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Abstract

Background: Transcriptomic datasets often contain undeclared heterogeneity arising from biological variation such
as diversity of disease subtypes, treatment subgroups, time-series gene expression, nested experimental conditions, as
well as technical variation due to batch effects, platform differences in integrated meta-analyses, etc. However, current
analysis approaches are primarily designed to handle comparisons between experimental conditions represented by
homogeneous samples, thus precluding the discovery of underlying subphenotypes. Unsupervised methods for
subtype identification are typically based on individual gene level analysis, which often result in irreproducible gene
signatures for potential subtypes. Emerging methods to study heterogeneity have been largely developed in the
context of single-cell datasets containing hundreds to thousands of samples, limiting their use to select contexts.

Results: We present a novel analysis method, SPSNet, which identifies subtype-specific gene expression signatures
based on the activity of subnetworks in biological pathways. SPSNet identifies the gene subnetworks capturing the
diversity of underlying biological mechanisms, indicating potential sample subphenotypes. In the presence of
extrinsic or non-biological heterogeneity (e.g. batch effects), SPSNet identifies subnetworks that are particularly
affected by such variation, thus helping eliminate factors irrelevant to the biology of the phenotypes under study.

Conclusion: Using multiple publicly available datasets, we illustrate that SPSNet is able to consistently uncover
patterns within gene expression data that correspond to meaningful heterogeneity of various origins. We also
demonstrate the performance of SPSNet as a sensitive and reliable tool for understanding the structure and nature of
such heterogeneity.

Keywords: SPSNet, Heterogeneity, Gene expression, Differential expression analysis

Background
Diseases and biological processes are highly heteroge-
neous due to variation in the underlying mechanisms.
Regardless of its origin, heterogeneity is often implicit
and undeclared, as incomplete knowledge prevents the
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accurate identification of subpopulations in a pheno-
type. Undeclared heterogeneity in transcriptomic data can
arise from biological variation such as diversity of disease
subtypes, treatment subgroups, time-series gene expres-
sion, nested experimental conditions, as well as techni-
cal variation due to batch effects, platform differences
in integrated meta-analyses, etc. Unless the underlying
heterogeneity is appropriately considered, comprehensive
analysis of disease mechanisms is hindered, potentially
resulting in misleading conclusions. In general, a system-
atic understanding of the biological basis of heterogeneity
is critical in many practical contexts, e.g.:
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• developing effective treatments by precise
identification of dysregulated mechanisms in distinct
disease subtypes.

• identifying differences in the molecular states of stem
cells resulting in distinct lineage progression, to better
understand organ development and regeneration; and

• detecting and eliminating the effects of intrinsic
heterogeneity (e.g., cell cycle differences across cells,
variation in cellular composition), which can hinder
the discovery of physiologically relevant variation in
the gene expression profiles.

A systematic analysis of non-biological and extrin-
sic heterogeneity is also useful in many cases, even
when analyzing apparently homogeneous experimental
conditions, for:

• extracting knowledge with greater confidence from a
meta-analysis of independently generated datasets;

• discovering unsuspected anomalies or technical
errors; and

• identifying and eliminating factors most influenced
by extrinsic elements and/or batch effects.

Yet, handling heterogeneity in gene expression is a
major problem with few and ineffective solutions. Previ-
ous studies have attempted to unravel heterogeneity using
unsupervised techniques to identify gene expression-
based, subtype-specific, molecular signatures [1–4]. In
these approaches, gene expression data is typically sub-
jected to hierarchical clustering or orthogonal transfor-
mation, and subpopulations in the sample are inferred
using observations on the patterns of variation in
gene expression. However, analysis carried out at the
individual-gene level prevents a systemic view of the
underlying mechanisms, and leaves considerable room for
subjective, and potentially incorrect, interpretation of the
underlying biological mechanisms. It also leads to a high
false-positive rate, and low reproducibility [5]. Notably,
Venet el al. showed that, in case of breast cancer, such
gene-based signatures are no more reproducible than ran-
domly chosen signatures [6].
Several methods have been proposed for analyzing dif-

ferential expression between homogeneous phenotypes at
the level of biological pathways and subnetworks, includ-
ing Over-Representation Analysis (ORA) [7], Gene Set
Enrichment Analysis (GSEA) [8], GeneGraph Enrichment
Analysis (GGEA) [9], and Differential Expression Analysis
in Pathways (DEAP) [10]. However, it has been demon-
strated that, when analyzing independent datasets con-
sisting of identical phenotypes, these methods produce
results that considerably differ between the independent
datasets, demonstrating lack of consistency. This issue
arises mainly due to ineffective data normalization and/or
the utilization of incorrect null hypothesis/distribution.

Two recent methods overcome these issues to yield con-
sistent results across data sets: SNet[11] and its refine-
ment PFSNet[12]. However, these methods are designed
to analyze only homogeneous phenotypes without sub-
classes.
We propose a generalized approach to analyze het-

erogeneity in gene expression data, and obtain subtype-
specific signatures based on the differential gene expres-
sion of subnetworks in biological pathways rather than
individual genes. Our generalization of PFSNet is termed
SPSNet (SubPopulation-sensitive PFSNet). While PFS-
Net reports subnetworks that are differentially expressed
between two samples representing homogeneous pheno-
types, SPSNet makes no assumptions on the homogeneity
of given phenotypes and automatically identifies sub-
networks that are differentially expressed between the
subpopulations within phenotypes. Thus, SPSNet serves
a two-fold purpose: (i) when heterogeneity is biological
in nature, it provides insights into how subpopulations
within a sample set indicating diverse biological mech-
anisms manifest as sample subphenotypes; and (ii) in
the presence of extrinsic or non-biological heterogeneity,
our method amplifies these effects, facilitating identifica-
tion and elimination of factors extraneous to biology of
the phenotypes being studied. We demonstrate the utility
and performance of our method using publicly available
gene expression datasets containing disease heterogene-
ity, batch effects, and varied experimental treatments.

Methods
Data

• Leukemia dataset by Yeoh et al. [13]: We use the
normal class (12 training, 6 test patients) and two
large ALL subtypes, TEL-AML1 (52 training, 25 test
patients), T-ALL (29 training, 15 test patients) from
this microarray dataset.

• Hepatocellular Carcinoma (HCC) dataset by Roessler
et al. [14]: This microarray dataset consists of 247
tumor and 241 adjacent non-tumor samples.

• HCC dataset by Burchard et al. [15]: This microarray
dataset consists of 268 tumor and adjacent 249
non-tumor samples.

• TCGA RCC dataset—[16]: This microarray dataset
contains 30 normal and 30 clear cell Renal Cell
Carcinoma (ccRCC) tumor samples.

• Rat Toxicogenomics dataset by Wang et al. [17]: This
RNA-Seq dataset contains 105 rat livers treated with
27 different chemicals representing 6 modes of action.

• We obtained human pathway information from the
PathwayAPI database which consists of 300 human
pathways [18] (available as Additional file 1 within
the article’s additional material). The rat pathway
information was obtained from the KEGG database
[19] (available as Additional file 2).
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Notations and terminology
• G: the set of all genes gi (i ∈ {1, 2, . . . , n}) whose

expression has been measured
• PC , P¬C : set of patients in the control and test

phenotypes respectively, where the phenotypes
potentially contain undeclared sources of
heterogeneity. The objective of SPSNet is to identify
gene subnetworks that are significantly differentially
expressed between PC and P¬C , while accounting for
this potential heterogeneity.

• E(g, p): expression value of gene g in patient p
• F(g, p): the fuzzy score of gene g in patient p, as

obtained by applying a GFS transform [20] on the
gene expression matrix. Briefly, genes are ranked in
each patient according to their raw expression, and a
fuzzy score is obtained by using two thresholds θ1
and θ2; genes in the upper θ1 quantile are assigned a
score of 1, genes below the θ2 quantile are assigned a
score of 0, and those in between are assigned a score
by linear interpolation. In our earlier work [20], we
demonstrated that this transformation leads to great
improvement in the quality of downstream analysis,
as compared to preprocessing by mean-scaling,
z-score, and quantile normalization.

• β(g,X): the relevance factor of gene g in a population
represented by a set of patients X. The factor denotes
how consistently g gets highly expressed in X, and is
computed as the average fuzzy score of g over all
patients in X:

β(g,X) =
∑

p∈X

F(g, p)
|X| (1)

• S : the set of all candidate subnetworks Sk
(k ∈ {1, 2, . . . , r}) generated from known biological
pathways.

Approach
Generating candidate subnetworks
The primary goal of SPSNet is to identify biological factors
that distinguish subpopulations within a sample. There-
fore, pathways were chosen to generate subnetworks as
they represent the biological processes in an organism,
and differences in their functioning contribute to dif-
ferences within phenotypes. SPSNet does not preclude
generating subnetworks from high-quality PPI networks.
Both PPI networks and biological pathways can be sup-
plied, even simultaneously, as input to SPSNet (and also
to PFSNet). However, in the present manuscript, we do
not investigate PPI networks since there are confounding
issues when using PPI networks. For example, a PPI net-
work is strictly speaking an artificial assembly of pairwise
PPIs:While each individual PPI is a real biological interac-
tion, the subnetwork itself is misleading because e.g. not

all partners of a protein in the subnetwork actually simul-
taneously bind the protein. To ensure a straightforward
interpretation and evaluation of our method, we prefer to
exclude PPI networks in this manuscript.
The standard PFSNet methodology uses highly

expressed genes from each phenotype to induce sub-
networks on known biological pathways. However, this
technique for generating candidate subnetworks is not
suitable for heterogeneous data, as the presence of multi-
ple subpopulations in a phenotype is likely to dilute high
expression in any specific subtype. Therefore, we generate
subnetworks as in NEA [21]; i.e. we form a subnetwork
from each gene and its immediate neighbors in a biolog-
ical pathway. We filter out subnetworks with less than
5 genes. We generate a total of 5654 such subnetworks
from 300 human pathways in PathwayAPI [18].

Computing subnetwork scores
A GFS tranform is first applied to the gene expression
matrix, as described in “Methods” section. All subnetworks
are then assigned phenotype-wise scores for each patient
as follows. A subnetwork Sk is scored in phenotype C
by summing the fuzzy votes of all patients towards each
member gene in Sk , weighted by the respective gene rel-
evance factors in C. Similarly, a score corresponding to
¬C is obtained by weighing the gene fuzzy votes with
the respective relevance factors in ¬C. With the null
hypothesis that subnetwork Sk is not relevant to difference
between phenotypes C and ¬C, we test whether distribu-
tion of the difference between their corresponding scores
is centered around zero. In particular,

PScore(p, Sk ,C) =
∑

g∈Sk
F(g, p) × β(g,C) (2)

PScore(p, Sk ,¬C) =
∑

g∈Sk
F(g, p) × β(g,¬C) (3)

Since PFSNet assumes no underlying heterogeneity in
the phenotypes, the two relevance factors β(g,C) and
β(g,¬C) are computed using the average of fuzzy votes in
all patients in the respective phenotype. However, since
SPSNet deals with heterogeneous data, we wish to com-
pute subpopulation-specific relevance factors, rather than
relevance factors over entire phenotypes. For this, we
assume that each subpopulation in a phenotype has at
least one subnetwork for which it has the highest expres-
sion among members of the phenotype. We then select
representative patients for each subpopulation as the top x
patients with highest expression of the subnetwork (sup-
posing that the smallest subpopulation has at least x
members), and use these to compute the subpopulation
specific relevance factors. In our analysis, we set the value
of x to 10, unless specified otherwise.
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For each subnetwork Sk , we compute the sum of gene
fuzzy votes in patients belonging to both phenotypes C
and ¬C. Thus, two vectors V (Sk ,C) and V (Sk ,¬C) are
generated as:

V (Sk ,C) =
⎡

⎣
∑

g∈Sk
F(g, p1),

∑

g∈Sk
F(g, p2), . . . ,

∑

g∈Sk
F(g, p|C|)

⎤

⎦

(4)

V (Sk ,¬C)=
⎡

⎣
∑

g∈Sk
F
(
g, p′

1
)
,
∑

g∈Sk
F
(
g, p′

2
)
, . . . ,

∑

g∈Sk
F

(
g, p′|¬C|

)
⎤

⎦

(5)

The top x patients each with the highest values in
V (Sk ,C) and V (Sk ,¬C) are then selected as the represen-
tative patients. Let the set of these patients be denoted as
Q(Sk ,C) and Q(Sk ,¬C) respectively. Then, we compute
the final scores for each subnetwork as:

SScore(p, Sk ,C) =
∑

g∈Sk
F(g, p) × β(g,Q(Sk ,C)) (6)

SScore(p, Sk ,¬C) =
∑

g∈Sk
F(g, p) × β(g,Q(Sk ,¬C)) (7)

SPS_Score(p,Sk ,C,¬C)=SScore(p,Sk ,¬C)−SScore(p,Sk ,C)

(8)

Similar to PFSNet, the null hypothesis in SPSNet is that
subnetwork Sk is not relevant to difference between phe-
notypes C and ¬C. Therefore, it is tested whether the
distribution of SPS_Score (as in Eq. (8)) is centered around
zero. However, before testing the subnetworks for sta-
tistical significance, we eliminate candidate subnetworks
which do not contain at least five genes with a phenotype-
specific (subpopulation-specific) relevance factor greater
than or equal to 0.5 in PFSNet (SPSNet). Setting this cut-
off ensures that genes in each candidate subnetwork are
highly expressed in at least half of the patients of that
phenotype/subpopulation, and thus helps to reduce false
positives.

Determining statistical significance
In the standard PFSNet methodology, a null score dis-
tribution for each phenotype is generated by randomly
swapping class-labels between patients in the control and
test samples, and computing subnetwork scores using
the permuted labels. However, we use the theoretical
t-distribution as our null distribution, as a class-label per-
mutation approach is not practical for SPSNet. This is

because the number of representative patients (recall x
= 10) is insufficient for generating the necessary num-
ber of class-label permutations. We test how distant the
mean score of each subnetwork is from zero (on either
side), and thereby estimate the corresponding statistical
significance. All subnetworks with p-value below a given
threshold are reported as significant. In here, we use the
customary significance threshold of 0.05.

SPSNet as the generalization of PFSNet
As stated earlier in “Data” section, SPSNet is a gener-
alization of PFSNet. When a ‘subpopulation’ expands to
accommodate the entire phenotype, and all patients in the
phenotype can be considered representative of it, SPSNet
is equivalent to PFSNet:

SPS_Score(p, Sk ,C,¬C)

=
∑

g∈Sk
F(g, p)×β(g,Q(Sk ,¬C))−

∑

g∈Sk
F(g, p)×β(g,Q(Sk ,C))

= PFS_Score(p, Sk ,Q(Sk ,C),Q(Sk ,¬C))

An overview of the PFSNet and SPSNet methodology is
presented in Fig. 1.

Results and discussion
In analyzing the performance of SPSNet, we take a four-
fold approach: (i) First, we merge samples with known
experimental conditions; and test whether SPSNet is
able to discover subnetworks known to be differentially
expressed in the individual subpopulations in the merged
dataset. We also quantitatively assess the discriminatory
power of SPSNet by transforming the subnetwork scores
into feature matrices, and computing silhouette scores on
their PCA transform. (ii) To analyze the sensitivity and
specificity of the method, we simulate test datasets with
induced heterogeneity, and evaluate if SPSNet correctly
identifies the differentially expressed subnetworks as such.
(iii) To validate the reliability of SPSNet, we examine the
overlap between subnetworks reported significantly dif-
ferentially expressed on independent datasets with the
same phenotype composition. (iv) Finally, we investigate
whether the performance of SPSNet scales to datasets
with greater heterogeneity using a dataset containing a
variety of treatment groups.

Comparison using homogeneous phenotypes
Since PFSNet performs well on homogeneous pheno-
types [12], it is reasonable to assume that subnetworks
reported by it when comparing two homogeneous classes
are truly differentially expressed. Therefore, we compare
the subnetworks reported significant from PFSNet runs
on homogeneous classes, with those reported by SPSNet
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Fig. 1 Flowchart illustrating the SPSNet methodology (in comparison to PFSNet)
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and PFSNet on heterogeneous classes obtained by merg-
ing multiple homogeneous phenotypes.
Acute Lymphoblastic Leukemia
We obtain subnetworks highly expressed in the TEL-
AML1 subtype and are reported by PFSNet as signifi-
cantly differentially expressed with respect to the normal
class, and a similar set of subnetworks highly expressed in
the T-ALL subtype. To simulate the heterogeneous case,
we combine patients from both disease subtypes into a
single “heterogeneous” disease class, and then obtain sub-
networks highly expressed in it that are reported by PFS-
Net and SPSNet as significantly differentially expressed
with respect to the normal class. Finally, we perform a
pathway-level comparison of the subnetworks reported
significant in the homogeneous and heterogeneous cases.
Figure 2 records three sets of observations corresponding
to datasets of increasing heterogeneity (where the dis-
ease sample is created by incrementally merging 10, 20,
and 29 patients of the T-ALL subtype respectively, with
30 TEL-AML1 patients in each case). From the figure,
we observe that both PFSNet and SPSNet are successful
in identifying pathways common to the TEL-AML1 and

T-ALL subtypes. However, SPSNet is more sensitive in
detecting pathways that are specific to either of the disease
subtypes.

Hepatocellular carcinoma
We conduct a similar experiment on the two batches
of HCC data, whereby subnetworks highly expressed in
HCC and differentially expressed with respect to the nor-
mal sample are obtained for each batch separately, and
after merging the two batches. Pathway-level comparison
of these subnetworks is recorded in Fig. 3. We observe
that PFSNet and SPSNet are able to discover pathways
that have subnetworks differentially expressed in both
HCC batches. However, SPSNet is able to better iden-
tify pathways differentially expressed only in one of the
two batches, indicating its sensitivity to heterogeneity in
samples.

Estimating sensitivity and specificity from simulation
Simulation experiments, when carefully designed, have
the advantage that ‘correct’ outcomes from the application
of a method can be known in advance. Thus, they can be
powerful tools for objective performance evaluation.

a b

c

Fig. 2 Acute Lymphoblastic Leukemia (ALL) – pathways containing differentially expressed subnetworks. a 30 TEL-AML1 + 29 T-ALL, b 30 TEL-AML1
+ 20 T-ALL, c 30 TEL-AML1 + 10 T-ALL



Belorkar et al. BMC Systems Biology 2018, 12(Suppl 2):28 Page 99 of 130

Fig. 3 Hepatocellular Carcinoma (HCC) – pathways containing differentially expressed subnetworks that are highly expressed in HCC

We simulate test samples with injected heterogene-
ity, pair them with homogeneous control samples, and
compare subnetworks that are known to be differentially
expressed between the two sample groups with those
reported significant by SPSNet to estimate the sensitivity
and specificity of our method. The detailed procedure is
described below:
We choose a homogeneous normal sample, which

is unlikely to contain any significantly differentially
expressed genes at the outset. The normal sample is ran-
domly split into two equal halves, N1 and N2, and one
of these parts (N2) is allocated for injecting differen-
tial expression. To induce heterogeneity, N2 is further
divided into two subtypes, N21 and N22, with α% and
(100 − α)% of its patients respectively. We sub-sample
10% of the total number of genes and induce differential
expression in patients in N21 for these selected genes, in
a manner similar to the description from Langley et al.
[22]. i.e. we multiply the expression of patients in N21
by a factor of r, where r is chosen randomly from the
set {1.2, 1.5, 1.8, 2.0, 3.0}, for each gene in the sub-sample.
Another independent sub-sample of 10% genes is cho-
sen, and differential expression corresponding to genes in
this sub-sample is induced in patients belonging to the
set N22.
Thus, we obtain four sets of genes, which we use to

generate four sets of subnetworks:

• G1: genes differentially expressed betweenN1 andN21
• G2: genes differentially expressed betweenN1 andN22

• G12: genes differentially expressed between N1 and
N21, AND between N1 and N22

• G0: genes not differentially expressed between N1
and N21 and between N1 and N22

To generate subnetworks from these genes, we adopt the
procedure used by Goh et al. [23], emulating the feature
of real biological subnetworks that genes in a subnetwork
tend to have correlated expression patterns. In particular,
we perform a hierarchical clustering of genes in G1, and
reposition them within their clusters such that the most
similar genes are next to each other. Subnetworks are then
generated by splitting the resulting ordered list into sets of
7 genes each. A similar ordering after hierarchical cluster-
ing is obtained separately forG2,G12,G0. However, forG0,
we do not use all the non-differentially expressed genes
to form subnetworks, but only four times the number of
genes in G1. This emulates the effect of incompleteness
in biological pathway databases, and also saves computa-
tion time required to generate a vast number of negative
control subnetworks.
The entire simulation process is repeated for 100 iter-

ations. In each iteration, PFSNet and SPSNet are run on
newly simulated data, and subnetworks generated from
G1,G2,G12,G0 in the corresponding iteration are tested
for significance.

Estimating sensitivity
We use two datasets for simulation, normal kidney and
normal liver tissue expression data from TCGA [16]
(Dataset 1) and Roessler et al. [14] (Dataset 2), which
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profile 20,502 and 13,801 genes respectively. The num-
ber of subnetworks generated in each iteration from
Dataset 1 using G1,G2,G12,G0 are 292, 292, 30, 1168
respectively; while 197, 197, 20, 788 subnetworks are
generated from Dataset 2. To understand the effect
of different levels of heterogeneity within the data on
the performance of PFSNet and SPSNet, we vary the
parameter α in our simulations. For Dataset 1, α is
set to 50% (the test sample is divided into two sub-
types with 50% of its patients each), while for the
larger Dataset 2, separate simulations are performed with
α set to 20% (subtype 1 – 20%, subtype 2 – 80%),
40% (subtype 1 – 40%, subtype 2 – 60%), and 50% (subtype
1 – 50%, subtype 2 – 50%).
Figure 4a shows four boxplots for Dataset 1 correspond-

ing to the fraction of subnetworks reported significant by
PFSNet and SPSNet from subnetworks that are simulated
to be significant in subtype 1, significant in subtype 2,
simulated to be significant in both, and non-significant in
both subtypes. Figure 4b to d show similar boxplots for

Dataset 2, with varying levels of heterogeneity (different
values of α).
As expected, both PFSNet and SPSNet show higher sen-

sitivity for subnetworks significant in both subtypes, when
compared with those significant in only one of the sub-
types. In all three subnetwork categories—significant in
subtype 1, subtype 2, and both—the sensitivity of SPSNet
is higher than PFSNet (SPSNet improves the median sen-
sitivity by about 10% in each case). The subnetworks
not significant in either subtypes are rarely reported sig-
nificant by PFSNet and SPSNet (high specificity); the
false-positive rate, although a little higher in SPSNet than
PFSNet, is within or around the 5% bound in all cases.
It is also interesting to note the impact of varying hetero-

geneity on the sensitivity of the two methods for simula-
tions on Dataset 2. We notice that the output of PFSNet is
strongly dominated by themajority subtype, while SPSNet
is relatively insensitive to the level of heterogeneity. Thus,
when α is set to 50%, the median sensitivity of PFSNet for
subnetworks significant in subtype 1 and 2 is about 10%

a b

c d

Fig. 4 Proportion of significant subnetworks reported by PFSNet and SPSNet on test samples injected with different levels of heterogeneity.
a Dataset 1: 50% subtype 1, 50% subtype 2, b Dataset 2: 50% subtype 1, 50% subtype 2, c Dataset 2: 40% subtype 1, 60% subtype 2, d Dataset 2: 20%
subtype 1, 80% subtype 2
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and 20% respectively. When α is decreased to 40%, the
median sensitivity for subnetworks significant in subtype
1 (minority) drops to below 5% and median sensitivity
for subnetworks significant in subtype 2 (majority) rises
to about 25%. At an even lower α of 20%, the recall for
subnetworks significant in subtype 1 remains almost the
same, while the median sensitivity for subtype 2 rises to
about 35%. On the other hand, SPSNet performs rela-
tively better at all levels of heterogeneity; irrespective of
the value of α, it consistently shows a median sensitivity of
about 40%.

Estimating false-positive rate
To assess whether the false-positive rate in SPSNet is well-
controlled, we use the same simulation setup as that in
the previous subsection. We generate 1000 subnetworks
usingG0. Since the genes inG0 are differentially expressed
between neither N1 and N21, nor N1 and N22, no subnet-
works generated from G0 are expected to be differentially
expressed. We run SPSNet and test whether the sub-
networks are reported to be differentially expressed. For
this experiment, we used the normal tissues from one
of the HCC datasets [14]. Since the sample is consid-
ered homogeneous, any subnetworks reported differen-
tially expressed are considered false positives. To observe
whether sample size affects false-positive rate, we ran-
domly selected subsamples of size 240, 210, 180, 150, 120,
90, 60, and 30, fifty times each.
Figure 5 shows boxplots depicting the range of false-

positive rates corresponding to subsamples of each size. In
samples of all sizes, the false positives were seen to be well-
controlled: less than 50 of 1000 subnetworks are reported
significant (FP rate < 0.05).

Quality of feature selection
A good method for network-based differential expression
analysis of heterogeneous data would report significant
subnetworks that can serve as relevant features in dis-
tinguishing the classes being compared, as well as their
component subpopulations. Therefore, we use the scores
of significant subnetworks in PFSNet and SPSNet as fea-
tures, and visualize scatter plots based on PCA trans-
formation of the resulting feature matrices. Further, we
quantitatively assess the ability of these features to dis-
tinguish between subpopulations, with silhouette scores
computed using the feature matrices and known labels
corresponding to patient subtype and/or subpopulation.

Acute Lymphoblastic Leukemia
We use the same samples as mentioned in previous
sections with experiments on the ALL dataset [13] –
normal class against datasets of increasing heterogene-
ity (where the disease sample is created by incrementally
merging 10, 20, and 29 patients of the T-ALL subtype
respectively, with 30 TEL-AML1 patients in each case).
We draw PCA scatter plots corresponding to subnet-
works reported as differentially expressed between nor-
mal and each heterogeneous disease sample (Fig. 6).
Table 1 shows three sets of silhouette scores correspond-
ing to feature matrices obtained from scores of sig-
nificantly differentially expressed subnetworks reported
on comparing normal sample with disease samples of
increasing heterogeneity. From the silhouette scores, as
well as PCA scatter plots of subnetwork scores, we
observe that SPSNet is able to better discriminate between
different disease subtypes within the ALL sample, across
varying levels of heterogeneity.

Fig. 5 False-positive rate with varying sample size
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a b

c d

e f

Fig. 6 Normal vs heterogeneous ALL disease sample – PCA scatter plots based on scores of significant subnetworks in PFSNet and SPSnet. a PFSNet
– (Normal vs. 30 TEL-AML1 + 29 T-ALL), b SPSNet – (Normal vs. 30 TEL-AML1 + 29 T-ALL), c PFSNet – (Normal vs. 30 TEL-AML1 + 20 T-ALL), d SPSNet
– (Normal vs. 30 TEL-AML1 + 20 T-ALL), e PFSNet – (Normal vs. 30 TEL-AML1 + 10 T-ALL), f SPSNet – (Normal vs. 30 TEL-AML1 + 10 T-ALL)

Hepatocellular carcinoma
We use the two HCC datasets from [14] and [15], and
create a new normal and HCC sample by merging the nor-
mal and disease samples respectively from both batches.
PCA scatter plots drawn using scores of significant sub-
networks are shown in Fig. 7a and c.

We observe that in the scatter plot corresponding to
SPSNet features, patients appear better separated with
respect to their batch as well as phenotype labels. Fur-
ther, PC1 is able to capture and isolate almost all of
the batch effects in the SPSNet scatter plot, whereas the
batch effects spill over to the lower PCs in the case of
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Table 1 ALL – Silhouette scores based on the first 3 PCs of
feature matrices built using scores significant subnetworks in
PFSNet and SPSNet

30 TEL-AML1 30 TEL-AML1 30 TEL-AML1
+ 29 T-ALL + 20 T-ALL + 10 T-ALL

PFSNet 0.116 0.12 0.079

SPSNet 0.323 0.342 0.288

SPSNet leads to better separation (silhouette scores marked in bold) amongst
subtypes in the ALL disease phenotype

PFSNet. This is despite the fact that PC1 in SPSNet cov-
ers only 66% of the total variance while PC1 in PFSNet
covers 72% of its total variance. Thus, SPSNet proves to
be effective at identifying the heterogeneity induced by
batch effects.
Next, we eliminate PC1 to see if the normal and HCC

samples (combined from two batches) can be clearly sep-
arated by the remaining PCs based on their phenotypes
alone. From the silhouette scores in Table 2, it is seen
that PC2 and PC3 from SPSNet features are able to bet-
ter distinguish between normal and HCC samples, as
compared to their counterparts from PFSNet features.
These observations are in line with the remarks from our
previous work [20] that eliminating PC1 often leads to
removal of batch effects and a clearer separation based on
phenotypes.

Reproducibility on independent datasets
A reliable method would produce significant subnetworks
that agree highly when run on independent datasets with
the same phenotypical composition. Therefore, we run
PFSNet and SPSNet to obtain significantly differentially
expressed subnetworks between normal sample and the
heterogeneous ALL sample (with all patients from sub-
types TEL-AML1 and T-ALL combined). This is done

separately for the training and test data, and the agree-
ment (in the form of jaccard coefficient) between signif-
icant subnetworks obtained on the two sets of data is
recorded in Table 3. We observe that SPSNet shows much
higher reproducibility on the heterogeneous dataset, as
compared to PFSNet.

Are representative patients of significant subnetworks
enriched in specific subpopulations?
Since SPSNet utilises a subset of patients for each sub-
network to represent potential subpopulations in the phe-
notype, we study a) whether such subsets are enriched in
one of the constituent subpopulations, and b) how such
enrichment is affected by the relative proportions of the
constituent subpopulations in the data.
To assess this, we once again use the ALL [13] and

HCC datasets [14, 15], and define a measure ‘purity’
as the proportion of patients belonging to the major-
ity subpopulation (subtype/batch) in the representa-
tive patients subset for a given significant subnetwork.
Figure 8 records the number of significant subnetworks
with purity levels between 0.5 to 1.0 and the colors indi-
cate the majority subpopulation which resulted in the
purity value.
We observe that a large proportion of significant sub-

networks are enriched in one of the constituent subpop-
ulations (high purity); such subnetworks help distinguish
the subpopulations from each other. There are also
a few significant subnetworks which have low purity
(almost equal proportion of subpopulations); these indi-
cate common biological characteristics shared by the
subpopulations. Also, in the ALL dataset, when SPSNet
is used to compare control sample with a heteroge-
neous disease sample containing 30 TEL-AML1 patients
and 29 T-ALL patients, the contribution of the two
disease subtypes to high purity levels (purity > 0.75)

a b

Fig. 7 Normal vs HCC samples merged from two batches - PCA scatter plots based on scores of significant subnetworks in PFSNet and SPSnet.
a PFSNet – PC1 and PC2, b SPSNet – PC1 and PC2
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Table 2 HCC – Silhouette scores based on PCA transform
applied to scores of subnetworks reported as significantly
differentially expressed by PFSNet and SPSNet

Normal vs HCC Normal vs HCC
(first 3 PCs, with batch labels) (2nd , 3rd PC, without batch labels)

PFSNet 0.145 0.117

SPSNet 0.268 0.298

SPSNet leads to better separation (silhouette scores marked in bold) between
normal/HCC phenotypes, as well as the two different batches

is similar; i.e. the number of significant subnetworks
with representative patients having TEL-AML1 and T-
ALL patients in majority is similar. This phenomenon
persists even when the number of T-ALL patients is
reduced to 20. However, when only 10 T-ALL patients
are included in the heterogeneous sample, there are very
few significant subnetworks with representative patients
having a T-ALL majority. This suggests that SPSNet is
able to recover minority subpopulations unless the size
of the smaller subpopulations drops below a certain
threshold (viz. x).

Analysis on a dataset with more than two subgroups
The rat toxicogenomics RNA-Seq dataset [17], described
in “Methods” section (Data), is an ideal test-bed for assess-
ing the performance of SPSNet since the heterogene-
ity is experimentally-induced by treatment with different
drugs, with strict control on potentially confounding vari-
ables such as drug concentration and medium of delivery.
We extract two subsets from this dataset for our analy-
sis: (A) a control group and a heterogeneous drug-treated
group – 5 drugs with PPARA mode of action (Clofib-
ric acid, Nafenopin, Bezafibrate, Rosiglitazone, Gemfi-
brozil), and (B) a control group and a heterogeneous
drug-treated group – 6 drugs, each with a different mode
of action (Clotrimazole, Ethinylestradiol, Simvastin, Chlo-
roform, Leflunomide, Nafenopin). The dataset contains
expression of three rat livers treated by each drug. We
therefore set x, which is the number of representative
patients selected per subnetwork, to a smaller value than
the default (x = 5).
We ran SPSNet comparing the heterogeneous drug-

treated groups to the control group. A PCA trans-
form was applied to the scores of the subnetworks
reported significant by SPSNet (Fig. 9a, c). Subnetworks
with scores having a non-zero contribution to the first

three principle components were selected and the genes
contained in them were used to create the heatmaps in
Fig. 10a, c.
Since the treatment labels are known apriori, we apply

ANOVA to identify genes that distinguish between at
least two treatment sub-groups. A significance threshold
of FDR-corrected p-value of 10−5 was chosen to obtain
a similar number of genes as those used to generate the
heatmap in Fig. 10a, c (derived from SPSNet analysis). We
then apply a PCA transform to the expression matrix of
genes reported significant by ANOVA (Fig. 9b, d). These
are further filtered to contain only those genes with non-
zero contribution to the first three principle compo-
nents. Heatmaps generated by the genes are shown in
Fig. 10b, d.
Note that the labels of constituent subpopulations in

the heterogeneous drug treated group are provided as
an input to ANOVA, while SPSNet is not supplied with
this information. Still, the PCA scatter plot of SPSNet
subnetwork features show remarkable separation between
different drug samples. Also, the heatmap patterns of
genes obtained from SPSNet analysis show a resemblance
to those of the ANOVA heatmaps.
Interestingly, the relative placement of treatment sub-

groups of rat livers remain consistent in the PCA scatter
plots of ANOVA and SPSNet. In case of drugs across 6 dif-
ferent modes of action (Fig. 9a, b), we see that: (i) the drug
action of Clotrimazole is mild, and its expression pattern
shows close resemblance to control rat liver group; (ii)
the drugs Ethinylestradiol, Leflunomide, and Chloroform
induce similar responses in the liver.
The consistency continues to hold even in the het-

erogeneity analysis of drugs within the PPARA mode
of action (Fig. 9c, d) – for analysis on both ANOVA
and SPSNet features, we observe that (i) the actions
of Clofibric acid and Gemfibrozil drugs are indistin-
guishably similar to each other; (ii) Nafenopin and
Bezafibrate induce similar liver response but are marked
by minor differences; (iii) the action of Rosiglitazone is
remarkably different from the other PPARA drugs under
comparison.

Effect of varying number of representative patients on the
performance of SPSNet
For each subnetwork, representative patients are chosen
by SPSNet to ensure representation of a potential

Table 3 Jaccard coefficients showing agreement between significant subnetworks obtained by PFSNet and SPSNet on training and
test data

Training Test Training ∩ test Training ∪ test Jaccard coefficient

PFSNet 27 24 11 40 0.28

SPSNet 87 77 62 102 0.61

Subnetworks reported significantly differentially expressed by SPSNet in the heterogeneous ALL phenotype are more reproducible (jaccard coefficients marked in bold) than
PFSNet across training and test data
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a b

c d

Fig. 8 Number of subnetworks reported significant by SPSNet corresponding to different purity levels. A chi-squared test is performed to see if the
number of significant subnetworks with high purity (purity > 0.75) is larger than those with low purity (purity ≤ 0.75); p-values are reported in brackets.
a 30 TEL-AML1 + 29 T-ALL

(
p-val:1.1 × 10−3

)
, b 30 TEL-AML1 + 20 T-ALL

(
p-val: 1.1 × 10−10

)
, c 30 TEL-AML1 + 10 T-ALL

(
p-val: 1.02 × 10−17

)
,

d HCC merged dataset
(
p-val: 5.5 × 10−4

)

subpopulation in which the subnetwork is highly
expressed. Ideally, the number of representative patients,
say x, would be lower than or equal to the number
of patients in the smallest subpopulation within the
phenotype. Thus, when top x patients with the high-
est expression of a given subnetwork are chosen, the
selected patients would likely belong to the same
subpopulation.
Figure 11a and b show effect of varying the param-

eter x on the performance of SPSNet, in terms of its
ability to distinguish between subpopulations based on
subnetworks reported to be differentially expressed. A
PCA transform was applied to the SPSNet scores of
differentially expressed subnetworks, and a silhouette
score was computed based on the first three principal
components.

Conclusion
Presence of undeclared heterogeneity in gene expression
data hinders identification of subpopulations present in
the phenotype sample and the specific biological factors
associated with them. We presented a method, SPSNet,
which discovers and analyzes such heterogeneity. As
opposed to previous approaches that derived gene-based
signatures to identify potential subpopulations within spe-
cific diseases, our method is a generic tool which provides
subnetwork-based signatures for subpopulations in any
phenotype.
While many methods are available for differential

expression analysis on homogeneous phenotypes, only a
few produce consistent results over independent datasets
containing the same phenotypes, and none are designed
to deal with potential heterogeneity in the data. PFSNet
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a b

c d

Fig. 9 PCA transformation applied to SPSNet (subnetwork score) and ANOVA (gene expression) features captures the heterogeneity in drug
treatment of rat livers. (Dataset of [17]). a SPSNet: across 6 modes of action, b ANOVA: across 6 modes of action, c SPSNet: Drugs representing PPARA
mode of action, d ANOVA: Drugs representing PPARA mode of action

is one method among the rare exceptions which results
in consistent outcomes, but it is designed to analyze
only homogeneous phenotypes. We proposed SPSNet,
a generalization of PFSNet, which is able to solve an
important problem – handling undeclared heterogeneity
in gene expression samples by identifying subnetworks
associated with hidden subpopulations within pheno-
types. The approach also helps recognize and eliminate
extrinsic heterogeneity such as batch effects. We demon-
strated that SPSNet has high sensitivity, low false-positive
rate, high reproducibility, and high biological coherence
when analyzing gene expression data with heterogeneity.
The method is shown to work on both microarray and
RNASeq datasets.

However, there is room for improvement in the design
and performance of SPSNet. For example, SPSNet could
benefit from a better subnetwork generation scheme.
Although the current procedure for generating candi-
date subnetworks—selecting each gene and its immediate
neighbors in a pathway—is a simple way to account for
connections between genes in biological pathways, it is
relatively naive and results in fragmented components
of pathways. Complementing the information in path-
ways with that extracted from gene expression datasets
could possibly lead to generation of subnetworks that
are more cohesive and biologically meaningful. Research
is also necessary to further improve the sensitivity of
SPSNet.
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c d

Fig. 10 Heatmap showing similar expression patterns of significant genes (ANOVA), and genes in significant subnetworks (SPSNet), of rat livers
treated with multiple drugs (Dataset of [17]). a SPSNet: across 6 modes of action, b ANOVA: across 6 modes of action, c SPSNet: Drugs representing
PPARA mode of action, d ANOVA: Drugs representing PPARA mode of action

a b

Fig. 11 Effect of varying x (number of representative patients) in SPSNet on silhouette scores. a HCC merged dataset, b Drugs representing PPARA
mode of action
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