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Abstract: Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments
that result from byproducts of industrial processes and disinfection products. As indirect and
direct potable reuse increase, the presence of trace nitrosamines presents challenges to water
infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV) photolysis or
UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising
technologies to remove nitrosamines from water. However, complex reaction mechanisms involving
radicals limit our understandings of the elementary reaction pathways embedded in the overall
reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify
the hydroxyl radical-induced initial elementary reactions with N-nitrosodimethylamine (NDMA),
N-nitrosomethylethylamine, and N-nitrosomethylbutylamine. We also investigate the UV-induced
NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine
affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study.
Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density,
leading to slower subsequent degradation. Additionally, three major initial elementary reactions
and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA
degradation process. This study provides mechanistic insight into the elementary reaction pathways,
and a future study will combine these results with the kinetic information to predict the
time-dependent concentration profiles of nitrosamines and their transformation products.

Keywords: nitrosamines; NDMA; hydroxyl radicals; UV photolysis; advanced oxidation processes;
quantum mechanical calculation

1. Introduction

Nitrosamines, which contain N–NO functional groups, are a group of chemicals that
pose mutagenicity, teratogenicity, and carcinogenicity [1]. Nitrosamines are the byproducts of
various manufacturing, agricultural, and natural processes and have been found in natural aquatic
environments and in the effluent of wastewater treatment processes [2]. As a type of nitrosamine,
N-nitrosodimethyl amine (NDMA, (CH3)2N–NO) is a low-molecular-weight, neutral, organic contaminant
that has also been found to be present in aquatic environments. The California Department of Health
Services has set notification levels of 10 ng/L for NDMA and other nitrosamines in drinking water [3].

Ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs) that produce
highly reactive hydroxyl radicals (HO•) are attractive and promising water treatment technologies,
which can inactivate pathogens and destroy a wide variety of organic chemical contaminants [4,5].
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UV photolysis and UV-AOPs have been employed in wastewater reclamation processes for indirect or
direct potable reuse of treated wastewater to increase water security and address water scarcity issues
in many arid regions [6]. Wastewater reclamation processes use multiple barriers to physically remove
pathogens and chemical contaminants via microfiltration/ultrafiltration, followed by nanofiltration
(NF)/reverse osmosis (RO). After the NF/RO process, UV photolysis or UV-AOPs inactivate pathogens
and destroy chemicals present in the NF/RO permeate stream. Over 50% of NDMA has been found to
be present in the NF/RO permeate, and the use of UV photolysis or UV-AOPs are necessary to remove
NDMA and other nitrosamines [7].

UV photolysis using a low-pressure UV lamp that emits photons at a wavelength of 254 nm is
very effective at destroying NDMA due to the high molar absorptivity (1650 M−1cm−1 at 253.7 nm)
and highly reactive HO• produced in AOPs rapidly react with many nitrosamines to effectively destroy
the initial contaminants (the second order reaction rate constants of HO•; k = 108–109 M−1s−1) [8,9].
However, complex chemical reactions involving radicals produce a number of transformation byproducts,
and hence, detailed reactivity and reaction pathways for NDMA and other nitrosamines have
not been elucidated yet. For example, Mezyk’s group studied the kinetics of HO• with various
structurally different nitrosamines, and found that NDMA, N-nitrosomethylethylamine (NMEA) and
N-nitrosodiethylamine (NDEA) showed different reactivity and degradation efficiency from other
nitrosamines that have longer alkyl chains adjacent to the N–NO functional group. They proposed that
radical delocalization caused the differences in the degradation efficiency, but the detailed reaction
pathway has not been identified yet [8]. Stefan and Bolton (2002) investigated reaction pathways
for NDMA degradation based on laboratory-scale batch photolysis experiments and explained the
initial photolysis mechanisms based on the reaction pathways previously identified by studies in the
1960s and 1970s [10–14]. UV-induced NDMA degradation pathways were studied at both pH 3 and
pH 7 to identify the transformation products, such as methylamine, dimethylamine, formaldehyde,
formic acid, nitrite ion and nitrate ion [15,16]. Their careful experiments and measurement of
transformation products proposed several key reaction pathways that were induced by UV photolysis
at a wavelength of 253.7 nm at different pH values [15,16]. However, some of the pathways involved
in the formation of transformation products are still unknown. UV-induced NDMA degradation
was also studied and identified previously unknown reactive species in the NDMA degradation
pathways [17–19]. The HO•-induced NDMA degradation mechanisms were studied in an ozone-based AOP,
and general reaction mechanisms were proposed [20,21]. The major transformation mechanisms
were proposed based on experimental studies of the products, but the elementary reaction pathways
are not known due to difficulties in identifying the embedded reactions that were involved in the
overall reaction.

Quantum mechanical (QM) calculations using ab initio methods or density functional theory
(DFT) are attractive approaches to identify elementary reaction pathways and the kinetics of complex
fast radical reactions [22]. QM calculations have been used to support experimentally identified reaction
pathways by calculating the reaction energy using statistical thermodynamics. Aqueous-phase enthalpy
and free energies of activation and reaction were calculated to determine the dominant degradation
pathway of dimethyl phthalate [23]. Elementary reactions involved in the HO•-induced mineralization
of flutriafol were identified [24]. DFT calculations were used to determine the NDMA formation
mechanism from N,N-dimethylsulfamide via ozonation in water [25]. A high-level multi-point energy
method was used to calculate the aqueous-phase free energies of activation for HO•-induced reactions
of a wide variety of organic compounds, including aliphatic compounds, alkenes, and aromatic
compounds [26–28]. These studies highlight the usefulness of QM-based calculations to provide
insight into reaction mechanisms that cannot be obtained by experiments. In addition, the findings
from QM-based calculations also provide potential transformation products that can be identified in
future experiments.

In this study, we use QM-based calculations to identify the HO•-induced initial elementary
reactions with NDMA and other nitrosamines as well as the UV-induced NDMA degradation pathways
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at 254 nm of wavelength. We investigate NDMA, NMEA, and N-nitrosomethylbutylamine (NMBA),
which have different alkyl side chains that are adjacent to the nitroso functional group (–N–NO),
to elucidate the effect of the alkyl side chain on the overall reactivity with HO•. We also investigate
UV-induced NDMA degradation using time-dependent (TD)-DFT to understand the molecular orbitals
responsible for electron excitation and the nitrogen-containing radical reactions during the photolysis
of NDMA.

2. Results and Discussion

2.1. HO•-Induced Degradation

2.1.1. N-Nitrosodimethylamine (NDMA) Degradation Pathways Induced by HO•

NDMA has three potential initial degradation mechanisms: (1) H atom abstraction from a
C–H bond of the methyl group (pathway 1–1 in Figure 1), (2) HO• addition to amine nitrogen
(pathway 1–2 in Figure 2), and (3) HO• addition to nitrosyl nitrogen (pathway 1–3 in Figure 3).
Our QM calculations obtained ∆Gact

aq,calc values of 9.7 kcal/mol, 6.8 kcal/mol, and 9.6 kcal/mol for
the respective pathways. H abstraction from a C–H bond forms a C-centered radical that reacts
with the triplet state of molecular oxygen dissolved in water. Our previous studies indicate that
the addition of molecular oxygen to a C-centered radical is a barrierless reaction with a ∆Gact

aq,calc of
−20–30 kcal/mol, which enabled us to consistently predict the experimentally measured reaction
rate constants [28]. The ∆Gact

aq,calc value obtained for the •CH2NNOCH3 radical was 2.3 kcal/mol,
which is significantly larger than those of typically observed reactions. This indicates that the N–NO
functional group significantly affects molecular addition to the C-centered radical. The second-order
reaction rate constant for the addition of molecular oxygen to a C-centered radical of NDMA was
determined to be (5.3 ± 0.6) × 106 M−1s−1 [9], which is three orders of magnitude smaller than the
typically observed rate constants (~5 × 109 M−1s−1) [29]. A more detailed discussion on the unique
reactivity of molecular oxygen to C-centered radicals will be given in a later section. According to
our calculations, the C-centered radical also undergoes electron transfer to produce CH3NNO=CH2

(∆Gact
aq,calc of −2.0 kcal/mol), followed by the loss of NO• (∆Gact

aq,calc of −11.3 kcal/mol) to produce
N-methylidenemethylamine (CH2=NHCH3). This latter pathway involves several barrierless reactions,
and is dominant over the pathway involving the addition of molecular oxygen. The formation of
N-methylidenemethylamine was also postulated in a previous report [18,19].
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Although initial HO• addition has a lower free energy of activation ( act

aq,calcΔG  of 6.8 kcal/mol) than the H 

Figure 1. Free energy profile for pathway 1–1 of the HO•-induced reaction pathways for
N-nitrosodimethylamine (NDMA) via H abstraction. TS denotes the transition state, and P denotes
the product. The numbers (kcal/mol) are the free energy of activation for the TS and free energy of
reaction for the P relative to the corresponding reactant.
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The second pathway is HO• addition to the amine nitrogen, followed by the loss of an OH
group. Although initial HO• addition has a lower free energy of activation (∆Gact

aq,calc of 6.8 kcal/mol)
than the H abstraction identified in pathway 1–1, the subsequent reaction has a larger activation
barrier (∆Gact

aq,calc of 3.1 kcal/mol) to produce a N-centered radical (i.e., CH3
•NCH3). The N-centered

radical undergoes either molecular oxygen addition or an H shift. The H shift has a significantly smaller
∆Gact

aq,calc of−1.9 kcal/mol than molecular oxygen addition to the N-centered radical (∆Gact
aq,calc of 9.8 kcal/mol).

Thus, C-centered radical formation resulting from an H shift is the dominant pathway via TS8.
The significantly large ∆Gact

aq,calc for the addition of molecular oxygen to a N-centered radical via TS7 can be

verified by the experimentally obtained reaction rate constant for hydrazyl (k = 3.9 × 108 M−1s−1) [30].
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Pathway 1–3 involves initial HO• addition to the nitrosyl nitrogen with a ∆Gact
aq,calc of 9.6 kcal/mol.

Although this reaction has an almost identical ∆Gact
aq,calc to that of pathway 1–1, the initial HO• addition

reaction that produces an alkoxyl radical (i.e., CH3NNO•(OH)CH3) is not thermodynamically favored
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(∆Greact
aq,calc of 6.4 kcal/mol). This alkoxyl radical undergoes two pathways to produce (1) a N-centered

radical with a ∆Gact
aq,calc of 3.1 kcal/mol and (2) methyl diamine (CH3NHCH3) with a ∆Gact

aq,calc of−8.0 kcal/mol.
The above investigation confirms that H abstraction from a C–H bond of the methyl functional

group of NDMA is the dominant initial reaction pathway as induced by HO•, which is consistent
with the experimental investigation using the electron paramagnetic resonance (ESR) technique [9].
The experimentally determined second-order rate constant was (4.3 ± 0.12) × 108 M−1s−1, and this
relatively slow H abstraction from a C–H bond by HO• results from the electron-withdrawing effect
of the neighboring N–NO functional group and the abnormally stable C-centered radical [9]. In the
following sub-sections, the reactivity of NDMA will be compared to two other nitrosamines that have
longer alkyl side chains (i.e., -CH2CH3 and -(CH2)2CH3) to investigate the unique reactivity of NDMA.

2.1.2. N-Nitrosomethylethylamine (NMEA) Degradation Pathways Induced by HO•

NMEA has three potential H abstraction sites: (1) a C–H bond of the –CH2– functional group
adjacent to the N–NO functional group by pathway 2–1; (2) a C–H bond of the terminal CH3 functional
group in the ethyl chain by pathway 2–2; and (3) a C–H bond of the terminal CH3 functional group
adjacent to the N–NO functional group by pathway 2–3. Figures 4–6 show the free energy profiles per
reaction coordinate for each pathway. Our calculations revealed similar ∆Gact

aq,calc values for H atom
abstraction: 11.1 kcal/mol in pathway 2–1 and 11.7 kcal/mol in pathway 2–3), except 62.7 kcal/mol
in pathway 2–2. It is still not clear why the pathway 2–2 had such a high barrier. All three pathways
are thermodynamically favorable (∆Greact

aq,calc < 0). Each pathway produces a C-centered radical,
i.e., CH3

•CHNNOCH3 in pathway 2–1, •CH2CH2NNOCH3 in pathway 2–2, and CH3 CH2NNO•CH2

in pathway 2–3. The ∆Gact
aq,calc values for the addition of molecular oxygen to CH3

•CHNNOCH3,
•CH2CH2NNOCH3, and CH3 CH2NNO•CH2 are 3.8 kcal/mol, −13.9 kcal/mol, and −2.2 kcal/mol,
respectively. As observed in pathway 1, the ∆Gact

aq,calc values of these three C-centered radicals are still
larger than the typical values (−20 to −25 kcal/mol). This indicates that the functional group directly
neighboring the N–NO functional group affects the slow reaction of molecular oxygen addition to
•CH2CH2NNOCH3. Given that the other reaction pathways of the three C-centered radicals have either
a larger ∆Gact

aq,calc than that for molecular oxygen addition or include thermodynamically unfavorable
reactions (∆Greact

aq,calc > 0), the formation of peroxyl radicals resulting from the addition of molecular
oxygen is the dominant reaction pathway in the subsequent NMEA degradation mechanism.
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Figure 4. Free energy profile for pathway 2–1 of the HO•-induced reaction pathways for NMEA via H
abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional group.
The numbers (kcal/mol) are the free energy of activation for the TS and free energy of reaction for the
P relative to the corresponding reactant.
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2.1.3. N-Nitrosomethylbutylamine (NMBA) Degradation Pathways Induced by HO•

NMBA has four potential H abstraction sites from C–H bonds by HO•: (1) a C–H bond of the
–CH2– functional group adjacent to the N–NO functional group by pathway 3–1; (2) a C–H bond of the
–CH2 functional group adjacent to the –CH2– functional groups on both sides by pathway 3–2; (3) a
C–H bond of the terminal CH3 functional group in a butyl chain by pathway 3–3; and (4) a C–H bond
of the terminal CH3 functional group that is adjacent to the N–NO functional group by pathway 3–4.
Figures 7–10 show the free energy profiles per reaction coordinate for each pathway. The calculated
∆Gact

aq,calc values are 10.2 kcal/mol for pathway 3–1, 8.3 kcal/mol for pathway 3–2, 10.9 kcal/mol
for pathway 3–3, and 11.9 kcal/mol for pathway 3–4. The smaller ∆Gact

aq,calc value for pathway 3–2
compared with those for NDMA and NDEA shows consistent reactivity with the experimentally
obtained rate constants: 109 M−1s−1 for N-nitrosobutylamine, 4.3 × 108 M−1s−1 for NDMA and
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4.95 × 108 M−1s−1 for NMEA [8]. The initial H abstraction reactions for all of the pathways are
thermodynamically favorable.

Interestingly, we observed distinctive differences in the reactivity of molecular oxygen addition
to different C-centered radicals for NMBA. The initial H abstraction from different C–H bonds in
NMBA produced CH3NNO•CHCH2CH3 by pathway 3–1, CH3NNOCH2

•CHCH3 by pathway 3–2,
CH3NNO(CH2)2

•CH2 by pathway 3–3, and •CH2NNO(CH2)2CH3 by pathway 3–4. While molecular
oxygen addition to CH3NNO•CHCH2CH3 and •CH2NNO(CH2)2CH3 have larger ∆Gact

aq,calc values of
4.2 kcal/mol and −12.4 kcal/mol, the ∆Gact

aq,calc values for CH3NNOCH2
•CHCH3 (−25.6 kcal/mol)

and CH3NNO(CH2)2
•CH2 (−23.9 kcal/mol) are very similar to those that were observed for

typical molecular oxygen addition to C-centered radicals. Thus, the alkyl side chain affects the
stability of the C-centered radicals and their subsequent reactivity. The significantly slower reaction
of molecular oxygen addition to the C-centered radicals produced from NDMA and NMEA may be due
to the delocalization of the radical spin density from the formed C-centered radicals onto the N–NO bond(s).
This radical delocalization occurs only when a terminal •CH2 is adjacent to N–NO or •CH2 neighbors
the N–NO functional group. When the alkyl chain contains three CH2 functional groups, the •CH2

three positions away from the N–NO functional group does not seem to contribute to the
radical delocalization. Thus, the molecular oxygen adds to the C-centered radical without being
affected by the delocalization. The different extent of radical delocalization can also explain the
lower degradation efficiencies that were observed for NDMA and NEMA (approximately 80~85%
degradation efficiency) as compared with nitrosodibutylamine (100% degradation efficiency) [8].

To investigate the effect of the location of the C-centered radical on the occurrence of radical
delocalization, we calculated the ∆Gact

aq,calc values for radical transfer from a C-centered radical
to a neighboring C-/N-centered radical. For example, CH3NNO•CHCH2CH3 undergoes radical
transfer from a carbon to the amine nitrogen to produce CH3

•NNO=CHCH2CH3. This reaction has a
∆Gact

aq,calc of 0.41 kcal/mol, which indicates a low barrier for this radical delocalization (pathway 3–1).
Similarly, •CH2NNO(CH2)2CH3 requires 3.7 kcal/mol to produce CH2=•NNO=CHCH2CH3

(pathway 3–4). In contrast, CH3NNOCH2
•CHCH3 requires a ∆Gact

aq,calc of 38.6 kcal/mol to produce
CH3NNO•CHCH2CH3 (pathway 3–2). A similar significantly larger ∆Gact

aq,calc value of 40.0 kcal/mol
was also observed for the radical transfer reaction from •CH2CH2NNOCH3 to CH3

•CHNNOCH3

via pathway 2–2. Thus, there is a significant barrier for radical transfer from the functional group
neighboring the N–NO functional group to the nearest CH2 group. Therefore, a C-centered radical in
•CH2CH2NNOCH3 or CH3NNOCH2

•CHCH3 would rather undergo molecular oxygen addition than
radical transfer to produce CH3

•CHNNOCH3 or CH3NNO•CHCH2CH3, respectively.
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Figure 7. Free energy profile for pathway 3–1 of the HO•-induced reaction pathways for NMBA via H
abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional group.
The numbers (kcal/mol) are the free energy of activation for the TS and free energy of reaction for the
P relative to the corresponding reactant.
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Figure 10. Free energy profile for pathway 3–4 of the HO•-induced reaction pathways for NMBA via
H abstraction from a C–H bond of the terminal CH3 functional group adjacent to the N–NO functional group.
The numbers (kcal/mol) are the free energy of activation for the TS and free energy of reaction for the
P relative to the corresponding reactant.
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2.2. UV-Induced Degradation

NDMA Degradation Pathways Induced by UV Photolysis

NDMA absorbs photons at a wavelength of 228 nm with a molar absorptivity of 7380 M−1cm−1

and quantum yield of 0.13 at pH 7 [7]. At a wavelength of 253.7 nm, where a typical low-pressure
UV lamp emits photons, the molar absorptivity was reported to be 1650 M−1s−1, and the quantum
yield was 0.24 at pH 7 [7]. Another smaller peak is observed at approximately 350 nm. Our TD-DFT
calculation obtained one major and one minor peak at 212 nm and 341 nm, respectively. The molecular
orbitals that were responsible for the π→π* and n→π transitions at 212 nm and 341 nm are shown
in Figure 11. At 212 nm, the N–N bond comprises the highest occupied molecular orbital (HOMO),
whereas the C–N bond comprises the HOMO at 341 nm. This analysis indicates that the N–N bond is
susceptible breakage under photolysis with a low-pressure UV lamp. This finding is consistent with
the experimental findings that were reported in the previous literature.

The UV photolysis-induced NDMA degradation pathways were extensively studied [15,16].
According to their studies, NDMA undergoes three major degradation pathways induced by
UV photolysis: (1) formation of an aminium radical [(CH3)2

•N(+)H] and nitric oxide (•NO)
resulting from homolytic cleavage of the N–N bond (pathway 4–1 in Figure 12); (2) formation of
dimethylamine [(CH3)2NH2

+] and nitrous acid (HNO2) resulting from heterolytic photocleavage
of the N–N bond facilitated by a water molecule (pathway 4–2 in Figure 13); and (3) formation of
N-methylidenemethylamine [(CH2=N(+)HCH3], •NO, and a superoxide anion radical (•O2

−) in the
presence of dissolved oxygen (i.e., triplet state of 3O2) (pathway 4–3 in Figure 14).
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The products of (CH3)2
•N(+)H and •NO in pathway 4–1 react in a solvent cage to produce

N-methylidenemethylamine [(CH2=N(+)HCH3] and nitroxyl (HNO). Our calculation obtained a
∆Gact

aq,calc of 1.6 kcal/mol for this reaction. Then, N-methylidenemethylamine undergoes rapid
hydrolysis to produce methylamine (CH3NH2

+) and formaldehyde (HCHO). A total of 99% of the
HCHO is hydrolyzed to form a germinal diol in the aqueous phase [30]; therefore, the hydrated form
of HCHO (i.e., CH2(OH)2) exists in the aqueous phase. CH2(OH)2 reacts with HO• via H abstraction to
produce •CH(OH)2 with a ∆Gact

aq,calc of 10.0 kcal/mol. As was examined in the HO•-induced pathways,
this C-centered radical reacts with molecular oxygen to produce a peroxyl radical (i.e., •OOCH(OH)2)
(∆Gact

aq,calc of −34.9 kcal/mol). The peroxyl radical undergoes uni/bimolecular decay to produce
stable lower-molecular-weight products [31]. When •OOCH(OH)2 undergoes unimolecular decay
(i.e., HO2

• elimination), formic acid (HCOOH) is produced (∆Gact
aq,calc of 31.6 kcal/mol), which has

been experimentally observed [32].
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One of the C–H bonds in the methyl group of the dimethylamine produced in pathway 4–2
undergoes H abstraction by HO• to produce a C-centered radical with a ∆Gact

aq,calc of 13.9 kcal/mol.
Molecular oxygen adds to the C-centered radical to produce a peroxyl radical with a ∆Gact

aq,calc of
−15.0 kcal/mol, and the peroxyl radical undergoes subsequent uni/bimolecular decay.
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The products of •NO and •O2
- from pathway 4–3 react in a solvent cage to produce peroxynitrite

(ONOO−) with a ∆Gact
aq,calc of 1.72 kcal/mol. The rate constant for this reaction was determined to

be (4.3 − 7.6) × 109 M−1s−1 [32–34]. Then, ONOO− undergoes rearrangement with a ∆Gact
aq,calc of

57.8 kcal/mol to produce a nitrate ion (NO3
−). This rearrangement was proposed as isomerization

by Anbar and Taube (1954) [35]. ONOO− also reacts with HO2
•/O2

•− via single electron transfer to
produce an •OONO radical. Our calculation indicates that this reaction is barrierless, with a ∆Gact

aq,calc
of −16.2 kcal/mol, but the reaction is not thermodynamically favorable (∆Greact

aq,calc of 3.4 kcal/mol).
Finally, the •OONO radical undergoes cleavage with a ∆Greact

aq,calc of −0.56 kcal/mol to produce •NO.
When nitrate undergoes UV photolysis, a nitrite ion (NO2

−) and NO2
• are produced.

Then, NO2
• reacts with HO•, O2

•−, or NO2
• with a ∆Greact

aq,calc of 48.3 kcal/mol, 40.2 kcal/mol,
or 100.6 kcal/mol to produce ONOOH, NO2

-/NO3
−, or N2O4, respectively (Figure 15). Although the

disproportionation of NO2
• has the largest free energy barrier, the reaction product, N2O4, undergoes

hydrolysis to produce NO3
− and NO2

−.
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2.3. Environmental Implication and Future Study

Nitrosamines, and NDMA in particular, are extremely potent carcinogenic contaminants in water.
The concentration at which NDMA shows potent carcinogenicity is extremely low (0.7 ng/L) [1].
Experimentally investigating the ng/L fate of many chemical contaminants during water treatment
processes is time consuming and expensive. Our computational study highlights the usefulness of
QM calculations to reveal the elementary reaction pathways that are embedded in the overall reaction
pathways that are typically identified by analytical techniques. This technique becomes more useful
when the contaminant concentrations are below the analytical detection limit.

Once the elementary reaction pathways are identified, the reaction rate constants should be
determined or predicted to calculate the reaction rate of each molecule or species involved in
each elementary reaction step. By combining the elementary reaction pathways and the reaction
rate constants, one can predict the time-dependent concentration profiles of a target chemical
contaminant and its transformation products. This elementary-reaction-based kinetic model could be
used as an initial screening tool for many potentially toxic chemical contaminants to estimate the fate
of degradation pathways. Our efforts towards the development of such elementary-reaction-based
kinetic model are underway.

3. Materials and Methods

All of the QM calculations were performed with the Gaussian 09 revision D.02 program [36]
using the Michigan Tech high-performance cluster “Superior” and homemade LINUX workstations.
The M06-2X/cc-pVDZ [37] was used to optimize the electronic structures and calculate the frequencies
in both the gas and aqueous phase for the HO•-induced reaction pathways with NDMA, NMEA,
and NMBA. The UV-induced reaction pathways with NDMA was calculated with the Gaussian-4
theory (G4) [38]. The aqueous-phase structures and frequencies were obtained using an implicit
polarizable continuum model [universal solvation model (SMD)] [39]. Previously, we verified the
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combination of M06-2X/cc-pVDZ or G4 with the SMD model by successfully applying it to other
aqueous-phase radical-involved reactions [27,28]. Theoretically calculated absorption spectra were
obtained from a TD-DFT analysis [40,41] of the optimized aqueous-phase structure of NDMA at
the level of M06-2X/cc-pVDZ with the SMD solvation model. To investigate the contributions from
molecular orbitals to the peak of the spectra, molecular orbitals were determined using a natural
population analysis at the level of M06-2X/cc-pVQZ with the SMD solvation model. The detailed
calculation procedures for the transition state search, the aqueous-phase free energies of activation
and reaction, and the associated computational methods are found in previous reports [29].
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List of Symbols and Abbreviations

AOPs advanced oxidation processes
CH2=N(+)HCH3 N-methylidenemethylamine
CH3NHCH3 methyl diamine
DFT density functional theory

∆Gact
aq,calc

theoretically calculated aqueous phase free energy of
activation

∆Greact
aq,calc

theoretically calculated aqueous phase free energy of
reaction

G4 Gaussian-4 theory
HCHO formaldehyde
HCOOH formic acid
HNO2 nitrous acid
HO• hydroxyl radicals
HOMO highest occupied molecular orbital
NF nanofiltration
NDEA N-nitrosodiethylamine
NDMA N-nitrosodimethylamine
NMEA N-nitrosomethylethylamine
NO• nitric oxide
NO3

− nitrate ion
NO2

− nitrite ion
ONOO− peroxynitrite
•O2

− superoxide anion radical
QM quantum mechanical
RO reverse osmosis
SMD universal solvation model
TD-DFT time-dependent density functional theory
TS transition state
UV ultraviolet
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