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a b s t r a c t

Some new, simple and extremely fast bounding procedures are presented for large-scale instances of

the Simple Plant Location Problem. The lower-bounding procedures are based on dual ascent. The

fastest of them runs in Oðmn log mÞ time, where m and n are the number of locations and clients,

respectively. The upper-bounding procedures are based on iteratively dropping facilities, and the

fastest of them runs in Oðmðnþ log mÞÞ time. Extensive computational results show that, in practice, the

procedures give very good bounds extremely quickly.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the Simple Plant Location Problem (SPLP) we have a set I of
locations and a set J of clients. For any location iA I, the fixed cost of
opening a facility at i is fi. For any location iA I and any client jA J,
the cost of serving client j from an open facility at location i is cij. The
task is to decide where to open facilities, and to assign each client to
exactly one open facility, such that the total cost is minimised.

The SPLP is a well-known NP-hard combinatorial optimisation
problem that has received a great deal of attention. A survey of early
work on the SPLP (still relevant today) is given by Krarup and Pruzan
[20]. More recent surveys include Cornuéjols et al. [10] and Labbé
and Louveaux [23]. We remark that, in some papers, the SPLP is
called the Uncapacitated Facility Location Problem or UFLP.

The SPLP is normally formulated as the following Zero–One
Linear Program (0–1 LP):

min
X
iA I

fiyiþ
X
iA I

X
jA J

cijxij

s:t:
X
iA I

xij ¼ 1 ð8jA JÞ

yi�xijZ0 ð8iA I,jA JÞ

xijAf0,1g ð8iA I,jA JÞ

yiAf0,1g ð8iA IÞ:

Here, xij is a binary variable, taking the value 1 if and only if client
j is assigned to a facility at location i, and yi is a binary variable,
taking the value 1 if and only if a facility is opened at location j.

A key feature of this 0–1 LP is that its LP relaxation is typically
quite tight. Moreover, the dual of the LP relaxation can be solved
to near-optimality very quickly using dual ascent [5], dual
ll rights reserved.
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adjustment [11] or Lagrangian relaxation [4]. Even today, these
dual-based procedures remain the methods of choice.

Now, let m denote the number of locations and n the number
of clients. It is not hard to show (see Section 3.1) that the dual
ascent method runs in Oðm2nÞ time. This is of course polynomially
bounded, but it can be excessively high when m or n is large. In
this paper, we show how a simple modification to the algorithm
can significantly improve its speed in practice. We also present an
alternative dual ascent algorithm, which runs in Oðmn log mÞ

time, yet produces bounds of a similar quality.
In addition, we present a new upper-bounding procedure –

based on iteratively dropping facilities in non-increasing order of
reduced costs – that runs in Oðmðnþ log mÞÞ time. Because it is so
fast, we can safely call it several times, and keep the best upper
bound generated. We ensure, however, that it is called no more
than Oðlog mÞ times, to keep the running time small.

We remark that there exist some other effective lower- and
upper-bounding procedures for the SPLP, which we review in
Section 2. The emphasis in this paper is on procedures that are
extremely fast (in both theory and practice), conceptually simple,
and easy to implement.

The structure of the paper is as follows. In Section 2, the
relevant literature is reviewed. In Section 3, the running time of
the classical dual ascent procedure is analysed, and two modified
versions are presented. In Section 4, the new upper-bounding
procedure is presented, along with an analysis of its running time.
In Section 5, some encouraging computational results are
presented. Finally, concluding remarks are given in Section 6.
2. Literature review

We now review the literature. We cover lower bounds in Section
2.1, heuristics in Section 2.2, and exact methods in Section 2.3.
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2.1. Lower bounds

After some simplification, the LP relaxation of the above 0–1 LP
can be written in the following form:

min
X
iA I

fiyiþ
X
iA I

X
jA J

cijxij

s:t:
X
iA I

xijZ1 ð8jA JÞ

yi�xijZ0 ð8iA I,jA JÞ

xijZ0 ð8iA I,jA JÞ

yiZ0 ð8iA IÞ:

The lower bound from this relaxation is typically very tight (e.g.,
Ahn et al. [1], Morris [27], Mladenovic et al. [26]), but solving the
LP exactly can be time-consuming. Specialised solution methods
have been developed (e.g., Todd [31], Conn and Cornuéjols [9]),
but the most successful lower-bounding procedures for the SPLP
are based on solving the dual heuristically.

The dual takes the following form:

max
X
jA J

vj

s:t:
X
jA J

wijr fi ð8iA IÞ

vj�wijrcij ð8iA I,jA JÞ

vjZ0 ð8jA JÞ

wijZ0 ð8iA I,jA JÞ:

Bilde and Krarup [5] and Erlenkotter [11] independently observed
that there always exists an optimal solution to the dual in which
wij ¼maxf0,vj�cijg for all i and j. This leads to the following
so-called condensed dual:

max
X
jA J

vj

s:t:
X
jA J

maxf0,vj�cijgr fi ð8iA IÞ: ð1Þ

Bilde and Krarup [5] and Erlenkotter [11] independently
proposed a ‘dual-ascent’ heuristic for finding a feasible solution
to the condensed dual. It begins by setting vj to the cost of
assigning client j to the nearest facility. (This corresponds to
setting all of the w variables to zero.) It then iteratively tries to
increase each vj value to the cost of the next least expensive
facility, or, if this renders the solution infeasible, by as much as
possible while maintaining feasibility.

The starting point of the algorithm is to sort the cij values, for
each client j, in non-decreasing order. For j¼1, y, n and k¼1, y,
m, we let cj

k denote the kth cost in the jth sorted list. We also use
the convention cmþ1

j ¼1 for j¼ 1, . . . ,n. For a given dual solution
ðv1, . . . ,vnÞ, we let si denote the slack of the ith constraint of the
form (1). We also let k(j) denote, for each client j, the current
minimum value of k such that vjrck

j . A location i is called blocked

if si ¼ 0. A client j is called blocked if there exists a blocked location
i such that vjZcij. If client j is blocked then the dual value vj

cannot be increased.
A high-level description of the algorithm is as follows:
For each client j, do:
Sort the cij values in non-decreasing order.

Set vj :¼ c1
j and kðjÞ :¼ 1.

For each location i:

Set si :¼ fi.
Repeat the following until all clients are blocked:

For each unblocked client j, do:
Let Dj be the minimum of si over all i for which vjZcij.

If Dj ¼ 0, client j is blocked.
If vjþDj is greater than ckðjÞþ1
j

Set Dj to the difference between ckðjÞþ1
j and vj.

Increment k(j) by one.
If Dj40

Decrease si by Dj for all locations i such that vjZcij.

Increase vj by Dj.
At the end of this procedure, the sum of the vj variables is a
valid lower bound for the SPLP.

Erlenkotter [11] also proposed a ‘dual adjustment’ procedure
that can, and often does, improve the dual solution. Other
heuristics for solving the dual were proposed, for example, by
Körkel [19], Beasley [4], Jain and Vazirani [17] and Thorup [30].
For the sake of brevity, we do not review these developments in
detail.

2.2. Heuristics

A wide variety of primal heuristics (i.e., heuristics for produ-
cing feasible integral solutions to the 0–1 LP) have been proposed
in the literature. In the early literature, the heuristics were all of a
simple greedy nature, in which facilities were either iteratively
added or dropped. Examples include the ‘Add’ and ‘Bump-and-
Shift’ heuristic of Kuehn and Hamburger [22], the local search
heuristic of Manne [25], and the ‘Drop’ heuristic of Feldman et al.
[12]. Later on, some meta-heuristic approaches were explored,
such as genetic algorithms [21] and tabu search [29]. Also, there is
an extensive literature on approximation algorithms, i.e., heuristics
that have a proven a priori performance guarantee (e.g., Jain and
Vazirani [17], Mahdian et al. [24], Byrka and Aardal [6]).

A completely different class of primal heuristics consists of
those that attempt to exploit good dual solutions. Suppose that a
feasible dual vector vnAZn

þ has been obtained by one of the dual
heuristics mentioned in the previous section. Observe that the
quantity si ¼ fi�

P
jA Jmaxf0,vn

j�cijg, called the ‘slack’ in the dual
context, can be viewed as an estimate of the reduced cost of the
variable yi in the primal. This led Bilde and Krarup [5] and
Erlenkotter [11] to propose the following simple primal heuristic:
temporarily open a facility at every blocked location, assign each
client to the closest open facility, and then close any open facility
that does not have any client assigned to it.

When this primal heuristic is applied to small instances, the
resulting upper bound is typically quite good. Moreover, if multi-
ple dual solutions are available (for example, if a sequence of dual
adjustments is made), then multiple primal solutions can be
obtained, thus potentially leading to even better upper bounds
[11,19]. A more sophisticated variant of this primal–dual scheme
can be found in Hansen et al. [16]. See also Beasley [4] for a
similar heuristic scheme, adapted to the Lagrangian setting.

2.3. Exact methods

A standard way of solving combinatorial optimisation
problems to proven optimality is the branch-and-cut technique
of Padberg and Rinaldi [28]. A branch-and-cut algorithm for the
SPLP (in fact for a generalisation of it) was presented in Caprara
and Salazar-González [7]. This algorithm works well for very hard
instances, but for most instances it is better to use a branch-and-
bound framework in which fast combinatorial procedures are
used to produce the lower and upper bounds at each node of the
enumeration tree.

Erlenkotter [11] embedded his dual ascent/dual adjustment
procedure within a branch-and-bound scheme, using depth-first
search and branching on y variables. Some effective improvements
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to his approach were suggested by Van Roy and Erlenkotter [32] and
Körkel [19]. The most effective of these were an improved branching
rule, the generation of more primal solutions, and some rules for
eliminating variables on the basis of estimated reduced costs.

A similar scheme was proposed by Beasley [4], but using
Lagrangian relaxation to compute lower and upper bounds
instead of dual ascent and dual adjustment.

Finally, we mention that some authors have explored exact
solution methods based on the idea of converting the SPLP into a
pseudo-Boolean optimisation problem [13–15]. This approach
seems to work best when applied to very sparse instances. (An SPLP
instance is said to be sparse if cij ¼1 for the majority of pairs i,j.)
3. New dual-based procedures

3.1. Motivation

To our knowledge, an explicit analysis of the running time of
the classical dual ascent procedure has not appeared in the
literature. Fortunately, the analysis is straightforward, as shown
in the following lemma and proposition:

Lemma 1. The initial sorting of the assignment costs can be

performed in Oðmn log mÞ time.

Proof. The sorting of the assignment costs for an individual client
can be performed in Oðm log mÞ time using heapsort [33]. This can
be performed for each of the n clients. &

Proposition 1. The classical dual ascent procedure runs in Oðm2nÞ

time.

Proof. The number of times that we encounter a positive Dj value is
OðmnÞ, and, each time this happens, we have to update OðmÞ slacks.
The updating of the slacks is the bottleneck of the procedure. &

For very large SPLP instances, this can be rather time-consum-
ing, especially if one wishes to embed the procedure within a
branch-and-bound framework. We remark that very large values
of m and n can arise in real-life applications. Indeed, large values
of m can arise when a continuous location problem is discretised
(i.e., when a location problem with an infinite number of locations
is approximated by an SPLP instance with a large, but finite, set of
locations). Large values of n can arise simply because some
companies have thousands of clients.

As for the dual adjustment procedure, we have not seen a
formal analysis of its running time. We suspect that it can be
implemented to run in Oðm2n2Þ time, but we have not managed to
prove it. In any case, its running time is unattractive for very large
instances.

These considerations led to our search for faster ascent
procedures.

3.2. Enhanced ascent procedure

We now present an enhanced version of the classical dual
ascent procedure, which works significantly faster in practice.

A key concept in the enhanced procedure is that of the base

level. The base level is the largest value of k, with 1rkrm, such
that it is feasible to set vj to cj

k for all j. We have observed that, on
instances with large m, the dual ascent procedure spends well
over half the time incrementing the k(j) until they all reach the
base level. (A similar observation was made by Körkel [19].)
Fortunately, we have the following result:

Lemma 2. Let kn denote the base level. One can compute kn in

Oðnkn log knÞ time.
Proof. First, let k be a fixed integer, with 1rkrm. Simply by
checking the constraints (1), one can check in OðnkÞ time whether
it is feasible to set the dual variable vj to cj

k for each client jA J.

Now, starting with k¼1 and iteratively doubling k, one can find

in Oðnkn log knÞ time a value r such that 2r rknrminfm,2rþ1
g.

Next, by performing binary search over the interval

½2r ,minfm,2rþ1
g�, one can determine the exact value of kn in

Oðnkn log knÞ time. &

Since knrm, the time taken to compute the base level
is dominated by the initial sorting of the assignment costs
(Lemma 1).

Once the base level has been computed by binary search, one
can immediately set all dual values to the base level, and then use
standard dual ascent to complete the ascent process. This is what
we call the enhanced ascent procedure. Note that the time taken
after the base level has been found can still be significant, so that
the running time of the enhanced procedure remains Oðm2nÞ.
Nevertheless, as we will see, the running time is frequently
substantially reduced in practice.

3.3. Fast ascent procedure

When m and n are extremely large, even the enhanced ascent
procedure can be impractical. In this section, we present a new
ascent procedure, called fast ascent, that runs in Oðmn log mÞ time.
This is the same time as that taken for the initial sorting.

We will need the following lemma:

Lemma 3. Suppose that we are given a feasible solution vn to the

condensed dual, and we have already computed the corresponding

slacks si for all iA I. For any given client jA J, we can compute in OðmÞ
time the maximum amount by which vj can be increased, while

maintaining feasibility.

Proof. It suffices to compute, for all iA I, the maximum amount
by which vj can be increased, while maintaining non-negativity of
the slack si. &

Thus, to obtain the desired running time bound, it suffices to
ensure that each client’s dual value is increased no more than
Oðlog mÞ times. To achieve this, we perform a kind of binary search.

We are now ready to present the fast ascent procedure:
For each client j, do:
Sort the cij values in non-decreasing order using heapsort.

Compute the base level kn by binary search, as described
above.

Set vj :¼ ckn

j and kðjÞ :¼ kn for all j, and update the slacks si

accordingly.
Repeat the following until all clients are blocked:

For each unblocked client j, do:
Let Dj be the largest amount by which vj can be increased.

If Dj ¼ 0, client j is blocked.

If vjþDj is greater than ckðjÞþ1
j

Find the largest value k0ðjÞ such that ck0ðjÞ
j is no larger

than vjþDj.

Set kðjÞ :¼ kðjÞþk0 ðjÞ
2

l m
.

Set Dj to the difference between ckðjÞ
j and vj.

If Dj40

Increase vj by Dj.

Update the slacks si.

As mentioned above, the time taken for the sorting and for
computing the base level is Oðmn log mÞ. Now consider the
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remainder of the algorithm. For each client j, the quantity vjþDj is
non-increasing, which implies that k0ðjÞ is non-increasing as well.
Since we repeatedly set k(j) to the mean of k(j) and k0ðjÞ, the total
number of times vj is updated is Oðlog mÞ as desired.

Remark 1. Instead of replacing k(j) with dðkðjÞþk0ðjÞÞ=2e, as
described above, we can replace it with

ðt�1ÞkðjÞþk0ðjÞ

t

� �
,

where t41 is an arbitrary constant. The running time remains
Oðmn log mÞ, but the logarithm is to the base t=ðt�1Þ. As t

increases, the fast ascent routine becomes more and more similar
to the enhanced routine described in the previous subsection, but
the running time increases.

4. A new scheme for producing primal solutions

Now we turn our attention to primal heuristics, i.e., heuristic
procedures for producing good integer feasible solutions to the
SPLP. Since we are dealing with very large instances of the SPLP,
we are interested in heuristics that run extremely quickly.

Recall from Section 2.2 that a primal heuristic based on
opening ‘blocking’ facilities was described in [5,11]. It is not hard
to show that this heuristic, when applied to a single given dual
solution, can be implemented to run in OðmnÞ time. So, we
considered simply applying this heuristic to the dual solution
obtained from one of our dual ascent procedures. Our preliminary
computational experiments revealed, however, that this approach
usually performs very poorly.

We propose to use instead the following simple heuristic
scheme, which is based on iteratively ‘dropping’ facilities:

Sort the locations according to some pre-specified criterion.
Temporarily open a facility at every location (i.e., set yn ¼ 1 for

all iA I).
Assign each client to its nearest open facility.
For each location in the sorted list do:

Evaluate the effect on the cost of closing the facility at that
location.

If closing the facility would lead to a cost saving, close it.

The following proposition shows that this ‘drop heuristic’ can
be implemented so that it runs very quickly:

Proposition 2. Suppose that the initial sorting of assignment costs

has already been performed (i.e, for each client j, the locations

have already been sorted in non-decreasing order of cij). Suppose

also that the criterion for sorting the locations has been specified in

advance. Then the drop heuristic can be implemented to run in

Oðmnþm log mÞ time.

Proof. The first step is to sort the locations according to the
specified criterion, which can be performed in Oðm log mÞ time.

Now, we construct an array of length n, called nearest, with

the following interpretation. At any stage of the algorithm, if

nearest ½j� ¼ k, it means that the closest open facility to client j is

the kth nearest facility to client j. We also construct another array

of length n, called second_nearest, which is similar to nearest,

but stores the level of the second nearest open facility to each

client.

At the start of the heuristic, all facilities are open, and each

client is assigned to the nearest facility. Therefore we initialise

nearest ½j� :¼ 1 and second_nearest ½j� :¼ 2 for all jA J.

We now scan through the list of facilities. For each facility i,

we scan through the list of clients. For each client such that
nearest ½j� ¼ i, if any, we evaluate the effect on the cost of re-

assigning client j to the second closest open facility. If we then

decide to close facility i, we scan through the clients again, and

update the nearest and second_nearest arrays.

Now, the largest possible value of any entry in the two arrays is

m, and the value of each entry can only increase, not decrease.

Therefore the total amount of work spent in scanning and

updating arrays is OðmnÞ. &

The crucial choice to be made, of course, is the criterion by
which the locations are to be sorted. We have experimented with
three different criteria:
1.
 Sort in non-increasing order of fixed cost fi.

2.
 Sort in non-increasing order of si, where s is the vector of

slacks obtained at the end of the fast ascent procedure
described in the previous subsection.
3.
 Sort in non-increasing order of s0i, where s0 is the vector of
slacks obtained at the base level kn, i.e., when vj ¼ ckn

j for all j.

We call these approaches the standard, fast and base drop
heuristics, respectively. The results given in the next section
indicate that fast drop usually produce better upper bounds than
standard and base drop, but that there is no clear winner among
standard and base drop.

We have also experimented with the following more sophis-
ticated approach, which we call the multi-drop heuristic: after
each major iteration of the fast ascent procedure, the facilities are
sorted in non-increasing order of their current slack values, and
the drop heuristic is invoked. The best upper bound is then taken
over all major iterations. By ‘major iteration’, we mean a single
loop through all the clients. The number of major iterations is
Oðlog mÞ, which ensures that the total time taken by multi-drop is
Oðmn log mþm log2mÞ.

Note that the upper bound given by multi-drop is guaranteed
to be at least as good as the best of the upper bounds given by fast
and base drop. We will see in the next section that, in fact, all
drop heuristics give better upper bounds than the heuristic of
[5,11], and multi-drop in particular gives excellent bounds.
5. Computational experiments

In this section, we report the results of some computational
experiments.

We began by testing the procedures on the three largest
instances in the OR library [3], which are taken from Beasley [2].
For these instances, the assignment costs are distances between
random points in the plane, but with small random perturbations.
All three instances have m¼100 and n¼1000, and the optimal
solutions are known for all of them [3].

Table 1 reports, for each instance, the percentage gap between
various lower bounds and optimum. The lower bounds were
obtained using four different dual ascent procedures: classical,
enhanced, fast with t¼2 and fast with t¼10. (Recall that the
classical and enhanced ascent procedures yield the same dual
solution, and therefore the same lower bound.)

We see that the lower bounds from classical/enhanced ascent
are very good, whereas the lower bounds from fast ascent are
competitive only when the larger value for the parameter t is
selected.

The running times for the ascent procedures were negligible
(less than 15 ms) in every case.

Table 2 reports the results obtained when applying the various
primal heuristics to the OR-Lib instances. For each instance,
we display the instance name and the average percentage gaps



Table 1
Percentage gaps obtained when applying dual ascent routines to OR-Lib instances

with m¼100 and n¼1000.

Name % gap of lower bound

Class./enh. fast2 fast10

a 0.37 3.08 0.47

b 1.13 13.14 2.29

c 1.11 8.52 1.80

Mean 0.87 8.25 1.52

Table 2
Percentage gaps obtained when applying primal heuristics to OR-Lib instances

with m¼100 and n¼1000.

Name Block S-drop B-drop F-drop2 F-drop10 M-drop2 M-drop10

a 9.10 12.57 1.11 1.11 0.00 0.00 0.00

b 14.01 5.55 7.91 6.13 2.82 2.82 1.08

c 3.78 4.52 3.64 3.72 0.20 0.03 0.03

Mean 8.96 7.55 4.22 3.65 1.01 0.95 0.37

Table 3
Running times and percentage gaps obtained when applying ascent routines to

new large instances.

m¼n Running time (s) % gap of lower bound

Classical Enhanced fast2 fast10 Classical fast2 fast10

500 0.076 0.061 0.016 0.022 1.15 4.07 1.54

1000 0.411 0.323 0.056 0.111 0.95 3.84 1.48

1500 1.150 0.916 0.131 0.276 0.70 4.42 1.26

2000 2.530 1.998 0.234 0.469 0.63 4.78 1.43

2500 5.724 4.756 0.388 0.855 0.60 4.76 1.32

3000 9.978 8.227 0.575 1.358 0.84 5.38 1.76

Mean 3.312 2.714 0.233 0.515 0.81 4.54 1.47

Table 4
Percentage gaps obtained when applying primal heuristics to new large instances.

m¼n Block S-drop B-drop F-drop2 F-drop10 M-drop2 M-drop10

500 20.06 7.96 7.68 2.21 1.77 1.29 0.52

1000 21.40 8.25 11.08 1.78 2.05 0.81 0.79

1500 25.33 9.11 13.40 3.09 2.59 1.21 0.62

2000 27.62 8.33 11.90 2.71 1.94 1.37 0.68

2500 27.73 8.74 17.79 2.58 1.40 1.28 0.62

3000 26.84 9.36 14.19 2.59 1.80 1.42 0.72

Mean 24.83 8.63 12.67 2.49 1.93 1.23 0.66

Table 5
Running times and percentage gaps obtained when testing larger instances.

Size Running time (s)

Classical Enhanced fast2 fast10

5000 31.853 23.269 1.753 4.75

7500 98.304 72.954 4.410 11.29

10,000 192.779 140.466 9.569 23.07

12,500 318.058 234.707 23.928 54.45

15,000 494.387 353.172 54.664 122.70

Mean 227.076 164.914 18.864 43.15
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between the upper bounds and the optimum for seven different
primal heuristics: the one based on ‘blocking’ facilities, given in
[5,11], standard drop, base drop, fast drop with t¼2 and t¼10,
and multi-drop with t¼2 and 10.

We see that the heuristic based on blocking facilities performs
surprisingly poorly. The drop heuristics do bit better, and the
multi-drop heuristics are the clear winner. Again, the running
times were negligible.

Next, we decided to test the procedures on some larger
random instances. As usual in the literature (e.g., Ahn et al. [1],
Hansen et al. [16]), these instances were created by setting m

equal to n, setting each facility and customer location to a random
point in the unit square, setting assignment costs equal to the
Euclidean distance between the corresponding points, and taking
facility costs from a uniform distribution. In our case, the facility
costs are random numbers between

ffiffiffi
n
p

=3 and
ffiffiffi
n
p

=2. (Since the
ascent procedures require costs to be integers, all costs were then
multiplied by 5000 and rounded down to the nearest integer.)

To begin with, we created some instances with m and n

ranging from 500 to 3000. We were able to solve each of these
instances to proven optimality by running dual ascent, eliminat-
ing variables as in [4,19], and then running ILOG CPLEX 12.0 for a
long period of time. Although time-consuming, this enables us
to assess precisely the quality of the various lower and upper
bounds.

Tables 3 and 4 present the results for these instances. Each row
represents the average over 10 random instances. We remark
that, for the sake of brevity, we do not report running times for
the primal heuristics. As it turned out, these times were almost
always negligible in comparison with the time taken by the dual
ascent routines. The only exception was in the case of the multi-
drop heuristic, for which the running times were similar to the
time taken by the fast ascent algorithm (with the same value of t).

We see that the running times are quite small for these
instances, and usually below 1 s in the case of our fast procedures.
As before, the fast drop and multi-drop heuristics perform very
well, but one needs to use a reasonably large value of t to obtain
good lower bounds with the fast ascent procedure.

Finally, we ran the procedures on some large-scale instances,
with m and n ranging from 5000 to 15,000. The results are shown
in Table 5. Each row of the table represents the average over five
instances. As before, the times do not include the times for the
primal heuristics, which were in all cases much smaller than the
times taken by the ascent algorithms. We remark that, since these
instances were too large to solve to proven optimality, we report
the percentage gap between the lower and upper bounds.
Moreover, for the sake of space, we do not report the gaps for
the standard and base drop heuristics (which perform poorly in
any case).

For these instances, the running times and percentage gaps are
noticeably larger. Moreover, we were surprised to see just how
poorly the classical ‘blocking’ heuristic performs. On the other
Total % gap

Block F2 F10 M2 M10

3 32.31 6.98 4.41 6.09 3.16

7 40.41 7.95 5.43 7.09 3.76

2 45.63 8.23 5.01 7.43 3.15

0 47.24 9.44 4.78 7.65 3.49

47.15 9.32 5.81 7.87 3.62

4 42.55 8.39 5.09 7.23 3.44
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hand, we think it is promising that, using our new methods, one
can obtain lower and upper bounds differing by under 4% in a
couple of minutes even when m and n are as large as 15,000.

Finally, we remark that we would have liked to run our
algorithms on even larger instances, but ran into memory
limitations.
6. Conclusion

Large-scale SPLP instances can arise when there are thousands
of clients, or when a continuous location problem is discretised. We
have shown that it is possible to compute quickly reasonably good
lower bounds, and very good upper bounds, for such instances. In a
subsequent paper, we will show how to embed our fast lower- and
upper-bounding procedures in a sophisticated scheme for solving
large-scale instances to proven (near-)optimality.

We end the paper by making some remarks about sparsity (see
Section 2.3 for a definition). For a given client j, let dj denote the
number of locations for which cij is finite. Also define:

s¼
X
jA J

dj and d ¼max
jA J
fdjg:

It is not hard to implement the classical and fast ascent algo-
rithms so that they run in OðsdÞ and Oðs log dÞ time, respectively.
Moreover, sparse instances consume significantly less memory.
For this reason, we believe that our new algorithms could be used
to tackle sparse instances of extremely large size.
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[23] Labbé M, Louveaux F. Location problems. In: Dell’Amico M, Maffioli F,
Martello S, editors. Annotated bibliographies in combinatorial optimization.
Chichester: Wiley; 1997. p. 261–81.

[24] Mahdian M, Ye Y, Zhang J. Approximation algorithms for metric facility
location problems. SIAM Journal on Computing 2006;36:411–32.

[25] Manne AS. Plant location under economies-of-scale—decentralization and
computation. Management Science 1964;11:213–35.

[26] Mladenovic N, Brimberg J, Hansen P. A note on duality gap in the Simple Plant-
Location Problem. European Journal of Operational Research 2006;174:11–22.

[27] Morris J. On the extent to which certain fixed-charge depot location
problems can be solved by LP. Journal of the Operational Research Society.
1978;29:71–6.

[28] Padberg MW, Rinaldi G. Optimization of a 532 city symmetric traveling sales-
man problem by branch-and-cut. Operations Research Letters 1987;6:1–7.

[29] Sun M. Solving the uncapacitated facility location problem using tabu search.
Computers & Operations Research 2006;33:2563–89.

[30] Thorup M. Quick and good facility location. In: Proceedings of the 14th
annual ACM-SIAM symposium on discrete algorithms. Philadelphia: SIAM;
2003. p. 178–85.

[31] Todd MJ. An implementation of the simplex method for linear programming
problems with variable upper bounds. Mathematical Programming
1982;23:34–49.

[32] Van Roy TJ, Erlenkotter D. A dual based procedure for dynamic facility
location. Management Science 1982;28:1091–105.

[33] Williams JWJ. Algorithm 232—heapsort. Communications of the ACM
1964;7:347–8.


	Fast bounding procedures for large instances of the Simple Plant Location Problem
	Introduction
	Literature review
	Lower bounds
	Heuristics
	Exact methods

	New dual-based procedures
	Motivation
	Enhanced ascent procedure
	Fast ascent procedure

	A new scheme for producing primal solutions
	Computational experiments
	Conclusion
	Acknowledgements
	References




