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Abstract 
 

There has been strong empirical evidence that demand variability increases as one 

moves up the supply chain (from the retailer to the raw materials supplier), a 

phenomenon called bullwhip effect. This paper examines the bullwhip effect and in 

particular one of its main causes, demand forecasting. Key observations for the studies 

that deal with the impact of forecasting on the bullwhip effect are that: (1) all allow 

negative demands as well as negative orders for analytical tractability and (2) none 

considers the best exponential smoothing forecast without a prefixed smoothing constant. 

This paper validates the main findings in the literature when negative demands and 

negative orders are not allowed, using simulation. The main contribution is the inclusion 

of ‘best’ exponential smoothing as a forecasting method. This method is shown to explain 

some structural differences in bullwhip effect that have been observed in comparisons 

between naïve exponential smoothing and optimal forecasting. Therefore, it provides an 

important alternative to naïve smoothing for use in practice, especially as it is included in 

some of the more modern Demand Planning Systems. 
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1. Introduction and Related Literature 
 

The existence of the bullwhip effect has been acknowledged in a plethora of 

studies. In the context of industrial Dynamics, Forrester (1961) was the first to illustrate 

that it is common for the variance of perceived demand to the manufacturer to far exceed 

the variance of consumer demand and for seasonality to be larger for manufacturers than 

for retailers.  

Caplin (1985) considered a retailer who follows a continuous review (s, S) 

inventory policy and proved that if the demands faced by the retailer are i.i.d., then the 

variance of the orders placed by the retailer is greater than the variance of the customer 

demand observed by the retailer and that the variance of the orders increases linearly in 

the size of the orders. Blinder (1986) documented the bullwhip effect in 20 different 

sectors of the economy, explaining it from a macro-economic perspective.  

Kahn (1987) demonstrated the existence of the bullwhip effect when the retailer 

follows an optimal inventory policy and either demand in each period is positively 

serially correlated or the backlogging of excess demand is permitted. Sterman (1989) 

reported evidence of the bullwhip effect in the “Beer Distribution Game”. The 

experiment involved a supply chain with four players who made independent inventory 

decisions without consultation with other chain members, relying only on orders from the 

neighboring player as the sole source of communications. Under the linear cost structure, 

the experiment showed that the variances of orders amplified as one moved up the supply 

chain adding further confirming evidence for the bullwhip effect.  

The bullwhip effect has been assigned to various causes, most of which come 

straight out of the Systems Thinking / Systems Dynamics discipline. According to 

Forrester (1961) the principal cause of the effect lies in the difficulties involving the 

information feedback loop between companies. In a similar manner, Sterman (1989) 

interpreted the phenomenon as a poor decision making based on a lack of understanding 

for the system as a whole. Blackburn (1991) indicated that the overriding cause of the 

bullwhip effect is the time delays between the supply chain echelons. Empirical 

observation of managerial behaviour in the beer distribution game led Senge and Sterman 

(1992) to blame it on lack of ‘system thinking’ by management. 
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Lee et al. (1997a, 1997b) followed a different approach and moved one step 

further by modeling the causes analytically. In their eyes, the existence of the 

phenomenon lies in the institutional and inter-organizational infrastructure and processes 

rather than the lack of full rationality and misperceptions of the members. They identified 

four sources of the bullwhip effect: 

(i) demand forecast updating; 

(ii) rationing game; 

(iii) order batching and; 

(iv) price fluctuations.  

This paper focuses solely on the effect of demand forecast updating, which can 

succinctly be described as overreactions to changes in observed demand when making 

demand forecasts. We will therefore restrict ourselves to this source of the bullwhip 

effect in the remainder of the section. 

Using a first order autoregressive (AR1) demand generation process, Chen et al. 

(2000a) studied the role of moving average forecasts in relation to the bullwhip effect in a 

two stage serial supply chain, where both members use an order-up-to policy. The 

authors illustrated that the increase in variability from the retailer to the manufacturer is a 

function of three parameters: the number of observations used in the moving average (p), 

the lead-time, and the demand correlation (ρ). More specifically, when p is large the 

increase in variability was trifling. In contrast, when p is small, there is a significant 

increase in the variability. Hence the smoother the demand forecasts, the smaller the 

increase in variability. In addition, order variability was found to be an increasing 

function of the lead-time parameter and a decreasing function of the correlation 

parameter.  

In a sequel, Chen et al. (2000b) extended their results to the case where simple 

exponential smoothing is applied to forecast lead time demand generated from an AR1 

process. Using analytical modeling they derived a lower bound on the variance of the 

orders placed by the retailer relative to the variance of customer demand. This bound was 

shown to produce similar results to those reported in the original study with relative 

variable sensitive to the same parameters. However their forecasting model (exponential 
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smoothing) is mis-specified and not optimal for the underlying demand generation 

process. 

Graves (1999) notes that exponential smoothing is not the optimal forecasting 

method for AR1 demand (in terms of minimizing the mean square errors). So, he instead 

analyzes the integrated MA process (0,1,1), for which exponential smoothing is optimal. 

He quantified the bullwhip effect for this type of demand generation process under an 

adaptive base stock policy.   

Alwan et al. (2003) and Zhang (2004) also realize that exponential smoothing is 

not the optimal forecasting method for AR1 demand. However, instead of assuming a 

different demand process, they consider the optimal forecasting method for AR1 demand. 

The key differences they find comparing moving average and exponential smoothing, 

concern the effect of the demand correlation. The bullwhip no longer strictly increases in 

ρ, but first increases and then decreases. Furthermore, for negatively correlated demand, 

optimal forecasting completely eliminates the bullwhip effect and even turns it into a ‘de-

whip’ effect. 

All above discussed results on the impact of demand forecasting on the bullwhip 

effect are based on the assumption that demand as well as orders can be negative. These 

assumptions are unrealistic and made for analytical tractability only. The first 

contribution of this paper is that we drop these assumptions and validate the findings in 

the literature using simulation. In doing so, we also assume that demands not 

immediately satisfied are lost, whereas previous studies assumed backordering. It has 

often been recognized in the inventory literature that assuming lost sales is more realistic 

than assuming backordering, especially for retailers, but backordering models are usually 

preferred for analytical tractability. 

The second and main contribution of this paper is that we also examine the effect 

of using the ‘best’ exponential smoothing method. All previous studies, when using 

exponential smoothing, employed a naïve method with a fixed smoothing constant. The 

best exponential smoothing method uses the constant that minimizes the mean square 

error. We remark that the method is often referred to as “MSE optimal exponential 

smoothing”, but we use “best exponential smoothing” to avoid confusion with the (MSE) 

optimal forecasting method. The results will show that the differences in both the size of 
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bullwhip effect as well as its behavior with respect to ρ, are indeed partially explained by 

the use of the naïve rather then the best exponential smoothing method. 

The remainder of the paper is organized as follows. In Section 2, we describe the 

model and the simulation approach. In Sections 3-5, naïve exponential smoothing, best 

exponential smoothing and optimal forecasting are discussed, respectively. We end with 

a discussion, conclusions and directions for future research in Section 6. 

 

2. Model and simulation details 

 
We assume a simple two stage supply chain comprising of a single retailer at the 

lowest echelon, and a single manufacturer. We consider a single product. The demand per 

time unit faced by the retailer is stochastic and follows an AR1 process. That is, 

ttt DD ερµ ++= −1  

where and denote demands in periods t and t-1, respectively, µ > 0, the 

autoregressive coefficient 

tD 1−tD

ρ  is restricted to lie between -1 and 1, and the error terms εt 

are white noise (independent and identically distributed over time with mean 0 and 

variance σ2). 

If an order is placed in some period t, then it will arrive at the beginning of period 

t + L. Here, L can be interpreted as the lead time including the one period review time. 

Including the review time is without loss of generality and for simplicity of notation only, 

as order-up-to levels will now be based on demand forecasts for the next L rather than L 

+ 1 time units. 

In each period t, after observing demand, the retailer updates his forecast for lead 

time demand. The updating process depends on the forecasting method used. For 

exponential smoothing, the lead time demand forecast is = L , where 

is the updated ‘flat’ per period forecast. For optimal forecasting, 

the lead time demand forecast is = 

L
tD̂ tD̂

1
ˆ)1(ˆ
−−+= ttt DDD αα

L
tD̂ t

LL

DL
ρ
ρρµ

ρ
ρρρ

−
−

+
−

−−−
1

)1(
)1(

)1()1(
2  (see Alwan 

et al. (2003)). 
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The retailer then calculates the order-up-to level for period t as follows: 

 
S t = + z  L

tD̂ L
te,σ̂

where  is an estimate of the standard deviation of the L period forecast error and z is 

the safety factor chosen to meet a desired service level. For all our simulation 

experiments the safety factor has been set to 1.64 corresponding to a 95% service level. 

Note that  is not simply an estimate for the standard deviation of lead time demand, 

since the sampling error needs to be accounted for as well (Nahmias, 2001). For most 

inventory models this can be empirically estimated by = L  or simply = 

L
te,σ̂

L
te,σ̂

L
te,σ̂ c

te,σ̂ L
te,σ̂

L te,σ̂  under the assumption that the forecast errors are independent over time.

An important difference with previous research is that we assume negative orders 

are not allowed (see Section 1). So, an order is only placed if the inventory position is 

below the order-up-to level. Another difference is that we assume lost sales instead of 

backordering, i.e. demands that are not satisfied immediately are lost.  

The bullwhip effect is measured by the ratio of the variance in retailer orders and 

the variance in retailer demands. The latter is easily shown to be σ2 / (1-ρ2).  

 

Simulation details 

For each of the experiments presented in this chapter the simulation period is 

10.000. The first 200 observations serve as the warm up period for our simulation and are 

excluded from the analysis. The number of runs is 100 and reported results are averages 

over all runs. Demand series are restricted to be positive by resampling negative 

observations. In all scenarios the error term variance σ  varies depending on the 

correlation coefficient so as to give a corresponding coefficient of variation of 0.2. 

According to the literature (Fildes and Beard, 1992) such demand patterns are commonly 

met in practice for a large number of fast moving items.  

2

 The simulation code is written in Matlab and the selection of the optimal 

smoothing constant for each simulation run is done using built in non linear optimization 

functions.  
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3 Exponential smoothing with a prefixed smoothing constant 

 

In this section we test Chen’s findings, later confirmed by other analytical studies, 

about the effects of the smoothing constant α, the autocorrelation coefficient ρ, and the 

lead time L. We start with α and ρ.  Five different levels (0.1, 0.3, 0.5, 0.7, 0.9) are 

considered for α and three levels (0.5, 0, 0.5) for ρ, giving 15 experiments in total. The 

results are depicted graphically in Figure 1. 
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Figure 1 Bullwhip Effect for different values of α and ρ (L=1, CV=0.2) 

 

These results validate Chen’s findings that the bullwhip effect is increasing in α 

and decreasing in ρ. Next we explore (see Figure 2) the impact of lead times on the 

bullwhip effect for positively correlated, negatively correlated and white noise demand. 

For all autocorrelation demand patterns, the bullwhip effect is increasing in the lead time 

Again this is in line with Chen et al. Lead times magnify the increase in variability due to 

demand forecasting. The longer the lead time, the larger the inventory level required to 

deal with demand uncertainty. Hence if the retailer updates his target inventory level in 
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each period, then longer lead times will trigger larger changes in the target inventory 

level resulting in higher volatility for the orders placed by the retailer. 
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Figure 2 Bullwhip Effect for different values of L and α (ρ=0.5 CV=0.2 Z=1.64) 

 

While these findings are certainly useful and shed light on the impact of 

forecasting on the bullwhip effect, they suffer from the limitation that the smoothing 

constants are set arbitrarily and not optimally. In practice, when the smoothing constants 

are set arbitrarily this is usually done following suggestions made by forecasting textbook 

authors. For instance, for simple exponential smoothing, Brown (1963) recommends a 

smoothing constant of 0.1. Smoothing constants between 0.1 and 0.3 are also frequently 

suggested in the practitioner forecasting literature.  

Although some forecasting programs expect the value of the smoothing constant 

to be defined by the user, the more modern Demand Planning Systems have a core 

optimization routine in place, thus saving the practitioner from possible erroneous 

guesswork and operationalising aspects of best forecasting practice (Fildes et al., 1998). 

In the next section, we will therefore consider exponential smoothing with an optimized 

smoothing constant, which we refer to as best exponential smoothing (see Section 1).  
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4 Best exponential smoothing 

When forecasting with exponential smoothing models, the optimization of the 

smoothing constant is often pivotal in forecast accuracy and should not be taken lightly. 

Empirical evidence (see Fildes et al., 1998) suggests that ‘the performance of the 

smoothing methods depends on how the smoothing parameters are estimated’. It is also 

found that ‘optimization (either at each time origin or at the first time origin) is shown to 

be superior to arbitrary (literature based) fixed values’. Computer simulation allows us to 

embark on the best (minimum MSE) exponential moving scheme rather than a simplistic 

arbitrary selection of the smoothing constant. 

Figure 3 shows the effects of the autocorrelation coefficient ρ and the lead time L 

on the bullwhip effect when demand forecasts are estimated using best exponential 

smoothing.  
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 Figure 3 Bullwhip Effect for different values of ρ and L using an optimal exponential 

smoothing model (CV=0.2, Z=1.64) 
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An increase in the lead time still leads to an increased bullwhip effect over the 

entire range of demand correlation values considered. An obvious difference with the 

results for naïve exponential smoothing, however, is that the bullwhip effect is no longer 

strictly decreasing in ρ, but first increases from ρ = -1 up to about ρ = 0.5 before it starts 

to decrease. Recall from the introduction that the same change in behaviour has been 

observed in the literature when going from naïve exponential smoothing to optimal 

forecasting. What our results show is that going to from naïve to best optimal smoothing 

also achieves this change in behaviour. The change is certainly important, since it is 

driven by a large drop in bullwhip effect for smaller values of ρ. The way that best 

exponential smoothing achieves this drop is simply by using a smaller smoothing 

constant for smaller ρ. This is shown in Figure 4. 
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Figure 4 Optimal smoothing constant. 

 

 However, despite reducing the bullwhip effect considerably, it is not able to 

completely eliminate the bullwhip effect. As was analytically shown in the literature (see 

section 1) and will be validated in the next section, optimal forecasting is able to 

eliminate and can even turn it into a de-whip effect. 
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5 Optimal forecasting  

To most researchers and practitioners, the forecast error is the difference between 

the actual and the forecast value. As Fildes and Kingsman (2005) have demonstrated few 

however have realized that this combines the randomness in the demand generation 

process (the error term) and the errors arising from not using the optimal forecasting 

model (forecast mis-specification). 

As recognized by Alwan et al. (2003) and Zhang (2004) the only forecasting 

method that is truly optimal for the AR1 demand generation process is the ARIMA 

(1,0,0). Our simulation study offers us the unusual luxury for a forecaster, of knowing the 

underlying AR(1) parameters ρµ, and , thus enabling us to apply the optimal 

forecasting model for the corresponding autoregressive process. Hence the only source of 

uncertainty in the demand forecasting process remains the random variation in demand 

itself. In practice however, such a high level of forecast precision and accuracy is not 

realistic as there would be inevitable errors in identifying and estimating the parameters 

of the demand generation process. 

2
eσ

 Figure 5 shows the bullwhip effect for different values of ρ and L using an 

optimal AR1 forecasting model. 
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Figure 5 Bullwhip Effect for different values of ρ and L using an optimal AR1 forecasting model 
(CV=0.2 Z=1.64) 
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The pattern is similar to what we observed for the optimal exponential smoothing 

model. However, the bullwhip effect is further decreased over the entire range of ρ. In 

particular, optimal forecasting completely eliminates the bullwhip effect for negatively 

correlated demand and turns it into a de-whip effect. As a result, an increase in lead time 

may lead to a decrease in bullwhip for negatively correlated demand.  

   

6. Discussion and conclusions 
 

The main findings in the literature on the bullwhip effect for naïve (fixed 

constant) exponential smoothing and optimal AR1 forecasting have all been validated 

under the realistic assumption that neither negative demand nor negative orders are not 

allowed. In particular, where reduced demand correlation always leads to an increased 

bullwhip effect for naïve exponential smoothing, this does not hold for optimal 

forecasting. Indeed, optimal forecasting is able to eliminate the bullwhip effect for 

negatively correlated demand.  

From the practitioner’s point of view, that implies that optimal ARIMA 

forecasting has the potential of fully mitigating the bullwhip effect for companies with 

only a few big customers where a high demand in one period, when many of the 

customers have ordered, is likely to be followed by a lower demand in the following 

period. Price switches from high to low and vice versa as a result of regular promotions, 

can also be accountable for such oscillatory negatively correlated demand patterns. 

Best exponential smoothing provides an interesting alternative to optimal 

forecasting. Though it is not able to eliminate the bullwhip effect, it does result in a 

considerable reduction compared to naïve exponential smoothing. Indeed, it shows the 

same structural pattern of a bullwhip that first increases (until a factor ρ of about 0.5) and 

then decreases with demand correlation.  

An important practical advantage of best exponential smoothing over optimal 

forecasting is that it is included in modern Demand Planning Systems. Indeed, in realistic 

operational scenarios with hundreds of stock keeping units to be forecasted, the 

practitioner is likely to lack the expertise or the resources (whether time or specialized 

time series modelling software) to embark on the model identification, parameter 
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estimation and tests of model adequacy that optimal forecasting requires. The easy 

alternative for him would be to apply an exponential smoothing model with its 

parameters automatically optimized by the forecasting software. 

In addition, evidence from the M forecasting competitions (e.g. Makridakis and 

Hibon 2000), large scale empirical studies that examined forecasts for hundreds of time 

series, suggests that exponential smoothing is a difficult benchmark to beat. Indeed 

simple extrapolative methods such as our “best” exponential smoothing tend to offer 

comparable or better post sample forecast accuracy than the most sophisticated methods, 

including ARIMA models such as the one examined here. The reason is that time series 

parameters change over time, a characteristic which is especially true for supply chain 

data which often has little structure and relatively high degree of randomness. Therefore, 

having a sophisticated model that better fits historical data would not necessarily 

guarantee a more accurate post-sample forecast. 

There are two important directions for further research. The first is to study more 

realistic multi-echelon supply chain settings. This study was limited to a two stage serial 

supply chain model, to ensure consistency with analytical models in the literature and 

allow a comparative study. However, research should now move forward to more 

complex chains. Another direction for further research is to include other sources of the 

bullwhip effect as well. For instance, the order batching effect could be included by 

considering order level, order-up-to level (s,S) policies.  
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