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Identity 
Other names: HMIWC2, MIWC 

HGNC (Hugo): AQP4 

Location: 18q11.2 

DNA/RNA 
Description 
Sequence length: 323 AA. 
Total number of exons: 5. 

Protein 
Description 
This gene encodes a member of the aquaporin family of 
intrinsic membrane proteins that function as water-
selective channels in the plasma membranes of many 
cells. The encoded protein is the predominant 
aquaporin found in brain. Two alternatively spliced 
transcript variants encoding distinct isoforms have been 
found for this gene. 
Subunit structure: homotetramer. Part of a complex 
containing MLC1, TRPV4, HEPACAM and ATP1B1. 
Domain: contains two tandem repeats each containing 
three membrane-spanning domains and a pore-forming 
loop with the signature motiv Asn-Pro-Ala (NPA). 
Post-translational modification: phosphorylation by 
PKC at Ser-180 reduces conductance by 50%. 

Phosphorylation by PKG at Ser-111 in response to 
glutamates increases conductance by 40%. 
Structure: AQP4, a small 30-kDa monomer, is a 
hydrophobic transmembrane protein with cytosolic 
amino and carboxy terminal ends (Verkman, 2005). 
The molecule spans the cell membrane 6 times, 
forming 5 interhelical loops designated as A, C, and E 
on the extracellular surface and B and D on the 
intracellular surface. A consistent 3-amino acid 
hydrophobic motif, asparginine-proline-alanine (NPA), 
is present in both the B and E loops.  
Each monomer folds into a structure that forms an 
independent water channel, characterized by wide 
external openings and a narrow central constriction 
where the NPA motifs interact. AQP4 monomers 
assemble into tetramers, with each monomer being 
individually functional.  
Water movement through the channel is governed by 
an osmotic gradient across the membrane, with flow 
limited by size restriction and electrostatic repulsion. 
Variants: AQP4 occurs in mainly two splices variants, 
the M1 and M23 isoform (Jung et al., 1994). M23 
forms higher order assemblies within the plasma 
membrane, termed orthogonal arrays of particles 
(OAPs), whereas M1 exists as individuals tetramers. 
Phosphorylation of AQP4 can also regulate array 
formation. 
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Expression 
In the brain, AQP-4 is expressed at the glia limitans 
everywhere, ependymal lining, cerebellum, 
hippocampal dentate gyrus, and in the supraoptic and 
paraventricular nuclei of the hypothalamus. Low AQP-
4 expression has also been found in the neocortex, 
hippocampal areas, nucleus of the stria terminalis, and 
the medial habenular nucleus (Venero et al., 1999). 
AQP-4 is expressed in a polarized way by astrocytic 
foot processes at the borders between major water 
compartments and the brain parenchyma (Nielsen et al., 
1997; Rash et al., 1998). The perivascular expression of 
AQP4 coincides with the K+ channel protein Kir 4.1 at 
blood-brain barrier (BBB) level (Nagelhus et al., 1999). 

Localisation 
Subcellular localization: membrane; multi-pass 
membrane protein. 

Function 
AQP4 is implicated in the pathogenesis of normal 
pressure hydrocephalus, pseudotumor cerebri and 
cerebral edema (Badaut et al., 2002). AQP4-null mice 
have a much better outcome after water intoxication, 
meningitis and brain ischemia (Manley et al., 2004). 
AQP4-null mice have a significantly greater increase in 
brain water content and intracranial pressure than the 
wild-type mice, suggesting that brain water elimination 
is defective after AQP4 deletion (Papadopoulos et al., 
2004a; Papadopoulos and Verkman, 2007).  
AQP4, by controlling the bidirectional water flux is 
responsible for the formation of cellular brain edema, 
but counteracts vasogenic edema (Saadoun et al., 
2002). In vasogenic edema, AQP4 is thought to have a 
protective role, through brain water clearance, whereas 
in cytotoxic edema it is the main contributor to 
astrocytic cell swelling (Manley et al., 2004; 
Papadopoulos et al., 2004a; Papadopoulos et al., 
2004b). Water intoxicated AQP4-null mice show a 
significant reduction in astrocytic foot process swelling 
and a decrease in brain water content (Manley et al., 
2000). 
Nicchia et al. (2005) have shown that AQP-4 
knockdown in rat and human cells was associated with 
a depolymerization of actin with a change of 
morphology characterized by a remarkable F-actin 
cytoskeleton rearrangement in AQP-4 knock-down 
mouse astrocytes.  
Moreover, AQP-4 can interact with α-syntrophin, a 
member rof the dystrophin-dystroglycan complex, 
indicating an involvement of AQP-4 protein in altering 
the cell cytoskeleton (Warth et al., 2004). Accordingly, 
Nico et al. have demonstrated that in the brain of mdx 
mouse, an animal model of the Duchenne muscular 
dystrophy, glial cells showed a significant reduction in 
both protein and mRNA content of the dystrophin-
associated proteins (DAPs), including AQP-4, Kir 4.1, 
syntrophin and α-β-dystroglycan, coupled with a  

decrease in dystrophin isoform (Dp71) (Nico et al., 
2010). Moreover, alterations of the vascular basement 
membrane and reduction of the expression of its 
components laminin and agrin and translocation of α-β-
dystroglycan receptors in the glial cytoplasmic endfeet 
have been demonstrated (Nico et al., 2010). 

Homology 
The AQP4 gene is conserved in chimpanzee, Rhesus 
monkey, dog, cow, mouse, rat, chicken, zebrafish, fruit 
fly, mosquito, M. oryzae, A. thaliana, and rice. 

Implicated in 
Melanoma 
Note 
Melanoma cells implanted into the striatum of wild 
type and AQP4-null mice produce peritumoral edema 
and comparable sized-tumors in both groups after a 
week. However, the AQP4-null mice have a higher 
intracerebral pressure and water content (Manley et al., 
2004). 

Astrocytoma 
Note 
AQP4 expression has also been demonstrated to be up-
regulated in edematous astrocytomas and metastatic 
tumors (Saadoun et al., 2002). An increased AQP4 
expression has been demonstrated in glioblastoma 
multiforme (GBM) together with loss of polarized 
expression around the vessels and an AQP4 
redistribution in glioma cells (Warth et al., 2004; Warth 
et al., 2005; Warth et al., 2007). Warth et al. (2007) 
investigated grade I-IV glioma by 
immunohistochemistry and the prognostic significance 
for patients' survival. In gliomas, a remarkable de novo 
AQP4 redistribution was observed in comparison with 
normal central nervous system tissue.  
Moreover, the highest membranous staining levels 
were seen in pilocytic astrocytomas WHO grade I and 
grade IV glioblastomas, both significantly higher than 
in WHO grade II. AQP4 up-regulation was associated 
with brain edema formation and no association between 
survival and WHO grade-dependent AQP4 expression 
was seen. Moreover, in glioma cells co-localization of 
AQP4 with K+ channel protein Kir 4.1 is abolished and 
a mislocation of both Kir channels and AQP4 has been 
reported (Warth et al., 2007), suggesting that this 
molecular rearrangement occurs as a reaction to BBB 
damages, facilitating edema fluid flow. Mou et al. 
(2010) investigated changes of AQP4 protein 
expression in normal brain and in brain glioma tumor 
and peritumoral edematous tissues and analyzed the 
relationship of AQP-4 protein with edema index, 
VEGF and hypoxia inducible factor 1 alpha (HIF-1α) 
protein. They demonstrated that expression of AQP-4 
was higher in the tumor and highest in the peritumor 
tissue. Moreover, AQP-4 protein in tumor tissue of 
gliomas of different grades was not statistically 
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different. In normal brain tissues, AQP-4 was mainly 
expressed in the foot processes of astrocytes, but rare in 
the parenchyma. Finally, the degree of peritumoral 
edema positively correlated with the expression level of 
AQP-4 protein and this latter correlated with VEGF 
and HIF-1α expression. Nico et al. (2009) evaluated 
AQP4 expression and content in GBM and correlated 
with VEGF-VEGFR-2 expression. They demonstrated 
that in the relapse after chemotherapy and radiotherapy, 
AQP4 reduced in parallel with VEGF-VEGFR-2 
expression as compared with primary tumors, and in 
the peripheral areas of relapsed tumors AQP4 
mimicked normal findings of perivascular 
rearrangements. These data indicate that in GBM 
chemotherapy and radiotherapy induce a down-
regulation in AQP4 expression restoring its 
perivascular rearrangement and suggest its potential 
role in the resolution of brain edema. Moreover, the 
normally polarized rearrangement of AQP4 in 
peripheral areas in tumor specimens obtained after 
combined chemotherapy and radiotherapy could be 
expression of a process of normalization of tumor 
blood vessels. Tumor implantation experiments into 
AQP4-null mice have demonstrated that these mice 
have an increased intracranial pressure than wild-type 
controls (Papadopoulos et al., 2004a; Papadopoulos et 
al., 2004b). McCoy et al. (2010) using D54MG glioma 
cells stably transfected with either AQP1 or AQP4 
demonstrated that protein kinase C (PKC) activity 
regulates water permeability through phosphorylation 
of AQP4. Activation of PKC with either phorbol 12-
myristate 13-acetate or thrombin enhanced AQP4 
phosphorylation, reduced water permeability and 
significantly decreased tumor cell invasion. 
Conversely, inhibition of PKC activity with 
chlerythrine reduced AQP4 phosphorylation, enhanced 
water permeability and tumor cell invasion. 

Meningioma 
Note 
Ng et al. (2009) demonstrated that overexpression of 
AQP4 in meningiomas was associated with significant 
peritumoral edema. 

Therapeutic perspectives 
Note 
Inhibition of AQPs expression and/or AQP-mediated 
water influx by acetozolamide, cyclophosphamide, 
topiramate, thiopenthal, phenobarbital and propofol, 
affects cancer cell proliferation, migration, metastasis 
and angiogenic potential (Monzani et al., 2007).  
Inhibition of AQP-4 expression (by small interference 
RNA technology) or their function (with a blocking 
antibody or a small inhibitory molecule) may result in 
increased intracellular acidosis and cytotoxicity and 
reduced invasive potential of glioma cells. Ding et al. 
(2011), using small interference RNA and a 
pharmaceutical inhibitor to knock down the expression  

of AQP-4, demonstrated a specific and massive 
impairment of glioblastoma cell migration and invasion 
in vitro and in vivo.  
Moreover, they showed that down-regulation of matrix 
metalloproteinase-2 (MMP-2) expression coincides 
with decreased cell invasive ability. Accordingly, 
Badaut et al. (2011) using RNA interference have 
demonstrated that brain water motility decreases after 
astrocyte AQP-4 inhibition.  
Corticosteroids are largely used in combination with 
chemotherapy and contribute to significantly reduce 
peritumoral brain edema by decreasing the permeability 
of tumor vessels and/or enhance the clearance of 
extracellular water (Sinha et al., 2004). Animal 
experiments showed a decrease of cerebral AQP-4 
protein expression upon dexamethasone treatment (Ron 
et al., 2005), suggesting that AQP-4 may be considered 
one of the major molecular targets of the well-
functioning steroid treatment in brain edema formation.  
Moreover, corticosteroids reduced AQP-4 mRNA level 
in experimental brain tumor model and after 
intracerebral hemorrhage in rats (Heiss et al., 1996; Gu 
et al., 2007).  
The evidence that AQP-4 facilitates the migration of 
reactive astrocytes towards an injury site and the 
infiltration of malignant astrocytes in glioblastoma 
(Verkman et al., 2008) suggests that AQP-4 inhibitors 
may reduce reactive gliosis and infiltration of 
astrocytes. 
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