic diagram of the eukaryotic cell 

cycle. Here is shown the basic three phases of 

Interphase in which cell growth (G1 and G2) and 

DNA replication (S) occur and the begining of 

mitosis (chromossome distribution and cell 

division) (adapted from http://teachline.ls.huji.ac.il) 
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cell cycle have been broadly studied. Although their consequences are not exactly understood, they are 

known to influence cell proliferation and morphogenic development. During in vitro culture there are two main 

types of PGRs more likely to influence cell proliferation, which are both cytokinins and auxins (Tamura et al. 

1999; Dewitte and Murray 2003; del Pozo et al. 2005). They are well documented in controlling the 

transcriptional expression of an array of cell cycle genes (del Pozo et al. 2005) and crucial for undifferentiated 

cell proliferation (Tamura et al. 1999; Dewitte and Murray 2003; del Pozo et al. 2005). 

Here, it was addressed only two growth factors of interest, cytokinins (Zeatin) and auxin-like 2,4-D (2,4 

Dichlorophenoxyacetic acid). Exogenous auxin was suggested to influence the rates of cell division and cell 

elongation, and possibly, triggering specific differentiation (Tamura et al. 1999) and to influence cell cycle 

progression primarily by inciting the synthesis of determining cell cycle regulators. On the other hand, it 

seems that the application of cytokinins increase the amount of CDK protein (cyclin-dependant kinases), but 

only CK-mediated dephosphorylation induces CDK activation (Taiz and Zeiger 2002). It was suggested that 

cytokinins affect the G1/S and G2/M transitions, as well as on progression through S phase. It was described 

that the inhibition of isoprenoid biosynthesis at the G2/M transition associated with release of the inhibition of 

mitosis by exogenous zeatin showed that this transition requires Zeatin-like cytokinins (Dewitte and Murray 

2003). Cytokinin is as well associated with CDK activation at the G2/M transition either by direct activation of a 

phosphatase or by downregulation of the WEE1 kinase (Dewitte and Murray 2003), which is also a major 

regulator of mitotic entry. 

It may be kept in mind that the same PGR may participate on cell cycle at different stages and then 

several mechanisms correlate with each other at a given cell cycle transition (Taiz and Zeiger 2002; del Pozo 

et al. 2005). 

 

Flow cytometry technique: general principles 

 

“... the cytometric one cell is one biochemical cuvette concept, overcomes these limitations by combining the advantage 

of microscopic single cell observation with the advantage of multiparametric quantitative biochemical analysis of intact 

and fully functional cells…” (Valet, G., Max-Planck-Institut für Biochemie) 

 

Flow cytometry (FCM) is a powerful and rapid technology for the random analysis of multiple parameters 

(chemical and physical) of individual cells within heterogeneous populations simultaneously at real time. 

These measurements are accomplished by passing particles through the interrogation point, which is 

surrounded by an array of photomultiplier tubes (PMTs). These analyses are performed by passing thousands 

of particles (in a cell suspension in movement) per second through a laser beam, and capturing the light that 

emerges from each particle as it passes through. Then, the data gathered is available to be statistically 

analyzed by the flow cytometry software to explore a range of information about cellular properties (e.g. size, 

complexity, integrity, phenotype) (adapted from http://probes.invitrogen.com/). The three fundamental 



integrated systems of flow cytometer (Givan 2001; adapted from http://probes.invitrogen.com/) are (Fig. 1.7): 

fluidic, optic and electronics and computer systems. Initially, the sample in solution is initially injected into the 

flow cytometer and then it is presented to the interrogation point through a stream of particles, a process 

managed by the fluidics system (Rahman 2006). The interrogation point is where the laser and the sample 

intersect and the optics system collects the resulting scatter and fluorescence. This system is the central 

channel through which the sample is injected. For accurate data collection, cytomes must pass through the 

laser beam one at a time, thus the sample is injected into a flowing stream of sheath fluid or saline solution 

which is at a higher velocity. Sheath fluid that is pressurized at a reservoir provides the supporting vehicle for 

directing cells through the laser beam. This is usually buffer of a composition that is appropriate to the types 

of particles being analyzed (Givan 2001). Then the sample injection into that reservoir generates a drag effect 

and altering the velocity of the central fluid. This effect promotes a single file of particles (single flow) – 

hydrodynamic focusing.  

The samples must then pass 

through one or more laser beam 

that has a circular, radially 

symmetrical cross-sectional profile. 

As the laser strikes the cell, the 

light is reflected, diffracted and/or 

refracted at all angles. It also can 

be converted to a different color if it 

has been absorbed by a 

fluorescent chemical (Givan 2001). 

The light gathered in lenses is then 

focused onto photodetectors, 

which convert light signal into an 

electrical impulse which intensity is 

proportional to intensity of light reached on the detector. The forward scatter (FSC) signal is thought as light of 

the same wavelength (color) as the incident laser beam that has been bent to a small angle from the direction 

of that original beam and is named a size or volume signal (Givan 2001; Rahman 2006). The intensity of this 

signal can also be considered to distinguish between cellular debris and living cells through the cell refractive 

index analysis (Givan 2001; Rahman 2006). The scattered light received by the photodetectors is translated 

into a voltage pulse, as the magnitude of the voltage pulse generated is often considered proportional to the 

particle size. On the other hand light measured at larger angles, as the side, is described side scatter (SSC). 

The side scatter light is focused through a lens system and is collected by a separate detector located 90º 

from the laser’s path (adapted from http://probes.invitrogen.com/). The intensity of this signal provides 

Figure 1.7: Common components of flow cytometers. Fuidics system, 
lasers, optics, detectors and electronics and computer systems (adapted 
from http://probes.invitrogen.com/). 
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information about particle complexity (granular content) (Rahman 2006) and is related to the cell's surface 

texture and internal structure as well as to its size and shape (see Fig. 1.8). 

Regarding signaling processing, flow cytometers use separate fluorescence channels (FL-) to detect 

different light emitted. The detectors accommodate a specific sort of optical filters, which block certain 

wavelengths while transmitting others. The three major filter types are “Long pass” that let through long 

wavelengths, “Short pass”, that set a limit to lower wavelengths and “band pass” filters which transmit light 

within a narrow range of wavelengths – a band width (Rhaman 2006).  

FCM is broadly applied both to fundamental research and industry and presents a set of distinctive 

characteristics that make it an extremely useful scientific tool (Loureiro and Santos 2005): general easy 

sample preparation methodologies, non-destructive, capable of running a multiparametric analysis at the 

same time (real time). Indeed, FCM is now a changing and useful technique for modern cell biology research 

present almost at all laboratories.  

The applications of FCM have proliferated (and continue to proliferate) rapidly both in the direction of 

theoretical and practical/applied science, with 

botany, molecular biology, embryology, 

biochemistry, marine ecology, genetics, 

microbiology, and immunology, for example, all 

represented, and in the direction of clinical 

diagnosis and medical practice, with 

hematology, bacteriology, pathology, oncology, 

obstetrics, and surgery involved (Givan 2001). 

They are used in many applications such as 

cell counting, immunophenotyping, green 

fluorescent protein (GFP) expression and 

ploidy analysis (adapted from 

http://probes.invitrogen.com/). The flow 

cytometer can perform structural and 

biochemical analyses like the volume and 

morphological complexity of cells, organelles 

(e.g. chloroplasts) and biomolecules such as 

DNA (cell cycle, amount) or RNA, enzyme 

activity, cell viability (e.g. FDA - fluorescein diacetate), and functional like intracellular pH, membrane potential 

(e.g. in mitochondria), redox reaction derived-species (e.g. ROS). 

Fluorescent probes are effective in directly target a cytome of interest and enable its parameters to be 

measured more easily by the flow cytometer (Rhaman 2006). There are many fluorescent molecules 

Figure 1.8: Schematic representation of scatter and 
fluorescence values. They are gathered by the flow 
cytometer as each particle intersects the laser beam. This 
allows the analysis of multiparameters of the particle and to 
distinguish subpopulations within the sample by size, 
complexity and fluorescence (adapted from 
http://probes.invitrogen.com/). 



applicable to flow cytometry analysis among which some bind specifically nucleic acids in a range of ways 

such as intercalating (propidium iodide and ethidium bromide), AT-binding (DAPI, Hoechst 33258) and GC-

binding (chromomycin). These molecules support flow cytometry for the study of basic mechanisms of the cell 

cycle and also the study of effects of different putative modulators and inhibitors (hormones, growth factors, 

toxins, etc.) and environmental conditions (including stress) (Loureiro and Santos 2005).  

 

WORK PURPOSE 

This study falls within the field of plant biotechnology and cytomics, presently undertaken by the 

Laboratory of Plant Biotechnology and Cytometry (University of Aveiro). It was intended to answer the 

biological questions “Is oxidative stress involved in different morphological stages during SE induction in 

woody species?”, “Do EC and NEC present different profiles of cell cycle dynamics?”. For this, two different 

developmental stages of SE (non-embryogenic calli and embryogenic) in Q. suber were compared regarding 

antioxidant enzyme activities and other oxidative stress-related parameters (H2O2, L-proline and lipid 

peroxidation). Moreover, and considering a putative direct/indirect role of oxidative stress in cell cycle, claimed 

in literature, the cell cycle dynamics was also evaluated in both tissues. For this, nuclei were evaluated by 

FCM and the profile among G0/G1: S : G2 phases compared between all experimental conditions. 

Giving an insight to these biological problems this work will provide valuable information of the possible 

roles (cause/effect) of oxidative stress during SE and may also contribute to better correlate it with cell cycle 

dynamics (intimately linked to morphogenic processes). This will then give further knowledge to basic 

questions of plant development field as “What might happen in NEC  to prevent cell differentiation?”; “Might 

the knowledge of oxidative stress status contribute to SE induction protocols improvement?”. 
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Abstract 

Cork oak (Quercus suber L.) is an important forest species, particularly in Southern Europe. Due to its 

economic and environmental values, the improvement of in vitro protocols has become an extremely 

important tool. For the induction of embryogenic (EC) and non-embryogenic callus (NEC), single mature 

somatic embryos were transferred onto MS induction medium. Both types of calli can be differentiated by their 

morphology, but little is known about the biochemical  events that take place when somatic cells become 

competent to produce somatic embryos. Antioxidant enzymes (catalase, superoxide dismutase, guaiacol-

peroxidase), metabolites (hydrogen peroxide), L-proline and lipid peroxidation were evaluated for monitoring 

and screening oxidative stress status. The comparative biochemical/physiological analysis between EC and 

NEC seems to suggest different behaviourss between them. Data revealed significantly higher levels of L-

proline and total protein contents in EC, but not statistical differencences regarding MDA and H2O2 contents. 

Despite a trend to high levels of malonyldialdeyde (MDA), even though not significantly different. In contrast, 

NEC demonstrated an apparent increase of  H2O2 levels rather than EC (no statistical significance). 

Regarding antioxidant enzymes, only SOD showed significant differences for NEC increased activity. EC 

suggested a trend to increase CAT and decreased G-POX activities. With respect to cell cycle analysis by 

flow cytometry (FCM), no significant differences were reported neither between tissues nor treatments. As 

expected, it was detected a dominance of nuclei amount in G0/G1 phase in both tissues, independently of the 

treatment. So far, this is the first report where oxidative stress status and cell cycle were monitored during 

cork oak SE induction. Changes in antioxidant enzyme activities might give support the speculation that 

oxidative stress is a driving force for cork oak SE induction. Furthermore, three main factors (concentration, 

duration of the pulse and site location) suggest that ROS species (e.g. H2O2) may affect cellular redox status, 

ultimatly preventing or not cell cyle progression.  

 

Keywords: Cell cycle, cork oak, embryogenic callus (EC), non-embryogenic callus (NEC), oxidative stress, somatic 

embryogenesis (SE) induction. 



Introduction 

Cork oak (Quercus suber L.) is one of the most remarkable evergreen species of the Mediterranean 

ecosystem (Pinto et al. 2002; Hernández et al. 2003b). It represents a great economical value for portuguese 

cork transformation industry (Pinto et al. 2001; Silva et al. 2005). Nevertheless, the survival of Q. suber has 

been threatened in Portugal and it was given a protected status in this country in the last decades (FAO 

1996). In vitro plant propagation technologies have been proposed as imperative tools in increasing breeding 

possibilities for oaks (Hernandéz et al. 2003). 

Somatic embryogenesis (SE) explores plant totipotency and is the development switch of somatic cell to 

embryo (Zimmerman 1993). SE can serve as a model system to study the molecular, cytological, 

physiological/biochemical and developmental events of plant regeneration with accessible experimental 

manipulation (Zimmerman 1993). Over the past decades, research on cork oak SE mainly focused on 

physiological description and improvements in culturing technologies (Bueno et al. 1992; Hernández et al. 

2001, 2003a; Pinto 2002; Toribio et al. 2005). Although cork oak SE induction and further regeneration 

processes have been previously reported (El Mâataoui et al. 1990; Manzanera et al. 1990; Bueno et al. 1992; 

Fernández-Guijarro et al. 1995; Hernandez et al. 1999, 2001, 2003a, 2003b; Toribio et al. 1999, 2005; 

Hornero et al. 2001a; Pinto et al. 2001, 2002) very little is known about the biochemical and oxidative stress 

status during early stages of this process. On the other hand, there are still technical limitations among 

different protocol steps that must be answered and optimized to guarantee SE practical application for large-

scale production. The induction from adult plants is still recalcitrant  and some authors also reportded the loss 

of embryogenic competence in several in vitro culture systems for many plant species (Benson 2000). 

Biochemical markers may be useful for early identification of embryogenic cultures before any morphogenic 

changes. It would allow the improvement of embryogenic culture conditions, monitoring the course of SE and 

discriminating the cultures for follow up the multiplication process (Hussein et al. 2006). 

In recent years, there has been a growing interest in the functional significance of Reactive Oxygen 

Species (ROS) and the concomitant antioxidant response in growth, development and differentiation of plant 

cells (Foyer and Noctor 2005). It has been demonstrated that hydrogen peroxide (H2O2) embraced within the 

ascorbate-glutathione (ASC-GSH) cycle, is implicated in the maintenance of cell wall plasticity and the 

stimulation of organized cell division (De Gara et al. 1997). Both processes are required during the initial 

stages of SE. A link between ROS and plant morphogenic processes has been suggested (Obert et al. 2005) 

as its level and type are determining factors for the response they might be able to induce. ROS may trigger 

defense genes and adaptative responses at low concentrations while activating a genetically controlled cell 

death program at higher concentrations (Van Breusegem 2006). Pasternak et al. (2002) states that early 

phases of SE depict the induction of many stress-related genes, which leads to the hypothesis that SE is an 

extreme stress response of cultured plant cells. In culture, plants are exposed to oxidative stress resulting 

from: severe wounding, sub-culturing, unbalanced mineral composition of the medium, plant growth regulators 
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(PGRs) effects. Corroborating these statements, many previous data have indicated ROS to promote SE in 

several plant species (Luo et al. 2001; Pasternak et al. 2002; Caliskan et al. 2004; Ganesan and Jayabalan 

2004) which has been associated with the activation of the cell cycle and cell dedifferentiation. A particular 

level of oxidative stress seems to be required to promote embryogenic (E) cells formation and to trigger its 

specific morphogenic pathways (Kairong et al. 1999; Fehér et al. 2003; Pasternak et al. 2005; Imin et al. 

2005; Blázquez et al. 2009). Other studies supported the hypothesis that oxidative stress may be an implicit 

component of micropropagation processes (Cassells and Curry 2001), particularly concerning SE. The 

cellular stress response is an ubiquitous defense mechanism triggered when cells are confronted with stress. 

To prevent ROS harmful effects, plants activate antioxidant systems (enzymatic and non-enzymatic), 

including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), peroxidase (POX) and 

ascorbate peroxidase (APX) and stimulate antioxidant molecules production such as ascorbic acid and 

glutathione for ROS-scavenging (Cassells and Curry 2001). For this, changes in antioxidant enzyme activities 

have been considered as markers for different stages of SE (Bagnoli et al. 1998; Blázquez et al. 2009) and for 

oxidative stress screening in several plants species. Many other parameters can also be applied to 

characterize and monitor the extent and/or effects of oxidative stress: measurement of redox potencial, 

stress-related metabolites (H2O2, ascorbic acid, glutathione), lipid peroxidation estimation through 

thiobarbituric acid reactive substances (TBARS), cell cycle, among others. 

The study of cell cycle profile during morphogenic processes (e.g. SE) is also relevant as it controls 

organ/individual growth and differentiation processes (e.g. during regenerative pathways). Flow cytometry 

(FCM) has become a reliable and routine approach for these type of analyses as it is able to analyse 

individual cells within an heterogeneous population at high speed and short time (Dole!el 1997) (e.g. nuclear 

events may reflect G0/G1: S: G2 phase ratios/dynamics during SE). Several studies on plant genome have 

been performed by FCM such as ploidity stability (e.g. Winkelmann et al. 1998; Endemann et al. 2001; Pinto 

et al. 2004; Loureiro et al. 2005; Lopes et al. 2006; Santos et al. 2007; Fernandes et al. 2009), nuclear DNA 

content (e.g. Galbraith et al. 2002), cell cycle dynamics (e.g Winkelmann et al. 1998). Recently, it has also 

been described an association between oxidative stress and auxin during cell cycle progression during in vitro 

culture (Fehér et al. 2008). 

The aim of this work is to characterize the oxidative status and cell cycle dynamics during the first phases 

of cork oak SE induction. Non-embryogenic callus (NEC) and embryogenic callus (EC) were induced and a 

comparison was made with respect to: antioxidant enzyme systems (SOD, CAT, G-POX), lipid peroxidation, 

L-proline and H2O2. Cell cycle analyses by FCM were also monitored for EC and NEC on induction and 

expression medium. A better understanding of SE would allow the development of new in vitro culture 

strategies for plant propagation. 

 

 



Material and Methods 

Plant material and somatic embryogenesis induction 

Initial cuttings were obtained from a 60-years-old cork oak tree (Companhia das Lezírias, S.A. at South of 

Portugal) and the leaf explants were treated and induced according to the protocol established by Pinto et al. 

(2002). Briefly for SE induction, desinfected leaves were placed on Murashige and Skoog (1962) medium 

(MS) with 30 g l-1 sucrose, 3 g l-1 gelrite, pH 5.8, 1.0 mg l-1 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2.0 mg 

l-1 zeatin (Zea), in the dark at 24±1°C. 

When EC aroused, they were isolated 

and transferred to fresh MS medium 

without PGRs (in this report so-called 

MSWH) for somatic embryos 

development up to cotyledonary stage 

(expression stage). Then, they were 

transferred to a photoperiod of 16 h 

and exposed to a light intensity of 

98±2 !mol m-2 s-1. Then, the 

embryogenic lines were multiplied by 

repetitive SE on the expression-

proliferation medium (MSWH), which 

was routinely renewed every 30 days 

and maintained under the same 

growth chamber conditions. 

For the induction of EC and NEC single mature dicotyledonary somatic embryos were transferred onto MS 

induction medium for 12 weeks (routinely renewed), until the production of yellowish embryogenic masses 

able to be converted into somatic embryos and translucent masses of NEC. EC was identified on a 

morphological basis under a stereomicroscope and manually separated from NEC. Both tissues were used for 

protein extraction and antioxidant enzymes assays, lipid peroxidation and H2O2 assay. Figure 2.1 shows the 

schematic procedure of plant source preparation. For cell cycle analysis by FCM, both tissues were used in 

two different conditions: NEC and EC on induction medium and NEC and EC on MSWH (expression 

medium). 

 

Determination of Lipid Peroxidation (MDA) 

Lipid peroxidation was determined by measuring malondialdehyde (MDA) formation, which is one of the 

products resulted from the reaction with thiobarbituric acid. According to the protocols established by Salem et 

Figure 2.1: Diagram of plant source preparation (adapted from Pinto 2002). 
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al. (2005), both EC and NEC of cork oak (250 mg of fresh weight - FW) were homogenized with 2.5 ml of TCA 

(0.1% w/v) and then centrifuged at 10000 g for 20 min at 4 ºC. Thereafter 500 µl of supernatant was mixed 

with 2 ml of 0.5% (w/v) thiobarbithuric acid (TBA) in 20% (w/v) trichlotoacetic acid (TCA). The reaction mixture 

was heated at 95 ºC for 30 min in a boiling water bath. After cooling in an ice bath, a second centrifugation 

was accomplished at 10000 rpm for 10 min at 4ºC. The supernatant was collected to spectrophomometric 

(Thermo Scientific, Genesys 10 UV Scanning) analysis both at 532 nm (specific absorbance) and 600 nm 

(inespecific absorbance). The MDA concentration was determined by extinction coefficient of 0.155 M-1cm-1 

 

L-Proline content assay 

L-proline content was determined as described by Hamid et al. (2003) with some variations. So, 100 mg of 

FW were homogeneized in 1.5 ml of 3% sulphosalicylic acid with a mortar and a pestle. Then the preparation 

was centrifuged at 10000 g for 10 min at room temperature (21 ºC). The supernatant (100 !l) was collected to 

react with 2 ml of glacial acetic acid and 2 ml of freshly prepared ninhydrin acid (1.25 g ninhydrin warmed in 

30 ml glacial acetic and 20 ml (6 M) phosphoric acid until dissolved) for 1 h at 100 ºC. The reaction stops in an 

ice bath and the extraction proceeds by the adition of 1 ml of toluene. The chomophore phase with toluene is 

removed and warmed to room temperature and then its optical density was measured at 520 nm. The proline 

content was estimated using a standard curve of 1.0-100 µg ml-1. 

Hydrogen peroxide content assay 

H2O2 was extracted from EC and NEC as descrebed by Zhou et al. (2006), with some variations.  Samples 

with 500 mg FW was ground to powder in a mortar with pestle together with 5 ml of 5% TCA and 0.15 g 

activated charcoal and centrifuged at 10000 g for 20 min at 4ºC. The supernatant was collected and adjusted 

to pH 8.4 with 25% ammonia and divided into two aliquots of 1 ml, one of which was setted up as blank 

(addition of 8 µg CAT at room TºC for 10 min for H2O2 consumption). To both, 1 ml of colorimetric reagent 

was added (10 mg 4-aminoantipyrine, 10 mg phenol, 5 mg peroxidase (150 U mg–1) in 50 ml of 100 mM 

acetic acid buffer pH 5.6). The reaction mixture (final vol. 2 ml) was incubated for 10 min at 30ºC and the 

absorbance was estimated spectrophotometrically after 30 sec at 505 nm . The H2O2 content was determined 

using a standard curve of 0.1-50 µM H2O2. 

Protein content and antioxidant enzymes assay 

Total protein assay 

Total soluble protein contents were estimated according to the Coomassie Protein Assay (Bradford 1976), 

using the Bio-Rad assay kit (microassay protocol) with bovine serum albumin (BSA) as a calibration standard 

at concentrations of 0-0.7 mg ml-1. Blank contained 1 ml Blue Coomassie dye and  20 µl NaCl. 



Extraction and estimation of superoxide dismutase, catalase and peroxidase 

Enzyme extract for superoxide SOD (EC 1.15.1.1), CAT (E.C. 1.11.1.6) and POX (EC 1.11.1.9) were 

performed according to Sairam et al. (2000) and Almeselmani et al. (2006). Then, the tissue was firstly 

prepared by grinding the callus (0.5 g) in 10 ml of 100 mM potassium phosphate buffer, pH 7.5 containing 0.5 

mM EDTA. For SOD quantification it was measured the inhibition of photochemical reduction of nitroblue 

tetrazolium (NBT) and a final volume of 3 ml for the reactional solution was applied. According to Almeselmani 

et al. (2006) it was prepared a reaction mixture containing 13  mM metionine, 63 !M nitro-blue tetrazolium 

chloride (NBT) (Cervilla et al. 2007) freshly prepared (in water heated till 500 ºC, centrifuged and stored in 

cold and dark), 0.1 mM EDTA, 50 mM phosphate buffer (pH 7.8), 50 mM Na2CO3 and 100 µl of extract. The 

reaction started by the addition of 2 !M riboflavin (freshly prepared in boiling water for 2 min and stored in 

cold and dark) and placing the the samples under 15 W fluorescent light for 15 min at 30 cm. Thereafter the 

reaction was stoped by turning off the light and placing them in the dark. Control tubes were setted up without 

enzyme and blank ones without irradiation. The increase in absorbance due to formazan formation was read 

at 560 nm. One unit of SOD activity was defined as the amount of enzyme required to cause 50 % inhibition 

of the reduction of NBT in light of control sample.  

The measurement of CAT was settled for the final volume of 2 ml of  reaction mixture, according to 

Almeselmani et al. (2006). This contained 0.1 M phosphate buffer pH 7.0, 6 mM H2O2 and 50 !l of enzyme 

extract, which starts the reaction. After 5 min the reaction stops by the addition of 4 ml titanium reagent (1 g 

titanium dioxide, 10 g potassium sulphate and 150 ml concentrated H2SO2). Therefore the aliquots are 

centrifuged at 5000 x g during 10 min at room temperature. The optical density of the resultant supernatant 

was measured at 415 nm and catalase was assayed by the quantification of the residual H2O2. The blank and 

the control consisted on mixture without enzyme and H2O2 (non-specific degradation), respectively. CAT 

content was estimated using a standard curve of 1.0-100 µg ml-1. 

Also according to Almeselmani et al. (2006), POX was determined using guaiacol as the electron donor 

substracte by measuring the reaction mixture at 470 nm during 3 min. This one contained combined 10 mM of 

phosphate buffer (pH 6.1), 96 mM guaiacol, 50 !l of enzyme and 12 mM of H2O2 which starts the reaction. 

Blank include complete reaction mixture without H2O2 and control without  enzyme. The G-POX content was 

estimated using a standard curve of 0.005-1 µg ml-1. 

Cell cycle analysis by FCM 

Flow cytometric analyses of nuclear DNA werer executed to monitor cell cycle progression. Present 

assays were performed in accordance to the protocol established by Galbraith et al. (1983) and Loureiro et al. 

(2005). Approximately 25 mg of tissue was directly collected from the cultured medium and “chopped” with a 

razor blade in a Petri plaque containing 500 !l of Woody Plant Buffer (WPB) (0.2 M Tris.HCl, 4 mM 

MgCl2.6H2O, 2 mM EDTA Na2.2H2O, 86 mM NaCl, 10 mM sodium metabisulfite, 1 % PVP-10, 1 % (v/v) Triton 
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X-100, pH 7.5) (Loureiro et al. 2007). 

The suspension was filtered in a nylon 

mesh to discard most of residues. 

Thereafter, nuclei were stained by 25 

!l of propidum iodide (PI, Fluka, 

Buchs, Switzerland), which binds 

specific and stoichiometrically (1:4) to 

double stranded nuclei acids (as 

DNA). The mixture was supplemented 

with 25 !l of RNAse (Sigma, St. 

Louis, Mo.) to accurate the analysis 

by removing other  interferent nucleic 

acids. A schematic representation of 

this methodology is shown is in Fig. 

2.2. The estimation of relative 

fluorescence intensity of PI-stainded 

nuclei was conducted by the 

Beckman Coulter EPICS® XL™ Flow 

Cytometer (Beckman Coulter, Inc.; 

Hialeah, Florida, USA) with an argon laser cooled with air, operating at 480nm. The percentage of cells in the 

G0/G1, S and G2 phase were calculated with the “gating region” function of XL-II Software. The results were 

obtained in the form of three graphics: linear-fluorescence light intensity (FL), forward angle (FS) versus side 

angle (SS)-light scatter and FL pulse integral versus FL pulse height. This last cytogram was used to 

eliminate partial nuclei and other debris, nuclei with associated cytoplasm and doublets. Flow cytometry 

measurements were carried out for both tissues (EC and NEC) and treatments (ECind and NECind – on MS 

induction medium; ECMSWH and NECMSWH - on PGRs-free medium/expression medium). 

 

Statistical Analysis 

For antioxidant enzymes and metabolites analysis a t-test was conducted to compare differences between 

its amount in both callus tissues (EC and NEC) (N=3). Data are presented as mean±SEM (standard error) 

and statistical analysis was performed using a one-way ANOVA or two-way ANOVA (GraphPad Prism 4.0 for 

MAC OS X, 2005, GraphPad Software, Inc.) to analyse possible differences among cell cycle phases 

between EC and NEC cork oak within treatments with or without PGRs (N=2). A multiple comparison Tukey-

Kramer test was applied to determine which groups were different at P" 0.05 with a confidence level of 95%. 

 

Figure 2.2:  Method of sample preparation for cell cycle analyses in the 
Beckman Coulter EPICS® XL™ Flow Cytometer (Beckman Coulter, Inc.; 
Hialeah, Florida, USA) (argon laser cooled with air, operating at 480 nm). 
WPB (Woody Plant Buffer). PI (propidium iodide) was used as a specific 
fluorochrome to DNA staining (adapted from Pinto 2007). 



Results and Discussion 

Morphological analysis 

A method for  induction and cyclic proliferation of embryogenic 

cultures of cork oak was previously setted up in laboratory (Pinto et 

al. 2002). When cultured in MS induction medium, containing 2,4-D 

and Zeatin, the single mature somatic embryos generated two 

different healthy and active proliferating callus (Fig. 2.3). These 

calluses were screened on a morphological basis in order to 

identify the embryogenic-type. EC was yellowish and compact, 

NEC appeared friable (large and vacuolated cells), and white. Both 

types of callus were easily separated by hand under a 

stereomicroscope. It was verified the embryogenic potential of 

these two different materials by culturing for 8 weeks on 

proliferation medium without PGRs. Under these conditions, only 

EC was able to produce large amounts of somatic embryos within 

an assynchronous process. These observations are consistent 

with other literatures for these species (e.g. Pinto et al. 2002; 

Toribio et al. 2005; Loureiro et al. 2005; Lopes et al. 2006).  

Lipid peroxidation 

The MDA content (a biochemical indicator of lipid 

peroxidation) measured for both callus is presented in 

Fig. 2.4. Data suggested higher levels of MDA in EC 

(2.14±0.44 mmol mg-1 FW) in comparison to NEC 

(1.80±0.43 mmol mg-1 FW), even though means are not 

significantly different at P!0.05 (Table 2.1). An increase 

in peroxidation reactions at early stages of SE of flax 

(Linum usitatissimum L.) from immature zygotic 

embryos was pointed out as a possible consequence of 

in vitro culture during culture initiation and routine 

subculture (Pret’ová et al. 2005). This parameter 

showed a positive correlation with the progression of SE in saffron (Crocus sativus) (Blázquez et al. 2009). In 

this species, the MDA content was significantly lower in the initial stages of somatic embryogenesis with a 

clear increase of almost 50% at the end of the process in saffron (Blázquez et al. 2009). Increased levels of 

a 

b 

Figure 2.3: EC (a) and NEC (b) of Q. 
suber cultured in vitro on MS induction 
medium. 

Figure 2.4: Evaluation of lipid peroxidation by MDA 
content  estimation on EC and NEC of Q. suber 
(cultured on MS induction medium). The data 
represent the mean±SEM (N=3); FW (fresh weight). 



PART II: A CASE STUDY 

!

MASTER THESIS 2009 
EVALUATION OF ANTIOXIDANT ENZYMES AND CELL CYCLE PROFILE DURING SOMATIC EMBRYOGENESIS INDUCTION OF Q. SUBER L. 

39 

!

lipid peroxidation were also reported by Adams et al. (1999) in cell cultures of carrot (Daucus carota L.) during 

the differentiation of somatic embryos in where increased levels of lipid peroxidation products were detected 

in EC compared to NEC ones. Also Hao et al. (2006) confirmed lower levels of MDA in NEC than in EC of 

naked oat (Avena nuda) in studying the role of salicylic acid in enhancing SE. 

Hence, the observed trend of cork oak EC to present higher levels of MDA than NEC, corroborates 

literature, despite further studies are needed with larger number of samples, to support this assumption. 

These data, also suggest that along with higher embryogenic potential, oxidative stress may play a dual role, 

leading to both cytotoxic and cytoactive effects coexisting in a delicate equilibrium. These factors might 

promote differentiation of embryogenic cells toward somatic embryo formation as suggested by Weber (2000) 

and Fehér et al. (2008). 

 

 

 

 

 

 

 

 

 

 

 

 

L-proline content 

Proline quantification is one of the most popular 

stress biomarker and is used to evaluate the impact of 

different types and levels of stresses such as water 

stress (Vendruscolo et al. 2007; Tatar and Gevrek 

2008), salt stress (Poustini et al. 2007) and UV (Tian 

and Lei 2007). Rao et al. (1995) suggested that proline 

accumulates in stressed plants and its production is 

associated with enhancing stress tolerance, favouring in 

vitro regeneration. Proline accumulation was also 

reported in other SE research as in Nieves et al. (2003). 

They stated that EC of sugar cane (Saccharum sp.) had 

a greater free proline content than NEC. Theses results supported the present data obtained for cork oak, 

 
MDAa 

(mmol mg -1 FW) 

L-Prolinea 

(µg mg-1 FW ) 

H2O2
a 

(µM mg-1 FW) 

EC 2.14±0.44 19.12±3.0 0.20 ± 0.05  

NEC 1.80±0.43 1.46±0.27 0.24 ± 0.06 

P!0.05b NS ** NS 

a Data are given as Mean±SEM (N=3). b *P!0.05, significantly different according to t-test for comparsion 

of means (GraphPad Prism 4.0 for MAC OS X, 2005). MDA (malonyldialdeyde); H2O2 (hydrogen 
peroxide).!

Figure 2.5: Evaluation of L-Proline content  on EC and 
NEC of Q. suber (on MS induction medium). The data 

represent the mean±SEM (N=3); FW (fresh 

weight).**P"0.05. 

Table 2.1: Data results of MDA, L-Proline and H2O2 content of both EC and NEC of Quercus suber. 



which also had significantly higher levels of proline content in EC (see Table 2.1 and Fig. 2.5). Greater levels 

of proline in EC have been indicated to promote SE and also confere stress tolerance in several literatures 

(Nieves et al. 2003). These authors also pointed out that greater concentration of free proline in EC may be 

important factors in the metabolic processes that led to SE in sugarcane.   

 

Hydrogen Peroxide (H2O2) content  

No statistical differences were found for H2O2 contents between NEC and EC (Fig 2.6). However, a bias of 

higher levels of H2O2 in NEC (0.24±0.06 µM mg-1 FW) 

was found, suggesting a slight decrease of this ROS 

species during SE in cork oak.  

Regenerative pathways, e.g. SE, in plant tissue 

cultures comprise a range of developmental processes 

in which H2O2 has been shown to be involved (Bagnoli 

et al. 1998; Kairong et al. 1999; Tian et al. 2003). A 

modification in endogenous H2O2 content during 

morpohogenic responses was described for ice plant 

(Mesembryanthemum crystallinum) (Libik et al. 2005). 

This increase was regarded as one of the early 

morphogenic responses (to abiotic stresses), and therefore related with the regeneration ability, by regulating 

the expression of some genes involved in those morphogenic processes (Libik et al. 2005). More recently, 

Hao et al. (2006) recorded high levels of H2O2 in EC of naked oat rather than in NEC, and even suggested this 

ROS species to be a signaling molecule involved in plant in vitro regeneration. As a possible explanation, they 

pointed out that those high levels might be favorable for SE by means of H2O2-inducing programmed cell 

death, which is relevant for the establishment of polarity at early stages of plant embryogenesis (Bozhkov et 

al. 2005; Libik et al 2005). This literature apparently contradicts the absence of variation of H2O2 in cork oak 

EC vs. NEC, raising several questions: a) Does H2O2 contents variation during EC process depend on the 

plant species?; b) Is H2O2 the only ROS species involved in SE process?; c) Does H2O2, and/or other ROS, 

change during the different stages of SE? To answer these questions, further investigations should be 

conduced in cork oak (e.g. increasing the number of samples; surveying other ROS and other stages of SE 

differentiation) and in other woody species (e.g. eucalyptus, elm). 

 

Protein content and antioxidant enzymes estimation 

Total soluble protein content was estimated according to Bradford (1976) and it was 2-fold higher in EC 

(4.27±0.31 µg mg-1 FW) than NEC (1.87±0.20 µg mg-1 FW) significantly different at P!0.05 (Table 2.2). Other 

Figure 2.6: Evaluation of H2O2 content estimation on 
EC and NEC of Q. suber (on MS induction 

medium). The data represent the mean±SEM 

(N=3); FW (fresh weight). 
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authors also reported higher levels of total protein in embryogenic callus, for example in sugarcane 

(Saccharum sp.) (Nieves et al. 2003) and during SE of Eurycoma Iongifolia (Hussein et al. 2006). These 

improved total protein contents in EC may lead to the assumption that this might be associated to higher 

metabolic activity, which in turn can be responsible for molecular events encouraging to SE (Hussein et al. 

2006). 

 

 

 

 

 

 

 

 

 

 

 

 

In respect to antioxidant enzymes, in the current experiments SOD had a significantly higher activity in 

NEC  at P!0.05 (see Table 2.2 and Fig 2.7). SOD has a central role in the defense against oxidative stress 

(Shao et al. 2008) and catalyzes the dismutation of superoxide anion to O2 and H2O2. Contrarily to SOD 

activity, CAT and G-POX did not present significant differences between EC and NEC (see Table 2.2 and Fig. 

2.8). SOD and CAT are the most efficient antioxidant enzymes as they serve, in tandem, as front-line 

antioxidant defenses (Scandalios 1993; Shao et al. 2008), and CAT and peroxidases later scavenge the 

reaction products (H2O2) of SOD activity . Despite not statistically different, the apparent bias to lower H2O2 

levels found in cork oak EC may be associated to the high trends of CAT activity in the same tissue. Libik et 

al. (2005) verified the opposite situation in SE in callus culture of ice plant (Mesembryanthemum crystallinum), 

speculating that those higher levels of H2O2 in morphogenic callus as a result of oxidative imbalance might 

increase the expression of some genes responsible for the induction of morphogenic processes. In the case 

of cork oak, a comparative study between seedlings and microcuttings cultured in vitro (epicormic shoots and 

stem sprouts) demonstrated higher levels of CAT and SOD activities (Racchi et al. 2001). Supporting present 

findings, Shohael et al. (2007), who studied antioxidant responses in development of Eleutherococcus 

senticosus somatic embryos, verified the lowest levels of CAT activity in NEC comparing to further 

differentiated stages. Blázquez et al. (2009) recorded increased levels of SOD activity at a globular stage of 

saffron embryo development, pointing out that changes in SOD isoforms (not quantified here) could 

characterize different developmental stages during SE of different plant species.  

 
Total proteina 

(µg mg-1 FW) 

SODa 

(U µg-1 prot) 

CATa 

(µg µg-1 prot) 

G-POXa 
(µg µg-1 prot) 

EC 4.27±0.31 0.30±0.10 40.20±2.23 0.34±0.04 

NEC 1.87±0.20 0.69±0.06 20.36±8.10 0.74±0.32 

P!0.05b ** * NS NS 

Table 2.2: Data results of antioxidant enzyme activities (SOD, CAT and G-POX) and protein contents 
on both EC and NEC of Q. suber. 

a Data are given as Mean±SEM (N=3). b *P!0.05, ** P!0.01, significantly different according to t-test for 

comparsion of means (GraphPad Prism 4.0 for MAC OS X, 2005). SOD (superoxide dismutase); CAT 
(catalae); G-POX (guaiacol peroxidase).!



 

 

Peroxidases are one of the most studied enzymes in plants and the fact that they have been found in all 

major divisions of plants denotes the functional importance of these proteins. Nieves et al. (2003) reported a 

peroxidase activity 35-fold higher in NEC than in EC in sugarcane SE in contrast with Hussein et al. (2006), 

who verified the opposite in Eurycoma Iongifolia. In embryo development of Eleutherococcus senticosus, in a 

bioreactor, it was also reported a marked boost in G-POX activity in EC in comparison to the lowest levels in 

NEC (Shohael et al. 2007). For cork oak POX activity no significant differences were detected between EC 

and NEC, but again a trend can be observed, with higher activity in NEC tissues (see Table 2.2 and Fig. 2.9). 

Despite this trend needs further confirmation and studies, it seems to be in agreement with previous results 

for alfalfa (Hrubcová et al. 1994) and sugarcane (Nieves et al. 2003). These authors suggested that POX 

lower activity in embryogenic tissues might be related to the restriction of cell wall development at early 

stages of embryo formation. It is suggested that peroxidase might play important regenerative functions and 

maintaining the size and shape of protoderm cells during somatic embryogenesis (Cordewener et al. 1991). 

Furthermore, POX has been indicated as a possible biomarker of somatic embryos determination (Hussein et 

al. 2006). 

 

Figure 2.7: Evaluation of SOD activity on 
EC and NEC of Q. suber (on MS induction 
medium). The data represent the 
mean±SEM (N=3); *P!0.05. 

Figure 2.8: Evaluation of CAT activity on EC 
and NEC of Q. suber (on MS induction 
medium). The data represent the 
mean±SEM (N=3); *P!0.05.!

Figure 2.9: Evaluation of G-POX activity on 
EC and NEC of Q. suber (con MS induction 
medium). The data represent the 
mean±SEM (N=3); *P!0.05.!
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Differentiation and development of E cells in SE of Lycium barbarum L. are mostly regulated by three 

antioxidant enzymes, SOD, POX and CAT (Kairong et al. 1999). These findings strongly insinuate that 

antioxidant enzymes are deeply involved in the metabolism during SE development, promoted by the 

imposition of stress treatments (Aderkas and Bonga 2000).  In this context, ROS could entail the complex 

signal transduction pathway required to trigger the reprogrammation of the gene expression pattern and 

cellular metabolism crucial for the embryogenic competence of somatic cells in in vitro tissue cultures 

(Blázquez et al. 2009). The data presented here for cork oak, suggests an involvement of proteins during the 

process, including the participation of some antioxidant enzymes during SE. The role of such enzymes (e.g. 

APX, GR) needs further studies for better clarification of their role(s) in these tissues during the whole SE 

process. 

 

Cell cycle analysis by FCM 

To examine differences between cell cycle profiles, nuclei events occurring at each G0/G1, S and G2 phase 

were evaluated by the GraphPad Prism 4.0 Software for both callus lines of Q. suber (EC and NEC) and both 

treatments during induction or expression phase. The results are summarized in Table 2.3. and were obtained 

in the form of FL (Fig.2.10). EC had coefficient of variance (CV) values ranging from 0.26% to 4.23% and 

NEC from 0.51% to 6.23%. On this type of study, the importance of showing CV values was first pointed out 

by Marie and Brown (1993). These values reflect the quality of the applied methodology and its range 

depends on biological material source. A CV value below 5% is considered good (Galbraith et al. 2002), but 

for traditionally recalcitrant species like Quercus sp. these low CV values might be hardly achieved 

(Winkelmann et al. 1998; Zoldos et al. 1998; Endemann et al. 2001)  

Recently, standard protocols for this and other recalcitrant species were developed (e.g. Pinto et al. 2004; 

Loureiro et al. 2005), giving reliable histograms with low CV values. However, these authors highlighted the 

possible interference of cytosolic compounds with PI-DNA. Higher CV values manifested in woody plants 

analyses might be related to excessive browning of samples, nuclei degradation and pH instability (Zoldos et 

al. 1998) or to the applied dye, i.e. if it binds to specific base pairs or intercalate in nucleic acid strains, as the 

former often shows lower CVs than the latter (Galbraith et al. 2002). Even so, the latter, such as propidium 

iodide (PI) seems to give an accurately nuclei DNA content evaluation as reported previously (Loureiro et al. 

2005). Recently, Loureiro et al. (2007) developed a new buffer, WPB (Woody Plant Buffer) that minimized 

cytosolic compounds (e.g. phenols) interference in e.g. woody species. Using this new buffer, the present 

data showed fairly good CV values (Table 2.3) demonstrating a good applied methodology.  

With respect to cell cycle events, no significant differences at P!0.05 were detected between treatments 

neither between tissues (EC and NEC). The percentage of events occurring at G0/G1 phase for NECind, ECind, 

NECMSWH and ECMSWH were, respectively, 76.09±5.01%, 81.74±2.70%, 71.50±7.12% and 80.70±3.29%. 

These data clearly showed significant differences for G0/G1 peak at P!0.001 in comparison to S and G2 



phases, independently of tissue or treatment. No significantly differences were detected between S and G2 

phases at P!0.05 in each assay.  

 

 

 

 

 

Figure 2.10: Flow cytometric cell cycle analysis of subcultured Quercus suber diploid callus tissue. Data are shown 
as linear-fluorescence light intensity (FL) histograms by Beckman Coulter EPICS® XL™ Flow Cytometer 
(Beckman Coulter, Inc.; Hialeah, Florida, USA) and as means of percentage of events (N=2). (a): ECind (EC on 
induction medium); (b): ECMSWH  (EC on expressiom medium); (c) NECind (NEC on induction medium ); (d)  
NECMSWH (on expression medium) 
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Koroleva et al. (2004) 

reported a yield in cyclin D 

expression accelerates cell 

cycle progression at two key 

stages of the cell cycle, 

indicating its expression to 

affect the length of both 

G0/G1 and S/G2 transition 

phases. By this way, 

probably any external factor 

affecting the expression of 

D-cyclin would prevent cells 

in G0/G1 stage to proceed 

along cell cycle. From the analysis of Figure 2.11, in EC it is possible to observe an apparently decrease in 

G0/G1 phase when cultured on expression medium. This is to notice that defense responses against oxidative 

stress also depend on the phase of the cell cycle in plants, i.e. G1 cells seem to be most sensitive to oxidative 

Plant Material 
Sourcea 

Cell Cycle 
Phase 

% Events 
Mean±SEMb 

Total 
Events 

CV (%) 
Tukey-Kramer 

Testc 

G0/G1 81.74±2.70 3.31 *** 

S 10.40±3.61 1.76 NS ECind 

G2 7.87±0.92 

6351.5 

1.07 NS 

G0/G1 80.70±3.29 3.55 *** 

S 11.22±2.19 4.23 NS  ECMSWH 

G2 8.09±1.11 

3759 

0.26 NS 

G0/G1 76.09±5.01 3.09 *** 

S 7.06±3.02 0.90 NS NECind 

G2 16.86±1.99 

2662.5 

1.15 NS 

G0/G1 71.50±7.12 2.81 *** 

S 11.74±4.97 6.23 NS NECMSWH 

G2 16.76±2.16 

2837.5 

0.51 NS 

Figure 2.11: Cell cycle analyses in both EC and NEC of Q. suber. Here are given the 
number of events occurring at each cell cycle phase (G0/G1, S, G2) for each sample 
(***P!0.001 means significantly different, Tukey-Kramer Multiple Comparison test in 

GraphPad Prism 4.0 Software). NECind and ECind on MS induction medium; NECMSWH 
and ECMSWH on expression medium. !

Table 2.3: Cell cycle phases (G0/G1, S and G2) analysis of EC and NEC of Q. suber.  

aNECind and ECind on MS induction medium; NECMSWH and ECMSWH  on expression medium. 
bThe values are given as mean and standard error (SEM) of the number of events occurring during each phase for 
each sample (N=2). The mean coefficient of variation (CV) of Q. suber nuclei in histograms is also given. 
c***Significantly different according to the multiple comparison Tukey-Kramer test at P!0.001; NS (no significance 

at P!0.05). 



stress to induce either defense responses or programmed cell death (Kadota et al. 2005). Winkelmann et al. 

(1998) verified a parallel development in the three cycle phases of both EC and NEC lines of Cyclamen 

persicum Mill. on induction medium. The withdrawal of PGRs from the medium was reported to reduce cell 

division activity, probably accompanied by changes in cell physiology related to the differentiation process. 

These authors also realized that after 5 years cultivation on callus induction medium (high levels of 2,4-D), the 

early stages of SE Cyclamen callus line preserved its embryogenic capacity probably by its manifested diploid 

stability over the years (Winkelmann et al. 1998). In a recent study, Fehér et al. (2008) proposed that 

moderate oxidative stress/ROS, in concert with auxin, may play a concentration-dependent synergistic effect 

on differentiated plant cells and cell cycle entry (G0-to-G1) in leaf alfalfa protoplasts. Furthermore, cumulative 

studies support the hypothesis that ROS may function as intracellular messengers during cell proliferation, 

differentiation and cell death, as reviewed by Sauer et al. (2001 vide Fehér et al. 2008). Although, ROS are 

“double-edged sword”, their role is mainly dependent on concentration, pulse duration and site of action 

(Fehér et al. 2008). 

In present work, NEC exhibited an apparently trend to increased nuclei events in G2 phase than EC in 

both treatments, despite not significantly different at P"0.05 (Table 2.3). This may highlight the proliferation 

pattern as a feature of NEC (e.g. meristematic nodules) comparatively to EC. As suggested by Moghaddam 

and Mat Taha (2005) in sugar beet callus, higher cell activity of the NE cells should be interpreted as an index 

for cell proliferation and not embryogenesis. Winkelmann et al. (1998) also give support that higher 

percentage of events on G2 phase of NE cell line of Cyclamen persicum on PGRs-free medium might 

evidence a predisposition to cellular proliferation. Regarding morphological and biochemical patterns, 

Moghaddam and Mat Taha (2005) also concluded that some improper hormonal balances might eventually 

increase cell volume, induce incomplete cell division, loosening of cell-to-cell connection and latter conducting 

to the generation of NE cells that lost the ability to cooperate with other cells for regeneration. 

In conclusion, despite EC and NEC did not demonstrate statistical differences for all parameters, it coud 

be reported an apparent different behaviours regarding oxidative stress status and cell cycle events during 

cork oak SE induction. However, these speculations must be confirmed by further researches. In order to 

understand the possible roles of ROS in in vitro cultures, it could be identified what might mediate the 

cause/effect transitions between beneficial vs. deleterious effects of this type of molecules. So that, 

assembling the knowledge in SE process might give reliable information for plant large-scale production 

optimization. 
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III. CONCLUSION 

 

Somatic embryogenesis is a suitable tissue culture method of asexual propagation used in horticulture, 

agriculture and in forestry breeding programs as a means of rapidly multiplying elite genotypes. In vitro culture 

embraces a series of manipulations which could induce major changes in metabolism, physiology and 

development (Benson 2000), that may lead to raising ROS generation (Cassels and Curry 2000; Benson 

2000).  

This was the first report on oxidative stress and cell cycle status during cork oak SE induction and 

contributed to a better understanding of SE induction in Q. suber. Deep knowledge of SE could explain and 

help to improve and overcome existing limitations (e.g. genotypic dependency of the embryogenic response, 

the initiation of cell embryogenic suspension cultures and poor plant regeneration), especially in respect to its 

induction at early stages. Albeit some analyzed parameters did not reveal significant differences, the present 

work demonstrated an apparent difference between cork oak EC and NEC behaviours regarding oxidative 

stress and cell cycle status during SE induction tissues. Besides, it was also reported that SE requires a 

certain level of oxidative stress to promote the formation of embryogenic cells and to trigger its specific 

morphogenic pathway (e.g. moderated oxidative stress mimics auxin stimuli in SE (Pasternak et al. 2002, 

2005); synergistic effect of oxidative stress and auxin in cell cycle activation (Fehér et al. 2008)). More studies 

should be performed to clarify this hypothesis and other antioxidant enzymes should be evaluated. It is 

hipotethysed that ROS may act as a component of the complex signal transduction pathways required to 

induce the reprogamation of the gene expression pattern and cellular metabolism essential for the 

embryogenic competence of somatic cells in cork oak callus cultured in vitro. Besides, the acquisition of 

embryogenic competence of differentiated cells probably consists on the “release from suppression rather 

than the induction of SE” (Fehér 2008). This is to say that SE may occur if the genes responsible for the 

embryogenic development program are released from chromatin-mediated gene silencing vegetative cells. 

From these considerations it is reasonable to assume that multiple cellular pathways might be controlled by a 

set of gene regulatory network during SE (Zeng et al. 2007) and methylation gene research should be 

implemented to clarify what happened in the particular case of cork oak. 

For further researches some strategies must be addressed to complement the present study and expand 

the knowledge in developing improved in vitro culture strategies for woody species SE induction as follows: 

increase sample amount per assay; supplement MS induction medium with oxidative agents such as H2O2 (at 

sublethal and different concentrations) as it might confer a more protective status against stress or even 

activate certain morphogenic pathways, promoting SE; investigate if H2O2 or other ROS endogenous levels 

change during different SE stages or if H2O2 contents variation during SE process depend on the plant 

species; study a set of PGRs concentrations; study a larger range of antioxidant molecules both enzymatic 

(e.g. GR, APX, MDHAR/DHAR) and non-enzymatic (e.g. ascorbic acid, glutathione); analyze oxidative stress 
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and cell cycle status over time; apply other different parameters/techniques to estimate oxidative stress (e.g. 

intracellular redox potential, estimation of changes in DNA base methylation). Moreover, it should be 

highlighted that the data presented in this Master Thesis were part of a project/study where all SE process will 

be monitored from induction to plant acclimatization. This would allow a deepening and more comprehensive 

discussion about the whole process. 
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