
 

 
 
   

Gene Section 
Review 
 

Atlas Genet Cytogenet Oncol Haematol. 2013; 17(5)  319 

INIST-CNRS 
 

OPEN ACCESS JOURNAL 

Atlas of Genetics and Cytogenetics 
in Oncology and Haematology 

FOXC1 (forkhead box C1) 
Shakila Jabeen, Vessela N Kristensen 

Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, 
Akershus University Hospital, Lorenskog, Norway (SJ, VNK) 
 

Published in Atlas Database: November 2012 

Online updated version : http://AtlasGeneticsOncology.org/Genes/FOXC1ID40624ch6p25.html 
DOI: 10.4267/2042/49699 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. 
© 2013 Atlas of Genetics and Cytogenetics in Oncology and Haematology 
 

Identity 
Other names: ARA, FKHL7, FREAC-3, FREAC3, 
IGDA, IHG1, IRID1, RIEG3 

HGNC (Hugo): FOXC1 

Location: 6p25.3 

DNA/RNA 
Description 
Orientation: Plus strand. Genomic Size: 3447 bases. 
Exon Count: 1. Coding Exon Count: 1. RefSeq DNA 
sequence: NC_000006.11- NT_007592.15 contains 
Fork Head domain (FHD).  
 

Basal Isoelectric point: 8.7. 

Transcription 
Gene is transcribed into 3454 bps mRNA, containing 
one exon. 

Protein 
Description 
Sequence length: 553 amino acids, mass: 56789 
Dalton.  
It contains one Fork Head DNA binding domain, 
consists approximately of 110 amino acids. FHD is a 
conservative sequence shared by all FOX proteins. 
 

 

Figure1: Gene sequence (grey) and transcriptional product of FOXC1. Forkhead DNA binding domain (FH Domain) contains 4 alpha 
helices (H1, H2, H4 and H3), 2 beta sheets (B2 and B3) and two wings (W1 and W2). 
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Figure 2: Amino acid sequence of the FHD of FOXC1, spanning from 69 to 178, H3 (alpha helix) mainly contribute to binding of the 
domain to DNA. 
 
FHD, a helix-turn-helix DNA binding motif, is 
composed of three alpha helices and two large "wing-
like" loops. FHD contains nuclear localization signals 
at the N- and C- termini of the forkhead box, required 
to translocate the protein into cell nuclei. Alpha helix 
no.3 is responsible for DNA specific binding (Carlsson 
et al., 2002). 

Expression 
Fork head protein is expressed in all tissues and cell 
lines examined (Hormas et al., 1993). FOXC1 in 
human is expressed in cornea, eye, heart, kidney, liver, 
lung and muscles (Wang et al., 2001). 

Localisation 
FOXC1 protein localizes in nucleus (Berry et al., 
2002). 

Function 
FOXC1 plays a major role in embryonic and ocular 
development as a transcriptional factor and 
transcription regulator. Function of FOXC1 is related to 
several hundred genes, change in expression pattern of 
FOXC1 may cause change in the expression pattern of 
hundreds of the genes (Berry et al., 2008; Huang et al., 
2008). 
Function of FOXC1 protein involves DNA binding and 
bending (Pierrou et al., 1994). Binding of the fork head 
proteins to their cognate sites, results in bending of the 
DNA at an angle of 80-90 degrees, thus, enhancing 
transcriptional activity of certain genes (Saleem et al., 
2001).  
Malfunction related to various Glaucoma phenotypes 
including congenital glaucoma, iridogoniodysgenesis 
anomaly, REG3, iris hyperplasia and Peter anomaly. 
During ocular development, it interacts and regulates 
expression of FOXO1A. The promoter region of 
FOXO1A contains consensus FOXC1 binding site 
(GTAAACAAA). FOXO1A is responsible for 
regulation of cellular homeostasis and cell survival 
during ocular development, its functioning depends on 
function of FOXC1. Other targets of FOXC1 in 
transcriptional regulation in the eye include NOTCH2, 
RAB3GAP and CSPG5 (Berry et al., 2008). 
Function of FOXC1 protein in ocular cells is regulated 
by p32, a cytoplasmic protein which has a binding site 
at FHD of FOXC1 and can be colocalized in nucleus. It 
regulates FOXC1-mediated transcription activation in a 
dose-dependent manner but does not affect FOXC1 

DNA-binding ability. Malfunction of p32 or mutation 
in FHD of FOXC1, effecting binding ability of p32 
might result in Axenfeild-Reiger malformations 
(Huang et al., 2008). 
FOXC1 along with FOXC2 regulates the establishment 
of paraxial versus intermediate mesoderm cell fates in 
the vertebrate embryos (Wilm et al., 2004). FOXC1 
and FOXC2 are required in kidney, urinary tract and 
early heart development processes, especially acting 
upstream of the Tbx1-FGF cascade during 
morphogenesis of the OFT (outflow tract) (Soe and 
Kume, 2006; Kume et al., 2000). 
Kume et al. (2001) proposed that FOXC1 and FOXC2 
interact with the Notch signalling pathway and are 
required for prepatterning of anterior and posterior 
domains in the presumptive somites through a putative 
Notch/Delta/Mesp regulatory loop. 
Savage et al. (2010) found out that expression of 
FOXC1 along with FOXC2 is dependent on a complex 
interplay from Wnt and Shh pathways during early 
stages of in vitro skeletal myogenesis. 

Homology 
Fork head domain (FHD), an approximately 110 amino 
acid segment is a common element shared by FOX 
proteins. Human Forkhead-box (FOX) gene family 
consists of at least 43 members, including FOXA1, 
FOXA2, FOXA3, FOXB1, FOXC1, FOXC2, FOXD1, 
FOXD2, FOXD3, FOXD4, FOXD5 (FOXD4L1), 
FOXD6 (FOXD4L3), FOXE1, FOXE2, FOXE3, 
FOXF1, FOXF2, FOXG1 (FOXG1B), FOXH1, 
FOXI1, FOXJ1, FOXJ2, FOXJ3, FOXK1, FOXK2, 
FOXL1, FOXL2, FOXM1, FOXN1, FOXN2 (HTLF), 
FOXN3 (CHES1), FOXN4, FOXN5 (FOXR1), 
FOXN6 (FOXR2), FOXO1 (FOXO1A), FOXO2 
(FOXO6), FOXO3 (FOXO3A), FOXO4 (MLLT7), 
FOXP1, FOXP2, FOXP3, FOXP4, and FOXQ1. 
FOXE3-FOXD2 (1p33), FOXQ1-FOXF2-FOXC1 
(6p25.3), and FOXF1-FOXC2-FOXL1 (16q24.1) loci 
are FOX gene clusters within the human genome. 
FOXC1, FOXC2, FOXE1, FOXE3, FOXL2, FOXN1, 
FOXP2 and FOXP3 genes are mutated in human 
congenital disorders (Katoh and Katoh, 2004). 
The forkhead box (Fox) family of transcription factors, 
which originated in unicellular eukaryotes, has 
expanded over time through multiple duplication 
events, and sometimes through gene loss, to over 40 
members in mammals (Hannenhalli and Kaestner, 
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2009) found out that Fox genes have evolved to acquire 
a specialized function in many key biological 
processes. Mutations in Fox genes have a profound 
effect on human disease, causing phenotypes as varied 
as cancer, glaucoma and language disorders. 

Mutations 
Germinal 
Deletion of distal 6p is associated with a distinctive 
clinical phenotype including Axenfeld-Rieger 
malformation, hearing loss, congenital heart disease, 
dental anomalies, developmental delay, and a 
characteristic facial appearance.  
By DNA sequencing of FOXC1 in 5 families and 16 
sporadic patients a 6p microdeletion resulted from a de 
novo 6:18 translocation was recognized. The same 
translocation was reported in a child with specific 
ocular and facial phenotype (Maclean et al., 2005). 
Detailed analysis confirmed deletion of the FOXC1, 
FOXF2 and FOXQ1 forkhead gene cluster at 6p25. It 
showed central nervous system (CNS) anomalies, 
including hydrocephalus and hypoplasia of the 
cerebellum, brainstem, and corpus callosum with mild 
to moderate developmental delay. 
The mouse gene Mf1 is homolog of FOXC1. 
Homozygous null Mf1-lacZ mice die at birth with 
hydrocephalus, eye defects, and multiple skeletal 
abnormalities identical to those of the classic mutant, 
congenital hydrocephalus. Kume et al. (1998) showed 
that congenital hydrocephalus involves a point 
mutation in Mf1, generating a truncated protein lacking 
the DNA-binding domain. Mesenchyme cells from 
Mf1-lacZ embryos differentiated poorly into cartilage 
in micro-mass culture and did not respond to added 
BMP2 and TGF-beta-1. The differentiation of 
arachnoid cells in the mutant meninges was also 
abnormal. 

Somatic 
Using genotyping and FISH as method of 
investigations, Lehmann et al. (2002) studied a 9-
generation Scottish family segregating autosomal 
dominant iridogoniodysgenesis. The team found an 
interstitial duplication of chromosome 6p25 which 
encompassed the FOXC1 gene. 
Nishimura et al. (2001) analyzed the coding region of 
the FOXC1 gene in 70 probands with congenital 
anterior chamber defects and detected 9 mutations, 8 of 
which were novel. Affected members from 2 families, 
one with iris-hypoplasia and the other with Peters 
anomaly, had 2 different partial duplications of 6p25, 
respectively, both encompassing the FOXC1 gene. 
These data suggested that both  
FOXC1 haploinsufficiency and increased gene dosage 
may cause anterior-chamber defects of the eye. 
Fetterman et al. (2009) identified a heterozygous 
FOXC1 missense mutation outside of the forkhead 

domain, and in the inhibitory domain, in 2 unrelated 
patients with iridogoniodysgenesis. 
Iridogoniodysgenesis phenotype is more commonly 
associated with FOXC1 duplications than point 
mutation.  
Honkanen et al. (2003) identified the F112S (a point) 
mutation in the FOXC1 gene in 5 affected members of 
a 4-generation family segregating autosomal dominant 
anterior segment defects, including a patient who also 
had Peters anomaly. 
Saleem et al. (2001) investigated 5 missense mutations 
of the FOXC1 transcription factor found in patients 
with Axenfeld-Rieger malformations to determine their 
effects on FOXC1 structure and function.  
Molecular modelling of the FOXC1 fork head domain 
predicted that the missense mutations did not alter 
FOXC1 structure.  
Biochemical analyses indicated that whereas all mutant 
proteins correctly localized to the cell nucleus, the 
I87M mutation reduced FOXC1 protein levels. DNA-
binding experiments revealed that although the S82T 
and S131L mutations decreased DNA binding, the 
F112S and I126M mutations did not.  
However, the F112S and I126M mutations decreased 
the transactivation ability of FOXC1. Saleem et al. 
(2003) studied an additional 5 missense mutations in 
the FOXC1 gene. Biological analyses indicated that all 
missense mutations studied caused various FOXC1 
perturbations, including nuclear localization defects, 
reduced or abolished DNA binding capacity, and a 
reduction in the transactivation capacity of FOXC1. 

Implicated in 
Breast cancer 
Note 
Methylation status of FOXC1 promoter can be related 
to invasiveness of breast cancer and patient survival.  
Higher methylation means lower expression and more 
invasiveness of tumour, in advanced breast tumors as 
concluded by Dejeux et al. (2010) and Muggerud et al. 
(2010) methylation levels of FOXC1 were higher in 
oestrogen receptor (ER) positive vs. ER negative 
tumours; whereas methylation levels lower in tumours 
with a TP53 mutation. FOXC1 showed a significant 
increase in the methylation frequency in invasive 
tumours. Low FOXC1 gene expression in both 
methylated and unmethylated DCIS (ductal carcinoma 
in situ) and IDCs (invasive ductal carcinomas) 
indicates that the loss of expression of FOXC1 happens 
at earlier stage during the progression of breast cancer. 

Prognosis 
Recently FOXC1 has been reported as potential 
prognostic biomarker with functional significance in 
basal like breast cancer by Ray et al. (2010) and Dejeux 
et al. (2010). 
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Invasive carcinoma 
Oncogenesis 
Zhou et al. (2002) showed that TGF-beta1 up regulated 
transcription of FOXC1 in a number of human cancer 
cell lines. In FOXC1 homozygous knockdown (-
foxc1/-foxc1) HeLa cell line, ectopic expression of 
FOXC1 cDNA restored the potential of TGF-beta1 to 
inhibit cell growth by arresting cells in the G0/G1 
phase. Which reveals the FOXC1 having a tumour 
suppressive function. Furthermore, screens of primary 
endometrial and ovarian cancers revealed that FOXC1 
was deleted in 6.7% out of 11.7% transcriptional 
silenced primary cancers. It suggests that FOXC1 
functions as a tumour suppressor through TGF-beta1 
mediated signals. 
Van der Heul-Nieuwenhuijsen et al. (2009) analysed a 
set of 12 different FOX genes, including FOXC1, by 
quantitative reverse transcription-polymerase chain 
reaction in prostate zones, prostate cancer, lymph node 
metastases, benign prostatic hyperplasia (BPH), 
xenografts and several prostate cell lines. Various 
members of the FOX family were differentially 
expressed in the zones of the normal prostate and in 
benign and malignant out-growths.  
The expression profiles of FOXF1 and FOXF2 suggest 
a role in epithelial to mesenchymal transition, while 
FOXA1 and FOXC1 expression is linked to androgen-
associated growth status of cancer. 
FOXC1 contribute to microvascular invasion in 
primary hepatocellular carcinoma, making FOXC1 a 
candidate predictive marker of microvascular invasion. 
Inhibition of FOXC1 may reduce tumour metastasis in 
hepatocellular carcinoma (liver cancer) (Xu et al., 
2012). 

Axenfield-Reiger Syndrome (ARS) or 
Axenfield-Reiger syndrome type 3 
(RIEG3) also known as Axenfield 
syndrome or Axenfield Anomaly 
Note 
Phenotype may show posterior corneal embryotoxon, 
prominent Schwalbe line and iris adhesion to the 
Schwalbe line. It may also show hypertelorism, 
hypoplasia of the malar bones, congenital absence of 
some teeth and mental retardation. Tooth anomalies are 
associated with Reiger syndrome. Glaucoma may occur 
in almost fifty percent of the patients with Axenfield-
Reiger malformations (Ito et al., 2007). 

Cytogenetics 
As results of different studies of ARS/ RIEG3 cases: 
Nishimura et al. (1998) found an 11-bp deletion 
upstream of the FOXC1 forkhead domain. The team 
also identified a C-to-T transition within the forkhead 
domain, causing a ser131-to-leu (S131L) amino acid 
substitution. The Nishimura team found a C-to-G 
transversion within the forkhead domain. This change 
resulted in an ile126-to-met (I126M) amino acid 

substitution. They also identified a T-to-C transition in 
the FOXC1 gene that resulted in a phe112-to-ser 
(F112S) transition within the forkhead domain. 
Mirzayans et al. (2000) found that Axenfeld-Rieger 
syndrome (RIEG3) was associated with a 67C-T 
transition in the FOXC1 gene, predicted to cause a 
gln23-to-ter (E23X) substitution upstream of the 
forkhead domain. 
Nishimura et al. (2001) found a 22-bp insertion from 
position 26 through 47 in the cDNA of theFOXC1 
gene. 
Mears et al. (1998) identified heterozygosity for a 
245G-C transversion in the FOXC1 gene, predicted to 
result in a ser82-to-thr (S82T) substitution at the start 
of helix 1 of the forkhead domain. They also identified 
a 261C-G transversion in the FOXC1 gene, resulting in 
an ile87-to-met (I87M) substitution in helix 1 of the 
forkhead domain. 
Ito et al. (2007) identified a heterozygous 388C-T 
transi-tion in the FOXC1 gene, resulting in a leu130-to-
phe (L130F) substitution in helix 3, the so-called 
'recognition helix' of the forkhead domain. 
Weisschuh et al. (2008) identified heterozygosity for a 
358C-T transition in the FOXC1 gene, resulting in a 
gln120-to-ter (Q120X) substitution causing truncation 
of part of the forkhead domain. 

Peters anomaly (PA) and 
Iridogoniodysgenesis anomaly (IGDA) 
Note 
IGDA is an autosomal dominant phenotype 
characterized by iris hypoplasia, goniodysgenesis, and 
juvenile glaucoma. 
Peters anomaly consists of a central corneal leukoma, 
absence of the posterior corneal storma and Descemet 
membrane, and a variable degree of iris and lenticular 
attachments to the central aspect of the posterior cornea 
(Honkanen et al., 2003). 

Cytogenetics 
As results of different studies of PA and IGDA cases: 
Lehmann et al. (2000) found by genotyping of FOXC1, 
with microsatellite repeat markers, the presence of a 
chromosomal duplication. 
Nishimura et al. (2001) identified a partial duplication 
of chromosome 6p25, which encompassed the FOXC1 
gene. 
Fetterman et al. (2009) identified heterozygosity for an 
889C-T transition in the FOXC1 gene, resulting in a 
pro297-to-ser (P297S) substitution in the inhibitory 
domain. 
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