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resumo 
 
 

A poluição atmosférica constitui actualmente um grave problema ambiental 
cujos efeitos se fazem sentir a diversas escalas, desde os efeitos imediatos e 
de longo termo na saúde humana e nos materiais, até fenómenos regionais, 
como a acificação, e fenómenos globais que durante este século poderão 
alterar as condições de vida no globo. 
Apesar da redução das emissões de poluentes atmosféricos, conseguida 
através  do uso de combustíveis mais limpos e tecnologias mais eficientes, as 
áreas urbanas continuam a evidenciar sinais de degradação ambiental. Para 
ser bem sucedida a cidade deve enfrentar as três dimensões da 
sustentabilidade: social, económica e ambiental. 
O modo de utilização do solo numa zona urbana é uma característica 
fundamental da cidade, com influência directa no seu desempenho ambiental e 
na qualidade de vida que proporciona à população.  
O presente trabalho explora a ligação entre a estrutura urbana e a qualidade 
do ar, um dos muitos aspectos do desenvolvimento urbano sustentável. 
A perspectiva histórica sobre o desenvolvimento urbano, a poluição 
atmosférica e a sua interligação é abordada, bem como o trabalho de 
investigação que tem vindo a ser conduzido na área. 
A aplicação de um sistema de modelação atmosférico a um caso de estudo 
idealizado demonstra a importância da estrutura espacial da cidade na 
sustentabilidade urbana, mostrando que cidades compactas com usos do solo 
misturados promovem uma melhor qualidade do ar quando comparadas com 
cidades dispersas, com baixa densidade populacional. 
De modo a explorar a relação entre a estrutura urbana e a qualidade do ar 
numa zona urbana real, a região urbana do Porto é identificada como um caso 
de estudo adequado, e o processo de crescimento urbano nas últimas 
décadas é analisado, assim como os níveis de qualidade do ar da região. 
De modo a definir a configuração do sistema de modelação mais adequada 
para a região de estudo, são efectuados diversos testes de sensibilidade com 
o modelo meteorológico. Relativamente ao modelo de qualidade do ar, é 
descrito e implementado um conjunto de acções de modo a melhorar o 
desempenho do modelo para a simulação das concentrações de poluentes na 
atmosfera urbana, no contexto de alterações do uso do solo. 
Finalmente, são desenvolvidos e testados, através da aplicação do sistema de 
modelação, dois cenários alternativos de desenvolvimento urbano para a área 
de estudo. Estes cenários alternativos implicam diferentes emissões de 
poluentes e diferentes distribuições espaciais dessas emissões, e como 
consequência, diferentes níveis de qualidade do ar. 
O estudo permite concluir que alterações nos padrões de uso do solo em 
áreas urbanas conduzem a alterações na meteorologia, emissões e qualidade 
do ar. As áreas urbanas dispersas, quando comparadas com estruturas 
urbanas compactas são responsáveis por temperaturas mais elevadas, 
emissões de poluentes para a atmosfera mais elevadas e maiores 
concentrações de poluentes. 
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abstract 
 

Air pollution is enacted on all geographical and temporal scales, ranging from 
urban problems related to immediate and long-term effects on human health 
and material damage, over regional phenomena like acidification with a time 
horizon of decades, to global phenomena, which over this century may change 
living conditions in the entire globe.  
Urbanization is certainly the future but a question mark hangs over what kind of 
future the city can look forward to. For it to be successfully realized, the city 
must tackle the dimensions of sustainability: social, economic and 
environmental. 
In this study the link between urban structure and air quality, one of the many 
aspects of sustainable urban development, is explored. It starts by addressing 
the historical perspective on the subject, the currents of thought, and briefly 
refers the most important work conducted during the last decades in this field. 
The application of a modelling system to an idealized study case demonstrates 
the importance of the city spatial structure on urban sustainability, showing that 
compact cities with mixed land-use provide better air quality compared to 
disperse cities with lower densities and segregated land-use or network cities 
equipped with intensive transport structures. 
In order to explore the relation between urban structure and air quality in a real 
urban area, the Porto urban region is identified as a suitable subject for this 
study, and its process of urban growth in the last decades is analyzed, as well 
as the current air quality levels in the region. 
Before proceeding to the atmospheric simulation it is firstly necessary to 
assemble an adequate modelling system. A series of meteorological modelling 
sensitivity tests are performed in order to define the most suitable 
meteorological model configuration for the study area. Regarding air quality 
modelling, a series of improvements are described and implemented in order to 
increase the model‘s performance in the simulation of air pollutant 
concentrations. 
Finally, two alternative urban development scenarios for the study area are 
developed and tested through the application of the selected atmospheric 
modelling system. These alternative land use scenarios imply different 
emission totals and a different spatial distribution of emissions, and, as a 
consequence, different air quality levels. 
In conclusion, it seems clear that changes in land use patterns in urban areas 
lead to changes in meteorology, emissions, air quality, and population 
exposure. The signal of the change is also clear: sprawling urban areas, when 
compared to contained urban development, are responsible for higher 
temperatures, higher emissions of pollutants to the atmosphere, and higher 
atmospheric pollutant concentrations. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cities convey something special about civilization itself  

that should not be reduced to banal, lifeless, endless sprawl. 

Bob Giddings 
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1 INTRODUCTION 

 

 

 

It is an indisputable fact that much has been done in the last decades to improve the quality of the air 

we breathe and live in. Policies, technology and increasing public awareness have taken us to an 

unprecedented level of protection. On the other hand, it is also a fact that not only our cities but also 

our countryside continue to show worrying and troubling signs of environmental stress, of which air 

pollution is one of many.   

Air pollution is enacted on all geographical and temporal scales, ranging from urban problems related 

to immediate and long-term effects on human health and material damage, over regional phenomena 

like acidification and eutrophication with a time horizon of decades, to global phenomena, which over 

this century can change living conditions in the entire globe [Fenger, 1999]. Urban areas play a key-

role in all these scales since they act as air pollution sources. 

In 1900, 14% of the world’s population lived in cities; fifty years later, the proportion had risen to 30%, 

and by 2003 to 48%. In 1900 there were 12 cities with one million inhabitants or more, and in 2000 

there were 411 cities; today half the world’s population lives in cities, 40 of them of up to 5 million 

inhabitants, also called mega-cities [UN, 2001, 2004]. In Europe, approximately 75% of the population 

lives in urban areas [EEA, 2006a]. The predictions are that by 2030, 60% of the population will be 

urban [UN, 2004]. Envisioning such a future is no easy matter.  

Urbanization is certainly the future, but a question mark hangs over what kind of future the city can 

look forward to. To be successful, the city must tackle the dimensions of sustainability: social, 

environmental, as well as economic (and as some argue, cultural). Sustainable cities ensure well-being 

and a good quality of life for citizens, are environmentally friendly, and socially integrated and just. 

The essence of cities is that they have always contained a myriad of diverse and intense connections 

and activities, where people live, work, shop and play, meeting the needs of economic production and 
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social reproduction [Smith, 2002]. The last two centuries have seen a transformation of cities from 

being relatively contained, to becoming widespread over kilometres of semi-suburban semi-rural land 

with commercial areas, office parks and housing developments that constitute neither city nor 

countryside. People often live miles from where they work, shop or go for leisure activities. This type 

of urban development has been named urban sprawl, and has its origins from the rapid low-density 

outward expansion of the United States of America cities in the beginning of the 20th century [Williams 

et al., 2000]. In Europe, cities have traditionally been much more compact; however urban sprawl is 

now also a European phenomenon [EEA, 2006a; Kasanko et al., 2006; Catalán et al., 2008].   

Historically, urban dispersion rose from the struggle against the 19th century industrial cities, which 

were congested, polluted, and foci of crime and disease [Neuman, 2005]. After that, the growth of 

cities has been driven by the growth of population; however, in Europe today there is little or no 

population growth, while sprawl shows no signs of slowing down. A variety of factors such as the 

negative environmental (pollution and noise) and social factors (poverty and insecurity) related to city 

cores,  rising living standards, changing living preferences, and a new mobility paradigm are now 

driving sprawl [EEA, 2006a; Catalán et al., 2008]. 

Since the mid-1950’s, European cities have expanded on average by 78% whereas the population has 

grown by only 33%; also, more than 90% of the new residential areas are low density areas; inevitably 

European cities have become much less compact [Kasanko et al., 2006]. According to the EEA’s report 

on sprawl [2006a], the areas with the most visible impacts of urban sprawl are found in countries or 

regions with high population density and economic activity, such as Belgium, the Netherlands, or the 

Paris region, and/or rapid economic growth, such as Portugal, Ireland, and eastern Germany. In fact, 

Portugal is identified as presenting some of the highest sprawl growing rates, focused around major 

cities and in the coast. In Figure 1.1 it is possible to observe the Portuguese urban development 

polarized around the two metropolitan areas of Lisboa and Porto, and along the coastline.  
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Figure 1.1 Polarised urban sprawl around major cities in the Iberian Peninsula (1990-2000) [EEA, 2006a]. 



Introduction 

3 

The impacts of sprawl on natural areas are significant, impairing the land ability as a habitat for natural 

species, a source of food, recreation, water retention and storage. Even where the advance of urban 

land on natural areas is minimised, the indirect fragmentation impacts of transport and other urban 

related infrastructure developments create barrier effects that degrade the ecological functions of 

natural habitats [EEA, 2006a]. 

Urban development involves a substantial consumption of numerous natural resources, from which 

land and soil are the most evident. The capacity of soil to perform essential functions is dramatically 

reduced through loss of water permeability, loss of soil biodiversity and reduction of the capacity to 

act as a carbon sink. In addition, rainwater which falls on non-permeable soil is heavily polluted by 

particulate matter and heavy metals. 

A further consequence of sprawl is the growing consumption of energy. Generally, compact urban 

areas, with higher population densities, are more energy efficient. Evidence from a number of studies 

[Newman and Kenworthy, 1999; Cameron et al., 2003; EEA, 2006a] suggests that high energy 

consumption rates are associated with lower population densities, characteristic of sprawling 

environments. The extension of built-up areas is increasing mobility flows and increasing the distances 

covered. Transport related energy consumption in cities seems to increase as density falls [Newman 

and Kenworthy 1989a, 1989b; Newman, 1992; Breheny et al., 1998; Cameron et al., 2004], since the 

sprawling city is dominated by individual car use, which in turn, and in spite of the technological 

progress, leads to an increase of atmospheric emissions.  

Problems with air pollution in urban areas have been known for long, but the attitude towards them 

was ambiguous since they were considered as a symbol of growth and prosperity. Nowadays, poor 

environmental management in general, noise, heavy traffic and congestion, poor air quality, and lack 

of strategic planning have lead to a perceived degradation of the urban environment. Not surprisingly, 

“pollution in towns and cities” is the issue Europeans most think of when talking about Environment 

[TNS, 2005]. Regarding air quality, 44% of Europe’s urban citizens are exposed to air pollution levels 

that exceed the European Union quality objectives for tropospheric ozone, 14% for nitrogen dioxide 

and nearly all for particulate matter. It is estimated that approximately 20 million Europeans suffer 

from respiratory problems linked to air pollution [COM(2004)60 final]. As an example, Figure 1.2 

presents PM10 (particulate matter with an equivalent aerodynamic diameter of less than 10 

micrometers) annual average concentrations for Europe in 2005. The colours red and purple refer to 

values above the PM10 annual limit value (40 µg.m-3), showing up at the Po Valley in Italy, and urban 

centres in some of the Balkan countries, Poland, Slovakia, Spain and Portugal.  
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Figure 1.2 Map of PM10 annual averages for 2005, presented as spatial interpolated concentration fields and 
measured values at single monitoring sites [URL1]. 

 

Since the world’s cities are the heart of most of the human activities, the major consumers of natural 

resources, and the major producers of pollution, it is obvious that the sustainability debate has an 

urban focus [Breheny, 1992a]. If cities are the source of the problem they must also be part of the 

solution. 

In response to environmental sustainability issues, urban planners have focused their attention on the 

types of urban structure that will best serve our growing cities. In this thesis, by urban structure  is 

understood not only the morphologic structures of the city, represented by its key-structures (road 

and rail networks, ports and airports, telecommunications and social infrastructures), but also the way  

how residential, industrial, services and recreational land uses are distributed throughout the city. 

As Newton [1997] so well wrote, the city is a villain, a victim and a white knight with respect to air 

quality. A villain since its transport, residences and industries consume enormous amounts of energy, 

emitting enormous quantities of air pollutants and therefore contributing significantly to urban air 

pollution.  A victim because its residents and image are affected negatively by the atmospheric 

pollution, which reduces the quality of life and health as well as the attractiveness of the city to 

tourists and potential new business  and residents. But the city can also be a white knight since 

changes in its structure and development may lead to a substantial reduction of traffic, energy 

consumption and air pollutants levels. 

For many years planners complained not of low-density settlements, but of high-density built 

environments. The low density urban developments derived from strong criticisms of crowding and 

pollution in the 19th century’s industrial cities. Conversely, decades latter, the desire for the compact 
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city resurfaced after the myriad of problems associated with the dispersed form. Today, sprawling 

cities are the ones being rejected and classified as unhealthy and unsustainable, and the logical answer 

now seems to be compactness [Catalán et al., 2008]. 

Debates on the urban structure have become strongly polarized between the advocates and 

opponents of the compact and of the dispersed or sprawled city. Today it is widely accepted by the 

scientific community that there is a relation between the city’s form, size, density and land use, and its 

sustainability; however, the consensus about the exact nature of this relation has not yet been 

reached [Williams et al., 2000].  

As it will be shown, several empirical and modelling studies have been performed, integrating land 

use, transport issues and even emissions, and its relationship with urban structure; however, few were 

found that explore the connection to air quality.  

This brings us to the central concern of this thesis. Does energy inefficiency and increased emissions 

lead to a worst air quality in sprawling cities? Do compact cities, with mixed land uses, promote a 

better air quality? 

In this study the link between urban structure and air quality, one of the many aspects of sustainable 

urban development, is explored. The topic is addressed according to the methodology presented in 

Figure 1.3. 

IDEAL CASE-STUDY REAL CASE-STUDY

SETUP OF THE URBAN AIR 
QUALITY MODELLING SYSTEM

IMPROVEMENT OF THE URBAN AIR 
QUALITY MODELLING SYSTEM

URBAN DEVELOPMENT 
SCENARIOS

CONCLUSIONS

BACKGROUND

IDEAL CASE-STUDY REAL CASE-STUDY

SETUP OF THE URBAN AIR 
QUALITY MODELLING SYSTEM

IMPROVEMENT OF THE URBAN AIR 
QUALITY MODELLING SYSTEM

URBAN DEVELOPMENT 
SCENARIOS

CONCLUSIONS

BACKGROUND

 

Figure 1.3 Methodology developed for the study of the relationship between urban structure and air quality. 

 

First, the scientific and policy background is discussed; afterwards to answer the questions above, a 

two-folded study is conducted through the development of two case-studies, for which advanced 

atmospheric modelling tools are applied. As a first modelling approach, an idealized case-study is 

selected, based on typical city configurations. Then, to thoroughly explore the air quality 
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consequences of different urban land use scenarios under different meteorological conditions, the 

study of a real urban area is undertaken. For that purpose an air quality modelling system is 

implemented and improved, through the execution of a group of sensitivity tests. Finally, two urban 

development scenarios are defined and studied making use of the implemented modelling system, 

allowing the full assessment of the air quality impacts of distinct urban planning strategies. 

 

This document is organized as follows. Chapter 2 presents the scientific background on the subject, 

characterizing the current state of knowledge on urban structure and its relation to energy 

consumption, emissions and air quality. It addresses the historical perspective, the currents of 

thought, and briefly refers the most important work conducted during the last decades. It also 

provides the state-of-the-art on atmospheric modelling tools available to further explore the topic. 

In Chapter 3, this thesis first modelling application to investigate the influence of urban structure on 

air quality is presented. A mesoscale photochemical modelling system is applied to three idealized and 

distinct city structures, for an episodic air pollution situation, allowing the comparison of air quality 

levels in each urban structure. 

In order to explore the relationship between urban structure and air quality in a real urban area, the 

Porto urban region is identified, in Chapter 4, as a suitable area for this study. Its process of urban 

growth in the last decades and the current air quality levels in the region are analysed. The modelling 

system selected for the air quality simulations is also presented and described. 

Before proceeding to the atmospheric simulation it is firstly necessary to establish an adequate 

modelling system. In Chapter 5, a series of meteorological modelling sensitivity tests are performed, 

and their meteorological outputs are then fed into the air quality model in order to define the most 

suitable modelling configuration for the study area. 

Chapter 6 describes and implements a series of improvements in the urban air quality modelling 

system, aiming to increase the model‘s performance in the simulation of air pollutant concentrations 

in the urban study area considering land use related aspects. 

In Chapter 7, two alternative urban development scenarios for the study area are defined and tested 

through the application of the improved atmospheric modelling system. These alternative land use 

scenarios imply different emission totals and different emission spatial distribution and, as a 

consequence, different air quality levels. 

Finally, Chapter 8 presents the main findings from the study cases and discusses them in the context of 

the main research questions identified throughout this thesis. The innovative character of the study is 

highlighted, as well as its limitations and future research. 
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2 SCIENTIFIC AND POLICY BACKGROUND 

 

 

 

This chapter presents the scientific and policy background on the subject of the thesis - the 

relationship between urban structure and air quality - without forgetting energy consumption, traffic 

and pollutant emissions. Here the birth and growth of cities is briefly addressed, with a special 

attention to urban planning aspects related to urban structure. Next, the issue of urban air pollution is 

introduced, as well as the main air pollution problems that European cities are facing, and the 

European policies on the matter. The state-of-the-art on atmospheric modelling tools available to 

further explore the subject is also addressed. The most important research studies covering the 

relation between urban planning and air pollution during the last decades are then reviewed. 

2.1 Urban planning 

When the first cities emerged, they were created having defence in mind, resulting in compact forms 

of settlement [Thinh et al., 2002]. With the advent of industrialization first and transport systems later, 

urban structures have changed dramatically, with an unprecedented process of urbanization that has 

persisted so far. 

2.1.1 Brief history of the city  

Early humans led a nomadic existence, relying on hunting and gathering for sustenance. In southern 

Mesopotamia, around 4000 B.C., the abundance of food, a system of writing, and a more complex 

social organization allowed cities to develop. This area, between the Tigris and the Euphrates rivers, 

has often been named the cradle of civilization, home of the world's first cities. It was the two rivers 

that became the basis upon which the wealth of the region was based, allowing a relatively easy 

irrigation of the land and yielding heavy crops [URL2].  
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The ever existing diversity of urban forms is connected to the functions that cities perform: centres of 

storage, trade, and manufacture, often founded at the intersections of transportation routes, or near 

rivers and oceans. Ancient cities displayed both regular and irregular types of urban form: the 

constrained area devoted to the activities of the elite (religious, political, and military) was often highly 

planned and regular in form, whereas residential areas often grew by a slow process of build-up, 

producing complex and irregular patterns [Saraiva, 2007]. 

During the Roman period a number of cities were created; theses were carefully planed, generally in 

flat areas, square or rectangle shaped [Saraiva, 2007]. After the fall of the Roman Empire, European 

cities became smaller and unplanned; medieval cities are usually associated with narrow winding 

streets converging on a market square with a cathedral and city hall.  

In the Renaissance, architects began to study the shaping of urban space, in the search for a functional 

order. Parts of old cities were rebuilt to create elegant squares, long street views, and symmetrical 

building arrangements. The baroque city is characterized by large dimensions: palaces, long avenues, 

radial street networks, monumental squares, geometric parks and gardens.  

With the Industrial Revolution cities changed dramatically. Technological innovations powered 

profound impacts on urban form: rail tracks, cable and electric cars converged on the centre of the 

city, and the development in communications allowed formerly concentrated urban activities to 

disperse across a wider area. The city centre contained the business district, defined by large office 

buildings and the first shopping establishments, as well as factories and storehouse structures. In the 

beginning, the working class lived in crowded neighbourhoods close to the city centre, but latter the 

increasing crowding, pollution, and disease originated the desire to escape to healthier environments 

in the outskirts of the city.  

Today cities are made up of two distinct parts: an inner zone or city centre, and the suburbs. In the 

centre two distinct realities co-exist: the office buildings, mainly administrative and finance related 

rather than manufacturing; and a neglected large group of old mixed-use and residential buildings 

which are home to the low-income families and elderly, many times characterized by crime and social 

problems, and inadequate housing. These inner city areas were left behind by a massive migration to 

the suburbs, which began in the late 19th century but accelerated in the 1920s with the generalization 

of motorized transport.  

2.1.2 Urban planning perspectives 

People have imagined ideal cities since ever; urban planners in particular have directed their attention 

to the types of urban structure that can provide a greater quality of life and environmental protection.  
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In the 20th century, Le Corbusier, Frank Lloyd Wright, and other architects have designed cities on 

paper, many times proposing radical changes in the form of the city [Kuhn, 2003]. Le Corbusiers’s 

‘Radiant City’ and Frank Lloyd Wright’s ‘Broadacre City’ represent two extremes in a broad spectrum 

between urban density and dispersal.  

Le Corbusier (1887-1965) proposed high-density urban areas, with high office and apartment 

buildings, detached from the traffic lines, and placed within green open spaces (Figure 2.1). Different 

land uses would be located in separate districts, with distinct functions - residential, commercial areas, 

churches - forming a geometric pattern with a sophisticated transit system [Saraiva, 2007].  

 

Figure 2.1 Le Corbusier “City for three million people” [URL3]. 

 

In opposition, Frank Lloyd Wright (1867-1959) defended the need for a closer contact with nature, and 

defended decentralized low-density cities, composed of single-family homes on large pieces of land, 

small farms, light industry, orchards, recreation areas, and other urban facilities [Saraiva, 2007; Kuhn, 

2003]. In Broadacre City each family would be given one acre (4000 m²) of land, and travel needs 

would be almost entirely dependent on the automobile (Figure 2.2). 

 

Figure 2.2 Frank Lloyd Wright “Broadacre City Plan” [URL4]. 
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Ebenezer Howard (1850-1928) proposed the association between the advantages of the city and the 

country, in what he named a garden city (Figure 2.3), arranged in several concentric circles.  He 

established an ideal number of 32 000 inhabitants, and each time the number was exceeded, a new 

nucleus should be formed. Each town would be surrounded by a belt of agricultural land, preventing 

the town from growing into adjacent countryside [Breheny, 1996]. 

 

Figure 2.3 Ebenezer Howard’s garden city diagram [URL5] and advertising [URL6]. 

 

Twenty years after the mid 1970’s oil crisis which incited the first search for urban forms that 

conserved resources, the idea of sustainability has re-emerged, due to the growing awareness of 

urban problems related with resources depletion, energy consumption, pollution and waste 

[Schoffman and Vale, 1996]. Therefore, the role of urban planning in urban sustainability, namely 

which urban structure will provide higher environmental protection, is today still under discussion.  

The scope of the debate can be summarized by classifying positions in two groups: the “decentrists”, 

in favour of urban de-centralization, defending the dispersed city characterized by low population 

densities and large area requirements; and the “centrists”, who believe in the virtues of high density 

cities with low area requirements, defending the compact city. Table 2.1 presents a list of possible 

characteristics of the compact city and of the dispersed city (or urban sprawl), compiled by Neuman 

[2005] and Burchell et al. [1998], respectively. 
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Table 2.1 Compact city [Neuman, 2005] and urban sprawl [Burchell et al., 1998] characteristics.  

Compact city characteristics  Urban sprawl characteristics 

1. High residential and employment densities 

2. Mixture of land uses 

3. Fine grain of land uses (proximity of varied 
uses and small relative size of land parcels) 

4. Increased social and economic interactions 

5. Contained urban development, 
demarcated by legible limits 

6. Multimodal transportation 

7. High degrees of accessibility: local/regional 

8.  High degrees of street connectivity 
(internal/external), including sidewalks and 
bicycle lanes 

9. High degree of impervious surface 
coverage 

10. Low open-space ratio 

11. Unitary control of planning of land 
development, or closely coordinated control 

12. Sufficient government fiscal capacity to 
finance urban facilities and infrastructure 

 1. Low residential density 

2. Unlimited outward extension of new 
development 

3. Spatial segregation of different types of 
land uses through zoning 

4. Leapfrog development 

5. No centralized ownership of land or 
planning of land development 

6. Transportation dominated by privately 
owned motor vehicles 

7. Fragmentation of governance authority of 
land uses among many local governments 

8. Great variances in the fiscal capacity of 
local governments 

9. Widespread commercial strip 
development along major roadways 

 

 

Defenders of dispersal and low density development claim that low densities can be sustainable and 

that the quality of life within them is much higher, in comparison with contained high density 

developments. The argument against the dispersed city is that low densities, and the consequent large 

area needs and land use segregation, result in a high dependence from motorized vehicles. This 

argument is strengthened under the current climate change context, not only regarding the 

greenhouse gas (GHG) emissions but also because of the level of resources consumption. 

The compact city is characterized by a high density, mixed use city, where growth is encouraged within 

the boundaries of existing urban areas, and with no development beyond its periphery. Those in 

favour of the compact city defend that urban containment, with mixed land use, will reduce the need 

for motorized trips, therefore reducing traffic emissions, and promoting public transport, walking and 

cycling [Breheny, 1992b; ECOTEC, 1993; Masnavi, 2000; Titheridge et al., 2000]. Other cited benefits 

are the reuse of infrastructure and previously developed land, the rejuvenation of existing urban areas 

and urban vitality, a high quality of life and the preservation of green space [Thomas and Cousins, 

1996]. It is also claimed that higher densities will help to make the supply of infrastructures and leisure 

services economically feasible, also increasing social sustainability [Jenks et al., 1996].  
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The two dominant motives in favour of the compact city are the reduction of pollution, and the 

reduction of the loss of open countryside to urban uses. The reason behind the first motive is that 

urban containment will reduce the need for travel – which is the fastest growing and least controlled 

contributor to atmospheric emissions, and hence global warming – by facilitating shorter journeys and 

inducing greater supply and use of public transport.  The second motive is that urban containment 

might deliver other environmental benefits, such as reductions in loss of open land and valuable 

habitats. 

It has been demonstrated that sprawl elevates the cost of urban services by increasing the distance 

between new development and the established infrastructure of roads, sewer lines, and transit 

systems [Burchell et al., 2002]. Other authors have associated sprawling urban development patterns 

with increased vehicle travel and congestion [Ewing et al., 2003; Downs, 1992], increased volumes of 

storm-water runoff [Stone and Bullen, 2006], loss of prime agricultural lands [Heimlich and Anderson, 

2001], and, even, increased rates of obesity in children and adult populations [Frumkin et al., 2004]. 

Other authors [Breheny, 1992a, 1992b, 1996; Thomas and Cousins, 1996] however, claim that the 

environmental benefits resulting from urban compaction are doubtful and that higher urban densities 

are unlikely to bring about the high quality of life that centrists promise. Although some reduction in 

energy consumption might be expected from compaction, they argue that a large centralised city can 

often result in greater traffic congestion, and fuel efficiency is greatly reduced through increasing 

travel times and slower traffic speeds; congestion and dangerous traffic leads to a worse pedestrian 

environment, public transport is often caught up in congested streets, and parking is a serious 

problem, affecting the character and function of city streets. Another important aspect mentioned is 

that even if vehicle emissions are reduced, they may be concentrated in the precise areas where they 

cause most damage and adversely affect most people [Barret, 1996]. 

There is a wide variety of studies concerning the effects of land use changes in motorized trips and in 

urban emissions, but the results are not always consistent, and the exact extension of the cause-effect 

relationship is not conclusive [Marshall and Lamrani, 2003]. In §2.3. these studies will be further 

discussed. 

In their book “Achieving sustainable urban form”, Williams et al. [2000] concluded that there are both 

benefits and costs associated with urban compaction: the main benefits are related to land efficiency 

and travel, and the main cost to quality of life. The book includes contributions from several authors, 

highlight the importance of behavioural and socio-economic criteria in explaining differences in travel 

patterns, and therefore in energy consumptions and emissions.  
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Jenks et al. [1996] and Williams et al. [2000] also concluded that instead of searching for a definitive 

sustainable urban form, the emphasis should be on how to determine which forms are suitable for a 

given city, defending that there are a variety of urban forms which are more sustainable than the 

typical recent development patterns. These are characterised by compactness (in various forms), mix 

of uses and interconnected street layouts, supported by strong public transport networks, 

environmental controls and high standards of urban management. 

2.1.3 Global awareness and European Union urban planning initiatives  

The pursuit of sustainability has been placed on the agenda of governments and non-governmental 

organizations after the 1972 United Nations Conference on the Human Environment, whose Principle 

1 states that “Man has the fundamental right to freedom, equality and adequate conditions of life, in 

an environment of a quality that permits a life of dignity and well-being, and he bears a solemn 

responsibility to protect and improve the environment for present and future generations”.   

In 1987, the World Commission on Environment and Development (WCED) [1987] was responsible for 

the best-known definition of sustainability or sustainable development, which is defined as a "form of 

progress that meets the needs of the present without compromising the ability of future generations 

to meet their needs”. In its report Our common future [WCED, 1987], urban areas were recognized as a 

“common” problem, accounting for a high share of the world's resource use, energy consumption, and 

environmental pollution. 

The publication of Our Common Future and the work of the WCED laid the groundwork for the 

convening of the 1992 Earth Summit and the adoption of the Agenda 21. The Summit’s objective – the 

need to rethink economic development and halt the destruction of natural resources and pollution - 

and its message - that only the transformation of our attitudes and behaviour would bring about the 

necessary changes – were object of an unprecedented level of journalistic cover. This raised global 

awareness on environmental problems, which received a remarkable response through the adoption 

of sustainable development policies [Jenks, 2000].  

The Commission of the European Communities’ Green Paper on the Urban Environment [COM(90) 218 

final] constituted the first step towards an European-level debate and reflection on the problems of 

the cities, addressing environmental, social and economic aspects. This document identifies the 

“spatial arrangement” of urban areas as one of the main factors causing urban environmental 

problems. In particular, the physical separation of land uses is recognized as a reason for increased 

mobility needs, and for the reliance in motor vehicles to satisfy those needs. It states that there is a 

need for Community action since pollution generated in urban areas has international implications, 
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also urban problems are common to cities all over Europe, and potential impacts of Community 

policies on the urban environment have to be considered. 

Regarding urban planning, the Green Paper encourages strategies which emphasize mixed uses and 

denser development, therefore avoiding urban sprawl. It is suggested that the Commission, in 

cooperation with Member States and local authorities, should develop guidelines for the incorporation 

of environmental considerations into city planning strategies. It was the first time it was assumed that 

urban planning issues and the urban environment should be put under the scope of the EC strategy. 

Although not absorbed or included in any Directive, the Green Paper on the Urban Environment had a 

considerable impact and has become one of the base documents in any discussion of urban structure, 

and in particular of the compact city [Welbank, 1996]. 

The 5th Environmental Action Programme, 'Towards Sustainability', approved in 1993, advocated the 

integration of the environmental dimension in all major policy areas, and considered seven 'Themes 

and Targets', including Urban Environment, and seven types of policy instruments, including Spatial 

Planning, which is explicitly identified as one of the key mechanisms for working towards sustainable 

development. 

Moreover, in 1993, together with the European Commission, the EC Expert Group on the Urban 

Environment launched the first phase of the Sustainable Cities Project. One of its main aims was to 

formulate recommendations to influence policy at the European Union, Member State, regional and 

local levels. This project sought to take a holistic approach to planning and management of cities, and 

advocated the ecosystem approach, through the consideration of the city as a living organism, 

characterizing its metabolism [Welbank, 1996]. 

In 1994 the Conference on Sustainable Cities in Aalborg (Denmark) brought together local and regional 

authorities to discuss the development of network activities as well as the exchange of information. 

The conference adopted the Charter of European Cities & Towns Towards Sustainability, also known as 

Aalborg Charter, which was signed by 80 different municipalities. The signatories recognize the 

importance of effective landuse and development planning policies by local authorities, assuming that 

higher densities and mix of functions offer efficient public transport and energy, as well as reduce the 

need for mobility, and therefore should be pursuit.  

In 1997, the European Commission engaged directly in the debate on urban issues, through its 

communication “Towards an urban agenda in the European Union” [COM 97(197) final]. It recognizes 

the need for an integration of Community policies relevant to urban development, due to the range of 

social, environmental and economic problems experienced by cities and towns. The document clearly 
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states that it is not the Commission’s intention to develop Europe wide urban policies for “matters 

which are best dealt at a local or regional level”.  

The Communication originated a lively response from the EC Expert Group, composed not only of 

independent experts but also of national representatives, demanding a clearer and stronger position 

from the EC. The Group’s Agenda for the Sustainable City [1998] defended a “radical new approach 

setting sustainability requirements above those of free trade”. Regarding urban structure two urban 

models were identified: 

i) The compact city model, based on the reduction of urban expansion to protect the surrounding 

environment, through intensive land use based on urban regeneration, high densities, mixed uses, 

with increased accessibility of residential and business areas and services, resulting in higher use of 

public transport systems; 

ii) The green city model, an alternative sustainable city, based on ecological design and the 

development of more or less self sufficient communities which, in comparison with the compact city, 

integrates urban and rural areas.  

The Expert Group urged the Commission to encourage the containment of urban sprawl since it 

impedes the ability of cities to become more sustainable, by undermining its functions, inducing 

additional traffic, and contributing to social inequality. It also recommended the EC to include several 

aspects in its research agenda, including the development of sustainability scenarios, based on 

compactness and multi-functional use, and models for the renewal of existing urban areas and their 

expansion. 

In 1998 the European Commission adopted the Communication Sustainable Urban Development in the 

European Union: A Framework for Action [COM(98)605], setting out objectives for urban areas and a 

range of existing and proposed actions to address them. The framework was organized under four 

independent policy aims: i) strengthening economic prosperity and employment; ii) promoting equity, 

social inclusion and regeneration; iii) promoting and improving the urban environment; iv) 

contributing to good urban governance and local empowerment. No mention was made to urban 

structure and its influence on urban sustainability. 

In the scope of the 6th Environment Action Programme (EAP), which establishes the framework for 

environmental policy-making in the European Union for the period 2002-2012, the Commission 

presented a policy document called "Towards a Thematic Strategy on the Urban Environment" 

[COM(2004)60], defining four priority themes: sustainable urban management, sustainable urban 

transport, sustainable urban construction, and sustainable urban design. Actions proposed for the 

Thematic Strategy included the encouragement of all Member States to: 
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– ensure that their land use planning systems achieve sustainable urban settlement patterns 

and take into account environmental risks; 

– develop incentives to encourage the reuse of abandoned land within the cities and set 

challenging targets for its reuse; 

– set minimum residential land use densities to encourage higher density use and limit urban 

sprawl; 

– evaluate the consequences of climate change for their cities so that inappropriate 

developments are not initiated and adaptations to the new climatic conditions can be 

incorporated into the land use planning process. 

The document recognizes urban sprawl as the most urgent of the urban design issues. It was also 

stated that the Commission would prepare guidelines on “high density, mixed use” spatial planning, 

and explore the possibility of developing other guidelines on specific urban design issues. 

However, after a period of consultations, all the considerations relating to sustainable urban design 

were removed from the final Thematic Strategy on the Urban Environment [COM(2005)718 final]. The 

Commission decided that legislation would not be the best way to achieve the objectives of the 

Strategy, “given the diversity of urban areas and existing national, regional and local obligations, and 

the difficulties linked to establishing common standards on all urban environment issues”. Instead, the 

Strategy sets in place a framework to contribute to the better management of the urban environment 

and the widespread adoption of best practice, and seeks to discourage unsustainable approaches and 

promote the more sustainable alternatives.  

It is fair to say that the Thematic Strategy on the Urban Environment falls short of the objectives of the 

6th EAP, whose aim was defined as “contributing to a high level of quality of life and social well being 

for citizens by providing an environment where the level of pollution does not give rise to harmful 

effects on human health and the environment and by encouraging a sustainable urban development” 

[URL7]. It relies on voluntary and therefore, almost always, sector-based initiatives to promote 

sustainable urban areas, the same that have not resulted so far and have led us to today’s situation. In 

order to set urban development priorities into the right direction, the Commission should instead 

adopt directives containing obligations for environmental management plans and sustainable urban 

transport. Additionally, in order to establish a clear link to EU environmental policies, objectives for 

decreasing atmospheric emissions at the urban level should also be set.  
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2.1.4 Urban sprawl in Europe 

The urban future of Europe is today a matter of great concern, since approximately 75 % of the 

European population lives in urban areas, a number predicted to rise to 80 % by 2020 [EEA, 2006a]. 

More than a quarter of the European territory is now directly affected by urban land use; between 

1990 and 2000, urban areas have expanded 5.5 % in average, with rates varying regionally from 0.7 % 

to 40 % [EEA, 2009]. 

Throughout Europe, urbanization is evident in many different forms, sometimes in concentrated 

compact centres but mostly in low density developments associated with urban sprawl [PBL, 2008]. 

This is raising concerns about the potential negative impact on urban sustainability [EEA-JRC, 2002; 

Kasanko et al., 2006; EEA, 2006a; Catalán et al., 2008; PBL, 2008]. Figure 2.4 shows the European areas 

with higher urbanization rates, where urban land cover has been increasing between four to six times 

faster than the European average, but the population density in residential areas declined six times 

faster [PBL, 2008]. Clearly for these areas the term sprawl is well fitted. Regions of this type can be 

found along the Portuguese coastline, in Madrid and its surroundings as well as in some coastal 

regions in Spain, in the north of the Netherlands, north-western Ireland, Italy (especially Sardinia) and 

Greece. Sprawl is particularly evident in countries or regions that have benefited from EU regional 

policies, such as Portugal, Ireland, and Spain. 

 

 

Figure 2.4 European areas with very rapid urbanization [PBL, 2008]. 

Historically, in comparison with North-American cities, European cities have traditionally been much 

more compact, with a dense historical core shaped before the emergence of modern transport 

systems; however, urban sprawl is now a common phenomenon throughout Europe [EEA, 2006a], 

even in Mediterranean urban areas, which are now experiencing a change towards more dispersed 

and horizontal growth at the expense of agricultural, forested and natural environments [Catalán et 

al., 2008].  
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Kasanko et al. [2006] analysed 15 European urban areas in respect to urban land use and population, 

from the mid 1950’s to the late 1990’s, using land use data stored in the MOLAND database from the 

Joint Research Centre of the European Commission. Five indicator sets were used: built-up area, 

residential land use, land taken by urban expansion, population density and urban density. The 

authors concluded that although very different in terms of population densities and land use, the 

studied cities presented some common trends: built-up areas have grown considerably in all the 

studied cities; the most rapid growth dates back to the 1950’s and 1960’s, with rates slowing down in 

the 1990’s. However, during the 12 years from the mid 1980’s to the late 1990’s, the urban population 

declined 2.8 % and built-up areas have grown by approximately 9 %. Another important feature was 

the growth of discontinuous residential areas: in half of the studied cities more than 90 % of all 

residential areas built after the mid 1950’s were low density areas. These features lead the authors to 

state “It is a mere question of taste whether to call it urban sprawl or urban expansion”.  

Kasanko et al. [2006] also identified a distinct group formed by Southern European cities (Palermo, 

Milan, Bilbao and Porto). Until the 1960’s these were very compact in structure and densely 

populated; still at the end of the 1990’s they remained the most compact and dense, however the 

distance to the remaining cities has shrunk.   

In fact, in Southern Europe many large cities experienced strong rates of growth between the 1950s 

and the 1980s [Catalán et al., 2008], with urban dispersion advancing very rapidly at much faster rates 

than population growth [Chaline, 2001]. Examples of this trend can be found in Porto [EEA, 2006a]; 

Marseille and the nearby Rhône valley [Pinson and Thomann, 2001], Milan [Cagmani et al., 2002], 

Bologna [Anderlini, 2003], Venice and the Veneto region [Indovina, 1990], Athens [Leontidou, 1990] 

and Barcelona [Catalán et al., 2008]. 

Hence, European urban areas are experiencing urban sprawl. Particularly at risk are the cities of 

Southern and Eastern Europe, historically more compact, but which in the past few decades have 

started to expand rapidly outwards. 

2.2 Urban air pollution  

Natural air pollution has occurred on Earth since the planet’s formation; fires, volcanic eruptions, 

meteorite impacts, and high winds, all cause natural air pollution. Human-made urban air pollution 

problems have existed for centuries and have resulted from burning of wood, vegetation, coal, oil, 

natural gas, waste and chemicals [Jacobson, 2002].  
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2.2.1 The birth of urban air pollution awareness 

Problems regarding air pollution in urban areas have been known for millennia, but the attitude 

towards them was ambiguous, since they were even considered a symbol of growth and prosperity, 

and the attempts to combat them were scattered and ineffective. It was only after the occurrence of a 

few major air pollution episodes in the 20th century that a greater awareness and the consequent 

development of air pollution policies took place [Fenger, 1999]. The first was the disaster in Meuse 

Valley in Belgium, between the 1st and 5th of December 1930: under the influence of stable 

meteorological conditions (lack of wind and low temperature), the 15-mile valley trapped pollutants 

released by local industries, leading to an increase of air pollutant concentrations, which caused a 

large number of people to suffer from respiratory tract problems, out of which about 60 died. The air 

pollution episode in Meuse Valley revealed a problem that until then had received little attention; fog 

episodes had previously been associated with increased mortality in London and Glasgow, but cold 

weather and viral epidemics could not be ruled out as contributory factors [Nemery et al., 2001]. The 

Meuse fog disaster provided incontrovertible evidence that air pollution could kill and therefore it 

attracted the attention of the scientific community. 

The London episode of December 1952 is the best known and most discussed in the literature, and 

would lead to modern air pollution legislation and abatement. The disastrous outcome was due to a 

combination of various factors. The most important one was a slowly moving anticyclone coming to 

halt above the city and giving low winds and damp air. This required more heating in the cold winter 

climate and thus gave further pollution, causing the build-up of higher pollutant concentrations 

[Fenger, 2009]. The monitoring equipment of that time was fairly primitive, but the peak values of 

sulphur dioxide and smoke were about 14 000 µg.m-3 compared with the current air quality standards 

of a few hundred µg.m-3 (Figure 2.5).  

 

 

 

Figure 2.5 London December 1952 at noon [URL8] and London smog episode data [Wilkins, 1954]. 
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Admissions to hospitals for the treatment of respiratory diseases were increased and so were 

admissions for heart diseases; shortness of breath, cyanosis, fever and evidence of excess fluid in the 

lungs were registered [Nemery et al., 2001].  A significant increase in mortality was observed during 

this episode, the total excess was between 3500 and 4000. The event led to a public outcry and a 

strong political reaction; an increase in the number of monitoring stations and extensive legislation 

followed [Fenger, 2009]. 

Air pollution concentrations in London and most other major western cities have fallen markedly over 

the last century. In London, the last winter air pollution episode to cause major public health concern 

was in 1991, when the city experienced a winter temperature inversion with air stagnation, typical of 

the conditions previously associated with air pollution episodes. The pollutants that accumulated were 

not those from domestic fuel burning as in 1952, but from mobile sources with a contribution from 

space heating using natural gas [Anderson, 2009]. Although the relative increase in air pollution was 

quite similar to that observed in the 1952 episode the absolute levels were very much lower; a 10% 

increase in mortality attributable to air pollution was found, compared to 400% increase in mortality 

observed in the week of the 1952 fog [Anderson et al., 2005]. 

2.2.2 Main atmospheric pollutants and sources 

The driving forces behind air pollution are directly associated with human activity; energy 

consumption, industrial activities, transport demand and agriculture are the specific forces most 

directly linked to air pollutant emissions. While population growth in Europe has been minimal since 

1990, the number of households grew rapidly by approximately 11% between 1990 and 2000 whilst 

total energy consumption increased by about 12% to 2004 [EEA, 2006a].  

The transport sector has grown to become the largest energy consuming sector, accounting for 

approximately 31% of the European final energy consumption in 2004. In comparison, the industrial 

sector used 28% and households 27% [EEA, 2007]. The potential for transport-related air pollution 

caused by road vehicles has, therefore, increased. 

Atmospheric pollutants (gaseous and particulate) can be divided in primary pollutants, which are 

directly emitted to the atmosphere by a natural or anthropogenic emission source, and secondary 

pollutants, which result from primary pollutants transformation through chemical reactions highly 

dependent on meteorological conditions and/or solar radiation [Alley et al., 1998]. Currently, the two 

air pollutants of most concern for public health are surface particulate matter and ozone, therefore 

receiving special attention in this review and also throughout this thesis.  

There is increasing evidence that fine dust particles, measured in microns or even nanometres, have 

deleterious effects on human health, causing premature deaths and reducing quality of life by 
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aggravating respiratory conditions such as asthma [WHO, 1999]. One reason why particulate matter is 

of such concern is the absence of any concentration threshold below which there are no effects. Since 

PM10 penetrates into the human thorax, air quality objectives have up to now been set in relation to 

the total mass concentration of such particles. Evidence suggests that fine particulates, with an 

equivalent aerodynamic diameter less than 2.5 micrometers (PM2.5), do most damage to human 

health, and that effects depend further on the chemical composition or physical characteristics of the 

particle [Samet et al., 2000; Burnett et al., 2000]. 

Particulate matter (PM) includes as principal components sulfate, nitrate, organic carbon, elemental 

carbon, soil dust, and sea salt. The first four components are mostly present as fine particles (PM2.5), 

and these are of most concern for human health. Sulphate, nitrate, and organic carbon are produced 

within the atmosphere by oxidation of sulphur dioxide (SO2), nitrogen oxides (NOx) and non-methane 

volatile organic compounds (NMVOC); carbon particles are also emitted directly by combustion. 

Nitrate and organic carbon exchange between the particle and gas phases, depending in particular on 

temperature. The seasonal variation of PM is complex and location-dependent; in general, PM needs 

to be viewed as an air quality problem year-round [Jacob and Winner, 2009]. PM is efficiently 

scavenged by precipitation and this is its main atmospheric sink, resulting in atmospheric lifetimes of a 

few days in the boundary layer and a few weeks in the free troposphere. Export of PM from the source 

continents is limited by the precipitation scavenging, and therefore the PM background in the free 

troposphere is generally unimportant for surface air quality [UNECE, 2007]. Exceptions are plumes 

from large dust storms and forest fires which can be transported on intercontinental scales [Jacob and 

Winner, 2009].  

While ozone (O3) in the upper atmosphere provides an essential screen against harmful UV radiation, 

at ground level it is lung irritant causing many of the same health effects as particulate matter, as well 

as attacking vegetation, forests and buildings. Observed effects on human health are inflammation and 

morphological, biochemical, and functional changes in the respiratory tract, as well as decreases in 

host defence functions. Effects on vegetation include visible leaf injury, growth and yield reductions, 

and altered sensitivity to biotic and abiotic stresses. Ozone also acts both directly and indirectly—as 

part of a pollution “cocktail”—to accelerate the degradation of materials [Jacobson, 2002]. 

Ozone is produced in the troposphere by photochemical oxidation of carbon monoxide (CO), methane 

(CH4), and NMVOC by the hydroxyl radical (OH) in the presence of reactive nitrogen oxides. The 

relation between O3, NOx and VOC is driven by complex nonlinear photochemistry, with the existence 

of two regimes with different O3-NOx-VOC sensitivity: in the NOx-sensitive regime (with relatively low 

NOx and high VOC), O3 increases with increasing NOx and changes little in response to increasing VOC; 

in the NOx-saturated or VOC-sensitive regime O3 decreases with increasing NOx and increases with 
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increasing VOC [Seinfeld and Pandis, 1998]. Also, in the vicinity of large nitrogen monoxide (NO) 

emissions, ozone is destroyed according to the reaction NO + O3 = NO2 + O2, generally referred as O3 

titration by NO. This situation usually takes place in heavily polluted areas, with ozone consumption 

taking place immediately downwind of the sources, and becoming elevated as the plume moves 

further downwind [Seinfeld and Pandis, 1998; Derwent, 1999]. NMVOC, CO, and NOx are emitted by 

large combustion sources and motor vehicles; vegetation is a large NMVOC source and CH4 has a 

number of biogenic and anthropogenic sources. OH originates mainly from atmospheric oxidation of 

water vapour and cycles in the atmosphere with other hydrogen oxide (HOx) radicals [Jacob and 

Winner, 2009]. 

Ozone pollution is in general mostly a summer problem because of its photochemical nature [Seinfeld 

and Pandis, 1998]. The main sinks for tropospheric ozone are photolysis in the presence of water 

vapour, and uptake by vegetation (dry deposition); wet deposition is negligible as ozone and its major 

precursors have low solubility in water. The atmospheric lifetime of ozone ranges from a few days in 

the boundary layer to weeks in the free troposphere. Ozone and its anthropogenic precursors are 

transported on hemispheric scales in the free troposphere, therefore adding a significant background 

to surface ozone which is of increasing concern for meeting air quality standards [Holloway et al., 

2003].  

2.2.3 Effects of meteorology on urban air pollution 

With respect to urban air pollution, the region of the atmosphere governing transport and dispersion 

is the so-called planetary boundary layer (PBL), which extends from the surface to between 500 and 

3000 m, representing the extent of influence of the Earth’s surface on wind and structure of the 

atmosphere [Seinfeld and Pandis, 1998; Jacobson, 2002].  

The concentration of pollutants (gaseous and particulate) in the atmosphere is affected by winds, 

temperature, clouds and relative humidity. In turn, these meteorological parameters are influenced by 

large scale and small scale weather systems [Jacobson, 2002], which can be categorized as [Seinfeld 

and Pandis, 1998]:  

i) synoptic or macroscale – phenomena occurring on scales of thousands of kilometres, such 

as semi-permanent high and low pressure systems that reside over the oceans and 

continents; 

ii) mesoscale – phenomena occurring on scales of hundreds of kilometres, such as land-sea 

breezes, mountain-valley winds and migratory high and low pressure fronts; 
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iii) microscale – phenomena occurring on scales of the order of 1 km, such as the meandering 

and dispersion of a stack plume and the complicated flow regime in the wake of a large 

building . 

Each of these scales of motion plays a role in air pollution over different periods of time: microscale 

effects take place over scales on the order of minuts to hours, whereas mesoscale phenomena 

influence transport and dispersion of pollutants over hours to days, and synoptic phenomena are felt 

for days to weeks. 

Low-pressure systems are associated with cloudy skies, stormy weather and fast surface wind; air rises 

and near surface pollutants are dispersed upwards, also the clouds block sun-light that would 

otherwise drive photochemical reactions, reducing pollution further. On the contrary, high-pressure 

systems are characterized by relatively low surface winds, sinking-air and cloud free skies; this 

horizontal and vertical dispersion of pollutants and the sunlight drives photochemical processes. 

The stability of the air is a measure of whether pollutants will convectively rise and disperse, or instead 

build up in concentration near the surface. When the stability condition is such that air temperature 

increases with increasing height, a temperature inversion is present. Stable air and inversions trap 

pollutants, preventing them from dispersing into the troposphere and causing high pollutants surface 

concentrations; this was the case of the disaster in Meuse Valley in Belgium, already described. 

Whereas large-scale pressure systems control the prevailing meteorology of a region, local factors also 

affect meteorology and therefore air pollution. Besides the temperature inversions, ground 

temperature affects air pollution through its effects on wind speeds: warm surfaces enhance 

convection, causing surface air to mix with air aloft, therefore speeding winds near the surface, which 

results in greater dispersion of near surface pollutants. On the other hand, higher surface wind speeds 

will also increase the re-suspension of particles from the ground.  Also, air temperature affects rates of 

several processes such as rates of biogenic emissions from trees, carbon monoxide emissions from 

vehicles and chemical reactions [Jacobson, 2002]. 

The most widely recognized meteorological effect of urbanization is the urban heat island effect [Oke, 

1988]. Defined as a differential in the air temperatures of urban centres relative to adjacent rural 

areas, the urban heat island effect is driven by the displacement of natural vegetation by the 

impervious surfaces of roads and buildings, as well as by the emission of vast quantities of waste heat 

from buildings, industry, and automobiles. In combination, these properties of urbanization can serve 

to raise by several degrees the average air temperature of large cities. Because regionalized air 

pollutants such as ozone and fine particulate matter are sensitive to temperature, the resulting urban 

heat island holds important implications for air quality. 
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The statistical correlation between the pollutant concentrations and the meteorological variables has 

been an active subject of study since it contributes to the understanding of the processes affecting 

pollutant concentrations [Jacob and Winner, 2009].  

The influence of urban temperatures on regional ozone formation is well documented [Rao et al., 

1992, 1995]. In a study of temperature trends and ozone formation in large US cities, Stone [2005] has 

found a strong positive correlation between mean temperature and the average number of high ozone 

days per year. Ordonez et al. [2005] concluded that the dominant variables for summer ozone in 

Switzerland are temperature, morning solar radiation and the number of days since the last frontal 

passage. Camalier et al. [2007] estimated that 80% of the ozone variance in eastern United States can 

be explained by a linear model with temperature (positive) and relative humidity (negative) as the two 

most important predictor variables. The strong correlation of ozone and temperature is however 

limited to polluted conditions (O3 > 120µg.m-3); lower ozone concentrations more representative of 

background show no correlation with temperature [Sillman and Samson, 1995].  In the eastern United 

States high temperatures, large concentrations of water vapour, high solar radiation and stagnant 

conditions were the variables mostly correlated with high ozone levels [Vukovich and Sherwell, 2003]. 

In the southwest US temperature and mixing height most strongly influence ozone conditions [Wise 

and Comrie, 2005]. 

Observed correlations of PM concentrations with meteorological variables are weaker than for ozone 

[Wise and Comrie, 2005], reflecting the diversity of PM components. No significant correlations with 

temperature have been reported in the literature. Cheng et al. [2007] in their study of four Canadian 

cities have encountered a strong correlation of PM with stagnation; Wise and Comrie [2005] have 

obtained a negative correlation of PM with relative humidity in the south-western US. 

Veloso et al. [2004] studied the metropolitan areas of Lisbon and Porto and concluded that relative 

humidity, maximum daily temperature and wind speed were found to be the meteorological variables 

with higher correlation with air quality data. For ozone a positive strong correlation with temperature 

was found; negative correlations with relative humidity and wind speed were obtained. For PM, wind 

speed and precipitation present higher negative correlation factors, while for temperature the 

correlation is positive. 

In Portugal, it is recognized by several authors, both in modelling and field research, that coastal 

mesoscale meteorology is strongly connected with ozone production and transport [Coutinho and 

Borrego, 1991; Borrego et al., 1994; Barros et al., 2003; Evtyugina et al., 2006; Monteiro et al., 2005; 

Carvalho et al., 2006]. Studies on atmospheric circulations over the Iberian Peninsula have shown 

particularities concerning summer dynamics [Millan et al., 1992]. Frequently, there is the development 

of a low thermal pressure region in the centre of the Peninsula, which allows mesoscale processes 
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enhancement such as land–sea breezes [Martín et al., 2001]. In the presence of complex terrain near 

coastlines, these mesoscale phenomena may be combined with anabatic/katabatic winds creating 

recirculations along shore. This type of circulations encourages photo-chemical production of air 

pollutants leading to smog episodes, which can cause health problems to the population and 

environmental degradation [Barna and Lamb, 2000]. 

2.2.4 European Union air pollution policies  

The European Union has a solid legislation, developed over 30 years, that establishes a common 

demand level for environmental norms and practices in all Member States. The need to deliver cleaner 

air has been recognised for several decades with actions taken at national and EU level and also 

through active participation in international conventions. EU action has focused on: i) developing limit 

or target values for ambient air quality; ii) developing integrated strategies to combat the effects of 

trans-boundary pollution (in particular acidification, ozone and eutrophication) through the adoption 

of national emission ceilings; iii) identifying cost-effective reductions in targeted areas through 

integrated programmes; iv) introducing specific measures to limit emissions or raise product 

standards. This has resulted in the reduction of pollutant emissions from large combustion plant and 

mobile sources, the improvement of fuel quality, and environmental protection requirements have 

been integrated into the transport and energy sectors.  

In November 1996, the Air Quality Framework Directive was adopted with the general aim of  defining 

the basic principles of a common strategy to: i) define and establish objectives for ambient air quality 

in the Community designed to avoid, prevent or reduce harmful effects on human health and the 

environment as a whole; ii) assess the ambient air quality in the Member States on the basis of 

common methods and criteria; iii) obtain adequate information on ambient air quality and ensure that 

it is made available to the public, inter alia by means of alert thresholds; and iv) maintain ambient air 

quality where it is good and improve it in other cases [96/62/EC, Article 1]. The following “daughter 

directives” established new limit values for sulphur dioxide, nitrogen oxides, particulate matter and 

lead [1999/30/EC], carbon monoxide and benzene [2000/69/EC], ozone [2002/3/EC], and polyaromatic 

hydrocarbons (PAHs), nickel, cadmium, arsenic and mercury [2004/107/EC]. Table 2.2 presents the 

limit values for the protection of human health, and the information and alert thresholds established 

for PM10 and ozone, respectively. 
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Table 2.2 PM10 and ozone values for the protection of human health, and the information and alert thresholds. 

PM10  

Averaging period Limit value 

One day 50 µg.m
-3

, not to be exceeded more than 35 times 
a calendar year 

Calendar year 40 µg.m
-3

 

O3  

Purpose Averaging period Threshold 

Information 1 hour 180 µg.m
-3

 
Alert 1 hour (to be measured for 

three consecutive hours) 
240 µg.m

-3
 

 

The Air Quality Framework Directive defines the main air quality management tools, which include the 

elaboration of emission inventories, the implementation of monitoring networks and the use of air 

quality modelling techniques. It also sets the Member States obligation to evaluate and manage the air 

quality in every zone and agglomeration of the territory. As defined in 96/62/EC, zone is a part of the 

territory delimited by the Member State, and agglomeration is a zone with a population concentration 

in excess of 250 000 inhabitants or with a population density which, for the Member States, justifies 

the need for ambient air quality to be assessed and managed. For those zones and agglomerations 

where the air quality limits are exceeded, Member States have the responsibility of developing and 

implementing Plans and Programs for the Improvement of the Air Quality. 

Despite significant improvements, serious air pollution impacts persist. The Community’s 6th EAP called 

for the development of a thematic strategy on air pollution with the objective to attain “levels of air 

quality that do not give rise to significant negative impacts, and risks to human health and the 

environment” [Decision 1600/2002/EC]. For the natural environment achieving this objective means 

no exceedance of critical loads and levels; for human health, the situation is more complex as there is 

no known safe level of exposure for some pollutants such as particulate matter and ground level 

ozone.  

 The Commission embarked on a programme of technical analysis and policy development, the “Clean 

Air for Europe” (CAFE) programme, with the general aim of developing a long-term, strategic and 

integrated policy to protect against the effects of air pollution on human health and the environment. 

After that, the Commission examined whether current legislation would be sufficient to achieve the 6th 

EAP objectives by 2020. This analysis looked at future emissions and impacts on health and the 

environment and has used the best available scientific and health information. It showed that 

significant negative impacts will persist even with effective implementation of current legislation. 

 Accordingly, the Thematic Strategy on Air Pollution [COM(2005)446 final] established interim 

objectives for air pollution in the EU and proposed appropriate measures for achieving them. It 

recommended that the current legislation should be modernised, better focused on the most serious 
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pollutants and that more had to be done to integrate environmental concerns into other policies and 

programmes. 

Meeting the targets set out in the Strategy will require efforts and commitments by other sectors, 

such as energy and transport.  The EU has set the target of producing 12% of energy and 21% of 

electricity from renewable energy sources by 2010, as well as minimum targets for the share of 

biofuels. Several actions have been taken to curb energy demand including energy labelling, energy 

performance of buildings, and a Directive on cogeneration.  In keeping with the commitments made in 

the White Paper on a common transport policy, the EC committed itself on the encouragement of 

shifts towards less polluting modes of transport, alternative fuels, reduced congestion and the 

internalisation of externalities into transport costs. However, the Strategy does not make any 

reference to the integration of urban planning policies, namely urban structure and its role in urban air 

pollution. 

More recently, it was recognized the need to substantially revise the air quality directives [96/62/EC, 

1999/30/EC, 2000/69/EC, 2002/3/EC and 2004/107/EC], and in the interest of clarity, simplification 

and administrative efficiency replace them by a single directive - Directive 2008/50/EC.  A special 

attention is given to fine particulate matter (PM2.5) due to its significant negative impacts on human 

health. Due to the absence of any concentration threshold below which PM2.5 would not pose a risk, a 

different approach was followed aiming at a general reduction of concentrations in the urban 

background to ensure that large sections of the population benefit from improved air quality. 

However, to ensure a minimum degree of health protection everywhere, that approach was combined 

with a limit value, preceded in a first stage by a target value. The PM10 limit values for the protection 

of human health, and the O3 information and alert thresholds presented in Table 2.2 were maintained 

equal in Directive 2008/50/EC. 

2.2.5 Emissions and air quality trends in Europe and Portugal 

Emissions of air pollutants decreased substantially during the period 1990–2006 across Europe, in 

particular, in EU-27 (Figure 2.6). The largest reductions (in percentage) have been achieved for SOX 

emissions (which have decreased by almost 70 % since 1990), followed by CO (-53 %), NMVOC (-44 %) 

and NOX (-35 %); NH3 emissions decreased by 22 % and particulate matter emission trends, which have 

been compiled only for 2000 to 2006, indicate approximately 10 % reduction [EEA, 2008]. As a result of 

the introduction of three-way catalytic converters on cars and stricter regulation of emissions from 

heavy goods vehicles across Europe, NOX emissions from road transport decreased 16% between 2002 

and 2006 [EEA, 2008]. The CO and NMVOC emissions presented a similar behaviour. 
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Figure 2.6 EU-27 emission trends for NOx, CO, NMVOC, SOx, and NH3 in Gg between 1990 and 2006 (index year 
1990 = 100) and for PM10 and PM2.5 between 2000 and 2006 (index year 2000 = 100) [EEA, 2008]. 

 

Although primary PM emissions have decreased in Europe in general, there is a wide variability in 

emission trends. In some countries reductions have been much larger than the average, whereas in 

other emissions have increased. The latter situation is especially due to emissions from the transport 

sector, where reductions resulting from a shift to lighter fuels are counteracted by an increasing share 

of diesel vehicles and rising traffic volumes [EEA, 2007]. 

In Portugal, between 1990 and 2007, with the exception of PM and NOx, the main air pollutant 

emissions have decreased, although in very different proportions [APA, 2009] (Figure 2.7).  
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Figure 2.7 Portugal emission trends for NOx, CO, NMVOC, SOx, NH3, PM10 and PM2.5 in Gg between 1990 and 
2007 (index year 1990 = 100) (data from APA, 2009). 
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The SOx emissions, mainly generated in the energy industry sector and by the combustion in 

manufacturing industries, presented the largest decrease. The introduction of natural gas (1997), the 

installation of new combined cycle thermoelectric plants using natural gas (1999), the progressive 

installation of co-generation units, and the amelioration of energetic and technologic efficiency of 

industrial processes, are responsible for the verified tendency.  

Transportation is responsible for the major share of CO, NOx, and NMVOC emissions. Despite the fast 

growing trends of the transport sector (mainly road) since the 90’s, the introduction of new petrol-

engine passenger cars with catalyst converters and stricter regulations on diesel vehicles emissions, 

limited the growth of these emissions.  

NH3 is primarily generated in biological systems, such as direct soil emissions, manure management 

systems, waste-water handling systems and decomposition of municipal and animal wastes. The 

overall evolution of NH3 in the analysed period is downwards with a -13% change between 1990- 2007.  

Particulate matter (Figure 2.8) is generated in a large extent in both energy and industrial processes, 

and the estimates show a significant positive trend since 1990 (> 35%). Between 1990 and 2006 PM10 

emissions from industrial processes increased 142%, industrial combustion increased 74% and road 

transport increased 18% [EEA, 2008].  
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Figure 2.8 Portugal PM10 emissions contribution from different activities for 2005 [EEA, 2008]. 

 

When looking at the above emission data, it may seem that urban emissions are not important. For 

instance, PM10 transport emissions, which predominantly take place in urban areas,  only account for 

a share of 6%. However, it is worth stressing that a great part of the overall emissions, such as 

emissions from industry, happen in urban areas, although that share is not known. 

Notwithstanding the emissions decrease in Europe, ambient concentrations of particulate matter and 

ozone in the air have not shown any improvement since 1997 [EEA, 2007]. Across Europe, the 

population exposure to air pollution exceeds the standards set by the EU (Figure 2.9).  



Scientific and policy background 

 30 

 

 Figure 2.9 Percentage of urban population resident in areas where pollutant concentrations are higher than 
selected limit/target values, EEA member countries, 1997-2006 [URL1]. 

 

For ozone there has been considerable variation along the period 1997-2006, with 14% to 61% of the 

urban population exposed to concentrations above the target value [URL1]. In 2003, a year with 

extremely high ozone concentrations due to specific meteorological conditions, the exposure was 

higher. Concentrations in 2004 were lower, nevertheless, when, in accordance to the ozone directive, 

concentrations were averaged over a 3-year period, the eight-hour target value was not met over a 

large part of Europe (Figure 2.10). Current estimates point to approximately 21 400 premature deaths 

annually due to ozone exposure [EEA, 2007]. 

 

Figure 2.10 Days exceeding the ozone target value as 3-year average 2002–2004 [EEA, 2007]. 
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Regarding PM10, in the period 1997-2006, 18 to 50% of the urban population was potentially exposed 

to ambient air concentrations higher than the EU limit value set for the protection of human health 

[URL1]. As an example, in 2004 limit values for daily and annual average PM10 concentrations were 

exceeded in hot spot, urban and rural locations across Europe, notably in southern and eastern Europe 

as well as the Benelux countries. The highest urban concentrations were observed in Italy, Czech 

Republic, Poland, Romania, Bulgaria and the Benelux countries as well as in cities in some other areas. 

Traffic hot spot stations were found to exceed the daily PM10 limit value in many countries, such as in 

Italy, Spain, Portugal, Bulgaria and Romania. Figure 2.11 displays the cities with hot spot stations 

coded against the limit value. In Portugal, it is clear that the 36th highest value is above the limit value 

in the urban centres of Lisbon and Porto, as well as in the NW coast (Aveiro, Estarreja and Coimbra).  

 

 
(LCL/UCL: Lower (30 μg.m-3)/Upper (50 μg.m-3) LV/MT: Limit value/Margin of tolerance) 

Figure 2.11 PM10 concentrations 36th highest daily value for 2004 [EEA, 2007]. 

 

In accordance to the established in the Air Quality Framework Directive, the Portuguese territory is 

divided in 25 zones and 13 agglomerations; therefore the air quality evolution presented here refers to 

these geographical units. As in Europe, in Portugal PM10 and ozone are the main reasons of concern. 

Figures 2.12 and 2.13 show the evolution of PM10 and ozone exceedances in Portugal in the period 

2001-2005.  

 

 



Scientific and policy background 

 32 

a) 

Traffic          Industrial       Background            PM10 annual LV

2001 2002

70

60

50

40

30

20

10

0
2003 2004 2005

P
M

10
 a

n
n

u
al

av
er

ag
e

(µ
g.

m
-3

)

Traffic          Industrial       Background            PM10 annual LVTraffic          Industrial       Background            PM10 annual LV

2001 2002

70

60

50

40

30

20

10

0
2003 2004 2005

P
M

10
 a

n
n

u
al

av
er

ag
e

(µ
g.

m
-3

)

 

b) 

250

200

150

100

50

0
2001 2002 2003 2004 2005

Traffic          Industrial       Background            Max. nuber of excced.

N
u

m
b

er
o

f
P

M
1

0 
d

ai
ly

ex
ce

ed
an

ce
s 250

200

150

100

50

0
2001 2002 2003 2004 2005

Traffic          Industrial       Background            Max. nuber of excced.Traffic          Industrial       Background            Max. nuber of excced.

N
u

m
b

er
o

f
P

M
1

0 
d

ai
ly

ex
ce

ed
an

ce
s

 

Figure 2.12 PM10 exceedances of a) annual and b) daily limit values for Portugal 2001-2005 [APA, 2008]. 

Limit values are exceeded mainly at traffic stations, although high concentrations are also found in 

background and industrial monitoring stations. All agglomerations presented more than 35 days above 

the daily limit value established for PM10; the annual limit value was mainly exceeded in the North 

Lisbon Metropolitan Area and Costal Porto agglomerations [APA, 2008]. 

Regarding ozone (Figure 2.13), the year of 2005 presented a significant increase in the number of 

hours exceeding the information and alert thresholds in background stations, due to the Lamas d’Olo 

new air quality station, which is a very particular case (Evtyugina et al., 2009). Maximum hourly ozone 

concentrations measured in background stations were above the information threshold for almost 

every zone and agglomeration. For background stations, ozone levels were higher in Coastal Porto 

agglomeration, followed by Lisbon Metropolitan Area [APA, 2008]. Ozone is a regional scale pollutant, 

therefore high concentrations occur across large areas. However, rural concentrations have generally 

been higher than urban and suburban, with the lowest values observed in traffic sites. 
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Figure 2.13 Ozone alert and information threshold exccedences for Portugal 2001-2005 [APA, 2008]. 

Photochemical and particulate matter air pollution problems in Portugal are evident from the above 

analysis, more precisely over specific urban areas. From 2001 to 2005, PM10 concentrations were 

consistently above the daily and the annual limit values; with persistent situations registered in 
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agglomerations from North to South [APA, 2008]. Regarding ozone the situation is more complex; 

exceedances are dispersed all over the territory, even in zones and not only in agglomerations, due to 

its secondary and regional pollutant characteristics. 

However, air quality monitoring networks are unable to cover the entire territory; to estimate air 

pollutants concentration in any point of a given study area a variety of modelling tools are available; 

these will be addressed next. 

2.2.6 Regional and urban air quality numerical models  

Numerical air quality modelling is a powerful tool for air quality evaluation and management. Its 

application has been defined and recommended throughout EU’s air quality legislation [96/62/EC, 

COM(2001)245 final, 2008/50/EC] to provide an adequate level of information on ambient air quality. 

In the framework of CAFE, modelling techniques have been used to study the repercussions of 

emission reduction scenarios in air quality levels, namely on ozone and particulate matter 

concentrations and their impacts on human health and vegetation [Thunis et al., 2007; Vautard et al., 

2007]. 

An atmospheric numerical model is a computerized mathematical representation of the dynamical, 

physical, chemical and radiative processes in the atmosphere. Modern atmospheric science is a field 

that combines meteorology, physics, mathematics, chemistry, and computer sciences; other sciences 

such as geology, biology and oceanographic sciences are also involved to a lesser extent in the so 

called Earth System Models.  

Until the 1940s scientific studies of the atmosphere were limited to the weather, since then the 

growing awareness of air pollution problems lead to a rapid increase of air pollution studies, and 

computer modelling of meteorology and air pollution initiated and slowly merged [Jacobson, 1999]. 

In the 1950’s laboratory work was undertaken to better understand the formation of photochemical 

and London-type smog; also the emergence of computers allowed the implementation of box models 

for the simulation of atmospheric chemical reactions. Between the 1950’s and the 1970’s air quality 

models were expanded to three dimensions, and included the treatment of transport, deposition, 

emissions, and chemistry [Jacobson, 1999]. In the beginning these models used observed 

meteorological data as input; shortly after outputs from meteorological models were used as inputs to 

air quality models [Pielke et al., 1992].  

Nowadays the majority of the modelling systems for the study of air pollution comprise a 

meteorological model and an air quality model, and the respective pre-processors. The models can be 

linked off-line or on-line: the first meaning that the meteorological simulation is performed first and its 
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outputs are after that fed into the chemical model; the second meaning that meteorology and 

chemistry simulations are performed at the same time on the same grid, therefore existing feed-back 

mechanisms between the two models.   

The main meteorological variables in a model are wind speed, wind direction, air temperature, air 

density, air pressure and water content. These variables are simulated by solving a set of partial 

differential equations and parameterized equations (equations in which one parameter is expressed in 

terms of at least two other parameters), including the momentum equation, the thermodynamic 

energy equation, the continuity equation of air and total water, and the equation of state. Changes in 

concentrations of gaseous and particulate species are found by solving ordinary differential equations 

that describe chemistry and physics, and partial differential equations that describe transport 

[Jacobson, 1999]. 

Over the past few years there has been a growing need to simulate meteorological fields for complex 

situations at higher spatial resolutions. This has been partly stimulated by the scientific and 

technological advances and partly by policy pressures requiring more detailed assessment of air 

pollution on urban to regional scales. As a consequence, complex dynamical models have been 

increasingly used in Europe and the USA for meteorological and air pollution applications [COST728, 

2005]. 

Atmospheric problems can be simulated over a variety of spatial scales. Mesoscale studies spatial 

scales range from tens of kilometres (urban scale) to some thousands (regional scale); this is the scale 

representative of many of the air pollution problems, therefore is the most relevant and adequate for 

decision support [Moussiopoulos, 1996]. 

There is currently a wide variety of models steaming from the diversity in spatial and temporal scales, 

because different scales demand different approximations and parameterizations. For a classical 

Gaussian model, surface data from a single meteorological station is enough, since this type of model 

considers that these are applicable to the entire simulation domain and no variations with height are 

found. Lagrangean and Eulerian models, however, allow the variation of meteorological conditions 

along the domain, horizontal and vertically. For the simulation of complex meteorological conditions 

three-dimensional models are advised; these can be classified as diagnostic or prognostic models.  

Diagnostic models use available local meteorology to determine meteorological variables over the 

simulation domain through interpolation or extrapolation techniques; meteorological fields calculated 

for each time step are independent on previous time-steps results. Prognostic meteorological models 

are initialized by large scale synoptic analysis, and numerically solve atmospheric dynamics equations 

in order to determine local meteorological conditions [Seinfeld and Pandis, 1998]. Often these models 

have nesting capabilities that allow the consideration of a first regional domain (500–1000 km) with a 
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coarse resolution, and afterwards successive smaller nests to cover a specific area (1-10km) at higher 

resolutions.  

Meteorological models able to resolve mesoscale processes (1-200 km) are considered to be the main 

tools in air pollution assessments because they allow sufficiently high spatial and temporal resolution 

and can trace back the linkages between sources and impacts of long travel distances and times. 

Additionally they can accommodate a wide range of specific local conditions. However, the meso-

meteorological capabilities of meteorological models are generally not specifically optimized for 

pollution applications, namely in urban areas. For example, meteorological models contain options for 

treating processes which the users must select themselves, such as the boundary layer 

parameterization to use. Also, situations which present huge challenges for meteorological models 

include dispersion in very stable or low wind speed conditions, which generally lead to the production 

of secondary pollutants, such as ozone [COST728, 2005].  

Meteorological mesoscale models have been developed in most European countries for flow 

simulations and for dispersion studies. Public/research versions are available from European and US 

National Weather Services and other agencies.  Models such as MM5 [Dudhia et al., 1993] are 

commonly employed as meteorological pre-processors/drivers for photochemical models and have 

demonstrated their usefulness for air pollution assessment down to spatial resolutions of 1 km and 

temporal resolutions of 1 hour [COST728, 2005]. Other research models which have been similarly 

employed include WRF [Grell et al., 2005], ALADIN [URL9], RAMS [Pielke et al., 1992], MEMO 

[Moussioupoulos et al., 1994], MESO-NH [Cousin et al., 2005], and METRAS [Schlünzen, 1988]. 

Based on meteorological model results air quality models simulate the transport, dispersion and 

chemical transformation of pollutants, providing the concentration and deposition of reactive and 

inert chemical species. Air quality models can be classified according to their mathematical 

formulation as Lagrangean or Eulerian models.  Lagrangean models consider that the air parcel moves 

with the local wind and there is no mass exchange allowed to enter the air parcel and its surroundings 

(except of species emissions). The air parcel moves continuously and the length and direction of the 

dislocation are determined through the average wind speed and direction for each time step of the 

calculation [Draxier and Hess, 1998]. Eulerian models consider a fixed three-dimensional cartesian grid 

as a frame of reference rather than a moving frame of reference; these models are also known as grid 

models due to their three-dimensional grid. The emission of pollutants is considered for each cell, and 

the pollutants go through the grid under the influence of the atmospheric flow, undergoing physical 

and chemical transformations. Eulerian models are therefore more demanding in computational terms 

than Lagrangean models. The treatment of individual processes in Eulerian models can be more or less 
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complex, thus these vary widely in vertical resolution, used parameterizations, initialization methods 

and boundary conditions, and also in the used numerical techniques [Reid et al., 2007]. 

Three-dimensional air quality Eulerian models were firstly developed and applied extensively to study 

ozone related pollution [Moussiopoulos, 1996]; more recently, developments have focused on the 

chemical simulation of aerossols [Hass et al., 2003; Bessagnet et al., 2004; Van Dingenen et al., 2004]. 

The simulation of photochemical processes demands the inclusion of a group of chemical reactions 

responsible for ozone formation and the respective parameterization of reaction rates. These, 

together with the integration of transport, diffusion and deposition processes (dictated by 

meteorology) and anthropogenic and biogenic emissions, allow the estimation of air pollutant 

concentrations [Seinfeld and Pandis, 1998]. Modelling of aerosols has been more recently tackled due 

to the high complexity of the physical and chemical processes involved, many of them still unknown 

[Pio et al., 2007; Pun et al., 2007]. Implicated species are numerous, as well as its origin, primary and 

secondary (sulphates, nitrates, ammonia and secondary organic species). Besides its chemical 

composition, aerosols species must also be characterised in terms of size distribution, and dry and wet 

deposition cannot be neglected [Seinfeld and Pandis, 1998]. 

Currently, several air quality models are available for the simulation of gaseous and particulate 

chemistry at regional and urban scales. Some examples are the European models EMEP, LOTOS-EUROS 

and CHIMERE [Van Loon, 2004; Vautard et al., 2007], the American models  CMAQ and CAMx [Tesche 

et al., 2006] or the Australian model TAPM [Hurley et al., 2003]. 

Air  quality models need to be evaluated to be used with confidence at the scientific and policy levels, 

therefore its application must always be accompanied by a set of quality control and quality assurance 

procedures, and preferably an uncertainty estimation analyses should be conducted [Borrego et al., 

2008a]. 

2.3 Integration of urban planning and air pollution 

Since the world’s cities are the major consumers of natural resources, the major producers of pollution 

and waste, and the focus of most other human activities, various governments realised that much of 

the sustainable debate has an urban focus [Breheny, 1992a]. Solving the problems of the city would be 

a major contribution to solving the most pressing global environmental problems, since it is in cities 

that we find the greatest concentration of population and economic activity, and it is in cities that the 

crucial long term and often irreversible decisions on infra-structure investments (related to energy 

supply and waste treatment) are made. 
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After the Brundtland Commission report [WCED, 1987] the notion that the natural environment should 

become a political priority, and the pursuit of sustainable development received a remarkable 

attention. In many countries there have been profound changes in policies and in political and popular 

attitudes, as the commitment to the sustainable development idea has increased [Breheny, 1996]. The 

question now is which urban form or structure will be likely to deliver more environmental benefits or 

will be less harmful to the human health and the environment. The most important work conducted in 

the field in the last two decades is reviewed next. 

2.3.1 Data analysis studies 

Much of the technical arguments for compact cities have revolved around the allegedly lower levels of 

travel, and hence lower levels of fuel consumption and emissions, associated with high urban 

densities. Newman and Kenworthy [1989a; 1989b] and Newman [1992] have done some work in the 

field. For a large number of cities around the world, they related fuel consumption per capita to 

population density, and found a consistent pattern with higher densities associated with lower fuel 

consumption. Figure 2.14 presents data for a number of world cities, revealing a consistent 

relationship between population density and energy consumption: high energy consumption rates are 

associated with lower population densities, characteristic of sprawling urban environments.  
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Figure 2.14 Energy consumption per capita and population density for several world cities (adapted from 
Newman and Kenworthy, 1999). 

 

Energy consumption depends on a variety of factors such as climate, nature of transportation 

networks, energy sources and others, but a clear link with population density was found: US cities are 

on the top of energy consumption per capita; on the other extreme, are Asian cities like Hong Kong, 

with a per capita energy consumption 15% to 20% of the American cities and 30 times higher 



Scientific and policy background 

 38 

population densities. The conclusion from this exercise was that, if fuel consumption and emissions 

are to be reduced, there is a need for policies to promote urban compaction and public transport.  

Kenworthy and Laube [1996] compared a group of world cities over the period 1980 to 1990 regarding 

its land use and transport characteristics. The data revealed that metropolitan densities in the United 

States and Australia have remained very low and basically static between 1980 and 1990, while new 

development in European cities has spread out, although still occurring at densities significantly higher 

than in the US and Australia. In the wealthy Asian cities (Singapore, Tokyo and Hong Kong), 

development continued to occur at very high densities compared with the western world (12 times the 

US and Australia urban densities and over 3 times European densities). The study demonstrated the 

importance of urban density in explaining annual per capita auto use, with annual kilometres travelled 

per capita strongly inversely correlated (r2=0.8) with urban density . 

Conclusions similar to those of Newman and Kenworthy emerged from the ECOTEC [1993] study for 

the UK government, which found a clear inverse correlation between total distances travelled per 

week and population density. People living at the lowest densities were found to travel twice as far by 

car each week in comparison to those living at the highest densities.  

The message coming from these studies remains controversial, and the studies by Newman and 

Kenworthy have been criticised for focusing on the single variable of density, when other factors are 

likely to be important in explaining travel behaviour. Gomez-Ibanez [1991] argues that household 

income and fuel price are important determinants of such behaviour, making it difficult to clearly 

identify the link between density and fuel consumption. He also addresses an important point: the 

costs of containment policies – in terms of economic losses, reduced quality of life, and others – have 

not been weighed against the supposed environmental gains. 

A study from Ambiente Italia [2003] presents the relationship between CO2 emissions and population 

density for several European cities (Figure 2.15). It seems that emissions decrease progressively with 

the increase of urban densities, although not as evidently as in the case of energy consumption, 

revealing that other factors such as climate, fuel mix and industrial activity are probably more 

important. 

In addition to vehicle travel and emissions, the spatial structure of a region has been associated with 

meteorological phenomena that are important to regional air quality. As already mentioned, one of 

the most recognized meteorological effects of urbanization is the urban heat island effect. Rosenfeld 

et al. [1998] developed a model to assess the impact of various heat island management strategies on 

ozone formation in Los Angeles. The cooling benefits of a region-wide program designed to increase 
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the surface reflectivity of urban infrastructures and the extent of tree canopy cover could result in a 

reduction of the number of annual ozone exceedances by about 12%. 
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Figure 2.15 CO2 emissions per capita and population density for several European cities (adapted from Ambiente 

Italia, 2003). 
 

While several additional studies [Handy, 1996; Young and Bowyer, 1996; Cervero, 1988; Crane, 2000; 

Frank et al., 2000; USEPA, 2001; Herala, 2003; Cameron et al., 2004; Irving and Moncrieff, 2004; Handy 

et al., 2005] have related travel behaviour, traffic, energy consumption and emissions with land use 

patterns, only few were found relating land use with air quality, i.e., with air atmospheric pollutant 

concentrations. 

Emison [2001] examined the relationship between the degree of sprawl and ozone levels for 52 

metropolitan areas in the United States. While there was evidence regarding the association between 

lower population densities and higher vehicle miles of travel, only moderate evidence was found 

relating sprawl and increased ozone levels. The author admits he would have expected a stronger and 

less ambiguous relation, therefore suggesting more research in order to explore the relationship 

between sprawl and photochemical pollution. 

Marshall et al. [2005] analyse the impact of changes in land area and population on per capita 

exposure to motor vehicle emissions, through an exploratory analysis that considers a hypothetical, 

idealized representation of an urban area. The authors investigate, quantitatively and parametrically, 

how three changes in urban land area and urban population influence population inhalation of motor 

vehicle emissions: (1) increasing population while land area remains constant; (2) increasing land area 

while population remains constant; and (3) increasing land area and population while density remains 

constant. It was concluded that infill development has the potential to reduce motor vehicle emissions 
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yet increasing per capita inhalation of those emissions, while sprawl has the potential to increase 

vehicle emissions but reduce their inhalation. 

More recently, Stone [2008] explored the implications of sprawl for air quality within the largest 

metropolitan regions of the Unites States. Through the integration of data on land use attributes and 

air quality trends recorded in 45 of the 50 largest US metropolitan regions, a quantitative index of 

urban sprawl was associated with the emissions of ozone precursors and the annual number of high 

ozone days in each region between 1990 and 2002. The work assessed the implications of sprawl for 

ozone in multiple cities while controlling for population, precursor emissions, and meteorological 

attributes important to ozone formation. The results of this study indicate that for the 45 surveyed US 

metropolitan regions, urban form is significantly associated with both ozone precursor emissions and 

ozone exceedances, during a 13-year study period. A positive association between sprawl and ozone 

exceedances was found to hold true when controlling for average ozone season (May through 

September) temperatures and annual emissions of ozone precursors. This suggests that the well-

established linkage between decentralized development patterns and motorized transport use may be 

only one of multiple mechanisms through which sprawl influences air quality. Overall, the most 

sprawling cities experienced over 60% more high ozone days than the most compact cities. 

Martins et al. [2007a] carried out a survey to relate population density with the atmospheric 

concentration of O3 and PM10. In this scope, several reports from different sources, institutions and 

countries were analysed; in order to have comparable data, the analysed parameters were ozone one-

hour maximum concentrations and PM2.5 annual average concentrations. Figure 2.16 relates the 

ozone one-hour maximum concentrations registered in 2003 (except for Phoenix with 2006 data, 

Adelaide 2004 data, and London 2005 data) for several world cities with each city’s population density.  
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Figure 2.16 Ozone 1-hour maximum concentrations and population density for several world cities [Martins et al., 
2007a]. 
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Although it seems that maximum ozone concentrations tend to increase with population density, a 

conclusion cannot be drawn since the correlation factor is very low (r2=0.1), suggesting that others 

factors, such as local climate, are more decisive. Figure 2.17 represents population density against 

PM2.5 annual average concentrations. 
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Figure 2.17 PM2.5 annual average concentrations and population density for several world cities [Martins et 
al., 2007a]. 

 

For PM2.5 it is evident that annual averages tend to increase with population density, with the two 

variables highly correlated (r2=0.5). However, one should be cautious when comparing absolute values 

from different regions. Often data are based on one or few monitoring stations, placed in critical sites 

thus representing micro-environments. It should also be taken in to account that the coverage of 

stations is different for different countries and that average values can therefore be differently biased. 

Most of the above work relied on empirical studies to provide descriptive comparisons of current cities 

and to find evidence that certain types of urban forms are correlated with desirable levels of energy 

consumption and emissions. For the most part, the debate has focused on urban densities - whether 

high urban densities reduce the need for travel and promote the use of mass transport systems - and 

on urban size - whether larger urban areas with higher densities are more energy efficient than smaller 

areas. Mathematical modelling studies have also been used to identify urban forms which minimise 

travel and energy consumption [Rickaby and De la Barra, 1989; Rickaby, 1991; Steadman and Barrett, 

1991].  

The approaches here presented integrate the land use and transport aspects of urban form, but lack 

the extra step that translates energy efficiency into indicators of air quality, via pollutant 

concentrations.  
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2.3.2 Numerical modelling studies 

As just mentioned, several empirical and modelling studies integrate land use and transport issues and 

its relation with urban structure, however, few were found that explore the connection to air quality 

and human exposure. Conclusions from most of the studies done so far have been harmed by the lack 

of knowledge about the complex path between an initial action for the reduction of atmospheric 

emissions and the final benefit in terms of air quality and human exposure (Marquez and Smith, 1999).  

Health effects of air pollution are the result of a chain of events, going from the release of pollutants 

leading to an ambient atmospheric concentration, over the personal exposure, uptake, and resulting 

internal dose to the subsequent health effect (Figure 2.18). 
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Figure 2.18 The source-effect chain of air pollution (adapted from Ferreira et al. 2005). 
 

It is important to make a distinction between concentration and exposure; concentration is a physical 

characteristic of the environment at a certain place and time, whereas exposure describes the 

interaction between the environment and a living subject, referring to an individual’s contact with a 

pollutant concentration.  

Emissions reduction conducts to changes in atmospheric pollutant concentrations, but those changes 

will have different spatial and temporal magnitudes and signs, due to differences in emissions, 

weather patterns and population exposed to pollution according to the time of the day, day of the 

week or month of the year, and also according to the population age structure (children, adults and 

elderly suffer different effects due to their different respiratory frequencies). Exposure is the key 

factor in assessing the risk of adverse health effects, since high pollutant concentrations do not harm 

people if they are not present, while even low levels may become relevant when people are present 

[WHO, 1999].  

Recent advances in computer technology have allowed the integration of land-use and traffic models 

with air quality models; these modelling tools assume a particular importance to the subject under 

study, since they allow the integration of the most important variables that have to be analysed.  One 

of the earliest investigations in this field was carried out by Newton [1997] for Melbourne, using a 

framework developed by Marquez and Smith [1999] for linking urban form and air quality, integrating 

land use, transport and air quality models. The authors were responsible for one of the first 

integrations of land use and transport models, which represent complex, dynamic systems with large 

data requirements and intensive computing tasks, with even more demanding air quality models. 
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The framework consisted of five components, here briefly described: (1) a GIS/database, responsible 

by all mechanisms for managing data required by the other four components; (2) a land use – 

transport model, which generates and distributes trips through the study region’s road network 

producing traffic flow; (3) an emissions interface, which calculates the distribution of emissions; (4) the 

meteorological component that receives mesoscale meteorological data, including three-dimensional 

time-varying vector wind fields, and two-dimensional time-varying fields of mixing depth, 

temperature, sensible heat flux and radiation; and (5) an air quality model which solves the 

mathematical equations that describe the transport and mixing of pollutants released into the 

atmosphere, producing as outputs a number of air quality metrics, including population exposure 

[Marquez and Smith, 1999]. 

In order to demonstrate the impact of urban form on future urban air quality, Newton (1997) 

developed six growth scenarios for 2011, following the six urban forms presented by Minnery [1992], 

which represent different spatial configurations, according to their shape and structure (Figure 2.19). 

DISPERSED COMPACT EDGE

CORRIDOR FRINGE ULTRA

DISPERSED COMPACT EDGE

CORRIDOR FRINGE ULTRA  
HIGH POPULATION DENSITY AREAS LOW POPULATION DENSITY AREASHIGH POPULATION DENSITY AREAS LOW POPULATION DENSITY AREAS  

Figure 2.19 City types representing urban systems with different spatial configurations, according to their shape 
and structure (adapted from Minnery, 1992).  

 

The dispersed city represents the current trend of many of our contemporary cities, with expansion of 

urban development at low densities, a well defined city centre and radial structure transport network. 

The compact city emerges as result of an effort for containing urban expansion, through the increase 

of population density in the city centre and in the adjacent suburbs. The edge city, or multi-nodal, is 

constituted by several high development central points (nodes), connected by highways and arterial 

roads, where jobs, commerce and leisure activities are concentrated.  The corridor city is characterized 

by linear corridors originating from the city centre, served by high-quality transport infrastructures, 

along which growth takes place. In the fringe city, growth is accommodated in the suburbs and rural 

zones, away from the city centre. In the ultra-city the concept of metropolis is replaced by the concept 
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of metropolis-based region, extending some hundred kilometres from its historical origins; high-speed 

transport and communications provide the basis to this concept [Newton, 1997]. 

Land use and transport models were applied to a time horizon of 20 years, whilst the air quality model 

was applied for a typical summer day (with meteorological conditions favourable to the occurrence of 

photochemical smog, i.e. ozone) and a typical winter day (with meteorological conditions favourable 

to the occurrence of high PM10 concentrations). The results of the case study show that any of the  

several strategies designed to deliberately channel and concentrate additional population and industry 

into specific zones, when supported by simultaneous investments in transport infrastructure, will 

deliver environmental and efficiency benefits that consistently outperform those associated with the 

“business-as-usual” approach. Figure 2.20 presents some of the obtained results for human exposure. 
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Figure 2.20 Predicted population exposure in Melbourne for a) a simulated summer photochemical smog event; 
and b) a simulated winter fine particle pollution event (exposure is calculated for predicted concentration above 

certain threshold values)[Newton, 1997]. 
 

In the case of population exposure to photochemical smog in Melbourne (Figure 2.20a), the corridor 

development scenario for 2011 results a 55% improvement over the 1990 base case. The compact and 

edge scenarios also delivered significant enhancements at 24% and 21% respectively. On the other 

hand, business-as-usual development produced an increase of 71% in human exposure to pollutant 

dosages above established air quality limits. For the winter episode (Figure 2.20b) the corridor city 

scenario results in a 14% improvement in human exposure to PM10, while the compact city scenario 

presents the worst situation, with a 160% aggravation. Despite the low levels of pollutant emissions 

and fuel consumption, the location of new residences and working places in the compact city centre, 

lead to the exposure of a greater number of residents and workers to high dosages of PM10. The study 

concludes that urban structure does matter, not just for urban air quality, but also for human exposure 

to pollutants. 
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Civerolo et al. [2007] investigated the potential effects of extensive changes in urban land cover, in the 

New York City (NYC) metropolitan region, on surface meteorology and ozone concentrations.  A land-

use change model was used to extrapolate urban land cover over the region from ‘‘present-day’’ 

conditions to a future year (2050), and the projections were subsequently integrated into 

meteorological and air quality simulations. The non-hydrostatic fifth-generation mesoscale model 

MM5 [Dudhia, 1993] was the regional-scale meteorological model used to simulate a 18-day episode. 

The emissions were processed using the SMOKE model [Houyoux et al., 2000]. Air quality simulations 

were performed using the CMAQ air quality model [Byun and Schere, 2006]. Results from the study 

suggest that extensive urban growth in the NYC metropolitan area has the potential to increase 

afternoon near-surface temperatures by more than 0.6°C across the NYC metropolitan area. 

Simulation results indicate that future changes in urbanization, with emissions held constant, may lead 

to increases in episode-average ozone levels by about 1–5 ppb, and episode-maximum 8 h ozone 

levels by more than 6 ppb across much of the NYC area. However, spatial patterns of ozone changes 

are heterogeneous, presenting areas with decreasing ozone concentrations. 

More recently De Ridder et al. [2008a, 2008b] investigated the effects of urban sprawl on road traffic, 

air quality and population exposure, at the scale of a large urban area (the German Ruhr area) for an 

air pollution episode. Starting from a high-resolution land use map established for the base case, 

spatial modelling techniques were applied to simulate changes in land use and employment density, in 

order to simulate urban sprawl. The scenario resulted in an increase of the built-up area from 28% to 

50%, with an associated displacement of 12% of the urban population (which was kept constant) to 

the periphery. To simulate the effect of urban sprawl on traffic volumes and its distribution a traffic 

model was applied, yielding an increase of almost 17% for total vehicle-kilometres.  Traffic flows and 

speed patterns were used to estimate emissions, revealing an increase of 12% in emission totals. 

Meteorological simulations were then performed with the ARPS model [Xue et al., 2000], and used as 

input for the chemistry-transport model AURORA [Mensik et al., 2001]. The sprawl scenario produced 

a temperature increase of about half a degree over significant portions of the domain, including 

beyond the area where the land use changes were implemented. The combination of increased 

temperature and emissions yielded ozone concentration pattern changes, from -1.5 to +4.5 µg.m-3. 

Concerning PM10, concentration increases were small (less than 1 µg.m-3). Regarding exposure it was 

found that the relatively small proportion of relocated individuals benefited of a decrease of exposure 

to particulate matter by almost 13%, due to their moving out of polluted areas; that came to the 

expense of an increase of exposure of 1.2% by the individuals that have not moved. Regarding domain 

average exposure, urban sprawl revealed a limited effect, with an increase amounting to 0.35% and 

0.55% for PM10 and ozone, respectively.  



Scientific and policy background 

 46 

Modelling studies seem to confirm the dilemma, well summarized by Cervero [2000]: “exposure levels, 

and thus health risks, are lower with sprawl, but tailpipe emissions and fossil-fuel consumption are 

greatly increased”. However, studies so far have only been conducted for episodic air pollution 

situations and only one of them, from Newton [1997], did compare alternative urban development 

scenarios; the other studies compared an urban sprawl development scenario with a starting point or 

reference situation, therefore were not able to compare alternative scenarios. 

Next, the first modelling approach of this thesis is conducted for an idealized urban area. 
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3 AN IDEALIZED CASE STUDY 

 

 

 

The present chapter constitutes this thesis first modelling approach to the study of the relation 

between urban structure and air quality, through the application of a modelling system to an idealized 

case study. This case study is developed around the creation of three imaginary cities, representing 

three alternative city structures. Differences between cities lay on a different land use distribution and 

different population densities, which are reflected in different total amounts and different spatial 

distribution of pollutants emitted to the atmosphere. A mesoscale photochemical modelling system is 

then applied to an ozone pollution episode to estimate the air quality levels, namely ozone and 

nitrogen oxides concentrations, in the three cities, allowing the comparison of the air quality 

performance of each urban structure. As a complement to air quality modelling, and in order to 

explore the possible effects of different urban structures on human health, the population exposure in 

each urban area was determined, combining information on air pollutant concentrations at different 

microenvironments and population time-activity pattern data.  

3.1 Idealized city structures 

Following the description by Minnery [1992], presented in §2.3.2 (Figure 2.19), three idealized city 

structures were created, presenting different spatial configurations which reflect three alternative 

urban development philosophies - dispersed, compact and corridor [Borrego et al., 2006a]. 

The Dispersed City represents urban sprawl, with low population density, large area requirements and 

separation of artificial land uses into distinct zones - residential, commercial and industrial - with the 

consequent high car use dependence. The Corridor City, conceived around axes and nodes, is 

characterised by growth in linear corridors with origin in the city centre, supported by high quality 

transport infrastructure (highways); it offers partly mixed and partly unmixed functions. The Compact 

City uses less area than the Disperse City due to its high population density, with mixed land uses and 
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complementary functions located close together, allowing the reduction of travel length and number 

of trips. A total area of 2500 km2 was defined and data sets were created considering four different 

land use categories: urban, suburban, green urban areas and rural. The distribution of land uses in 

each city took into account the city development philosophies, already described; the resulting land 

use composition and distribution is presented in Figure 3.1.  
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Figure 3.1 Land use in a) Disperse City, b) Corridor City, and c) Compact City, and the composition of artificial 
areas (urban and suburban) for each city. 

 

The Disperse city presents an urbanized area more than three times greater than the other two cities, 

with suburban areas accounting for the greatest part of it (around 65%). Compact and Corridor cities 

show a similar urbanized area, but different shares of urban/suburban areas: in the Corridor city 70% 

of the urbanized area is suburban, while in the Compact the share is only 52%. 

The created cities, or urban regions, intend to represent a large metropolis; therefore a number of 

three million inhabitants were distributed within the cities assuming different population densities for 

each land use class. These densities were based on data from André et al. [1999]: rural agglomerations 

present a population density below 100 inhabitants per square kilometre; for suburban 
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agglomerations the density varies between 101 and 1000 inhabitants.km-2; and for the urban areas the 

value is higher than 1001 inhabitants.km-2. The distribution of population was done using the SURFER 

software, namely its radial basis function, and considering the defined population density intervals.  As 

a result, the highest population density is attributed to the urban zone of the Corridor city with 3000 

inhab.km-2. The maximum population density in the Compact city is 2000 inhab.km-2 and in the 

Disperse city this parameter reaches 800 inhab.km-2.  

3.2 Emissions 

As already discussed, more dispersed city developments with discrete land uses increase distances 

between destinations, and consequently travel needs and trip lengths. According to this argument, 

traffic demand is the principal distinction between the constructed idealized cities, and therefore 

special attention is given to traffic emissions.  

The further construction of the idealized cities made use of a set of statistical data collected under the 

framework of the MEET Project (Methodologies for estimating air pollutants emissions from 

transport), presented in a report from André et al. [1999].  The report assembles several driving 

statistics, essential for the estimation of air pollutants emissions from traffic (Table 3.1).  

Table 3.1 Traffic data used for estimating air pollutants emissions from transport [André et al., 1999]. 
 Private 

passenger cars 
Public transport  

(buses and coaches) 

average occupancy rates:   
 urban 1.8 31.2 
 suburban - 27.3 

vehicle mileage (km.y
-1

):   
 urban 7500 -12800 20700 - 35250 
 suburban 8500 - 13900 7800 – 27000 

rural 14700 13140 

average speed  (km.h
-1

):   
urban 30 16 
suburban 50 47 

 
compact city 

rural 70 65 

urban 30 16 

suburban 95 90 

 
corridor city 

rural 70 65 

urban 30 16 
suburban 50 47 

 
disperse city 

rural 70 65 

 

Figure 3.2 illustrates the traffic emission calculation methodology. Starting from population density, 

with private and public transport occupancy rates, it was possible to determine the total number of 

vehicles in each city. Then, using the vehicle mileage according to land use category, the total 

kilometres travelled were estimated.  
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Figure 3.2 Methodology for traffic emission calculation. 

 

Emission factors were calculated by TREM model [Borrego et al., 2003], considering all vehicles as 

EURO 1 technology (for sake of simplification) and assuming different average velocities according to 

land use categories (presented in Table 3.1). TREM was developed at the University of Aveiro, based 

on MEET/COST methodology and its prime objective is the estimation of road traffic emissions, with 

high temporal and spatial resolution, to be used in air quality modelling. Roads are considered as line 

sources and emissions induced by vehicles are estimated individually for each road segment 

considering detailed information on traffic flux. Total emission of the pollutant p (Ep) for each road 

segment is estimated by the model as follows: 

Ep = Σ (eip(v) x Ni) x L  

where eip(v) is the emission factor for pollutant p and vehicle class i as a function of average speed v; Ni 

is the number of vehicles of class i; and L is the road segment length.  

Other considered emission sources are related to residential, commercial and industrial combustion 

activities. These emissions are based on emissions for the Lisbon Metropolitan Area from the National 

Emission Inventory [URL10], since it presents a similar area and population size [URL11]. The emissions 

from residential sources were spatially disaggregated according to population density. Emissions from 

industrial and commercial combustion activities were equally distributed for the suburban and urban 

area cells, respectively. 

Emissions from vegetation were also taken into account due to their importance in the ozone cycle. 

The monoterpenes were quantified using an estimated average emission rate for a typical summer day 

based on emission factors [Guenter et al., 1997] for typical Portuguese vegetation characteristics, such 

as species and density [Tchepel, 1997]. 
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Since the modelling system is applied to an ozone pollution episode, the emissions of its precursors, 

such as nitrogen oxides and volatile organic compounds, assume special importance. These emissions 

for each city are presented in Table 3.2.  

Table 3.2 Daily traffic, other anthropogenic and biogenic emissions obtained for each city (ton.day-1) 

Traffic Other  
Anthropogenic 

Emissions 
 (ton.day

-1
) 

NOx VOC NOx VOC 

Biogenic 
Monoterpenes 

compact city 12 922 5 126 5 517 16 192 11 478  

corridor city 25 821 8 494 5 545 15 843 2 370 

disperse city 22 198 9 646 5 720 16 432 6 306 

While industrial, commercial and residential emissions are in the same range for the three cities, the 

Corridor and Dispersed cities present, as expected, considerably higher traffic emissions when 

compared to the Compact city. On the other hand, the Compact city shows higher monoterpene 

emissions due to the larger presence of green areas. In Figure 3.3 the maximum daily emission rates 

per area and the average emission rates per inhabitant, for each city, are illustrated.  
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Figure 3.3 Daily VOC and NOx a) maximum emission rates per area and b) average emission rates per inhabitant 

for the disperse, corridor and compact cities.  

The Corridor city is characterized by the highest maximum emission rates per area for both pollutants, 

as well as the highest NOx average emission rate per inhabitant. The Disperse city shows the lowest 

emission rates per area and the Compact city the lowest emission rates per inhabitant. It should be 
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also stressed that all the cities have different ratios of VOC to NOx emissions, which are relevant for 

ozone formation [Seinfeld and Pandis, 1998]. These differences are mainly related to the average 

vehicle speed selected for each land use category. 

3.3 Air quality modelling 

The air quality assessment for each idealized city structure was performed with the MEMO/MARS 

modelling system. MEMO/MARS has been successfully applied and verified for various European 

airsheds [Moussiopoulos et al., 1994; Coutinho et al., 1994; Lopes, 1997]; it has also been tested and 

validated for different areas of Continental Portuguese territory [Borrego et al., 1999; Martins et al., 

2004]. Although the system does not belong to the most recent generation of models, the vast 

experience in the use of this system together with its good performance in the study of episodic 

situations of photochemical pollution [Borrego et al., 2004; Ferreira et al., 2003; Miranda et al., 2002], 

justify and support its application to the present case-study.  

3.3.1 MEMO/MARS modelling system 

The MEMO/MARS system includes two main modules: the meteorological model MEMO (Mesoscale 

Model) and the photochemical model MARS (Model for the Atmospheric Dispersion of Reactive 

Species), both developed by the Aristotle University of Thessaloniki in collaboration with the University 

of Karlsruhe. Figure 3.4 presents a simplified scheme of the modelling system and the necessary data 

for its application. 
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Figure 3.4 MEMO/MARS modelling system used in the study-case (adapted from Lopes, 1997). 

The mesoscale model MEMO [ITT, 1994] is a non-hydrostatic prognostic model developed to simulate 

the atmospheric flow over complex terrain, allowing the description of the air motion and the 
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dispersion of inert pollutants. Within MEMO, the conservation equations for mass, momentum, and 

scalar quantities as potential temperature, turbulent kinetic energy and specific humidity are solved in 

terrain-following coordinates, allowing for non-equidistant mesh sizes to achieve a higher resolution 

near the ground. The model initialization is performed with diagnostic methods.  

Necessary input data for the application of MEMO includes: 

- orography height and surface type (MEMO includes 7 surface types: water, arid land, few 

vegetation, farmland, forest, suburban area and urban area) have to be provided for each grid 

location, as well as the corresponding thermo-physical data (albedo, volumetric heat capacity and 

heat conductivity); 

- meteorological data (upper air soundings and/or surface measured temperature and wind data) 

- time dependent boundary conditions (one dimensional profile of temperature and wind data must 

be provided to be used either for the initial state or time-dependant boundary conditions). 

As output quantities MEMO produces for each grid location wind velocity components, potential 

temperature, pressure, turbulence data soil moisture profile and optionally concentrations of inert 

pollutants. 

The photochemical model MARS is a three-dimensional Eulerian dispersion model for reactive species 

that describes the dispersion and chemical transformation of air pollutants [Moussiopoulos, 1995]. 

This model is oriented towards the photo-oxidants simulation, from which ozone is the major 

component. Processes of emission, dispersion, transformation and deposition of pollutants are 

calculated on a staggered grid in terrain-following co-ordinates. The version used in the study presents 

two chemical mechanisms: KOREM and EMEP. EMEP [Simpson et al., 1993] describes the tropospheric 

gas-phase chemistry with 66 species, 139 photochemical reactions including 34 photolysis reactions; 

and the KOREM mechanism, which is simpler, including 39 chemical reactions and 20 reactive 

pollutants. KOREM is the combination of anorganic reactions of the CERT mechanism [Atkinson et al., 

1982] and of organic reactions of the compact mechanism of Bottenheim and Strausz [1982]. The 

chemistry of methane is also taken into account by including the reaction of methane with the 

hydroxyl radical. In KOREM mechanism the VOCs are lumped in five classes [Flassak et al., 1992]. On 

the other hand, the EMEP mechanism considers 13 categories as VOC speciation (including ketones, 

alcohols and isoprene). 

Meteorological data such as wind speed, turbulent kinetic energy, surface roughness, Monin-Obukhov 

length, and friction velocity are required as input at pre-defined times during the model simulation; 

these can be supplied by MEMO. Emission data must include information about the diurnal cycle of 

pollutants considered in the reaction scheme and the composition of every pollution source, allowing 
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the construction of an appropriate emission inventory for the air quality calculations. Information 

about the initial state in the whole domain and about the development of pollutant concentrations at 

the lateral boundaries is also required. MARS outputs include hourly concentrations of chemically 

reacting pollutants for each grid location.  

3.3.2 Model application and results  

Tthe MEMO/MARS modelling system was applied to a domain of 200 km x 200 km, with a horizontal 

grid resolution of 2 km x 2 km. A direct correspondence between the land uses urban, suburban, and 

rural, defined for the construction of the cities and the land uses defined in MEMO/MARS was made; 

urban green areas were translated in MEMO/MARS as few vegetation land use category. The KOREM 

mechanism was selected due to its smaller computing time requirements in comparison with EMEP, 

based on conclusions from a study by Miranda et al. [2002] concerning the two mechanisms, which 

point to a non-significant improvement of results associated to a more complete description of the 

photochemical reactions. 

Simulations were performed for the three cities for an Iberian Peninsula summer day favourable to the 

occurrence of photochemical air pollution episodes. The 29th June 2001 was selected for the 

simulation, as representative of the typical Iberian Peninsula summer synoptical situation, 

characterized by an almost inexistence of surface pressure gradients and consequently low winds in 

the low troposphere, clear skies and high temperatures [Coutinho et al., 1994]. The emission file was 

built with the data obtained by the methodology previously described (see §3.2), considering all 

emissions as area sources which were represented by a regular matrix. Constant background 

concentrations (initial and boundary conditions) were equally defined for the three cities: 60 µg.m-3 

for ozone and 2 µg.m-3 for nitrogen dioxide [Barros, 1999]. 

Results were analysed considering the O3 and NO2 concentrations in relation to its background values 

and not the absolute concentrations, since this is an idealized study case and the subject under 

analysis is the relation between the three cities and not the concentrations per se. Figures 3.5 and 3.6 

present the hourly variation of the two pollutants maximum concentrations (relative to the 

background value) estimated for each city. Results are shown only from 8:00 to 22:00, since for the 

remaining hours, corresponding to the night period, concentrations for the three cities are very 

similar.  
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Figure 3.5 Hourly variation of O3 maximum concentrations for each city. 

 

Although there is a similar behaviour of O3 concentrations for the three cities, the Disperse city shows 

the highest concentration levels at the most critical hours (between 12:00 and 16:00). After this 

period, and during the evening, the Corridor City presents O3 concentration values similar to the 

Disperse City. The Compact City reveals the lowest maximum O3 concentrations, even in the morning 

when no significant differences among the three cities were estimated. As expected from 

photochemistry, the highest concentrations in all the three cities are reached at around 14:00.  
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Figure 3.6 Hourly variation of NO2 maximum concentrations for each city. 
 

The NO2 hourly variation is similar for the three cities, but the Corridor city reaches higher 

concentrations in comparison with the other two cities, which have concentrations of the same order 

of magnitude. Higher NO2 concentration values are calculated in the morning and at the end of the day 

as a result of the photochemical cycle and the traffic emissions daily profile. 

A comparison between the hourly maximum ozone value within the domain and the corresponding 

concentration in the city centre is presented in Figure 3.7 a), (b) and (c) for each city. In all the city 

cases, ozone concentrations are lower in the city centre, with a minimum value between 15:00 and 

17:00 showing that ozone consumption occurs at hours of maximum solar radiation in the presence of 

high levels of nitrogen oxide traffic emissions. 
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Figure 3.7  Comparison between O3 concentration in the centre of the city and the maximum domain value for 
each city. 

 

The same comparison for NO2 is presented in Figure 3.8 showing that, in opposition to what happens 

with O3 concentrations, NO2 levels reached in the city centre are very close to the maximum domain 

values, meaning that the highest concentrations are located near the city centre. 
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Figure 3.8 Comparison between NO2 concentration in the centre of the city and the maximum domain value for 
each city. 

 

To better understand the spatial distribution of concentrations for each city, Figure 3.9 presents an 

example of the O3 concentration temporal evolution for 12:00, 13:00 and 14:00, three consecutive 

hours that show the growth of the ozone plume until it reaches its maximum value at 14:00. All the 

cities present ozone consumption in the city centre, due to the O3 titration by NO. However, while the 

Compact and Corridor cities present the ozone plume formation outside the city centre limits, the 

Disperse city’s plume covers a greater urbanized area. The compact city presents the smallest plume 

and with lower concentrations. 
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Figure 3.9 O3 concentrations fields (relative to background concentration) at 12:00, 13:00 and 14:00. 

 

Figure 3.10 presents the same evolution for NO2,, this time from 20:00 to 22:00, corresponding to the 

maximum concentration hours. Again, the Compact city presents the smallest plume and lower 

concentrations, reflecting the emissions presented in Table 3.2. The Disperse city presents a similar 

behaviour with slightly higher concentrations. The Corridor presents the most severe NO2 plumes, 

reaching concentrations twice as high as the other two cities. 
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Figure 3.10 NO2 concentrations fields (relative to background concentration) at 20:00, 21:00 and 22:00. 

 

3.4 Exposure modelling 

Taking into account that air quality is different from population exposure to air pollutants, the 

population exposure to O3 and NO2 in each urban area was determined [Ferreira et al., 2005].  

The exposure can be obtained from direct measurements on individuals, either a total population or 

selected persons (direct method), or it may be determined from model calculations (indirect method) 

where the exposure is determined by combining information about concentrations at locations with 
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information about the time spent in specific microenvironments [Hertel et al., 2001]. A 

microenvironment is defined as a three-dimensional space where the pollution concentration at some 

specified time is spatially uniform or has constant statistical properties. It can be the interior of a car, 

inside a house, or urban, suburban, and rural areas, etc. Integrated exposure is the exposure that a 

specific person experiences over a given period of time: 

                                                     
Ei = Σ Cj tijj

J

Ei = Σ Cj tijj

J

                                                

where: Ei is the total exposure for person i over the specified period of time, Cj is the pollutant 

concentration in microenvironment j, tij is the residence time of the person i in microenvironment j, 

and J is the total number of microenvironments. The total exposure is, therefore, the sum of 

exposures during a given time. To obtain the total exposure of a population Epop of N persons, it is 

necessary to sum the individual exposures Ei of all the persons in the population. 

3.4.1 Exposure modelling methodology  

A methodology was developed combining the air pollutants concentrations simulated by 

MEMO/MARS with information on population distribution and occupation in order to estimate the 

population exposure. Integrated population exposure was calculated based on O3 and NO2 

concentrations, population distribution over the city and their time-activity patterns, i.e. the fraction 

of the day time spent in indoor and outdoor microenvironments. 

Although the total population is the same for the three cities, the different structures allowed distinct 

distributions of the population by land use class, and also temporal variation of the number of people 

allocated to each land use category. It was considered that during the night (from 22:00 to 7:00) the 

population remains at its corresponding land use. Along the day (subdivided into two periods, one 

working period from 9:00 to 12:00 and 14:00 to 18:00, and the circulation period, at 8:00, 13:00 and 

19:00 to 21:00) 20% of the rural population and 70% of suburban people move to urban areas. 

Population in suburban land use is increased by 30% coming from rural areas and 10% from urban 

sites.  

Aiming to define the microenvironments to be considered for population exposure estimation, rural, 

suburban and urban land use categories were subdivided into residences, other indoors (offices, 

commercial places), traffic (inside vehicles) and outdoors. The number of people assigned to each land 

use class was distributed per microenvironment accordingly to the typical diurnal pattern associated 

with rural, suburban and urban areas, and considering the characteristics of each city structure. For 

example, during the night there are less people outdoors and in traffic in rural and suburban areas 
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than in urban areas, and on the other hand, in rural areas people spend more time outdoors during 

the day, due to agriculture related activities. 

The microenvironments occupation in the urban land use areas differs among the cities. The smaller 

number of vehicles in the compact cities implies a greater occupation of the outdoors 

microenvironment, since the fraction of walking people, specially during circulation period, is higher in 

the compact city than in the disperse and corridor cities. 

Indoor concentrations were obtained by the application of indoor/outdoor relations for O3 and NO2 

derived from literature (Table 3.3) (Baek et al., 1997; Monn, 2001; Wu et al., 2005).  

Table 3.3 Indoor/outdoor relations for O3 and NO2, for each microenvironment. 

 Residence Other indoors Traffic 

O3 Cin = 0.4 Cout Cin = 0.6 Cout Cin = 0.2 Cout 

NO2 Cin = 0.5 Cout Cin = 0.7 Cout Cin = 3 Cout 

 

For each city, the estimation of integrated population exposure was performed for the 24 hours of the 

simulated day, considering the population present at each hour in each microenvironment. A total 

daily population exposure was also calculated as a sum of the hourly-obtained exposures. 

3.4.2 Results and Discussion 

In order to assess the influence of the city structure in the human exposure, Figures 3.11 and 3.12 

present the O3 and NO2 population exposure obtained for each city, at 14:00 and 22:00, respectively, 

corresponding to the maximum hourly simulated concentrations of each pollutant. 
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Figure 3.11 O3 population exposure (inhab.µg.m-3) for each city at 14: 00. 
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Figure 3.12 NO2 population exposure (inhab.µg.m-3) for each city at 22: 00. 

 

Regarding O3 exposure, although the maximum value was obtained for the Corridor city, the Compact 

city evidences a larger area of higher population exposures, because the urban land use of this city has 

the highest population density. Regarding NO2, the Corridor city is clearly the one that presents the 

worst situation, with maximum exposures. The Disperse and Compact cities present similar exposure 

levels. 

Figure 3.13 shows the total integrated population exposure for the simulated day, calculated by the 

sum of hourly population exposures for each city. 
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Figure 3.13 Total population exposure for a) O3 and b) NO2 accumulated during the simulation day for each city 

[inhab. μg.m-3]. 
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For both pollutants, the total integrated population exposure for the simulated day, achieves 

maximum values for the corridor city, but larger areas of higher levels for the compact city, similarly to 

what was verified in the hourly exposures for peak simulated concentrations. 

3.5 Final remarks 

The study here presented demonstrates the importance of the city spatial structure on urban 

sustainability, showing why air quality should be considered as an important indicator for urban 

planning. Emission rates and air pollution concentration fields were analysed for three imaginary cities 

with different urban structure but with the same population: the Corridor city is characterized by 

highest emission rates, while the Disperse city has the lowest emissions per area and the Compact city 

the lower emission rates per inhabitant. According to the photochemical simulations results, it is 

possible to conclude that compact cities with mixed land-use provide better air quality compared to 

disperse cities with lower densities and segregated land-use or network cities equipped with intensive 

transport structures. Although presenting the lower concentrations, and therefore the lowest 

individual exposures, if the entire population is considered, the compact city presents the worst 

scenario, due to the higher number of people exposed to the higher concentrations. 
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4 CASE STUDY PRESENTATION 

 

 

 

The study of a real urban area is necessary to thoroughly explore the air quality consequences of 

different urban land use scenarios; also, it is important to extend the air quality modelling simulation 

over a full-year of different meteorological conditions to cover a wide range of air pollution conditions. 

This chapter begins with the identification of the Porto urban region as a suitable case for this study. 

Since the methodology involves the definition of different scenarios for the future of this urban region, 

it is essential that the starting-point, i.e. the base situation, is well known and characterized. For that 

purpose, the process of urban growth in the last decades is analyzed, as well as the current air quality 

levels in the region. Afterwards, the models to be used in the atmospheric simulation of the Porto 

study region are presented and described. 

4.1 Why Porto 

As already discussed, Southern Europe’s urban areas are experiencing a change towards more 

dispersed and horizontal growth at the expense of agricultural, forested and natural land. Porto, 

located in Portugal’s northern region, is currently cited as an example of this trend; in the report 

“Urban sprawl in Europe” [EEA, 2006a], Porto urban area is identified as one of the European cities 

where sprawl is growing faster. In the last decades, the Porto area has experienced an accelerated 

process of land occupation, with the urban area increasing at much faster rates than the population 

[EEA-JRC, 2002]. 

According to the air quality reports for Portugal’s Northern region, the assessment of pollutant 

concentrations measured in the air quality monitoring network shows that Porto metropolitan region 

presents a poor air quality, with ozone thresholds and PM10 limit values exceeded [Borrego et al., 

2005, 2006b, 2008b].  
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It seems therefore that the Porto region is an interesting and challenging case to be studied in the 

framework of the topic urban structure and air quality. 

The Porto urban region is complex to define; several classifications exist, such as the Porto district 

(composed of 18 municipalities), the Porto Metropolitan Area (16 municipalities from Porto and Aveiro 

districts) or even the Great Porto (11 municipalities from two districts). However, none of these 

artificial divisions is adequate for this study and the methodology to be applied, i.e., the study area 

must include the municipalities which show important relations with Porto, mainly in terms of 

mobility. Moreover, the region has to be suitable to the application of the regional air quality 

modelling system: this system has to be applied to a vaster area, firstly with lower resolution, to be 

then focused on a more particular region of interest with a higher resolution.   

The region selected for the detailed analysis is showed in Figure 4.1 and includes 21 municipalities: 16 

from the Porto district (Felgueiras, Gondomar, Lousada, Maia, Marco de Canavezes, Matosinhos, Paços 

de Ferreira Paredes, Penafiel, Porto, Póvoa de Varzim, Santo Tirso, Trofa, Valongo, Vila do Conde and 

Vila Nova de Gaia), four from the Aveiro district (Espinho, Castelo de Paiva, Santa Maria da Feira and 

São João da Madeira) and one from Braga district (Vila Nova de Famalicão); the total area reaches 

almost 240 000 hectares. The Porto municipality constitutes the study region’s centre around which a 

first metropolitan ring is formed by the municipalities of Matosinhos, Maia, Gondomar and Vila Nova 

de Gaia; the municipalities of P. Varzim, V.N. Famalicão, Lousada, Felgueiras, Penafiel, M. Canavezes, 

C. Paiva and S.J. Madeira can be considered part of a peripheral ring, while the remaining intermediate 

municipalities constitute a second metropolitan ring.  
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Figure 4.1 Study region, including 21 municipalities. 
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After the study region definition it is now necessary to select the study period. The year 2006 was 

chosen due to different factors: the number of available air quality monitoring stations increased to 24 

in 2006, and the data have been validated and object of detailed analysis in the most recent air quality 

report for the region [Borrego et al., 2008b]; concerning meteorology, 2006 is considered an “average” 

year, as opposed to 2003, 2004 and 2005, which were abnormally dry and/or warm [URL12, Trigo et 

al., 2006; Viegas et al., 2006].  

4.2 Patterns of urban growth and change in the Porto region 

In this section, the process of urban growth and change in the Porto region is analysed, starting with a 

brief overview of the evolution of the Porto urban area in the second half of the 20th century, and 

followed by a more detailed analysis of the study region based on two land use datasets from the 

EEA’s Corine Land Cover, referring to the years 1987 and 2000.  

4.2.1 Porto’s urban area evolution in the 1950’s – 1990’s  

The evolution of the Porto urban area in a 40-year period, from 1958 to 1997, is here described based 

on the land use data collected by the European Commission Joint Research Centre (EC-JRC) MOLAND 

database [EEA-JRC, 2002]. 

Figure 4.2 presents the land use evolution for a selected part of the Porto urban area (Porto, 

Matosinhos, and part of Vila Nova de Gaia, Maia and Gondomar municipalities), from 1958 to 1997, 

according to the EEA-JRC [2002] report. The evolution of the percentage of built-areas (these include 

residential, commercial and industrial areas, transport areas, dump sites, construction sites and 

mineral extraction sites) is also indicated. 

As the maps and the magnitude of the numbers reveal, the built area has grown considerably from 

1958 to 1997, at the expense of agriculture lands and forested areas. In this period, while built-up 

areas have grown 98%, the population growth was only 23% [EEA-JRC, 2002]. 

Since each of the various built-up land use classes has its own development dynamics and drivers, it is 

useful to split up the built-up class into more detailed sub-classes. Kasanko et al. [2006] took a closer 

look into two classes: residential land use, and the aggregation of industrial, commercial and transport 

land use. In the late 1990’s, 61% of the built up area in Porto corresponded to residential land use, and 

25% to the aggregation of the other three classes. Regarding the growth of these two groups, from the 

mid 1950’s to the late 1990’s, while the residential class increased by 91%, the three aggregated 

classes increased by almost 300%, revealing therefore a greater dynamic. 
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Figure 4.2 Land use and built-up area evolution for a part of the Porto urban area, 1958-1997 (EEA-JRC, 2002).  

 

When dealing with urban sprawl it is important to further classify residential areas in two sub-classes: 

continuous (buildings and related structures covering more than 80% of the total surface) and 

discontinuous (covering between 10 and 80%). According to Kasanko et al. [2006], in Porto the 

proportion of continuous-discontinuous residential land is 38%-62%; it is also important to stress that 

63% of the residential areas built after the mid 1950’s are discontinuous, revealing a clear trend 

towards less intensive residential areas.  

It is also essential to combine land use data with data on population evolution. Kasanko et al. [2006] 

computed the residential population density, which according to them, is the number of inhabitants 

per residential square kilometre. This measure is considered a more reliable indicator of urban density 

than the population density per si, especially when comparing data from different time periods, and 

consequently different land use occupation. In Porto this indicator has decreased progressively in the 

50-year period, from 14734 to 9531 inhabitants per square kilometre (-35%), meaning that the growth 

of residential areas has outpaced the population growth, revealing the existence of urban sprawl. 

Figure 4.3 presents a comparison of the population growth and the built-up area growth for a group of 

European cities including Porto [Kasanko et al., 2006]. The linear growth line (for which population 

growth equals built-up area growth) divides the cities in two groups: cities above the line have 

experienced a faster built-up area growth, while for cities below the line the population growth was 

faster. The further the city is located from the line, the larger the difference between both growth 

rates. 
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Figure 4.3 Population growth and built-up area growth in Porto and in a group of European cities, from the mid-
1950´s to the late 1990’s [Kasanko et al., 2006].  

 

Munich, Bilbao and Helsinki are the only cities for which population growth has accompanied urban 

growth; on the other hand, Porto, together with Palermo (Italy), is one of the cities where the built-up 

area has grown faster and where population growth has not been equally rapid. Reasons advanced by 

Kasanko et al. [2006] to explain this variation include a lower than average starting level of 

urbanization, rising living standards, and developing commercial and transport services. It is also 

interesting to note that in this group, no cities are found bellow the line, i.e., there is not a single case 

for which population growth has outcome urban area growth. 

4.2.2 Porto’s regional evolution in the period 1987- 2000  

In the previous section, the evolution of a limited area of Porto’s region was presented, as well as it 

comparison with other European urban areas.  This section explores the path of the recent urban 

expansion in the Porto area, deepening the previous brief characterization above. For that purpose the 

process of urban growth in this area is analysed in detail, with the use of two digital Corine Land over 

(CLC) maps – CLC90 (data from 1987) and CLC2000 (data from 2000). 

The CORINE (COordination of INformation on the Environment) programme of the European 

Commission includes a land cover project - CORINE Land Cover (CLC) [EEA, 2000] intended to provide 

consistent localized geographical information on the land cover of the Member States of the European 

Community. CLC is a standardised land cover inventory derived from satellite imagery for two median 

dates (1990 and 2000) for 24 countries, with 250 m resolution. For Portugal, CLC 1990 (CLC90) was 

produced with satellite images from 1985 to 1987, depending on the region, while CLC2000 concerns 

the year 2000 [Painho and Caetano, 2006]. CLC is organized in three levels, with a total of 44 classes, 

which are presented in Table 4.1. 
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Table 4.1 Corine Land Cover classes [EEA, 2000]. 

Level 1  Level 2 Level 3 

1.1. Urban fabric 1.1.1. Continuous urban fabric 

1.1.2. Discontinuous urban fabric 

1.2. Industrial, commercial and 
transport units 

1.2.1. Industrial or commercial units 

1.2.2. Road and rail networks and associated land 

1.2.3. Port areas 

1.2.4. Airports 

1.3. Mine, dump and construction 
sites  

 

1.3.1. Mineral extraction sites 

1.3.2. Dump sites 

1.3.3. Construction sites 

1. Artificial Surfaces 

1.4. Artificial non-agricultural 
vegetated areas  

1.4.1. Green urban areas 

1.4.2. Sport and leisure facilities 

2.1.Arable land 2.1.1. Non-irrigated arable land 

2.1.2. Permanently irrigated land 

2.1.3. Rice fields 

2.2. Permanent crops  2.2.1. Vineyards 

2.2.2. Fruit trees and berry plantations 

2.2.3. Olive groves 

2.3. Pastures  2.3.1. Pastures 

2. Agricultural areas 

2.4. Heterogeneous agricultural 
areas 

2.4.1. Annual crops assoc. with permanent crops 

2.4.2. Complex cultivation 

2.4.3. Land principally occupied by agriculture 

2.4.4. Agro-forestry areas 

3.1. Forests 3.1.1. Broad-leaved forest 

3.1.2. Coniferous forest 

3.1.3. Mixed forest 

3.2. Shrub and/or herbaceous 
vegetation association 

3.2.1. Natural grassland 

3.2.2. Moors and heathland 

3.2.3. Sclerophyllous vegetation 

3.2.4. Transitional woodland shrub 

3. Forests and semi-
natural areas 

3.3. Open spaces with little or no 
vegetation 

3.3.1. Beaches, dunes, and sand plains 

3.3.2. Bare rock 

3.3.3. Sparsely vegetated areas 

3.3.4. Burnt areas 

3.3.5. Glaciers and perpetual snow 

4. Wetlands 4.1. Inland wetlands  4.1.1. Inland marshes 

4.1.2. Peatbogs 

 4.2. Coastal wetlands 4.2.1. Salt marshes 

4.2.2. Salines 

4.2.3. Intertidal flats 

5. Water bodies 5.1. Inland waters 5.1. 1. Water courses 

5.1.2. Water bodies 

 5.2. Marine waters 5.2.1. Coastal lagoons 

5.2.2. Estuaries 

5.2.3. Sea and ocean 
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The two datasets are here analysed for the study region, in order to produce a thorough characterization of 

the land use evolution in the period between 1987 and 2000. Figure 4.4 presents the study region land 

cover maps for 1987 and 2000, resulting from the processing of CLC90 and CLC2000 data, respectively. To 

obtain a clearer picture of the land cover, the 44 CLC classes were grouped in 5 large categories: 

1) artificial surfaces – corresponding to CLC category 1 (see table 4.1), which includes urban fabric 

(continuous and discontinuous), industrial, commercial and transport units, and other artificial areas; 

2) agricultural areas – corresponding to CLC category 2, including arable land, crops, pastures and other 

agricultural areas; 

3) forests and shrub areas – corresponding to CLC categories 3.1 and 3.2; 

4) other non artificial surfaces – corresponding to CLC categories 3.3 and 4, including areas of little or no 

vegetation, and inland and coastland wetlands; 

5) water bodies, corresponding to CLC category 5, including inland and marine waters. 

(a)                                                                                                      (b) 

 

Figure 4.4 Study region land cover maps for (a) 1987 and (b) 2000. 
 
The land cover maps reveal the expansion of artificial areas throughout the study region, mainly occupying 

land previously dedicated to agriculture, due to its proximity to the already existent urban areas. In order to 

have a clearer picture of the magnitude and nature of this growth, Table 4.2 presents the numbers behind 

the maps, including the total area for each of the 4 large land use categories and corresponding share (%) 

for each dataset, as well as the magnitude of the change between 1987 and 2000. Furthermore, artificial 

surfaces area is analysed with more detail by looking at its composition: continuous urban fabric (CLC 111 

class); discontinuous urban fabric (CLC 112); industrial or commercial units (CLC 121); other artificial 

surfaces (remaining CLC category 1 classes, including transport units, mineral, dump and construction sites, 

and artificial vegetated areas).  
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Table 4.2 Study region land cover data for 1987 and 2000. 

CLC90 (1987 data) CLC2000 Change 
Land uses hectares % hectares % hectares % 

Artificial surfaces 
     

 Continuous urban fabric 

 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

30908.2  
 

3369.0 

23583.0 

2719.9 

1236.3 

12.9 
 

10.9 

76.3 

8.8 

4.0 

43727.9 
 

4059.2 

32895.0 

4973.1 

1800.7 

18.3 
 

9.3 

75.2 

11.4 

4.1 

+ 12819.7 
 

+690.2 

+9312.0 

+2253.2 

+564.3 

+41.5 
 

+20.5 

+39.5 

+82.8 

+45.6 

Agricultural areas 101350.1 42.3 93766.2 39.1 -7584.0 -7.5 

Forests and shrub areas 101598.7 42.4 98319.4 41.0 -3270.3 -3.2 

Other non-artificial surfaces 5750.4 2.4 3784.9 1.6 -1965.4 -34.2 

TOTAL AREA 239598.4 100 239598.4  100 - - 

From 1987 to 2000, built-up land uses increased 41.5%, nearly 3% annually. Around 13 000 new 

hectares have become artificial during this period, with urbanized land rising from 13% of the total 

area of the region in 1987 to 18% in 2000. The analysis by municipality (presented in Appendix A) 

shows that the largest increases (in absolute and relative area) are particularly observed outside the 

urban centre, i.e. outside Porto municipality, confirming the previous assertions about the existence of 

urban sprawl processes in the region. Municipalities in the first metropolitan ring around Porto – Maia, 

Gondomar and Vila Nova de Gaia – as well as Santa Maria da Feira, which already presented in 1987 a 

high share of urbanized areas (21%, 12%, 29% and 15% respectively), reveal the largest absolute 

increases of artificial surfaces. Municipalities outside the first metropolitan ring, such as Lousada, 

Penafiel, Marco de Canavezes and Castelo de Paiva, with very low shares of urbanised areas in 1987 

(2.1%, 1.8%, 1.4% and 0.4%, respectively) presented the highest growth rates between 1987 and 2000: 

240%, 230%, 150% and 190%. As expected, Porto municipality presents the highest percentage of 

artificial land uses, with 91.5% of the total area in 2000 (83% in 1987).  

As urbanization advanced, many non-urban hectares disappeared. The municipalities of the first 

metropolitan ring, already identified above, and Vila Nova de Gaia presented the largest relative 

losses; Santa Maria da Feira, Maia, Vila Nova de Gaia and Valongo exhibited the highest absolute 

losses of natural and semi-natural areas. The municipalities beyond the first urban ring experienced 

the lowest non-urban decrease, as a result of its high initial non-urban area. Some municipalities, such 

as Penafiel, Gondomar, Paredes and Castelo de Paiva, showed an increase in forested areas, which, 

together with the urbanization increase, also contributed to the loss of agricultural areas. Considering 

the entire study area, agriculture land loss represents more than half of the entire non-urban losses 

(12820 ha); forest and shrub areas come next with 26%. 
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A more detailed analysis of the new artificial uses between 1987 and 2000 reveals little changes in the 

urbanization trends. The discontinuous or low density urban fabric ranks first for both years, summing 

around 75% of the total artificial area. While in 1987 continuous urban fabric was the second land use 

category, with 11% of the total artificial area, in 2000 the industrial and commercial units took over 

the second place, with 11%. This land use category showed the highest growth rate between 1987 and 

2000 (83%, corresponding to an average annual growth of 6%), followed by other artificial surfaces 

(46%).  Although the discontinuous urban fabric shows only the third growth rate (40%), it is the first in 

terms of area growth, almost 10 000 hectares, representing 73% of the new artificial areas. The land 

use category compact or continuous urban fabric showed the lowest growth.  

The analysis by municipality reveals that more than half of the municipalities have an insignificant 

share of continuous urban fabric (less than 2% of the total artificial area), nine of them presenting no 

continuous fabric at all. These municipalities are the same that exhibited the highest growth rates of 

artificial surfaces. Only Porto has a significant share of continuous urban fabric (46.5%). 

Evidence therefore suggests that Porto region is undergoing a process of urban sprawl; to further 

confirm it, it is important to look at the relation between the artificial areas growth and the population 

growth in the same period.  Unfortunately no data were available for resident population in 1987 for 

all the municipalities in the study region. Therefore Figure 4.5 presents the comparison between 

population change and artificial area change between 1987 and 2000 only for a limited group of 

municipalities.  
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Figure 4.5 Population change and artificial areas change between 1987 and 2000 for a group of municipalities in 
the study region. 

 
The graph shows that for the time period 1987-2000 the artificial area growth was much higher than 

the population growth. Valongo reveals an artificial area growth ten times larger than its population 

growth, for Maia and Gondomar the growth was six times larger. Porto registers a decrease in 

population (less 47500 residents), but still presents an artificial area growth of 11%. 

Making use of the population data and of the residential area, obtained through the sum of 

continuous and discontinuous urban fabric, for each of the municipalities from the previous figure, the 
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residential density (number of residents per residential square kilometre) was calculated for 1987 and 

for 2000 (Figure 4.6). 
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Figure 4.6 Residential density calculated for 1987 and 2000 for a group of municipalities in the study region. 

 

A trend towards lower residential densities is observed, revealing that the population growth has lost 

importance as an explanatory factor of the urbanization process, while the generalization of dispersed 

urban patterns has risen,  claiming more and more land necessary to accommodate the same number 

of people. An important sprawl process in the region is the proliferation of new industrial and 

commercial areas. Extensive industrial areas and mega commercial structures punctuate the Porto 

region, with the traditional tendency of locating commercial uses within the urban fabric rapidly 

fading. There is no longer a real mixture of uses; instead, commercial activities are now segregated 

and concentrated in large portions of land orientated to commercial and leisure activities. 

4.3 Mobility and attractiveness in the study region 

In metropolitan areas, the need for daily-travel or commuting is a reality steaming from the 

progressive distancing between residential areas and work and study areas. Hence, in a study whose 

aim is to link urban structure with emissions and air quality, it is essential to look not only at the 

number of residents per municipality but also at the population flow between municipalities. It was 

therefore necessary to characterize the commuting characteristics of the region and the relative 

attractiveness/ repulsiveness of each municipality in the study area. For that purpose, a study from the 

National Statistics Institute (INE, 2003) focusing on commuting in Lisbon and Porto Metropolitan areas 

for the year 2001 was the main source of data. The study demonstrates the existence of important 

commuting movements in the Porto Metropolitan Area, through the analysis of the main interaction 

axis and the accounting of workers and student’s flows between municipalities. Of great significance 

are the interactions between Porto, the centre of the region, and the municipalities of the first 

metropolitan belt, namely Vila Nova de Gaia, Matosinhos, Gondomar, Maia, and also Valongo; these 

interactions are strongly unbalanced in favour of Porto [INE, 2003]. Other features worth mentioning 

are: 
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- the residents of the more peripheral municipalities, such as Espinho, Póvoa de Varzim and Vila do 

Conde do not have Porto as the main destination; Espinho’s residents move preferably towards Vila 

Nova de Gaia, while the other two have each other as the main destiny; 

- outside the Porto Metropolitan Area, the residents from Trofa, Paredes and Penafiel exhibit a high 

polarization towards the region centre, namely towards Porto and Maia. 

The mentioned study compiled all these relations between municipalities, producing maps and tables 

that translate these relationships into attraction and repulsion rates; these rates relate the number of 

individuals entering/ exiting a given municipality with the number of individuals residing in the 

municipality. The described data, referring to the year 2001, from the INE study, is here processed and 

attraction and repulsion rates re-calculated for the municipalities in the case study region. As an 

example, Figure 4.7 presents the data for Porto municipality, with a net attraction rate of 38.2%; 

Appendix B presents the numbers for the remaining municipalities. 
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Figure 4.7 Porto main entering and exiting movements and attraction and repulsion rates for 2001 (maps from 

INE[2003]; numbers computed by manipulation of INE data). 

 

Taking into account all the available data, it was assumed that the study region acts as a tight zone, 

and the possible interactions between it and the surrounding areas are not considered. For the 

municipalities of Paços de Ferreira, São João da Madeira, Lousada and Castelo de Paiva, there was no 

data available concerning attraction and repulsion rates; for the first two the same rates of Santa 

Maria da Feira were assumed, due to the common peripheral character of the three municipalities; for 

the last two the rates of Penafiel were assumed, since the three municipalities present very similar 

characteristics in terms of land use and population. 
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These attraction and repulsion rates are essential for the definition and construction of the urban 

development scenarios for the region since, in order to determine the total amount and distribution of 

atmospheric pollutant emissions in the study region, it is necessary to consider not only the number of 

inhabitants or residents per municipality but also the flow between municipalities. 

4.4 Air quality levels in Porto urban region 

Portugal’s northern region, in accordance to the established in the Air Quality Framework Directive 

[96/62/EC], was classified [IA, 2001] in two zones (Interior North and Coastal North) and four 

agglomerations (Coastal Porto, Braga, Vale do Ave and Vale do Sousa) (Figure 4.8).  
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Figure 4.8 Portugal’s Northern Region: zones and agglomerations, and air quality monitoring stations location 
(adapted from Borrego et al., 2008b). 

Since 2005, the air quality monitoring network covers all the zones/agglomerations, with a total of 24 

stations in 2006, the large majority of them (15) located in Coastal Porto due to the high number of 

inhabitants. Table 4.3 lists the monitoring stations existing in the study area (Figure 4.1), as in 2006, 

and their characteristics, including, type of environment, influence and measured pollutants. 

BOA = Boavista 
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Table 4.3 Study area air quality monitoring stations identification and characterization. 

Agglom. Municipality Station Environment Influence Measured Pollutants  

Espinho Espinho 
(ESP) 

urban traffic CO, NOx, SO2, PM10 

Gondomar Baguim 
(BAG) 

urban traffic CO, NOx, O3 

Maia Águas Santas 
(AS) 

urban traffic CO, NOx, SO2 

Maia Vermoim 
(VRM) 

urban traffic CO, NOx, SO2, PM10,PM25, O3 

Maia V.N.Telha 
(VNT) 

suburban background CO, NOx, SO2, PM10, O3 

Matosinhos Custóias 
(CST) 

suburban back/ind CO, NOx, SO2, PM10, O3, BTX 

Matosinhos Leça Balio 
(LB) 

suburban background CO, NOx, SO2, PM10, O3 

Matosinhos Matosinhos 
(MAT) 

urban traffic CO, NOx, SO2, PM10 

Matosinhos Perafita 
(PRF) 

suburban back/ind CO, NOx, SO2, PM10, O3 

Matosinhos S.Hora (SH) urban traffic CO, NOx, SO2, PM10 

Porto Antas (ANT) urban traffic CO, NOx, PM10, O3 

Porto Boavista 
(BOA) 

urban traffic CO, NOx, SO2, PM10 

Valongo Ermesinde 
(ERM) 

urban background NOx, SO2, PM10, O3 

Coastal Porto 

V.Conde V.Conde (VC) suburban traffic CO, NOx, SO2, PM10 

P.Ferreira C.Lacticínios 
(CL) 

urban background NOx, SO2, PM10, O3 

Vale do Sousa 
Paredes Paredes 

(PAR) 
urban traffic CO, NOx, PM10, BTX 

S.Tirso S.Tirso (ST) urban background CO, NOx, SO2, PM10, O3 

Vale do Ave V.N.Famalicão Calendário 
(CLD) 

suburban background NOx, SO2, PM10, O3 

 

As already mentioned, Porto metropolitan region presents a poor air quality, with ozone thresholds 

and daily and annual PM10 limit values exceeded. Figures 4.9 and 4.10 show the air quality monitoring 

stations for which PM10 daily and annual legal requirements, respectively, were not fulfilled [Borrego 

et al., 2008c]. High PM10 concentrations are measured in urban and suburban monitoring stations. 

Daily and annual limit values are exceeded for almost all monitoring stations; regarding the daily limit 

value the number of annual exceedances goes well beyond the allowed 35. 
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Figure 4.9  Monitoring stations not fulfilling PM10 legal requirements for daily LV + MT in 2001-2006 in the study 
area (the red line indicates the allowed number of daily exceedances) (data from Borrego et al., 2008c). 
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Figure 4.10 Monitoring stations not fulfilling the PM10 legal requirements for annual LV + MT in 2001-2006 in the 
study area (based on Borrego et al., 2008c). 

 

As already mentioned, particulate matter can be emitted from a variety of sources, including natural 

ones, such as forest fires and deserts. Borrego et al. [2008c] studied the origin of PM10 episodes in 

Portugal’s Northern region from 2001 to 2006. The results are summarized in Figure 4.11 (note: days 

with simultaneous fire and desert dust events may exist, therefore the sum of the three origins can be 

greater than 100%). For 2001, natural sources were responsible for the majority of the PM10 episodes; 

this can be explained by the low number of PM10 episodes registered in 2001 intimately related to the 

small number of PM10 monitoring stations at that time (only six). From 2002 to 2006 anthropogenic 

sources were identified as the major causes for this type of pollution. Still, natural sources, particularly 

dust blown from the North African deserts, were responsible for a significant share of PM10 pollution 

episodes. Directive 1999/30/EC acknowledges the existence of these natural events, and accepts their 

subtraction to the total number of PM10 episodes, to verify the compliance with legislated values. 

However, after the implementation of this procedure it was demonstrated that none of the 

agglomerations in non-compliance had a change in its situation [Borrego et al., 2008c].  
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Figure 4.11 Causes for PM10 daily LV exceedancees in North Portugal, 2001-2006 [Borrego et al., 2008c]. 

 

As a result of these exceedances, and accordingly to the determined in the Air Quality Framework 

Directive, the Northern Region of Portugal, as well as the Lisbon Metropolitan region, are currently 

under the obligation of developing and implement Plans and Programs for the Improvement of the Air 

Quality [Borrego et al., 2008c]. 

These Plans and Programs will also be mandatory for ozone from 2010 onwards; and accordingly to 

the air quality reports for the northern region it is likely that the northern region will have to develop 

and implement them. The analysis of ozone measured data confirms that concentration values are 

higher outside the urban centre of the region, i.e. outside Porto municipality. Nevertheless the ozone 

information threshold is exceeded in the majority of the monitoring stations, and often along a high 

number of hours per year. As an example, Figure 4.12 shows the exceedances to the O3 information 

threshold in 2006 in the study area, and their monthly distribution. Concerning the seasonal 

occurrence of exceedances, ozone limit values are generally higher between April and September, 

while for PM10 high concentrations have been found both in summer and winter. 
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Figure 4.12 Monthly distribution of exceedances to the O3 information threshold in 2006 (Borrego et al., 2008b)  
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The air quality monitoring data for the Porto area, obtained from the National Air Quality Database 

[URL13] for 2006, was analysed in order to identify air pollution episodes (an episode was defined as a 

period for which PM10 and/or O3 limit values are exceeded in three or more air quality monitoring 

stations simultaneously, according to Martins et al. [2007b]. Firstly, all PM10 and O3 episodes were 

identified (Appendix C); for ozone the hourly information threshold (180 µg.m-3) was considered, for 

PM10 the daily limit value was selected (50 µg.m-3).  The analysis illustrates the air quality degradation 

over the study area, mainly for particulate matter for which a total of 36 episodes were identified, 

summing up 122 days, i.e. one third of the year with PM10 values exceeded simultaneously in at least 

three monitoring stations. These exceedances took place throughout the year, with the months 

January/February and August being specially critic.  Regarding ozone, nine episodes were identified, 

with the information threshold exceeded for a total of 116 hours, and the alert threshold exceeded 4 

hours; for the year under analysis, ozone episodes occurred between June and September.  

The Portuguese Environmental Agency (APA) has identified the occurrence of dust events from North 

Africa or forest fire activity which might help to explain or justify the occurrence of some of the air 

pollution episodes. These events over the Portuguese territory for the year 2006 were presented in a 

report from APA [2007]. 

PM10 and O3 anthropogenic episodes were identified based on the information concerning natural 

events and the total events presented in Appendix C. While for ozone the elimination of the days with 

natural events results in a significant reduction (around one third) of the number of hours with 

exceedances of probable anthropogenic origin, for PM10 episodes this reduction is very small. 

4.5 Atmospheric modelling 

This section describes the numerical models, meteorological (MM5) and chemical (CAMx), used in the 

atmospheric simulations for the Porto study region. Both models are freely available, and have been 

extensively used and validated worldwide, being subject of constant improvement and update. These 

facts, together with the good performance of the models obtained for different regions, including the 

present study region, justify their selection. Moreover, these models are ready to be applied in long-

term simulations, as it is the case of the one-year simulation carried out in this study, with acceptable 

computing times. This was not the case of the modelling system applied in the idealized case-study 

presented in the previous chapter; as already mentioned the MEMO-MARS system belongs to a 

previous generation of models, very useful for the study of pollution episodes (1 to 3 days) but not 

prepared to perform long-term simulations. 
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4.5.1 Meteorological model MM5 

The PSU/NCAR mesoscale model was developed at the Pennsylvania State University and the National 

Centre for Atmospheric Research (NCAR). The model is supported by several pre- and post-processing 

programs, which are referred to collectively as the MM5 modelling system [Dudhia, 1993; Dudhia et 

al., 2005]. The MM5 modelling system software is freely provided and supported by the Mesoscale 

Prediction Group in the Mesoscale and Microscale Meteorology Division at NCAR, therefore it is widely 

used internationally [Vautard et al., 2004; Minguzzi et al., 2005; Jiménez et al., 2006; Civerolo et al., 

2007; among others]. 

The MM5 is a three-dimensional non-hydrostatic prognostic model that simulates mesoscale 

atmospheric circulations. Important features in the MM5 modelling system include: (i) a multiple-nest 

capability; (ii) non-hydrostatic dynamics; (iii) a four-dimensional data assimilation (Newtonian nudging) 

capability; (iv) increased number of physics options; and (v) portability to a wide range of computer 

platforms [Dudhia et al., 2005]. A simplified flow-chart of the modelling system is depicted in the 

schematic diagram in Figure 4.13 (features not used in the presented study are not depicted).  

 

TERRAIN REGRID INTERPF MM5

NESTDOWN

MM5toGRADSTERRAIN REGRID INTERPF MM5

NESTDOWN

MM5toGRADSTERRAIN REGRID INTERPF MM5

NESTDOWN

MM5toGRADS

 

Figure 4.13 A simplified flow chart of the MM5 modelling system. 

 

The program beginning any simulation in MM5 is TERRAIN. It horizontally interpolates (or analyzes) 

the regular latitude-longitude terrain elevation, and vegetation (land use) onto the chosen mesoscale 

domains. Currently the MM5 modelling system has two types of land use data with global coverage 

available from the United States Geological Survey (USGS): 13-category, with a resolution of 1 degree, 

30 and 10 minutes; and 24-category, with a resolution of 1 degree, 30, 10, 5 and 2 minutes, and 30 

seconds. The USGS 24-category data is referred to 1990, and some of the components are originated 

from a dataset compiled in the 1970s [Dudhia et al., 2005]. Table 4.4 presents the description of the 24 

USGS categories, including the physical parameters for the Northern Hemisphere summer and winter. 
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Table 4.4 Description of 24-category USGS vegetation categories and physical parameters for Northern 
Hemisphere summer and winter [Dudhia et al., 2005]. 

Albedo Moisture avail. 
(%) 

Emissivity (% at 9 

µm) 

Roughness 
length (cm) 

Thermal inertia 
(calcm-2K-1s-1/2) 

Vegetation 
Identifier 

Vegetation Description 

sum  win sum win sum win sum win sum win 

1 Urban and Built-Up Land 18 18 10 10 88 88 50 50 0.03 0.03 

2 Dryland Crop. and Pasture 17 23 30 60 92 92 15 5 0.04 0.04 

3 Irrigated Crop. and Pasture 18 23 50 50 92 92 15 5 0.04 0.04 

4 Mixed Dry./Irrig. Crop. Past.  18 23 25 50 92 92 15 5 0.04 0.04 

5 Cropland/Grassland Mosaic 18 23 25 40 92 92 14 5 0.04 0.04 

6 Crop./Woodland Mosaic 16 20 35 60 93 93 20 20 0.04 0.04 

7 Grassland 19 23 15 30 92 92 .12 .10 0.03 0.04 

8 Shrubland 22 25 10 20 88 88 10 10 0.03 0.04 

9 Mixed Shrubland/Grassland 20 24 15 25 90 90 11 10 0.03 0.04 

10 Savanna 20 20 15 15 92 92 15 15 0.03 0.03 

11 Deciduous Broadleaf Forest 16 17 30 60 93 93 50 50 0.04 0.05 

12 Deciduous Needlel. Forest 14 15 30 60 94 94 50 50 0.04 0.05 

13 Evergreen Broadleaf Forest 12 12 50 50 95 95 50 50 0.05 0.05 

14 Evergreen Needlel. Forest 12 12 30 60 95 95 50 50 0.04 0.05 

15 Mixed Forest 13 14 30 60 94 94 50 50 0.04 0.06 

16 Water Bodies 8 8 100 100 98 98 0.1 0.1 0.06 0.06 

17 Herbaceous Wetland 14 14 60 75 95 95 20 20 0.06 0.06 

18 Wooded Wetland 14 14 35 70 95 95 40 40 0.05 0.06 

19 Barren or Spars. Vegetated 25 25 2 5 85 85 10 10 0.02 0.02 

20 Herbaceous Tundra 15 60 50 90 92 92 10 10 0.05 0.05 

21 Wooden Tundra 15 50 50 90 93 93 30 30 0.05 0.05 

22 Mixed Tundra 15 55 50 90 92 92 15 15 0.05 0.05 

23 Bare Ground Tundra 25 70 2 95 85 85 .10 5 0.02 0.05 

24 Snow or Ice 55 70 95 95 95 95 5 5 0.05 0.05 

 

The purpose of REGRID is to read archived gridded meteorological analyses and forecasts on pressure 

levels and interpolate those analyses from some native grid and map projection to the horizontal grid 

and map projection defined by the MM5 pre-processor program TERRAIN. It expects input from files of 

gridded meteorological analyses, besides the TERRAIN program, and creates files ready for INTERPF.  

The INTERPF program handles the data transformation required to go from the analysis programs to 

the mesoscale model. This entails vertical interpolation of pressure levels to terrain-following sigma 

levels, diagnostic computation, and data reformatting. INTERPF takes REGRID output data as input to 

generate a model initial, lateral boundary condition and a lower boundary condition. 
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The MM5 program is the numerical weather prediction part of the modelling system. It can be used 

for a broad spectrum of theoretical and real-time studies, and in the smaller meso-beta and meso-

gamma scales (2-200 km), MM5 can be used for studies involving mesoscale convective systems, 

fronts, land-sea breezes, mountain-valley circulations, and urban heat islands. The program 

numerically solves the pressure, mass, momentum, energy and water conservation equations; it 

presents different parameterization schemes for clouds, planetary boundary layer and diffusion, 

moisture, radiation, and surface.  

MM5´s nesting capability allows the consideration of several domains in a single simulation or in 

consecutive simulations; therefore, the first domain can present a more regional dimension with a 

coarser mesh, while the next domain will cover a smaller area but with a higher resolution. In MM5 

two nesting options are available: 

� One-way nesting: when a single-domain or multiple-domain run completes, its domain output can 

be put into NESTDOWN to create an input file with higher resolution and new lateral and lower 

boundary files; this is known as a one-way nest because it is forced purely by the coarse mesh 

boundaries, and has no feedback on the coarse-mesh run. 

� Two-way nesting - multiple domains can be run in MM5 at the same time, each domain takes 

information from its parent domain every time-step, and runs three time-steps for each parent step 

before feeding back information to the parent domain on the coincident interior points.  The 

feedback distinguishes two-way nesting from one-way nesting, and allows nests to affect the coarse 

mesh solution, usually leading to better behaviour at outflow boundaries. However there is a 

significant overhead cost associated with the boundary interpolation and feedback at every time-

step. 

Finally, MM5toGrADS is a utility program from the MM5 modelling system that converts MM5 binary 

outputs to temporal series, and bi- and three dimensional fields for all meteorological variables; this 

program therefore allows the visualization and posterior analysis of the results of the meteorological 

simulation.  

More details about the MM5 modelling system can be easily accessed through its webpage [URL14]. 

Since MM5 includes several parameterizations, users can choose among the multiple options of model 

physics and parameterization schemes; some are based on the scale of the motion, such as the 

cumulus parameterizations, while others are dependent on users preferences, such as the planetary 

boundary layer schemes [Mao et al., 2006].  

Several authors [Zhang and Zheng, 2004; Mao et al., 2006; Han et al., 2008; among others] have 

studied the implications of the use of different MM5 PBL parameterizations in the meteorological and 



Case study presentation 

84 

air quality predictions, concluding that different PBL schemes may cause considerable differences in 

model results for meteorological variables and air pollutants concentrations.  

Here, the parameterizations that will be used in this study are described. A study from Aquilina et al. 

[2005] tested several MM5-PBL schemes for the West Coast of Portugal, particularly for the Lisbon 

area, and concluded that the MRF [Hong and Pan, 1996] scheme provided in general the best 

meteorological results. The MRF scheme, named after the model where it was implemented (the NCEP 

Medium Range Forecast Model), is suitable for high-resolution in PBL; the PBL height is determined 

from critical Bulk-Richardson number. However, considering that the air quality model to be applied  

(CAMx, described ahead), requires turbulent kinetic energy (TKE) as an input parameter, which is not 

provided when MRF-PBL scheme is used,  this scheme will only be applied to the coarser MM5 

domain, since the remaining domains (defined ahead) will provide information for the air  quality 

modelling.  

In previous MM5- CAMx applications for Portugal, the ETA PBL scheme has been used [Salmim et al., 

2005; Miranda et al., 2006; Borrego et al., 2008d]. The ETA - PBL scheme is the Mellor-Yamada scheme 

as used in the Eta model [Janjic, 1990, 1994]. It predicts TKE, and calculates exchange coefficients 

using similarity theory, and vertical fluxes with an implicit diffusion scheme. The PBL height is 

diagnosed from the TKE profile.  

Aquilina et al. [2005] also observed that the Gayno-Seaman PBL scheme [Gayno, 1994], yielded 

particularly good results for higher resolution applications over the Lisbon area; therefore, this scheme 

is also used in the present study. This scheme is also based on Mellor-Yamada TKE prediction, but it is 

distinguished from others by the use of liquid-water potential temperature as a conserved variable, 

allowing the PBL to operate more accurately in saturated conditions [Ballard et al., 1991; Shafran et 

al., 2000].  

4.5.2 Air quality model CAMx 

The Comprehensive Air quality Model with extensions (CAMx) was developed by ENVIRON 

International Cooperation, from California, United States of America. CAMx [Morris et al., 2004] is an 

Eulerian photochemical dispersion model that allows the integrated “one-atmosphere” assessment of 

gaseous and particulate air pollution over many scales ranging from sub-urban to continental.  

CAMx simulates the emission, dispersion, chemical reaction, and removal of pollutants in the 

troposphere by solving the pollutant continuity equation for each chemical species on a system of 

nested three-dimensional grids. The Eulerian continuity equation describes the time dependency of 

the average species concentration within each grid cell volume as a sum of all of the physical and 

chemical processes operating on that volume. The continuity equation is numerically marched forward 
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in time over a series of time steps. At each step, the continuity equation is replaced by an operator-

splitting approach that calculates the separate contribution of each major process (emission, 

advection, diffusion, chemistry, and removal) to concentration change within each grid cell [ENVIRON, 

2008].  

CAMx carries pollutant concentrations at the centre of each grid cell volume, representing the average 

concentration over the entire cell. Meteorological fields are supplied to the model to quantify the 

state of the atmosphere in each grid cell for the purposes of calculating transport and chemistry. 

CAMx incorporates two-way grid nesting, which means that pollutant concentration information 

propagates into and out of all grid nests during model integration. Any number of grid nests can be 

specified in a single run, while grid spacing and vertical layer structures can vary from one grid nest to 

another. The nested grid capability of CAMx allows cost-effective application to large regions in which 

regional transport occurs, yet at the same time providing fine resolution to address small-scale 

impacts in selected areas [ENVIRON, 2008]. 

The CAMx chemical mechanisms are based on Carbon Bond version 4 (CB4) [Gery et al., 1989] and 

SAPRC99 [Carter, 2001]. There are four specific mechanisms currently supported, along with a plug-in 

that allows a simple user-defined chemical mechanism to be employed (referred to as “Mechanism 

10”); these are listed in Table 4.5. 

Table 4.5 Chemistry mechanisms currently implemented in CAMx [ENVIRON, 2008]. 

Mechanism ID  Description 

3 
CB4 [Gery et al., 1989] gas-phase chemistry with revised radical-radical termination 
reactions and updated isoprene chemistry; 96 reactions and 37 species (25 state 
gases and 12 radicals). 

1 
Mechanism 3 with reactive chlorine chemistry [Tanaka et al., 2000]; 110 reactions 
and 48 species (34 state gases and 14 radicals). 

4 
Mechanism 3 with additional inorganic gas-phase reactions, including aerosol and 
mercury chemistry: secondary organic aerosol formation from condensable gases, 
aqueous PM chemistry, inorganic PM thermodynamics, and aerosol size evolution; 
117 reactions and up to 67 species (37 state gases, 18  particulates, and 12 radicals). 

5 
The fixed parameter version of the SAPRC99 gas-phase mechanism [Carter, 2001]; 
217 reactions and 77 species (59 state gases and 18 radicals). 

10 
A user-defined simple chemistry mechanism can be developed for any gas and/or 
particulate species. 

 

CAMx requires input files that configure each simulation, define the chemical mechanism, and 

describe the photochemical conditions, surface characteristics, initial/boundary conditions, emission 

rates, and various meteorological fields over the entire modelling domain. Table 4.6 summarizes the 

input data requirements of CAMx, as well as the various pre-processors, made available by ENVIRON 

and adapted for the most common uses by the scientific community. 
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Table 4.6 Data requirements of CAMx [ENVIRON, 2008] and respective pre-processors.  

Data class  Data type Pre-processor 

Meteorology 
(supplied by a meteorological 
model) 

3-Dimensional Gridded Fields: 
- Vertical Grid Structure 
- Horizontal Wind Components 
- Temperature 
- Pressure 
- Water Vapor 
- Vertical Diffusivity 
- Clouds/Precipitation 

MM5CAMx 

Air Quality 
(obtained from measured 
ambient data) 

Gridded Initial Concentrations 
Gridded Boundary Concentrations 
Time/space Constant Top 
Concentrations 

ICBCPREP 

Emissions 
(supplied by an emissions 
model) 

Elevated Point Sources 
Combined Gridded Sources: 
- Low-level Point 
- Mobile 
- Area/Non-road Mobile 
- Biogenic 

PT_EMISS 
AREA_EMISS 

Geographic 
(Developed from terrain and 
landuse/landcover maps, 
drought index maps, modeled 
or satellite derived snow 
cover) 

Gridded Surface Characteristics: 
- Land Use/Vegetative Cover 
- UV Albedo 
- Snow Cover 
- Land/Water Mask 
- Roughness Length 
- Drought Stress 
- Terrain Elevation 

AHOMAP 

Photolysis 
(Derived from satellite 
measurements and radiative 
Transfer Models) 

Atmospheric Radiative Properties: 
- Gridded Haze Opacity Codes 
- Gridded Ozone Column Codes 
- Photolysis Rates Lookup Table 

PHOTOLYSIS 

 

Preparing this information requires several pre-processing steps to translate “raw” emissions, 

meteorological, air quality and other data into the final input files for CAMx [Monteiro et al., 2007a]. 

Some changes have been performed over the last years in order to implement MM5-CAMx system for 

Portugal [Miranda et al., 2002; Ferreira et al., 2003; Ferreira, 2007]. Figure 4.14 presents the structure 

of the model, including the pre- and post-processors, and relations between them.  

ICBCPREPMM5CAMx AHOMAP

CAMx

CAMxTRCT

PHOTOLYSIS AREA_EMISS PT_EMISS

CAMxPOST

ICBCPREPMM5CAMx AHOMAP

CAMx

CAMxTRCT

PHOTOLYSIS AREA_EMISS PT_EMISS

CAMxPOST
 

Figure 4.14 The CAMx modeling system. 
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The MM5CAMx pre-processor generates CAMx meteorological input files from the MM5 output files, 

including land use, altitude/pressure, wind, temperature, moisture, clouds/rain and vertical diffusivity. 

The vertical structure in CAMx will be defined from the MM5 sigma layers, and therefore will vary in 

space, also vertical layer structures can vary from one grid nest to another. The vertical diffusivity 

fields are obtained from MM5 outputs directly from TKE .  

Topographic and land use information is also provided by the MM5 model through the MM5CAMx 

pre-processor. The 24 land use classes from MM5, presented in Table 4.4, are aggregated in the 11 

categories considered by CAMx and presented in Table 4.7. 

Table 4.7 CAMx land use categories, surface roughness and albedo [ENVIRON, 2008] and correspondent MM5 
categories. 

Surface roughness (m) Land cover category 

spring summer fall winter 

UV 
albedo 

MM5 land categories 

1. Urban 1.00 1.00 1.00 1.00 0.08 1. Urban and built-up land 

2. Agricultural 0.03 0.20 0.05 0.01 0.05 - 

3. Rangeland * 0.05 0.10 0.01 0.001 0.05 7. Grassland 
8. Shrubland 
9. Mixed shrubland/grassland 
10. Savanna 
20. Herbaceous tundra 

4. Deciduous forest 1.00 1.30 0.80 0.50 0.05 6. Cropland/woodland mosaic 
11. Deciduous broadleaf forest 
12. Deciduous needleleaf forest 
21. Wooden tundra 

5. Coniferous forest, 
wetland 

1.30 1.30 1.30 1.30 0.05 13. Evergreen broadleaf forest 
14. Evergreen needleleaf forest 
18. Wooded wetland 

6. Mixed forest 1.15 1.30 1.05 0.90 0.05 15. Mixed forest 
22. Mixed tundra 

7. Water 0.0001 0.0001 0.0001 0.0001 0.04 16. Water bodies 

8. Barren land 0.002 0.002 0.002 0.002 0.08 19. Barren or sparsely vegetated 
24. Snow or ice 

9. Non-forested 
wetlands 

0.20 0.20 0.20 0.05 0.05 17. Herbaceous wetland 

10. Mixed 
agricultural/range 

0.04 0.15 0.03 0.006 0.05 2. Dryland cropland and pasture 

3. Irrigated cropland and pasture 
4. Mixed dryl./irrig. Crop. and past. 

5. Cropland/grassland mosaic 

11. Rocky  0.30 0.30 0.30 0.15 0.05 23. Bare ground tundra 

*rangeland – North-American term for lands on which a significant proportion of the natural vegetation is native grasses, grass-like 

plants, forbs, and shrubs; includes natural grasslands, savannas, shrublands, many deserts, tundra, alpine communities, coastal 

marshes, and wet meadows. 

 

The land use grid together with TOMS ozone column data files [URL15] constitutes the input for 

AHOMAP, which prepares albedo, haze, and ozone column input files for PHOTOLYSIS. This pre-

processor determines the photolysis rates for each grid cell as a function of five variables: the solar 

zenith angle, height above ground, UV albedo, haze turbidity and ozone column depth. 
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There are numerous approaches for defining initial, boundary, and top concentration inputs for CAMx. 

The level of detail ranges from time- and space-constant values for all pollutants, to specific time and 

space profiles for each pollutant. The level of detail depends on available measurements, and focus 

and detail (spatial and temporal resolution) of the modelling exercise. ENVIRON provides one simple 

program, ICBCPREP, which prepares CAMx initial condition (IC) and boundary condition (BC) files from 

existing air quality data for the study region,  allowing the definition of top concentrations, constant in 

space and time, for each chemical species to be modelled. Another approach gaining popularity is to 

extract initial and boundary conditions from large regional applications of global-scale chemical 

transport models. Interface programs have been developed for this purpose, but are not distributed by 

ENVIRON. This issue is further discussed in the next chapter. 

Finally the pre-processors PT_EMISS and AREA EMISS calculate the hourly variation of emissions from 

point and area sources, respectively.  More details about the area emissions pre-processor are 

discussed in the next chapter, since it will be subject of improvements.  

The post-processors, CAMxPOST e CAMxTRCT, allow the extraction of time series simulated 

concentrations for predefined locations, and bi-dimensional concentration fields for a given pollutant, 

respectively. These tools permit the comparison between simulated and observed data and also the 

evaluation of concentrations all over the study area.  

4.5.3 Case study domain definition 

Figure 4.15 presents a simplified scheme of the MM5-CAMx modelling system applied to the 

simulation of the atmospheric flow and air quality in the study region. 
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Figure 4.15 Simplified scheme of the MM5-CAMx modelling system. 
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For the meteorological simulation, the MM5 capability of doing multiple nesting is used, and the 

model is applied for five domains, using the two-way nesting technique. Figure 4.16 shows the model 

domain setup and the location of the meteorological stations to be used in the validation process: 

domain 1 (D1) at 27 km resolution covering the Iberian Peninsula and France; D2 at 9 km resolution 

over Portugal; D3 at 3 km resolution over NW Portugal; and domains D4 and D5 with 1 km resolution 

over Great Porto Area and Aveiro coastal region, respectively. 
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D5

D1

D2
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Figure 4.16 Meteorological model domains. 

 

Table 4.8 summarizes the corresponding grid configurations. Considering previous research studies 

performed for NW Portugal (Carvalho et al., 2006), 25 unequally spaced σ levels are used in order to 

optimize the simulation through the increase of vertical resolution near the surface. 

Table 4.8 Meteorological domains configuration 

Domain No. of cells in 
x-direction 

No. of cells in 
y-direction 

Z levels Resolution  

(km) 

D1 91 77 27 

D2 63 81 9 

D3 45 51 3 

D4 51 51 1 

D5 54 54 

25 

1 

 

Regarding the air quality simulations, CAMx is applied for three domains, slightly smaller than the 

corresponding MM5 domains, using its two-way nesting capability. Figure 4.17 shows the model 

domain setup: domain 1 (D1) at 9 km resolution covering Portugal; D2 at 3 km resolution over NW 

Portugal; and D3 with 1 km resolution over Great Porto Area. A fourth domain (Aveiro coastal region) 
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was not judged necessary because D3, which includes the agglomerations of Portugal’s Northern 

region, has a high number of air quality stations.  

D1

D2

 

Figure 4.17 CAMx simulation domains. 

 

Table 4.9 summarizes the corresponding grid configurations. Considering previous research studies 

performed for Portugal (Ferreira, 2007; Ferreira et al., 2003), 17 unequally spaced σ levels are used. 

Table 4.9 CAMx domains configuration 

Domain No. of cells in 
x-direction 

No. of cells in 
y-direction 

Z levels Resolution 
(km) 

D1 40 70 9 

D2 35 41 3 

D3 38 38 

17 

1 

 

In order to apply the modelling system to the study area it is firstly necessary to determine the most 

adequate model configuration and to improve some aspects already identified in previous studies; this 

will be the subject of the next two chapters. Only after that it will be possible to correctly simulate the 

air quality and assess the consequences of different urban land use scenarios. 
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5 SETUP OF THE URBAN AIR QUALITY MODELLING SYSTEM 

 

 

 

Before applying the selected air quality modelling system to the Porto area it is important to 

determine the most appropriate model setup for the study case. For that purpose two air pollution 

episodes are selected in order to perform a group of meteorological modelling sensitivity tests. The 

meteorological model outputs are then fed into the air quality model with the objective of defining the 

most suitable model configuration for the study area. 

5.1  Episodes selection 

The selection of an adequate study period is part of the model configuration setup process. This period 

should be short, to allow the conduction of a group of simulations and sensitivity tests, and should also 

include air pollution situations, in order to evaluate the capability of the modelling system to 

reproduce observed data. 

As already discussed, in 2006, as in previous years, the air quality monitoring network of the 

Portuguese Northern Region registered high levels of ozone and particulate matter. The crossing of all 

the air pollution episodes of these two pollutants, with information relative to the occurrence of 

natural events (forest fires, and dust from North African deserts) allowed the identification of 

anthropogenic episodes. Since summer and winter pollution episodes present different characteristics, 

two air pollution episodes are selected, one for each season. For the selection of the summer episode, 

a period with O3 and PM10 simultaneous exceedances was searched for; for the winter episode, since 

a large number of days were available, only those with a period not inferior to three days were 

analysed. Table 5.1 presents the identified episodes. 

In order to decide which episodes to simulate, a graphic representation of the measured 

concentrations at the several monitoring stations in the study area was made. Figures 5.1 and 5.2 
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present O3 and PM10 concentrations observed in Coastal Porto air quality network for the two 

identified summer periods. 

Table 5.1 Anthropogenic PM10 and O3 episodes in the study area, for 2006. 
Summer episodes Winter episodes 

3-6 June 
22 August 

3-5,  7-12, 17-20 January 
30 January – 9 February 
13-16 March 
11-14 November 
16-24 December 
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Figure 5.1 Pollutant concentrations for 3-9 June a) O3 hourly average (the red line is the population information 

threshold, 180 µg.m-3) and b) PM10 daily average (the red line is the daily limit value, 50 µg.m-3). 
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Figure 5.2 Pollutant concentrations for 20-24 August a) O3 hourly average (the red line is the population 

information threshold, 180 µg.m-3) and b) PM10 daily average (the red line is the daily limit value, 50 µg.m-3). 
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Figure 5.3 presents PM10 concentrations observed in Coastal Porto air quality network for the seven 

identified winter periods.  
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Figure 5.3 PM10 daily average concentrations for the winter episodes (the red line indicates the daily limit value -

50 µg.m-3). 

 

The periods 3 to 6 June and 16-24 December show high pollutants concentrations for a considerable 

time period and in a large number of air quality stations. Therefore they were selected as the summer 

and winter episode, respectively, for the sensitivity tests. 

A brief meteorological characterization of the pollution episodes is here presented, with the aid of the  

500 hPa pressure maps presented in Appendix D. The selected summer period, 03 to 08 June 2006, can 

be divided in two distinct periods: from 3 to 6 June a thermal low is developing and intensifying over 

the Iberian Peninsula (Figure D1); in the 7 and 8 June a frontal surface is approaching the NW coast of 

Portugal (Figure D2). The first situation is a typical summer situation in the region, and is generally 

favourable to photochemical production [Hoinka and Castro, 2003]. For the selected winter episode, 
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from 16 to 18 December, an anticyclone is present in surface and in altitude, with strong subsidence 

conditions which lead to a highly stable atmosphere and therefore low dispersion (Figure D3). From 19 

December on the situation is similar although subsidence conditions are not so strong (Figure D4). 

5.2  Meteorological modelling sensitivity tests 

A series of numerical MM5 sensitivity experiments are performed, over the summer and winter 

episodes, allowing the determination of the best, or most well suited, model setup for the case-study. 

Questions to be answered are: (1) what differences exist between MM5 outputs resulting from the 

change in various factors?; and (2) is there a preferred configuration for MM5 that produces improved 

results?   

The meteorological sensitivity tests help to understand the effects of using different MM5 

configurations for the simulated meteorological conditions, which in turn are essential inputs for the 

air quality simulations. The applied MM5 physical options common to all the sensitivity tests include: 

Grell cumulus scheme [Grell et al., 1994] at the 27-km resolution domain and no cumulus 

parameterization for the smaller grids, RRTM [Mlawer et al., 1997] radiation scheme, Reisner-Graupel 

moisture scheme [Reisner et al., 1998], and MRF PBL [Hong and Pan, 1996] scheme at the 27-km 

resolution domain. The used land surface model is the five-layer soil model [Dudhia, 1996]. The initial 

and boundary conditions are from the National Centre for Environmental Predictions (NCEP) global 1-

degree reanalysis data, updated every 6-hours [URL16]. These options correspond to the configuration 

generally used in previous MM5-CAMx modelling system applications for Portugal [Ferreira et al., 

2003; Ferreira et al., 2004; Carvalho et al., 2006; Ferreira, 2007; among others]. 

Table 5.2 presents the matrix of the MM5 sensitivity experiments, which are designed to compare 

effects on meteorological simulations resulting from: different spatial resolutions; different land use 

data; different PBL parameterizations; and different urban roughness length. More details regarding 

each of the sensitivity tests are given further ahead. 

Table 5.2 MM5 model configuration for the sensitivity tests 

 Land use dataset 
PBL scheme    
(D2-D5) 

URBAN z0 

test 1 USGS24 ETA 0.5m 

test 2 CLC24 ETA 0.5m 

test 3 CLC24 GAYNO-SEAMAN 0.5m 

test 4 CLC24 GAYNO-SEAMAN 1.0m 

 

The results of the several MM5 simulations are evaluated against each other but also against data 

from a group of national meteorological stations, covering Continental Portugal (Figure 5.4).  
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Meteorological stations 
 
1 – Porto / Pedras Rubras (PT) 
2 – Aveiro / University (AV) 
3 – Viseu / Airfield (VS) 
4 – Braga (BR) 
5 – Viana do Castelo (VC) 
6 – Vila Real (VR) 
7 – Coimbra / Geophysical Institute (CBR) 
8 – Castelo Branco (CB) 
9 – Lisboa / Gago Coutinho (LS) 
10 – Sines (SN) 
11 – Évora (EV) 
12 – Beja (BJ) 
13 – Faro / Airport (FR) 

Figure 5.4 Meteorological stations and their location in domains 3 to 5. 

It is worth referring that Porto’s meteorological station is not located in Porto municipality but in 

Matosinhos municipality, near the Airport. Therefore this station is neither representative of Porto 

city’s characteristics nor of an urban area. This justifies the definition of an additional 1 km x 1 km 

resolution domain, over Aveiro urban area (D5), which includes an urban meteorological station; this 

“extra” domain allows obtaining more results for the thinner resolution, and therefore to explore the 

possible benefits of using a more refined resolution and to explore the differences between the 

sensitivity tests. 

Besides the qualitative analysis of results, the statistical analysis is considered a key-factor for the 

analysis of the model performance [Hanna et al., 1993; Elbir, 2003]; also it constitutes the second step 

from the “Basic Recommendations for modelling uncertainty estimation” [Borrego et al., 2008a]. 

The MM5 skill is evaluated through the application of the quantitative error analysis introduced by 

Keyser and Anthes [1977] and widely used in model validation exercises [Eastman et al., 1998; 

Miranda et al., 2002; Ferreira et al., 2003; Carvalho et al., 2006]: 
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The parameter E is the root mean square error (rmse), EUB is the rmse after the removal of a certain 

deviation and S and Sobs are the standard deviation of the modelled and observed data. If φi and φiobs 

are individual modelled and observed data in the same mesh cell, respectively; φ0 and φ0obs the 

average of φi and φiobs for some sequence in study, and N the number of observations, then the 

simulation presents an acceptable behaviour when S ≈ Sobs, E < Sobs and EUB < Sobs. In addition to these 

parameters the correlation coefficient was also determined for each simulation: 
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5.2.1 Test1 – Reference setup 

The physical option selected for this test include default MM5 setups for land use dataset and urban 

roughness height, as well as ETA PBL scheme for domains 2 to 5; these, together with the above 

described options, common to all tests, complete the MM5 reference setup  already mentioned.  

Table 5.3 lists the statistical measures obtained for MM5-test1 simulation, at the two meteorological 

stations with results for the three spatial resolutions (Porto/Pedras Rubras and Aveiro). Results for the 

remaining meteorological sites are presented in Appendix E (Table E.1). However, in order to have a 

broader perspective, the analysis presented is performed for all meteorological sites. 

Table 5.3 Statistical measures for temperature and wind components obtained for MM5-test1 simulation - 
summer (3-8 June 2006) and winter (16-24 December 2006) episodes. 

T u v 
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0.72 

0.46 

0.79 

0.86 

1.00 

0.88 

1.04 

1.27 

1.14 

0.80 

1.23 

0.77 

1.32 

0.82 

0.94 

0.53 

0.75 

0.52 

0.76 

0.77 

0.21 

0.70 

0.17 

0.69 

0.14 

0.99 

1.30 

0.71 

0.38 

0.59 

0.33 

0.77 

1.79 

0.72 

1.03 

0.73 

1.12 

0.67 

1.48 

0.72 

1.04 

0.73 

1.05 

0.55 

0.13 

0.65 

0.13 

0.62 

0.02 

2.24 

1.54 

0.96 

0.37 

0.75 

0.29 

2.07 

2.31 

0.82 

1.39 

0.79 

1.37 

2.06 

2.20 

0.81 

1.12 

0.79 

1.06 

AV    

    9km 

            
3km 

        
1km 

0.29 

0.27 

0.84 

0.67 

0.84 

0.74 

0.32 

0.67 

0.81 

1.02 

0.77 

1.02 

1.43 

1.19 

0.71 

1.28 

0.79 

1.28 

0.97 

1.05 

0.55 

0.89 

0.55 

1.07 

0.65 

0.41 

0.75 

0.25 

0.69 

0.21 

0.99 

1.60 

0.97 

0.78 

0.83 

0.81 

0.87 

2.01 

0.73 

1.14 

0.71 

1.33 

0.84 

1.53 

0.69 

1.12 

0.67 

1.24 

0.55 

0.38 

0.58 

0.40 

0.64 

0.41 

1.58 

3.18 

0.87 

0.90 

0.87 

1.09 

1.34 

3.04 

0.87 

1.08 

0.81 

1.12 

1.34 

2.88 

0.86 

1.02 

0.81 

1.11 

 

For surface temperature at Porto, Aveiro, and Braga, the best skill is obtained for the finer resolution 

both in summer and winter, although in summer the skill record is better. This last observation is valid 

for the three meteorological variables at all sites and spatial resolutions. Regarding the wind 
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components, Aveiro, Viseu and Braga present better results for the thiner resolutions; for Porto the 1-

km resolution presents slightly lower skills; the zonal wind component, u, is generally better simulated 

than the meridional component, v. Looking at the 9 km resolution, coastal cities (PT, AV, BR, VC, SN) 

present the worst results, due to the lack of high resolution land-use data, which places these cities in 

the water or very near it. 

As an example of the obtained results, Figure 5.5 shows the time series obtained for Porto for the 

surface temperature and wind components (zonal and meridional), from test1 simulations and 

measurement data, for the summer episode.  
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Figure 5.5 Summer episode time series comparison of surface a) temperature, b) zonal wind component, and c) 
meridional wind component from MM5-test1 simulations at 9 km, 3 km and 1 km, and surface measurements at 

Porto. 

For the 9 km resolution, the simulation shows a clear underestimation of temperature. The 

underestimation was reduced in the finer resolutions simulations. Wind components also show 
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significant differences for the different resolutions, with a better agreement for the finer one. Also, 

results are clearly better for the second half of the episode.  

In Appendix E, the same evolution is presented for the winter episode (Figure E.1); for wind 

components,  results are similar to those obtained for summer; for temperature, differences between 

resolutions are not so evident, but larger differences are found between the 3 km and 1 km 

resolutions, with the last presenting a better performance. 

5.2.2 Test2 – High resolution land use data 

The goal of this sensitivity test is to understand the effects of using different land use datasets in MM5 

on the simulated meteorological conditions; therefore, the original USGS24 dataset is replaced by a 

new one based on Corine Land Cover 2000 [EEA, 2000], within domains 3 to 5 of the simulation. Next, 

the two land use datasets are described, compared and discussed, in order to evaluate the benefits of 

using a higher resolution and higher-confidence land use dataset. 

The previous chapter already mentioned and described the USGS 24-category land use database 

existent in MM5 modelling system (§ 4.5.1, Table 4.4), as well as the CORINE Land Cover 44-classes 

data base (§4.2.2, Table 4.1).  

In order to compare datasets for the study area, Figure 5.6 presents CLC2000 and USGS land use 

classes for NW Portugal domain (D3), with 3 km resolution. The CLC2000 original dataset, with 250 m 

resolution, was processed in a geographical information system (GIS) software in order to transform it 

to a raster format with the desired resolution, in this case 3 km. 

The differences between both data sets are evident, with CLC2000 presenting 30 classes for D3, and 

USGS24 presenting only 6 classes. However, since CLC2000 is much more detailed than USGS24, a 

direct and clear comparison is difficult. In this sense, the 44 classes in CLC2000 were converted to the 

24 USGS categories, according to the correspondence given in Table 5.4, which results from the careful 

analysis of the description of each land use class for each dataset. 
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Figure 5.6 Comparison between a) USGS24 and b) CLC2000 land use categories for D3. 
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Table 5.4 Correspondence between CLC2000 and USGS-24 land use categories. 
CLC2000 USGS-24 

1.1.1. Continuous urban fabric 

1.1.2. Discontinuous urban fabric 

1.2.1. Industrial or commercial units 

1.2.2. Road and rail networks and associated land 

1.2.3. Port areas 

1.2.4. Airports 

1.3.3. Construction sites 

1.4.2. Sport and leisure facilities 

1. Urban and built-up land 

2.1.1. Non-irrigated arable land 2. Dryland Cropland and pasture 

2.1.2. Permanently irrigated land 3. Irrigated Cropland and pasture 

2.4.1. ANNUAL CROPS ASSOCIATED WITH 
PERMANENT CROPS 

2.4.2. COMPLEX CULTIVATION 

5. Cropland/grassland mosaic 

2.2.2. Fruit trees and berry plantations 

2.2.3. OLIVE GROVES 

2.4.3. LAND PRINCIPALLY OCCUPIED BY 
AGRICULTURE, WITH SIGNIFICANT 
AREAS OF NATURAL VEGETATION 

2.4.4. Agro-forestry areas 

6. Cropland/woodland mosaic 

1.4.1. Green urban areas 

2.3.1. Pastures 

3.2.1. Natural grassland 

7. Grassland 

2.2.1. Vineyards 

3.2.2. MOORS AND HEATHLAND 

3.2.3. SCLEROPHYLLOUS VEGETATION 

3.2.4. Transitional woodland shrub 

8. Shrubland 

3.1.1. BROAD-LEAVED FOREST 
11. Deciduous broadleaf forest 

3.1.2. CONIFEROUS FOREST 
14. Evergreen needleleaf forest 

3.1.3. MIXED FOREST 
15. Mixed forest 

5.1. 1. WATER COURSES 

5.1.2. WATER BODIES 

5.2.1. COASTAL LAGOONS 

16. Water bodies 
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5.2.2. ESTUARIES 

5.2.3. SEA AND OCEAN 

2.1.3. RICE FIELDS 

4.1.1. INLAND MARSHES 

4.1.2.PEATBOGS 

4.2.1. SALT MARSHES 

4.2.2. SALINES 

4.2.3. Intertidal flats 

17. Herbaceous wetland 

1.3.1. Mineral extraction sites 

1.3.2. DUMP SITES 

3.3.1. BEACHES, DUNES, AND SAND 
PLAINS 

3.3.2. BARE ROCK 

3.3.3. SPARSELY VEGETATED AREAS 

3.3.4. BURNT AREAS 

3.3.5. Glaciers and perpetual snow 

19. Barren sparse vegetation 

Figure 5.7 presents the CLC2000 land use converted into the 24 USGS categories (from now on 

designated by CLC24), in comparison with the original MM5 USGS24 dataset, for D3.  
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a) USGS24 
 

 

b) CLC24 
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Figure 5.7 Comparison between a) USGS24 and b)CLC24 land use categories for D3. 

 

Once more, the differences between both data sets are evident, with CLC24 presenting 13 classes in 

D3, and USGS-24 presenting only 6 classes. Besides the diversity of land use classes, a major difference 

of great importance for the meteorological modelling, as well as for the air quality modelling, is the 

representativeness of the urban land use class (in red): in the USGS-24 dataset only one cell is found in 

Porto municipality, while in the new CLC24 a group of urban cells is found in Porto and adjacent 

municipalities, and also smaller groups are found over the simulation domain, representing smaller 

cities. 

Table 5.5 presents the number of grid cells for each land use class for each dataset (one grid cell 

corresponds to 9 km x 9km).  

 

Table 5.5 Number of grid cells for each land use class for each dataset (one grid cell - 9 km x 9 km). 

Land Use Classes  USGS24  CLC24  

1.Urban and built-up land 1 93 
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2. Dryland cropland and pasture 154 44 

3. Irrigated cropland and pasture 0 32 

5. Cropland/grassland mosaic 0 262 

6. Cropland/woodland mosaic 4 92 

7. Grassland 0 23 

8. Shrubland 0 269 

9. Mixed Shrubland/grassland 62 - 

10. Savanna 76 - 

11. Deciduous broadleaf forest 812 112 

14. Evergreen needleleaf forest 0 173 

15. Mixed forest 0 213 

16. Water bodies 1186 956 

17. Herbaceous wetland 0 8 

19. Barren or sparsely vegetated 0 18 

It is possible to observe that not only the classes are distinct but also the representativeness of each 

class is different: 

� in CLC24 the urban land use (class 1) presents 93 cells (837 km2) while in the USGS24 it has 

only 1 cell;  

� the most important land use class in USGS24 (besides water bodies) 11-deciduous broadleaf 

forest (812 cells), assumes a much smaller importance in the CLC24 dataset (only 112 cells for 

class11, with a total of 498 cells for the forest classes -11, 14 and 15);  

� the most important land use class in CLC24 (besides water bodies) is class 8-shrubland (269 

cells), a class that is not present in the USGS24 dataset. 

Figures 5.8 and 5.9 present USGS24 and CLC24 land use classes for D4 and D5, 1 km resolution. In 

CLC24 dataset the centre of D4, constituted by Porto municipality and its surroundings (part of 

Matosinhos, Maia, Vila Nova de Gaia and Gondomar), is represented as a large urbanized area 

(represented in red), while in the USGS24 original MM5 data, the urbanized area is much more 

restricted and concentrated in Porto municipality. Considering the entire simulation domain, in CLC24 

the urban land use is responsible for an area over 15 times larger in comparison with USGS24. 

The misrepresentation of land use from USGS-24 is also clear for the Aveiro region, with a large part of 

the coastal region represented as water. Looking at Aveiro urban region, only two urban cells are 

represented in USGS24, while CLC24 presents a larger urban area (151 km2). 

 

a) USGS24 b) CLC24 
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Figure 5.8 Comparison between (a) CLC24 and (b) USGS24 land use categories for D4. 
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Figure 5.9 Comparison between CLC24 and USGS-24 land use categories for D5. 
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It is possible to conclude that the land use in the study area is weakly represented in the USGS24 

original dataset. The upgrading of the land use representation in general, and the more realistic 

representation of urban areas, through the consideration of a greater number of urban cells, in 

particular, may prove to be important to the improvement of the modelling system’s performance.  

In order to test the new land use dataset and its effects on the simulation results, the current MM5 

land use (USGS24) was replaced by the developed CLC24, for domains 3, 4 and 5 of the simulation. 

Table 5.6 lists the statistical measures obtained for MM5-test2 simulation at Porto and Aveiro. Results 

for the remaining meteorological sites are presented in Appendix E (Table E.2). 

Table 5.6 Statistical measures for temperature and wind components obtained for MM5 – test2 simulation - 
summer (3-8 June 2006) and winter (16-24 December 2006) episodes. 

T u v 
 

r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs 

PT 

9km 

            
3km 

 

1km 

0.60 

0.48 

0.87 

0.73 

0.87 

0.77 

0.46 

0.85 

0.95 

1.07 

0.99 

1.12 

1.27 

1.11 

0.75 

1.27 

0.70 

1.24 

0.81 

0.95 

0.50 

0.77 

0.50 

0.73 

0.78 

0.22 

0.69 

0.17 

0.66 

0.14 

1.03 

1.30 

0.70 

0.42 

0.64 

0.40 

0.76 

1.79 

0.73 

1.07 

0.75 

1.11 

0.67 

1.47 

0.73 

1.01 

0.75 

1.01 

0.56 

0.13 

0.66 

0.12 

0.63 

0.06 

2.43 

1.52 

0.88 

0.35 

0.80 

0.31 

2.05 

2.27 

0.80 

1.37 

0.81 

1.35 

2.05 

2.18 

0.79 

1.11 

0.81 

1.08 

AV 

9km 

            
3km 

         
1km 

0.26 

0.27 

0.86 

0.66 

0.87 

0.73 

0.32 

0.70 

0.82 

1.08 

0.85 

1.07 

1.43 

1.19 

0.69 

1.44 

0.66 

1.27 

0.98 

1.06 

0.59 

0.84 

0.50 

0.76 

0.64 

0.42 

0.75 

0.26 

0.76 

0.26 

1.01 

1.58 

0.99 

0.82 

0.94 

0.96 

0.89 

2.00 

0.73 

1.11 

0.69 

1.15 

0.86 

1.50 

0.66 

1.12 

0.65 

1.11 

0.56 

0.36 

0.62 

0.39 

0.76 

0.44 

1.56 

3.14 

0.81 

0.90 

0.76 

0.94 

0.32 

3.00 

0.84 

1.07 

0.73 

1.06 

0.95 

2.94 

0.82 

1.05 

0.73 

1.05 

 

For temperature at Porto, Aveiro, and Braga, the best skill is obtained for the finer resolution both in 

summer and winter, as verified for test1; again better skills are obtained for summer. Regarding the 

wind components, best results for Porto are obtained at 9 km and 3 km resolutions for u and v, 

respectively; for Aveiro, wind is better simulated at 1 km resolution; Viseu and Braga do not present 

significant differences between resolutions. For the remaining sites, with simulated values only for the 

9 km resolution, skills are high except for the coastal locations of Viana do Castelo and Sines. 

In Appendix E the time series of temperature and wind components from test2 simulations and 

measurement data at Porto are presented for both episodes (Figures E2 and E3). All resolutions show 

an underestimation of temperature during the greatest part of the simulation periods; the best 

agreement between measured and simulated temperature is found at 1 km resolution. For wind 

components, the 3 and 1 km resolutions present lower simulated values and therefore better results. 

In order to better analyse the possible benefits of using a high-resolution land use dataset, results 

from test1 and test2 are now confronted. Figure 5.10 presents the spatial distribution of differences in 
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daily average temperature obtained for D4 (Porto Great Area), resulting from the use of the different 

land use datasets, for the summer episode.  
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Figure 5.10 Spatial plot of daily average temperatures differences (test2 minus test1) for D4, summer episode. 

A positive ∆T is found over Porto city for all days of the episode except June 8. Average daily 

temperatures differences reach values as high as 1.5°C over Porto, with hourly maximums of 3°C. 

Other significant positive temperature differences are found in the coastal cells and in the near coast 

sea cells. Negative differences are found in cells corresponding to forest (land uses 11, 14 and 15) in 
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the CLC24 land use dataset (test2), formerly corresponding to pastures and shrubland/grassland (land 

uses 2 and 9) in USGS24 (test1). 

At this point, an obvious question emerges: does this temperature increase over Porto correspond to a 

closer representation of the reality? Unfortunately, the available meteorological station is located in 

Matosinhos municipality, and not in Porto. Still, the comparison between test2 and test1 temperature 

values for Porto/Pedras Rubras meteorological station is presented in Figure 5.11. The slight increase 

in temperature obtained with test2 corresponds to a closer representation of the observed values; this 

is also confirmed by the comparison of statistical parameters presented in Tables 5.3 and 5.8, which 

are better for test2. 
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Figure 5.11 Summer episode D4 time series comparison of surface temperature for test2 and test1 in 
Porto/Pedras Rubras. 

 

Figure 5.12 presents the same comparison, now for the winter episode. Here the difference between 

the two tests are evident, with the higher temperature obtained for test2 being almost always closer 

to the observed values; this is confirmed by Tables 5.3 and 5.8 which are consistently better for test2. 
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Figure 5.12 Winter episode D4 time series comparison of surface temperature for test2 and test1 in Porto/Pedras 
Rubras. 

 

Results from D5 simulations, corresponding to Aveiro area, where the meteorological station located 

in the University is inside the urban area help answering the question above. Figure 5.13 presents the 
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spatial distribution of differences in daily average temperature between test2 and test1 for D5, for the 

last three days of the summer episode. 
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Figure 5.13 Spatial plot of daily average temperatures differences (test2 minus test1) for D5, the summer episode 
(6-8 June). 

 

A positive ∆T is found over a large part of the simulation domain; increases over Aveiro city (in the 

area of the meteorological station), in the order of 0.5 to 1°C, are clear in the cells corresponding to 

urban areas in the new land use. Positive temperature differences are also estimated near the coast in 

the border between Ílhavo and Aveiro municipalities, formerly water in USGS-24, and now in land and 

even urban cells. 

Figure 5.14 present the time series comparison of temperature for test1 and test2 simulations and 

measurement data at Aveiro. 
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Figure 5.14a) Summer and b) winter, episode time series comparison of surface temperature for test2 and test1 

in Aveiro, for D5 (1 km resolution). 
 

The time series for Aveiro for the summer episode confirms that test2 fits best the observed values, 

during the entire simulation period, but especially for higher temperatures. For the winter episode, 

however, results are not so clear: for the first half of the episode test2 seems to yield a better 

agreement with observed values, while for the second half test1 looks better. 

Considering the former analysis for Aveiro and the fact that it is a small urban area when compared to 

Porto, it is expected that the larger temperature increases presented in Figure 5.11 correspond to a 

closer representation of the reality.  

The same analysis is performed for wind speed in Appendix E. Figures E.4 and E.5 present the time 

series comparison of wind speed obtained with test 1 and test 2 and the observed wind speed for the 

summer and winter episodes, for Porto and Aveiro, respectively. The graphs, as well as the statistical 

parameters presented in Tables 5.3 and 5.8, show that differences between simulations are not clear. 

However, test2 results are closer to the observed values. For both episodes, wind speeds for Porto are 

highly underestimated by both tests.  

Figure E.7 shows the spatial distribution of differences in daily average wind speed obtained for D3 for 

the summer episode. For the majority of the episode the Porto municipality presents a decrease in 

wind speed in the order of 1 m.s-1, as a result of the land use dataset improvement: the larger urban 

area implies higher friction, therefore influencing (decreasing) the wind speed calculation in the 

model. Wind speed increases are found in a confined area in the mouth of Douro River. The statistical 
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parameters presented in Tables 5.3 and 5.8, consistently better for test2, confirm that test2 results are 

closer to the observed values. 

5.2.3 Test3 – PBL parameterization 

This test intends to verify the influence of a different PBL parameterisation in MM5 results, because, 

as already mentioned in §4.5.1, different PBL schemes significantly influence the model results. For 

domains 2 to 5, the previous tests (tests 1 and 2) used the ETA scheme parameterization [Janjic, 1990]; 

for test3 the Gayno–Seaman scheme [Gayno, 1994] was used. 

Table 5.7 lists the statistical measures obtained for MM5 – test3 simulation at Porto and Aveiro. 

Results for the remaining meteorological sites are presented in Appendix E (Table E.3). 

Table 5.7  Statistical measures for temperature and wind components obtained for MM5 – test3 simulation 
- summer (3-8 June 2006) and winter (16-24 December 2006) episodes. 

 T u v 

 r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs 

PT 

9km 

            
3km 

         
1km 

0.59 

0.46 

0.89 

0.85 

0.89 

0.86 

0.44 

0.64 

0.97 

1.09 

1.05 

1.13 

1.25 

1.36 

0.55 

0.70 

0.52 

0.67 

0.82 

0.91 

0.47 

0.58 

0.49 

0.58 

0.76 

0.31 

0.83 

0.23 

0.80 

0.24 

0.96 

1.01 

0.74 

0.52 

0.68 

0.51 

0.73 

1.34 

0.57 

1.05 

0.61 

1.05 

0.69 

1.19 

0.57 

1.02 

0.61 

1.01 

0.58 

0.12 

0.54 

0.10 

0.50 

0.08 

2.09 

1.19 

0.92 

0.48 

0.89 

0.44 

1.75 

1.99 

0.97 

1.46 

0.99 

1.43 

1.71 

1.89 

0.92 

1.22 

0.95 

1.19 

AV 

9km 

            
3km 

         
1km 

0.32 

0.24 

0.85 

0.84 

0.86 

0.84 

0.31 

0.45 

0.84 

0.93 

0.92 

0.99 

1.40 

1.45 

0.54 

0.67 

0.52 

0.63 

0.96 

1.02 

0.53 

0.56 

0.51 

0.56 

0.59 

0.50 

0.71 

0.31 

0.68 

0.32 

0.90 

1.23 

1.22 

1.08 

0.95 

1.04 

0.88 

1.54 

0.93 

1.33 

0.84 

1.33 

0.87 

1.16 

0.87 

1.23 

0.78 

1.19 

0.56 

0.39 

0.60 

0.31 

0.61 

0.35 

1.44 

2.74 

0.91 

1.10 

0.85 

1.05 

1.24 

2.54 

0.85 

1.29 

0.83 

1.17 

1.23 

2.52 

0.85 

1.24 

0.83 

1.17 

 

For surface temperature the best skill is obtained for the finer resolution both in summer and winter, 

again with a better skill result for summer. Regarding wind components, Aveiro and Braga present 

better results for the thinner resolutions; Porto and Viseu do not present a clear trend, with better 

skills varying with resolution and wind components. For the 9 km resolution, coastal cities (PT, AV, BR, 

VC, SN) present the worst results, due to the lack of high resolution land-use data. 

As an example, Figure 5.15 presents the time series comparison of the surface temperature and wind 

components, from test3 simulations and measurement data at Porto, for the summer episode. For 

temperature, the performance of the model increases with increased resolution; regarding wind 

components, the 3 and 1 km simulations are closer to the observed values, but the 9 km resolution 

seems to better follow the observed trend. 
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Figure 5.15  Summer episode time series comparison of surface a) temperature, b) zonal wind component, and c) 
meridional wind component from MM5-test2 simulations at 9 km, 3 km and 1 km, and surface measurements at 

Porto. 

 

Appendix E presents the same graphs for the winter episode (Figure E.7). For temperature, the 3 and 1 

km simulations present better results; regarding wind components, it is not possible to identify a 

resolution presenting better results. 

Figure 5.16 shows the spatial distribution of differences between test3 and test2 in daily average 

temperature obtained for D4 (Porto Great Area), for the summer episode. A positive ∆T is calculated 

over the entire domain, with the exception of a part of the ocean cells. Over Porto, temperature 

increases between 1°C and 2°C. In hourly terms, positive differences reach +4.2°C over Porto and Vila 

Nova de Gaia cities, and +3°C over most of the land. 
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Figure 5.16 Spatial plot of daily average temperatures differences (test3 minus test2) between model simulations, 

for the summer episode. 
 
At this point, it is clear that the significant temperature spatial differences between simulations are 

not translated into the statistical parameters; this is because there is a limited number of 

meteorological stations, namely for the 1 km resolution. 
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Figure 5.17 presents the time series comparison between test3 and test2 temperature values for 

Porto.  
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Figure 5.17 Time series comparison of surface temperature for test3 and test2 in Porto/Pedras Rubras for D4 a) 

summer episode and b) winter episode. 
 

It is possible to conclude that test3 clearly presents better results, with smaller deviations in relation 

to the observed values and with a better correlation; these improvements are particularly important 

for the winter episode.  

In Appendix E, Figure E.8 presents the spatial distribution of differences in daily average wind speed 

obtained for D3 (Porto Great Area) for the summer episode. For the first three days, the Porto 

municipality, as well as the majority of the simulation domain, presents a small increase in wind speed, 

ranging from 0.2 to 1.0 m.s-1; in the second half of the episode, differences between the two tests are 

negative but in the same order of magnitude. 

The main difference between ETA (test2) and Gayno-Seaman (test3) PBL schemes, is that the last one 

has the ability to provide cloud tendencies, allowing for the calculation of the sub-grid condensed-

phase processes associated with fog [Gayno, 1994; Mao et al., 2006]. This may help to understand the 

better performance of test3 in the study region. 
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5.2.4 Test4 – Urban roughness height  

Another important parameter in the simulation of atmospheric flow over urban areas is the urban 

roughness height. Rougher surfaces, and therefore higher roughness heights, are likely to cause more 

intense turbulence and therefore to affect the dispersion of pollutants [Stull, 1998; Rotach, 1999]. 

With the objective of better characterizing urban areas for meteorological modelling purposes, besides 

the land use improvement introduced in test2 and the PBL parameterization from test3, this test 

replaces the default urban roughness height (0.5 m) by a higher value, 1 m, as suggested by Pielke 

[1984] for city centres. This value was tested in a former study for the Lisbon urban area, and yielded 

good results [Aquilina et al., 2005]; therefore it was defined as part of the “optimum setup” for high-

resolution simulations over that area. 

Table 5.8 lists the statistical measures obtained for MM5 – test4 simulation at Porto and Aveiro; 

results for the remaining meteorological sites are presented in Appendix E (Table E.4). The 

confrontation of this table with table 5.9 reveals very similar numbers. However, Coimbra and Évora 

present slightly better results for test4 temperature in winter and summer, respectively. Porto and 

Aveiro show small differences in wind components between simulations, and for temperature results 

are identical. 

Table 5.8  Statistical measures for temperature and wind components obtained for MM5 – test4 simulation - 
summer (3-8 June 2006) and winter (16-24 December 2006) episodes. 

 T u v 

 r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs 

PT 

9km 

            
3km 

         
1km 

0.59 

0.46 

0.88 

0.85 

0.89 

0.86 

0.45 

0.64 

0.96 

1.09 

1.05 

1.13 

1.25 

1.36 

0.55 

0.70 

0.52 

0.67 

0.82 

0.90 

0.48 

0.58 

0.49 

0.58 

0.76 

0.30 

0.83 

0.22 

0.81 

0.26 

0.96 

0.98 

0.72 

0.48 

0.61 

0.44 

0.72 

1.33 

0.57 

1.05 

0.62 

1.05 

0.68 

1.18 

0.57 

1.01 

0.62 

0.99 

0.58 

0.08 

0.51 

0.10 

0.46 

0.11 

2.05 

1.19 

0.89 

0.46 

0.80 

0.40 

1.71 

1.99 

0.97 

1.46 

0.98 

1.44 

1.68 

1.88 

0.94 

1.22 

0.95 

1.18 

AV 

9km 

         
3km 

         
1km 

0.32 

0.24 

0.85 

0.84 

0.87 

0.84 

0.31 

0.45 

0.84 

0.92 

0.94 

0.98 

1.40 

1.46 

0.53 

0.66 

0.50 

0.63 

0.96 

1.02 

0.52 

0.56 

0.49 

0.56 

0.59 

0.50 

0.71 

0.33 

0.68 

0.34 

0.90 

1.24 

1.19 

1.08 

0.84 

0.92 

0.89 

1.53 

0.90 

1.30 

0.81 

1.22 

0.87 

1.16 

0.85 

1.21 

0.75 

1.11 

0.57 

0.40 

0.58 

0.28 

0.59 

0.33 

1.42 

2.72 

0.89 

1.09 

0.75 

0.98 

1.21 

2.52 

0.87 

1.32 

0.83 

1.16 

1.20 

2.50 

0.87 

1.26 

0.83 

1.14 

No figures are presented for the time evolution and spatial distribution of temperature or wind 

differences between tests 4 and 3, because differences between the two tests results are minimal, 

with a maximum positive ∆T of 0.3°C in a confined area in Porto municipality. The differences in 

average daily means range from -0.4°C and +0.3°C; wind speed differences are irrelevant. 
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Once more, the limited number of meteorological stations in urban environments, namely for the 1 

km resolution, does not allow the full assessment of possible benefits of using a higher urban 

roughness height value. 

Next results from the sensitivity tests are compared. 

5.2.5 Sensitivity tests inter-comparison 

Results from the four MM5 sensitivity tests are now compared and analysed in order to select the 

most suitable model configuration. Figure 5.18 presents the summer episode temperature scatter 

diagrams and time series evolution of simulated and observed temperatures for Porto and Aveiro at 1 

km resolution. Appendix E contains the same graphs for a selection of the remaining meteorological 

sites: Viseu and Braga (3 km resolution), and Lisboa and Faro (9 km resolution) (Figure E.9). In the case 

of overlapping of test 1 and test2 results, diagrams may not show the results for test1 (in violet) since 

these are underneath test2 results (in blue); the same is valid for test3 results (in orange) that can be 

found underneath test4 results (in green). 
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Figure 5.18 Scatter diagram of observed versus modelled temperature at Porto and Aveiro (1 km resolution), 

summer episode. 

The first remark is that simulations can clearly be divided in two groups - simulations 1 and 2, and 

simulations 3 and 4. In general, tests 3 and 4 present the best results for all the analysed sites. 
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Temperature is almost always underestimated, and specially for higher temperatures; also higher 

differences between the four tests are found for higher temperatures. For Porto and Aveiro, test2 is 

clearly better than test1 due to the land use improvement; while Porto presents no differences 

between test3 and test4 (the meteorological station is located in a rural area), for Aveiro the last fits 

slightly better the observed values. Viseu and Braga do not present as good results as Porto and 

Aveiro, probably due to the lower resolution (3 km); tests 1 and 2 results are very similar with the last 

one slightly better, indicating that differences in land use datasets are bigger for the higher resolution 

(1 km). Lisboa and Faro simulated values are not so good due to the coarser resolution (9 km), for this 

reason also differences between tests 1 and 2 and between tests 3 and 4 are not perceivable. 

The same graphs for winter are presented in Figure 5.19 (and E.10 in Appendix E). The analysis is 

similar to the one presented for the summer period, with the exception of Braga which presents an 

over-estimation of the winter episode temperatures. As observed previously, namely through the 

statistical analysis, winter results are not as good as summer results. 
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Figure 5.19 Scatter diagram of observed versus modelled temperature at Porto and Aveiro (1 km resolution), 

summer episode. 

 

The inter-comparison continues with the graphical analysis of the statistical parameters (r, S/Sobs and 

Eub/Sobs) obtained for all meteorological sites; for the sites which have results for more than one 

resolution, only the best resolution(s) is(are) presented. Figure 5.20 presents the statistical parameters 
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calculated for temperature through the four sensitivity tests, for the studied episodes. Again, for the 

majority of sites, simulations can be divided in two groups - simulations 1 and 2, and simulations 3 and 

4 – since statistics are very similar. Both episodes show better results for tests 3 and 4, with higher 

correlation factors, S/Sobs closer to 1 and smaller deviations (smaller EUB/Sobs), for the majority of 

analysed sites. Also it is clear that differences between tests are higher for the winter episode. 
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Figure 5.20 Sensitivity tests statistical comparison for temperature, for the a) summer episode and b) winter 

episode. 
 

Figure 5.21 presents the statistical parameters the wind components, for the summer episode. The 

statistical parameters r and Eub/Sobs present higher skills for simulations 1 and 2; the parameter S/Sobs 

is not conclusive since there is a clear equilibrium between the two simulation groups. For Porto 
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meteorological station in particular tests 3 and 4 present better results for u, while test2 is the best for 

v. For Aveiro, however test2 presents the best results for both wind components.  
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Figure 5.21 Sensitivity tests statistical comparison for a) u and b) v, for the summer episode. 

 

Figure 5.22 presents the same for the winter episode; in this case the general statistical analysis is 

inconclusive. For Porto test3 results are the best for u, while for v it is not possible to draw any 

conclusion. 
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Figure 5.22 Sensitivity tests statistical comparison for a) u and b) v, for the winter episode. 

 

Although the different tests yield distinct results for temperature and wind, especially for the thinner 

resolution, it is not possible to clearly identify the most adequate configuration. For temperature the 

best results are obtained with simulations 3 and 4; for wind components the best summer results are 

those from test2, and the winter episode is not conclusive. One of the reasons for the impossibility of 

choosing the best configuration concerns the reduced number of meteorological stations in the study 

area, namely in Porto; it was shown that differences between the tests are more significant when the 

simulation had a higher resolution. Therefore the choice is postponed to the following section, where 

the MM5 outputs are tested as CAMx inputs, and results for air pollutants concentrations are analysed 

to select the most well suited meteorological model configuration. 
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5.3 Air quality modelling setup 

The skill of an air quality simulation depends on several factors, among which meteorological 

conditions, including meridional and zonal wind components, temperature, water vapour mixing ratio, 

surface pressure, solar radiation, cloud fraction, precipitation, boundary layer height, and turbulence 

are known to have direct impact on the simulation [Seaman, 2000]. Sensitivities and uncertainties in 

air quality modelling arise when gridded meteorological fields are generated by mesoscale 

atmospheric models using different physics and parameterizations, and spatial and temporal 

resolutions [Pielke and Uliasz, 1998].  

Here, the CAMx reference-setup is described, and its sensitivity to the different MM5 inputs is 

analysed, in order to select the most suited MM5 configuration, i.e., the MM5 configuration that yields 

better air quality results. The results from CAMx simulations are evaluated against each other, but also 

against data from a group of air quality stations. Hourly data for particulate and gaseous species from 

the Northern Region Air Quality Network, for the periods 3-8 June and 16-24 December, were 

downloaded from the Air quality database website [URL13], to be used in the CAMx performance 

evaluation. The air quality monitoring network of the Northern region has already been presented in 

chapter 4 (Table 4.3). The air quality stations selected for the validation procedure include those 

located in CAMx domain 3 (over Porto urban area, with 1 km2 resolution), i.e., those belonging to 

Coastal Porto agglomeration, with available data for the periods under study. 

Hanna et al. [1993] recommend a group of statistical parameters that have been adopted as a 

reference method in the European Union for air quality models evaluation [Olesen, 2001]. Among the 

group, three main parameters, which have been used in a variety of studies [Borrego et al., 2008a], 

were selected for a quantitative error analysis - the correlation coefficient (r), the mean quadratic 

error (MQE) and the bias (BIAS): 
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where: n is the total number of sample pairs, Cobsi is the observed value at time i and Cmodi is the 

respective simulated concentration. These three parameters offer complementary information: the 

correlation factor (r) translates the linear relation between concentrations, reflecting a better or worst 
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reproduction of physical and chemical atmospheric processes; MQE and BIAS give an indication of the 

deviation between observed and simulated concentrations, either in absolute (MQE) or in systematic 

terms (BIAS), allowing the inference of the magnitude and trend of the errors, respectively. For both 

the ideal value is zero. 

These three parameters will be used for O3 and PM10 results evaluation. For ozone, additional quality 

indicators given by the USEPA for the evaluation of photochemical models [USEPA, 1991] are used, 

namely the mean normalized bias error (MNBE), the mean normalized gross error (MNGE), and the 

unpaired peak prediction accuracy (UPA): 
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where: Cmod(x,t) is the modelled concentration in site x at time t, Cobs(x,t) is the observed concentration 

in site x at time t, Cmod(x,t)max is the maximum model concentration in site x at time t, Cobs(x,t) max is the 

maximum observed concentration in site x at time t, and n is the number of monitoring sites. 

Although there is no objective criterion set forth for a satisfactory model performance, US EPA 

suggested values of ±5–15% for MNBE, 15–20% for UPA, and 30–35% for MNGE, to be met by 

modelling simulations being used for regulatory applications [Hogrefe et al., 2001]. 

5.3.1 CAMx reference setup 

CAMx version 4.5.1., released in May 2008, was used for this study. The setup here described can be 

considered the reference since it corresponds to the configuration established in previous MM5-CAMx 

modelling system applications for Portugal [Ferreira et al., 2003, 2004; Ferreira, 2007].  The chemical 

mechanism 4 (CB-IV with additional reactions, including aerosol chemistry) was used. The 

meteorological input data for CAMx is generated by the MM5 mesoscale model, through the 

MM5CAMx pre-processor made available by ENVIRON [URL17].  

5.3.1.1 Initial and boundary conditions 

The initial and boundary conditions used were defined based on the results from a study conducted by 

Carvalho [2005], and already used by Ferreira [2007], which defined fixed top concentrations for each 

month of the year, for a group of species of CBIV mechanism. The determination of monthly top 
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concentrations resulted from the treatment of historical air quality data, with the identification of the 

annual average pattern for each air quality station considered in the study Carvalho [2006]. 

5.3.1.2 Emissions processing 

The 2005 National Emission Inventory [URL10] was used as the anthropogenic emission inventory for 

the 2006 episode simulations, since no data are available for the year of the simulations. The inventory 

was elaborated according to the CORINAIR methodology [EEA, 2006b], and groups the emissions by 

the activity sector. For modelling purposes, in the reference setup, anthropogenic emissions are 

treated separately in two groups: large point sources (industrial facilities with high production levels 

and high emission levels), and area sources (diffuse pollutant activities). The pollutants considered 

include NOx, NMVOC, CO, NH3, PM10 and PM2.5.  

Figure 5.23 presents the distribution of large point sources, their location in terms of municipality, and 

additional information such as the fuel used and the production process. 
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Figure 5.23 Large point emission sources.  

 

For the large point sources, 32 installations were considered at the national level according to the 

industrial processes: refineries, power plants, pulp and paper, cement and chemical products. Data 

requirements for these emission sources include the stack parameters (location, height and diameter) 

and the effluent parameters (output temperature and speed, flow and emissions) of all sources and all 

pollutants emitted (gaseous and particulate).   
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The National Inventory only contains annual totals. Because atmospheric modelling requires a higher 

temporal resolution, preferably hourly, further processing of the inventory was needed. In the 

reference setup, the inventory was processed through a program, AREA_EMIS, previously developed 

for the UAM-IV model [USEPA, 1990], with some changes and improvements introduced for CAMx: 

Those include the temporal resolution in order to consider 4 typical days (weekend and week, for 

summer and winter) and therefore build 4 typical emission grids [Ferreira, 2007]. The differences 

between these 4 typical days are given by different traffic profiles, obtained through traffic counting 

for Porto, in the frame of SAPHIRE project [Oliveira et al., 2004].  

Because chemical mechanisms contain a simplified set of equations that use representative ‘‘model 

species’’ to represent atmospheric chemistry [Dodge, 2000], it is necessary to supply the model with 

the species profiles, namely for NOx, NMVOC and PM. For the reference setup, the NMVOC speciation 

was processed according to Zlatev et al. [1993]; for NOx, a constant non-specific NO/NOX ratio of 0.9 

has been assumed for all the categories; for PM2.5 the speciation profile considered an equal 

contribution from the three species considered (POA, PEC and FPRM). Table 5.9 presents the profiles 

used in the reference set-up; no category-specific profiles were used, meaning that a single profile was 

used for every emission source category. 

Table 5.9 NMVOC and PM speciation profiles for the CAMx reference setup. 
Compound class Species Profile 

NMVOC Parafines 
Toluene 
Xylene 
Formaldehyde 
Ethene 
Other aldehydes 

0.57 
0.153 
0.123 
0.025 
0.056 
0.004 

PM10 CPRM – other coarse primary aerosol (1-PM2.5) 

PM2.5 POA – primary organic aerosol 
PEC – primary elemental carbon 
FPRM – other fine primary aerosol 

0.33 
0.33 
0.34 

For biogenic emissions a bottom-up approach is used. The methodology for Portugal was developed by 

Tchepel [1997], and requires the knowledge of the temperature, solar radiation and forest area density. For 

the CAMx simulations, biogenic emissions are given as isoprene and monotherpenes. 

5.3.2 Results 

This section presents the results of CAMx simulations using meteorological input data from the four 

MM5 sensitivity tests carried out previously, in order to check their influence on the air quality 

simulation outputs. The analysis of the results is presented for the summer and the winter episodes. 
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5.3.2.1 Summer episode 

Table 5.10 presents statistical results for ozone for the summer episode, averaged for the air quality 

monitoring sites of the domain, for each of the simulation domains, with the best results highlighted in 

bold.  

Table 5.10 CAMx reference setup statistical results obtained for ozone, summer episode. 
r BIAS 

(µg.m
-3

) 

MQE   

(µg.m
-3

) 

MNBE (%) MNGE (%) UPA   (%) 

MM5 INPUT Ozone 9 km resolution (D1)  

test 1 0.61 28.1 3.83 -8.9% 21.2% -5.8% 
test 2 0.65 27.4 3.67 -8.6% 18.8% -0.1% 

test 3 0.66 35.2 4.04 -32.6% 26.2% -21.6% 
test 4 0.66 35.2 4.03 -33.5%  27.0% -25.8% 

 Ozone 3 km resolution (D2)  

test 1 0.60 32.65 4.09 -35.7% 28.7% -8.8% 
test 2 0.66 31.44 3.93 -31.7% 19.9% -5.0% 

test 3 0.65 39.47 4.31 -48.8% 23.2% -21.0% 
test 4 0.65 39.46 4.31 -49.4% 23.5% -26.1% 

 Ozone 1 km resolution (D3)  

test 1 0.60 34.17 4.16 -42.6% 26.0% -22.1% 
test 2 0.64 33.17 4.00 -33.4% 17.9% -14.1% 

test 3 0.63 41.54 4.49 -51.8% 14.1% -30.9% 
test 4 0.63 41.57 4.49 -52.4% 14.4% -34.5% 

USEPA guidelines - - - ± 5-15% 15-20% ± 30-35% 
 

Results reveal that the highest correlation coefficients are obtained for MM5 test2 for the 1 km and 3 

km resolutions, and for tests 3 and 4 for the 9 km resolution. The other statistical measures, however, 

are better for test2 for all simulation domains: lower biases, lower average errors and a better peak 

prediction accuracy. Comparing the obtained parameters with the USEPA guidelines: all the 

simulations meet the UPA criteria; the MNBE criteria are met only for test1 and test2 9 km resolution;  

and for MNGE, test2 meets the criteria for every resolution. The positive biases, and the negative 

normalized biases, obtained with any MM5 output and for all resolutions reveals that O3 is under-

predicted. The analysis also indicates that the best over all results are obtained for the 9 km 

resolution: although correlation coefficients are not very different among resolutions, biases and 

errors are smaller for this resolution. This is not an outcome of the meteorological inputs since the 

MM5 performance increased significantly for the 3 km and 1 km resolutions when compared to the 9 

km resolution. Hence, a possible explanation could be related with the current spatial allocation of 

emissions, revealing that the higher the resolution the lower the accuracy of the emissions 

disaggregation. 

Figure 5.24 presents the graphical analysis of the statistical parameters (r, BIAS and MQE) for each air 

quality monitoring site for the 1 km resolution, for ozone.  

 



Setup of the urban air quality modelling system 

125 

 TE S T1 TE S T2 TE S T3 TE S T4
 

a) 

0.0

0.2

0.4

0.6

0.8

A NT B A G V R M E R M L B V NT C S T P E R

r

 

b) 

0

10

20
30

40

50

60

ANT B AG V R M E R M L B V NT C S T P E R

B
IA

S
(

g
.m

-3
)

 
c) 

0

1

2
3

4

5

6

ANT BAG VRM ERM LB VNT CST PER

EQ
M

 ( µ
g.

m
-3

)

 

Figure 5.24 CAMx reference statistical results for ozone for the 1 km simulation (D3)  a) r, b) BIAS, and c) MQE, for 
the summer episode. 

Regarding the correlation coefficient, the highest values are generally obtained for test2, with the 

exception of Vermoim, Vila Nova da Telha and Perafita, for which tests 3 and 4 are better. The BIAS 

and MQE are smaller for test2 for all sites, with tests 3 and 4 presenting considerably worse results. No 

different tendency was detected between traffic (VRM, ANT, BAG), background (VNT, ERM, LB) and 

industrial (CST, PER) stations. 

As an example of the spatial distribution of concentrations, Figure 5.25 shows the O3 and NO2 

concentration fields obtained for the 06.06.06, from 12:00 to 15:00 (a period for which some of the 

highest ozone concentrations were observed) using MM5 test2 results as input for CAMx, for the 1 km 

resolution (D3); the coloured circles represent the concentrations observed in the air quality 

monitoring sites. From the figure, the ozone underestimation is clear mainly because of the 

misallocation of the ozone plume: where the monitored concentrations are showing higher values 

(such as Antas, Baguim and Ermesinde at 12:00) the simulation yields lower concentrations. Looking at 

the NO2 concentration fields, it is also evident that while the simulation shows higher values in 

Matosinhos municipality, the monitored values are higher in Porto. The misallocation of NO2 

emissions, as well as the use of inadequate time profiles, can therefore help to explain the 

misallocation of the ozone plume. 
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Figure 5.25 O3 and NO2 concentration fields (µg.m-3) for 06.06.06, using test2 MM5 inputs, D3 (1 km resolution). 
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Table 5.11 shows the statistical results for PM10, averaged for the air quality monitoring sites of the 

domain, for the summer episode, for each of the simulation domains, considering hourly values.  

Table 5.11 CAMx reference setup statistical results obtained for PM10, summer episode. 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) MM5 

INPUT 
PM10 – 9 km resolution (D1)  PM10 – 3 km resolution (D2)  PM10 – 1 km resolution (D3)  

test 1 0.19 23.5 2.71 0.17 22.2 2.76 0.16 21.3 2.80 

test 2 0.22 21.5 2.61 0.21 20.5 2.72 0.22 19.3 2.67 

test 3 0.22 18.0 2.62 0.18 15.5 2.91 0.17 13.6 2.97 

test 4 0.21 18.3 2.63 0.17 15.8 2.93 0.16 14.0 3.01 

Results show very low correlation coefficients, probably due to the use of inappropriate hourly 

emission profiles and a inadequate spatial distribution of emissions. The best correlations are those 

obtained with test2; the lowest BIAS are calculated with test3 and the lowest MQE with test2. The 

positive biases obtained for all MM5 outputs and for all resolutions indicate that PM10 is under-

predicted. In opposition to what happened for ozone, the analysis does not reveal a better over all 

resolution, with the 9 km and 1 km resolutions presenting similar statistics. 

Figure 5.26 presents the graphical analysis of the statistical parameters (r, BIAS and MQE) for each site 

for the 1 km resolution and the summer episode.  
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Figure 5.26 CAMx reference setup statistical results for PM10 for the 1km simulation (D3) a) r, b) BIAS, and c) MQE, for 
the summer episode. 
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Regarding the correlation coefficient, the highest values are obtained for Espinho and Matosinhos, two 

traffic stations; test2 presents the best results , with tests 3 and 4 presenting  better skills only for two 

sites (Vila Nova da Telha and Ermesinde). The obtained BIAS is positive for all stations and lower for 

tests 3 and 4, except for Antas. Test2 can be identified as the best regarding the mean quadratic error. 

To conclude the analysis for the summer episode, Figure 5.27 presents the PM10 daily average 

concentration fields,  calculated using as meteorological inputs test2 and test3 MM5 results, for 

domain 3 (1 km resolution). The circles represent the concentrations measured in the air quality 

monitoring sites. 
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Figure 5.27 PM10 daily average concentration fields (µg.m-3) for the summer episode, using a) test 2 and b) test 3 

MM5 inputs, D3 (1 km resolution).  
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Figure 5.27 (cont.) PM10 daily average concentration fields (µg.m-3) for the summer episode, using a) test 2 and 

b) test3 MM5 inputs, D3 (1 km resolution).  

 

The shape of the PM10 plume is very similar for the two tests, however test3 presents higher PM10 

concentrations over the entire simulation domain, which results in a better performance over certain 

sites, such as Boavista, Matosinhos, Ermesinde and Vermoim, and in a worst performance over Antas. 

Both tests fail to capture the high concentrations registered in the NW part of the domain; the PM10 

plume seems to be displaced towards SE. 
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From the above, and for the summer episode, it is not easy to identify the best MM5 configuration for 

PM10 concentrations simulations, since test2 presents the greatest number of higher statistical skills 

but test3 seems to better spatially represent PM10 concentrations over Porto. However, test2 was 

clearly identified as the best MM5 configuration for ozone concentrations reproduction. Therefore, 

and in conclusion, test2 is identified as the most suitable MM5 configuration for the summer episode 

air quality simulations.  

5.3.2.2 Winter episode 

For the winter episode, only the results for PM10 are presented since in this period no considerable 

ozone concentrations were observed (hourly maximum of 70 µg.m-3). Table 5.12 presents the 

statistical results for PM10, averaged for the air quality monitoring sites of the domain, for the winter 

episode, for each of the simulation domains, considering hourly values. Results reveal higher 

correlation coefficients in comparison to those obtained for summer, the best for tests 3 and 4. For the 

other statistical measures the best option is not clear, however tests 2 and 3 are the ones with a 

greater number of higher skills. In general, tests 1 and 2 present a positive bias, indicating an under-

prediction of PM10 concentrations, on the other-hand, tests 3 and 4 tend to over-predict PM10. 

Table 5.12 CAMx reference setup average statistical results obtained for PM10, winter episode. 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) MM5 

INPUT 
PM10 9 km resolution (D1)  PM10 – 3 km resolution (D2)  PM10 – 1 km resolution (D3)  

test 1 0.19 11.2 3.2 0.21 6.8 3.5 0.20 4.9 4.13 

test 2 0.22 9.4 3.1 0.24 6.8 3.4 0.24 4.2 4.06 

test 3 0.36 0.1 3.6 0.35 -4.6 4.2 0.33 -8.2 3.4 

test 4 0.36 -0.7 3.6 0.35 -5.2 4.3 0.33 -8.5 3.5 

 

Figure 5.28 presents the graphical analysis of the statistical parameters (r, BIAS and MQE) obtained for 

each site, for the 1 km resolution. The correlation factor is higher for tests 3 and 4 for all stations; 

regarding the BIAS and MQE it is not easy to identify the best option, but tests 3 and 4 seem to yield 

better scores. It is worth mentioning the high negative biases obtained for Antas and Boavista traffic 

sites, located in Porto municipality, indicating a significant over-prediction of PM10 concentrations for 

all tests.  
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Figure 5.28 CAMx statistical results for PM10 for the 1 km simulation (D3) a) r, b) BIAS, and c) MQE, for the winter 

episode. 
 

Figure 5.29 shows the PM10 daily average concentration fields  for the winter episode, using tests 2 

and 3 MM5 outputs as input for CAMx, for domain 3 (1 km resolution). Test3 yields higher PM10 

concentration in comparison with test2, which has different implications in the model performance 

depending on the site that is analysed: in general, test2 is the best representing the PM10 daily 

average for Porto and Boavista; for the greatest part of the remaining monitoring sites, however, test3 

better represents the high daily averages monitored, which test2 is not able to simulate.  
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Figure 5.29 PM10 daily average concentration fields (µg.m-3) for the winter episode, using a) test 2 and b) test 3 

MM5 inputs, D3 (1 km resolution). 
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Figure 5.29 (cont.) PM10 daily average concentration fields (µg.m-3) for the winter episode, using a) test 2 and b) 

test 3 MM5 inputs, D3 (1 km resolution). 
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Figure 5.29 (cont) PM10 daily average concentration fields (µg.m-3) for the winter episode, using a) test 2 and b) 

test 3 MM5 inputs, D3 (1 km resolution). 
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From the above analysis, test3 seems to be the most suitable MM5 configuration for the simulation of 

the winter episode PM10 levels, since it better represents the observed concentrations.  

5.4 Final remarks 

The results of the MM5 sensitivity tests were analysed and provided no clear conclusion about the 

most suitable meteorological model configuration. Next, MM5 outputs were fed to CAMx model and 

output concentrations were compared among each other and with observed O3 and PM10 values. 

Different conclusions were then drawn for each episode and pollutant. In the summer period, test2 

provided the best results for the simulation of ozone levels. For PM10 test2 also presented higher 

correlation factors and smaller errors, test3 however, produced smaller deviations, appearing to 

better represent spatial PM10 concentrations. For the winter episode, test3 provided the highest 

PM10 concentration correlations and the smaller errors and deviations, as a result of the better 

meteorological results obtained with Gayno-Seaman PBL scheme. 

From the above it is decided that test2 shall be the MM5 configuration for the simulation of summer 

months (April to September) and test3 the configuration for the winter period (January to March, and 

October to December). 

However, it is considered that modelling results should be improved, namely the correlation factors 

obtained for PM10 (in the order of 0.20 and 0.40, for the summer and winter episodes respectively), 

and the deviations for ozone (30 - 40 µg.m-3). Therefore, a set of improvements and developments has 

implemented in the air quality model, before its application to the study case; this is the subject of the 

next chapter. 
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6 IMPROVEMENT OF THE URBAN AIR QUALITY MODELLING 

CONFIGURATION 

 

 

 

Air quality models are subject to uncertainty resulting from inaccuracies in the meteorological inputs, 

as addressed in the previous chapters, as well as from parameterizations and approximations 

embedded in the model algorithms and chemical mechanisms, and uncertainties in emissions [Hanna 

et al., 1998; Mallet and Sportisse, 2006; Appel et al., 2007]. Emission inventories are crucial 

ingredients to successfully simulate atmospheric pollutants concentrations, although including 

substantial uncertainties related to the spatial and temporal allocation of emissions, as well as the 

chemical speciation [Mao et al., 2006; Monteiro et al., 2007b; Webster et al., 2007]. 

In this chapter, the steps taken to improve the urban air quality modelling system performance for the 

study case are described. The developments introduced include the refinement of the spatial 

distribution of emissions, taking into account the new land use dataset for the region, and the 

consideration of region-specific temporal profiles and chemical speciation profiles. These 

developments result in the creation of a new emission pre-processor.   

The outcome of this process is an improved MM5-CAMx configuration, to be applied in the study-case. 

6.1 Initial and boundary conditions 

A three-dimensional air quality model contains a set of differential equations, which are approximated 

and then solved to obtain the concentrations of a set of chemical constituents in time and space. 

Solving these differential equations, however, requires initial conditions (IC) and boundary conditions 

(BC) to be defined for all constituents [Liu et al., 2001; Jiménez et al., 2007; Samaali et al., 2009]. IC are 

specified within the simulation domain at the beginning of simulation, while BC are prescribed 

throughout the simulation period.  

Either observations or predictions from a larger-scale air quality model can be used to determine the 

chemical IC and BC values that are needed. In principle observations are preferred, but in practice it is 
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difficult or impossible to obtain measurements for all of the required species with the spatial and 

temporal resolution required by air quality models. This leads to uncertainties in the chemical IC and 

BC used (e.g., temporal non-representativeness, spatial interpolation errors), which then affect the 

model predictions [Berge et al., 2001]. 

IC influence has been found to be significantly reduced (i.e., to 10% or less) after two days of model 

integration [Berge et al., 2001]. Regarding BC, there are more difficulties in their characterization. 

Seinfeld and Pandis [1998] have suggested three methods to minimize the influence of chemical BC: 

(1) extend the modelling domain far enough to include all emission sources that affect atmospheric 

composition in the area of interest; (2) include the effect of these sources in the BC implicitly; and (3) 

use larger-scale simulations to provide BC for the smaller simulated domain. 

The first method can require the use of very large modelling domains that may be very expensive 

computationally [e.g., Fiore et al., 2009]; the second method employs time-independent BC during the 

model integration period [e.g., Hogrefe et al., 2004]; whereas the third method uses time-dependent 

BC [e.g., Hogrefe et al., 2006]. The time-dependent methods are often applied in multi-scale nested 

simulations and are potentially the most realistic treatment [Samaali et al., 2009]. 

For the CAMx improved setup, initial concentrations and hourly boundary conditions were created 

from output concentration files from the LMDz-INCA chemistry-climate global circulation model 

[Hauglustaine et al., 2004] for gaseous species, and from the global model GOCART [Ginoux et al., 

2001] for aerosols. In order to use the output files from the global models, an interface program 

developed specifically for this purpose, within a collaboration between the University of Santiago de 

Compostela and the University of Aveiro, was used. The program was based in an existent application 

for CHIMERE model [Vautard et al., 2001], which allows the reading of the global model’s output data 

and the writing of these data in a CAMx-compatible format. This program executes all the 

interpolation operations necessary to adapt the data given by the global models (with a grid resolution 

between 0.5 and 1 degree) to those needed for the air quality simulations (a few kilometres 

resolution).  

The application of the interface program results in the production of 12 IC and 12 BC files, containing 

different concentration values for each month of the year. 

6.2 Land-use based emission spatial disaggregation scheme 

Accurate estimation of pollutant emissions is crucial to successful air quality modelling. The emissions 

inventories are subject to large uncertainties, including (1) the degree of completeness of the 

inventory; (2) the quality of emission factor estimates; and (3) the accuracy of the inventory's 

temporal and spatial patterns [Placet et al., 2000; Sawyer et al., 2000].  
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The national emission inventory used in the present study compiles total annual quantities of 

anthropogenic emissions to the air, which are assigned by municipality and SNAP (Selected 

Nomenclature for sources of Air Pollution) category. Table 6.1 lists and briefly describes each of the 

ten considered SNAP categories. 

Table 6.1. SNAP categories considered in the study. 

SNAP  NAME DESCRIPTION 

1 COMBUSTION IN ENERGY AND 

TRANSFORMATION INDUSTRIES  

Public electricity and combined heat and power stations, 

district heating, transformation to solids and to gases, 

petroleum refineries.  

2 NON-INDUSTRIAL COMBUSTION 

PLANTS 

Heat generation in other sectors than industry and energy 

production and transformation (commercial, institutional and 

residential plants). 

3 COMBUSTION IN MANUFACTURING 

INDUSTRY 

Heat generation and production processes whose heat 

demand is met through combustion.  

4 PRODUCTION PROCESSES Non-combustion related sources only (petroleum, metal, 

chemical, pulp and paper, food, drink and other industries). 

5 EXTRACTION AND DISTRIBUTION OF 

FOSSIL FUELS AND GEOTHERMAL 

ENERGY 

Energy related non-combustion sources (extraction, 

treatment and loading of solid, liquid and gaseous fuels; 

liquid fuel, gasoline and gas distribution). 

6 SOLVENT AND OTHER PRODUCT USE Use of solvents through application of solvent containing 

products, as an agent, and in manufacturing and processing 

of products (paint application; degreasing and dry cleaning 

and electronics; others; use of HFC, N2O, NH3, PFC and SF6). 

7 ROAD TRANSPORT Vehicles moving and parking.  

8 OTHER MOBILE SOURCES AND 

MACHINERY 

Operation of aircraft, ships, tractors, construction machinery, 

lawn movers, military and other equipment. 

9 WASTE TREATMENT AND DISPOSAL Waste incineration with or without heat recovery, solid waste 

disposal on land and other waste treatment. 

10 AGRICULTURE Non-energy processes in culture, and animal breeding (on-

field burning is included).  

 

In the reference setup, the inventory was further disaggregated at the sub-municipality level 

(freguesia), using population data given by Census 2001, concerning population and fuel consumption 

[Monteiro et al., 2001]. For the improved setup the land use data is the corner stone of the 

disaggregation process. 

Therefore in this section, spatial surrogates are presented to disaggregate 2005 national emission 

totals [URL10] onto a spatially resolved emission inventory, which can be used as input for any air 

quality model domain over Portugal, and specifically for the CAMx model domains already presented.  
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A spatial surrogate is a value greater than zero and less than or equal to one that specifies the fraction 

of the emissions of a particular country, in this case Portugal, which should be allocated to a particular 

grid cell of the air quality model domain of interest [Eyth and Habisak, 2003]. Typically, some type of 

geographic characteristic is used to weight the attributes into grid cells in a manner more specific than 

a simple uniform distribution. In this study, based on the methodology described in Maes et al. [2009], 

satellite derived CORINE land cover (CLC) data in combination with national statistics are applied as 

spatial surrogate variables for disaggregating non-point emission sources over Portugal. The surrogate 

value is calculated as the ratio of the attribute value in the intersection of the country and the grid cell 

to the total value of the attribute in the country; examples of such weight attributes are population, 

number of households or land use. 

Several studies have also used CORINAIR data to produce spatially and temporally resolved emission 

inventories [Lenhart and Friedrich, 1995; Kluizenaar et al., 2001; Friedrich and Reis, 2004; Monforti 

and Pederzoli, 2005; Poupkou et al., 2007; Borge et al., 2008; Maes et al. , 2009]. However, this type of 

study was never conducted before for the Portuguese emission inventory.  

The methodology developed and applied is presented in Figure 6.1.  
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S2 S2 –– population disaggregated over CLC2000population disaggregated over CLC2000

S3 S3 –– industry employment disaggregated over CLC2000industry employment disaggregated over CLC2000

S4 S4 –– industry employment disaggregated over CLC2000industry employment disaggregated over CLC2000

S5 S5 –– CLC2000CLC2000

S6 S6 –– population disaggregated over CLC2000population disaggregated over CLC2000

S7 S7 –– population disaggregated over CLC2000 + motorway networkpopulation disaggregated over CLC2000 + motorway network

S8 S8 –– CLC2000CLC2000

S9 S9 –– population disaggregated over CLC2000population disaggregated over CLC2000

S10 S10 ––agriculture employment disaggregated over CLC2000agriculture employment disaggregated over CLC2000
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Figure 6.1 Methodology for the spatial disaggregation of the 2005 National Emission Inventory.  

 

First, point source emissions (those already described for the reference setup) were allocated on the 

air quality domain of interest. Next, non-point emissions, for each SNAP category, were spatially 

distributed using specific quantitative spatial surrogate data, based on statistics from the National 
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Statistics Institute (INE), and other source specific activity data, and on CLC2000 data for Portugal, a 

dataset already described in §4.2.2. It is worth mentioning that SNAP1 emissions are all included as 

point sources; therefore no disaggregation was performed for this sector.  

Figure 6.2 presents CLC2000 for Portugal, with a 250x250 m resolution, and its 44 classes, a dataset 

that will be extensively used in the disaggregation process. The two most representative land use 

classes are the agricultural areas (Class 2) and forest and semi-natural areas (Class 3), each one 

representing approximately 48%, therefore together 96% of the national territory; artificial areas 

(Class 1) only represents 2.7% of the territory [Painho and Caetano, 2006]. 

 

 

2. Agricultural areas

2.1 Arable land

1. Artificial surfaces

1.1 Urban fabric

3. Forest and seminatural areas

3.1 Forests

4. Wetlands

4.1 Inland wetlands

5. Water bodies

5.1 Inland waters

5.2 Marine waters

4.2 Maritime wetlands

3.3 Open spaces with little/no vegetation

3.2 Scrub and/or herb. vegetation assoc.
1.2 Industrial, com. and transp. units

1.3 Mine, dump and const. sites

1.4 Artificial, non-agricult. veget. areas

2.2 Permanent crops

2.3 Pastures

2.4 Heterogeneous agric. areas

1.2.1 Industrial or commercial units

1.2.2 Road and rail and assoc. land

1.2.3 Port areas

1.2.4 Airports

1.3.1 Mineral extraction sites

1.3.2 Dump sites

1.3.3 Construction sites

1.4.1 Green urban areas

1.4.2 Sport and leisure facilities

2.1.1 Non-irrig. arable land

2.1.2 Permanently irrig. land

2.1.3 Rice fields

2.1.4 Vineyards

2.2.1 Fruit trees and berry plant.

2.2.2 Olive growes

2.3.1 Pastures

2.4.1 Annual crops assoc. perm. crops

2.4.2 Complex cultivation patterns

2.4.3 Land princ. occup. by agriculture

2.4.4 Agro-forestry areas

3.1.1 broad-leaved forest

3.1.2 Coniferous forest

3.1.3 Mixed forest

3.2.1 Natural grassland

3.2.2 Moors and heathland

3.2.3 Sclerophylous vegetation

3.2.4 Transitional wood and shrub

3.3.1 Beaches

3.3.2 Bare rock

3.3.3 Sparsely vegetated areas

3.3.4 Burnt areas

3.3.5 Glaciers and perpetual snow

4.1.1 Inland marshes

4.1.2 Peatbogs

5.1.1 Coastal lagoons

5.1.2 Water bodies

4.2.1 Salt-marshes

4.2.2 Salines

4.2.3 Intertidal flats

5.2.1 Coastal lagoons

5.2.2 Estuaries

5.2.3 Sea and ocean

1.5.1 Continuous urban fabric

1.5.2 Discontinuous urban fabric

2. Agricultural areas

2.1 Arable land

1. Artificial surfaces

1.1 Urban fabric

3. Forest and seminatural areas

3.1 Forests

4. Wetlands

4.1 Inland wetlands

5. Water bodies

5.1 Inland waters

5.2 Marine waters

4.2 Maritime wetlands

3.3 Open spaces with little/no vegetation

3.2 Scrub and/or herb. vegetation assoc.
1.2 Industrial, com. and transp. units

1.3 Mine, dump and const. sites

1.4 Artificial, non-agricult. veget. areas

2.2 Permanent crops

2.3 Pastures

2.4 Heterogeneous agric. areas

1.2.1 Industrial or commercial units

1.2.2 Road and rail and assoc. land

1.2.3 Port areas

1.2.4 Airports

1.3.1 Mineral extraction sites

1.3.2 Dump sites

1.3.3 Construction sites

1.4.1 Green urban areas

1.4.2 Sport and leisure facilities

2.1.1 Non-irrig. arable land

2.1.2 Permanently irrig. land

2.1.3 Rice fields

2.1.4 Vineyards

2.2.1 Fruit trees and berry plant.

2.2.2 Olive growes

2.3.1 Pastures

2.4.1 Annual crops assoc. perm. crops

2.4.2 Complex cultivation patterns

2.4.3 Land princ. occup. by agriculture

2.4.4 Agro-forestry areas

3.1.1 broad-leaved forest

3.1.2 Coniferous forest

3.1.3 Mixed forest

3.2.1 Natural grassland

3.2.2 Moors and heathland

3.2.3 Sclerophylous vegetation

3.2.4 Transitional wood and shrub

3.3.1 Beaches

3.3.2 Bare rock

3.3.3 Sparsely vegetated areas

3.3.4 Burnt areas

3.3.5 Glaciers and perpetual snow

4.1.1 Inland marshes

4.1.2 Peatbogs

5.1.1 Coastal lagoons

5.1.2 Water bodies

4.2.1 Salt-marshes

4.2.2 Salines

4.2.3 Intertidal flats

5.2.1 Coastal lagoons

5.2.2 Estuaries

5.2.3 Sea and ocean

1.5.1 Continuous urban fabric

1.5.2 Discontinuous urban fabric

 

Figure 6.2 Corine Land Cover 2000 for Portugal [EAA, 2000]. 

 

The spatial disaggregation for each SNAP is described below. 

6.2.1 Non-industrial combustion (SNAP2), solvent use (SNAP6) and waste treatment (SNAP9)   

Area sources for these three categories were spatially distributed using the population disaggregated 

over the CLC2000 data, i.e., using the population density calculated for each land use category. S9 

could have been disaggregated over CLC2000 land cover class dump sites. However, this class is not 

representative for Portugal (only 460 ha) and therefore it is not used. 

Population density data are available in Portugal at the sub-municipality level, or communes (in 

Portugal, freguesia). The size of freguesias in Portugal is very heterogeneous, ranging from 4 ha to 

42500 ha; hence this level of spatial resolution is insufficient for air quality modelling purposes. 
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Moreover, a certain freguesia may contain, for instance, parts of dense urban nucleus,  agricultural 

land with some sparse population, and natural vegetation areas with very little or no population. CLC 

gives useful geo-referenced information for disaggregation, since its geographic database provides 

information that is spatially much more detailed than the freguesia limits (250 m x 250 m resolution). 

The objective is to disaggregate population data attributing different densities to different land cover 

categories, following the methodology developed by Gallego and Peedell [ 2001], hereafter briefly 

described. 

According to Gallego and Peedell [2001], the population density attributable to land cover class c in 

commune m is computed as   

Ycm = UcWm 

where Ycm is the population density for land cover class c in commune m, Uc is the disaggregation 

coefficient for land cover type c (the same for every commune), and Wm is the adjustment factor to 

ensure that the total population commune m is matched (different for each commune). 

Using highly detailed population datasets for a given region, Gallego and Peedell [2001] performed an 

iterative process, with the disaggregation being carried out with an initial set of coefficients provided 

by the EEA for an aggregated CORINE Land Cover nomenclature. After an optimization process, six final 

aggregated CLC classes were defined (Table 6.2). 

Table 6.2 Final CLC grouped classes for population disaggregation [Gallego and Peedell, 2001].  
Grouped class CORINE classes 

1 - Urban dense 111 -Continuous urban fabric  

2- Other urban 112- Discontinuous urban fabric 
121 – Industrial or commercial units 
122 – Road and rail networks and associated land 
123 – Port areas 
124 – Airports 
141 – Green urban areas 
142 – Sport and leisure facilities 

3 - Arable 211 – Non-irrigated arable land 
212 – Permanently irrigated land 
213 – Rice fields 

4 - Permanent crops 
and complex 
cultivation 

221 – Vineyards 
222 – Fruit trees and berry plantations 
223 – Olive groves 
241 – Annual and permanent crops associated… 
242 – Complex cultivation patterns 

5 - Pastures 231 – Pastures 
243 – Agriculture, with natural vegetation 

6 - Forest and natural 
vegetation 

244 – Agro-forestry areas 
311 –Broad leaved forest 
312 – Coniferous forest 
313 – Mixed forest 
321 – Natural grassland 
322 – Moors and heathland 
323 – Sclerophyllous vegetation 
324 –Transitional woodland-shrub 
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Since the ratio between the density in different land cover classes is not the same in densely 

populated areas and in more rural areas, the authors suggest the stratification of communes in each 

region applying a very simple criterion: 1) dense communes: population density higher than twice the 

average density in its NUTS2 region; 2) less dense: population density lower than twice the average 

density in its NUTS2 region, and with urban area reported in CLC2000; 3) no urban: no urban area 

reported in CLC2000. The final coefficients obtained for the disaggregation of population data 

according to land use category (Table 6.3) were subject to quality assessment procedures, tested for 

regions with high-resolution population density data, and were judged  approximately correct [Gallego 

and Peedell, 2001). 

Table 6.3 Final disaggregation coefficients (Uc) with 6 aggregated CLC classes and three strata of communes 
[Gallego and Peedell, 2001).  

 1. Urban 
dense 

2. Other 
urban 

3. Arable 4. Permanent 
crops and …  

5. Pastures 6. Forest and 
natural … 

Stratum 1  1445.9 619.1 10.2 15.4 5.1 3.3 

Stratum 2 947.4 622.4 17.4 30.9 11.3 5.2 

Stratum 3 - - 32.0 69.3 22.8 8.6 

 

The described methodology was then applied to the Portuguese continental territory, with population 

given by CENSUS 2001 [URL18] being disaggregated over the CLC distribution presented in Figure 6.2, 

and emissions disaggregated with population density. For that purpose a geographic information 

system, ArcGis, was used through the following steps: 

i) intersection of CLC2000 data with the commune’s limits; 

ii) grouping of 44 CLC classes in the 6 aggregated CLC classes; 

iii) classification of the communes in the three strata (dense, less dense and no urban area);  

iv) attribution of Uc according to land use class and commune stratum; 

v) determination of Wc for each commune in order to comply with the total population data; 

vi) determination of population density for each CLC land use class in each commune; 

vii) intersection of the population density with the domain grid and calculation of the population for 

each cell of the domain; 

vii) disaggregation of municipality emission totals using the calculated population.  

This procedure is illustrated in Figure 6.3, with a schematic of the spatial allocation of NOx emissions 

from SNAP2, for domain 3 of the simulation: a) NOx emissions (ton) per year and per municipality from 

the NIR are represented; b) CLC aggregated in 6 classes showing a large area of urbanized cells over 

Porto municipality and its surroundings; c) population distribution calculated according to land use 

classes; d) gridded NOx emissions with 1 km resolution. 
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Figure 6.3 Spatial allocation of NOx emissions from SNAP2 for domain 3: a) Input data: emissions at municipality 
level; b) CLC aggregated classes; c) calculated population for each grid cell of the domain; d) gridded emissions at 

1 km resolution. 
 

Figure 6.4 shows an example of the differences between the methodology here developed and the 

methodology used for the disaggregation in the reference setup for NMVOC emissions from SNAP6, 

for the three simulation domains. The reference setup disaggregation presents higher NMVOC 

emission values per cell of the domain, for the three domains, as a result of a greater concentration of 

emissions in the cities / urban centres (Lisboa, Porto and Aveiro). For the improved setup urban areas 

show higher emission values, but when compared with surrounding cells the difference in the 

magnitude of emissions is not as high as for the reference setup. Concerning domain3, the distribution 

of emissions is quite different between setups: in the first, emissions are concentrated on the N/NW 

part of Porto, S of Matosinhos and North of Vila Nova de Gaia; while for the second, Porto presents 

higher emissions. The population disaggregation over the urban dense cells, which imply greater 

emissions, can explain these differences.  
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Figure 6.4 Reference and improved setup spatial allocation of NMVOC emissions from SNAP6, for the three 
simulation domains. 

 

6.2.2 Industrial combustion (SNAP3) and industrial processes (SNAP4)  

Non-point sources for these sectors were allocated using the CLC2000 land cover class industrial and 

commercial units (code 121) in combination with statistical activity data provided by INE on the 
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number of employees in industry at the municipality level. For those municipalities with CLC 121 

classified areas, INE data with low spatial resolution were proportionally disaggregated on the high 

resolution CLC land cover map (250 m x 250 m) spreading the numbers of employees in the industry 

over the land cover class industrial and commercial units, again using ArcGis. For the municipalities 

with no commercial and industrial units classification under CLC2000, the numbers of employees in 

the industry were spread over the land cover classes corresponding to class 112 – discontinuous urban 

fabric. Emissions were then spread over the territory proportionally to the industry employment 

density. Figure 6.5 presents S3 PM10 emissions disaggregated over D1 using the reference setup 

methodology and the new methodology here described. For the improved setup emissions are not as 

concentrated as for the reference setup. 
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Figure 6.5 Spatial allocation of PM10 emissions from SNAP3 for domain 1 for (a) the reference setup and (b) the 

improved setup.  

 

6.2.3 Extraction and distribution of fossil fuels (SNAP5)  

Maes et al. [2009] disaggregated the emissions released during the extraction and distribution of fossil 

fuels using the CLC land class ports; on the other hand, Popkou et al. [2007] used population data. In 

Portugal, only a few municipalities have port areas identified in CLC2000, and even those have 

relatively small areas classified as such in CLC, therefore S5 emissions were disaggregated over the 

land cover classes corresponding to artificial surfaces (corresponding to class 1 in CLC level 1 – see 

Table 5.4), with a bigger weight being given to port areas where they exist.  
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6.2.4 Road transport (SNAP7) 

The national emission inventory distinguishes road transport emissions in two sub-categories: 

motorway emissions and non-motorway emissions.  Ideally non-motorway emissions should be further 

classified as urban roads and non-urban roads, and then disaggregated over the respective network; 

however, this distinction is not available from the national inventory. Therefore non-motorway 

emissions were spatially distributed using the population disaggregated over the CLC2000 data, as 

described for SNAP2, 6 and 9.  

Motorway emissions were disaggregated over the 2005 motorway network, again using ArcGis as the 

geographical tool. Figure 6.6 presents SNAP7 CO emissions for domain 3 for the reference and for the 

improved setup. 
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Figure 6.6 Spatial allocation of CO emissions from SNAP7 for domain 3 a) reference setup and b) improved set-up 

(non-motorways and motorway emissions). 
 

Although both datasets present higher values over Porto municipality, southern Matosinhos and 

northern Vila Nova de Gaia, emissions from the reference setup are spatially more concentrated. Also 

the separate treatment of motorways emissions allows a better discrimination. 

6.2.5 Other mobile sources (SNAP8)  

This source category includes emissions from mobile off-road sources, such as emissions from civil 

aviation, national navigation, railways, military transport, gardening and agricultural practices.  Here 
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navigation emissions were not considered. Emissions from agricultural equipments were treated 

separately, using a cut-off value of 58% to estimate the share of agriculture in S8; this value was 

calculated by Maes et al. [2009] as an European average based on NFR (Nomenclature For Reporting) 

source categories (more refined than SNAP categories). This share of emissions from off-road 

agricultural vehicles was disaggregated using the methodology described hereafter for SNAP10. The 

remaining S8 emissions (railways, gardening and military) were distributed over the land use 

categories 112 to 142 (discontinuous urban fabric, industrial or commercial units, road and rail 

networks and associated land, port areas, green urban areas and sport and leisure facilities) since 

more detailed data, such as geo-referenced railway network, is not available.  

6.2.6 Agriculture (SNAP10)  

Emissions caused by agricultural production processes were disaggregated combining the CLC2000 

land cover classes concerning agriculture (corresponding to class 2 in CLC level 1 – see Table 5.4) with 

INE low resolution statistical data (municipality level) on the number of employees in agriculture. 

Figure 6.7 presents NH3 emissions from SNAP10 for the reference setup and for the improved setup, 

for domain 3. The emission distribution is very different between setups; for the improved setup 

emissions are concentrated in the NW part of the domain corresponding to the land use class arable, 

with no emissions in the southern part of the domain in the urban areas. 
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Figure 6.7 Spatial allocation of NH3 emissions from SNAP10 for domain 3 for a) the reference setup and b) the 

improved setup. 

6.3 Emissions temporal allocation 

Emission inventories are generally compiled to report annual emission totals for regulatory purposes 

and legal requirements. Air quality models, however, require emissions at finer temporal resolution. 

To provide these, an emission model is needed to apportion the longer-term average values into 

hourly fluxes according to temporal profiles that specify how many emissions are hourly assigned. 

These temporal profiles are not based on actual temporal data for a specific time period, but on typical 
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temporal variations for the defined categories of sources [Orthofer and Winiwater, 1998; Tao et al., 

2004; Monforti and Pederzoli, 2005; Samaali et al., 2009]. 

For CAMx improved setup, new time-varying profiles were developed, describing variations in monthly 

(12-element), daily (2-element, weekday and weekend) and hourly (24-element) anthropogenic 

emissions, transforming time-averaged man-made emissions into hourly fluxes. The application of 

these profiles yields different hourly emissions. 

The information to construct representative and meaningful temporal profiles was taken from 

National official statistics (energy, industrial production, transport, etc). Whenever such data were not 

available, temporal profiles from IER (Institut fur Energiewirtschaft und Rationelle Energieanwendung, 

University of Stuttgart) were used [Schmidt et al., 2001]. Table 6.4 presents the information used for 

the construction of temporal profiles for each SNAP activity, as well as its source. 

Table 6.4 Data for the construction of temporal profiles 
 MONTHLY profiles DAILY and HOURLY profiles 

SNAP2  Monthly energy consumption  
(REN - National Electric Network) 

Load diagrams  
(REN - National Electric Network) 

SNAP3 
 

SNAP4 

Industrial production statistics 
(INE – National Statistics Institute)   

IER 

SNAP5 
 

SNAP7  
 

SNAP8 

Monthly fuels sales  
(DGEG -General Directorate for Energy 
and Geology) 

Traffic counts  
[Oliveira et al., 2004] 

SNAP6 
 

Monthly fuels sales IER 

SNAP9 
 

SNAP10 

IER IER 

 
If emissions were equally distributed along the year (the same emissions for every hour of every day of 

every month in the year) the temporal weight factors would always be the same and equal to 1. The 

consideration of the different weight factors results in distinct emission profiles, which yield 

considerable differences in emissions: the average daytime (8 am to 8 pm) emissions for the 

considered profiles ranged from 55% (for SNAP2) to 120% (for SNAP3 and 4) higher than when 

considering a uniform distribution of emissions; on the other hand, the average night time emissions 

ranged from 45% (for SNAP7) to 10% (for SNAP 2, 5, 9 and 10) smaller than when considering a 

uniform distribution of emissions. 

Figures 6.8 and 6.9 illustrate some of the differences between the temporal profiles. Figure 6.8 

presents the monthly profiles for three different activities – SNAPS 2, 3 and 7 – with evident and 

marked differences as expected: SNAP 2, representing energy consumption in the residential, service 

and commercial activities, presents higher values in the winter months; SNAP 3 (and SNAP4) reveals a 

clear decrease in August and December, translating the decrease in production in these two months 

due to the summer and Christmas seasons; SNAP7 presents higher values for the summer months.  
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Figure 6.8 Monthly profiles (January to December) for SNAP 2 (non-industrial combustion), SNAP 3 (combustion 

in manufacturing industry) and SNAP 7 (road transport). 

 

Figure 6.9 shows the importance of considering different daily profiles for motorways and non-

motorways road traffic, since these two exhibit very different profiles: on weekdays, both profiles 

show peaks around 8:00–9:00 and 18:00–19:00, but for motorways these are much higher; on 

weekends motorways present a pronounced peak around 17:00, while non-motorways traffic flux 

present a very discrete maximum at 19:00. The figure also reveals the importance of considering 

different profiles for weekdays and weekends; profiles are particularly different for motorways, whose 

peaks assume very high values during the week. 
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Figure 6.9 Hourly profiles for SNAP 7 a) week and b) weekend.  

6.4 Chemical speciation 

In this section, activity-specific chemical speciation profiles for NMVOC and PM are developed. For 

nitrogen oxides, given the lack of consistent information regarding speciation, a constant non-specific 

NO/NOx ratio of 0.9 has been assumed for all the categories emitting nitrogen oxides, following USEPA 

defaults [USEPA, 2002]. 
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6.4.1 Non-methane volatile organic compounds 

The volatile organic compound’s chemical category contains some hundreds of compounds that are 

crucial for modelling photochemical reactions in the atmosphere; the chemical speciation of NMVOC 

has been identified as a key issue when predicting ozone concentrations in areas dominated by urban 

sources [Vautard et al., 2000]. 

While for the reference setup, a single NMVOC profile was used for every activity, for the improved 

setup activity-specific chemical speciation profiles were constructed, based on European references, 

such as EMEP/CORINAIR Guidebook [EEA, 2006b], when available. However, most of the speciation 

profiles were taken from a compilation by Passant [2002]. The speciation profiles are composed of 

tens to hundreds of NMVOC chemical compounds (for instance, the chemical industry profile has 224 

species), therefore these had to be grouped in the NMVOC classes considered in the speciation 

process, all of them included in the selected chemical mechanism and presented in Table 6.5. 

Table 6.5 NMVOC classes considered in CAMx mechanism 4. 
NMVOC class Description 

PAR Paraffin carbon bond (C-C) 

TOL Toluene (C6H4-CH3) 

XYL Xylene (C6H5-(CH3)2) 

FORM Formaldehyde 

ALD2 Acetaldehyde and higher aldehydes 

ETH Ethene 

OLE Olefinic carbon bond (C=C) 

MEOH Methanol 

ETOH Ethanol 

ISOP Isoprene 

 

Since each SNAP activity has contributions from different origins, e.g. non-industrial combustion 

emissions result from the contribution of wood and gas burning, additional data is needed to 

determine an average profile. Therefore, the selected profiles were combined with information from 

the national emission inventory and national energy balances from the DGEG (General Directorate for 

Energy and Geology) [URL19], allowing the determination of a weighed average profile for each SNAP. 

Table 6.6 presents the profiles used in the construction of the final NMVOC profile for each SNAP 

activity, as well as its source and the source of additional data.  
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Table 6.6 NMVOC profiles construction for each SNAP category. 
SNAP PROFILES  [SOURCE] ADDITIONAL DATA [SOURCE] FINAL PROFILE (%) 

2  36. Domestic comb. of gas  
125. Domestic wood comb. 
[Passant , 2002] 

Energy consumption in the 
domestic and service sector (fuel 
type %)  
[2005 national energy balance, 
DGGE] 

PAR  
OLE 
ETH 
TOL 
XYL 
FORM 
ALD2 
ETOH 

36.7 
1.4 

12.0 
1.0 
0.3 
1.6 
5.6 
9.2 

3 31. Industrial comb. of oil 
33. Industrial comb. of coal 
95. Int. comb. engine - natural gas 
126. Industrial wood comb. 
[Passant , 2002] 

Energy consumption in industrial 
combustion (fuel type %)  
[2005 national energy balance, 
DGGE] 

PAR 
OLE 
ETH 
TOL 
XYL 
FORM 
ETOH 

48.0 
6.2 
5.8 
3.5 
3.6 

10.8 
4.9 

4  15. Chemical industry 
103. Cement industry 
14. Oil refineries 
[Passant , 2002] 

NMVOC emissions from industrial 
processes (industry type %) 
[NIR2005] 

PAR 
OLE 
ETH 
TOL 
XYL 
FROM 
ALD2 
MEOH 
ETOH 

11.5 
11.9 

9.9 
1.7 
4.2 
0.5 
0.1 
1.9 
1.1 

5  71.Petrol distribution – unleaded 
[Passant , 2002] 

- PAR 
OLE 
TOL 
XYL 

91.4 
7.3 
0.5 
0.2 

6 3. Paint manufacture  
6. Adhesives 
11. Other solvent use 
44. Decorative paint 
53. Rubber processes 
59. Printing 
68. Cosmetics and toiletries 
69. Household products 
[Passant , 2002] 

NMVOC emissions from solvents 
(industry type %) 
[NIR2005] 

PAR 
TOL 
XYL 
ETOH 

39.8 
9.1 

10.6 
6.2 

7 Road transport  
Activities 070100 – 070500 
[EMEP/CORINAIR] 

8  Road transport  
Activities 070100 – 070500 
[EMEP/CORINAIR] 

Fuel consumption in transports (fuel 
type %)  
[2005 national energy balance, 
DGGE] 

PAR 
OLE 
ETH 
TOL 
XYL 
FORM 
ALD2 

10.3 
7.1 

10.1 
6.4 
6.6 
8.6 

11.7 

9  22. Landfill 
115. Waste incineration 
[Passant , 2002] 

NMVOC emissions from waste 
(treatment type %) 
[NIR2005] 

PAR 
OLE 
ETH 
TOL 
MEOH 
ETOH 

29.6 
5.5 

11.8 
70.6 

1.2 
4.8 

10  Agricultural Pesticide Application 
Open Fire Profiles – Agricultural 
[SPECIATE, Battye and Harris, 2005] 

- PAR 
OLE 
ETH 
TOL 
XYL 
FORM 
ALD2 
ISOP 
MEOH 
ETOH 

27.4 
5.1 
5.0 
1.8 
1.1 
5.0 
3.0 
0.2 
7.0 
0.2 



Improvement of the air quality modelling configuration 
 

151 

6.4.2 Particulate matter 

Again, as for NMVOC, while for the reference setup, a single profile was used for every activity, for the 

improved setup activity-specific chemical speciation profiles were constructed, based on USEPA [2002] 

profiles, and also in a report by Battye and Harris [2005]. The selected profiles were then combined 

with information from national sources, allowing the determination of a weighed average profile for 

each SNAP. Table 6.7 presents the PM2.5 species considered for the speciation.  

Table 6.7 PM2.5 classes considered in CAMx mechanism 4. 
PM2.5 class Description 

PEC Primary Elemental Carbon 

PNO3 Particulate Nitrate 

POA Primary Organic Aerosol 

PSO4 Sulfate 

FCRS Fine Crustal (≤2.5 μm) 

FPRM Fine Other Primary (≤2.5 μm) 

Table 6.8 lists the profiles used in the construction of the final profile for each SNAP activity, as well as 

its source and the source of additional data, and the resulting weighed PM2.5 profile.  

Table 6.8 PM2.5 profiles construction for each SNAP category. 
SNAP PROFILES  [SOURCE] ADDITIONAL DATA [SOURCE] FINAL WEIGHED 

PROFILE (%) 

2  6.3.3. Residential wood combustion 
[Battye and Harris] 
22004. Natural gas combustion 
22002. Residual oil combustion 
[USEPA, 2002] 

Energy consumption in the 
domestic and service sector (fuel 
type %)  
[2005 national energy balance, 
DGGE] 

PEC 
PNO3 
POA 
PSO4 
FCRS 
FPRM 

10.3 
0.3 

57.0 
21.3 

0.1 
11.1 

3 NCOAL.. Coal combustion 
22004. Natural gas combustion 
22002. Residual oil combustion 
NWWAS. Wood waste boiler 
[USEPA, 2002] 

Energy consumption in industrial 
combustion (fuel type %)  
[2005 national energy balance, 
DGGE] 

PEC 
PNO3 
POA 
PSO4 
FPRM 

4.7 
0.3 

35.6 
23.9 
35.5 

4  22015. Chemical manuf. average 
22030. Secondary aluminium 
22036. Asphalt roofing 
22045. Pulp and paper average 
[USEPA, 2002] 

PM25 emissions from industrial 
processes (industry type %) 
[NIR2005] 

PEC 
PNO3 
POA 
PSO4 
FPRM 

0.7 
0.4 

20.4 
16.9 
61.6 

5  Default [USEPA, 2002] - FPRM 1 

6 Default [USEPA, 2002] - FPRM 1 

7 

8  

6.1.2. Light-duty Gasoline Vehicles 
6.1.4. On-road diesel sources 
[Battye and Harris] 

Fuel consumption in transports (fuel 
type %)  
[2005 national energy balance, 
DGGE] 

PEC 
PNO3 
POA 
PSO4 
FPRM 

44.0 
2.3 

48.6 
2.1 
3.0 

9  Default 
[USEPA, 2002] 

- FPRM 1 

10  NAGBN.  
[USEPA, 2002] 

- PEC 
PNO3 
POA 
PSO4 
FPRM 

4.0 
0.3 

67.0 
1.0 

27.7 
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6.5 Results 

For the improved setup, CAMx was initialized with MM5 data from Test2 for the summer episode, and  

from Test 3 for the winter episode. 

6.5.1 Summer episode 

Table 6.9 presents the statistical results for ozone for the summer episode, averaged for the air quality 

monitoring sites of each simulation domain, for the reference and the improved setup, with the best 

results highlighted in bold.  

Table 6.9 CAMx statistical results obtained for ozone, summer episode. 

r BIAS 

(µg.m
-3

) 

MQE   

(µg.m
-3

) 

MNBE (%) MNGE (%) UPA   (%) 

 Ozone 9 km resolution (D1)  

REFERENCE SETUP 0.65 27.4 3.67 -8.6% 18.8% -0.1% 

IMPROVED SETUP 0.77 19.5 2.84 -4.6% 12.2% -10.7% 

 Ozone 3 km resolution (D2)  

REFERENCE SETUP 0.66 31.4 3.93 -31.7% 19.9% -5.0% 

IMPROVED SETUP 0.79 21.3 2.85 -25.8% 18.6% -11.1% 

 Ozone 1 km resolution (D3)  

 REFERENCE SETUP 0.64 33.2 4.00 -33.4% 17.9% -14.1% 

IMPROVED SETUP 0.79 20.8 2.82 -32.5% 16.6% -15.4% 

USEPA guidelines - - - ± 5-15% 15-20% ± 30-35% 

The highest skills are obtained with the improved setup, with the exception of UPA, as a consequence 

of the higher peak values obtained with the reference setup. The improved setup results in higher 

correlations (close to 0.8), smaller BIAS (reductions achieve 8 µg.m-3 in D1 and 13 µg.m-3 in D3) and 

smaller errors; the improvements are particularly felt for the higher resolutions simulations (3 km and 

1 km). The 1 km resolution presents now the higher correlation coefficient and the lower MQE, in 

opposition to the verified for the reference setup; the 9 km resolution has the lowest BIAS. Regarding 

USEPA guidelines both setups meet the UPA and MNGE criteria; the MNBE criteria are met only for the 

9 km resolution. Results from this statistical analysis indicate that the accuracy of the spatial and 

temporal disaggregation of emissions has increased, and consequently simulated air pollutants 

concentrations are closer to the observed ones. 

Figure 6.10 presents the graphical analysis of the statistical parameters (r, BIAS and MQE) for each air 

quality monitoring site for D3. The correlation factor presents the greatest increases for traffic (ANT, 

BAG and VRM) and background (ERM, LB and VNT) stations; for the background/industrial stations 

(CST and PRF) the increase in r is much smaller, although these already presented high r values. 

Regarding the BIAS, traffic stations present the highest decreases and therefore, better results; for the 
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MQE all sites show similar improvements. Despite being reduced in the improved setup, the BIAS in 

Table 6.9 indicates that the modelling system is not able to simulate the ozone peaks. 
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Figure 6.10 CAMx statistical results for ozone, for the summer episode 1 km simulation (D3) a) r, b) BIAS, and c) 

MQE, for the reference and improved setups. 
 

The time series evolution of ozone concentrations for the six days of the summer episode are 

illustrated in Figure 6.11, for the observed values as well as for both setups. Only Baguim, Ermesinde 

and Perafita air quality stations are shown, representing the three types of monitoring stations (traffic, 

background and industrial). The first two days of the episode show a significant increase in ozone 

concentrations, and therefore an approximation to the observed values, for all sites. For the remaining 

days of the episode, the improved setup is also closer to the observed values. Both setups, reference 

and improved, are not able to simulate the peak concentrations, although the reference setup is able 

to better simulate the peaks.  
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Figure 6.11 Time-series evolution of ozone observed, and reference and improved simulated concentrations, for 

D3, summer episode. 
 

Table 6.10 presents the statistical results for PM10 for the summer episode, averaged for the air 

quality monitoring sites of each of the simulation domains, for the reference and the improved setup, 

with the best results highlighted in bold.  

Table 6.10 CAMx statistical results obtained for PM10, summer episode. 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

 
PM10 – 9 km resolution (D1)  PM10 – 3 km resolution (D2)  PM10 – 1 km resolution (D3)  

REFERENCE 0.22 21.5 2.61 0.21 20.5 2.72 0.22 19.3 2.67 

IMPROVED 0.42 16.9 2.42 0.41 14.1 2.45 0.41 12.3 2.46 

 

The correlation coefficients improve significantly, probably as a result of the use of more adequate 

time profiles. PM10 still is under-predicted, but the BIAS and MQE reveal improvements, resulting 

from the use of more accurate boundary and initial conditions as well as a better spatial distribution of 

emissions. The small differences found between the three simulation resolutions (9, 3 and 1 km) do 
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not allow the identification of a better overall resolution: the best correlation is obtained for the 9 km 

resolution and the lowest BIAS for the 1 km resolution, but the parameters are very similar for the 

three spatial resolutions. 

Figure 6.12 shows the graphical analysis of the statistical parameters (r, BIAS and MQE) for each air 

quality monitoring site for D3.  
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Figure 6.12 CAMx statistical results for PM10 for the summer episode 1 km simulation (D3) a) r, b) BIAS, c) MQE, 

for the reference and improved setups. 
 

The correlation factor increases for all stations, with background and industrial stations presenting the 

greatest increases, due to the poorest performance of the model for this type of stations for the 

reference setup. With the exception of Matosinhos and Antas, all the stations present lower BIAS for 

the improved setup. Regarding the MQE, some of the traffic stations present higher values (ANT, BOA 

and MAT); the rest have similar improvements. 

Figure 6.13 shows PM10 daily averages for the reference and improved setup simulations and for the 

observed values, for Boavista, Ermesinde and Vila Nova da Telha air quality stations, representing the 

three types of monitoring stations (traffic, background and industrial).  
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Figure 6.13 Observed, reference setup and improved setup, PM10 daily average concentrations, summer episode. 
 

Figure 6.14 presents the spatial distribution of PM10 daily average differences between the improved 

and the reference setups for days 3, 5 and 7 of June. The analysis of the two figures reveal that for the 

first two days of the episode, the improved setup shows lower concentrations, resulting in a worst 

representation of the PM10 daily average. From the June 5 to 7, the greatest part of the domain 

presents positive differences, which in general translate an approximation to the observed daily 

average. Also from the 5 to 7 June, in Espinho, Vermoim, Matosinhos, Perafita and Vila Nova da Telha, 

the model was not able to simulate the observed PM10 concentration peaks. In the last day of 

simulation, a group of stations closer to the coast (ESP and PRF) present negative differences, while 

the rest still shows positive differences.  
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Figure 6.14 Spatial distribution of PM10 daily average differences between the improved and reference setups, 
summer episode. 

 

6.5.2 Winter episode 

Table 6.11 shows the statistical results for PM10 for the winter episode, averaged for the air quality 

monitoring sites of each of the simulation domains, for the reference and the improved setup, with 

the best results highlighted in bold.  

Table 6.11 CAMx statistical results obtained for PM10, winter episode. 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

r BIAS 

 (µg.m
-3

) 

MQE   

(µg.m
-3

) 

 
PM10 – 9 km resolution (D1)  PM10 – 3 km resolution (D2)  PM10 – 1 km resolution (D3)  

REFERENCE 0.36 0.1 3.6 0.35 -4.6 4.2 0.33 -8.2 3.4 

IMPROVED 0.38 -0.6 2.6 0.37 -1.0 3.1 0.40 -2.0 3.0 

 

The correlation coefficients present a small increase for D1 and a more significant increase for D3; 

PM10 is slightly over predicted (small BIAS are obtained for both setups). The MQE reveal 
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improvements, resulting from the use of more accurate boundary and initial conditions as well as a 

better spatial distribution of emissions. The overall analysis reveals better results for the improved 

setup and for the 1 km resolution, which was the one who benefited the most from the improvements 

introduced in the modelling system. 

Figure 6.15 shows the graphical analysis of the statistical parameters (r, BIAS and MQE) for each site 

for D3.  
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Figure 6.15 CAMx statistical results for PM10 for the winter episode 1 km simulation (D3) a) r, b) BIAS, c) MQE, for 

the reference and improved setups. 
 

In the improved setup, all the sites present an increase of the correlation factor. Regarding the BIAS, 

distinct situations can be identified: Antas and Boavista reveal a decrease in concentrations, resulting 

in a smaller over–prediction of the observed values; in Matosinhos, Ermesinde and Leça do Balio the 

decrease in concentrations transforms the over-predictions of the reference setup in under-

predictions for the improved setup; the background/industrial sites Vila Nova da Telha and Perafita 

present increases in concentrations, resulting in a slight over-prediction for the improved setup.  

Figure 6.16 shows PM10 daily averages for the reference and improved setup simulations and for 

observed values, for Matosinhos (traffic site), Vermoim (suburban) and Vila Nova da Telha (industrial).  
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Figure 6.16 CAMx observed, reference setup and improved setup, PM10 daily average concentrations, winter 
episode. 

 

Figure 6.17 presents the spatial distribution of PM10 daily average differences between the improved 

and reference setups for a group of days of the episode. 
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Figure 6.17 Spatial distribution of PM10 daily average differences between the improved and reference setups, 
winter episode. 

 
The analysis of the two figures shows that for the majority of the sites the improved setup results in a 

decrease of simulated PM10 concentrations when compared to the reference setup. Only three sites 

present higher concentrations: Perafita and Vila Nova da Telha during the entire episode, and Espinho 
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in part of the episode; for the Perafita this means a better performance, while for the other two 

slightly worst results. For the remaining sites, the negative differences result in a better model 

performance. 

6.6 Final remarks 

From the presented above it is possible to conclude that the performance for ozone is better than for 

particulate matter, namely concerning correlation factors. This is explained by the fact that ozone is a 

photochemical pollutant, and therefore presents a well defined daily cycle that models are usually able 

to reproduce quite reasonably [Vautard et al., 2007]. The improved setup also results in lower bias and 

lower errors; USEPA quality parameters are also better, except for the ability of the modelling system 

to predict peaks.  This is coherent with the BIAS obtained for ozone which, although reduced in the 

improved setup, reached values around 20 µg.m-3. 

The new methodology for emissions spatial disaggregation improved the spatial distribution of 

emissions in each municipality, reducing the PM10 over-estimation for the improved setup. However 

the over-estimation was not eliminated. This may be explained by the over-estimation of PM10 

emissions at the municipality level in the national emission inventory, already suggested by Monteiro 

et al. [2007b]. The improved setup also resulted in better correlation coefficients due to the 

consideration of region-specific emission temporal profiles.  

The obtained statistical parameters both for ozone and PM10 are in accordance with those found for 

other modelling studies [Ferreira, 2007; Monteiro, 2007; Vautard et al., 2007]. 

As a final remark, it is clear that the new, or improved, modelling system setup constitutes an 

adequate,  valuable and improved tool for the study of urban air quality and its relation with land use 

in the study area.  
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7 URBAN DEVELOPMENT SCENARIOS FOR PORTO REGION – AIR 

QUALITY IMPLICATIONS  

 

 

 

In the present chapter two alternative urban development scenarios for the Porto study region are 

developed and tested through the application of the atmospheric modelling system, which was 

previously selected and improved.  

Firstly, it was necessary to clearly characterize the reference situation, or starting point, including the 

analysis of the recent urban expansion trends in the study area, the evolution of the population, and 

the mobility relations between the different urban centres that constitute the study region. This 

characterization was presented in chapter 4 and established the basis for the development of future 

scenarios.  

Two different and opposite urban development scenarios are developed and simulated - SPRAWL and 

COMPACT. The first represents the continuation of the trend observed in the last decades, and can be 

described as a business-as-usual scenario; the second symbolizes the rupture with the current 

situation through urban containment. In addition, the reference situation, now on referred as BASE, is 

also simulated for comparison purposes. 

Meteorological modelling for the three situations – BASE, SPRAWL and COMPACT - is performed for 

the year 2006; therefore, meteorological differences between the two scenarios, and between each of 

the scenarios and BASE, will steam solely from land use changes.  New emission totals and their spatial 

distribution, resulting from the land use changes, are calculated for the two land use scenarios. Finally, 

meteorological outputs and new pollutant emissions are fed into the air quality model to determine 

the changes in air quality resulting from different land use scenarios related to different urban 

development pathways.  
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7.1 Scenarios definition 

Here, the two scenarios - SPRAWL and COMPACT – are characterized in terms of land use, population, 

and pollutant emissions, having BASE as a reference. 

7.1.1 Land use 

The development of the two land use scenarios, is based in the aspects previously described, and is 

performed over the original CLC2000 land use map, through the alteration of land use type parcels, 

using the ArcGis software. 

7.1.1.1 SPRAWL scenario 

The SPRAWL scenario corresponds to the business-as-usual scenario, representing the continuation of 

the last decades trend, with urban areas continuing to expand at much faster rates than population, 

and urban development spreading throughout the study area, by filling up existing gaps and expanding 

the boundaries of existing urban areas. All the new residential areas (or urban fabric) take place in the 

form of discontinuous urban fabric. This urban sprawl scenario results in the smearing out of the 

region’s inhabitants over a large area, thus effectively simulating the sprawl-related growth process.  

The urban development process in the period 1987-2000 was analysed for each municipality 

separately and replicated for SPRAWL; the original CLC2000 land use map was changed through the 

creation of new artificial surface areas, which replaced natural and semi-natural areas.  

To illustrate this process, Figure 7.1 and Table 7.1 present the land use changes obtained for Maia 

municipality.  

a)                                                                                                     b) 

 

Figure 7.1 Maia  land cover maps for a) BASE  and b) SPRAWL scenario. 
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Maia continues the sprawling process verified between 1987 and 2000, with more than half of its 

territory composed of artificial surfaces, the great majority of it in the form of discontinuous urban 

fabric and with increasing areas of industrial and commercial activities. Land cover maps present the 

replacement of natural and semi-natural areas, not only in the already highly urbanized southern part, 

by filling up gaps between existing urbanized areas, but also in the less urbanized northern part of the 

municipality. 

Table 7.1 Maia land cover data for the BASE and SPRAWL scenarios.  

BASE SPRAWL Change 
Land uses hectares % hectares % hectares % 

Artificial surfaces 3094.3 37.1 4348.5 52.1 + 1254.2 +40.5 

Continuous urban fabric 

 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

154.7 

2091.8 

520.9 

327.0 

5.0 

67.6 

16.8 

10.6 

154.7 

2661.9 

1204.9 

327.0 

3.6 

61.2 

27.7 

7.5 

0 

+570.1 

+684.0 

0 

0 

+27.3 

+131.3 

0 

Agricultural areas 3138.2 37.6 2382.7 28.6 -755.5 -24.1 

Forests and shrub areas 2054.1 24.6 1555.3 18.6 -498.8 -24.3 

Other non-artificial surfaces 55.7 0.7 55.7 0.7 0 0 

 
Analogous tables for the remaining municipalities can be found in Appendix F. Similar to the verified 

between 1987 and 2000, municipalities in the first metropolitan ring around Porto – Maia, Valongo 

and Vila Nova de Gaia – and Santa Maria da Feira, already highly urbanized (37%, 28%, 38% and 23% 

respectively), reveal the largest absolute increases of artificial surfaces, over 1000 hectares. 

Municipalities outside the first metropolitan ring, such as Lousada, Penafiel, Marco de Canavezes and 

Castelo de Paiva, which already presented the highest growth rates between 1987 and 2000, continue 

along the same path.  

The combined SPRAWL land use from each municipality resulted in a new land use map for the study 

region presented in Figure 7.2, side-by-side with the BASE map (CLC2000). The built-up area (artificial 

surfaces) was increased from 18% to 25% of the total area; a number that can be considered realistic 

given current trends and the fact that in 1987 the share was 13%. The artificial areas expansion took 

over agricultural and forested landscapes located in the proximity of already existent urban areas.  
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a)                                                                                                      b) 

Figure 7.2 Study region land cover maps for a) BASE and b) SPRAWL scenario. 

The land cover maps reveal the expansion of artificial areas not only in the urban centre of the region 

(Porto, Matosinhos, Gondomar and Vila Nova de Gaia), but also throughout the entire study region. 

Table 7.2 presents the comparison between the BASE and the SPRAWL scenario in terms of the total 

area for each of the 4 large land use categories, and sub-categories, and corresponding share (%), as 

well as the magnitude of the change.  

Table 7.2 Study region land cover data for the BASE and SPRAWL scenario.  

BASE SPRAWL Change 
Land uses 

hectares % hectares % hectares % 

Artificial surfaces 

 Continuous urban fabric 

 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

43727.9 

4059.2 

32895.0 

4973.1 

1800.7 

18.3 

9.3 

75.2 

11.4 

4.1 

60139.2 

4059.2 

44647.7 

9571.7 

1860.6 

25.1 

6.7 

74.2 

15.9 

3.1 

+ 16411.3 

0 

+11752.7 

+4598.6 

0 

+37.5 

0 

+35.7 

+92.5 

0 

Agricultural areas 93766.2 39.1 83201.4 34.7 -10564.8 -11.3 

Forests and shrub areas 98319.4 41.0 92472.9 38.6 -5846.5 -5.9 

Other non-artificial surfaces 3784.9 1.6 3784.9 1.6 0 0 

In comparison with BASE, in the SPRAWL scenario built-up land uses increase 37.5%, with 16400 new 

hectares. Agricultural areas present the largest decrease, representing now less than 35% of the total 

area of the region; forest and shrub areas continue to be the dominant land use in the region, with a 

share around 39%. Regarding the composition of artificial surfaces, the continuous urban fabric loses 

importance, with no additional areas of this type being created, representing now less than 7% of the 

artificial surfaces. Discontinuous urban fabric presents the largest increase, almost 12 000 hectares; 
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industrial and commercial units continue the growth trend verified between 1987 and 2000, with the 

highest relative growth, almost doubling its presence in the study area.  

7.1.1.2 COMPACT 

In COMPACT the totality of urban growth is accommodated within already existent urban areas, i.e., 

no additional artificial surfaces are created. The only land-use changes implemented in this scenario 

concern changes from discontinuous to continuous urban fabric. Therefore, no spatial representation 

of the COMPACT scenario is presented here, since it coincides with the BASE maps. Table 7.3 presents 

the comparison between the BASE and the COMPACT scenario regarding the total area for each of the 

four large land use categories, and sub-categories, and corresponding share, as well as the magnitude 

of the change. 

Table 7.3 Study region land cover data for the BASE and COMPACT scenario.  

BASE COMPACT Change 
Land uses 

hectares % hectares % hectares % 

Artificial surfaces 

 Continuous urban fabric 

 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

43727.9 

4059.2 

32895.0 

4973.1 

1800.7 

18.3 

9.3 

75.2 

11.4 

4.1 

43727.9 

4092.1 

32862.0 

4973.1 

1800.7 

18.3 

9.4 

75.1 

11.4 

4.1 

0 

+32.9 

-32.9 

0 

0 

0 

+0.8  

-1.0 

0 

0 

Agricultural areas 93766.2 39.1 93766.2 39.1 0 0 

Forests and shrub areas 98319.4 41.0 98319.4 41.0 0 0 

Other non-artificial surfaces 3784.9 1.6 3784.9 1.6 0 0 

7.1.2 Population 

As already mentioned in Chapter 4, the population of the study region has been increasing; however, 

this increase has not been uniform along the region, with municipalities growing at different rates and 

even decreasing in Porto municipality. Figure 7.3 presents the number of residents per municipality 

and for the region, for the years 1981 (when available), 1991, 2001 and 2006. 
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Figure 7.3 Population evolution in the study region. 
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The study region population increased from 1.86 million people in 1991 to 2.07 million in 2006 (11.3% 

growth); the rate of growth however has decreased from around +1% per year in 1991-2001, to 0.2% 

per year, in 2001-2006.  

In the 25-years period under analysis, in Porto municipality population presented a decrease of 27%; 

an important feature of this decrease is that its rate has been accelerating: in the period 1981-1991 

the rate was around -0.8%, in 1991-2001 the rate increased to -1.3%, and in 2001-2006 around -1.8%. 

As a result of this decrease, Vila Nova de Gaia is presently the most populated municipality of the 

region, with a growth of 33% between 1981 and 2006. The municipality with the highest population 

growth was Maia, with almost 60% between 1981 and 2006. Other municipalities with high population 

growth, all above 20% between 1991 and 2006 were: Lousada, Paços de Ferreira, Póvoa de Varzim, 

Santa Maria da Feira and Trofa. 

Taking this into account, both scenarios are developed for a population of 2.2 million people, 

corresponding to an increase of 220’000 inhabitants (13% increase) in relation to the base year 2000, 

in what can be considered a 20-year period. This population increase is differently distributed through 

the municipalities, according to the land use scenario. 

Since the SPRAWL scenario corresponds to the perpetuation of the past 20 years trend, the population 

will change accordingly in each of the municipalities, presenting the same growth rates as observed 

between 1991 and 2001. 

In the COMPACT scenario however, the trend is interrupted; Porto municipality attracts new residents, 

and its population is increased. The remaining cities will continue to attract people, but at a rate 25% 

smaller than the verified in the last years (and therefore also in SPRAWL). Figure 7.4 presents the 

population observed in 1991 and 2000, and considered in SPRAWL and COMPACT. 
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Figure 7.4 Population  for the SPRAWL and COMPACT scenarios and its comparison with the population in 1991 
and 2000. 



Urban development scenarios 

169 

In COMPACT all the municipalities present a growth in their population, but at a smaller rate than the 

verified for SPRAWL. The exception is Porto, with more inhabitants than those in 2000, but sill less 

than those registered in 1991. 

The population in each municipality is distributed over the land use data for BASE, COMPACT and 

SPRAWL, according to the disaggregation methodology already described in §62.1. Figure 7.5 presents 

the results in terms of the number of inhabitants per grid cell of the 1 km resolution simulation 

domain. SPRAWL clearly presents the largest spread of population along the simulation domain and 

the lowest population density (maximum values are below 9000 inhab.km-2). BASE and COMPACT 

show a similar situation, but higher densities are found in the later with maximum values of 11 000  

inhab.km-2 in comparison with 10 000 inhab.km-2 in BASE. 

a) BASE 

 

b) SPRAWL 

 
c) COMPACT 

 

 

               

1-1000
1000-2000
2000-3000
3000-4500
4500-6000
6000-7500
7500-9000
9000-10500
>10500

Population density
(inhab.km-2)

 

Figure 7.5 Population density for the 1 km resolution simulation domain for a) BASE, b) SPRAWL and c) COMPACT. 

This data is fundamental for the further determination of the population affected by air pollutants 

concentrations in each of the studied scenarios. 

Moreover, considering the new land use data and the population per municipality, the residential 

density, i.e., the number of residents per residential area (residential area is given by the sum of the 
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continuous and discontinuous urban fabric) is calculated. Figure 7.6 presents residential density for 

each municipality for 1987 (when available), 2000, SPRAWL and COMPACT. 
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Figure 7.6 Residential density for 1987, 2000, SPRAWL and COMPACT. 

In SPRAWL the residential density decreases for the entire study region, but especially in the 

municipalities of Porto, Marco de Canavezes and Penafiel; for the last two this is explained by the high 

increase in residential areas, while for Porto there is a decrease of the number of inhabitants. Castelo 

de Paiva presents an abnormally high residential density in 2000 (and also in COMPACT) which may 

result from the fact that a significant part of the population does not live in urban continuous and 

discontinuous urban land, but probably in agricultural or forested areas. In fact, the artificial surface in 

this municipality was still very low in 2000, as can be seen in Appendix F. 

In the SPRAWL scenario, the urban sprawl process induces a population spreading in general, 

displacing a number of inhabitants from the urban centres to the surrounding areas, and decreasing 

the population density in the region.  

The municipalities for which the population in 1987 was available allowed the calculation of the 

residential density for 1987 through the use of the CLC90, showing that it is completely pertinent to 

maintain the urban area at the 2000 levels; for these municipalities the COMPACT residential density 

remains smaller (for Porto, Espinho, Valongo and Goondomar) or slightly higher (Matosinhos, Póvoa 

de Varzim, Vila do Conde and Vila Nova de Gaia) than the residential density observed in 1987.  

7.1.3 Pollutant emissions 

As a result of the population growth and the land use changes established for each urban 

development scenario, new emission totals have to be calculated, as well as their spatial distribution. 

Land use differences are particularly important for three emission categories - mobile, agriculture and 

biogenic sources -, with the remaining categories presenting a greater dependence on population. 

Available pollutant emission values for NOx, NMVOC, CO, NH3, PM10 and PM2.5, i.e., the emissions for 

the BASE situation, are the basis for estimating the scenarios emissions. It should be noted that future 
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emissions do not take into account possible changes in emission factors, transportation patterns, or 

technology. However, these estimates do provide emission totals and spatial distributions which are 

consistent with increased urbanization given today’s technology and travel behaviour. 

7.1.3.1 Non industrial combustion (SNAP2), extraction and distribution of fossil fuels (SNAP5) and 
solvent use (SNAP6) emissions 

New emissions for these three categories are recalculated for each scenario considering the new 

population in each municipality, and also the change in the artificial surfaces, since these categories 

represent emissions that related not only to the domestic sector, but also to the commercial and 

industrial areas. An equal weighting factor of 0.5 was given to each of these factors, population and 

artificial area. Emissions are calculated considering:  i) the new population in each municipality, with 

emission rates per inhabitant per municipality kept equal to the BASE rates; and ii) the new artificial 

area in each municipality, with emission rates per artificial area per municipality kept equal to the 

BASE rate.  

Figures 7.7 and 7.8 present for SNAP2 and for SNAPS 5 and 6, respectively, the yearly emission totals 

for a selection of pollutants for BASE and the two scenarios.  
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Figure 7.7 Study region SNAP 2 (non-industrial combustion) emissions for BASE, COMPACT and SPRAWL. 
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Figure 7.8 Study region SNAP 5 (fossil fuels distribution) and SNAP6 (solvent use) emissions for BASE, COMPACT 

and SPRAWL. 

Emissions for the COMPACT and SPRAWL scenarios are 4% and 18% higher than the BASE emissions, 

respectively. Although emissions per municipality are not shown, while SPRAWL presents higher totals 

than COMPACT in the study region, in Porto municipality that is not the case. In COMPACT Porto 
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population increases while in SPRAWL population decreases and the increase in artificial area is 

insignificant. As a result, in Porto emissions from these three categories are 17% higher for COMPACT. 

Next, emissions are spatially distributed using the population disaggregated over the SPRAWL and 

COMPACT land uses, as described in §6.2. The result is illustrated in Figure 7.10, for SNAP2 NOx grid 

emissions at 1 km resolution (BASE emissions were already presented in §6.2 – Figure 6.3).  

a) 

<5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
>40

NOx (ton.year-1)

<5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
>40

NOx (ton.year-1)

<5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
>40

NOx (ton.year-1)

 

b) 

<5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
>40

NO x (ton.year-1)

<5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
>40

NO x (ton.year-1)

<5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
>40

NO x (ton.year-1)

 

Figure 7.9 SNAP2 NOx grid emissions at 1 km resolution for a) SPRAWL and b) COMPACT. 

For both scenarios emissions are concentrated in the Porto municipality and in the first metropolitan 

ring municipalities; however SPRAWL presents a greater spread of emissions, as a result of the urban 

growth. The highest emissions rates for grid cell are obtained for the COMPACT scenario and the 

lowest for BASE. 

7.1.3.2 Industrial combustion (SNAP3) and industrial processes (SNAP4) emissions 

Emissions for these two industrial source categories are recalculated for each scenario as follows: with 

the new population in each municipality and using the share of population employed in the industry of 

the BASE, the number of employees in the industry sector is calculated for each municipality; then, 

considering emission rates per number of employees in industry per municipality equal to the BASE 

rates, new emission totals are calculated. Figure 7.10 presents the yearly emission totals for SNAP3 

and SNAP4; these are very similar for COMPACT and SPRAWL, and are around 7% higher than BASE 

emissions. 
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Figure 7.10 Study region SNAP3 (industrial combustion) and SNAP4 (industrial processes) emissions for 

BASE, COMPACT and SPRAWL. 
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Emissions were then spatially distributed over the land cover class industrial and commercial units in 

combination with the number of employees in industry at the municipality level, as described in §6.2. 

Although not presented, the resulting emissions spatial distribution is very similar for the three 

situations. 

7.1.3.3 Road transport (SNAP7) emissions 

Since road transport emissions are highly dependent not only on population distribution but mainly on 

the mobility of the population, ideally a traffic model should be applied to simulate the effect of urban 

sprawl on traffic volumes and their spatial distribution. These modelling techniques fall out of the 

scope of the present work and therefore are not used.  

In the present work, to calculate transport emissions resulting from land use changes, a methodology 

is developed taking into account the population growth, the urban area expansion and the mobility 

attractiveness/repulsion rates between municipalities. These three factors influence emissions and are 

considered as follows: 

i) The growth of the population causes an increase in the number of trips. For each 

municipality it was assumed that the emissions are proportional to the number of trips, 

which in turn is proportional to the number of residents. 

ii) The growth of the urban area causes an increase in the mean distance from home to 

employments and leisure destinations. The residents in new urbanized areas find 

themselves more distant from locations where most employments are concentrated, 

while the residents in already existent urban areas will find possible employment and 

leisure destinations in the newly built areas in the periphery. For each municipality it was 

assumed that the emissions are proportional to the mean travel distance, which in turn is 

proportional to the urban area’s radius. For example, in SPRAWL Maia’s urban area 

increases by a factor of 1.4; therefore the mean travelled distance increased by a factor of 

1.4 1/2=1.185; in COMPACT the factor is 1 since no urban growth was verified. 

iii) An additional factor related to attraction/repulsion rates between municipalities has to be 

considered since traffic emissions are not only dependent on the population and urban 

area, but also on the mobility of people between municipalities. The attraction/ repulsion 

rates calculated for BASE, presented in §4.3 are maintained and used for both scenarios.  

The distribution of emissions between municipalities is very different for both scenarios, as illustrated 

in Figure 7.11, which presents CO yearly emission totals for non-motorways road transport emissions 

for each municipality and for the entire study area. 
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Figure 7.11 Study region SNAP7 (non-motorways road transport) CO emissions for BASE, COMPACT and SPRAWL, 
for each municipality and for the entire study area. 

Resulting emissions are higher for SPRAWL, which are 19% higher than the BASE emissions, while 

COMPACT emissions are only 4% higher. The largest differences between scenarios are found for Porto 

(25% lower than the BASE emissions for SPRAWL, and 30% higher for COMPACT), Matosinhos (+38% 

for SPRAWL, +8% for COMPACT), Vila Nova de Gaia (+20% for SPRAWL, -2% for COMPACT) and Maia 

(+56% for SPRAWL, +9% for COMPACT).   

Regarding the spatial distribution of emissions, Figure 7.12 presents SNAP7 non-motorway CO grid 

emissions at 1 km resolution for SPRAWL and COMPACT (BASE emissions were already presented in 

§6.2 – Figure 6.6). For both scenarios, emissions are concentrated in the Porto, Matosinhos, Maia, NW 

Gondomar and Vila Nova de Gaia municipalities; however COMPACT presents a greater concentration 

of emissions, as a result of the urban containment, and therefore higher emission rates. 
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Figure 7.12 SNAP7 (non motorway road transport) CO grid emissions at 1 km resolution for a) SPRAWL and b) 
COMPACT. 
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7.1.3.4 Other mobile sources (SNAP8) and waste treatment (SNAP9) emissions 

The estimation of new emissions for these categories took into account the new population in each 

municipality, with emission rates per inhabitant per municipality kept equal to the BASE rates, for each 

category. Figure 7.13 presents SNAP9 yearly emission totals for BASE, COMPACT and SPRAWL; 

emissions for the COMPACT and SPRAWL scenarios are 7% and 6% higher than the BASE emissions, 

respectively. The same analysis applies to SNAP8.   
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Figure 7.13 Study region SNAP9 (waste treatment and disposal) emissions for BASE, COMPACT and SPRAWL. 

The resulting emissions spatial distribution is illustrated in Figure 7.14, for NH3 SNAP9 grid 

emissions at 1 km resolution in BASE, SPRAWL and COMPACT.  
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Figure 7.14 SNAP9 (waste treatment) NH3 grid emissions at 1 km resolution for a) BASE, b) SPRAWL and c) 
COMPACT. 

Similarly to the verified in other sectors, SPRAWL presents a higher dispersion of emissions and lower 

emission rates in comparison with BASE and COMPACT; on the other hand, the containment of urban 

expansion, and therefore of population in COMPACT results in the highest emission rates. 

7.1.3.5 Agriculture (SNAP10) emissions 

New emissions for the agriculture category were recalculated considering the new agricultural area in 

each scenario, with emission rates per agricultural area per municipality kept equal to the BASE rates. 
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Since the COMPACT scenario presents no changes in agricultural area in relation to the BASE, emission 

totals, as well as their spatial distribution are the same. Figure 7.15 presents the obtained results.  
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Figure 7.15 Study region SNAP10 (agriculture) emissions for BASE/COMPACT and SPRAWL. 

 

As a result of the transformation of agricultural areas into artificial land use, agriculture emissions 

were reduced by almost 10% in SPRAWL. The resulting emissions spatial distribution is illustrated in 

Figure 7.16, for NH3 grid emissions at 1 km resolution for BASE/COMPACT and SPRAWL scenarios. 
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Figure 7.16 SNAP10 (agriculture) NH3 grid emissions at 1 km resolution for a) BASE/COMPACT and b) SPRAWL. 

The consumption of agricultural land for urbanization purposes in SPRAWL is clearly visible in the 

figure, in the form of a larger area occupied by blank grid cells (zero emissions from agriculture), in 

comparison with BASE and COMPACT. 

7.1.3.6 Biogenic emissions 

Biogenic emissions were calculated for the forested areas according to the methodology previously 

described in 5.3.1. Differences in relation to BASE result from the conversion of forested areas to 

artificial areas, and also from temperature changes induced by land use changes; these only take place 

in the SPRAWL scenario, since in COMPACT, the forest land use are not changed in relation to BASE. 

Therefore, as a result of land use changes biogenic SPRAWL emissions are lower when compared to 

BASE (and COMPACT): 20% lower for monotherpene and 16% lower for isoprene.  
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7.1.3.7 Total emissions 

The above presented methodology results on different emission totals for both scenarios. Figure 7.17 

shows emission totals for the study region for SPRAWL and COMPACT as well as for BASE.  

 

0

10000

20000

30000

40000

50000

60000

70000

NMVOC NH3 NOX PM10 PM25 CO

N
M

V
O

C
, N

H
3

, N
O

x 
an

d
 P

M
 e

m
is

si
o

n
s 

(t
o

n
.y

ea
r-

1
)

0

50000

100000

150000

200000

250000

C
O

 e
m

is
si

o
n

s 
(t

o
n

.y
ea

r-
1

)

BASE SPRAWL COMPACT

 

Figure 7.17 Study region total NMVOC, NH3, NOx, PM and CO emissions for BASE, SPRAWL and COMPACT.  

Lower emissions are obtained for BASE and higher for SPRAWL; SPRAWL emissions are around 9% to 

17% higher than BASE emissions (for NH3 and NMVOC, respectively), while COMPACT emissions are 

4% to 6% higher (for NH3 and NMVOC, respectively). 

Figure 7.18 shows the spatial distribution of CO, NMVOC, NOx and PM10 gridded emission totals for 

the 1 km resolution domain for SPRAWL and COMPACT. COMPACT emissions are more concentrated 

over Porto municipality and present higher emission rates per grid cell; SPRAWL presents more 

scattered emissions throughout the simulation domain, and therefore lower emission rates. Emissions 

of NMVOC constitute an exception, because they are highly related with the port activity in 

Matosinhos, and therefore present higher values for this municipality in both scenarios. 
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Figure 7.18 Spatial allocation of CO, NMVOC, NOx and PM10 total emissions at 1 km resolution for a) SPRAWL 

and b) COMPACT.  
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7.2 Base long-term simulations 

Aiming to provide a thorough analysis of the air quality impacts of different urban land use scenarios, 

the atmospheric simulation of BASE and scenarios is performed for a one-year period, covering a wide 

range of air pollution conditions. The year of 2006 was the selected meteorological year to be 

simulated, as already discussed in 4.1. All the aspects regarding the meteorological model and its 

application were described in detail in Chapter 5, which allowed the choice and development of the 

most adequate model configuration for the study area.  

7.2.1 Meteorological modelling 

For BASE the simulation was performed with land use data from 2000 since no data is available for 

2006. No extensive validation was performed since the model configuration was considered adequate 

in the sensitivity tests and validation procedures presented in the previous chapter. However, some 

results are presented here for Porto/Pedras Rubras meteorological station.  

Figure 7.19 shows the time-series comparison of surface temperature and wind components for 

observed and BASE simulated values.  
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Figure 7.19 Observed and BASE (1-km resolution) time-series comparison of surface a) temperature, b) zonal 

wind component and c) meridional wind component, at Porto/Pedras Rubras meteorological station. 
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Concerning temperature, simulated values follow the distribution of the observed ones; a general 

under-estimation of temperature is visible, especially for the higher temperatures registered at the 

end of May / beginning of June, July and August. Simulated wind components present a smaller 

variability when compared with observed ones, but also follow the observed trend. 

Figures 7.20 and 7.21 present the statistical analysis of BASE 1-km and 3-km resolution simulations, for 

Porto/Pedras Rubras, using the parameters already described in §5.2. For temperature (Figure 7.20) 

besides the referred statistical parameters, the average and the standard deviation (STD) are also 

shown. Results from both resolutions are similar, with the 3 km resolution presenting a better 

correlation and a better S/Sobs; the 1 km resolution has lower errors as expected by the smaller 

under-estimation. Average temperature and STD are lower than the observed; however, the 1 km 

resolution simulated temperature is slightly higher and therefore closer to the observed. 
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Figure 7.20 Surface temperature a) statistical parameters for BASE 1-km and 3-km resolution, and b) observed 
and simulated (BASE 1-km and 3-km resolution) average and standard deviation. 

 

The obtained statistical parameters for the wind components are shown in Figure 7.21. As expected, 

results are not as good as for temperature, with lower correlation coefficients and higher errors. The 

meridional wind component is better simulated than the zonal one. 
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Figure 7.21 Statistical parameters for BASE 1-km and 3-km for surface a) zonal wind component and b) meridional 
wind component. 

 

Overall, the meteorological simulation reveals a good performance for the three meteorological 

variables, with statistical parameters presenting a reasonable behaviour (S ≈ Sobs, E < Sobs and EUB < Sobs). 
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7.2.2 Air quality modelling 

Here the air quality results for the annual simulation of BASE are presented. The air quality model 

configuration and its application are described in detail in chapter 6. 

For BASE the simulation used emissions data for 2005 (there are no emission estimates for 2006, since 

the national inventory is updated with a 2-year periodicity). No extensive validation was performed for 

the BASE simulation; however, some results are presented here. 

Table 7.4 shows the statistical results for ozone and PM10, averaged over the air quality monitoring 

sites, for simulation domains 2 and 3. For ozone statistical parameters are given considering the entire 

year (from January to December) and considering only the summer months (April to September). 

Table 7.4 CAMx statistical results obtained for O3 and PM10. 

 Ozone 3 km resolution (D2) Ozone 1 km resolution (D3) 

 r BIAS (µg.m
-3

) MQE (µg.m
-3

) r BIAS (µg.m
-3

) MQE (µg.m
-3

) 

ANNUAL 0.64 -21.8 3.7 0.64 -22.9 4.0 

SUMMER 0.66 -20.4 3.6 0.65 -23.0 3.1 

 PM10 3 km resolution (D2) PM10 1 km resolution (D3) 

 r BIAS (µg.m
-3

) MQE (µg.m
-3

) r BIAS (µg.m
-3

) MQE (µg.m
-3

) 

ANNUAL 0.53 -9.2 3.2 0.53 -7.7 3.1 

The results show correlation factors in the order of 0.65 for O3 and 0.53 for PM10, independent of the 

resolution considered. The BIAS for PM10 ranges from -7.7 (for the 1 km resolution) to -9.2 µg.m-3 (for 

the 3 km resolution); for O3 deviation are higher, around -20 µg.m-3. The MQE for both pollutants 

varies from 3 to 4 µg.m-3. These statistical parameters are within the range of statistical parameters 

obtained with this and other air quality modelling systems [Holmes and Morawska, 2006; Ferreira, 

2007; Monteiro et al., 2007a; Vautard et al., 2007]. 

For ozone, differences between summer and annual statistics are not discernible. The obtained 

negative BIAS shows that the model is over-predicting O3 and PM10 concentrations. The time-series 

analysis for the air quality monitoring stations reveals that the modelling system over-predicts ozone 

lower concentrations, and under-predicts the ozone and PM10 concentration peaks. The observed 

ozone under-prediction is intimately related with the temperature under-prediction in the summer 

months discussed in §7.2.1. 

In addition to the statistical analysis of the model performance, another possible and interesting 

exercise is the comparison of observed and simulated BASE concentrations in terms of the legislated 

values for O3 and PM10. In this scope, Figure 7.22 a) presents the number of exceedances to the PM10 
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daily limit value (50 µg.m-3, not to be exceed more than 35 days along the year, indicated by the red 

line) observed and BASE simulated; Figure 7.22 b) shows the annual average observed and BASE 

simulated and their comparison with the annual limit value (40 µg.m-3, indicated by the red line). 
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Figure 7.22 Observed and BASE a) number of exceedances to PM10 daily limit value, and b) PM10 annual 
average. 

Regarding the number of daily average exceedances the model, although the higher over-prediction at 

Antas, and Leça do Balio, and the under-prediction at Vermoim and Ermesinde, correctly identifies 

that all the air quality monitoring sites are not in compliance with the legislation.  Except for Espinho 

and Antas, the model successfully simulates the annual average, with Matosinhos, Senhora da Hora 

and Ermesinde presenting values above the allowed 40 µg.m-3. 

Figure 7.23 a) shows the number of annual exceedances to the ozone information threshold  

(180 µg.m-3) observed and BASE simulated. Although not legislated, ozone daily maximum values are 

usually analysed in model validation exercises (Vautard et al., 2007), therefore Figure 7.27 b) presents 

the ozone mean daily maxima, observed and BASE simulated, for the summer months (April to 

September). 
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Figure 7.23 Observed and BASE a) number of exceedances to O3 information threshold, and b) O3 mean daily 
maxima for summer months. 

Model results point to exceedances to the ozone information threshold in Baguim, Matosinhos and 

Boavista, while these have not been observed; for the remaining air quality sites, the model presents a 

good agreement with observations.  The same is valid for ozone summer average daily maxima. 
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7.3 Scenarios long-term simulations 

Here the scenarios above described and associated land use change maps and emissions files are used 

to assess the effects of urban structure on the urban air quality levels, through the application of the 

selected and improved air quality system. The results of the BASE simulation constitute the base-case 

against which the SPRAWL and COMPACT scenarios are compared. 

7.3.1 Meteorological modelling 

As for BASE, the SPRAWL and COMPACT meteorological simulations are performed for 2006 

meteorological year, using the land use data produced according to the procedure described in §7.1.1. 

Since for COMPACT the land use is very similar to that of BASE (the only change concerned the 

conversion of a few hectares of discontinuous urban fabric to continuous urban fabric), meteorological 

results from COMPACT only present very small temperature differences in relation to BASE. Therefore, 

from now on, and for meteorological purposes, no distinction is made between BASE and COMPACT. 

Taking into consideration that the most widely recognized meteorological effect of urbanization is the 

urban heat island effect and because of the recognized influence of urban temperatures on ozone 

formation, hereafter the meteorological analysis will be focused on surface temperature. 

SPRAWL meteorological simulations produced a domain-averaged annual temperature increase of 

approximately 0.4 °C. This is attributed to the increased share of built-up areas in the domain, which 

convert incoming radiation to sensible heat rather than to latent heat (evaporation), owing to the 

limited water availability in artificial surfaces characterized by impervious materials. However, in some 

regions and for certain time-periods differences between scenarios reached significantly higher values 

than the average.  

Figure 7.24 presents the differences between COMPACT and SPRAWL annual simulations for hourly 

surface temperature, at Porto/Pedras Rubras meteorological site, with 1 km and 3 km resolution. 

Although the land use in Porto/Pedras Rubras was not changed, there were temperature differences 

as high as 2.5°C between the two simulations. These differences indicate that changes in 

meteorological parameters are not necessarily confined to the cells where the land use pattern was 

modified. 
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Figure 7.24 Hourly surface temperature differences between SPRAWL and COMPACT for Porto/Pedras Rubras 

meteorological site for a)1-km resolution, and b) 3-km resolution. 

 

Higher differences (from -1.5°C to +2.5°C) are more frequently found for the 1km resolution, as 

expected from the higher resolution and therefore most detailed description of land use.  For the 3 km 

differences go from -1.8°C to +1.8°C. Also, higher differences are found in the summer months, i.e., 

from April to September, since higher temperatures are also reached, and therefore meteorological 

differences are enhanced. 

While temperature increases would be expected with increasing urbanization, due to the urban heat 

island effect, temperature decreases are also verified. Local temperature increases in grid cells with 

modified land use could have lead to higher wind speeds and increased instability which, downwind 

can lead to areas of increased vertical mixing and decreased surface temperatures. 

As already mentioned in Chapter 5, the Porto/Pedras Rubras meteorological station is located in a 

rural environment, and consequently does not capture the features of an urban region, where 

differences between both scenarios are likely to be higher.  Therefore, to capture the changes in an 

urban area, the same analysis was performed for Maia, one of the municipalities with a larger increase 

in artificial surface (Figure 7.25). 
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Figure 7.25 Hourly surface temperature differences between SPRAWL and COMPACT for Maia municipality for 

a)1-km resolution, and b) 3-km resolution. 

 

For Maia municipality, temperature differences range from -1.5°C to +3°C, for the 1-km resolution, and 

from -1.8°C to 2°C for the 3-km resolution. Hence, while for the 3-km resolution no differences in the 

temperature range are found between the rural site (Porto/Pedras Rubras) and the urban site (Maia), 

for the 1-km resolution the urban site presents higher temperature increases. Again, the summer 

months present the largest differences, with July showing the highest temperature diference (+3°C in 

Jul 14th at 15:00).  

To illustrate the spatial extent of effects of land use changes in temperature, the average afternoon 

(12:00 – 18:00) temperature differences for July are shown in Figure 7.26. For July, average afternoon 

temperature differences range from about -1.2°C to +1.4°C, with largest increases occurring over Vila 

do Conde, Maia, Matosinhos, Porto and Gondomar, i.e., municipalities in the first metropolitan ring, 

which present some of the largest urban expansion.  

 



Urban development scenarios 

186 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

∆T (oC)

V.CONDE

MAIA

MATOSINHOS

GONDOMAR

TROFA
S.TIRSO

V.N.GAIA

VALONGO

PORTO

PAREDES

S.M.FEIRA

P.FERREIRA

ESPINHO

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

∆T (oC)

V.CONDE

MAIA

MATOSINHOS

GONDOMAR

TROFA
S.TIRSO

V.N.GAIA

VALONGO

PORTO

PAREDES

S.M.FEIRA

P.FERREIRA

ESPINHO

(km)5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

∆T (oC)

V.CONDE

MAIA

MATOSINHOS

GONDOMAR

TROFA
S.TIRSO

V.N.GAIA

VALONGO

PORTO

PAREDES

S.M.FEIRA

P.FERREIRA

ESPINHO

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

∆T (oC)

V.CONDE

MAIA

MATOSINHOS

GONDOMAR

TROFA
S.TIRSO

V.N.GAIA

VALONGO

PORTO

PAREDES

S.M.FEIRA

P.FERREIRA

ESPINHO

(km)  
Figure 7.26 July differences between SPRAWL and COMPACT afternoon (12:00 – 18:00) average surface 

temperature fields between at 1 km resolution. 

The observed changes are consistent with the substantial increases in urban surfaces across large parts 

of the model domain, and the spatial pattern of the temperature changes generally matches the area 

of increased urbanization. This is quite evident for the coastal part of Vila do Conde, NE Matosinhos 

and SE Vila Nova de Gaia. 

The temperature differences obtained as a result of land use changes are consistent with previous 

research by Civerolo et al. [2000, 2007] and De Ridder et al. [2008b], although these authors 

conducted research only for episodic air pollution situations. 

Although not presented, the SPRAWL scenario with its increased urban land cover also had a 

noticeable effect on surface layer winds across the metropolitan region, generally leading to a slight 

increase in wind speed. 

7.3.2 Air quality modelling 

For SPRAWL and COMPACT, simulations are performed with land use and emissions data produced 

according to the procedures previously described. Meteorological inputs are given by the respective 

MM5 annual simulation. 

Results from the two scenarios are analysed against the BASE simulation and against each other in 

order to identify the main differences between them. The following analysis is performed separately 

for PM10 and ozone. 

 



Urban development scenarios 

187 

7.3.2.1 PM10 

Figure 7.27 presents the spatial distribution of PM10 annual average concentrations calculated for 

BASE, SPRAWL and COMPACT, highlighting the areas for which the legislated annual limit value  

(40 µg.m-3) is exceeded.  
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Figure 7.27 PM10 annual average for BASE, SPRAWL and COMPACT (the orange lines surround the areas for 
which the legislated annual limit value is exceeded). 

BASE and COMPACT present a larger area of high PM10 annual averages (> 40 µg.m-3) over Porto 

municipality and its immediate surroundings, in comparison to SPRAWL. This is because the SPRAWL 

scenario implies a further decrease in Porto’s population, and therefore emissions, and a consequent 

increase in neighbouring municipalities. The result is a decrease of emissions in Porto and therefore in 

pollutants concentrations. Nevertheless, considering the entire simulation domain, SPRAWL shows the 

highest PM10 annual concentrations (> 70 µg.m-3), and larger areas above the annual limit value in 

Gondomar and Vila Nova de Gaia. The comparison between COMPACT and BASE suggests that the 

higher concentrations take place in exactly the same areas, with COMPACT revealing higher 

concentrations (> 65 µg.m-3, and >60 µg.m-3 for BASE). This is due to the population concentration in 

already urbanized areas, with the consequent increase of emissions. 

To better analyse the differences between the scenarios, the spatial distribution of the concentration 

differences are presented in Figure 7.28. Air quality monitoring stations are also presented for further 

analysis. Differences between annual averages from SPRAWL and BASE range from -15 to +24 µg.m-3, 

with negative values mainly over Porto, as a result of the decrease in emissions from traffic in this 

municipality. Higher positive differences are found over certain parts of the municipalities in the first 

metropolitan ring (Gondomar, Vila Nova de Gaia, Matosinhos, Maia and Valongo) corresponding to 

areas of urban expansion. Differences between COMPACT and BASE range from -5 to +8 µg.m-3, with 

higher positive differences over Matosinhos, in areas previously urbanized but with a greater 
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population density in COMPACT. However, for the most part of the simulation domain differences are 

small, between -5 and +5 µg.m-3. 
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Figure 7.28 PM10 annual average differences between a) SPRAWL and BASE, and  b) COMPACT and BASE. 

Figure 7.29 presents the results for PM10 annual averages for BASE, SPRAWL and COMPACT for each 

air quality monitoring site located in the simulation domain. The sites are grouped by municipality in 

order to facilitate the analysis: Boavista and Antas (Porto); Vermoim and Vila Nova da Telha (Maia); 

Matosinhos, Senhora da Hora, Leça do Balio, Perafita and Custóias (Matosinhos); Baguim (Gondomar); 

Ermesinde (Valongo); and Espinho. 
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Figure 7.29 PM10 annual average for BASE, SPRAWL and COMPACT (the red line indicates the legislated annual 

limit value, 40µg.m-3), at the air quality monitoring sites. 

For the majority of the air quality sites, SPRAWL presents the highest annual average of the three 

simulations, with the exception of Senhora da Hora, Baguim, Ermesinde and Espinho. However, the 

results for Baguim and Ermesinde are not representative of the respective municipalities, since those 

also show areas of increased PM10 concentrations, not captured by the air quality monitoring sites, 

particularly in Gondomar where the highest increases are simulated. 
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Municipalities which in BASE did not exceed the legislated annual average, such as Boavista and Leça 

do Balio, now exceed the limit with SPRAWL and COMPACT. Other sites which were already in non-

compliance show a deterioration of their situation (such as Matosinhos and Senhora da Hora). In 

Antas, Baguim, and Ermesinde both scenarios improve the PM10 levels. 

Figure 7.30 shows the analysis of the number of exceedances to the PM10 daily limit value (50 µg.m-3) 

obtained for BASE, SPRAWL and COMPACT. 
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Figure 7.30 Number of exceedances to the PM10 daily limit value for BASE, SPRAWL and COMPACT (the red line 

indicates the allowed number of exceedances to the daily limit value, 35).  
 

Results are very similar to those observed for the annual average, with the aggravation of the situation 

particularly for the sites of Matosinhos, Senhora da Hora and Perafita (in Matosinhos municipality), 

and Vila Nova da Telha (Maia). These correspond to areas of larger urban expansion in the case of 

SPRAWL and of population density increase in COMPACT. 

The analysis performed so far concerns the annual average; however it is also interesting to look at 

particular PM10 pollution episodes, since differences between scenarios may be better depicted. A 

day with high PM10 concentrations, belonging to one of the episodes identified in Chapter 5 (Figure 

5.3) is here analysed. On the 10th of February, high levels of PM10 were measured over the study area, 

with daily averages reaching more than 120 µg.m-3, and hourly values going up to 276 µg.m-3 in 

Matosinhos at 22:00. Figure 7.31 presents the evolution of PM10 concentrations along the 10th 

February and the daily averages at Matosinhos, for BASE, SPRAWL and COMPACT, as well as the 

measured values. 
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Figure 7.31 PM10 pollution episode of 10th February a) hourly concentrations evolution and b) daily averages at 

Matosinhos, for BASE, SPRAWL and COMPACT, and observed. 

Although not reaching concentrations as high as the observed values, the BASE simulation is able to 

reproduce the PM10 air pollution episode. SPRAWL peak concentrations are higher reaching  

290 µg.m-3, while COMPACT maximum concentrations reaching almost 240 µg.m-3 in comparison with 

the 220 µg.m-3 for BASE. Simulated daily averages are also higher for SPRAWL and COMPACT with 133 

and 122 µg.m-3, respectively (17 µg.m-3 and 6 µg.m-3 higher than BASE). 

Besides the obtained concentrations for each scenario it is also important to assess the number of 

individuals affected by high PM10 concentrations, since the population distribution across the study 

area is quite different for BASE, SPRAWL and COMPACT. Therefore, the maps of annual average 

concentrations (Figure 7.27) were crossed with population data per grid cell (Figure 7.5), to calculate 

the number of individuals affected by PM10 concentrations above the annual limit value. The results in 

terms of percentage of population (and not absolute since BASE has a lower population) are shown in 

Figure 7.32. 
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Figure 7.32 Population affected by PM10 concentrations above the annual limit value in BASE, SPRAWL and 

COMPACT.  

COMPACT presents the greatest share of population affected by PM10 concentrations above 40 µg.m-3 

(17%, corresponding to 370 000 inhabitants), while SPRAWL has the lowest number (12.5%, around 

270 000 inhabitants). For the three considered concentration ranges, SPRAWL has the lowest share of 

people affected, while BASE and COMPACT show similar concentrations, although generally lower for 
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BASE. Notwithstanding the existence of higher PM10 concentrations in SPRAWL, results indicate that 

the dispersion of the population along the study region withdraws people from the areas of higher 

concentrations. In turn, the COMPACT scenario places a greater part of the region’s population in 

areas of highest PM10 levels. 

However, it is important to notice that the approach used to estimate the population affected by high 

PM10 concentrations is very simple and does not account with population daily dislocation between 

municipalities, as described for the idealized study case (Chapter 3). The calculation of exposure levels 

involves a complex methodology that also includes time activity patterns and the consideration of 

different micro-environments.  

7.3.2.2 O3 

The combination of increased temperatures (for SPRAWL) and different emissions (for both scenarios) 

produces the ozone concentration pattern changes displayed in Figure 7.33. The spatial distribution of 

the ozone summer (April to September) average concentration differences between BASE, SPRAWL 

and COMPACT are shown. Air quality monitoring stations location is also depicted for further analysis. 
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Figure 7.33 Ozone summer average differences between a) SPRAWL and BASE, and  b) COMPACT and BASE. 
 

The immediate analysis of the maps reveals that differences between the scenarios and BASE are 

much smaller than those obtained for PM10. 

Differences between SPRAWL and BASE range from -6 to +4 µg.m-3, with negative values mostly found 

over Matosinhos, Maia and Gondomar (centre), in areas where the population expanded and 

emissions increased. In fact, comparing this map with the one for PM10 (Figure 7.28), negative 

differences for ozone are found in the areas of positive PM10 differences. Still regarding SPRAWL, 

ozone increases occur over Porto and part of Gondomar (N and S) in areas downwind the largest 
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emission increase, such as Matosinhos, Maia and the centre of Gondomar municipality, as a result of 

air pollutants transport and consequent ozone formation. This is consistent with the prevailing NW 

wind direction in the region.  

Differences between COMPACT and BASE range from -1.5 to +2 µg.m-3. Negative differences take place 

in Porto municipality as an outcome of the population densification in that area and the corresponding 

emissions increase, which lead to the local consumption of ozone. 

Under the combined effects of increased urbanization and increased emissions, ozone decreases are 

not completely unexpected and have been found in previous research works [Civerolo et al., 2007; De 

Ridder et al., 2008b]. This is probably due to the higher ozone removal by titration caused by higher 

anthropogenic emissions in an already emissions-dense region. Also, as investigated by Cohan et al. 

[2005], the non-linear response of ozone concentrations to changes in precursor emissions was found 

to increase with tonnage and emission density of the source region; this seems to be the case in the 

study region. According to the modelling study conducted by Tao et al. [2005], the synergy among 

precursor’s emission source categories may sometimes suppress O3, acting as negative source 

contributions. These authors concluded that the full potential of each source category in O3 formation 

(the pure contribution) is not achieved when emissions from the other source categories are 

accounted for. 

For both scenarios the largest part of the simulation domain presents very small positive differences, 

less than 1 µg.m-3, meaning that average concentrations are slightly higher in comparison to BASE. 

Figure 7.34 presents the number of exceedances to the hourly ozone information threshold  

(180  µg.m-3), obtained for BASE, SPRAWL and COMPACT. 
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Figure 7.34 Number of exceedances to the ozone information threshold for BASE, SPRAWL and COMPACT. 

SPRAWL presents the lowest number of exceedances, except in Espinho where the three simulations 

produced similar results. COMPACT is the worst scenario, with more exceedances than BASE for 

Boavista, Vila Nova da Telha, Senhora da Hora and Perafita.  
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The comparison of these results with the concentration patterns presented in Figure 7.33, reveals that 

there are no air quality sites in the areas of concentration increases, mainly for SPRAWL. However, if 

the same analysis is carried out for Gondomar in an area where no monitoring stations exist and for 

which higher positive differences are observed in the map of Figure 7.33, results are quite different: 

SPRAWL yields more exceedances (8) to the ozone information threshold in comparison with BASE (5) 

and COMPACT (6).  

Regarding the maximum values, which are also important for ozone assessment, summer average 

daily maxima are presented in Figure 7.35 for the three simulations.  
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Figure 7.35 Ozone summer average daily maxima for BASE, SPRAWL and COMPACT. 

Antas, Vermoim, Matosinhos, Leça do Balio, Perafita and Custóias, show a reduction in the ozone 

summer average daily maxima for both scenarios. The sites located in Matosinhos and Maia 

municipalities reflect the increase of precursors emissions and the titration effect already mentioned, 

resulting from the increase in urbanization and the intensification of population density in SPRAWL 

and COMPACT.  

As for PM10, ozone air pollution episodes may show enhanced differences between scenarios. One 

day with high O3 concentrations, belonging to one of the episodes identified in Chapter 5 is here 

analysed. In the 22nd of August, high levels of O3 were measured over the study area, with the 

information threshold being exceeded in a group of monitoring stations; Antas registered the highest 

observed concentration with 188 µg.m-3 at 15:00. Figure 7.36 presents the evolution of O3 

concentrations along the 22nd of August at Antas, for BASE, SPRAWL and COMPACT, as well as the 

observed values. 
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Figure 7.36 Ozone hourly concentrations evolution for the 22nd August at Matosinhos for BASE, SPRAWL and 

COMPACT, and observed.  

 

Although reaching the peak concentration before the observed peak, the BASE simulation is able to 

reproduce the ozone air pollution episode. Differences between scenarios and BASE are small, with 

COMPACT peak concentration reaching 193 µg.m-3, while SPRAWL reaches 190 µg.m-3, in comparison 

with 182 µg.m-3 for BASE. Although not presented, other episodic situations were analysed, allowing 

the conclusion that ozone differences are always of this magnitude. 

Regarding the number of persons affected by high ozone concentrations, the combination of the 

annual average concentrations maps with population data per grid cell, allows the determination of 

the number of individuals affected by ozone summer average concentrations above 70  µg.m-3. This 

value was chosen because it is the concentration above which differences between the three 

situations are more substantial.  The results are presented in Figure 7.37. 

> 70 µg.m-3

> 75 µg.m-3

> 80 µg.m-3

0%

10%

20%

30%

40%

50%

60%

BASE SPRAWL COMPACT

Po
pu

la
ti

on
 (

%
)

> 70 µg.m-3

> 75 µg.m-3

> 80 µg.m-3

0%

10%

20%

30%

40%

50%

60%

BASE SPRAWL COMPACT

Po
pu

la
ti

on
 (

%
)

 
Figure 7.37 Population affected by ozone summer average concentrations above 70, 75 and 80 µg.m-3 in BASE, 

COMPACT and SPRAWL.  

Once more, differences between scenarios and BASE are smaller than those observed for PM10. 

COMPACT presents the highest share of inhabitants affected by ozone summer average concentrations 

above 70  µg.m-3 (48.5%, corresponding to roughly 1 million people). However, looking at other 

concentration ranges the situation is different, since above 75  µg.m-3 BASE is the worst situation, with 

21% of the population. 
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7.4 Final Remarks 

The purpose of the work presented in this chapter was to investigate the effects of urban planning 

measures on air quality levels, namely on ozone and PM10 concentrations, through the application of 

a specifically developed methodology.  

The selected working area is located in Portugal’s Northern region, covering the Porto urban region, 

which is composed of a regional conglomerate of cities with a total population of over two million. 

Maps of land use and population parameters and an emission inventory were established for the 

situation as it is today (BASE).  Moreover, two distinct future urban development scenarios - COMPACT 

and SPRAWL - were created, based on population and land use changes. The population of the study 

region was increased, to reflect a 20-years period, and differently distributed among municipalities 

according to each scenario. The land use patterns of the area were modified following a scenario of 

urban sprawl (SPRAWL) and maintained through the concentration of people in already existent urban 

areas (COMPACT). New emissions were estimated for each scenario, taking into account population 

growth and land use changes. The air quality modelling system was applied to BASE, SPRAWL and 

COMPACT, using as input the modified spatial distributions of land use and emissions. The three 

situations were evaluated and compared based on the effects of the urban growth scenarios on 

temperature, emissions, pollutant concentrations, and affected population. 

The main findings can be summarised as follows. The averaged temperature increased by 0.4°C due to 

the land use changes in SPRAWL scenario. However, local increases reached 3°C, even in areas where 

land use changes were not implemented. Regarding emissions, the larger number of inhabitants, 

together with the conversion of forests and agricultural areas to urbanized land, and the increase of 

the average distance between people’s homes and working places (these last two only for SPRAWL), 

were responsible for a higher pollutant emissions. In particular, emissions of NOx, VOCs, and PM10 

increased by 11% to 17% in SPRAWL, and 4% to 6% in COMPACT.  

Concerning the air quality changes associated to these different scenarios, PM10 concentration 

changes range from -15 to +24 µg.m-3 in SPRAWL, and -5 to +8 µg.m-3 in COMPACT; when expressed as 

relative changes this is of the order of -12% to +19%, and -4% to +7%, respectively. SPRAWL presents 

the highest PM10 annual concentrations (> 70 µg.m-3), especially over areas of urban expansion and 

increasing emissions. COMPACT has slightly higher PM10 concentrations than BASE, due to the 

population concentration in already urbanized areas, and consequent increase of emissions in those 

areas. 

For ozone, summer averaged changes were relatively modest, ranging from -6 to +4 µg.m-3 in SPRAWL, 

and -1.5 to +2 µg.m-3 in COMPACT ( -8% to +5%, and -2% to +2.5%, respectively). While the largest part 
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of the domain shows positive differences under 1 µg.m-3, negative differences are found mostly in 

areas where the population expanded and emissions increased. On the other hand, higher ozone 

increases occur over areas downwind the greatest emission increases, as a result of air pollutants 

transport and chemical transformation. 

Findings for ozone illustrate the complex and often counteracting effects of substantial growth in 

urban cover on surface O3 concentrations. On one hand, higher temperatures lead to enhanced 

photochemical production; however, higher anthropogenic emissions associated with higher 

urbanization rates have the potential to increase the spatial extent of VOC-limited conditions typically 

associated with core urban areas. In such areas, NOx emissions contribute to decreased O3 

concentrations while they can lead to augmented O3 formation in downwind areas [Sillman, 1999]. 

Finally, the population affected by higher pollutants concentrations in each scenario, and its 

comparison with the base situation, revealed that although the existence of higher PM10 

concentrations in SPRAWL, the concentration of the population in COMPACT places a greater part of 

the inhabitants in areas of highest PM10 levels. For ozone results are not so clear, with BASE and 

COMPACT sharing the highest number of affected individuals. 

In conclusion, this study demonstrated that changes in land use patterns in metropolitan areas lead to 

changes in meteorology, air quality and population exposure. 
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8 CONCLUSIONS 

 

 

 

The main aim of this study was to explore the relationship between the structure of the urban area 

and its air quality. Several research studies had demonstrated already that compact cities with mixed 

land uses are energetically more efficient and are responsible for lower emissions of atmospheric 

pollutants in comparison with sprawling cities. But a fundamental question remained unanswered: do 

compact cities promote a better air quality when compared to sprawling cities? And, given the ever-

growing concentration of population in urban areas, do compact cities promote a healthier 

atmospheric environment? Given the signs provided by the energy and emissions aspects, the answers 

may seem obvious and straight forward but, as it was demonstrated along this study, they are not. 

To answer these questions a strategy was drawn. The strategy, or approach, relied on the use of 

advanced atmospheric modelling tools for the evaluation of different urban development scenarios.  

Aiming to assure a correct and complete analysis, a step-by-step methodology was defined and 

applied. First, it was necessary to characterize the current state of knowledge on the subject, including 

the genesis and growth of the problem, the policies adopted so far to address it, the tools available to 

tackle it, and gain insight from the studies previously conducted by several researchers on the field.  

People in general have imagined ideal cities since ever and planners in particular have devoted their 

attention to the search of the most sustainable urban structure. In the last decades, the growing 

awareness of urban problems related to the depletion of resources (including energy), atmospheric 

pollution and waste, has re-ignited the attention to the role of urban planning in urban sustainability. 

Discussion has been focused on density and land use function related aspects, with opinions classified 

in two main groups: those in favour of urban dispersion and those who believe in the virtues of urban 

compaction.  
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Throughout Europe, but especially in Southern countries, the dispersed urban form is replacing 

traditionally compact urban areas, with urban land cover increasing much faster than population. This 

fact however does not result from a conscious attitude or planning option, but instead is the outcome 

of the lack of planning and disregard of the inclusion of environmental aspects in the planning process. 

Although the European Commission’s initiatives and support towards a European strategy on the 

urban environment, and the recognition of sprawl as one of the most urgent urban issues to be 

tackled, no Directives on the subject have been adopted. The EC strategy is limited and despite 

sending the right signs to the Member States, it relies on voluntary initiatives to promote sustainable 

urban areas.  

By nature, cities concentrate people, material and activities, therefore, together with major industry, 

they are responsible by the largest levels of pollution, namely at the atmospheric level. In Europe, 

while the population growth has remained minimal, the number of households and motorized 

vehicles, and consequently, energy consumption has increased.  Although pollutant emissions in 

Europe have decreased substantially in the last two decades, as a result of technology and fuel 

improvements many times enforced through legislative initiatives, the ambient concentrations of 

PM10 and ozone have not shown any improvement. Approximately 20% of the European population is 

exposed to ozone concentrations above the target value; for PM10, 50% of the population is 

potentially exposed to ambient concentrations higher than the limit set for the protection of human 

health. 

The above mentioned values were obtained through the use of two important air quality management 

tools - air quality monitoring networks and numerical air quality models -, that are nowadays widely 

used over Europe and North America. Numerical air quality models are recognized and recommended 

by EU air quality legislation as powerful tools for the evaluation and management of air quality, since 

they are able to estimate air pollutants concentrations in any point of a given study area.  

While the environmental implications of transport and industrial activities have been recognized and 

studied for decades, the study of the influence of urban structure on air quality is still in its early steps. 

The few studies that integrate air quality modelling with urban structure aspects were conducted for 

episodic (a few days to a few weeks) air pollution situations and lack to compare different urban 

development pathways, instead comparing urban sprawl development with a reference starting point. 

Having characterized the scientific and policy state of knowledge, a first modelling approach for an 

idealized urban area was performed. For that purpose three idealized and distinct city structures were 

created - DISPERSE, COMPACT and CORRIDOR – and a mesoscale photochemical modelling system was 

applied to an episodic air pollution situation. The simulations performed revealed lower ozone 

concentrations for the COMPACT city, but a higher number of people exposed to higher pollutant 
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levels. The idealized case-study confirmed the importance of the city spatial structure on the urban air 

quality, and also that atmospheric modelling systems are adequate tools for the study of the topic.  

However, for a deeper analysis of the air quality consequences of different urban land use scenarios 

the study of a real urban area was necessary, as well as the extension of the modelling along an entire 

year to assure that the full range of air pollution conditions would be covered. Two essential steps 

were taken to do so: i) an adequate study area was identified and characterized, and ii) a modelling 

system able to perform long term simulations for the identified critical pollutants (O3 and PM10) was 

selected and improved to correctly simulate the air quality outcomes resulting from land use changes.  

The Porto urban region was identified as a suitable area for this study. The sprawling development 

model is evident in the Porto metropolitan region: extensive land occupation, high losses in 

agricultural and forest covers and the decrease in urban densities are the main signs of the current 

urban transformation and robust indicators of the direction taken by the urbanization process. Also, 

the Porto urban region presents a poor air quality, with ozone thresholds and daily and annual PM10 

limit values exceeded. The region is currently under the obligation of developing and implementing 

Plans and Programs for the Improvement of the Air Quality, as mandated by the European legislation 

on air quality. 

An adequate modelling system, composed by the meteorological model MM5 and the air quality 

model CAMx, was selected. The meteorological model was evaluated through a series of sensitivity 

tests, whose outputs were then fed as inputs to the air quality model aiming to define the most 

adequate setup for the purpose of the study. This task resulted in two important outcomes: 

i) It was found that the model presented a poor land use data-set for the Portuguese 

territory, particularly for coastal and urban areas (which is the case of the study area). The 

existing dataset was then replaced by the more detailed and accurate CLC2000 data, 

yielding improved meteorological results. 

ii) Two distinct setups, based on two different PBL parameterizations, were identified as 

adequate for the simulation of summer and winter air pollution episodes.  

Notwithstanding the reasonable performance of the modelling system, and based on previous 

modelling studies which identified aspects to be improved in the air quality model configuration, it was 

decided that further actions were to be taken. Of particular importance to the purpose of the study, 

intimately related to land use and population distribution across the study area, was the refinement of 

the spatial distribution of emissions, for which the corner stone was the improved land use dataset. 

Also of significance was the development of region-specific temporal profiles for the temporal 

distribution of emissions, and the development of region-specific chemical speciation profiles. As a 
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result of these actions, an improved modelling system configuration was obtained, able to adequately 

simulate the air quality impacts of land use changes over the study region. 

Finally, and making use of the knowledge and tools produced along this study, two urban development 

scenarios for the Porto area were defined and tested, with the objective of thoroughly assessing the 

implications of land use changes on the air quality levels of the Porto urban region. SPRAWL and 

COMPACT symbolize two different and alternative development paths. SPRAWL represents the 

perpetuation of the last decade’s trend: urban areas continue to expand throughout the study region, 

at a faster rate than population growth, and Porto municipality continues to be emptied of its 

population while still remaining the most important attracting pole in the region for employment, 

education and other activities. COMPACT represents the rupture with the current trend, and all urban 

growth is accommodated in already existent urban areas, therefore raising the population density in 

the study area. 

A methodology was developed for the estimation of pollutant emissions for both scenarios, devoting 

special attention to transport emissions since not only the population growth and urban area growth 

had to be taken into account, but also the mobility of the population throughout the Porto region. As a 

result the total amount of pollutant emissions increased in relation to the reference situation, BASE. In 

particular, emissions of NOx, VOCs, and PM10 increased by 11% to 17% in SPRAWL, and 4% to 6% in 

COMPACT.  

The modelling system was then applied for SPRAWL and COMPACT, and also BASE, for a full-year 

simulation. The analysis of the meteorological results revealed that, owing to the land use changes in 

SPRAWL, the average temperature increased by 0.4°C. However local increases reaching 3°C were also 

detected; and some were even estimated in areas where land use changes were not implemented.  

Regarding air quality, SPRAWL presented the highest PM10 concentrations, with an aggravation of the 

annual average values especially over areas of urban expansion and increasing emissions. Also, in the 

sites corresponding to the current monitoring stations, an increase in the number of exceedances to 

the daily limit value was found. Differences between each scenario and BASE were considerable, 

ranging from -15 to +24 µg.m-3 in SPRAWL, and -5 to +8 µg.m-3 in COMPACT. For COMPACT slightly 

higher PM10 concentrations than BASE were estimated, due to the population increase in already 

urbanized areas, and consequent increase of emissions in those same areas. 

For ozone, while the largest part of the domain had small concentration increases (< 1 µg.m-3) for both 

scenarios, smaller concentrations are found in areas where the population expanded and emissions 

increased, as a result of ozone titration by NO in the polluted atmosphere. Instead higher ozone levels  

are estimated for areas downwind the greatest emission increases, as a result of air pollutants 
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transport and consequent ozone formation. Differences between scenarios and BASE were smaller 

than those found for PM10, ranging from -6 to +4 µg.m-3 in SPRAWL, and -1.5 to +2 µg.m-3 in 

COMPACT.  

Finally, the population affected by higher PM10 and O3 concentrations was determined for each 

scenario and for BASE. The analysis revealed that although the existence of higher PM10 

concentrations in SPRAWL, the increase of the population density in COMPACT places a greater part of 

the inhabitants in areas of highest PM10 levels. This means that individually each inhabitant is exposed 

to lower PM10 concentrations in COMPACT, however, looking to the population as a whole, in terms 

of public health, the situation is inverted and SPRAWL presents a lower number of people affected by 

the highest concentrations. For ozone, results are not so clear, with BASE and COMPACT sharing the 

highest number of individuals affected, and SPRAWL clearly presenting the lowest number of total 

inhabitants affected by higher concentrations.  

In conclusion, it seems clear that changes in land use patterns in urban areas lead to changes in 

meteorology, emissions, air quality, and population exposure. The signal of the change is evident: 

sprawling urban areas, when compared to contained urban development, are responsible by higher 

temperatures, higher emissions of pollutants to the atmosphere, higher atmospheric pollutants 

concentrations, and higher levels of individual exposures to air pollutants. However, if the population 

is considered as a whole, compact urban developments imply a higher number of individuals exposed 

to the higher concentrations. 

According to the review of the literature on this thesis subject, this was the first time a long term study 

was performed to analyse the impacts of urban growth, and consequent land use changes, on air 

quality, through the development of alternative urban development scenarios and the application of 

an air quality modelling system. Also, the methodology can be applied to any city or urban area for 

which the required data is available. However, the methodology presented here can be improved. 

Future work shall focus on the use of land use models for the simulation of land use changes, and 

traffic modelling to simulate the effect of land use changes on traffic volumes and their spatial 

distribution. 

Along the next decade, it is expected that changes in the land use will take place. More likely, as 

revealed by the current trends, urban sprawl, the destruction of agricultural lands, and forestation and 

deforestation are expected to alter the landscape. These patterns will, in turn, lead to changes in 

population, energy consumption, traffic and anthropogenic and biogenic emissions. The results of this 

thesis suggest that changing land use patterns should be taken into consideration when using models 

to evaluate changes in quality levels (in particular ozone and PM10) stemming from various emissions 

reduction scenarios in urban areas. This is the case of the Porto urban region, for which Plans and 
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Programs for the Improvement of the Air Quality are now being developed for PM10 and soon starting 

to be conducted for ozone.  

Also, it is important to note that, such as technology alone has not been able to tackle the air quality 

problems, more compact urban development patterns alone will not be sufficient to fully address 

urban air quality problems. Technological advances in emissions control have proven to be highly 

effective in reducing emissions over the last decades, and emerging technologies, such as hybrid 

vehicles and alternative fuels, are expected to continue these reductions. The importance of land use-

oriented approaches to air quality management lies in the potential for these strategies to limit the 

dramatic growth in traffic, which has greatly diluted the benefits of technological improvements so far, 

and also in addressing the local meteorological drivers of air pollution, such as temperature. 

European legislation has successfully managed to drive technology improvements with visible results 

in terms of emission reductions. A high quality and healthy urban environment is unlikely to emerge 

spontaneously from the multitude of decisions taken independently by the multitude of urban actors 

(public authorities, private institutions and companies, and individuals). It is my conviction that 

legislation is required to drive urban development in the right direction and to guide daily 

management decisions, namely through the establishment of clear guidelines and obligations for 

environmental management and sustainable urban transport plans, and even limitations to urban 

expansion. Therefore the strategy for addressing urban air quality problems must include land use 

policies that promote more compact urban forms, complemented by technological emission controls. 

In the years to come, cities will continue to be the main centres of economic activity, innovation and 

culture. Therefore, managing the urban environment and the quality of life of its inhabitants goes well 

beyond the concern for the well-being of the urban population, affecting instead the well-being of 

humanity as a whole. 
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Appendix A 
Land use evolution in the study region 1987 – 2000 

 

 
 

Table A.1 Castelo de Paiva municipality land cover data for 1987 and 2000.  
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

42.5 
0 

42.5 
0 

0 

0.4% 
0% 

100% 
0% 

0% 

123.7 
0 

93.8 
29.9 

0 

1.% 
0% 

75.8% 
24.2% 

0% 

+ 81.3 
0.0 

+51.4 
+29.9 

0.0 

+191.3% 
0.0% 

+120.9% 
- 

0.0% 

Agricultural areas 3340.5 30.2% 2782.1 25.2% -558.4 -16.7% 

Forests and shrub areas 7575.6 68.6% 8052.7 72.9% +477.2 +6.3% 

Other non-artificial surfaces 87.9 0.8% 87.9 0.8% 0.0 0.0% 

 

Table A.2 Espinho municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
 Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

803.0 
174.6 

477.5 
47.2 

103.7 

41.9% 
21.7% 

59.5% 
5.9% 

12.9% 

873.5 
174.6 

548.0 
47.2 

103.7 

46.6% 
20.0% 

62.7% 
5.4% 

11.9% 

+70.5 
0.0 

+70.5 
0.0 

0.0 

+8.8% 
0.0% 

+14.8% 
0.0% 

0.0% 

Agricultural areas 458.8 24.0% 436.8 23.2% -21.9 -4.8% 

Forests and shrub areas 474.8 24.8% 470.5 25.1% -4.3 -0.9% 

Other non-artificial surfaces 136.3 7.1% 92.0 4.9% -44.3 -32.5% 
 

Table A.3 Santa Maria da Feira land cover data for 1987 and 2000.  
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

 Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

3236.8 

0.0 
2849.0 

322.8 
65.0 

15.3% 

0.0% 
88.0% 

10.0% 
2.0% 

4827.7 

0.0 
4130.0 

618.9 
77.8 

22.8% 

0.0% 
85.6% 

12.8% 
1.6% 

+1590.9 

0.0 
+1281.9 

+296.1 
+12.9 

+49.2% 

0.0% 
+45.0% 

+91.7% 
+19.8% 

Agricultural areas 6405.4 30.3% 5502.8 26.0% -902.6 -14.1% 

Forests and shrub areas 11407.9 54.0% 10799.2 51.1% -608.7 -5.3% 

Other non-artificial surfaces 86.1 0.4% 6.5 0.0% -79.6 -92.4% 
 

Table A.4 Felgueiras municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

669.7 
0.0 

669.7 
0.0 
0.0 

5.9% 
0.0% 

100.0% 
0.0% 
0.0% 

1115.5 
0.0 

1057.9 
57.6 

0.0 

9.8% 
0.0% 

94.8% 
5.2% 
0.0% 

+445.8 
0.0 

+388.2 
+57.6 

0.0 

+66.6% 
0.0% 

+58.0% 
- 

0.0% 

Agricultural areas 6900.2 60.9% 6618.5 58.4% -281.6 -4.1% 

Forests and shrub areas 3737.4 33.0% 3603.6 31.8% -133.8 -3.6% 

Other non-artificial surfaces 30.4 0.3% 0.0 0.0% -30.4 -100.0% 
 

Table A.5 Gondomar municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

1637.6 
0.0 

1601.5 

10.7 
25.4 

12.2% 
0.0% 

97.8% 

0.7% 
1.6% 

2701.8 
117.0 

2441.0 

95.5 
48.4 

20.2% 
4.3% 

90.3% 

3.5% 
1.8% 

+1064.2 
117.0 

+839.6 

+84.8 
+23.0 

+65.0% 
- 

+52.4% 

+792.5% 
+90.6% 

Agricultural areas 3881.6 29.0% 3155.3 23.6% -726.3 -18.7% 

Forests and shrub areas 5023.2 37.5% 6908.9 51.6% 1885.6 37.5% 

Other non-artificial surfaces 2852.5 21.3% 618.1 4.6% -2234.3 -78.3% 
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Table A.6 Lousada municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

199.4 

0.0 
154.4 

45.0 

0.0 

2.1% 

0.0% 
77.4% 
22.6% 

0.0% 

676.2 

0.0 
590.6 

85.6 

0.0 

7.1% 

0.0% 
87.3% 
12.7% 

0.0% 

+476.8 

0.0 
+436.2 

+40.6 

0.0 

+239.1% 

0.0% 
+282.5% 

+90.2% 

0.0% 

Agricultural areas 5454.0 56.5% 5095.9 53.5% -358.1 -6.6% 

Forests and shrub areas 3759.1 39.0% 3753.1 39.4% -6.0 -0.2% 

Other non-artificial surfaces 234.7 2.4% 0.0 0.0% -234.7 -100.0% 
 

Table A.7 Maia municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

1767.7 
91.3 

1211.6 
72.8 

392.1 

21.2% 
5.2% 

68.5% 
4.1% 

22.2% 

3094.3 
154.7 

2091.8 
520.9 
327.0 

37.1% 
5.0% 

67.6% 
16.8% 
10.6% 

+1326.7 
+63.4 

+880.2 
+448.1 

-65.1 

+75.1% 
+69.5% 

+72.7% 
+615.8% 

-16.6% 

Agricultural areas 4204.6 46.6% 3138.2 37.6% -1066.4 -25.4% 

Forests and shrub areas 2623.6 31.4% 2054.1 24.6% -569.5 -21.7% 

Other non-artificial surfaces 63.2 0.8% 55.7 0.7% -7.5 -11.8% 
 

Table A.8 Marco de Canaveses municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

276.6 
0.0 

169.7 
0.0 

107.0 

1.4% 
0.0% 

61.3% 
0.0% 

38.7% 

695.0 
0.0 

503.6 
31.9 

159.5 

3.4% 
0.0% 

72.5% 
4.6% 

22.9% 

+418.3 
0.0 

+334.0 
+31.9 
+52.5 

+151.2% 
0.0% 

+196.8% 
- 

+49.1% 

Agricultural areas 10513.1 51.8% 9988.1 49.3% -525.0 -5.0% 

Forests and shrub areas 8502.2 41.9% 8241.6 40.6% -260.5 -3.1% 

Other non-artificial surfaces 984.5 4.9% 1351.7 6.7% +367.2 +37.3% 
 

Table A.9 Matosinhos municipality land cover data for 1987 and 2000.  
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

2775.8 

355.5 
1565.9 

524.8 

349.6 

44.9% 

12.1% 
56.4% 
18.9% 

12.6% 

3421.4 

495.6 
1837.1 

897.1 

191.7 

55.3% 

14.5% 
53.7% 
26.2% 

5.6% 

+645.6 

+160.1 
+271.2 
+372.3 

-157.9 

+23.3% 

+47.7% 
+17.3% 
+70.9% 

-45.2% 

Agricultural areas 2368.0 38.3% 1979.2 32.0% -388.8 -16.4% 

Forests and shrub areas 900.7 14.6% 651.9 10.5% -248.8 -27.6% 

Other non-artificial surfaces 140.8 2.3% 132.8 2.1% -8.1 -5.7% 
 

Table A.10 Póvoa de Varzim municipality land cover data for 1987 and 2000.  
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

935.9 

245.0 
664.2 

26.7 
0 

11.9% 

26.2% 
71.0% 

2.9% 
0.0% 

1259.5 

235.7 
858.3 

54 
93.5 

16.0% 

20.1% 
68.2% 

4.3% 
7.4% 

+323.6 

+8.7 
+194.2 

+27.2 
+93.5 

+34.6% 

+3.5% 
+29.2% 

102.0% 
- 

Agricultural areas 4745.7 60.5% 4775.4 60.8% +29.7 +0.6% 

Forests and shrub areas 1968.4 25.1% 1675.6 21.3% -292.7 -14.9% 

Other non-artificial surfaces 200.4 2.6% 139.9 1.8% -60.6 -30.2% 
 

Table A.11 Paredes municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

800.6 

0.0 
684.5 

54.3 
61.8 

5.1% 

0.0% 
85.5% 

6.8% 
7.7% 

1777.0 

0.0 
1521.3 

193.9 
61.8 

11.4% 

0.0% 
85.6% 

10.9% 
3.5% 

+976.4 

0.0 
+836.8 

+139.6 
0 

+122.0% 

0.0% 
+122.3% 

+256.9% 
0% 
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Agricultural areas 5794.1 37.1% 5356.5 34.3% -437.6 -7.6% 

Forests and shrub areas 7615.0 48.7% 8491.5 54.3% +876.5 +11.5% 

Other non-artificial surfaces 1415.3 9.1% 0.0 0.0% -1415.3 -100.0% 
 

 
Table A.12 Paços de Ferreira municipality land cover data for 1987 and 2000. 

CLC90 (1987 data) CLC2000 Change 
Land uses 

hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

554.7 
0.0 

533.8 
0.0 

20.9 

7.6% 
0.0% 

96.2% 
0.0% 
3.8% 

1408.0 
0.0 

1316.8 
70.3 
20.9 

19.4% 
0.0% 

93.5% 
5.0% 
1.5% 

+853.3 
0.0 

+783.0 
+70.3 

0.0 

153.8% 
0.0% 

+146.7% 
- 

0.0% 

Agricultural areas 3441.3 47.4% 2866.7 39.5% -574.6 -16.7% 

Forests and shrub areas 3259.7 44.9% 2981.1 41.1% -278.7 -8.5% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 - 

 
Table A.13 Penafiel municipality land cover data for 1987 and 2000. 

CLC90 (1987 data) CLC2000 Change 
Land uses 

hectares % hectares % hectares % 

Artificial surfaces 

    Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

338.4 

0.0 
242.7 

0.0 
95.6 

1.8% 

0.0% 
71.7% 

0.0% 
28.3% 

1129.2 

0.0 
822.5 

91.9 
214.7 

5.2% 

0.0% 
72.8% 

8.1% 
19.0% 

+790.8 

0.0 
+579.8 

+91.9 
+119.1 

+233.7% 

0.0% 
+238.9% 

- 
+124.6% 

Agricultural areas 9967.7 51.9% 9559.0 44.4% -408.7 -4.1% 

Forests and shrub areas 8367.0 43.6% 10458.4 48.6% +2091.4 +25.0% 

Other non-artificial surfaces 533.7 2.8% 391.6 1.8% -142.1 -26.6% 

 

Table A.14 Porto municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

3181.1 

1591.0 
1319.5 

109.3 

161.3 

82.6% 

50.0% 
41.5% 

3.4% 

5.1% 

3525.5 

1763.3 
1462.4 

121.1 

178.7 

91.5% 

50.0% 
41.5% 

3.4% 

5.1% 

+344.4 

+172.3 
+142.9 

+11.8 

+17.4 

+10.8% 

+% 
+10.8% 
+10.8% 

+10.8% 

Agricultural areas 567.4 14.7% 265.7 6.9% -301.7 -53.2% 

Forests and shrub areas 57.5 1.5% 14.7 0.4% -42.8 -74.4% 

Other non-artificial surfaces 46.6 1.2% 46.6 1.2% 0.0 0.0% 

 

Table A.15 São João da Madeira municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

601.2 
96.9 

327.6 
176.7 

0 

71.7% 
16.1% 

54.5% 
29.4% 

0.0% 

601.2 
96.9 

327.6 
176.7 

0 

71.7% 
16.1% 

54.5% 
29.4% 

0.0% 

0.0 
0.0 

0.0 
0.0 
0.0 

0.0% 
0.0% 

0.0% 
0.0% 
0.0% 

Agricultural areas 162.1 19.3% 162.1 19.3% 0.0 0.0% 

Forests and shrub areas 75.3 9.0% 75.3 9.0% 0.0 0.0% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 - 

 
Table A.16 Santo Tirso municipality land cover data for 1987 and 2000. 

CLC90 (1987 data) CLC2000 Change 
Land uses hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

1371.8 
60.3 

1298.0 
0.0 

13.5 

10.3% 
4.4% 

94.6% 
0.0% 

1.0% 

1916.5 
60.3 

1673.3 
129.5 

53.4 

14.3% 
3.1% 

87.3% 
6.8% 

2.8% 

+544.7 
+0.0 

+375.3 
+129.5 

+39.9 

+39.7% 
0% 

+28.9% 
- 

+295.2% 

Agricultural areas 5446.6 40.7% 5096.7 38.1% -349.9 -6.4% 

Forests and shrub areas 6374.5 47.6% 6211.6 46.4% -162.9 -2.6% 

Other non-artificial surfaces 185.8 1.4% 153.8 1.1% -32.0 -17.2% 
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Table A.17 Vila Nova de Famalicão municipality land cover data for 1987 and 2000.  
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

2562.9 
51.8 

2228.7 
244.9 

37.5 

12.6% 
2.0% 

87.0% 
9.6% 
1.5% 

3486.1 
69.6 

2941.8 
410.9 

63.7 

17.2% 
2.0% 

84.4% 
11.8% 

1.8% 

+923.2 
+17.9 

+713.0 
+166.0 

+26.3 

+36.0% 
+34.5% 

+32.0% 
+67.8% 
+70.1% 

Agricultural areas 10570.0 52.0% 10204.9 50.2% -365.1 -3.5% 

Forests and shrub areas 7109.2 35.0% 6633.2 32.6% -476.0 -6.7% 

Other non-artificial surfaces 82.1 0.4% 0.0 0.0% -82.1 -100.0% 
 

Table A.18 Valongo municipality land cover data for 1987 and 2000. 
CLC90 (1987 data) CLC2000 Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces   
 Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

801.9 
59.2 

729.5 
0 

13.2 

10.9% 
7.4% 

91.0% 
0.0% 

1.6% 

2029.9 
143.8 

1689.0 
184.0 

13.2 

27.7% 
7.1% 

83.2% 
9.1% 

0.6% 

+1228.0 
+84.6 

+959.5 
+184.0 

0.0 

+153.1% 
+142.9% 

+131.5% 
- 

0.0% 

Agricultural areas 1789.5 24.4% 1078.6 14.7% -710.9 -39.7% 

Forests and shrub areas 4089.8 55.7% 4231.3 57.6% 141.6 3.5% 

Other non-artificial surfaces 658.7 9.0% 0.0 0.0% -658.7 -100.0% 

 
Table A.19 Vila do Conde municipality land cover data for 1987 and 2000. 

CLC90 (1987 data) CLC2000 Change 
Land uses 

hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

1093.0 
141.9 

888.8 
42.0 
20.3 

7.5% 
13.0% 

81.3% 
3.8% 
1.9% 

1429.5 
141.9 

1067.0 
175.1 

45.5 

9.8% 
9.9% 

74.6% 
12.2% 

3.2% 

+336.6 
0 

+178.2 
+133.2 

+25.2 

+30.8% 
0.0% 

+20.0% 
+317.4% 
+124.1% 

Agricultural areas 8189.5 55.9% 8155.1 55.7% -34.4 -0.4% 

Forests and shrub areas 5029.6 34.3% 4816.9 32.9% -212.7 -4.2% 

Other non-artificial surfaces 333.6 2.3% 244.2 1.7% -89.4 -26.8% 

 
Table A.20 Vila Nova de Gaia municipality land cover data for 1987 and 2000. 

CLC90 (1987 data) CLC2000 Change 
Land uses hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

4921.3 
329.7 

4158.5 
300.2 

39.4 

29.3% 
6.7% 

84.5% 
6.1% 

0.8% 

6391.3 
386.4 

5166.6 
657.6 

180.7 

38.0% 
6.0% 

80.8% 
10.3% 

2.2% 

+1470.0 
+56.7 

+1008.1 
+357.4 

+141.3 

29.9% 
+17.2% 

+24.2% 
+119.1% 

+358.6% 

Agricultural areas 6333.2 37.7% 5386.6 32.0% -946.6 -14.9% 

Forests and shrub areas 4800.2 28.5% 4347.0 25.8% -453.2 -9.4% 

Other non-artificial surfaces 762.3 4.5% 692.1 4.1% -70.2 -9.2% 

 
Table A.21 Trofa municipality land cover data for 1987 and 2000. 

CLC90 (1987 data) CLC2000 Change 
Land uses 

hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

838.2 

33.4 
762.9 

29.4 
12.4 

11.5% 

4.0% 
91.0% 

3.5% 
1.5% 

1251.3 

33.4 
1093.7 

111.7 
12.4 

17.1% 

2.7% 
87.4% 

8.9% 
1.0% 

+413.1 

0 
+330.8 

+82.3 
0 

+49.3% 

0.0% 
+43.4% 

+279.9% 
+0.0% 

Agricultural areas 2308.1 31.6% 2162.0 29.6% -146.1 -6.3% 

Forests and shrub areas 4013.5 55.0% 3887.7 53.2% -125.8 -3.1% 

Other non-artificial surfaces 141.2 1.9% 0.0 0.0% -141.2 -100.0% 
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Appendix B 
Mobility in the study region: attraction and repulsion rates 
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Figure B.1 Espinho main entering and exiting movements and attraction and repulsion rates for 2001 (maps 

from INE[2003]; numbers computed by manipulation of INE data). 
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Figure B.2 Gondomar main entering and exiting movements and attraction and repulsion rates for 2001 

(maps from INE[2003]; numbers computed by manipulation of INE data). 
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Figure B.3 Maia main entering and exiting movements and attraction and repulsion rates for 2001 (maps 

from INE[2003]; numbers computed by manipulation of INE data). 
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Figure B.4 Matosinhos main entering and exiting movements and attraction and repulsion rates for 2001 

(maps from INE[2003]; numbers computed by manipulation of INE data). 
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Figure B.5 Póvoa de Varzim main entering and exiting movements and attraction and repulsion rates for 

2001 (maps from INE[2003]; numbers computed by manipulation of INE data). 
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Figure B.6 Valongo main entering and exiting movements and attraction and repulsion rates for 2001 (maps 

from INE[2003]; numbers computed by manipulation of INE data). 
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Figure B.7 Vila do Conde main entering and exiting movements and attraction and repulsion rates for 2001 

(maps from INE[2003]; numbers computed by manipulation of INE data). 
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Figure B.8 Vila Nova de Gaia main entering and exiting movements and attraction and repulsion rates for 

2001 (maps from INE[2003]; numbers computed by manipulation of INE data). 
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Appendix C 
Ozone and PM10 episodes in the study region in 2006 

 
 

Table C.1 Ozone episodes in the study region in 2006 

Day  Hour Air quality stations Hourly concentrations (µg.m
-3

) 

05-06-2006  14:00 VNT, ST, CLD 201, 186, 195 
 15:00 ERM, VRM, VNT, LB, ST, CLD 196, 186, 195, 200, 183, 184 

 16:00 VNT 183 

06-06-2006 16:00 ERM, VNT, LB, ST, CLD 186, 183, 195, 184, 195 

 17:00 ERM, LB, CLD 188, 184, 187 

 18:00 PRF 182 

13-07-2006 14:00 ANT 183 
 15:00 ERM, ST, CLD 191, 194, 182 

 16:00 ERM, VRM, ANT, VNT, LB, ST, CL, CLD 209, 187, 200, 189, 186, 193, 189, 186 

 17:00 CST, ERM, ANT, VNT, LB, ST, CL 184, 188, 196, 187, 198, 188, 183 

 18:00 LB 182 

06-08-2006 15:00 PRF 202 

 16:00 VRM, VNT 187, 189 

 17:00 ANT 185 

08-08-2006 15:00 PRF 200 

 16:00 CST, VRM, PRF, VNT 185, 181, 198, 187 

 17:00 VRM 181 

09-08-2006 15:00 PRF 181 

 16:00 PRF, CLD 216, 198 

 17:00 PRF, ST, CL, CLD 209, 201, 187, 205 

 18:00 CST, VRM, PRF, LB, ST, CL, CLD 190, 192, 183, 189, 192, 192 193 

 19:00 ERM, ANT 184, 182 

11-08-2006 14:00 CLD 190 
 15:00 VNT,ST, CLD 184, 189, 196 

 16:00 CST, ERM, VRM, PRF, LB, CL 191, 188, 186, 202, 183, 210 

 17:00 ERM, ANT 182, 184 

22-08-2006 13:00 ST, CLD 182, 201 

 14:00 ST, CLD 192, 227 

 15:00 PRF, ST, CLD 192, 214, 207 

 16:00 VRM, VNT, CL 186, 187, 194 

 17:00 ERM, ANT 203, 188 

05-09-2006 12:00 ST, CLD 193, 224 
 13:00 ST, CL, CLD 269, 208, 231 

 14:00 CST, VRM, ANT, VNT, ST, CL, CLD 182, 182, 225, 189, 227, 323, 226 

 15:00 CST, ERM, VRM, PRF, ANT, VNT, ST, CL, CLD 211, 189, 187, 191, 213, 234, 219, 279, 198 

 16:00 ERM, VRM, PRF, ANT, VNT, ST, CL 240, 217, 185, 240, 195, 187, 225 

 17:00 ERM 189 
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Table C.2 PM10 episodes in the study area in 2006. 

Days Air quality stations 
Maximum daily average concentrations 

(µg.m
-3

) 

3-5 Jan 06  ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, LB, SH, VC, 
CST, ST, CLD, PRD 

95, 63, 71, 84, 70, 75, 71, 58, 67, 77, 79, 
59,64, 58, 96 

7-12 Jan 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, LB, SH, VC, 
ST, CLD, PRD, CL 

87, 56, 72, 86, 65, 89, 59, 78, 75, 80, 77, 
72, 51, 97, 52 

17-20 Jan 06 ERM, BV, ANT, MAT, VNT, VRM, ESP, LB, SH, VC, ST, 
PRD 

65, 60, 59, 76, 50, 71, 55, 72, 60, 75, 57, 
71 

23-24 Jan 06 ERM, ANT, MAT, VNT, VRM, PRF, ESP, LB, SH, VC, CST, 
ST, CLD, PRD 

73, 56, 62, 53, 71, 54, 54, 69, 61, 62, 74, 
55, 57, 99 

26 Jan 06 MAT, VRM, VC, ST, PRD 55, 51, 58, 64, 61 

30 Jan-14 Fev 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, LB, SH, VC, 

CST, CLD, PRD, CL 

134, 103, 99, 136, 118, 148, 117, 112, 

153, 122, 137, 65, 108, 134, 93 

17-18 Fev 06 PRF, ESP, VC 63, 72, 63  

24 Fev 06 ERM, ANT, MAT, VRM,  LB, SH, PRD 61, 52, 59, 53, 58, 54, 93 

10 Mar 06 MAT, PRF, ESP 51, 55, 61 

13-16 Mar 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, LB, SH, VC, 

CLD, PRD, CL 

81, 80, 70, 81, 65, 83, 79, 78, 92, 85, 80, 

69, 84, 73 

24 Mar 06 BV, MAT, PRF, ESP, SH, VC, ST 53, 52, 70, 74, 52, 69, 57 

27 Mar 06 PRF, ESP, VC 58, 67, 66 

12 Abr 06 MAT, VRM, LB, SH 66, 55, 58, 54 

23-27 Abr 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, LB, SH, VC, 

CST, ST, CLD, PRD 

67, 65, 58, 76, 60, 62, 76, 89, 60, 83, 69, 

68, 76, 55, 74 

10 Mai 06 BV, ANT, MAT, VRM, SH, CL 77, 51, 60, 57, 57, 60 

26 Mai-7 Jun  06  ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, SH, VC, CST, 

ST, CLD, PRD, CL 

59, 118, 90, 129, 79, 88, 100, 101, 114, 

104, 79, 87, 65, 82, 137 

13 Jun 06 ERM, BV, ANT, MAT,  VRM, ESP, VC 64, 60, 62, 65, 65, 72, 59 

18 Jun 06 ERM, MAT, VRM, VC 52, 52, 53, 60 

22-23 Jun 06 ERM, BV, ANT, MAT, VRM, SH, VC, ST, CLD, PRD, CL 60, 60, 60, 50, 61, 58, 51, 60, 52, 59, 63 

27 Jun-1 Jul 06 ERM, BV, ANT, VNT, VRM, SH, VC, CST, ST, CLD, PRD, CL 60, 54, 56, 55, 58, 65, 55, 79, 77, 53, 68, 

68 

7 Jul 06 ERM, BV, ANT, MAT, VRM, SH, VC, CST 56, 58, 62, 51, 50, 68, 60, 68 

10-18 Jul 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, SH, VC, CST, 
ST, CLD, PRD, CL 

92, 97, 96, 89, 87, 89, 80, 118, 99, 121, 
64, 73, 64, 67, 77 

2 Ag 06 BV, SH, VC 50, 51, 50 

4-14 Ag 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, SH, VC, ST, 
CLD, PRD, CL 

122, 116, 102, 121, 179, 125, 112, 162, 
125, 132, 101, 80, 88, 97 

22 Ag 06 MAT, ESP, SH 53, 52, 57 

29 Ag 06  BV, MAT, ESP, SH 51, 57, 67, 57 

31 Ag 06 ERM, BV, VNT, VRM, SH, CST 59, 57, 58, 68, 52, 57 

4-9 Set 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, SH, VC, CST, 
ST, CLD, PRD, CL 

90, 84, 73, 100, 89, 98, 74, 100, 77, 82, 
50, 86, 65, 117, 83 

10 Out 06 BV, ANT, PRF, SH, VC 52, 50, 51, 51, 51 

23 Out 06 MAT, PRF, ESP, CST 57, 52, 70, 53 

28 Out-1 Nov 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, SH, VC, ST, 

CLD, PRD, CL 

64, 62, 66, 77, 63, 66, 55, 71, 65, 66, 62, 

54, 75, 74 

11-14 Nov 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, SH, VC, ST, 

PRD, CL 

66, 58, 56, 59, 58, 69, 56, 61, 57, 66, 60, 

63, 67 

12 Dez 06 ERM, ANT, MAT, VC, PRD 61, 50, 55, 57, 66 

16-24 Dez 06 ERM, BV, ANT, MAT, VNT, VRM, PRF, ESP, LB, SH, VC, 
ST, CLD, PRD, CL 

74, 58, 66, 73, 61, 84, 81, 59, 82, 89, 77, 
103, 61, 83, 82 

31 Dez 06  PRF, ESP, VC 65, 54, 59 

 

(Abbreviations: ANT-Antas, BV-Boavista, CL- Centro de Lacticínios,  CLD-Calendário, CST-Custóias, ERM-Ermesinde,ESP-Espinho, LB- 

Leça do Balio, MAT-Matosinhos, PRD-Paredes, PRF-Perafita, ST-Santo Tirso, SH - Senhora da Hora, VC-Vila do Conde, VNT-Vila Nova da 
Telha, VRM –Vermoim) 
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Appendix D 
Air pollution episodes - meteorological characterization 

 

  
Figure D.1 Summer episode 500 hPa pressure maps – 3 and 6 June 2006 (www.weterzentrale.de). 

 

 
 

  
Figure D.2 Summer episode 500 hPa pressure maps – 7 and 8 June 2006 (www.weterzentrale.de). 
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Figure D.3 Winter episode 500 hPa pressure maps – 16 and 18 December 2006 (www.weterzentrale.de). 

 
 
 

  
Figure D.4 Winter episode 500 hPa pressure maps – 20 and 22 December 2006 (www.weterzentrale.de). 
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Appendix E 
Meteorological sensitivity tests 

 

Table E.1 Statistical measures for temperature and wind components obtained for MM5 – test1 simulation - 

summer (3-8 June 2006) and winter (16-24 December 2006) episodes 
T u v 

 
r S/Sobs E/Sobs Eub/Sobs R S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs 

Eub/So

bs 

VS  

    9km 

         
3km 

0.95 

0.88 

0.92 

0.72 

0.68 

0.92 

0.80 

1.00 

0.60 

0.62 

0.62 

1.30 

0.42 

0.47 

0.41 

0.75 

0.86 

0.76 

0.88 

0.78 

0.49 

0.59 

0.42 

0.42 

0.67 

0.79 

0.66 

0.76 

0.63 

0.69 

0.64 

0.72 

0.34 

0.12 

0.83 

0.51 

0.45 

0.53 

0.60 

0.40 

1.11 

2.21 

0.61 

0.87 

0.95 

1.36 

0.61 

0.87 

BR 
9km 

 

3km 

0.44 

0.22 

0.89 

0.61 

0.42 

0.74 

0.73 

0.82 

0.96 

1.91 

0.66 

1.13 

0.90 

1.14 

0.48 

0.83 

0.10 

0.13 

0.45 

0.16 

1.99 

1.43 

1.39 

0.72 

2.14 

3.15 

1.61 

1.97 

2.14 

1.74 

1.22 

2.09 

0.16 

0.11 

0.08 

0.20 

1.33 

2.51 

0.51 

0.83 

1.53 

2.64 

1.07 

1.24 

1.53 

2.60 

1.07 

1.17 

VC 

9km 

0.43 

0.42 

0.39 

0.64 

1.05 

1.22 

0.95 

0.94 

0.84 

0.30 

0.93 

1.94 

0.56 

2.27 

0.55 

1.91 

0.56 

0.25 

2.72 

7.62 

2.35 

7.45 

2.33 

7.43 

VR 

9km 

0.92 

0.47 

0.72 

0.88 

0.74 

1.01 

0.44 

0.97 

0.71 

0.28 

1.61 

1.47 

1.58 

3.00 

1.14 

1.64 

0.48 

0.02 

0.60 

0.51 

0.90 

1.13 

0.88 

1.13 

CBR 

9km 

0.91 

0.79 

0.74 

1.16 

0.71 

1.08 

0.45 

0.72 

0.80 

0.34 

0.77 

0.79 

0.60 

1.05 

0.60 

1.04 

0.42 

0.38 

0.95 

1.27 

1.06 

1.89 

1.05 

1.32 

CB 

9km 

0.95 

0.90 

0.66 

0.89 

1.05 

1.21 

0.43 

0.48 

0.63 

0.63 

0.71 

1.12 

0.81 

1.10 

0.78 

0.92 

0.72 

0.63 

0.69 

0.55 

0.70 

0.79 

0.69 

0.78 

LS 

9km 

0.91 

0.78 

0.92 

1.15 

1.02 

2.29 

0.47 

0.72 

0.77 

0.56 

0.83 

0.92 

0.94 

1.51 

0.78 

0.90 

0.78 

0.41 

1.17 

1.13 

0.80 

1.78 

0.91 

1.17 

SN 

9km 

0.34 

0.54 

0.55 

0.83 

1.04 

0.97 

0.96 

0.89 

0.67 

0.52 

1.06 

1.03 

0.93 

2.36 

0.84 

0.99 

0.71 

0.65 

1.25 

1.31 

0.91 

1.11 

0.89 

1.01 

EV 

9km 

0.91 

0.71 

0.47 

0.70 

0.69 

1.31 

0.60 

0.71 

0.73 

0.48 

0.66 

0.58 

0.74 

1.11 

0.69 

0.90 

0.64 

0.53 

0.78 

0.85 

0.80 

1.56 

0.79 

0.95 

BJ 

9km 

0.92 

0.75 

0.55 

0.81 

0.70 

1.73 

0.53 

0.69 

0.59 

0.65 

0.71 

0.48 

1.02 

0.93 

0.82 

0.78 

0.74 

0.56 

0.79 

0.58 

0.81 

0.83 

0.67 

0.83 

FR 

9km 

0.83 

0.74 

1.16 

1.13 

0.96 

1.78 

0.65 

0.78 

0.94 

0.45 

0.61 

0.49 

0.53 

1.18 

0.49 

0.89 

0.54 

0.50 

1.27 

1.17 

1.13 

1.97 

1.12 

1.10 

 
 

Table E.2  Statistical measures for temperature and wind components obtained for MM5 – Test2 simulation 
- summer (3-8 June 2006) and winter (16-24 December 2006) episodes. 

T u v 
 

r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs 

VS 

9km 

      

3km 

0.95 

0.89 

0.92 

0.73 

0.71 

0.96 

0.80 

1.01 

0.53 

0.58 

0.62 

1.28 

0.39 

0.47 

0.41 

0.74 

0.85 

0.77 

0.88 

0.78 

0.54 

0.61 

0.44 

0.41 

0.64 

0.77 

0.67 

0.78 

0.61 

0.66 

0.66 

0.73 

0.38 

0.13 

0.83 

0.53 

0.50 

0.53 

0.58 

0.38 

1.10 

2.19 

0.62 

0.87 

0.93 

1.36 

0.62 

0.86 

BR 

 9km

         

3km 

0.42 

0.24 

0.89 

0.61 

0.43 

0.74 

0.76 

0.82 

0.97 

1.91 

0.66 

1.12 

0.91 

1.13 

0.47 

0.84 

0.1 

0.12 

0.44 

0.16 

1.97 

1.40 

1.28 

0.82 

2.12 

3.12 

1.22 

1.97 

2.11 

1.72 

1.62 

1.38 

0.13 

0.12 

0.12 

0.19 

1.31 

2.48 

0.52 

0.85 

1.55 

2.60 

1.09 

1.29 

1.54 

2.56 

1.09 

1.19 
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VC 

9km 

0.43 

0.43 

0.40 

0.64 

1.04 

1.22 

0.94 

0.93 

0.85 

0.29 

0.92 

1.93 

0.56 

2.28 

0.55 

1.91 

0.60 

0.25 

2.71 

7.61 

2.30 

7.44 

2.28 

7.42 

VR     
9km 

0.93 

0.48 

0.74 

0.93 

0.70 

1.02 

0.41 

0.99 

0.72 

0.27 

2.05 

1.99 

2.06 

3.99 

1.49 

2.12 

0.51 

0.03 

0.76 

0.65 

0.91 

1.18 

0.90 

1.18 

CBR    
9km 

0.91 

0.80 

0.74 

1.14 

0.70 

1.08 

0.44 

0.69 

0.81 

0.32 

0.77 

0.72 

0.58 

1.05 

0.58 

1.03 

0.42 

0.38 

0.94 

1.24 

1.05 

1.83 

1.05 

1.29 

CB      
9km 

0.95 

0.90 

0.66 

0.88 

1.05 

1.21 

0.43 

0.48 

0.63 

0.63 

0.72 

1.12 

0.81 

1.10 

0.78 

0.92 

0.72 

0.63 

0.69 

0.55 

0.69 

0.79 

0.69 

0.78 

LS      

9km 

0.91 

0.78 

0.92 

1.14 

1.02 

2.27 

0.47 

0.72 

0.77 

0.58 

0.83 

0.91 

0.94 

1.50 

0.78 

0.88 

0.78 

0.42 

1.17 

1.13 

0.80 

1.75 

0.91 

1.15 

SN     

9km 

0.34 

0.53 

0.55 

0.83 

1.04 

0.97 

0.96 

0.90 

0.67 

0.52 

1.07 

1.05 

0.94 

2.35 

0.84 

1.00 

0.70 

0.66 

1.24 

1.31 

0.91 

1.10 

0.89 

1.00 

EV      

9km 

0.91 

0.72 

0.47 

0.70 

0.69 

1.31 

0.60 

0.70 

0.73 

0.47 

0.66 

0.57 

0.74 

1.12 

0.69 

0.90 

0.74 

0.54 

0.79 

0.84 

0.81 

1.55 

0.67 

0.94 

BJ      

9km 

0.92 

0.75 

0.55 

0.81 

0.70 

1.73 

0.53 

0.69 

0.59 

0.65 

0.71 

0.48 

1.02 

0.93 

0.82 

0.78 

0.64 

0.56 

0.78 

0.58 

0.80 

0.84 

0.78 

0.83 

FR      

9km 

0.83 

0.74 

1.16 

1.13 

0.96 

1.78 

0.65 

0.78 

0.94 

0.45 

0.61 

0.49 

0.53 

1.18 

0.49 

0.89 

0.54 

0.51 

1.27 

1.16 

1.13 

1.95 

1.12 

1.09 

 

 

Table E.3  Statistical measures for temperature and wind components obtained for MM5 – Test3 simulation 

- summer (3-8 June 2006) and winter (16-24 December 2006) episodes.  
 T u v 

 r S/Sobs E/Sobs Eub/Sobs R S/Sobs E/Sobs Eub/Sobs r S/Sobs E/Sobs Eub/Sobs 

VS 

9km 

 

3km 

0.95 

0.88 

0.93 

0.89 

0.82 

1.01 

0.94 

1.06 

0.35 

0.50 

0.38 

0.91 

0.35 

0.49 

0.36 

0.48 

0.82 

0.76 

0.76 

0.71 

0.65 

0.73 

0.49 

0.44 

0.63 

0.73 

0.76 

0.80 

0.59 

0.67 

0.70 

0.75 

0.21 

0.11 

0.77 

0.53 

0.56 

0.59 

0.53 

0.43 

1.15 

2.16 

0.68 

0.86 

1.04 

1.40 

0.68 

0.85 

BR 

9km

           
3km 

0.39 

0.49 

0.92 

0.64 

0.45 

0.54 

0.84 

0.80 

0.96 

2.13 

0.43 

1.42 

0.92 

0.94 

0.40 

0.82 

0.07 

0.01 

0.23 

0.16 

1.98 

1.42 

1.43 

1.06 

2.16 

2.80 

1.54 

1.15 

2.16 

1.81 

1.54 

1.45 

0.01 

0.09 

0.07 

0.13 

1.26 

2.32 

0.60 

1.14 

1.61 

2.49 

1.25 

1.59 

1.60 

2.44 

1.24 

1.43 

VC 

9km 

0.39 

0.59 

0.41 

045 

1.04 

1.37 

0.95 

0.83 

0.75 

0.41 

0.81 

1.43 

0.67 

1.51 

0.67 

1.37 

0.67 

0.28 

2.34 

6.81 

1.82 

6.63 

1.82 

6.60 

VR  

9km 

0.94 

0.54 

0.88 

1.04 

0.44 

0.98 

0.35 

0.98 

0.62 

0.30 

2.37 

2.40 

2.36 

4.29 

1.92 

2.45 

0.37 

0.15 

0.85 

0.79 

1.13 

1.20 

1.04 

1.18 

CBR    
9km 

0.92 

0.77 

0.81 

1.29 

0.48 

1.07 

0.40 

0.83 

0.79 

0.29 

0.81 

0.80 

0.62 

1.10 

0.62 

1.08 

0.39 

0.37 

0.98 

1.33 

1.11 

1.83 

1.09 

1.37 

CB      
9km 

0.93 

0.88 

0.82 

1.03 

0.71 

0.97 

0.39 

0.52 

0.60 

0.60 

0.86 

1.18 

0.84 

1.27 

0.84 

1.00 

0.62 

0.59 

0.78 

0.70 

0.80 

0.82 

0.80 

0.82 

LS      

9km 

0.79 

0.89 

1.06 

1.24 

0.80 

1.39 

0.75 

0.57 

0.72 

0.48 

0.94 

0.93 

0.88 

1.45 

0.89 

0.98 

0.74 

0.31 

1.18 

1.27 

0.81 

1.55 

0.98 

1.35 

SN     

9km 

0.32 

0.55 

0.32 

0.72 
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Table E.4 Statistical measures for temperature and wind components obtained for MM5 – Test4 simulation 
- summer (3-8 June 2006) and winter (16-24 December 2006) episodes. 

 T u v 
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VS  

9km 

         
3km 

0.95 

0.88 

0.93 

0.89 

0.82 

1.01 

0.94 

1.05 

0.35 

0.50 

0.38 

0.91 

0.35 

0.50 

0.36 
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Figure E.1 Winter episode time series comparison of surface a) temperature, b) zonal wind component, and 

c) meridional wind component from MM5-test1 simulations at 9 km, 3 km and 1 km, and surface 
measurements at Porto. 
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Figure E.2 Summer episode time series comparison of surface a) temperature, b) zonal wind component, and c) 

meridional wind component MM5-Test2 simulations at 9, 3 and 1 km, and surface measurements at Porto. 
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Figure E.3 Winter episode time series comparison of surface a) temperature, b) zonal wind component, and c) 

meridional wind component from MM5-Test2 simulations at 9, 3  and 1 km, and surface measurements at Porto. 
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Figure E.4 a) Summer and b) winter, episode time series comparison of wind speed for test2 and test1 in 

Porto, for D3 (1 km resolution). 
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Figure E.5 a) Summer and b) winter, episode time series comparison of wind speed for test2 and test1 in 
Aveiro, for D4 (1 km resolution). 
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Figure E.6 Spatial plot of daily average wind speed differences (test2 minus test1) between model simulations, for 

the summer episode. 
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Figure E.7 Winter episode time series comparison of surface a) temperature, b) zonal wind component, and 

c) meridional wind component from MM5-Test3 simulations at 9 km, 3 km and 1 km, and surface 
measurements at Porto. 
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Figure E.8 Spatial plot of daily average wind speed differences (test3 minus test2) between model 

simulations, for the summer episode. 
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Figure E.9  Scatter diagram of observed versus modelled temperature Viseu and Braga (3 km resolution), and Lisboa and 

Faro (9 km resolution), summer episode. 
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Figure E.10 Scatter diagram of observed versus modelled temperature Viseu and Braga (3 km resolution), and Lisboa 

and Faro (9 km resolution), winter episode 
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Appendix F 
SPRAWL land use scenario in the study region 

 

Table  F.1 Castelo de Paiva municipality land cover data for BASE and SPRAWL.  
 BASE SPRAWL Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 

     
 Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

123.7 

0 
93.8 

29.9 
0 

1.1% 

0% 
75.8% 

24.2% 
0% 

338.8 

0 
239.5 

99.3 
0.0 

3.1% 

0.0% 
70.7% 

29.3% 
0.0% 

+215.1 

0.0 
+145.6 

+69.4 
0.0 

+173.8% 

0.0% 
+155.2% 

+232.2% 
0.0% 

Agricultural areas 2782.1 25.2% 2674.6 24.2% -107.5 -3.9% 

Forests and shrub areas 8052.7 72.9% 7945.2 71.9% -107.6 -1.3% 

Other non-artificial surfaces 87.9 0.8% 87.9 0.8% 0.0 0.0% 

Table  F.2 Espinho municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 
 Continuous urban fabric 

 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

873.5 
174.6 
548.0 

47.2 
103.7 

46.6% 
20.0% 
62.7% 

5.4% 
11.9% 

930.8 
174.6 
625.8 

47.2 
103.7 

49.7% 
18.4% 
65.8% 

5.0% 
10.9% 

+57.3 
0.0 

+57.3 

0.0 
0.0 

+6.6% 
0.0% 

+10.5% 

0.0% 
0.0% 

Agricultural areas 436.8 23.2% 385.8 20.6% -51.0 -11.7% 

Forests and shrub areas 470.5 25.1% 427.0 22.8% -43.5 -9.2% 

Other non-artificial surfaces 92.0 4.8% 131.1 7.0% +39.1 +42.5% 

Table  F.3 Santa Maria da Feira land cover data for BASE and SPRAWL.  
BASE SPRAWL Change 

Land uses 
hectares % Hectares % hectares % 

Artificial surfaces 
 Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

4827.7 
0.0 

4130.0 
618.9 

77.8 

22.8% 
0.0% 

85.6% 
12.8% 

1.6% 

6619.4 
0 

5450.6 
1091.0 

77.8 

31.3% 
0.0% 

82.3% 
16.5% 

1.2% 

+1791.8 
0.0 

+1319.7 
+472.1 

0.0 

+37.1% 
0.0% 

31.9% 
+76.3% 

0.0% 

Agricultural areas 5502.8 26.0% 4556.5 21.6% -946.3 -17.2% 

Forests and shrub areas 10799.2 51.1% 9953.7 47.1% -845.5 -7.8% 

Other non-artificial surfaces 6.5 0.0% 6.5 0.0% 0.0 0.0% 

Table  F.4 Felgueiras municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

1115.5 
0.0 

1057.9 

57.6 
0.0 

9.8% 
0.0% 

94.8% 

5.2% 
0.0% 

1673.9 
0.0 

1541.8 

132.2 
0.0 

14.8% 
0.0% 

92.1% 

7.9% 
0.0% 

+558.4 
0.0 

+483.9 

+74.5 
0.0 

+50.1% 
0.0% 

+45.7% 

+129.3% 
0.0% 

Agricultural areas 6618.5 58.4% 6263.6 55.2% -354.9 -5.4% 

Forests and shrub areas 3603.6 31.8% 3400.1 30.0% -203.5 -5.6% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 - 

Table  F.5 Gondomar municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

2701.8 
117.0 

2441.0 

95.5 
48.4 

20.2% 
4.3% 

90.3% 

3.5% 
1.8% 

3449.4 
117.0 

3060.6 

223.5 
48.4 

25.8% 
3.4% 

88.7% 

6.5% 
1.4% 

+747.6 
0.0 

+619.6 

+128.0 
0.0 

+27.7% 
0.0% 

+25.4% 

+134.1% 
0.0% 

Agricultural areas 3155.3 23.6% 2766.2 20.7% -389.1 -12.3% 

Forests and shrub areas 6908.9 51.6% 6550.3 48.9% -358.5 -5.2% 

Other non-artificial surfaces 618.1 4.6% 618.1 4.6% 0.0 0.0% 
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Table  F.6 Lousada municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares hectares hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

676.2 

0.0 
590.6 

85.6 

0.0 

7.1% 

0.0% 
87.3% 
12.7% 

0.0% 

1206.6 

0.0 
1045.0 

161.5 

0.0 

12.7% 

0.0% 
86.6% 
13.4% 

0.0% 

+530.4 

0.0 
+454.4 

+75.9 

0.0 

+78.4% 

0.0% 
+76.9% 
+88.7% 

0.0% 

Agricultural areas 5095.9 53.5% 4820.5 50.6% -275.4 -5.4% 

Forests and shrub areas 3753.1 39.4% 3498.1 36.7% -255.0 -6.8% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 0.0% 

Table  F.7 Marco de Canaveses municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

695.0 
0.0 

503.6 

31.9 
159.5 

3.4% 
0.0% 

72.5% 

4.6% 
22.9% 

1286.5 
0.0 

1026.9 

100.2 
159.5 

6.4% 
0.0% 

79.8% 

7.8% 
12.4% 

+591.6 
0.0 

+523.3 

+68.3 
0.0 

+85.1% 
0.0% 

+103.9% 

214.4% 
0.0% 

Agricultural areas 9988.1 49.3% 9567.6 47.6% -420.5 -4.2% 

Forests and shrub areas 8241.6 40.6% 8070.5 40.1% -171.1 -2.1% 

Other non-artificial surfaces 1351.7 6.7% 1193.4 5.9% -158.3 -11.7% 

Table  F.8 Matosinhos municipality land cover data for BASE and SPRAWL.  
BASE SPRAWL Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

3421.4 
495.6 

1837.1 
897.1 
191.7 

55.3% 
14.5% 

53.7% 
26.2% 

5.6% 

4219.7 
495.6 

2376.6 
1155.9 

191.7 

68.2% 
11.7% 

56.3% 
27.4% 

4.5% 

+798.3 
0.0 

+539.5 
+258.8 

0.0 

+23.3% 
0.0% 

+29.4% 
+28.8% 

0.0% 

Agricultural areas 1979.2 32.0% 1361.8 22.0% -617.4 -31.2% 

Forests and shrub areas 651.9 10.5% 471.0 7.6% -180.9 -27.8% 

Other non-artificial surfaces 132.8 2.1% 132.8 2.1% 0.0 0.0% 

Table  F.9 Póvoa de Varzim municipality land cover data for BASE and SPRAWL.  
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

1259.5 

235.7 
858.3 

54 

93.5 

16.0% 

20.1% 
68.2% 

4.3% 

7.4% 

1553.3 

253.7 
1094.2 

111.9 

93.5 

19.8% 

16.3% 
70.4% 

7.2% 

6.0% 

+293.8 

0.0 
+235.8 

+58.0 

0.0 

+23.3% 

0.0% 
+27.5% 

+107.5% 

0.0% 

Agricultural areas 4775.4 60.8% 4599.3 58.6% -176.2 -3.7% 

Forests and shrub areas 1675.6 21.3% 1558.0 19.8% -117.7 -7.0% 

Other non-artificial surfaces 139.9 1.8% 139.9 1.8% 0.0 0.0% 

Table  F.10 Paredes municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

1777.0 
0.0 

1521.3 

193.9 
61.8 

11.4% 
0.0% 

85.6% 

10.9% 
3.5% 

2572.8 
0.0 

2106.6 

404.3 
61.8 

16.5% 
0.0% 

81.9% 

15.7% 
2.4% 

+795.8 
0.0 

+585.4 

+210.4 
0.0 

+44.8% 
0.0% 

+38.5% 

+108.5% 
0.0% 

Agricultural areas 5356.5 34.3% 4877.4 31.2% -479.1 -8.9% 

Forests and shrub areas 8491.5 54.3% 8174.8 52.3% -316.7 -3.7% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 0.0% 

Table  F.11 Paços de Ferreira municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses   hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

1408.0 
0.0 

1316.8 
70.3 

19.4% 
0.0% 

93.5% 
5.0% 

2169.3 
0.0 

1924.0 
224.4 

29.9% 
0.0% 

88.7% 
10.3% 

+761.3 
0.0 

+607.2 
+154.1 

+54.1% 
0.0% 

+46.1% 
+219.3% 
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 Other artificial surfaces 20.9 1.5% 20.9 1.0% 0.0 0.0% 

Agricultural areas 2866.7 39.5% 2347.1 32.3% -519.6 -18.1% 

Forests and shrub areas 2981.1 41.1% 2739.4 37.8% -241.6 -8.1% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 0.0% 

Table  F.12 Penafiel municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

    Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

1129.2 

0.0 
822.5 

91.9 

214.7 

5.2% 

0.0% 
72.8% 

8.1% 

19.0% 

1958.0 

0.0 
1416.9 

326.4 

214.7 

9.1% 

0.0% 
72.4% 
16.7% 

11.0% 

+828.8 

0.0 
+594.3 
+234.5 

0.0 

+73.4% 

0.0% 
+72.3% 

+255.2% 

0.0% 

Agricultural areas 9559.0 44.4% 9098.9 42.2% -460.0 -4.8% 

Forests and shrub areas 10458.4 48.6% 10089.6 46.8% -368.8 -3.5% 

Other non-artificial surfaces 391.6 1.8% 391.6 1.8% 0.0 0.0% 

Table  F.13 Porto municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

3525.5 

1763.3 
1462.4 

121.1 
178.7 

91.5% 

50.0% 
41.5% 

3.4% 
5.1% 

3790.6 

2076.5 
1206.7 

358.1 
149.4 

98.4% 

54.8% 
31.8% 

9.4% 
3.9% 

+265.0 

+313.2 
-255.7 

+236.9 
-29.3 

+7.5% 

+17.8% 
-17.5% 

+195.6% 
-16.4% 

Agricultural areas 265.7 6.9% 0.7 0.0% -265.0 -99.7% 

Forests and shrub areas 14.7 0.4% 14.7 0.4% 0.0 0.0% 

Other non-artificial surfaces 46.6 1.2% 46.6 1.2% 0.0 0.0% 

Table  F.14 São João da Madeira municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

601.2 
96.9 

327.6 

176.7 
0 

71.7% 
16.1% 
54.5% 

29.4% 
0.0% 

677.2 
96.9 

336.9 

243.4 
0.0 

80.8% 
14.3% 
49.8% 

35.9% 
0.0% 

+76.1 
0.0 

+9.3 

+66.7 
0.0 

+12.7% 
0.0% 

+2.8% 

+37.8% 
0.0% 

Agricultural areas 162.1 19.3% 95.4 11.4% -66.7 -41.2% 

Forests and shrub areas 75.3 9.0% 66.0 7.9% -9.3 -12.4% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 0.0% 

Table F.15 Santo Tirso municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

1916.5 
60.3 

1673.3 
129.5 

53.4 

14.3% 
3.1% 

87.3% 
6.8% 

2.8% 

2653.3 
60.3 

2177.3 
362.3 

53.4 

20.1% 
2.3% 

82.1% 
13.7% 

2.0% 

+736.7 
0.0 

+504.0 
+232.8 

0.0 

+38.4% 
0.0% 

+30.1% 
+179.8% 

0.0% 

Agricultural areas 5096.7 38.1% 4553.2 34.4% -543.5 -10.7% 

Forests and shrub areas 6211.6 46.4% 6018.4 45.5% -193.3 -3.1% 

Other non-artificial surfaces 153.8 1.1% 0.0 0.0% -153.8 -100.0% 

Table  F.16 Vila Nova de Famalicão municipality land cover data for BASE and SPRAWL.  
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 

 Discontinuous urban fabric 
  Industrial or commercial units  

 Other artificial surfaces 

3486.1 
69.6 

2941.8 
410.9 

63.7 

17.2% 
2.0% 

84.4% 
11.8% 

1.8% 

4369.9 
69.6 

3651.9 
584.6 

63.7 

21.5% 
1.6% 

83.6% 
13.4% 

1.5% 

+883.8 
0.0 

+710.1 
+173.7 

0.0 

+25.4% 
0.0% 

+24.1% 
+42.3% 

0.0% 

Agricultural areas 10204.9 50.2% 9817.1 48.3% -387.8 -3.8% 

Forests and shrub areas 6633.2 32.6% 6137.2 30.2% -435.1 -6.6% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 0.0% 
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Table  F.17 Valongo municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces   

 Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

2029.9 

143.8 
1689.0 

184.0 

13.2 

27.7% 

7.1% 
83.2% 

9.1% 

0.6% 

3087.3 

143.8 
2353.7 

576.7 

13.2 

42.1% 

4.7% 
76.2% 
18.7% 

0.4% 

+1057.4 

0.0 
+664.6 
+392.7 

0.0 

+52.1% 

0.0% 
+39.3% 

+213.5% 

0.0% 

Agricultural areas 1078.6 14.7% 587.3 8.0% -491.2 -45.5% 

Forests and shrub areas 4231.3 57.6% 3665.2 49.9% -566.1 -13.4% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 0.0% 

       

Table  F.18 Vila do Conde municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

1429.5 

141.9 
1067.0 

175.1 

45.5 

9.8% 

9.9% 
74.6% 
12.2% 

3.2% 

2055.1 

141.9 
1487.1 

407.1 

19.0 

14.0% 

6.9% 
72.4% 
19.8% 

0.9% 

+625.6 

0.0 
+420.1 
+232.1 

-26.5 

+43.8% 

0.0% 
+39.4% 

+132.5% 

-58.3% 

Agricultural areas 8155.1 55.7% 7686.2 52.5% -468.8 -5.7% 

Forests and shrub areas 4816.9 32.9% 4660.2 31.8% -156.8 -3.3% 

Other non-artificial surfaces 244.2 1.7% 244.2 1.7% 0.0 0.0% 

       

Table  F.19 Vila Nova de Gaia municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses hectares % hectares % hectares % 

Artificial surfaces 

     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  

 Other artificial surfaces 

6391.3 

386.4 
5166.6 

657.6 

180.7 

38.0% 

6.0% 
80.8% 
10.3% 

2.2% 

7531.3 

412.0 
5956.5 

970.1 

192.7 

44.8% 

5.5% 
79.1% 
12.9% 

2.6% 

+1140.1 

+25.7 
+189.9 
+312.5 

+12.0 

+17.8% 

+6.6% 
+15.3% 
+47.5% 

+6.6% 

Agricultural areas 5386.6 32.0% 4730.5 28.1% -656.1 -12.2% 

Forests and shrub areas 4347.0 25.8% 3863.0 23.0% -484.0 -11.1% 

Other non-artificial surfaces 692.1 4.1% 692.1 4.1% 0.0 0.0% 

       

Table  F.20 Trofa municipality land cover data for BASE and SPRAWL. 
BASE SPRAWL Change 

Land uses 
hectares % hectares % hectares % 

Artificial surfaces 
     Continuous urban fabric 
 Discontinuous urban fabric 

  Industrial or commercial units  
 Other artificial surfaces 

1251.3 
33.4 

1093.7 

111.7 
12.4 

17.1% 
2.7% 

87.4% 

8.9% 
1.0% 

1691.5 
33.4 

1448.6 

203.2 
6.2 

23.2% 
2.0% 

85.6% 

12.0% 
0.4% 

+440.2 
0.0 

+354.9 

+91.5 
-6.2 

+35.2% 
0.0% 

+32.4% 

+81.9% 
-50.0% 

Agricultural areas 2162.0 29.6% 2017.1 27.7% 2017.1 -6.7% 

Forests and shrub areas 3887.7 53.2% 3586.1 49.2% 3586.1 -7.8% 

Other non-artificial surfaces 0.0 0.0% 0.0 0.0% 0.0 0.0% 

       

 
 
 




