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Saturation mutagenesis reveals manifold determinants
of exon definition

Shengdong Ke,1,3,4 Vincent Anquetil,1,3,5 Jorge Rojas Zamalloa,1,3,6 Alisha Maity,1,7

Anthony Yang,1,8 Mauricio A. Arias,1 Sergey Kalachikov,2 James J. Russo,2 Jingyue Ju,2

and Lawrence A. Chasin1
1Department of Biological Sciences, 2Department of Chemical Engineering, Columbia University, New York, New York 10027, USA

To illuminate the extent and roles of exonic sequences in the splicing of human RNA transcripts, we conducted saturation

mutagenesis of a 51-nt internal exon in a three-exonminigene. All possible single and tandem dinucleotide substitutions were

surveyed. Using high-throughput genetics, 5560 minigene molecules were assayed for splicing in human HEK293 cells. Up

to 70% of mutations produced substantial (greater than twofold) phenotypes of either increased or decreased splicing. Of

all predicted secondary structural elements, only a single 15-nt stem–loop showed a strong correlation with splicing, acting

negatively. The in vitro formation of exon-protein complexes between the mutant molecules and proteins associated with

spliceosome formation (U2AF35, U2AF65, U1A, and U1-70K) correlated with splicing efficiencies, suggesting exon defini-

tion as the step affected by most mutations. The measured relative binding affinities of dozens of human RNA binding pro-

tein domains as reported in the CISBP-RNA database were found to correlate either positively or negatively with splicing

efficiency, more than could fit on the 51-nt test exon simultaneously. The large number of these functional protein binding

correlations point to a dynamic and heterogeneous population of pre-mRNA molecules, each responding to a particular

collection of binding proteins.

[Supplemental material is available for this article.]

Pre-mRNA splicing occupies an elemental position in the central
dogma of molecular biology that defines the transfer of genetic in-
formation from gene to protein. In order to construct a mature
mRNA comprised of exons, the introns between them must be re-
moved. Intron removal is catalyzed by the spliceosome, a huge
complex of hundreds of proteins and 5 RNA molecules; much of
the detailed mechanism of this removal is now understood.
What is less understood is the substrate specificity of this enzymat-
ic reaction, the recognition of splice sites amid a higher number of
similar looking (pseudo) sites present in typically long pre-mRNA
transcripts. This understanding is lacking not only for the regulat-
ed process of alternative splicing but even for the constitutive
splicing that applies to the greatmajority of exons.Muchof the ad-
ditional sequence information required for this distinction lies in
the presence of short exonic and nearby intronic splicing regulato-
ry sequences (ESRs and ISRs). Global identification of candidates
for such sequences has been accomplished through statistical anal-
yses of genomic data using algorithms based on relative splice site
strengths (Fairbrother et al. 2002), preferential exonic location
(Zhang and Chasin 2004), or evolutionary conservation (Goren
et al. 2006). Lists of hundreds of predicted exonic splicing enhanc-
ers (ESEs) and silencers (ESSs) have been compiled and have been

validated by molecular genetic spot checking (e.g., Zhang et al.
2005a) or overall evolutionary behavior (e.g., Fairbrother et al.
2004; Ke et al. 2008). However, the union of just these three com-
pilations leads to a situation in which 75% of the nucleotides in a
typical constitutively spliced exon reside in an ESE or ESS sequence
(Chasin 2007). Despite the success of these and extended ap-
proaches that surveyed large numbers of additional features (e.g.,
Barash et al. 2010; Xiong et al. 2015), a reliable splicing code and
an understanding how the splicingmachinery achieves this recog-
nition is not yet in hand.

Empirical screening of random sequences has also been used
to identify ESRs and ISRs (Wang et al. 2004, 2012; Yu et al. 2008;
Culler et al. 2010). More recently, such experiments have been
coupled with deep sequencing to provide exhaustive surveys of
short k-mers (Ke et al. 2011; Findlay et al. 2014; Mueller et al.
2015; Rosenberg et al. 2015; Julien et al. 2016). In our previous
work, we determined the splicing phenotypes of all 4096 hexam-
ers by inserting such a library into five different positions in two
different exons (Ke et al. 2011). The resulting ESRseq scores,
both positive and negative, show a somewhat better association
with constitutive exons than the computationally derived analogs
and have proven to be good predictors of the phenotypes resulting
from human single nucleotide variation (Di Giacomo et al. 2013;
Soukarieh et al. 2016). This approach has now been extended to
mutagenesis of endogenous (Findlay et al. 2014) as well as exoge-
nous (Julien et al. 2016) exons and to surveys of long random se-
quences (Rosenberg et al. 2015). In the work described here, we
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have used deep sequencing to examine the splicing phenotypes
produced by saturating a model exon with single and double
base substitutions at every position. We reasoned that variations
on thewild type (WT) themewould provide insights into the prev-
alence and roles of the sequences that reside in a natural exon.

Results and discussion

Saturation mutagenesis strategy

We constructed a three-exon minigene (Ke et al. 2011) comprised
of a 51-nt central target exonWT1-5 (exon 5 of the humanWilms’
tumor gene 1) surrounded by terminal exons and intronic se-
quences derived from the Chinese hamster dhfr gene. Thousands
of DNA exons were synthesized to specification by primer-exten-
sion of a customDNAmicroarray. Minigene libraries that incorpo-
rated these oligomers into a central exon in a three-exonminigene
were then prepared (Fig. 1A). Key features of the minigene frame-
work were the provision of strong promoter (CMV) and poly-
adenylation (SV40) site and the removal of all start codons from
the first exon (Arias et al. 2015) to minimize the chance of non-
sense-mediated decay (NMD). The latter is already unlikely due
to the modest size of the central exon (Maquat 2004). The splicing
of this central exon in this framework requires exon definition, as
mutations that compromise splicing have never been seen to yield
intron-retained products (Zhang et al. 2005a,c). At each exonic po-
sition from 2 to 47, each dinucleotide in the WT1-5 exon was
changed to every other possible dinucleotide (Fig. 1B). Positions
1 and 49 to 51 were left unmodified so as not to consider muta-
tions affecting the splice site sequences themselves. The resulting
mutant library comprised 555 mutations: 414 double base substi-
tutions (DBSs) and 141 single base substitutions (SBSs) at each po-
sition from 2 to 47 and three SBSs mutations at position 48.
Including the wild type, there were a total of 556 distinct mole-
cules (Fig. 1B). Splicing of theWTexon takes placewith an efficien-

cy (percent spliced in, PSI; presented here as a proportion) of 0.065
(Ke et al. 2011); this low level is the result of deprivingWT1-5 of its
natural flanking intronic sequences (Zhang et al. 2005c). Themod-
est splicing efficiency of the WT minigene was purposely engi-
neered to allow detection of mutations that increase (up to 16-
fold) as well as decrease (to 0) splicing efficiency.

To pursue possible combinatorial effects of sequence chang-
es, we additionally designed nine variations of the WT1-5 exon,
substituting nine different hexamers for theWT stretch from posi-
tions 5 to 10, the effects of which we had previously documented
(Ke et al. 2011). The final mutant library was thus comprised of a
series of 10 “Hexmuts (HMs)” A to J, where HexmutA (HMA) is
the true WT. These hexamers were chosen to match known splic-
ing factor binding sites or to have other sequence characteristics as
described in Table 1. The PSI values of the 10 relativeWTHMs had
previously been measured and ranged from 0.01 to 0.75 (Ke et al.
2011). The complete library thus consisted of 556 × 10 = 5560mol-
ecules, including the 10 relative WT sequences.

The minigene library was constructed by incorporating these
oligomers into ∼3-kb PCR product molecules using methods we
have previously described (Ke et al. 2011). The minigene library
(the input) was transfected into human HEK293 cells, and after
24 h of expression, the successfully spliced RNA molecules were
isolated as size-selected RT-PCR products (the output). Both the in-
put and the output exons from duplicate transfections were then
sequenced on an Illumina platform (Fig. 1C). Output proportions
between the biological duplicates were highly reproducible (R2 >
0.99) (Supplemental Fig. S1), as were enrichment index (EI) values
(R2 > 0.97,). All 5550 mutant molecules were represented as input
reads, with amedian read number of 1611 for the two duplicate ex-
periments summed. All but two molecules were represented by at
least 50 reads, and 99% had more than 200 reads, allowing detec-
tion of phenotypes at 1% of WT levels. The ratio of the output
reads to the input reads for each sequence was termed the enrich-
ment index, which is proportional to the PSI (Ke et al. 2011). In

quantifying successfully spliced mole-
cules, we considered any that failed to in-
clude the full exon as being splicing-
deficient. In particular, splicing to cryp-
tic sites would be detected as missing
from the size-selected molecules and ac-
cordingly classified as failures to correctly
splice. However, the overwhelming ma-
jority of such failures were due to com-
plete exon skipping, as evidenced in gel
electrophoresis (Ke et al. 2011).

Mutant splicing phenotypes of the WT

exon HMA

We have summarized the splicing phe-
notypes of the mutant populations in
several ways to provide different perspec-
tives. Figure 2 shows results for HMA, the
truewild type. In Figure 2A, splicing is ex-
pressed as PSI, whichwas calculated from
the EI values (Ke et al. 2011) and is a lin-
ear metric of splicing. In this plot, muta-
tions with increased splicing are readily
seen, some reaching the maximum PSI
of 1, a 16-fold increase over the 0.065
PSI of WT HMA (gray dotted line in Fig.

Figure 1. Saturationmutagenesis scheme. (A) Minigene used for splicing studies. The central exon tar-
get was Wilms’ tumor gene 1 exon 5. All ATG triplets were removed from dhfr exon 1 to minimize the
chance of nonsense-mediated decay (NMD). A Kozak ATG sequence was added to dhfr exon 3 to allow
mRNA to associate with polysomes. (B) Mutagenesis scheme. At each exon position from 2 to 47, all pos-
sible DBSs and SBSs were represented. (C) The input libraries as PCR products and the output libraries as
amplified cDNA were deep-sequenced, and the ratio of the relative abundance of these output mutant
molecules to the corresponding input abundance was designated the enrichment index (EI).
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2A). Mutations that substantially increase splicing of this exon
were commonandwere clustered in several regions; 33%of allmu-
tations led to an increase in splicing of twofold or more. Decreases
in splicing are better visualized by plotting the log2 of the EI (LEI)
(Fig. 2B; see Table 2 for abbreviations).

Decreases were spread more widely across the exon and could
drop essentially to zero, i.e., <2−8 = 1/256 that of theWT.Decreases
greater than twofold, i.e., to EI values <0.5 ofWT, were common—
37%. Taken together, the frequency of mutations causing a two-
fold or greater splicing effect up or down was 70%, and single
base substitutions rivaled the effects of double base substitutions
in this regard: 65% vs. 72%. All positions but one (the edge posi-
tion 48 with only three mutations) yielded at least one fourfold
or greater difference (up or down) for at least one resident SBS or
DBS. There was no apparent bias based on proximity to the splice
sites (Supplemental Fig. S2). These numbers are reminiscent of the
proportion of bases in a typical exon that can be placed into se-
quences that influence splicing as predicted by three computation-
al algorithms (Chasin 2007) and argue against the idea that a large
proportion of predicted ESRs are masked or otherwise inactive.
These results contrast somewhat with the experiment of Mueller
et al. (2015), who found that 16% of SBSs (5/32) at translationally
silent positions in SMN1 exon 7 decreased splicing efficiency to
one-half or less. This difference could be ascribed to the more ro-
bust splicing efficiency of their WT exon (75% to100%), our use
of heterologous flanking exons, and/or their focus on the third po-
sition in codons (Mueller et al. 2015). Highmutational vulnerabil-

ities have also been seen in other recent high-throughput
mutagenesis experiments (Findlay et al. 2014; Julien et al. 2016).
The latter found that 26% of mutations in their test exon signifi-
cantly altered the wild-type inclusion level of 49%, and 26%
showed a twofold effect. For comparison, in the HMI exon, which
has a similar level of inclusion (53%), 32% of the mutations pro-
duced a twofold or greater effect, in good agreement with the re-
sults of Julien et al. (2016). To give equal visual weight to
increases and decreases, we devised a “proportion of the ultimate
phenotype” (PUP) metric. Here, the highest increase in splicing
(as EI, corresponding to a PSI of ∼1) relative to the WT was set to
+1 and the lowest value (∼0) relative to the WT was set to −1.
The WT is set to zero by this definition. As can be seen in Figure
2C, this sort of plot presents a more balanced map of positive
and negative regions. In Figure 2D, each mutant molecule is pre-
sent as a column, giving a less cluttered landscape. Here, splicing
is presented as the LEIsc (log2 of the EI, scaled), in which the LEI
has been normalized so that the wild-type value is zero and the
ranges from 0 to +1 and from 0 to −1 capture 97.5% of the positive
and negative data, respectively, to avoid domination by outliers.
All changes at a given position are represented by a set of 12 col-
umns (overlaps allow all 16 dinucleotide combinations to be pro-
duced by 12 changes per starting position) (see Methods). In
Figure 2D, the SBSs are colored red; it can be seen that their distri-
bution and magnitude are similar to that of the DBSs, even if, on
average, they are somewhat less effective (SBSs average absolute
LEIsc scores = 88% that of DBSs). Consideration of sequences

Table 1. Hexameric substitutions at exon positions 5 to 10 in nine HMs B to J

HM HM sequence (in bold) Comments PSIa EIb 2Xc

A AGAGTTGCTGCTGGGAGC Wild-type Wilms’ tumor gene 1 exon 5 0.07 0.19 0.70
B AGAGTTGAAGAAGGGAGC Similar to an SRSF1 (ASF/SF2) binding site 0.20 0.80 0.52
C AGAGTTGACGACGGGAGC Similar to an SRSF7 (9G8) binding site 0.65 3.63 0.23
D AGAGTTAGGGATGGGAGC With upstream T, an hnRNPA1 binding site 0.001 0.002 0.62
E AGAGTTATATATGGGAGC Similar to an hnRNP D binding site 0.03 0.07 0.63
F AGAGTTCTTCTCGGGAGC Similar to an hnRNP I (PTB) binding site 0.43 2.20 0.38
G AGAGTTCACACAGGGAGC Similar to an hnRNP L binding site 0.04 0.12 0.61
H AGAGTTCGCGCCGGGAGC CG-containing RNA-seq enhancer sequenced 0.74 3.75 0.28
I AGAGTTACCACCGGGAGC AC-rich RNA-seq enhancer sequenced 0.53 2.53 0.32
J AGAGTTTCTTTTGGGAGC A pyrimidine sequence avoiding PPT pairing 0.05 0.16 0.65

(PPT) Polypyrimidine tract.
aMeasured previously by transient transfection (Ke et al. 2011).
bEI as measured here by deep sequencing. PSI and EI values are correlated with an R2 of 0.99.
cProportion of mutations producing a greater than twofold effect (up or down) on splicing or reaching a PSI of 0.9.
dFrom Ke et al. 2011.

Table 2. Abbreviations for quantifying splicing phenotypes for different purposes

Abbreviation Full name Comment

EI Enrichment index Output reads/Input reads; proportional to PSI
LEI Log2 of EI Allows easily detected low EIs to be more sensitively differentiated
LEIsc LEI scaled A scaled LEI (−1 to +1, WT = 0, 95% capture) that allows the effect of mutation on all HMs to be

compared on an equal basis
LEIdm Difference from the mean

LEI at a given position
Focuses on the effect of the mutations at a given position in a given HM

eLEI Effective LEI LEIdm scaled to have a median of zero and limits from −1 to +1, pooling all HMs

Other

HM Hexmut A mutant set with a designed 6-mer substitution from position 5 to 10
z-score CISBP-RNA affinity score For each RBP, a measure of the relative binding affinity for each of ∼all 7-mers (Ray et al. 2013)
PPD Proportion pulled down Fraction of output reads from an IP that represents a particular mutant

Saturation mutagenesis for pre-mRNA splicing
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that overlap amutation help explain this poten-
cy: For example, a SBS at position 39 virtually
abolishes exon inclusion; this change disrupts
several predicted ESEs and creates several pre-
dicted ESSs (Supplemental Table S1). If we can
generalize from this model exon, ESRs are both
numerous and fragile and so should represent
a large target for mutation. This conclusion is
in agreement with the increasing awareness of
the role of ESR mutations in human disease
(Sterne-Weiler et al. 2011; Xiong et al. 2015).

Although we have described these data as
splicing phenotypes, we had to consider that
many of these altered steady state mRNA levels
were due to other causes. The design of these
minigenes minimized the action of NMD, but
there may be sequence changes that predispose
a mRNA to other mechanisms of RNA degrada-
tion. In addition, it is possible that some mutat-
ed sequences are affecting the transcription rate.
Indeed, these are interesting questions in their
own right. To test these possibilities, we con-
structed an analogous library but created mini-
genes from which the introns had been
removed, i.e., the mutant minigenes harbored

Figure 2. Splicing phenotype maps of HMA. Terms
used to express splicing efficiency can be found in
Table 2. Different measures were used to quantify
splicing: (A) PSI (proportion spliced in) exhibited by
each molecule, calculated from EI (see Methods).
This linear metric tends to hide the extent of decreas-
es. The dotted gray line here and in B and C indicates
the WT phenotype. (B) LEI, the log2 of the EI, display-
ing a wide range of decreases at the expense of in-
creases. The gray area encompasses changes that
are less than twofold. (C) PUP, the proportion of the
ultimate phenotype. The WT EI is set to zero and the
EI of each mutant is normalized to the maximum
change, treating increases and decreases separately
and giving equal visual weight to both. In most
HMs, the maximum splicing increase was to nearly
100% and the minimum was zero. (D) Landscape
view: Eachmutant is shown as a column; each starting
position is comprised of 12 columns, one for each
type of base change. Black columns, DBSs; red,
SBSs. (E) Mutagenesis of intronless minigenes (red
points). Splicing is expressed as the relative LEI: the
log2 of EI/WT EI. Increases in splicing are positive
and decreases negative. Black points show the results
with intron-containing minigenes for comparison.
The other nine HMs yielded similar results
(Supplemental Fig. S3). Thus, the vast majority of
the mutations analyzed here are affecting splicing.
(F) The same mutations produce similar relative phe-
notypes in the face of potent additional six-base sub-
stitutions. The map shows the median of scaled
phenotypes (LEIsc) at each mutated exonic position
for each of the HMs. Mutations distal to position 15
(beyond a 6-nt overlap of the 6-mer substitution re-
gion of 5 to 10) show parallel behavior across these
HMs despite the fact that PSI values of WT HMs range
from0.025 to 0.75. HMAbehaves exceptionally at po-
sitions 16 to 22, due to a secondary structure effect
(vide infra). The heat map at the top shows the aver-
age R2 values of LEIsc for all pairwise combinations
of all HMs (except HMA and HMD), using the 12 mu-
tations at each position.
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the mature mRNA sequences. Unlike the minigenes with introns,
saturation mutagenesis of the intronless minigenes produced
much smaller or no effect on mRNA levels (see Fig. 2E for the
HMA result: minigenes with introns [black points] versus without
introns [red points]). Although we cannot rule out the possibility
that some of these mutations may affect pre-mRNA stability, we
think it more likely that almost all of the phenotypes measured
here are due to effects on splicing.

Most cognate mutations in different HMs yield similar relative

splicing phenotypes

The same saturationmutagenesis schemewas applied in parallel to
the nine additional exon variants (HMB to HMJ) that exhibited a
wide range of initial PSI values (Table 1). The mutant phenotypes
for all 10 HMs are shown in Supplemental Figure S3. Here again,
SBSs and DBSs generated a wide range of increased and decreased
splicing efficiencies; overall, 49% of the mutants exhibited a two-
fold change (Table 1; Supplemental Fig. S4). Even in the case of
the strongest splicer, HMH,with aWTPSI of 0.74, 18mutations in-
cluding two SBSs reduced splicing to <10% that of the relativeWT.
A list of the splicing phenotypes of all 5560 mutant molecules is
presented in Supplemental Table S2. As was the case for HMA,mu-
tagenesis of intronless versions of these exons had comparatively
little or no effect on mRNA levels (Supplemental Fig. S3).

A principal reason for mutating the nine HM variants was to
search for evidence of regulatory sequence interaction within ex-
ons as an important element of the splicing code. If this were
the case, then introducing a sequence near the 5′ end of the
exon (positions 5 to 10) could impact the phenotype of mutations
located downstream; i.e., the very same SBSs and DBSs could lead
to distinctive mutant phenotypes when comparing two HMs.
Such interactions could be caused by specific contacts between dif-
ferent RNA binding proteins or by base pairing in RNA secondary
structures. Mutational maps of the median splicing phenotype at
each exonic position in the 10 HMs are compared in Figure
2F. The region fromposition 2 to∼15 shows great variation among
HMs as expected since this stretch overlaps the distinctive six-base
substitutions they contain. That is, if two mutations are within
about 6 nt, they may be creating an entirely new RBP binding se-
quence and so need not reflect an interaction between two RBP
binding sequences. Once past this region of overlap, the shapes
of the scaled mutational maps are remarkably similar despite the
fact that the relative WT sequences that serve as the reference
points for mutational change differ by almost four orders of mag-
nitude in their splicing efficiency (Table 1). For example, HMB has
a PSI of 0.20 and aWT EI value of 0.80; whenmutated fromGC to
AT or to CG at position 21, the EI decreased to 29% or increased to
203%of theWT, respectively.HMEhas a PSI of 0.025 and an EI val-
ue of 0.074; when identically mutated at position 21, the EI de-
creased to 28% or increased to 267%, respectively. Thus, despite
an order of magnitude difference in the initial EI values, the
same mutations produce very similar results in terms of fold
change. Such a simple multiplicative effect is expected from a
model in which ESEs and ESSs act autonomously and additively
by stabilizing or destabilizing splicing complexes (Ke et al. 2011;
Arias et al. 2015). An exception is HMA, the true WT exon, which
shows evidence of sequence interactions at positions 17 through
21, a region that is 7 to 11 nt downstream from the end of the hex-
amer substitution site. As will be seen below, this interaction can
be attributed to a distinctive secondary structure in HMA that is
not present in any other HM. R2 values for all pairwise regressions

of HMs for the region spanning positions 16 to 48 ranged from
0.63 to 0.95 and are shown in Supplemental Figure S5. We quan-
tified this similar mutational vulnerability by calculating the cor-
relation between median values for mutations at each position
between Hexmuts in pairwise combinations. HMA and HMD
were omitted because the former is subject to a strong secondary
structural effect and because the latter gave rise tomanymutations
that couldnot be quantified as they yieldednomeasurable splicing
(zero reads). The average R2 values are shown as a heat map at the
top of Figure 2F. Almost all positions distal to position 17 showed
strong correlations between HMs, with R2 values averaged across
all HM pairs that ranged from 0.70 to 0.95. Thus, there was little
evidence that sequence interaction was a major determinant of
splicing outcome here. These results contrast with those of Julien
et al. (2016), who foundmany combinations of SBSs that exhibited
an epistatic effect in that their combined presence differed from a
linear combination of their individual effects. About half their data
could be explained by linear combinations (R2 of 0.52 for observed
vs. linearly predicted), leaving room for half to be subject to epis-
tasis. Some of this epistasis could have been due to the formation
of novel RBP binding sites when the two mutations are close
together, a major location class they noted in their data. To focus
more on combinatorial effects that involve interaction between
different binding sites, we recalculated their data ignoring all
mutations combinations that were >10 nt apart; the overall R2 in-
creased but only to 0.61. When we applied the same procedure to
our own data, using the eight HMs as the secondmutations, the R2

of observed vs. linearly predicted was 0.94 (Supplemental Fig. S6).
Thus, the discrepancy between our data remains. Unlike their ex-
periment examining SBS combinations, in our experiments, one
partner was always an extreme mutation, a 6-nt substitution.
Epistasis that depends on specific protein–protein interactions
may need to be honed over evolutionary time; the complete re-
placement of those proteins in our HM partner may have preclud-
ed our ability to see these subtle epistatic effects. That said, we find
the ability of so manymutations to act autonomously to be equal-
ly interesting and it is a feature that must be taken into account in
an understanding of the splicing code.

Di- and trinucleotides can act as gauges of splicing efficiency

Several genomic studies have reported that short sequence differ-
ences, even single nucleotide disparities, can aid in the identifica-
tion of exons (Amit et al. 2012; Xiong et al. 2015). We therefore
examined our genetic data for such biases. We started by compar-
ing the effects of all 16 possible dinucleotides at all positions so as
to minimize contextual effects imposed by neighboring sequenc-
es. To normalize the data, we subtracted the mean LEI at each po-
sition fromeach LEI value and then averaged across all positions in
all HMs to get a single value for each 2-mer. The result was termed
the LEI difference from mean, or LEIdm. LEIdm values ranged
widely for different 2-mers, from −1.45 for TA to +1.26 for CG
(Supplemental Fig. S7B). Even at the single nucleotide level, a sub-
stantial bias could be seen (C>A=G>T).

It has been noted previously based on genomic analysis
(Majewski andOtt 2002; LevMaor et al. 2015) and from functional
selections (for review, see Chasin 2007) that CpGdinucleotides are
preferentially associated with exon inclusion. Genomic results are
subject to cross correlations to protein coding evolution; function-
al SELEX selections explore unnatural sequence space. The direct
genetic evidence used here avoids these problems and so adds to
the authenticity of the role of CpGs. CpGs here are probably acting
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intrinsically, as part of ESE sequences in the RNA, rather than as a
substrate for a methylation mark (Gelfman and Ast 2013) since
these minigenes are present only transiently (24 h) as a nonrepli-
cating linear PCR product.

Trinucleotides were also distinctive. Among the top 10% (the
six most stimulatory 3-mer creations) were five containing a CG
(NCG and CGN) plus ACC (Supplemental Fig. S7C). The most del-
eterious 10% include the stop codon trinucleotides TAG and TAA,
but not TGA, which was stimulatory. The LEIdm distributions for
all 1-, 2-, and 3-mers are shown in Supplemental Figure S7. A geno-
mic analysis corroborated this scoring: The abundance of trinucle-
otides in exons correlated positively with LEIdm scores (R2 of 0.48,
P < 10−6) and their abundance ratio with respect to introns showed
an even stronger correlation (R2 of 0.70, P < 10−5) (Supplemental
Fig. S8A,B). We conclude that the mutational changes observed
here reflect sequence information for splicing that is used general-
ly rather than parochially. This high correlation of trinucleotides
suggests that codon usage and splicing efficiency may have co-
evolved. Since these genetic data are independent of translation,
we were able to examine this question in an unbiased way. For co-
don usage, we excluded the three stop codons, the singular codons
formethionine and tryptophan, and the eight codons that contain
CG dinucleotides; the last exhibit low frequencies due to their mu-
tational vulnerability. For the remaining 51 codons, the log2 of the
percent usage in humans (Nakamura et al. 2000) for the amino
acid they specify showed a fair positive correlation with LEIdm,
with an R2 of 0.27 (P = 0.0003) (Supplemental Fig. S8C), consider-
ably higher than the R2 of 0.08 for a bacterial control (Supplemen-
tal Fig. S8D). This result is consistent with the idea that codon
usage is under evolutionary pressure to provide sequences favor-
able for splicing and/or vice versa.

Pre-mRNA secondary structure plays a role in the WT

exon HMA splicing

The mutations introduced here can affect the structure as well as
the sequence of these pre–mRNA molecules. As an initial probe
of a relationship between the stability of a secondary structure
and splicing, we examined the mutants of each HM for a correla-
tion between normalized changes in splicing (LEIsc) and the pre-
dicted folding free energies of mutant secondary structures. The
latter (ΔG°) were calculated using the partition function option
of RNAfold (Lorenz et al. 2011) on a 90-nt sequence that encom-
passed the 51-nt exon plus 23 nt of upstream and 16 nt of down-
stream sequence. The relative WT minimum free energy (MFE)
structures of the 10 HMs are shown in Supplemental Figure S9.
No strong correlations were found between ΔG° and LEIsc among
themutants in nine of the 10 HMs (B through J; Pearson’s R values
ranged from −0.08 to +0.07), but the trueWTHMA stood out with
a fairly strong R value of +0.47 (i.e., less stable structures correlated
with more efficient splicing). HMA also stood out as having the
most stable WT structure among HMs, with a ΔG° of −24.8 versus
−20.2 to −16.1 kcal/mole for the nine others (Supplemental Fig.
S9). Many splicing factors bind to single-stranded RNA (Buratti
and Baralle 2004; Maris et al. 2005; Lunde et al. 2007) and ESRs
tend to be single-stranded (Hiller et al. 2007; Ke et al. 2011). We
therefore sought to identify regions in the HM sequences where
single-strandedness correlated with splicing. Such a trend would
have to be strong enough to be detectable over the background
of direct effects of sequence changes on splicing. Toward this
end, we correlated splicing efficiency with the average probability
of the six bases in a 6-mer being unpaired (0 < PU < 1). PU values

were extracted from the output of RNAfold that was run using
the partition function, which weighs alternative structures depen-
dent on their stability. A map of the signed R2 values for correla-
tions between LEIsc and the average PU of all stretches of six
contiguous bases for the 555 mutants of HMA revealed a striking
two-humped pattern across exonic positions 8 through 22 (Fig.
3A). The humps indicate that mutations that increase PU values
tend to increase splicing efficiency. The heat map at the top of
Figure 3A shows that the humps correspond to regions of strong
base pairing (low PU) in the WT HMA. The minimum free energy
structure of the WT HMA shows this region folded into a 5-5-5
stem–loop structure (stem–loop 6, or SL6) (Fig. 3B). Thus, splicing
is positively correlated with the disruption of this stem. Three of
the five bases of the upstream arm of SL6 overlap with the 6-mer
HM sequence that is uniquely present in HMA, so none of the oth-
er HMs contains SL6. The SL6 stem is typically weakened when ei-
ther arm of the stem is mutated (Fig. 3C,D). In contrast, some
mutations strengthen SL6 by lengthening the 5-bp stem 3E.
Accordingly, increases to 6, 7, and 9 bp progressively decrease
splicing compared to the WT (Fig. 3G). This result could be ex-
plained by the existence of an ESE in an arm of SL6 that is being
masked in the WT sequence. An alternative is that the stem of
SL6 is being bound by a splicing repressor that recognizes the dou-
ble-stranded structure. Consistent with the latter is the presence of
a CUGG:CCGG duplex at the base of the loop, as is found in U2
snRNA, where it is bound by a U2B′ ′/U2A′ complex (Price et al.
1998). An MFE structure derived from another WT HM (HME) is
shown in Figure 3F to illustrate the diversity of structures present
in the mutant library. The MFE structures of all 5560 molecules
can be accessed from Supplemental Table S2, columns J and
L. Several conclusions can be drawn from this analysis: (1)
Secondary structure wholly within an exon body can play a major
role in splicing efficiency. (2) Single nucleotide changes can dra-
matically affect splicing efficiency by changing structure. (3)
Once theWT SL6 was destroyed in creating HMB to HMJ, no other
secondary structure of comparable importance for splicing
emerged, suggesting that most predicted structures present little
barrier to splicing. It is tempting to speculate that structures affect-
ing splicing are not easily created but rather have been selected for
in evolution. More subtle effects of secondary structure could be
sought by designingmutations specifically designed to distinguish
the effects of sequence vs. structure.

The mutations affect the exonic recruitment of spliceosome

assembly proteins

In general, RBPs that bind to splicing enhancer sequences are
thought to act by recruiting or stabilizing the binding of spliceoso-
mal components to splice sites, with those binding to silencers act-
ing in the opposite manner. It follows that most of these RBPs
should be acting at an early step in splice site recognition. A re-
quired step in splice site recognition is exon definition, at least
for exons bounded by long (>250 nt) introns, which is the usual
case in humans (Fox-Walsh et al. 2005; De Conti et al. 2013;
Chiou and Lynch 2014). To ask whether any of these mutations
could affect exon definition, we measured the in vitro formation
of a ribonucleoprotein complex on a library of RNA substrates con-
sisting of an exonplus short intronic flanks, including the 3′ and 5′

splice sites and polypyrimidine tract but with no putative branch
point. Such complexes, termed alpha complexes (Robberson
et al. 1990) or cross-exon complexes (Schneider et al. 2010), have
been previously described. If these ideas are correct, then many of
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themutatedexons shouldbe influenced in the formationof a cross-
exon complex to a degree similar to their splicing phenotype. We
gauged the formation of an exon definition complex by the bind-
ing of proteins associated with U1 snRNP and U2AF, as these initi-
ate assembly of the spliceosome across introns and probably across
exons: U2AF by binding to the polypyrimidine tract and the 3′

splice site and U1 snRNP by binding to the 5′ splice site.We gener-
ated a library of these 5560 exonic RNA substrates using our pool of
mutant minigene sequences to generate transcripts in vitro using
T7 RNA polymerase. This pool was incubated with a splicing-com-
petent HeLa cell nuclear extract and then immunoprecipitated (IP)

to enrich for those molecules bound to
either of the U2AF subunits U2AF65
(U2AF2) or U2AF35 (U2AF1) or to either
of the U1 snRNP specific proteins U1A
or U1–70K. The RNAs recovered from
each of these four IPs were extracted and
subjected to deep sequencing. Enrich-
ment indices analogous to splicing EIs
could be calculated for almost all of the
mutant molecules (termed proportion
pulled down, PPD) (see Methods). If
enough of the mutations affected (1)
splicing and (2) the ability to bind these
splicing components to a similar degree,
then we should see a significant correla-
tion between the results of these two
kinds of experiments.

As canbe seen in Figure 4, A through
D, a substantial correlationwas found be-
tween EI and PPD, with R2 values of 0.63,
0.59, 0.61, and0.24 forU2AF65,U2AF35,
U1A, and U1-70K, respectively (all P-val-
ues < 10−14). To our knowledge, this is
the first high-throughput analysis of
sequences linking spliceosome-related
exon complexes to splicing. U1-70K
showed less of a correlation than U1A
even though both are U1 snRNP sub-
units. U1-70K could be additionally asso-
ciatingwith the exonviabinding toother
RBPs, suchasHMGA1αor SRSF1 (Manabe
et al. 2003; Ohe and Mayeda 2010; Cho
et al. 2011), which could confound the
correlation. On average, the correlation
coefficients indicate that at least half of
the mutations affect exon complex as-
sembly to an extent similar to their effect
on splicing. These correlations are likely
to be an underestimate due to factors
such as variation among IP efficiencies,
corrections for nonspecific binding, and
the loss of RBPs with modest binding af-
finitiesduring isolationof the complexes.
Although these four spliceosomal pro-
teins themselves bind to sites close to
oneor theother endsof exons,mutations
near the ends of the exon body had no
greater effect on binding than internal
mutations (Supplemental Fig. S10).
Single antibodies were used for each IP,
so there is no physical evidence that an

immunoprecipitated molecule contains additional RBPs beyond
the targeted protein, i.e., that they represent mature exon defini-
tion complexes.However, the genetic evidence that ties these com-
plexes to splicing is compellingand leadsus to conclude that (1) the
exon complexes formed are valid indicators of an exon definition
complex (since they correlate with splicing), (2) many if not most
effective mutations in the body of an exon act through the early
step of exon definition and cross-exon spliceosome formation,
and (3) exondefinitioncanbeahighlymutable step in splicing, im-
plying it is a large target for human genetic disease (Sterne-Weiler
et al. 2011).

Figure 3. A stem–loop secondary structure in the HMA sequence inhibits splicing. (A) Map of the cor-
relation (signed R2) of splicing with the probability of being unpaired (PU) in secondary structures. For
each starting position of each HM, each mutant window of 6 nt was evaluated for its average PU.
These PU values were then correlated to LEIsc scores. Note that the true WT HMA exhibits a strong re-
gion-specific correlation from exonic positions 8 to 22 but the other nine HMs showno such strong effect
at any position. The heat map shows the PU values of WT HMA 6-mers. (B–F). The minimum free energy
(MFE) structures of selected 90-nt folded sequences. Mutant serial numbers are indicated for reference to
Supplemental Table S2.The 15-nt sequence of HMA stem–loop 6 is in bold. The base changes and the EI
value relative to the WT are indicated. (B) Wild-type HMA. The location of stem–loop 6 (SL6), the struc-
ture that inhibits splicing, is indicated (bases 31 to 45); its coordinates in the exon are 8 to 22. (C) The
MFE structure of an HMA mutation (circled) with a SBS in the upstream arm of SL6. (D) As in C, but the
mutation is in the downstream arm of SL6. (E) An example of an HMA DBS that extends the stem length
of SL6 from 5 to 9. This more stable stem produces a further reduction in splicing (panel G). (F ) A con-
trasting example of a different HM, HME. The location of the hexamer difference from exon positions 5 to
10 is shown by the orange arc. The black bar indicates the sequence of what is the downstream arm of
SL6 in HMA. Note the largely different MFE structure compared to HMA. (G) The double-strandedness of
the SL6 stemof HMA correlates with splicing. The points show the average LEIsc values forMFE structures
having the indicated number of paired bases in the SL6 stem. The points are labeled with the number of
mutants having that stem length.
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To search for additional exon-protein associations, we ex-
tended this IP/deep sequencing analysis to 10 additional RBPs.
Six exhibited a negative correlation with splicing, two were posi-
tive, and two were neutral (R2 values > 0.1, P < 10−10) (Fig. 4E,
last column). Correlations between all pairs of RBPs were also car-
ried out (Fig. 4E). As an example, the scatter plots comparing
U2AF65 binding with each RBP are shown in Supplemental Fig.
S11. Among the 91 pair-wise correlations using all 14 RBPs, 28
were positive (signed R2≥ 0.1), 22 were negative (signed R2 = <
−0.1), and 41 were neither (Fig. 4E heat map). TIA-1 was a strong
negative correlator, yet has been found to promote splicing of sev-
eral exons. However, in those cases, it acted from a downstream
intronic position (Zuccato et al. 2004; Izquierdo et al. 2005); op-
posing effects of RBPs depending on an intronic versus exonic po-
sition are not uncommon (Fu and Ares 2014). Surprisingly,
binding of the much studied splicing inhibitor hnRNPA1 showed
only a weak negative correlation with splicing (Fig. 4E, last col-
umn). The correlation between an RBP and splicing is itself propor-
tional to its correlation to binding with the four spliceosome-
related proteins (Fig. 4F). A clustering analysis of the binding spec-
ificities of SRSF7 and HNRNPI, the two splicing factors that corre-
lated most strongly with spliceosomal protein binding (Fig. 4F),

showed good agreement with those expected from the literature
(Singh et al. 1995; Cavaloc et al. 1999; Xue et al. 2009; Llorian
et al. 2010) and those generated from CISBP-RNA z-scores
(Supplemental Fig. S12). These IP results are consistent with the
idea that the RNPs brought down by these targeted IPs are multi-
component complexes, although this remains to be established.
In any case, the fact that eight of 10 RBPs tested exhibited a corre-
lation between exon binding and splicing as the sequences varied
suggests that this small model exon can bind a variety of RBPs in a
sequence-specific way and with functional splicing consequences.

The fate of a single exon is governed by a large number of RNA

binding proteins

The availability of relative binding specificities of 200 RBP binding
domains to essentially all ∼16,000 7-mer sequences (Ray et al.
2013) allowed us to ask whether any of these RBPs exhibited a cor-
relation between binding affinity and splicing efficiency. We sur-
veyed 91 RBP specificities designated as human from the CISBP-
RNAdatabase, where each 7-merwas assigned a normalized z-score
as a measure of affinity relative to the mean of all 7-mers (http
://CISBP-RNA.ccbr.utoronto.ca/). As a preliminary examination,

Figure 4. Correlation between splicing (EI) and RBP-exon binding in vitro. A library of the 5560 exon sequences plus short flanks was incubated with a
HeLa nuclear extract and immunoprecipitated to pull down bound RNA molecules, which were quantified by deep-sequencing. PPD is the proportion of
the library bound for each sequence, including correction for input proportion and the amount of RNA recovered. (A) U2AF65 (U2AF2); (B) U2AF35
(U2AF1); (C) U1A; (D) U1-70K. A and B are required for U2 snRNP binding, and C and D are components of the U1 snRNP. Both snRNPs are part of the
initial spliceosome. (E) Correlation in binding among RBPs. Numbers shown are signed R2 values. Positive, negative, and no correlations were found.
Note that the four spliceosome-related proteins (U1A, U1-70K, U2AF65, U2AF35) positively correlated with SRSF1 and SRSF7 and negatively correlated
with DAZAP1, hnRNP I (PTB), and TIA1 binding (see Supplemental Fig. S11 for additional scatter plots). Correlations with splicing (EI, last column) are
also shown. (F ) Individual RBPs may promote or prevent the formation of a functional exon definition complex. On the x-axis are plotted the correlations
(as signed R2 values) between the binding (PPDs) of individual RBPs to themutant exons and splicing. On the y-axis are plotted the correlations between the
binding (PPDs) of individual RBPs to the mutant exons and the average binding (PPDs) of the four spliceosome assembly proteins U2AF35, U2AF65, U1A,
and U1-70K; these values were taken as an indicator of exon definition complex formation. This correlation of correlations plot allows a visualization of the
positive relationship between the promotion (repression) of exon definition by an RBP and the promotion (repression) of splicing by that RBP. The corre-
lations do not show causality but are consistent with that idea.
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we can consider some extreme examples where a SBS produces an
extreme phenotypic change. A change from a wild-type A to T at
position 39 in HMA drops the EI from 0.187 to 0.001; a 7-mer en-
compassing this change (AGAAGGG to AGTAGGG) greatly
strengthens a binding site for the known silencer HNRNPA1,
with a z-score change from 2.5 to 9.7. Several other 7-mers span-
ning this position have z-score changes consistent with this
decrease in splicing: e.g., MSI1 and DAZAP1 as better binding si-
lencers and SRSF1 and CNOT4 as poorer binding enhancers (Sup-
plemental Table S3). A similar dramatic congruence of EI and z-
score changes could be seen at positon 10, where an A or a C at po-
sition 10 resulted in an EI of 0.05 or 2.55, respectively. This positive
splicing change was matched by a decrease in HNRNPA1 (a
silencer) z-scores from 9.8 to 0.6 as well as an increase in RBM4
(an enhancer) z-scores from 0 to 4.0 (Supplemental Table S3).

We next systematically examined each of the 91 human RBPs
from CISBP-RNA for evidence of a correlation between binding af-
finity and splicing. At each exon position from −3 to +46 (captur-
ing 7-mers with as few as three mutated positions at the edges), we
collected all molecules (usually 76) bearing a sequence change ex-
clusively in the 7-mer starting at that position. Each HM was ana-
lyzed separately, with each generating 4459 regressions (91
proteins × 49 starting positions). The complete mutant set com-
prised 6639 unique 7-mers. To contend with this high number
of tests, we set the false discovery rate (FDR) for correlations to
5% (Benjamini and Hochberg 1995). A priori, one would not ex-
pect to see many significant correlations in this search since (1)
the 91 RBPs surveyed represent <10% of the total number of
RBPs in the human proteome (Baltz et al. 2012; Castello et al.
2012; Gerstberger et al. 2014), and (2) the model exon is only 51
nt long and presents an intentionally limited range of sequence
variations, small changes from a WT theme. Contrary to this ex-
pectation, we found that, on average, among the 10 HMs, 17%
of the 4459 regressions were significant (range: 14% to 23%)
(Supplemental Table S4). To confirm the validity of controlling
for the FDR using the Benjamini and Hochberg algorithm, we esti-
mated an empirical FDR by randomizing the 76 LEIs with respect
to the 76 z-scores found at each protein/position and then repeat-
ed the correlation calculations applying the same Benjamini and
Hochberg cutoff of P = 0.01. Any positive result from the random-
ized data could then be considered a false positive. Averaging 100
randomizations per Hexmut yielded a median empirical FDR of
5.8% (range of 5.3% to 9.2%) (Supplemental Table S5). Thus,
among the significant correlations, ∼6% could be due to chance,
close to the 5% target.

As one example, all significant correlations for HMB are
shown in Supplemental Table S6. Of the 4459 regressions, 1046
were significant; about half were positive and half negative. Of
the 91 RBPs, 87 were represented. Of the 49 exon positions sur-
veyed, all were represented. The sign of the correlation of an RBP
was almost always consistent across different positions
(Supplemental Fig. S13). The average number of significant RBP
correlations per position was 25. The R2 values of these significant
regressions ranged from 0.6 down to 0.1 (Supplemental Fig. S14);
P-values ranged from 10−14 to 10−2. Of the 1046 significant pro-
tein/positions, only 15 (1.4%) exhibited very high R2 values
(>0.5). More than half the R2 values fell between 0.2 and 0.1.
Low values such as these are not surprising: An R2 of 0.1 means
that 10% of the variation in splicing could be explained by the var-
iation in binding of a particular RBP to a particular position in the
exon, a meaningful positive result. The rest of the variation could
be due to mutated 7-mers other than the one put in focus by the

particular starting position and/or the binding of RBPs that
were not examined. This logical picture should reflect the physical
situation as well, as different RBPs compete for overlapping
sequences.

Mutations in HMA present a picture of the natural wild-type
exon. At an affinity z-score cutoff of >2, the entire exon would be
covered using just the 91 RBPs considered here (Supplemental Fig.
S15A). To minimize the complication of binding sites created by
mutations, we can consider only those mutations that decreased
RBP binding affinity. Using only these data, there were significant
correlations for 58 RBPs encompassing 150 protein/positions; 106
were positive correlations and 44 negative (Supplemental Fig.
S15B). These results suggest that the wild-type exon is interacting
with a large number of proteins and that these interactions affect
splicing efficiency. The binding properties of nearly all of the 91
human RBPs in this compendium correlated with splicing despite
the fact that many are thought to function in aspects of RNA me-
tabolism other than exon recognition, such as translation, mRNA
stability or spliceosome structure, and/or have been designated as
“cytoplasmic.” To the extent this sample of RBPs is representative,
it follows thatmost of the >1000 RBPs in the cell have the potential
to influence splicing.

Protein binding sequences combine to determine splicing

outcomes

To test the idea that a smaller number of protein/positions can
combine additively to determine splicing outcome, we used a step-
wise regression to build a multiple linear regression model of the
form:

y = b0 +
∑N

pl=1

b plx pl,

where y is the response variable LEI, β0 is a constant, βpl is a weight,
xpl represents the z-score of protein p for the 7-mer at location l,
and N is the total number of individual protein/positions found
to yield a significant correlation with splicing, as described above.
HMs were merged in this model, but HMD was omitted as it har-
bors many low values that were just estimated due to zero outputs.
The final model was comprised of 48 proteins and 80 protein/po-
sitions. In 10-fold cross validations, the resulting equation predict-
ed LEI scores with an average R2 of 0.89, a slope near 1, and a y-
intercept near zero (Fig. 5A). The success of themodel is consistent
with there being few important synergistic interactions between
RBPs. Applying this model to individual HMs also yielded strong
predictive ability (Supplemental Fig. S16).

Splicing scores for 7-mers predict splicing efficiency

The use of binding affinities of 7-mers provided in the CIS-BP da-
tabase allowed us to assess the behavior of our model exon with
considerable accuracy. In an effort to codify the mutant k-mer se-
quences as predictors of splicing in general, we therefore chose to
use 7-mers. For this purpose, it was necessary to normalize the
splicing phenotypes across all HMs and all positions. For each of
the 76 mutant 7-mers found at a given internal position, we sub-
tracted the average LEI from each LEI. If a 7-mer was present at
more than one position, its values were averaged. For all the 7-
mers derived from the same HM set, the values were then scaled
from +1 to −1 around the median. These normalized and scaled
values were then averaged across all HM sets and are termed “effec-
tive” LEI (eLEI) scores. Scores could be assigned to 6371 7-mers,
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almost all that are present in the population. Note that these eLEI
scores are independent of RBP binding data. The average or sum of
the eLEI scores of all 7-mers in an exon correlated well with the ob-
served LEI of that molecule (R2 = 0.77, N = 5560) (Supplemental
Fig. S17). However, for general use, we were missing eLEI scores
for the 10,013 7-mers not present among these molecules. To
deduce thesemissing values, we took advantage of the correlations
found between RBP binding and splicing. We used Random Forest
(Pedregosa et al. 2011) to train regression trees on the affinities (z-
scores) of the 6371 mutant 7-mers represented in our mutant se-
quences, using all 91 human proteins in the CISBP-RNA database
and across all positions. Based on their z-scores, each of the miss-
ing 7-mers was then added to a tree individually and the value of
the closest leaf bearing a known eLEIwas noted. The average values
of 100 such trees was assigned as the eLEI value for that missing 7-
mer. In this way, splicing scores were generated for all the remain-
ing 7-mers on the basis of their RBP binding characteristics. We
term these 16,384 values saturation mutagenesis derived splicing
scores (SMS scores) (listed in Supplemental Table S7). SMS scores
predicted the splicing of mutant molecules well (R2 = 0.84) (Fig.
5B). Interestingly, many of the mutants affected in the stem–

loop structure seen to affect splicing in HMA showed up as outli-
ers in this correlation, as might be expected if structure is con-
founding the prediction (Fig. 5B). That curve also showed signs
of saturation at high SMS scores, again as might be expected as
exon inclusion approaches 100%. As a genome-wide test of SMS
scores, we asked how well they could be used to distinguish con-
stitutive exons from pseudoexons. The latter are defined (Zhang
et al. 2005b) as intronic stretches having splice site sequences sim-
ilar to those of real exons but for which splicing has not been de-
tected (see Methods for more details). As analyzed by a receiver
operating characteristic (ROC) curve, average SMS scores achieved
a very good AUC (area under the curve) of 0.88 (Fig. 5C). If only
the 6371 SMS scores derived solely from the mutational data
alone were used, the AUC was considerably lower, 0.72. This dif-
ference attests to the validity of using RBP binding affinities as a
criterion to infer SMS scores for untested 7-mers. At the same
time, it shows that consideration of all available human CISBP-
RNA RBP affinities helps to distinguish real exons from pseudoex-
ons. A composite map of SMS scores across >100,000 genomic
exon and pseudoexon sequences showed the former to exhibit a
sharp rise at the transitions between intronic flanks and exon
bodies, whereas pseudoexons remain flat (Supplemental Fig.
S18). Alternatively spliced cassette exons also exhibited the sharp
distinction but attained somewhat lower scores compared to con-
stitutive exons. The fact that, despite the presence of splice sites,
pseudoexons showed no dip in scores suggests that a lack of ESEs
by itself may be sufficient to disqualify a pseudoexon. Finally, we
tested SMS scores for their ability to predict splicing phenotypes
measured for four human exons carrying single nucleotide varia-
tions in disease-related genes (Soukarieh et al. 2016). An average
R2 value of 0.50 was attained, which was similar to those achieved
by other recently developed algorithms applied to these data
(Supplemental Table S8).

Conclusions

In summary, we have used high-throughput genetics to show that
(1) exons can be repletewith RBPbinding sites and the binding of a
surprisingly large number of RBPs to these sites can affect exon in-
clusion, (2) single base changes in these ESEs and ESSs present a
large target for mutations that produce substantial phenotypic

Figure 5. Prediction of splicing efficiency. (A) An equation for multiple
linear regression was derived using all splicing data except that of HMD.
Eighty significant protein/positions were found and used. The results
show the 5004 points (molecules) derived bymerging all 10-fold cross-val-
idations. (B) Prediction of splicing in all 5560 mutants based on the sum of
exonic SMS scores. Note the strong correlation, the tendency toward satu-
ration at high splicing efficiencies, and the outliers starting in the upstream
and downstream stem arms of the functional stem–loop structure in HMA
(open squares and circles, respectively). (C) ROC curve for the distinction
between ∼100,000 human constitutive exons (average length 136 nt)
and∼100,000 pseudoexons (average length 128 nt). Themaximum accu-
racy (true positives + true negatives)/(total combined sequences) was 0.81
for the experiment in which all 16,384 SMS scores were used.
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effects, (3)many, if notmost, ESEs and ESSs act through the forma-
tion of an early exon definition complex, (4)most of these RBPs act
additively to determine the extent of exon inclusion, and (5) small
secondary structures can play a major role in exon inclusion, but
such effects are rare and may require special contexts. The picture
that emerges is that of a heterogeneous and dynamic population of
pre-mRNA molecules covered by large numbers of RBPs. The
means to obtain thousands of long oligomers with specified se-
quences will enable the use of saturation mutagenesis to illumi-
nate many biological processes. In particular, future applications
of this QUEPASA approach (quantifying extensive phenotypic ar-
rays from sequence arrays [Ke et al. 2011]) to splicing can extend
our understanding of the roles of ESR interactions, ISRs, and sec-
ondary structures.

Methods

Preparation of the saturation mutagenesis library

A library of specifiedmutationswas created using a custom synthe-
sized microarray. The microarray primer extension method and
the subsequent double-stranded DNA linker ligation were based
on that of Ray et al. (2009). In this case, a custom 60-bp 176,000
(4 × 44K) element microarray was purchased from Agilent. It was
comprised of ∼30 clusters for each mutant and ∼900 clusters for
each HM relative wild type. The wild-type sequences were present
in higher numbers to provide a robust denominator for quantify-
ing mutant/wild-type ratios. The 3′ end of each 60-mer was cons-
tant, representing 13 positions from −12 to +1 relative to the 5′

end of WT-1 exon 5 (Ke et al. 2011) with the sequence
cttcttttctagA. The remaining 47 nucleotides were specified as
wild types or mutants, as described in Figure 1 and below. A 5′-
Cy3-labeled primer complementary to the 13 nt at the 3′ end of
all microarray bound probes was extended with T4 DNA polymer-
ase. The Cy3 label afforded confirmation of the double-stranded-
ness when examining the slide in a microarray scanner. All
incubations of the microarray were carried out in an Illumina hy-
bridization oven with a rotating slide carrier. The double-stranded
products were then ligated to a double-stranded oligomer corre-
sponding to the 19 nt spanning the 3′ end of the exon:
CAAgtgagtggacaatgcg. The antisense strand of the 19–mer carried
a Cy5 label at the 5′ end to allow confirmation of ligation efficien-
cies by scanning. The sense strand carried a ddC appended to the 3′

end to prevent tandem oligomer ligations and a phosphate on the
5′ end for ligation to the synthesized sense strand. The single-
stranded extension-ligation library was then stripped from the
slide with NaOH at 65°C for 20 min. The eluted 79-nt single-
stranded DNA library (e.g., cttcttttctagAGTTGCTGCTGGGAG
CTCCAGCACAGTGAAATGGACAGAAGGGCAGAGCAAgtgagt
ggacaatgcg plus the appended ddC; the templates for PCR are in
bold) was PCR-amplified using the flanking primer pair F: cccca
cctcttcttcttttctagA; R: the reverse complement of CAAgtg
agtggacaatgcg (original primer sequences in bold), generating
the 90-nt double-stranded DNA library that was used to construct
the 3-kb full minigene library by three-fragment overlap extension
PCR (Supplemental Fig. S19).

Mutagenesis strategy

The exon sequence plus flanks for the relative wild type of HMA is
shown on line 1 in Supplemental Table S9 as a HM example. The
exon is capitalized and the variable 6-mer that distinguishes
HMs is underlined. All possible single and tandem double base
changes were designed as shown in Figure 1 and illustrated in
Supplemental Table S9. Starting at position 2 of the exon, all 12 di-

nucleotides that changed the first base of the wild-type dimer se-
quence were created (bold, lines 2 to 13). There are 15 possible
mutant dinucleotides that can start at position 2; the three dimers
missing in lines 2 to 13 in Supplemental Table S9 appear when di-
mers at position 3 are subsequently created, as seen underlined on
lines 17, 21, and 25. The complete set of mutations covering the
region 2 to 48 comprise 555mutants, with the last position, 48, be-
ing necessarily comprised of only three single base substitutions.

Transfection and sequencing

The ∼3-kb minigenes (Fig. 1) were prepared by three-fragment
overlap PCR and used directly (not cloned) for transfection of
HEK293 cells exactly as described previously (Ke et al. 2011).
There, we showed that linear PCR products are expressed as well
as plasmids in transient transfections. The framework dhfr mini-
gene was pMA-Universal (Arias et al. 2015). RNA was isolated 24
h after transfection of two 100-mm dishes per biological replicate
and was converted to cDNA and amplified by PCR (Ke et al. 2011).
Both the input DNA and the amplified cDNA from two indepen-
dent transfections were prepared using primers shown schemati-
cally in Supplemental Figure S19. Sequencing was carried out on
an Illumina platform with reads of 74 nt. Illumina quality scores
were not used here. Rather, FASTQ reads were filtered for accuracy
by accepting only those that exactly matched the expected se-
quence of the nonmutated stretch of 6 nt at the end of the read
and that also contained no changes other than those designed.
This filter typically removed ∼50% of the reads. Data filtrations
and barcode de-multiplexing were carried out using custom Perl
scripts (see Supplemental Methods). Approximately 10 million
reads were collected for the input DNA and approximately 3 mil-
lion from each of the two independent transfection experiments.
The average number of reads for the input DNA was 1828, and all
but twomutant sequences had at least 50 reads. The average num-
ber of mutant reads for the output cDNA was 1105, but these
ranged widely, as expected (0 to 21340). Nine percent of the out-
put reads were zero, informative of a very poor splicing efficiency;
these mutants were given a pseudocount of 1 when logarithms
were calculated, as for LEI. Thus, very low splicing values may be
overestimated. For most HMs, the dynamic range of splicing effi-
ciencies was over three orders of magnitude.

Data analysis

Reads for each molecule were transformed into EIs by summing
the outputs of the two replicate transfections (which agreed to
an R2 of >0.99), converting the sum to a proportion of total output
reads and dividing by the analogous proportion for inputDNA. PSI
values were calculated from a calibration curve (Supplemental Fig.
S20) relating the traditionally measured PSI values from transfec-
tions to the EI values for the 10 relative wild-typemolecules as pre-
viously described (Ke et al. 2011).

Stepwise regressions

Regressions were first performed individually for each set of HM
mutants to identify protein/positions that significantly influenced
splicing. For each HM, the starting variables of the stepwise regres-
sion were the significant protein/positions revealed by simple lin-
ear regressions after Benjamini and Hochberg (1995) correction.
The stepwise regression consisted of temporarily adding a pro-
tein/position to the model from the starting set, performing an
F-test to assess the significance of the variable added, and perma-
nently adding the most significant of these additions so long as
P≤ 0.01. After each addition, the F-test was performed once again
on each variable in the model, and that variable eliminated if now
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P > 0.01. This continued until no protein/positions could be added
with an F-statistic in the model corresponding to a P-value ≤0.01.
The model for each HMwas tested for overfitting by leave-one-out
cross validation. Because each HM set can also be seen as sets of
mutations compared to the true wild-type exon, we also merged
nine sets of HMs. We left out HMD due to its many low inclusion
values. We again performed a single stepwise regression with the
starting variables being the set of protein/positions representing
the union of the sets of significant protein/positions for the nine
HMs used. Given the large sample size, we used a 10-fold cross val-
idation to test the resulting model. The final model included 80
protein/positions. Perl scripts for these calculations can be found
in Supplemental Methods.

Cross validations

Cross validations (leave-one-out and 10-fold) were performed by
retaining the variables selected when using the entire set of mole-
cules but removing one or 10% of the molecules (their LEI and
binding information) from the training set, recalculating the
weight (β) assigned to these variables, and finally predicting the
LEI(s) of the molecule(s) left out.

Random Forest

We used the Scikit-learn (http://scikit-learn.org) Python imple-
mentation of Random Forest to estimate eLEI values for unseen
7-mers.

Immunoprecipitation and analysis of in vitro assembled exon-RBP complexes

Exon-RBP complexes were assembled in a splicing-competent
nuclear extract prepared from HeLa cells. In transient transfection
assays, HeLa cells differentiated a sample of cloned mutant mini-
genes in a manner similar to that of HEK293 cells (Supplemental
Fig. S21).

The saturation mutagenesis minigene library was PCR-ampli-
fied with Phusion High-Fidelity DNA Polymerase (New England
Biolabs) for a limited number of cycles (15) using the primers
T7LibFwd TAATACGACTCACTATAGGACCTCTTCTTCTTTTCTA
GA and LibRev gccagctagcACTCACTTG. The resulting T7 PCR
DNA library was transcribed in vitro with MEGAScript (Ambion)
according to the manufacturer’s protocol. The resulting saturation
mutagenesis RNA library was cleaned with Quick Spin Sephadex
Columns for RNA (Roche), further purified by phenol/chloroform
extraction, and precipitated with ammonium acetate.

Nuclear extract preparation was adapted from Hartmuth
et al. (2012). Briefly, HeLa cells were grown in suspension to 5 to
7 × 105 cells per ml. Pelleted cells were Dounce-homogenized in
buffer A (10 mM HEPES KOH pH 7.9, 10 mM KCl, 1.5 mM
MgCl2, 0.5 mM DTT, 0.25 mM PMSF). Resulting pelleted nuclei
were dispersed in a Dounce homogenizer with 15 strokes of the
B-type pestle in buffer C (20 mM HEPES KOH pH 7.9, 600 mM
KCl, 1.5 mM MgCl2, 0.2 mM EDTA pH 8, 25% glycerol, 0.5 mM
DTT, 0.25 mM PMSF). The nuclear extract obtained after centrifu-
gation at 30,000g for 40 min was dialyzed 2 × 2 h against a
minimum 50-fold volume of buffer D (20 mM HEPES KOH pH
7.9, 0.1 M KCl, 0.2 mM EDTA pH 8.0, 10% (v/v) glycerol, 0.5
mM DTT, 0.25 mM PMSF), flash-frozen in liquid nitrogen, stored
at −80°C, and tested for splicing before performing RNA
immunoprecipitation.

Two independently prepared batches of nuclear extracts com-
petent for splicing were used to assemble RNA-protein splicing
complexes and perform two independent high-throughput RNA
immunoprecipitations for each protein targeted. IPs were carried
out under splicing conditions adapted from Mayeda and Krainer

(2012). Forty picomoles of the RNA library were incubated for 5
min at 4°C and 30 min at 30°C in 125 µL of splicing mixture pre-
pared as follows: 40% HeLa nuclear extract, 60% buffer D (at 1.5
mM MgCl2), 0.5 mM ATP, and 20 mM creatine phosphate. RNA-
protein complexes were complemented with 20 units of
RNaseOUT (Life Technologies) immediately before incubation
with 12 µg of the specified antibody for 3 h at 4°C
(Supplemental Table S10). Dynabeads Protein G (75 µL, Life
Technologies) were washed twice with citrate-phosphate buffer
pH 5.0 and twice with buffer D before being incubated 1 h at
4°C with the RNA-nuclear extract-antibody mixture. The beads
were washed four times with buffer D containing 0.05% NP40
and eluted with proteinase K (0.2 mg/mL) for 30 min at 30°C.
The resulting immunocaptured RNAs were purified by phenol/
chloroform extraction, precipitated with ammonium acetate,
and prepared for Illumina NextSeq 500 sequencing using the
Mid Output Kit (150 cycles). Reads were filtered for accuracy by ac-
cepting only those that exactly matched the expected sequence of
an 8-nt barcode and that contained no changes other than those
designed. Control IPs using nonimmune serum (mouse, rabbit,
or goat) were used to normalize the IPs in order to correct for non-
specific background due to binding to beads-bound immunoglob-
ulins. Only sequences that contained at least 10 reads in the input
library used for an IP were used in further analysis. Increasing this
cutoff to 50 reads in a sample of the IPs increased R2 values by, at
most, 10%, justifying the use of a cutoff of ≥10 to optimize
coverage.

The sequencing datawere analyzed by calculating the propor-
tion of each mutant RNA molecule that was pulled down by the
beads, based on 5479 to 5496 values with at least 10 reads for
each IP. For each given mutant “m” and protein target “a,” a
PPD was calculated as follows:

PPDm,a = (Om,a ∗ ORNAa) − (COm,a ∗ CORNAa)
Im,a ∗ IRNAa

,

where:

Om,a is the proportion ofmutantm in the output reads of IP exper-
iment a;

ORNAa is the quantity of RNA pulled down in the output of IP ex-
periment a;

COm,a is the proportion of mutant m in the output reads of the
nonimmune serum control;

CORNA is the quantity of RNApulled down in the nonimmune se-
rum control;

Im,a is the proportion of mutant a in the input reads of IP experi-
ment a;

IRNAa is the quantity of RNA in the input of IP experiment a;
PPDm,a is then an estimate of the proportion of molecules pulled
down for mutant a, specifically. The two PPDs from the two rep-
licates were then averaged for regression analysis.

Data access

Raw reads as FASTQ files and the number of raw reads for eachmu-
tant sequence from this study have been submitted to the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE105785.
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