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Summary 
During cell division the genome is duplicated and segregated along with organelles into the daughter cells with high 
fidelity. The physical separation of the two daughter cells topologically resembles virus budding and multivesicular 
endosome (MVE) formation in the sense that they all involve outward budding from cytosol. According to the crucial 
role of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery that pinches off membranes in 
MVE biogenesis and virus budding, extensive work from several laboratories during the last six years has now 
confirmed an essential role of ESCRT members also in cytokinesis. This Deep Insight highlights the current views 
explaining how the ESCRT machinery and associated proteins collaborate to drive abscission of the intercellular bridge 
at the correct time when DNA and organelles are successfully segregated. Even though the ESCRT machinery seems to 
play a central role for proper cytokinesis, it is important to emphasize that alternative mechanisms for abscission have 
been proposed. Before the role of ESCRTs in cell division was discovered, secretory vesicles and recycling endosomes 
were hypothesized to provide the molecular machinery required for abscission (Neto et al., 2011). However, this 
hypothesis is lately debated based on electron microscopy studies showing busy vesicle trafficking in the intercellular 
bridge early in cytokinesis but not when abscission occurs. Rather these vesicles seem to play important roles prior to 
abscission, in the thinning of the intercellular bridge, which will be described later. 

 

Introduction 
During mitosis the cell undergoes profound 
morphology changes, it rounds up and finally divides 
into two equal daughter cells (Green et al., 2012). Cell 
division is a highly regulated process in time and place 
to perfectly coordinate duplication of DNA and the 
physical division of the cell, implying precise 
regulation to coordinate entry and exit of the sequential 
phases. This fine-tuned control is employed by 
phosphorylation and de-poshorylation of crucial mitotic 
factors. The master cytokinetic kinases Cyclin 
dependent kinase 1 (Cdk1), Polo like kinase 1 (Plk1) 
and Aurora B are active and modify essential proteins 
during initial, middle and late steps of cell division, 
respectively (Ma and Poon, 2011). Interestingly, lipids 
and phosphoinositides also seem to regulate cell 
division, in addition to provide extra membrane 
material required for the increase in cell surface 
required for the extensive morphology changes (Atilla-

Gokcumen et al., 2010; Brill et al., 2011; Emoto et al., 
2005). 
During the last steps of cell division, called cytokinesis, 
physical cleavage of the dividing cell occurs (Fededa 
and Gerlich, 2012). Cytokinesis can be divided into 
three major steps, the first ingression when the 
contractile actomyosin ring contracts and forms an 
intercellular bridge approximately 2 µm wide. The 
second ingression follows when the intercellular bridge 
is further constricted down to 200-100 nm in diameter. 
Finally, the intercellular bridge is pinched off during 
abscission, releasing two genetically identical daughter 
cells. Before this final cut, actin filaments and 
microtubules stabilizing the intercellular bridge must be 
severed. Recently, electron microscopy imaging has 
revealed that late in cytokinesis the intercellular bridge 
is decorated with spirals of thin filaments thought to 
represent the actual abscission complex (Guizetti et al., 
2011). Yet it remains to characterize these spirals, but 
most likely they are made of ESCRT proteins given 
their potential to oligomerize and their important role in 
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cytokinesis (Carlton and Martin-Serrano, 2007; Morita 
et al., 2007). 

The ESCRTs 
Originally the ESCRT proteins were found to be crucial 
for efficient sorting of transmembrane cargo destined 
for the lysosomes (vacuole) in yeast (Katzmann et al., 
2001), and their role in lysosomal sorting is conserved 
in humans (Bishop et al., 2002) . Endosomal sorting of 
cargo involves inward budding of the endosomal 
limiting membrane, sequestration of cargo in 
intralumineal vesicles (ILVs) whose content is 
degraded proteolytically when MVEs fuse with 
lysosomes. This special topology of budding resembles 
release of viruses and abscission in cytokinesis. The 
role of ESCRTs in these membrane fission processes 
has been investigated, and indeed the ESCRT 
machinery has been proven to support proper release of 
retroviruses such as HIV (Garrus et al., 2001; VerPlank 
et al., 2001) and cytokinetic abscission (Carlton and 
Martin-Serrano, 2007; Morita et al., 2007), in addition 
to support MVE formation. Extensive investigations 
have progressively dissected the detailed action of the 
ESCRT machinery (Henne et al., 2011). To date more 
than 20 different human proteins arranged in four 
separate ESCRT complexes exist - ESCRT-0 (Hrs and 
STAM), ESCRT-I (Tsg101, Vps37A-D, Vps28, 
Mvb12A/B, UBAP1), ESCRT-II (EAP20, EAP30, 
EAP45) and ESCRT-III (CHMP2A-B, CHMP6, 
CHMP3, CHMP4A-D, IST1). These multiprotein 
complexes are sequentially recruited to membranes and 
facilitate protein sorting, membrane deformation and 
scission. ESCRT-0 is thought to recognize and anchor 
the rest of the ESCRT machinery to the endosomal 
membrane and to its specific cargo, such as 
ubiquitinated growth factor receptor. As highlighted 
later, the nature of the substrate-recognition complex is 
membrane fission-specific (i.e. ESCRT-0 in MVE 
formation, Alix in virus budding, and Alix together 
with CEP55 in abscission) thus explaining why 
ESCRT-0 is less evolutionary conserved compared to 
ESCRT-I-II and -III. Nevertheless, when the specific 
endocytic cargo is recognized, early-acting factors, 
ESCRT-I followed by ESCRT-II, are recruited and 
facilitate accumulation of cargo, membrane bending 
and massive recruitment of ESCRT-III. Monomers of 
ESCRT-III are recruited from cytosol onto membranes, 
where they upon conformation changes are activated 
and form spirals of filament which  
facilitates constriction of membrane necks, thus 
pinching off ILVs, new viruses from the cell surface or 
intercellular bridges. This final cut is dependent on the 
AAA ATPase Vps4 which is specifically recruited to 
the membranes by interacting with ESCRT-III proteins 
(Hill and Babst, 2012; Howard et al., 2001).  
The number of proteins interacting with and assisting 
ESCRT family members in these similar but still 
diverse cellular events is steadily increasing (Roxrud et 
al., 2010). Even so, specific isoforms of ESCRT-I and 

ESCRT-III proteins build complexes specifically 
engaged in abscission rather than virus budding and 
MVE formation, for instance (Morita, 2012). 
Moreover, recent data indicate that the action of 
ESCRTs in cytokinetic abscission is more complex 
regarding regulation, exemplified by the high number 
of proteins specifically involved in this ESCRT 
dependent process. 

ESCRTs and cell division 
The initial clue indicating that ESCRTs are required for 
proper cell division came actually from plant biology, 
where ELC mutants, the plant homolog of Tsg101 of 
ESCRT-I, gave multinuclear cells (Spitzer et al, 2006).  
A year later the role of ESCRT-I in cell division was 
confirmed in human cells when depletion of Tsg101 or 
the ESCRT-associated protein Alix, resulted in 
abscission defects and multinuclear cells (Carlton and 
Martin-Serrano, 2007; Morita et al., 2007). 
Furthermore, homologs of ESCRT-III were proved to 
support normal cell growth in Archae (Lindas et al., 
2008; Samson et al., 2008), yeast (Köhler, 2003) and 
human cells (Carlton et al., 2008; Morita et al., 2007).  
Very interestingly ESCRT-III function in cell division 
seems to be more highly conserved in evolution 
compared to ESCRT-I function, since Archae do not 
express homologs of ESCRT-0, I or II (Samson et al., 
2008). Also the involvement of Vps4 is conserved from 
Archae (Samson et al., 2008) to humans (Morita et al., 
2007). Since endomembrane structures are abscent in 
Archae it is thought that ESCRT proteins originally 
developed to function in cell division.  
Multinuclear cells are generally caused by cytokinesis 
failure (Lacroix and Maddox, 2012), further indicating 
that the ESCRT machinery mediates normal 
cytokinesis. This raises the question of how this 
machinery promotes cytokinesis. 

Recruitment of ESCRTs to the 
intercellular bridge 
A key player inducing cytokinesis is the centrosomal 
protein CEntrosomal Protein 55 kDa (CEP55), which 
localizes to the intercellular bridge by associating the 
Mitotic Kinesin-Like Protein 1 (MKLP1) of the 
centralspindlin complex (Fabbro et al., 2005; Zhao et 
al., 2006). Plk1 prevents hasty onset of cytokinesis by 
phosphorylating MKLP1 and thus preventing its 
interaction with CEP55 (Bastos and Barr, 2010). Prior 
to the second ingression, CEP55 is present at the 
midbody recruiting factors required for the final 
abscission such as Alix and Tsg101 of ESCRT-I 
(Carlton et al., 2008; Carlton and Martin-Serrano, 
2007; Morita et al., 2007). In the central hinge-domain 
separating the two coiled coil domains, CEP55 exhibits 
a so-called ESCRT and Alix Binding Region (EABR) 
domain shown to interact with GPPX3Y motifs in Alix 
and Tsg101 (Lee et al., 2008). Efficient recruitment of 
Alix and ESCRT-I is ensured since CEP55 appears as 
dimer at the intercellular bridge (Zhao et al., 2006). The 



The role of ESCRT-III in cell division Malerød L 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2013; 17(7)  503 

significance of Alix and Tsg101 for complete 
abscission is further highlighted by the mechanism 
underlying formation of ring canals in male germ cells 
(Haglund et al., 2011). These ring canals connecting 
neighboring cells are formed by incomplete 
cytokinesis, mediated by Testis Expressed gene 14 
(TEX14) which interacts stronger with CEP55 than 
Alix and Tsg101, and thus prevents ESCRT-mediated 
abscission (Greenbaum et al., 2009; Iwamori et al., 
2010). 
Alix and ESCRT-I recruit ESCRT-III members to the 
midbody (Carlton et al., 2008; Dukes et al., 2008; 
Morita et al., 2007). The BRO1-domain in Alix binds 
specifically to CHMP4,exhibiting an unique spacing 
sequence between the amphipathic helices compared to 
CHMP1-3 (Fisher et al., 2007; McCullough et al., 
2008). During lysosomal sorting ESCRT-II is a crucial 
player bridging ESCRT-I and ESCRT-III (Babst et al., 
2002; Langelier et al., 2006; Malerød et al., 2007). 
However, ESCRT-II seems to be dispensable for 
cytokinesis, and binding between ESCRT-I and III is 
conceivably circumventing the need for ESCRT-II in 
this process (Pineda-Molina et al., 2006). Indeed direct 
interaction between Vps28 of ESCRT-I and CHMP6 of 
ESCRT-III has been reported, but its significance for 
proper cytokinesis remains unclear. The ordered 
recruitment of CHMPs has been deduced from yeast 
and cell culture studies and in vitro assays using giant 
unilamellar vesicles. Upon recruitment to membranes 
the conformation changes and the open active 
monomers are able to associate with other CHMPs by 
interacting head-to-tail building long filaments which 
has been characterized in detail using electron 
microscopy (Henne et al., 2012). CHMP6 recruits 
CHMP4 which oligomerizes forming long filaments 
capped by CHMP3 and CHMP2 (Bajorek et al., 2009; 
Fabrikant et al., 2009; Ghazi-Tabatabai et al., 2008; 
Teis et al., 2008). Importantly, CHMP2A/CHMP3 
remodels the flat CHMP4 spirals into three-
dimensional cone-shaped spirals (Henne et al., 2012) 
which conceivably resembles the abscission spirals 
detected on the intercellular bridge by electron 
microscopy (Guizetti et al., 2011). The CHMPs are 
arranged to expose their membrane-associating 
domains on the outside of the filaments and their Vps4-
interacting domain on the inside (Bajorek et al., 2009; 
Lata et al., 2008). Accordingly, electrostatic interaction 
between negatively charged lipids such as 
phosphatidylserine and phosphatidyloinositol-3-
phosphate (PI3P) in the membranes seems to further 
promote curling of CHMP4-filaments into spirals 
(Henne et al., 2012). The relevance of lipid 
composition in the intercellular bridge for ESCRT 
function is highly interesting and potentially subject of 
future investigation. 
The ESCRT-III associated protein CHMP1 interacts 
with both CHMP2 and CHMP3 and links Increased 
Sodium Tolerance 1 (IST1) to the CHMP filaments 
(Dimaano et al., 2008; Xiao et al., 2009). Originally 

IST1 was characterized as an ESCRT-III associated 
protein but was redefined as a true ESCRT-III protein 
(Bajorek et al., 2009). Importantly IST1 knock-down 
impaired cytokinesis but not retrovirus budding nor 
endosomal sorting in mammalian cells, only modestly 
in yeast (Agromayor et al., 2009; Bajorek et al., 2009; 
Dimaano et al., 2008; Rue et al., 2008; Xiao et al., 
2009). Thus, IST1 is the first ESCRT-III protein which 
process-specifically associates the ESCRT machinery, 
further indicating that the ESCRT function during 
cytokinesis is more complex than in virus budding or 
endosomal sorting. Even though IST1 is shown to 
associate Vps37B of ESCRT-I, it seems more likely 
that this stabilizes rather than nucleates CHMP 
filaments at the midbody, given its late recruitment 
onto these filaments (Bajorek et al., 2009). Further 
IST1 possesses an important role in recruiting Vps4 to 
the midbody. 

The role of Vps4 in ESCRT-
mediated abscission 
The AAA ATPase Vps4 is recruited from cytosol by 
ESCRT-III, and as many as 12 different interactions 
between Vps4 and ESCRT-III/associated proteins have 
been characterized, all involving the Microtubule 
Interacting and Trafficking (MIT) domain of Vps4 and 
MIT Interacting Motif (MIM) domains of ESCRT-III 
(Shestakova et al., 2010). Since the MITMIM bindings 
display modest affinity (Kd= 30 µM) (Obita et al., 
2007; Stuchell-Brereton et al., 2007), numerous 
interactions are required for stabile recruitment of Vps4 
onto membranes. Despite the high number of 
interactions observed, in vivo analysis in yeast 
indicated that CHMP2 and CHMP4-interactions are 
superior compared to CHMP6 (Shestakova et al., 
2010), in contrast to what observed by in vitro assays 
(Azmi et al., 2008; Kieffer et al., 2008). Upon closer 
examination it was shown that highest binding affinity 
to Vps4 was dependent on MIM2 which is only 
exposed in active, oligomerized CHMP6, in addition to 
the MIM1 at the C-terminus ubiquitously exposed 
regardless of conformation. By this delicate mechanism 
Vps4 is massively recruited to CHMP-filaments rather 
to inactive monomers in cytosol. High affinity binding 
between Vps4 and CHMP-filaments is further achieved 
since the Vps4-double ring complex composed of 24 
subunits in total exhibit 24 MIT domains. Association 
of a pre-existing CHMP1-IST1-Vps4 complex with 
CHMP2 further ensure massive recruitment of Vps4 
onto CHMP filaments (Bajorek et al., 2009), both 
directly as described above and indirectly. 
Membrane-attached and active Vps4 forms a 
dodecamer composed of two stacked hexamer rings 
(Gonciarz et al., 2008; Landsberg et al., 2009). Each 
ring consists of six Vps4 monomers arranged tail-to-
tail. Cryo-electron microscopy showed that the upper 
ring exposes the MIT domains enabling it to interact 
with ESCRT-III whereas in the lower ring these 
domains are masked and not directly interacting with 
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ESCRT-III (Yu et al., 2008). Vps4 resembles a bowl 
since the upper ring is open whereas the lower ring is 
closed and seems to serve a structural or regulatory role 
rather than being important for substrate recognition. 
When ESCRT-III filaments interact with the upper 
Vps4 ring, they are possibly drawn through the 'Vps4-
bowl' which mediates the disassembly upon ATP 
hydrolysis (Yu et al., 2008). During MVE formation 
and retrovirus budding, the ESCRT-III proteins are 
stripped off the membranes into cytosol and can be 
reused (Babst et al., 1998; Lata et al., 2008). In contrast 
the possible recycling of ESCRT components after 
cytokinesis seems unlikely, as discussed below. 

ESCRT-mediated membrane fission 
Constriction of the CHMP filaments is thought to pinch 
off membrane necks in related processes such as MVE 
formation, retrovirus budding and abscission. To date it 
is still unclear if membrane scission is mediated by 
identical mechanisms in these topologically similar 
processes. Recently live cell imaging studies provided 
new knowledge regarding ESCRT-III mediated 
membrane fission at the intercellular bridge. Firstly the 
sequential anchoring of CEP55, then almost 
simultaneously Tsg101 and CHMP4B and finally Vps4 
to each side of the midbody dark zone was verified by 
live cell imaging (Elia et al., 2011). Secondly the 
appearance of a second CHMP4 pool at approximately 
1 µm from the initial one illustrates that only a small 
fraction of the recruited CHMP-spiral is actually 
involved in the final abscission (Elia et al., 2012). Two 
likely scenarios have been suggested to explain how 
CHMP-filaments induce membrane-fission. Both 
models predict that constriction of the CHMP-spiral 
breaks off the outer spiral-segment, and the elastic 
energy released upon breakage pushes the tip outwards 
until equilibrium is achieved approximately 1 µm from 
the first pool. The energy required for this spiral 
constriction is according to the first model provided 
intrinsically within the spiral or alternatively by lateral 
movement of negatively charged lipids which CHMP 
filaments associate electrostatically. Alternatively, the 
second model assumes that Vps4 binding to the spiral 
cut off the outer segment according to the disassembly 
role of Vps4 and the energy is generated by ATP 
hydrolysis. Unfortunately it is still unknown whether 

Vps4 appears in one or two pools at the midbody, and 
characterizing of Vps4 localization by live cell imaging 
will be valuable for further understanding its role in 
cytokinesis. 
Looking into similar membrane fission processes in 
other organisms may provide valuable knowledge and 
hints when characterizing the mechanism for ESCRT 
mediated membrane scission. In bacteria membrane 
fission is facilitated by FtsZ proteins, which like 
ESCRT-III proteins, oligomerize into long filaments 
(Lu et al., 2000). Moreover the flat FtsZ filaments are 
re-arranged into protruding spirals by FzlA, resembling 
CHMP2/3 mediated transformation of the flat CHMP4-
tubules (Goley et al., 2010). This architectural 
reorganization is thought to provide energy facilitating 
membrane bending and fission (Osawa et al., 2009). 
Interestingly FtsZ is also shown to be important for cell 
division, which clearly proposes that constriction of 
filaments is a conserved mechanism driving membrane 
fission in abscission (Osawa et al., 2009). One 
important difference is the source of energy, since FtsZ 
hydrolyzes GTP itself whereas ESCRT-III must 
associate Vps4 to generate the energy required for 
membrane fission. Thus introduction of Vps4 adds 
complexity to the mechanism in higher eukaryotes 
compared to in prokaryotes. 
The peripheral CHMP pool was found to coincidence 
with the actual abscission site, where intercellular 
bridge is only 100 to 200 nm in diameter (Elia et al., 
2012). The ESCRT spirals were reported to be 
approximately 85 nm wide, which then defines the 
optimal diameter of membrane necks the ESCRT 
spirals are able to constrict (Henne et al., 2012).  
Therefore it seems unlikely that the ESCRTs facilitate 
the second ingression, thinning the intercellular bridge 
from 2 mm to 100 nm. As described later fusion of 
FIP3-Rab11-recycling endosomes with the plasma 
membrane in the intercellular bridge might mediate this 
second ingression locally in proximity to the midbody 
(Schiel et al., 2012). The existence of anti-parallel 
microtubules in the intercellular bridge efficiently 
prevents abscission, giving the ESCRTs yet another 
problem to circumvent prior to the membrane 
scissioning. 
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Figure 1. Possible role of ESCRT proteins in abscission. A) During mitosis the high expression of Plk1 phosphorylates (P) MKLP1 at 
the midbody. B) Reduced Plk1 expression in telophase generates unphosphorylated MKLP1 which recruits CEP55. C) Alix and ESCRT-I 
bind CEP55 at the midbody and recruit ESCRT-III monomers. FIP3-Rab11 recycling endosomes transported along microtubules in the 
intercellular bridge may anchor in proximity to the midbody dark zone by binding to Tsg101. D) The ESCRT-III monomers are activated 
and oligomerize into filaments which are rearranged into cone-shaped spirals. E) The AAA ATPase Vps4 interacts with the ESCRT-III 
filaments and is thought to generate the energy required to constrict this spiral, breaking off the outer segment observed as a perpherial 
pool of ESCRT-III in the intercellular bridge. Alternatively lateral sliding of negatively charged lipids may provide this energy. 
Simultaneously, microtubule severing facilitated by Spastin recruited by ESCRT-III occurs locally adjacent to the secondary pool of 
ESCRT-III. Further waves in the intercellular bridge due to busy vesicle trafficking promotes mechanical breakage of the microtubule. 
Also FIP3-Rab11 endosomes stimulate actin depolymerization by transporting p50RhoGAP to the midbody. In sum, vesicle fusion and 
depolymerization of actin and microtubules locally decreases the diameter of the intercellular bridge from 2 µm to 100-200 nm. F) In 
these thin parts of the intercellular bridge ESCRT-III filaments are able to constrict the bridge further until membrane fission occurs 
spontaneously. G) After abscission is completed, the midbody remnant containing the ESCRT machinery, is either retained by one 
daughter cell or released into the extracellular space. 
 
Moreover it is unclear whether the midbody is cleaved 
once or twice, hence giving rise to a midbody remnant 
retained to one of the daughter cells or released into the 
extracellular space (Chen et al., 2012). 
Interestingly it was reported decreased release of 
midbody remnants when CEP55, Alix or Tsg101 were 
knocked down, in favor of ESCRT-mediated double 
cleavage of the intercellular bridge (Ettinger et al., 
2011).  
Accordingly the fate of this midbody remnant varies 
between studies, perhaps reflecting cell type specific 
preferences for clearance of this 'organelle'. Autophagic 
degradation, either of the attached midbody or released 
midbody endocytosed from the extracellular space, 
seems to constitute the major route for clearance 
although future investigation might shed light on 
alternative mechanisms.  
In either case, recycling of ESCRTs after cytokinesis 
seems unlikely since the proteins are trapped within the 
midbody remnant, again illustrating the differences 
between the role of ESCRT in cell division compared 
to in MVE formation and retroviral budding.  

The current knowledge regarding the roles of ESCRT 
and FIP3-Rab11 endosomes during abscission is 
summarized in Figure 1, which represents one 
mechanism for abscission during cell division. 

ESCRT-III mediates severing of 
cytoskeleton filaments in the 
intercellular bridge 
The intercellular bridge contains actin-filaments from 
the actomysosin-ring mediating the first ingression and 
antiparallel microtubule filaments which stabilizes the 
bridge.  
Clearly, removal of these cytoskeleton filaments is 
required before the final membrane fission. Recent 
reports indicate an essential role for FIP3-Rab11 
recycling endosomes in the actin disassembly at the 
intercellular bridge (Schiel et al., 2012).  
Upon closer examination these endosomes contained 
p50RhoGAP which most likely facilitate the required 
actin disassembly.  
Further, Secretory Carrier Membrane Protein 2/3 
(SCAMP 2/3) was found in FIP3-Rab11-recycling 
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endosomes, thought to stimulate the second ingression 
during cytokinesis.  
The second ingression is locally thinning the 
intercellular bridge from 1.5 µm to 100 nm, and might 
be driven by fusion of these FIP3-SCAMP2/3-
p50RhoGAP vesicles with the plasma membrane since 
SCAMP2/3 originally was found to regulate exocytic 
membrane fusion (Liao et al., 2008; Liu et al., 2005). 
Interestingly, Tsg101 interacts with both SCAMP2/3 
(Aoh et al., 2009; Falguières et al., 2012) , FIP3 and 
FIP4 (Horgan et al., 2012). Even though it is tempting 
to speculate that Tsg101 may be translocated to the 
intercellular bridge in FIP-positive endosomes, this 
seems unlikely since Tsg101 localization at the 
midbody was unaffected by dominant negative FIP4-
mutant (Horgan et al., 2012) and live cell microscopy 
revealed heavy trafficking of FIP endosomes when 
CEP55 and Tsg101 were already present at the 
midbody (Schiel et al., 2012). On the other hand, the 
opposite scenario would be interestingly to investigate 
further. What if Tsg101 anchors FIP3-SCAMP2/3-
p50RhoGAP-endosomes close to the midbody? This 
would define the place for local actin-severing by 
p50RhoGAP, followed by second ingression mediated 
by SCAMP2/3-mediated exocytic fusion which 
narrows the intercellular bridge enough for the ESCRT-
III filaments to pinch off the membrane. By this means 
CEP55 co-localizes factors mediating actin 
depolymerization and second ingression via Tsg101-
recruitment of FIP3-SCAMP2/3-p50RhoGAP-vesicles 
and abscission machinery via Alixrecruitment of 
ESCRT-III. This mechanism would ensure coordinated 
localization to a restricted area of the intercellular 
region defining the abscission site, but this hypothesis 
remains yet to be tested. Not only recycling endosomes 
but also secretory vesicles are transported into the 
intercellular bridge to support proper cell division 
(McKay and Burgess, 2011). Therefore it is interesting 
to notice that Tsg101 facilitates midbody localization 
of Tom1L1/SCRASM which is thought to function in 
post-Golgi trafficking (Yanagida-Ishizaki et al., 2008). 
Thus one intriguing possibility is that Tsg101 anchors 
vesicles at the midbody, although this remains to be 
addressed in future studies. 
Proper abscission depends on clearance of the anti-
parallel microtubule filaments in the intercellular 
bridge. The microtubule severing enzyme Spastin is 
localized to the intercellular bridge by specifically 
interacting with CHMP1B (Yang et al., 2008), IST1 
(Agromayor et al., 2009) or NA14 (Errico et al., 2004). 
The importance of IST1 in microtubule severing was 
exemplified by intercellular bridges filled up of 
microtubules upon IST1 depletion but not CHMP1 
depletion (Bajorek et al., 2009). The fact that the 
Spastin-IST1 interaction exhibits the highest MIT-MIM 
binding affinities reported (Kd = 4.6 µM) further 
suggests a major role for IST1 in recruiting Spastin 
compared to CHMP1 (Renvoisé et al., 2010). Future 
experiments will reveal the relative importance of 

ESCRT-III and NA14, and elucidate whether they 
represent cell specific or parallel mechanisms. 
Discrepant observations regarding the outcome of 
Spastin depletion such as microtubule-filled 
intercellular bridges and abscission failure, indicates 
that such a crucial event as microtubule severing during 
cytokinesis is backed up by alternative mechanism(s) 
(Connell et al., 2009; Schiel et al., 2011). 
An ESCRT-III-independent mechanism for 
microtubule severing involving mechanical buckling 
and breakage (Schiel et al., 2011). The mechanism is 
still elusive but the busy trafficking of FIP3-endosomes 
in the intercellular bridge fusing with the plasma 
membrane may creates waves resulting in microtubule 
severing. Live cell imaging showed that microtubule-
depolymerization in the intercellular bridge occurred 
before the second ingression (Schiel et al., 2012). Since 
this seemed to occur before ESCRT-III appeared in the 
intercellular bridge, it may perhaps argue against the 
original model that only ESCRT-III supports 
microtubule-severing. Interestingly, the mechanisms of 
microtubule depolymerization seems to be cell type 
dependent and depend on the length of the intercellular 
bridge (Connell et al., 2009; Schiel et al., 2012). This is 
exemplified by that epithelial cells are more dependent 
on spastin-dependent microtubule depolymerization 
whereas highly motile cells as fibroblasts are more 
dependent on mechanical-stimulated depolymerization. 
This further explains why spastin depletion just delays 
and not completely blocks cytokinesis. 

Spatial and temporal regulation of 
ESCRT-III in cell division 
The ultimate goal of cell division is to ensure 
segregation of DNA and organelles between daughter 
cells with high fidelity, implying tight control of the 
different steps in cytokinesis. Our knowledge of this 
crucial control is progressively emerging, yet much is 
still unclear. The initial recruitment of CEP55 and 
thereby ESCRT-I and Alix to the intercellular bridge is 
regulated by Plk1-mediated phosphorylation of 
MKLP1 (Bastos and Barr, 2010). To date ESCRT-I has 
not been observed to be regulated, but Alix is thought 
to associate with the midbody as a dimer (Pires et al., 
2009; Zhou et al., 2008). The inactive Alix exhibits a 
closed conformation thus masking the Bro1-domain 
shown to bind CHMP4B, but exactly how this 
autoinhibited conformation is relived upon membrane-
attachment remains mysterious and represents a 
putative regulation step (Zhou et al., 2009). Likewise 
the conformation-induced activation of CHMP-
monomers upon membrane-attachment is likely subject 
of tight regulation. Recently, CHMP4C was found to 
directly associate the Chromosomal Passenger 
Complex (CPC) composed of Aurora B, INCENP, 
Borealin and Survivin in both flies and human cell lines 
(Capalbo et al., 2012; Carlton et al., 2012). Upon 
binding to the N-terminus of CHMP4C, Borealin 
preserves it locked in the inactive state and prevents 
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oligomerization of ESCRT-III filaments and thereby 
abscission. The suggested regulatory role of Borealin is 
evolutionary conserved from flies to humans, but it is 
currently unknown if this negative regulation is 
mediated solely by Borealin or with assistance from 
accessory proteins. Interestingly, when comparing the 
amino acid sequence between the different CHMP4 
paralogs, CHMP4C exhibits a unique insertion region 
enriched in serines and threonins at its C-terminus 
containing a putative Aurora B phosphorylation site. 
Aurora B-mediated phosphorylation of S210 at 
CHMP4C was proven to support proper cell division 
without affecting its midbody-recruitment. Thus, it 
seems that although CHMP4C is recruited to the 
midbody, it is kept inactive and prohibited from 
completing abscission as long as CPC is active. 
Lagging chromosomes in the intercellular bridge 
activates the so-called NoCutcheckpoint dependent of 
Aurora B, which delays complete abscission until the 
lagging chromosomes are completely segregated 
(Carmena, 2012; Norden et al., 2006; Stauffer et al., 
2001). Precisely, how Aurora B recognizes the lagging 
chromosomes and halt abscission is unclear but it is 
tempting to speculate that the mechanism involves 
Aurora B and CHMP4C. This ESCRT-NoCut-
checkpoint association seems to be most important in 
higher eukaryotes like mammals, since Aurora B is 
unable to phosphorylate CHMP4 in flies even though 
Borealin of CPC interact with CHMP4 proteins, and 
the S210 residue is poorly evolutionarily conserved 
(Capalbo et al., 2012; Carlton et al., 2012). In addition, 
the centrosomal protein TTC19 has been proposed to 
regulate the oligomerization of CHMP4B at the 
midbody (Sagona et al., 2010). It seems that TTC19 in 
complex with FYVE-CENT is recruited to the midbody 
by interacting with CHMP4A/B and PI3P, respectively 
(Sagona et al., 2010; Tsang et al., 2006). 
Regulation of Vps4 activity has been extensively 
studied in context of cytokinesis but also MVE 
biogenesis and virus budding, and revealed five 
important regulators of Vps4, namely Vta1/SBP1, 
CHMP1, CHMP2, IST1 and CHMP5. In contrast to 
CHMP2, Vta1 and IST1, CHMP5 and CHMP1 
indirectly regulate Vps4 activation by recruiting Vta1 
and IST1 as described below (Azmi et al., 2008). Vps4 
is recruited to ESCRT-III filaments by directly 
interacting with CHMP2 and leading to Vps4 activation 
in all cytokinesis, endosomal sorting and virus budding 
(Azmi et al., 2008). The Vps4 co-activator Vta1 
interacts with the lower of the two hexameric rings of 
Vps4 and is thought to facilitate activation by 
efficiently tethering Vps4 to ESCRT-III filaments by 
directly associating CHMP5 and CHMP1 (Azmi et al., 
2008; Bowers et al., 2004; Stuchell-Brereton et al., 
2007; Yang and Hurley, 2010; Yang et al., 2012). The 
recruitment of Vta1 to Vps4 is negatively regulated by 
ISG15 (Interferon Stimulated Gene 15) (Pincetic et al., 
2010). The role of ISG15 has so far only been 
investigated in HIV budding and future studies will 

reveal if it is able to regulate Vta1-Vps4-function in 
MVE formation and cytokinesis as well (van Balkom et 
al., 2009; Ward et al., 2005; Yeo et al., 2003). 
Especially interesting is it that Vta1 functions as a 
dimer, representing yet another putative regulation step 
which awaits further investigation (Xiao et al., 2008; 
Yang and Hurley, 2010). 
IST1 was found to negatively regulate Vps4 activity in 
vitro (Dimaano et al., 2008). Possibly the strong 
binding of the MIT-Domain containing protein 1 
(MITD1) to IST1 but also CHMP2A and less extent 
CHMP1, could prevent their interaction with Vps4 at 
the midbody (Hadders et al., 2012; Lee et al., 2012). 
Interestingly, MITD1 is specifically involved in 
cytokinesis and not growth factor receptor degradation 
as previously reported for IST1. 
In yeast Vps4-promoted disassembly of endosomal 
ESCRT-III was found to be regulated by Bro1 which 
associated CHMP4 (Wemmer et al., 2011). Careful 
characterization of the interaction-motif in CHMP4 
rules out a competitive binding between Bro1 and Vps4 
to CHMP4 filaments. The mechanism is presently not 
elucidated neither is the potential role of Bro1 in 
regulating retroviral budding or cytokinesis. Bro1 
seems to exert numerous roles related to the ESCRT 
function. In addition to promote de-ubiquitination of 
cargo in endosomal sorting (Luhtala and Odorizzi, 
2004; Richter et al., 2007), it is also thought to stabilize 
ESCRT-III filaments on membranes as its closest 
human orthologue Alix. 
In general it seems that the ESCRT role in cytokinesis, 
in contrast to retrovirus release and MVE formation, is 
more complex regarding the number of auxiliary 
proteins and regulation. This is further illustrated by the 
discovery of Vps4 regulators like MITD1 which 
specifically modulates Vps4 in cell division. 

Ubiquitination during cell division 
During cell division ubiquitinated proteins accumulate 
at the spindle midzone (Mukai et al., 2008). To date we 
can just speculate the purpose and nature of enzymes 
stimulating this modification. Perhaps ubiquitination 
facilitates interaction and activity, but also regulates 
expression levels of proteins implicated in cell division. 
Proteasomal degradation of mitotic proteins normalize 
their expression levels at the end of cytokinesis (Min 
and Lindon, 2012). Accordingly CHMP1, IST1 and to 
less extent CHMP4B/C, CHMP2 and CHMP7 were 
reported to recruit Calpain-7 onto membranes via 
MIM-MIT interactions (Maemoto et al., 2011; Osako et 
al., 2010; Yorikawa et al., 2008). Even though CHMP1 
and IST1 stimulate the proteolytic activity of this 
cysteine protease, it remains to elucidate its putative 
substrates and if it is important for proper cytokinesis. 
Several of the ESCRT members are shown to directly 
bind to ubiquitin-modifying enzymes. For instance 
Tsg101 interacts with the E3 ubiquitin ligase Nedd4L, 
which most likely controls cell division since depleting 
Nedd4L give multinuclear cells (Chung et al., 2008). 
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Moreover IST1 binds Spartin via MIM-MIT-interaction 
and recruits it to the midbody to support proper 
cytokinesis (Renvoisé et al., 2012). At the midbody 
Spartin may act as a platform recruiting the E3 
ubiquitin ligases AIP4 and AIP5 (Bakowska et al., 
2007; Eastman et al., 2009; Edwards et al., 2009). 
Although Spartin knock-down gave multinuclear cells 
implying that it is essential for complete cytokinesis, a 
putative role for AIP4 or AIP5 in cytokinesis remains 
unexplored (Renvoisé et al., 2010). 
In agreement with the importance of ubiquitin for 
optimal cell division (Pohl and Jentsch, 2008), 
depletion of different deubiquitinases, such as UBPY 
and AMSH, results in multinuclear cells (Agromayor et 
al., 2009). The deubiquitnating enzymes UBPY and 
AMSH exhibit MIT domains shown to associate MIM-
domains in CHMP1,2,7 and CHMP1A, 3, respectively 
(Mukai et al., 2008). Additionally, IST1 binds both 
AMSH and UBPY via MIM-MIT interactions 
(Agromayor et al., 2009). 

ESCRT-III ensures normal cell 
division by controlling centrosome 
duplication and thus spindle 
formation 
Even though the main focus to date has been on the 
role of ESCRTs during abscission, it seems that this 
machinery may control earlier steps such as centrosome 
duplication and thus spindle formation, at least in 
mammalian cell lines. Cells depleted of either CHMP 
proteins or Vps4 exhibited increased number of 
centrosomes (from 5 and to 20) giving multipolar 
mitotic spindles and abscission failure (Morita et al., 
2010). On the other hand, CHMP2A or CHMP5 
depleted cells exhibited only one centrosome giving 
rise to monopolar spindles, and arrested abscission due 
to lagging chromosomes in the intercellular bridge. 
Exactly how ESCRTs control centrosome duplication is 
so far unknown  
although CHMP4 interacts with CC2D1A (Tsang et al., 
2006), which is implicated in centrosome duplication 
(Nakamura et al., 2009). Another intriguing possibility 
is that ESCRTs may be important for centrosome 
clustering forming two mitotic organizing centre and 
hence bipolar spindles. In line with this hypothesis the 
CHMP5 ortholog in Drosophila was picked up in a 
centrosome clustering siRNA screen (Kwon et al., 
2008). 

Conclusion and future perspectives 
Even though several cellular processes rely on the 
ESCRT machinery it seems that the entry of each 
pathway is specific; during lysosomal sorting the 
ESCRT-I-II-III is engaged by ESCRT-0, whereas in 
retrovirus budding Gag proteins attract the ESCRTs 
and during cytokinesis CEP55 recruits Alix and 
ESCRT-I-III to the intercellular bridge. Interestingly 
several isoforms exist of Vps37 in ESCRT-I and 

CHMP4 in ESCRT-III, and our knowledge regarding 
fission-specific involvement of these isoforms is 
emerging. For instance UBAP1, together with Vps37A, 
was proven to be an endosome-specific component of 
ESCRT-I affecting EGFR-degradation and not 
cytokinesis (Stefani et al., 2011).  
Among the CHMP4 proteins, CHMP4C in difference to 
CHMPA-B, seems to be more important for check-
point control during cytokinesis (Carlton et al., 2012).  
Moreover IST1 of ESCRT-III seems to be specifically 
involved in abscission, exerting numerous roles such as 
bridging ESCRT-I and III by binding Vps37B, 
recruiting Vps4 and its regulators in addition to 
anchoring ubiquitin modifying enzymes and 
microtubule-severing enzymes to the midbody. 
Interestingly, the discovery of MITD1 as the first, but 
unlikley last, cytokinesis-specific ESCRT-associated 
protein has further shed light on the complexity in 
ESCRT-mediated abscission. Future proteomic-
analyses and siRNA screens will provide us even 
deeper insight into the network of proteins required for 
completing cytokinesis. Also, the spatial- and temporal 
control of abscission awaits future characterization.  
Still the precise mechanism by which ESCRT-III 
facilitates membrane fission remains elusive, but it is 
conceivable that this will be elucidated by high 
resolution microscopy and advanced live cell imaging. 
We know that negatively charged lipids modulate 
ESCRT-III oligomerization, but still the relationship 
between lipidcomposition and abscission is vague and 
highly interesting to pursue. Finally the interplay 
between Rab11-FIP3 recycling endosomes and the 
ESCRT machinery during cell division is emerging but 
still requires further investigation. 
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