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RÉSUMÉ 

Le contrôle en temps réel est la base d’une gestion efficace des systèmes de drainage urbain. Une 
utilisation optimale des volumes de rétention des bassins par exemple, peut être achevée en 
considérant les prévisions de ruissellement lors de la prise de décision. Toutefois, ces prévisions sont 
sujettes à des incertitudes significatives. Cette incertitude devrait être considérée lors de la prise de 
décision. Une approche stochastique incluant les prévisions de ruissèlement, appelée modèle « grey-
box » de contrôle en temps réel est présentée. Ces modèles permettent une description dynamique 
des incertitudes des prévisions. De plus, ils permettent une adaptation continue face aux 
ruissellements observés. Les méthodes permettant de générer des prévisions stochastiques 
considérées dans le cadre de la prise de décision sont décrites. La qualité des prévisions est 
comparée à l’aide de deux événements sur les modèles de prévision déterministes et le volume au 
déversoir. Nous sommes donc en mesure de démontrer le potentiel des modèles stochastiques, mais 
l’amélioration de ce travail se poursuit. 

 

ABSTRACT 

Real time control is considered a mean to efficiently improve the performance of urban drainage 
systems. A globally optimal utilisation of e.g. storage volume in basins can best be achieved by 
considering runoff forecasts in the decision setup. These forecasts, however, are subject to significant 
uncertainty. This uncertainty should be considered in the decision making. An approach that 
incorporates stochastic multistep runoff predictions from so-called greybox models into a real time 
control setup is presented. These models provide a dynamic description of forecast uncertainties and 
they simultaneously allow a continuous adaption of the model states to observed runoff. Methods for 
generating stochastic forecasts and incorporating these into the decision making framework are 
described. Using two sample events, the forecast quality is compared to state-of-the-art deterministic 
forecasting models and the effect on control decisions and the resulting overflow volume is evaluated. 
We can demonstrate potential of the stochastic models but identify a need for model adaptivity and 
modified model structures that allow for a more general modelling of forecast uncertainties. 
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1 INTRODUCTION 

Integrated real time control (RTC) of urban drainage system is increasingly seen as an efficient 
approach to improve the performance of these infrastructures and reduce the impact to the natural 
water environment (see the discussion in Rauch et al., 2005). While the cost-efficiency of RTC is 
increasingly demonstrated by both simulation studies (e.g. Dirckx et al., 2011) and full scale 
applications (e.g. Fradet et al., 2011), recent developments in radar nowcasting (Thorndahl et al., 
2009;2010), on-line measurements and available computational capacity have boosted the potential 
field of application of these tools. These include also integration of field measurements with 
mathematical models, which provide information regarding the future evolution of the controlled 
system (defined as Model Predictive Control – MPC). 

The Storm- and Wastewater Informatics project (SWI) is currently investigating the development of 
integrated modelling tools for improving the performance of urban drainage systems, both in term of 
reducing flooding risk and in terms of quality of receiving waters (i.e. reducing combined sewer 
overflows (CSO) and improving the performance of wastewater treatment plants – WWTP). The SWI 
project is investigating, among others, tools for nowcasting precipitation based on radar 
measurements, modelling of bottlenecks in WWTP (i.e. secondary clarifier), and strategies for 
integrated MPC of the entire wastewater system. 

In the urban drainage field, MPC is mainly focusing on estimating the evolution of the collected runoff 
in the near future. While radar-based nowcasting tools provide an estimate of the future rainfall across 
the catchment, this needs to be translated into water volumes by rainfall-runoff models. As the reaction 
time (and thus the controls) in urban drainage systems is usually short (below hours), simple and fast 
conceptual hydrological models (based on, for example, time-area method, linear reservoir cascade) 
are commonly used. These models are however affected by a great number of sources of uncertainty 
(e.g. Deletic et al., 2012), which makes uncertainty estimation essential to apply their results in a 
reliable manner. Rainfall-runoff models need also to be updated each time new field measurements 
are available, in order to reduce the discrepancy between the modelled and the measured 
environmental variable and thus increase the confidence in the MPC results. Information regarding the 
estimated level of uncertainty also needs to be included in the control strategy, in order to find the 
optimal solution based on the estimated confidence in the available measurements and/or model 
predictions. Examples of these approaches for control of drainage systems in an uncertain context are 
presented in Raso et al. (2012) and Vezzaro and Grum (2012).  

Alternative approaches for estimation of runoff flows are based on stochastic greybox models, where 
uncertainty is explicitly addressed by including a stochastic term in the model structure (Breinholt et 
al., 2011). Greybox models provide a dynamic estimation of the model output uncertainty, information 
that can directly be used by the control strategy. Further, through an extended Kalman filter setup, the 
models can adapt to new runoff observations in an online setting. This state updating usually ensures 
that forecasts are generated from a correct starting point but also provides flexibility for handling 
erroneous or missing observations. By using a lumped model structure, which is computationally fast 
and thus suitable for MPC applications, it is thus possible to control the drainage system based on the 
dynamically estimated level of uncertainty. 

The aim of this paper is to compare the performance of two approaches for on-line estimation of runoff 
volumes and their effects when used in an integrated control strategy. The study focused on the 
Lynetten catchment (located in Copenhagen, Denmark), which is controlled by an integrated RTC 
approach (the Dynamic Overflow Risk Analysis (DORA) approach, described in Vezzaro and Grum 
(2012)). The first approach that was considered was a deterministic conceptual rainfall-runoff model, 
which utilizes a fixed probability distribution to describe the uncertainty in the estimated runoff volume. 
This approach was compared with a greybox model, which provides a dynamic estimation of 
uncertainty. As the main focus of DORA is the reduction of CSO, the comparison aimed at 
investigating the differences in the estimated CSO risk calculated by using the output from the two 
approaches. A simple hydrological was used to compare the effects of the two forecast model types 
on the control strategy and the resulting overflow volumes. 
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2 MATERIAL AND METHODS 

2.1 Case study – The Lynetten catchment 

2.1.1 Catchment and data description 

The Lynetten catchment covers the central area of Copenhagen (Denmark) and it has an area of 
approximately 76 km2. The catchment discharges to the Lynetten wastewater treatment plant 
(WWTP), which is regulated by a STAR® system for advanced control of wastewater processes 
(Thomsen and Ônnerth, 2009). This platform is also used to control flows and storage capacity across 
the catchment, allowing an integrated control: WWTP operations can be defined according to the 
forecasted inflow to the plant, and the storage capacity can be optimized by looking at the actual 
capacity of the WWTP. A detailed description of the study area can be found in Breinholt and Sharma 
(2010). 

The integrated control of the Lynetten catchment considers eight overflow structures (connected to 
basins and pumping stations – see Figure 1), discharging to recipients with different sensitivity to 
CSO. The total storage capacity is about 114200 m3. Rainfall falling on the catchment is quantified by 
radar measurements, which are dynamically calibrated against data provided by the gauges belonging 
to network of the Danish Water Pollution Committee, operated by the Danish Meteorological Institute 
(Jørgensen et al.(1998)). Further details on the radar nowcasting methods can be found in Thorndahl 
et al. (2009;2010). 

Available measurements are the basin outflow and water levels, i.e. inflow to each basin is not directly 
measured, and is calculated from the basin water balance. Therefore, no direct measurements of 
overflow volumes are available for all the overflow structures considered in the study. These are 
estimate by running an off-line detailed hydrodynamic model (built in the MIKE URBAN software, DHI 
(2008)), which uses radar measurements as input. The same model is used by Copenhagen’s water 
utility to elaborate statistics on unmeasured overflows, which are also used to evaluate bathing water 
criteria (Clauson-Kaas et al., 2008). 

 

Figure 1. Scheme of the Lynetten catchment. Storage volumes and overflow prices (in brackets) are listed for 
each node of the network.  

  

2.1.2 Integrated control strategy (DORA) 

The storage capacity in the Lynetten catchment is controlled by the Dynamic Overflow Risk 
Assessment (DORA) strategy (Vezzaro and Grum, 2012). This strategy aims to reduce the overflow 
risk in the different nodes of the drainage network by minimizing a global cost function, which is 
defined as follows: 

 (1) 

The first term (Ccr,i) describes the cost due to overflows generated by the runoff volume that already 
entered the drainage system; the second term (CF,i) expresses the cost due to expected overflow 
events in the time interval defined by the forecast horizon (in this study set to 2 hr – based on the 
reliability of radar nowcasting); the third term (Chor,i) is a factor which optimizes the system when no 
rainfall is expected (i.e. in dry weather periods and during the emptying phase of the basins). 
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Overflow costs are defined as linearly proportional to the overflow volume, with a cost ci (listed in 
brackets in Figure 1) which reflects the different sensitivity of the receiving water body. For example, 
discharge from the most sensitive overflow structures, such as bathing areas (e.g. Lersoeledning, East 
Amager), is defined as 25 times more expensive as overflow at the inlet of Lynetten WWTP. 

The cost of expected overflow at the i-th discharge point (CF,i) is calculated by considering the 
expected runoff volume (VF,i) and the related uncertainty level p(VF,i), which is estimated by rainfall-
runoff forecast models (see section 2.2), and the available storage volume (Vcr – critical volume, which 
takes into account the available volume in the basin and the difference between inflow and outflow). 
By combining the estimated overflow probability (showed in red in Figure 2) with the linear cost 
relationship, it is possible to calculate the overflow risk (CF,i): 

 (2) 

A genetic algorithm is used to minimize the total cost (eq. 1) by varying the outflow from each basin 
(Qout,i).  

 

Figure 2. Scheme of a basin as schematized in DORA. Probability of overflow (in red) is calculated by considering 
the actual water volume (Vw), the available storage volume (Vcr), and the estimated level of uncertainty in runoff 

predictions p(VF,i). 

2.2 Runoff forecast models 

2.2.1 Deterministic model 

Currently, runoff for each of the eight subcatchments in Lynetten is estimated by using a conceptual 
hydrological rainfall-runoff model. Rainfall predictions, based on the radar nowcasting for an interval of 
two hours (see section 2.1.1), are used as input to a linear cascade model, which provides the inlet 
hydrograph for the i-th basin. The model is coded in WateraspectsTM (Grum et al., 2004) and model 
parameters are estimated trough auto-calibration based on a Baysian approach every 10 minutes (i.e. 
each time a new radar nowcast is available). The calibration procedure re-estimates the model main 
parameters, which are the catchment impervious area A and the discharge constants of the linear 
reservoirs. A similar approach, based on an informal Bayesian methodology, has also been applied by 
Leonhardt et al. (2012). 

The expected runoff volume (VF,i) is subsequently calculated by integrating the hydrograph until the 
time critical Tcr (hatched area in Figure 2). The uncertainty in this estimation is assumed to follow a 
pre-defined gamma distribution. This assumption has been made for simplicity, as it is possible to 
analytically calculate the integral listed in eq. 2 (Vezzaro and Grum, 2012). 

2.2.2 Stochastic model 

Similar to the deterministic case, we apply conceptual hydrological rainfall-runoff models for 
generating stochastic runoff predictions with radar nowcasts as input. Breinholt et al. (2011) give a 
detailed description of the model structure. The open-source software CTSM (Kristensen and Madsen, 
2003) is applied for the modelling process and we obtain a state space model layout with the following 
system equations: 
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 (3) 

In eq. 3 (S1, S2, S3) correspond to the reservoir states in the lumped model, (A) to the effective area, 
(Pt) to the rainfall input, (a0) to the mean dry weather flow and (K) to the time lag constant. In addition 
to the physical model part, the system equations also include a stochastic term consisting of a random 
process (dωt) with state dependent variance (σ·S). This term is used to model uncertainties resulting 
from uncertain (rainfall) inputs and an incomplete description of reality by the model. 

The so-called observation equation relates flow predictions from the model to basin inflow 
observations (Qi) at time step (i). We describe variations in dry weather flow by a harmonic function 
(Di) and consider the flow observations subject to a random normal error (ei). 

iiii eDS
K

Q  ,3

1
 (4) 

Depending on the variance of states and observations, this model layout allows for an adjustment of 
the states at every time step to match the observations. This state updating is performed through an 
extended Kalman filtering routine. It is also possible to include the model parameters (A) and (K) as 
additional states corresponding to e.g. purely random variables in the system equations 4. The 
parameters are then estimated as part of the state updating and the model can adapt to different 
behaviour of the system e.g. in summer and winter or for different rainfall characteristics. We intend to 
implement this kind of behaviour in the next version of forecasting models and hence do not perform a 
constant re-calibration as for the deterministic models.  

Parameters for the stochastic flow forecasting models used in this work are derived by minimizing the 
difference between the distributions of multistep flow predictions and the empirical distribution of the 
corresponding flow observations using the continuous ranked probability score (CRPS) as criterion 
(Gneiting and Raftery, 2007;Löwe et al., submitted). A 4-week-period of observations in spring 2012 
was used for estimation of the model parameters.  

Probabilistic predictions of runoff volumes are obtained through a scenario approach. 1000 possible 
scenarios of flow forecasts up to the maximal considered horizon of 60 time steps or 2 hours are 
generated from the greybox models. For each scenario, the predicted runoff volume up to a given 
horizon is determined and subsequently a distribution of runoff volumes is derived from the different 
scenarios. 

2.2.3 Comparison setting 

The comparison between the two approaches for runoff estimation in an integrated RTC context was 
carried out by using DORA to control a simplified model of the Lynetten catchment, which is 
implemented in WateraspectsTM. Flows between the different basins are simulated by a simple routing 
function, i.e. the full hydrodynamic description of the system (including e.g. back-water effects) was 
neglected in this study. The inputs to the model were eight flow time series, which were generated by 
running a calibrated MikeUrban model of the Lynetten catchment. The inputs of the MikeUrban model 
were the rainfall intensities which were recorded by the radar: this allowed for considering rainfall 
spatial variability in the study.  

Two sample events were considered here to demonstrate the effect of different forecast models on 
real time control. These events were selected according to data availability and to the response of the 
system (i.e. overflow volumes), which was estimated based on the detailed model simulations. Both 
the rain events had similar magnitude, with a total runoff volume of about 13 mm and a duration of 
about 8-9 hours. Due to the bad quality of the measurements available for the St. Annae basin, no 
forecasts were used in the simulations for this point (i.e. only the actual volume of stored water and the 
flows from the upstream basins were used by DORA). 
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3 RESULTS AND DISCUSSION 

3.1 Runoff predictions 

As an example, Figure 3b,d shows predicted inflows to two of the basins considered in the control 
setup for the Lynetten catchment for a forecast horizon of 120 minutes. We see that the stochastic 
forecast for the Colloseum basin (left, event from 24/09/2012) does not capture the system behaviour 
very well. The deterministic forecast underestimates the runoff volumes, but generally describes the 
behaviour of the system better. This is a result of the stochastic model parameters being estimated 
only to a 4 week period containing 3 rain events whereas the deterministic model is recalibrated every 
10 minutes.  In the Strandvænget catchment (right, event from 12/10/2012) we obtain a better 
prediction of the true runoff volumes as the rain events considered in the estimation period for this 
model were more representative for forecasting this event. For the deterministic model we see a 
similar behaviour of capturing the general system behaviour correctly but underestimating the runoff 
volume. 

 

Figure 3. Top: Radar rainfall observations. Bottom: measured basin inflow (black), stochastic predicted flows (red 
with 95% confidence bounds shown in blue) with a forecast horizon of 120 minutes; and deterministic predictions 

(green). Left: Colloseum (event from 2012/09/24). Right: Strandvænget (event from 2012/10/12). 

 

Figure 4. Top: Radar rainfall observations. Bottom: measured basin inflow (black), stochastic predicted flows (red 
with 95% confidence bounds shown in blue) with a forecast horizon of 4 minutes; and deterministic predictions 

(green). Left: Colloseum (event from 2012/09/24). Right: Strandvænget (event from 2012/10/12). 
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Table 1. Overflow volumes and cost simulated for the controlled drainage system with deterministic and 
stochastic forecasts, event from 24/09/2012 

Control Point 
Overflow Volume [m3] Overflow Cost 

deterministic stochastic variation deterministic stochastic variation

Lersoeledning 38759 23259 -40% 968972 581473 -40%

Strandvænget 
Basin 

8584 0 -100% 214595 0 -100%

Strandvænget 
Pump 

7417 0 -100% 7417 0 -100%

Colloseum 0 0 - 0 0 -

St. Anne 8392 0 -100% 50348 0 -100%

West Amager 0 0 - 0 0 -

East Amager 0 0 - 0 0 -

Kloevermarken 1156 13785 +1093% 5780 68926 +1093%

Lynetten 0 0 - 0 0 -

Total 64307 37044 -42% 1247111 650398 -48%

Looking at a shorter forecast of 4 min horizon in Figure 4b,d, we see that the state updating inherent in 
the greybox models almost automatically leads to good forecast results as the initial state values of the 
models for generating forecasts are always set to a good value. The deterministic models, although 
auto-calibrated every 10 minutes, do not include this property and are outperformed by the stochastic 
models.  

Finally, we can see that the uncertainty bounds provided by the stochastic models appear reasonable 
on the short horizons (Figure 4b,d), but too narrow on the long horizons (Figure 3b,d). In the model 
estimation we optimize the model for generating multistep predictions. This means, that the derived 
uncertainty description is a compromise between longer and shorter forecast horizons and will typically 
be too narrow for the longer horizons. Further, the model structure describing forecast uncertainties 
depending on the predicted state value is not optimal for modelling the actually observed uncertainties 
of the predictions as the predicted states can be quite far from the truth. There appears to be a 
general tendency that estimating the model parameters using the CRPS as objective function then 
results in rather small predicted uncertainties, that on the other hand maximize the information content 
(or resolution) of the forecasts. 

3.2 Overflow risk 

Table 1 and Table 2 show the simulated overflow volumes and costs for the two considered events. In 
the first event, the stochastic predictions produce a clear reduction of the overflow volumes by 
improving the use of the available storage and by increasing the overflow volume in less sensitive 
points of the drainage systems (Kloevermarken). This resulted in an overall reduction of the CSO cost 
of 50%. Figure 5 shows how the stochastic forecasts resulted in a greater water storage in the 
southern part of the catchment (Figure 5b,d) and in a lower filling of the basins in the northern part of 
the catchment (Figure 5a,c). Interestingly, a better use of the storage in the Colosseum catchment (not 
shown), resulted in better performance of the downstream St. Anne basin, where no forecasts were 
available. 

In the second event, utilisation of the stochastic predictions results in an increase of overflow cost of 
approximately 15%. The main reason for this increase is a strong underestimation of expected runoff 
volumes at Lersoeledning (one of the most sensitive points in the system) by the forecast model (see 
Figure 6a). Based on this information, DORA defined lower outflows from the basin (Figure 6b), 
resulting in an increased overflow when the storage capacity was exceeded. Figure 6c shows how the 
Lersoeledning basin is filled at the same rate with both the deterministic and the stochastic forecast. 
The increased COS volume is thus due to the lower optimal flow, which is defined according to the 
information provided by the forecasts. 
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Table 2. Overflow volumes and cost simulated for the controlled drainage system with deterministic and 
stochastic forecasts, event from 12/10/2012 

Control Point 
Overflow Volume [m3] Overflow Cost [DKK] 

deterministic stochastic variation deterministic stochastic variation

Lersoeledning 16991 21293 +25% 424744 532317 +25%

Strandvænget 
Basin 

1718 287 -83% 42944 7172 -83%

Strandvænget 
Pump 

0 0 - 0 0 -

Colloseum 0 0 - 0 0 -

St. Anne 5120 477 -91% 30720 2863 -91%

West Amager 0 0 - 0 0 -

East Amager 0 0 - 0 0 -

Kloevermarken 104 6373 +6030% 520 31866 +6030%

Lynetten 0 0 - 0 0 -

Total 23933 28430 +19% 498960 574218 +15%

 

 

Figure 5. Simulated filling degree in four major basins (event from 2012/09/24) 

However, also in this event we can see how overflows are reduced at the more critical points 
Strandvænget and St. Anne and moved to Kloevermarken. As suggested in the previous section, an 
adaptive model should provide improved control results for this event. As observed for the first event, 
the control strategy utilizing the stochastic forecasts stored greater volumes in the southern part of the 
catchment (Amager West and East). 
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Figure 6. Simulated overflow risk (a), optimal outflow, and filling degree (c) for Lersoeledning for the event starting 
on 2012/10/12. 

Finally, we need to point out that the here performed analysis based on two events can only give an 
impression of the effects obtained by different forecasting systems. The behaviour of a real time 
control system depends very much on the event characteristics. As shown for example in Vezzaro and 
Grum (2012), conclusions on the performance of integrated control approaches can only be drawn on 
the basis of a great number of events. Given the limited amount of available data, this analysis is 
postponed to a further stage of the SWI project. 

4 CONCLUSION 

The implementation of stochastic runoff forecasting models into a real time control system has been 
shown. Decision making based on the stochastic forecasts can in general provide reduced overflow 
volumes from sewers. Based on two sample events, very oppositional results are obtained. Applying 
the stochastic forecasts models for decision making leads to a clear reduction of overall overflow 
volumes in the first event and a shift of overflow volume to a less critical location.  

In the second event, an underestimation of runoff volumes at a critical basin by the stochastic 
forecasting models results in an increase of overflow at this basin and also the overall amount of 
overflow. Conclusions on the general performance of the stochastic forecasting system can off course 
not be drawn based on two events but require the simulation of extended periods.  

Analysing the model predictions, however, a need for adaptivity of the prediction models can be 
identified. The models partly failed to properly reproduce the system behaviour as they only include a 
simplified physical description of the system and the data used for model calibration were not 
representative for the rain events considered when testing the control system. Allowing model 
parameters to vary in time is a way to obtain improved forecasts and can easily obtained in the 
stochastic models through extended Kalman filtering. 

Further, the currently applied state dependent uncertainty description in the forecasting models is 
identified as insufficient. With the applied structure, wrong physical forecasts will also lead to wrong 
uncertainty forecasts and the models fail to capture in particular the high forecast uncertainty at the 
beginning of rain events. Making the models uncertainty description subject to the rainfall input rather 
than the predicted states should be one step towards proper uncertainty predictions. 
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