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Abstract

Proteomic analysis of castration-resistant prostate cancer demonstrated the enrichment of SRC 

tyrosine kinase activity in approximately ninety percent of patients. Src is known to induce cyclin 
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D1, and a cyclin D1-regulated gene expression module predict poor outcome in human prostate 

cancer. The tumor-associated calcium signal transducer 2 [TACSTD2/Trop2/M1S1] is enriched in 

the prostate, promoting prostate stem cell self-renewal upon proteolytic activation via a γ-

secretase cleavage complex (PS1, PS2) and TACE (ADAM17), which releases the Trop2 

intracellular domain (Trop2 ICD). Herein, v-Src transformation of primary murine prostate 

epithelial cells increased the proportion of prostate cancer stem cells as characterized by gene 

expression, epitope characteristics and prostatosphere formation. Cyclin D1 was induced by v-Src, 

and Src kinase induction of Trop2 ICD nuclear accumulation, required cyclin D1. Cyclin D1 

induced abundance of the Trop2 proteolytic cleavage activation components (PS2, TACE) and 

restrained expression of the inhibitory component of the Trop2 proteolytic complex (Numb). 

Prostate cancer patients with increased nuclear Trop2 ICD and cyclin D1, and reduced Numb, had 

reduced recurrence-free survival probability (hazard ratio 4.35). Cyclin D1 therefore serves as a 

transducer of v-Src-mediated induction of Trop2 ICD by enhancing abundance of the Trop2 

proteolytic activation complex.

Keywords

Trop2 ICD; Src; cyclin D1; prostate cancer

INTRODUCTION

The cyclin D1 gene encodes the regulatory subunit of the holoenzyme that phosphorylates 

and inactivates the retinoblastoma (pRb) protein, promoting G1/S phase cell cycle entry. 

Cyclin D1 enhances prostate cellular proliferation in vivo and endogenous cyclin D1 

maintains prostate cancer cellular proliferation in vitro (1). In human prostate cancer, cyclin 

D1 abundance is increased in many patients and a cyclin D1-regulated gene expression 

signature predicts poor outcome (1). The abundance of cyclin D1 is induced by activating 

mutations of Src via transcriptional mechanisms (2). The abundance of cyclin D1 is rate 

limiting in growth of a variety of tumors in vivo, including ErbB2 induced breast cancer 

(3,4) and a 50% reduction in cyclin D1 abundance in cyclin D1 heterozygote mice is 

sufficient to reduce the onset and progression of gastrointestinal tumorigenesis induced by 

the Apc/Min mutation (5).

The Src family of kinases (SFKs) include non-receptor tyrosine kinases with nine 

homologous members, that encode an SH4 domain governing cytoplasmic membrane 

association. Src kinase conveys a functional role in both initiation and progression of murine 

prostate cancer (6,7). Co-expression of wildtype Src and the Androgen Receptor (AR) 

enhances the formation of murine prostate adenocarcinoma (7). Genomic analysis of human 

prostate carcinoma demonstrated that mutations of activating tyrosine kinases are rare. 

However, phosphotyrosine peptide analysis with quantitative mass spectrometry 

demonstrated increased Src kinase activity in most PCa patients, and >80% of patients are 

candidates for Src-inhibitor treatment (8). In contrast, very few patients were positive for 

activated states of receptors for MET, ErbB2, or EGFR, despite their detection in prostate 

cancer cell lines (8). Given the frequency of Src kinase activation in human prostate cancer, 
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an enhanced understanding of Src-mediated transformation of prostate epithelium is 

fundamental to improving PCa patient treatments.

A variety of independent analyses have provided supporting evidence for a role of stem cells 

in the onset and progression of tumorigenesis (9,10). The tumor-associated calcium signal 

transducer 2 (Trop2) identifies a subpopulation of prostate cells with stem cell 

characteristics in both murine and human prostate (11). Trop2 is also highly expressed in the 

proximal region of the prostate. Trop2 has oncogenic activity (12) demonstrated by chimeric 

cyclin D1-Trop2 fusions in many cancer types, and silencing the fusion protein inhibits 

tumor growth (13). The related Trop2 family member, EpCAM, is considered a therapeutic 

target through regulation of cell-cell adhesion (14-16). Trop2 associates with the α5 integrin 

subunit, and thereby displaces focal adhesion kinase from focal contacts to promote an 

invasive phenotype. Consistent with this finding, Trop2 is up-regulated in human prostate 

cancer (PCa) with extracapsular extension (stages pT3/pT4) as compared to organ-confined 

(stage pT2) PCa (14-16). Intramembrane proteolysis of Trop2 occurs by the TNFα 
converting enzyme (TACE) then by γ-secretase. Two cleavage products are generated: the 

extracellular (ECD) and the intracellular domain (ICD). The Trop2 ICD accumulates in the 

nucleus, co-localizing with β-catenin to promote prostatic intraepithelial neoplasia (PIN) and 

self-renewal (17). The molecular mechanisms governing the expression and activation of 

Trop2 are poorly understood. The current studies were undertaken to investigate the 

mechanisms governing Trop2 activity in prostate cancer and given the importance of Src 

kinase, to determine the potential role for Src in Trop2 activity.

MATERIALS AND METHODS

Cell culture, DNA transfection, and luciferase assays

LNCaP cell line was obtained from ATCC, the v-Src PEC and the NeuT-PEC cell lines were 

previously described (18). Original cells were expanded and stored in the liquid nitrogen at 

early passage. During the experiments, the morphology of all cell lines was checked under 

phase contrast microscope routinely. For LNCaP cell line, proliferation and AR abundance 

in response to DHT stimulation were tested by MTT assay and Western-blot. For v-Src-PEC 

and NeuT-PEC cell lines, the proliferation in response to Src kinase inhibitor or NeuT 

inhibitor was tested. V-Src or NeuT expression in these cells was checked by Western-blot 

for verification. All of the newly revived cells were treated with BM-cyclins (Roche) and the 

mycoplasma contamination was determined with Hoechst 33258 staining under high 

magnification fluorescent microscope routinely. DNA transfection and luciferase assays 

were performed as previously described (1,18). The CBF-Luc and -3,400 cyclin D1-Luc 

reporter plasmids were previously described (19,20). The Src kinase inhibitor PP1 (4-

amino-5-(4-methylphenyl)-7-(t-butel)pyrazolo-d-3-4-pyrimidine (Calbio Chem) and 

Dasatinib (BMS-354825, Selleckchem), the CDK inhibitor Abemaciclib (MedChem 

Express), Palbociclib (Sigma-Aldrich), Ribociclib (Selleckchem) and the EGFR inhibitor 

Canertinib (Selleckchem) were used at the indicated doses.
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Mice, Western-blotting and immunohistochemical staining

Experimental procedures with mice were approved by the ethics committee of Thomas 

Jefferson University. Mouse ventral prostates were fixed in 4% paraformaldehyde, then used 

for sectioning and hematoxylin and eosin (H&E) staining. Antibodies used for Western blot 

analysis and immunohistochemical staining in this study were as follows: anti-cyclin D1, 

anti-Vinculun, anti-PS1, anti-PS2, anti-TACE (Santa Cruz), and anti-Numb (Cell Signaling), 

anti-Notch 1 (Millipore 07-1232), anti-p-Src (Upstate 07-020, Tyr 416), anti-Src (Oncogene 

OP07), anti-Trop2- ICD antibody was from Professor Owen Witte (University of California, 

Los Angeles).

FACS analysis of stem cells

FACS analysis for prostate cancer stem cells was based on prior publications (1,19,21-23). 

Before labeling, the cells were blocked with normal mouse IgG in 1:100 dilution for 30 min 

and then incubated with fluorescein isothiocyanate (FITC) or phycoerythrin (PE)-labeled rat 

anti mouse Sca-1 (clone E13-161.7, Phamingen) (1/100-1/200), PE-labeled rat anti-

mouseCD133 (1:10) (clone MB9-3G8, Miltenyl Biotec), PE/Cy5-labeled rat anti-human/

mouse CD44 (1:200) (clone IM7, BioLegend, San Diego), PE/Cy5-labeled rat anti-human/

mouse CD49f (1/10) and/or FITC-lebeled goat anti mouse Trop2 (FAB1122F, R&D) for 1 h. 

All experiments were conducted at 4°C. Cell sorting was performed on a FACS Calibur cell 

sorter (BD Biosciences). The data were analyzed with FlowJo software (Tree Star, Inc., 

Ashland, OR).

Prostatosphere formation assay

V-Src-PEC cells were plated at a density of 10000 cell/ml in ultra-low attachment Corning 

cell culture plate and grown in DMEM/F12 with B27, 20 ng ml−1 EGF, 2 ng ml−1 FGF and 

4 μg ml−1 heparin. Prostatosphere were collected by gentle centrifugation (800 rpm) after 7–

10 days and counted under the microscope using 96-well plate (24).

siRNA transfection and shRNA infection

The transfection of siRNA to cyclin D1 and control siRNA into the v-Src cell line, and the 

infection of cyclin D1 shRNA into LNCaP cells, were performed as previously described 

(1). pTRIPZ tet inducible shRNA Vector which use TurboRFP as shRNA expression reporter 

was from Qiagen, Biotechnology.

Immunofluorescence

Cells were grown in four-well chambers, and slides were fixed with 4% paraformaldehyde in 

PBS for 20 min at room temperature. The slides were rinsed with PBS and permeated with 

0.05% NP-40 in PBS. The primary antibodies were rabbit polyclonal Anti-Trop2-ICD 

(1/200) and mouse anti-β-catenin (Mouse, Santa Cruz SC-7963, 1/100). The secondary 

antibodies used were rhodamine red X–conjugated goat anti-rabbit IgG (Jackson 

ImmunoResearch Laboratories; 1/100) and Alexa Fluor 633–conjugated F (ab’) 2 fragment 

of goat anti-mouse immunoglobulin G (IgG; Molecular Probes, Eugene, OR; 1/250). 

Fluorescence imaging was acquired with a 40x objective of a Zeiss LSM510/META laser 

confocal microscope. ImageJ was used to quantify fluorescence intensity of whole cell and 
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nucleus. 30 cells were measured for each sample and the results were shown as Relative 

Intensity per μm2.

Microarray analysis and comparison with cancer stem cell dataset

Transcript expression profiling was previously performed on the v-Src PEC cell lines along 

with parental PEC using Affymetrix MoGene 1.0ST microarrays and the microarray data 

were deposited to CEO (GSE 37428) (18). Genes differentially expressed in the v-Src PEC 

relative to parental PEC were compared with transcript profiles of CD133+ prostate cancer 

stem cells from a previously published study (25). The detail analysis was described in 

supplemental methods.

Enrichment analysis of gene ontology biological process terms

The Database for Annotation, Visualization and Integrated Discovery (DAVID) (27) 

functional annotation tool was used to analyze the genes identified in common between 

CD133+ and v-Src PEC differentially expressed gene lists for enriched Gene Ontology 

biological process (GOBP) terms (28). GOBP terms were reported at a 10% FDR cutoff and 

ranked based on gene count for visualization in a bar chart.

Trop2, cyclin D1 and Numb correlation with recurrence of prostate cancer

The TMA was constructed at Thomas Jefferson University Hospital. All patients had 

undergone radical prostatectomies. Ethical approval was obtained from the Thomas 

Jefferson University Institutional Ethical Review Board. The detail description was in 

supplemental methods.

IHC stain was conducted using the cyclin D1 antibody (Thermo Fisher Scientific, RB-010-P, 

1:2000), rabbit Trop-2 ICD antibody (Gift from Dr. Owen Witte, dilution 1:400), Numb 

antibody (Abcam, ab14140, 1:250), Presenilin 2 antibody (Santa Cruz, sc-1456, 1:150) by a 

DAKO Autostainer Plus equipment with an enzyme labelled biotin-streptavidin system. The 

slides were scanned on a BLISS system (Bacus Laboratory, North Lombard, IL, USA) and 

quantified based on the staining intensity and the proportion of cells stained. All 

comparisons of staining intensities were made at 200X magnification.

Kaplan Meier analysis was used to evaluate the difference in recurrence-free survival 

associated with high expression versus low expression of Trop2 ICD, cyclin D1 and Numb 

proteins respectively in the 126 samples which had both a clinical record and IHC staining. 

The Cox-regression fitting proportional hazards models to censored survival data was used 

to evaluate the association of all three markers to the risk of recurrence. Stratification was 

performed recursively. Based on the risk score, patients were assigned to high, medium, low 

risk groups, the difference in recurrence-free survival was evaluated among the three groups.

Statistical analysis

Comparisons between groups were analyzed by the two-sided t-test. A difference of P < 0.05 

was considered to be statistically significant. All analyses were done with SPSS 11.5 

software. Data are expressed as mean ± SEM.
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RESULTS

Src kinase maintains prostate epithelial cell growth and nuclear tumor-associated calcium 
signal transducer 2 [TACSTD2/TROP2/MISI] Trop2 ICD translocation

In order to determine the functional significance of Src kinase activity in the maintenance of 

cellular proliferation, v-Src PEC stable prostate cancer cell lines were analyzed. The 

addition of the Src inhibitor PP1 reduced cellular proliferation by 20% to 50%, in a dose-

dependent manner (Fig. 1A). The Src inhibitor Dasatinib similarly reduced cellular 

proliferation by 10% (P<0.05) to 40% (P<0.001) in a dose dependent manner (Fig. 1B). 

Phospho-Src was down regulated upon treatment with Dasatinib and PP1 (Fig. 1C). Cyclin 

D1 promotes DNA synthesis of the murine prostate and human prostate cancer cell lines (1). 

The relative abundance of cyclin D1 was reduced 40% by 25-100 nM Dasatinib (Fig. 1C) 

associated with a reduction in cellular proliferation. PP1 reduced cyclin D1 abundance by 

50% (Fig. 1C). In recent studies Trop2, which is known to be expressed in a subpopulation 

of prostate basal cells with stem cell characteristics, was shown to correlate with poor 

prognosis in prostate cancer (11,16,29). Trop2 is activated by RIP (regulated intra-

membrane proteolysis), a mechanism involved in processing and activation of other 

transmembrane proteins, including N-cadherin and E-cadherin (30). The nuclear 

intracellular domain (ICD) of Trop2 is found in human prostate cancer, but not in the 

adjacent benign tissue (17). In order to determine whether Src kinase activity regulates the 

relative abundance of Trop2 ICD, Western blot analysis was conducted with an ICD-specific 

antibody. The relative abundance of Trop2 ICD was reduced 50% in the presence of the Src 

kinase inhibitors, Dasatinib and PP1 (Fig. 1C). In order to examine the kinetics with which 

Src kinase inhibition by Dasatinib reducd the abundance of the Trop2 ICD, a time course 

was conducted. Cyclin D1 levels were reduced >50% by 24 hrs, and >90% by 48 hrs. The 

reduction in Trop2 ICD abundance was reduced 50% at 48 hrs (Supplemental Fig. 1).

v-Src induces gene expression of prostate cancer stem cell epitopes

In order to examine the molecular signaling pathways activated upon v-Src transformation of 

prostate epithelial cells, gene expression profiling was conducted to compare v-Src 

transformed PEC and parental PEC. Experiments were conducted on 3 separate PEC-Src 

lines (Fig. 2A). In previous studies CD133+ cells were considered enriched for prostate 

cancer stem cells (31,32). A correlative analysis was conducted examining the genes that 

were differentially expressed between the CD133+ vs. CD133- prostate cancer cells (25). We 

therefore compared the genes enriched by v-Src in PEC with the genes expressed in CD133+ 

prostate cells. The relative abundance of genes in the CD133+ prostate cancer stem cell 

signature is shown in Figure 2A (left hand panel). The genes differentially expressed within 

v-Src prostate cancer cell lines, relative to non-transformed parental prostate epithelial cells, 

are shown as the differentially expressed genes to the right (18). A substantial overlap was 

seen between the genes enriched in CD133+ prostate cells when compared with genes 

regulated by v-Src. Genes induced within CD133+ cells were also induced by v-Src, and 

genes repressed by CD133+ were repressed by v-Src (Fig. 2A). The P-value for the degree 

of similarity of the CD133+ stem cell signature with v-Src regulated genes was significant 

(P=2.148x10-10) (Fig. 2A).
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77 genes regulated by v-Src (77/466, ~17%) were regulated by CD133+ in a common 

manner (P=5.52×10-14) (Fig. 2B). These studies suggest an enrichment of Src regulated 

genes amongst the CD133 enriched genes. Go Terms were used to identify gene pathways 

regulated upon v-Src transformation of PEC. Additional pathways enriched upon v-Src 

transformation of PEC, included “cell cycle, DNA damage repair, DNA metabolic process 

and chromosomal organization” (Fig. 2C). In order to determine whether CD133+ cells were 

enriched for Src kinase activity, the oncogene transformed PEC were FACS sorted for 

CD133 and then characterized for Src activity using the antibody directed to activated Src 

(Srcp Tyr 416) (Fig. 2D). CD133+ cells were enriched 3-fold for Srcp Tyr 416 compared 

with CD133- cells (Fig. 2E).

v-Src transformation induces epitope markers of prostate cancer stem cells

Prostatosphere formation assays, a surrogate measure of prostate cancer stem cells, were 

performed on the v-Src PEC cell. Approximately 3.6 out of 1,000 cells formed 

prostatospheres in v-Src PEC, while in parental PEC cells only 1 out of 1000 formed (Fig. 

3A). The v-Src-PEC line derived prostatospheres were consistently larger than the non-

transformed, and only the v-Src-PEC lines gave rise to secondary prostatospheres (Fig. 3A). 

Treatment with the Src kinase inhibitors Dasatinib or PP1 reduced the number (Fig. 3B) but 

not the size of the prostatospheres.

In view of the finding that v-Src transformation induced expression of genes associated with 

CD133+, a prostate stem cell marker, we examine further the association of v-Src 

transformation with the expression of prostatic cancer stem cell epitopes. Fluorescence 

activated cell sorting (FACS) was conducted for the relative proportion of other epitope 

markers of prostate cancer stem cells. v-Src transformation of prostate epithelium was 

associated with an approximately 8-fold increase of Sca1high cells (Fig. 3B). Similarly, the 

proportion of CD44+/ CD133+ cells was increased 6-fold (Fig. 3C). The proportion of 

CD49f+ Sca1+ Trop2+ cells was increased 2.4-fold in v-Src transformed PEC cells compared 

to parental PEC (Fig. 3D).

Src kinase activity induces nuclear Trop2 ICD abundance in cultured prostate cancer cells 
and in vivo

Although the total Trop2 ICD abundance was reduced by Src kinase inhibitor, the nuclear 

pool of Trop2-ICD is considered to be the biologically active moiety, therefore we next 

sought to determine whether Src kinase governs the abundance of nuclear Trop2 ICD. 

Comparison was made between parental and v-Src transformed PEC by immunostaining for 

Trop2-ICD (red), β-catenin (green) and nucleus (DAPI, blue) (Fig. 4A). The relative 

abundance of nuclear Trop2 ICD was enhanced 4-fold upon v-Src transformation (Fig. 4A). 

The addition of the Src inhibitor, either 100 nM Dasatinib or 10 µM PP1, reduced nuclear 

Trop2 ICD abundance by ~40% (Fig. 4D). In contrast β-catenin immunostaining was not 

significantly reduced by Dasatinib.

The v-Src PEC lines were derived from FVB murine prostate epithelium and can therefore 

be reintroduced into immune competent FVB mice (18). In view of the importance of the 

immune system in the onset and progression of prostate cancer, we examined the abundance 
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of the Trop2 ICD in v-Src tumors implanted into immune competent mice in vivo. The 

presence of nuclear Trop2 ICD was demonstrated in the v-Src prostate tumors in vivo (Fig. 

4E). The relative staining of the Trop2 ICD in the v-Src prostate tumors was increased 2-fold 

compared to the non-transformed murine prostate gland (Fig. 4F). The induction of Trop2 

abundance assessed by Western blot was increased ~10-fold in a series of v-Src tumors 

derived after implantation in FVB mice (Fig. 4G). RNA extracted from v-Src tumor and 

normal ventral prostate tissues was assessed by microarray analysis. The relative mRNA 

abundance of Trop2 was induced 3.5-fold. We examined the abundance of several other 

genes associated with the prostate cancer stem cell signature (33). Notch1 was induced 3.5-

fold. CD44 mRNA was induced more than 5-fold (Fig. 4H), CD44 is a cell adhesion 

glycoprotein that participates in presentation of cytokines and associates with stem cell 

functions (34). The abundance of Wnt7A was induced 50% (Fig. 4H), consistent with recent 

studies suggesting heterotypic signaling from the interstitium maintains prostate cancer 

progression (35).

Cyclin D1 is required for Trop2 ICD nuclear accumulation

Previous studies in human breast cancer cells demonstrated that cyclin D1 enhances Notch1 

activity through inducing γ-secretase activity (19). The γ-secretase cleavage complex 

components presenilin1 (PS1) and presenilin2 (PS2) contribute to the γ-secretase activity 

governing Trop2 cleavage (17). We therefore examined the potential importance of cyclin 

D1 in the induction of the Trop2 ICD. In order to determine the mechanism by which Src 

induces cyclin D1 abundance, we first examined the relative abundance of cyclin D1 in v-

Src vs. parental PEC. Cyclin D1 mRNA was induced 2-fold by v-Src transformation (18). 

The -3,400 bp cyclin D1 promoter fragment linked to a luciferase reporter gene was induced 

2-fold by v-Src (Fig. 5A) and reduced 80% by Dasatinib in v-Src PEC (Fig. 5B). 

Immunohistochemical staining for Trop2 ICD was conducted in cyclin D1+/+ and cyclin 
D1-/- mouse prostate. We observed a 4-fold decrease of nuclear Trop2 ICD in cyclin D1 

knockout prostates when compare to normal wild type prostate (Fig. 5C). In order to 

determine whether cyclin D1-mediated induction of Trop2 ICD nuclear abundance is 

regulated in transformed prostate cancer cells, a cyclin D1 shRNA linked to a tet-inducible 

red fluorescent protein, (RFP) was introduced into the LNCaP prostate cancer epithelial cell 

line (Fig. 5D). The addition of doxocycline induced the expression system and thereby RFP 

(Fig. 5D). Western blot demonstrated cyclin D1 shRNA reduced the relative abundance of 

cyclin D1 by >50%, associated with a reduction in Trop2 ICD by ~ 50% (Fig. 5E). Vinculin, 

used as a control for normalization of protein abundance was unchanged (Fig. 5E). 

Immunofluoresence staining for nuclear Trop2 in LNCaP cells treated with cyclin D1 

shRNA demonstrated the reduction in nuclear Trop2 ICD upon induction of cyclin D1 

shRNA (Fig. 5F, G). CBF-1 (C-promoter binding factor-1), the mammalian homologue of 

Suppressor of Hairless (Drosophila) and CSL protein in C. elegans, also known as RBP-JK, 

is activated by the Trop2 ICD. As our studies showed v-Src enhanced Trop2 cleavage, we 

determined whether CBF activity was maintained by v-Src kinase activity in prostate cancer 

cells. CBF activity was assessed using a synthetic CBF luc reporter in v-Src PEC line. The 

Src kinase inhibitors Dasatinib and PP1 reduced CBF activity in a dose-dependent manner 

(Fig. 5H). Cyclin D1 siRNA reduced CBF (CBF8luc) activity ~ 2-fold in v-Src PEC line 

(Fig. 5I).
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Cyclin D1 induces expression of the Trop2 cleavage complex

Intramembrane proteolysis of Trop2 occurs via a γ-secretase cleavage complex (which 

includes PS1 and PS2) and TACE (ADAM17). In order to determine the mechanism by 

which cyclin D1 enhances Trop2 ICD accumulation, we considered that cyclin D1 may 

increase the abundance of the Trop2 cleavage complex. Immunohistochemical staining of 

cyclin D1+/+ and cyclin D1-/- mouse prostate glands was conducted to examine the 

abundance of the components regulating Trop2 ICD abundance. TACE and PS2 are the key 

inducers of Trop2 cleavage (17). Therefore we examined TACE and PS2 in cyclin D1+/+ and 

cyclin D1-/- prostate (Fig. 6A). The deletion of the cyclin D1 gene reduced TACE and PS2 

abundance in the prostate by 50% (Fig. 6B, C). Previous studies had demonstrated that 

cyclin D1 represses Numb to thereby induce Notch1 activity in breast cancer cells (19). As 

Notch can also activate CBF, we considered the possibility that endogenous cyclin D1 may 

induce CBF through repression of Numb in prostate epithelium. Consistent with prior 

findings in the mammary gland, we found cyclin D1 gene deletion enhanced Numb 

abundance in the prostate in vivo (Fig. 6D). In order to determine whether the mRNA levels 

of the Trop2 cleavage complex were induced by cyclin D1, mRNA levels of the Trop2 

proteolytic cleavage components were assessed in prostate tissues of cyclin D1+/+ and cyclin 
D1-/- mice by RT-PCR (Fig. 6E). Cyclin D1 reduced Numb and increased PS2 and TACE 

(Fig. 6E). In order to determine whether cyclin D1 maintains expression of the Trop2 

cleavage complex in transformed prostate cells, Western Blot was conducted on cyclin D1 

transduced v-Src PEC. Commensurate with the ~50% reduction in cyclin D1 abundance, 

Trop2 ICD abundance was reduced ~50%, PS2 was reduced ~50%, associated with the 

reduction of TACE (ADAM17) (Fig. 6F).

Cyclin D1 is known to convey kinase-dependent and kinase-independent functions. In order 

to determine whether the induction of Trop2 by cyclin D1 was kinase dependent we 

examined the effect of inhibiting cyclin D1/cdk activity using the cdk inhibitors 

Abemaciclib, Palbociclib and Ribociclib. The cdk inhibitors reduced pRbp at 24 hrs, and 

reduced Trop2 ICD abundance at 48 and 72 hrs. At 48 hrs the reduction in Trop2 ICD was 

10% with Abemociclib (x mM), whereas Palbociclib (>60%) and Riboclclib (>60%) was 

more substantial.

In order to examine further the specificity of the effect mediated by oncogenic Src we 

examined the possibility that growth factor signaling via the EGFR may induce Trop2 ICD. 

We therefore tested the EGFR antagonist Canertinib. Canertinib is a 3-chloro 4-fluoro 4-

anilinoquinazoline compound. It is a low-molecular-weight irreversible pan-EGFR family 

TKI and has been shown to inhibit cell proliferation via restraint of ERK/MAPK in a 

number of different cell types. Canertinib treatment of the PEC-Src inhibited cell 

proliferation (Supplemental Fig. 2A). Canertinib treatment of the PEC-Src did not affect 

levels of Trop2 ICD, and did not affect cyclin D1 levels. These findings suggest that 

dissociable pathways conduct selective signaling to Trop2-ICD abundance. Together these 

studies demonstrate that v-Src induces cyclin D1, and that cyclin D1 induces expression of 

components of the Trop2 cleavage complex, directly through increasing PS2 and TACE, and 

indirectly through reducing Numb, thereby enhancing the abundance of the Trop2 ICD, and 

CBF activity in prostate cancer cells (Supplemental Fig. 3).
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Cyclin D1, Trop2 ICD and Numb predict outcome of prostate cancer patients

In order to determine whether the abundance of cyclin D1, Trop2 ICD, PS2 and Numb 

correlate with outcome in human prostate cancer, an annotated Tissue Microarray (TMA) of 

patients with prostate cancer was analyzed. IHC staining was conducted of a 126 prostate 

cancer patient TMA. The expression of cyclin D1, Trop2 ICD, PS2 and Numb was 

quantified (Supplemental Fig. 4). Kaplan Meier analysis was used to evaluate the difference 

in recurrence-free survival associated with high expression versus low expression of cyclin 

D1, Trop2 ICD, PS2 and Numb. Survival probability of cyclin D1 high expression group 

was ~60%, while low expression group is more than 90%. The difference was significant 

(P= 0.049) (Fig. 7A). The survival probability of Trop2 ICD high expression group was 

~25%, which was significantly increased to 73% in the low expression group (P=0.008) 

(Fig. 7B). The change in survival probability between PS2 groups was not significant (Fig. 

7C). In the low Numb expression group the survival probability was reduced to 0% 

compared to 72% for the high expression group (P<0.001) (Fig. 7D). These three target 

genes were combined and recurrence-free survival analysis was conducted. Using the Cox 

model based on the risk score determined by recursive partitioning with the predictors, 

cyclin D1, Numb and Trop2, patients were assigned to high, medium, low recurrence risk 

groups, and the recurrence free survival curves of different groups and hazard ratios between 

the groups were analyzed. Compared to the low risk group, the hazard ratio for survival was 

increase 3- fold in the medium risk group and 4.3- fold in the high risk group (P<0.001) 

(Fig. 7E).

DISCUSSION

Src kinase is increased in ~80% of human prostate cancers (8). The current studies provide 

several lines of evidence that v-Src transformation of prostate epithelial cells enriches for 

prostate cancer stem cell. Firstly, v-Src transformation induced expression of genes 

identified in prostate cancer stem cells. Genes associated with the prostate cancer stem cell 

signature (33). included Notch1 which was induced 3.5-fold. CD44 mRNA, which encodes a 

cell adhesion glycoprotein that participates in presentation of cytokines and associates with 

stem cell functions (34), was induced more than 5-fold (Fig. 4H). The abundance of Wnt7A 

was induced 50% consistent with recent studies suggesting heterotypic signaling from the 

interstitium maintains prostate cancer progression (35). CD133+ cells are enriched for 

cancer stem cells repopulating from prostate cancer (36). Together with α2β1 integrin, 

CD133 is used to enrich for stem cells that have increased proliferation potential and 

undergo full prostatic differentiation in vivo (37-39). Approximately 17% of genes enriched 

in the CD133 population were also induced by oncogenic Src transformation. Secondly, v-

Src induced the abundance of the epitopes characteristic of prostate cancer stem cells. 

Thirdly, v-Src induced prostatosphere formation and, Src kinase inhibitors reduced the 

number of prostatospheres. Fourthly, the abundance of the Trop2 ICD which is known to 

promote stem cell expansion (17,19), was enhanced by Src kinase activity.

In the current studies, cyclin D1 was required for v-Src induced Trop2 ICD accumulation. 

The TNFα converting enzyme (TACE), and γ-secretase, both participate in Trop2 ICD 

accumulation. TACE mediates the initial proteolysis and ectodomain shedding, followed by 
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intramembrane proteolysis carried out by the γ-secretase complex. Herein, endogenous 

cyclin D1 was shown to enhance expression of the Trop2 cleavage complex by increasing 

the abundance of TACE (ADAM17) and PS2. TACE is a member of the ADAM family of 

proteases. Our prior studies demonstrated that endogenous cyclin D1 maintains ADAM 

protease expression in the mammary gland (40). In the current studies, cyclin D1 induced 

the abundance of TACE in the normal prostate gland. In prostate epithelial cells in culture 

and in transformed prostate cancer cells, cyclin D1 also induced expression of PS2, the 

catalytic subunit of the γ-secretase complex that conducts the sequential intramembrane 

proteolysis of Trop2 (40). Thus, consistent with the finding in the mammary gland in vivo, 

in which cyclin D1 induced the ADAM proteases, the current studies demonstrate cyclin D1 

induces expression of ADAM17 proteases (TACE) in the prostate in vivo.

In the current studies endogenous cyclin D1 augmented CBF activity in a Src-kinase-

dependent manner. Trop2 and Notch augment activity of the transcription factor CBF-1 

(suppressor of hairless, LAG1, also known as RBP-RJ) (41) and LEF-1. Notch activity is 

restrained by endogenous Numb. In the current studies endogenous cyclin D1 repressed 

Numb in PCa cells. These findings are consistent with prior studies in breast cancer 

epithelial cells in which cyclin D1 augmented ErbB2-induced Notch1 activity, through 

repression of Numb (19). These prior studies demonstrated the induction of Notch signaling 

by cyclin D1 (19). Using cyclin D1 knockout mice, it was demonstrated that γ-secretase 

cleavage of Notch1 was enhanced by endogenous cyclin D1 (19). In a reciprocal feedback, 

Notch is known to induce cyclin D1 expression and cyclin D1 is required for Notch induced 

transformation (42), consistent with findings that Notch1 and cyclin D1 expression correlate 

during embryogenesis (42).

The current studies demonstrated that a reduction in Numb, an increase in Trop2 ICD and an 

increase in cyclin D1 abundance, each predict poor outcome in patients with prostate cancer. 

When combined, these three genes assigned to high, medium, or low recurrence risk groups, 

gave a high risk group with a hazards ratio 4.35 times greater than the low risk group. 

Although cyclin D1 protein is overexpressed in a subset of prostate cancers, correlating with 

poor outcome, it is the cyclin D1-mediated gene expression signature that provides 

additional prognostic value to the Gleason Score (1,43). The current studies are consistent 

with a model in which the molecular targets of cyclin D1-mediated signaling in the prostate 

are important predictors of poor outcome in prostate cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Src kinase activity promotes v-Src prostate cancer cell line proliferation
(A) Cellular proliferation assays were conducted by cell counting in the presence of either 

control or Src inhibitor (PP1), or (B) the Src inhibitor Dasatinib with doses as indicated. (C) 

Western blot analysis of v-Src prostate cancer cell lines treated with the Src inhibitors 

Dasatinib or PP1. The antibodies were directed to the proteins as indicated.
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Figure 2. Microarray analysis of v-Src PEC cells compared to the gene expression profile 
enriched in CD133+ prostate cancer cells
(A vs. B) Heatmaps show the intersection of differentially expressed genes from paired 

CD133+ vs CD133- sample data (25) (left) and genes that are differentially expressed in the 

v-Src oncogene cell line (right). A Venn diagram represents the degree of overlap among 

differentially expressed genes in CD133+ cells and v-Src, 767 genes specific to v-Src cell 

lines, and 466 genes specific to the CD133+ cells, with a 77-gene overlap. (C) Gene 

Ontology biological process was analyzed for the overlapping 77 genes, the induced 

functional pathways were shown with the fold enrichment and the number of gene for each 

GO term. (D) FACS analysis on NeuT-transformed PEC cells showed that there were less 

CD133+ cells with lower Src activity than CD133- cells.
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Figure 3. v-Src transformation induces epitope markers of prostate cancer stem cells
(A) 1st and 2nd generation of prostatosphere formation assay was performed on the v-Src 

transformed PEC cells. (B) The effects of Src-inhibitor Dasatinib and PP1 on prostatosphere 

formation of v-Src transformed PEC cells. The relative abundance of prostate cancer stem 

cell markers were assessed by FACS analysis, including (C) Sca1high cells increased 8-fold 

in v-Src PEC cells, (D) CD44+ CD133+ cells increased 6-fold and (E) CD49+ Sca1+ Trop2+ 

cells increased 2.4-fold compared to parental PEC.
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Figure 4. v-Src transformation enhances nuclear Trop2 ICD expression in vitro and in vivo
(A) Immunofluorescence staining for Trop2 ICD of v-Src transformed cells vs. parental PEC 

cells, and (B) the intensity of nuclear Trop2 ICD was quantified. (C) The treatment of v-Src 

PEC lines with the Src inhibitors PP1 and Dasatinib shows the reduction in nuclear Trop2 

staining upon treatment with Src kinase inhibitor, the relative intensity of Trop2 ICD (D). 

(E) The presence of nuclear Trop2 ICD was shown in the normal ventral prostate and v-Src 

prostate tumors. (F) The relative staining of the Trop2 ICD in the v-Src prostate tumors was 

increased 2-fold compared to non-transformed murine prostate gland. (G) The induction of 

Trop2 abundance assessed by Western blot in a series of v-Src PEC induced tumors. (H) The 

relative mRNA abundance of Trop2 and several other genes associated with the cancer stem 

cell in v-Src tumors and normal murine prostate.
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Figure 5. Cyclin D1 is required for v-Src induced Trop2 ICD
(A) -3,400bp cyclin D1-Luc activity was induced ~2-fold by v-Src in 293T cells, and (B) 

reduced 80% by Dasatinib in v-Src PEC cells. (C) The nuclear abundance of the Trop2 ICD 

is reduced in the cyclin D1-/- prostate epithelium compared to cyclin D1+/+. (D) Cyclin D1 

shRNA induced by doxycycline in LNCaP cell with (E) Western blot analysis demonstrating 

the reduction in cyclin D1 abundance associated with a decrease in the Trop2 ICD. Vinculin 

is a protein loading control. (F-G) In cyclin D1 shRNA-treated LNCaP cells, the Trop2 ICD 

was reduced, shown by immunofluorescence staining (H) The Src Kinase inhibitors 

Dasatinib and PP1 reduced CBF activity in a dose-dependent manner in v-Src PEC. (I) CBF-

Luc activity activity is shown in cyclin D1 siRNA-treated v-Src PEC cells.
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Figure 6. Cyclin D1 induces expression of the Trop2 cleavage complex
(A) IHC staining of cyclin D1+/+ and cyclin D1-/- mouse prostate glands. (B) The deletion of 

cyclin D1 induced Numb abundance, reduced TACE (C) and PS2 (D) by ~50%. (E) RT-PCR 

demonstrating cyclin D1 reduced Numb and increased PS2 and TACE in vivo. (F) Western 

blot for v-Src cells transduced with cyclin D1 siRNA. The reduction in cyclin D1 abundance 

correlated with a reduction in Trop2 ICD. (G) The effects of the CDK inhibitor 

Abemaciclib, Palbociclib and Ribocilib on Trop2 ICD cleavage. CDK inhibitors decreased 

Trop2 ICD abundance after the 2nd day of CDK inhibitor treatment.
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Figure 7. Recurrence-free survival analysis
Kaplan Meier analysis was used to evaluate the difference in recurrence-free survival 

associated with high expression versus low expression of Trop2 , (A) cyclin D1, B) Numb 

C), PS2 and D) Trop2 ICD. E) Combined the three target genes, patients were assigned to 

high, medium, low recurrence risk groups, the recurrence free survival curves of different 

groups and hazard ratio between groups are shown.
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