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Identity 
Other names: EDG-4, EDG4, LPA-2, LPA2 

HGNC (Hugo): LPAR2 

Location: 19p13.11 

Note 
Found on human chromosome 19p12 (GeneBank 
Accession number AC002306) and mouse chromosome 
8 (Contos and Chun, 2000). 

DNA/RNA 
Description 
Both human and mouse LPA2 genes are present as a 
single copy and are divided among three exons with 
start and stop sites in the second and third exons, 
respectively (Contos and Chun, 2000). Introns are 

located upstream of the start codon and separate the 
coding region from the transmembrane domain VI.  
As seen by Northern blot analysis, there are two 
transcripts sizes for both human and mouse LPA2. In 
human, the transcript sizes are ~1.8kb and ~10kb and in 
mouse the transcript sizes are ~3kb and ~7kb (An et al., 
1998). 

Protein 
Note 
Human LPA2 encodes a protein with a predicted 351 
amino acid residues and molecular weight of 39.1 kDa.  
There is 90.8% sequence homology between mouse 
and human LPA2 amino acid sequences and 60% 
amino acid similarity with LPA1. Mouse LPA2 
encodes a protein with a predicted 348 amino acids and 
molecular weight of 38.9 kDa. 
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LPA2 is a G protein-coupled receptor (GPCR) that spans the plasma membrane seven times, hence having three extracellular and three 
intracellular loops. The C-terminus of LPA contains a di-leucine motif and several putative palmitoylated cysteine residues that associate 
with LIM-domain containing TRIP6 (Thyroid Hormone Receptor-Interacting Protein 6) and Siva-1 protein. LPA-dependent recruitment of 
TRIP6 to the plasma membrane promotes its phosphorylation and targeting to focal adhesions, and leads to cell adhesion and migration. 
SIVA-1 gets ubiquitinated in an LPA-dependent manner, leading to its degradation and subsequent decrease in its pro-apoptotic abilities. 
The last four amino acids at the C-terminus (DSTL) contain a PDZ-binding motif and interact with NHERF2 and MAGI-3. NHERF2 
clusters LPA2 and PLC-β, which then signals downstream IP3-dependent Ca++ mobilization and DAG-dependent PKC activation. MAGI-
3 has been shown to interact with LPA2 and regulate the activation of Erk and RhoA, leading to cell migration. MAGI-3 has also been 
shown to reciprocally regulate PLC-β and inhibit NHERF2-promoted tumor cell migration and invasion (Lee et al., 2011). LPA2 also 
couples to Gαi, Gα12/13, and Gαq, activating downstream signaling pathways that lead to cell survival, proliferation, and motility. 

 

Description 
LPA2 is a G-protein coupled receptor (GPCR) that 
belongs to the endothelial differentiation gene (Edg) 
family of receptors. It was first identified in 1998 
following a search in the GenBank for homologs to 
human EDG2 (LPA1) (An et al., 1998; Contos and 
Chun, 1998). 

Expression 
LPA2 has a more restricted expression pattern than that 
of LPA1. More information is currently available for 
LPA2 mRNA expression than protein expression, and 
there is a current need for well-validated LPA2-specific 
antibodies. 
Human: LPA2 mRNA is expressed in a variety of 
tissues including human testis, leukocytes, prostate, 

spleen, thymus, pancreas, and bone marrow (An et al., 
1998; Fang et al., 2002). The expression of LPA2 has 
also been noted in freshly isolated human blood CD4+ 
T cells, B cells, and Jurkat T cells (Zheng et al., 2000; 
Goetzl et al., 2000; Rubenfeld et al., 2006) as well as 
monocyte-derived dendritic cells (Chen et al., 2006; 
Oz-Arslan et al., 2006). Interestingly, Zheng et al. 
reported that LPA2 expression decreases in PMA-
activated CD4+ T cells, while others reported increased 
expression of LPA2 after T cell activation, hence future 
studies are needed to dissect the expression of LPA2 
during the activation of T cells (Zheng et al., 2000; 
Rubenfeld et al., 2006). LPA2 is also expressed on the 
apical surface of intestinal epithelial cells (Li et al., 
2005) and in the airway epithelia cells of human lung 
tissue (Barekzi et al., 2006). In addition, LPA2 is 
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expressed in epithelial cell lines: A549 and BEAS-2B 
(Barekzi et al., 2006). Interestingly, IL-13 and IFN-
gamma reduced LPA2 mRNA levels in the A549 cell 
line (Barekzi et al., 2006). 
In addition to its normal expression, LPA is also 
commonly increased in a number of human 
malignancies. LPA2 is aberrantly expressed in various 
cancer cells including ovarian cancer cell lines (Fang et 
al., 2000; Fang et al., 2002; Goetzl et al., 1999), the 
cervical cancer cell lines CaSki, HeLa, and SiHa (Chen 
et al., 2011), colorectal cancer (Shida et al., 2004), 
thyroid cancer (Schulte et al., 2001) and invasive ductal 
carcinoma breast cancer (Kitayama et al., 2004; Chen 
et al., 2007). It has been noted that LPA2 
overexpression is more commonly seen in 
postmenopausal breast cancer patients than in 
premenopausal patients (Kitayama et al., 2004). It is 
also expressed in nasal polyp tissue from subjects with 
chronic hyperplastic eosinophilic sinusitis (CHES) 
(Barekzi et al., 2006). 
In mice, LPA2 mRNA is expressed in kidney, uterus, 
and testis at relatively high levels, and moderately 
expressed in the lung. Lower levels of LPA2 are also 
seen in spleen, thymus, stomach, brain, and heart. 

Localisation 
LPA2 is a GPCR that spans the plasma membrane 
seven times and contains three extracellular loops and 
three intracellular loops. LPA2 is unique from the other 
LPA receptors as it contains two distinct protein-
protein interaction domains in the carboxyl-terminal 
tail (aa 296-351). In the proximal region, LPA2 
contains a di-leucine motif and several putative 
palmitoylated cysteine residues. This region is 
responsible for associating with zinc-finger proteins, 
including TRIP6 (Xu et al., 2004) and the proapoptotic 
Siva-1 protein (Lin et al., 2007). In the distal region, 
there are several serine and threonine residues that can 
be phosphorylated by G protein-coupled receptor 
kinases (GRKs) and may be involved in β-arrestin 
binding and receptor internalization. The last four 
amino acids of this region (DSTL) contains a class I 
PDZ-binding motif and mediates interactions with a 
number of proteins such as Na+/H+ exchanger 
regulatory factor 2 (NHERF2) (Oh et al., 2004; Yun et 
al., 2005), PDZ-RhoGEF and LARG (Yamada et al., 
2005), and MAGI-3 (Zhang et al., 2007). 

Function 
LPA2 is a GPCR that couples with and activates three 
heterotrimeric G proteins: Gi, Gq, G12/13. These G 
proteins transmit signals through downstream signaling 
molecules that include phosphatidylinositol 3-kinase, 
phospholipase C, Ras, Rac, and Rho. Activation of 
LPA2 therefore induces a range of cellular responses 
including cell survival and differentiation, cell 
migration, and roles in cancer metastasis. 
For example, LPA2 signaling is associated with cell 
survival and proliferation in ovarian cancer cells 

(Goetzl et al., 1999) and rescues intestinal epithelial 
cells-6 (IEC-6) from apoptosis through inhibition of 
caspase-3 activation (Deng et al., 2002). Likewise, 
LPA2 targets the pro-apoptotic Siva-1 protein for LPA-
dependent ubiquitination and degradation, thereby 
down regulating the pro-apoptotic activity of Siva-1 
during the DNA damage response (Lin et al., 2007). 
LPA2 is also involved in promoting cell motility. 
Jurkat cells that express LPA2 were reported to have 
enhanced trans-Matrigel migration (Zheng et al., 2001). 
It has also been shown that LPA binding to LPA2 leads 
to the recruitment of TRIP6, a focal adhesion molecule, 
to the C terminus of LPA2 at the plasma membrane. 
This promotes its targeting to focal adhesions and co-
localization with actin, thereby regulating LPA-induced 
cell migration (Xu et al., 2004; Lai et al., 2005). The 
PTPL1 phosphatase dephosphorylates TRIP6 and 
attenuates LPA-induced cell migration, thus acting as a 
negative regulator of cell motility (Lai et al., 2007). 
LPA2 has also been identified to be involved in 
regulating smooth muscle cell migration in the context 
of vascular injury (Panchatcharam et al., 2008). 
Recently, two groups have implicated LPA2 signaling 
in TGF-β activation in mouse models of lung fibrosis 
and ischemia-reperfusion injury. These studies have 
shown that LPA2 signaling through Gαq in human 
epithelial cells and proximal tubule cells activates 
RhoA and Rho kinase, leading to the activation of αvβ6 
integrin. This in turn, leads to the binding of latent 
TGF-β to αvβ6, and subsequent activation of TGF-β 
(Xu et al., 2009; Geng et al., 2012). 
LPA2 signaling has emerged as a potential factor in 
many cancer pathways. There is high expression of 
LPA2 in human thyroid cancer (Schulte et al., 2001), 
colorectal cancer (Shida et al., 2004), as well as in 
human invasive breast ductal carcinoma (Kitayama et 
al., 2004). LPA2 is involved in tumor growth and 
tumor angiogenesis of in vivo cervical cancer cells 
(Chen et al., 2011; Yu et al., 2008). LPA2 mediates 
mitogenic signals and cytokine production in human 
colonic epithelial cells (Yun et al., 2005). In pancreatic 
cancer cells, signaling through LPA2 leads to the 
inhibition of EGF-induced migration and invasion 
(Komachi et al., 2009).  
It also mediates chemotaxis in a Rho-dependent 
manner in breast carcinoma cells (Chen et al., 2007). In 
ovarian cancer cells, LPA2 signaling through Gαi/src 
leads to transactivation of EGFR and COX-2 
expression, and increased ovarian cancer motility and 
aggressiveness (Jeong et al., 2008). A role for LPA2 
and endometrial cancer invasion and MMP7 activation 
has also been shown (Mayer Hope et al., 2009). 
It has been reported that homozygous knock-out lpa2-/- 
mice display no obvious phenotypic abnormalities and 
are born at expected frequencies (Contos et al., 2002). 
Zhao et al. reported that heterozygous lpa2+/- mice are 
partially protected from lung inflammation following 
Schistosoma egg allergen (SEA) challenge (Zhao et al., 
2009). However, Emo et al. revealed that allergic lung 
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inflammation is significantly greater in lpa2-/- mice, 
suggesting that LPA2 plays a role in suppressing 
dendritic cell activation and allergic immune responses 
(Emo et al., 2012). 

Homology 
LPA2 has ~60% homology to LPA1. 

Mutations 
Note 
The first human LPA2 cDNA clone was derived from 
an ovarian tumor library, however it differed from 
reported human LPA2 sequences (An et al., 1998). The 
protein product from the ovarian tumor lacks the last 
four amino acids (DSTL) and is 31 amino acid residues 
longer at the C-terminus relative to the predicted 
protein product. The extra amino acids are the result of 
a guanine nucleotide deletion in the fourth to last codon 
(Contos and Chun, 2000). Additionally, in two human 
colon cancer cell lines, DLD1 and SW48, LPA2 and 
LPA4 were found to contain five mutations of G/C to 
A/T transitions (Tsujino et al., 2010). These mutated 
LPA2 receptors may alter LPA2 signaling through its 
respective G proteins and downstream pathways, and 
play a role in cancer progression. 

Implicated in 
Ovarian cancer 
Note 
LPA is present at high levels in the ascites fluid of 
ovarian cancer patients (Mills et al., 1990; Xu et al., 
1995), and LPA2 is aberrantly expressed in ovarian 
cancer cells, compared to normal ovarian epithelial 
cells (Fang et al., 2000; Fang et al., 2002). LPA2 is 
expressed at high levels on OV202 primary culture 
ovarian cancer cells, as well as in several established 
ovarian cancer cells lines, and is involved in promoting 
cancer cell proliferation (Goetzl et al., 1999). LPA can 
promote angiogenesis by increasing VEGF protein 
levels in SKOV-3, CAOV-3, and OVCAR-3 cells, 
which are LPA2-expressing ovarian cancer cell lines 
(Hu et al., 2001). Additionally, LPA2 signaling through 
Gαi/src leads to transactivation of EGFR and COX-2 
expression, and increased ovarian cancer motility and 
aggressiveness (Jeong et al., 2008). Furthermore, LPA 
stimulates expression of IL-8 and IL-6 in ovarian 
cancer cell lines (Schwartz et al., 2001) and ovarian 
cancer patients have elevated IL-8 and IL-6 cytokine 
levels in serum and ascitic fluid (Ivarsson et al., 2000; 
Penson et al., 2000). Fang et al. demonstrated that the 
IL-8 gene promoter contains a fragment 133-bp 
upstream of the transcription initiation site that has 
binding sites for NF-KB/RELA and AP-1 and is 
responsible for responses to LPA (Fang et al., 2004). 
Using a lentivirus to over-express LPA2, it was also 
shown that LPA2 elicited the most optimal responses to 
LPA, compared to other LPA receptors, and that LPA2 

is able to couple LPA to IL-8 and IL-6 expression in 
ovarian cancer cells (Fang et al., 2004). 
Using an siRNA approach to knock-down LPA2 in 
SKOV-3 ovarian cancer cells, Wang et al. showed that 
the levels of LPA-induced urokinase plasminogen 
activator (uPA), which is a serine protease inversely 
correlated with prognosis in ovarian cancer, is greatly 
decreased. LPA2-siRNA treated cells were also less 
invasive and less migratory in vitro (Wang et al., 2008). 

Cervical cancer 
Note 
Three cancer cell lines (CaSki, HeLa, and SiHa) 
express LPA2 mRNA, however it appears that LPA2 in 
these cells does not play a significant role in cancer cell 
proliferation in vitro (Chen et al., 2012). On the other 
hand, cervical cancer tumor growth and angiogenesis in 
vivo is dependent on LPA2 and LPA3. It was found 
that LPA induced IL-8 production in these cell lines, 
and when LPA2/3 is blocked, IL-8 expression was 
attenuated. Using in vitro angiogenesis assays, it was 
shown that the LPA-induced IL-8 expression in the 
cervical cancer cell lines led to increased angiogenesis, 
in an LPA2/3 dependent manner (Chen et al., 2012). 

Colorectal cancer 
Note 
LPA2 is highly expressed at the mRNA and protein 
levels in human colorectal cancers (Shida et al., 2004). 
In CACO-2 colon cancer cells, LPA2 interacts with 
Na+/H+ exchanger regulatory factor 2 (NHERF2) and 
mediates downstream signaling such as the activation 
of Akt, Erk1, Erk2, and IL-8 (Yun et al., 2005). MAGI-
3 has also been shown to reciprocally regulate PLC-β 
and inhibit NHERF2-promoted tumor cell migration 
and invasion (Lee et al., 2011). The importance of 
LPA2 in contributing to colon cancer progression was 
elucidated using LPA2 knock-out (LPA2-/-) mice. 
These studies revealed that colon cancer was markedly 
diminished in LPA2-/- mice, with less epithelial cells 
proliferation, decreased MCP-1 and MIF levels, and 
decreased inflammatory macrophage infiltrates (Lin et 
al., 2009). 

Thyroid cancer 
Note 
LPA2 mRNA expression is increased in both human 
papillary and follicular differentiated thyroid cancer, 
compared to normal thyroid or goiters, suggesting its 
role in thyroid cancer pathogenesis (Schulte et al., 
2001). 

Breast cancer 
Note 
In human invasive ductal carcinoma (breast cancer) 
tissue, LPA2 mRNA and protein expression are 
enhanced (Kitayama et al., 2004; Li et al., 2009). 
Interestingly, immunohistochemical analyses revealed 
that LPA2 is upregulated more frequently in 
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postmenopausal women than in premenopausal women, 
suggesting that the over-expression of LPA2 is 
associated with the progression of breast cancer in 
postmenopausal women (Kitayama et al., 2004). 
The breast cancer cell lines BT-20, MCF-7, MDA-MB-
453, and MDA-MB-468 show predominant expression 
of LPA2 (Chen et al., 2007). When examining the BT-
20 cell line closely, it was found that LPA activates 
RhoA, leading to increased chemotaxis. By knocking 
down LPA2 with siRNA, it was confirmed that LPA2 
mediates the activation of RhoA and enhanced 
migration, and can act cooperatively with LPA1 (Chen 
et al., 2007). 

Pancreatic cancer 
Note 
LPA2 inhibits the migration of invasive pancreatic 
cancer cells, while LPA1 stimulates migration of these 
cells (Komachi et al., 2009). The inhibitory migration 
response can be attenuated when LPA2 is knocked 
down using siRNA, or when LPA2 is agonized using 
an LPA2-specific agonist, LP-105. By blocking 
Gα12/13 and deactivating Rho, it has been suggested 
that LPA-LPA2 inhibits EGF-induced migration 
through the Gα12/13 and Rho-signaling pathways 
(Komachi et al., 2009). 

Endometrial cancer 
Note 
HEC1A endometrial cancer cells predominantly 
express LPA2 and its expression is increased upon LPA 
stimulation (Mayer Hope et al., 2009). When LPA2 is 
knocked down using siRNA, HEC1A cell invasion and 
MMP-7 and MMP-2 secretion and activation is 
markedly reduced, however the migration capacity of 
the cells is not significantly changed (Mayer Hope et 
al., 2009). 

Gastric cancer 
Note 
In the gastric cancer cell lines, MKN28, MKN45, 
MKN74, and KATO III, LPA2 mRNA is significantly 
expressed (Shida et al., 2004). In chemotaxis assays, 
LPA was not able to induce migration of MKN28 or 
MKN74 cells, however, when hepatocyte growth factor 
(HGF) was added, LPA induced dose-dependent cell 
migration. In addition, using immunoprecipitation 
analysis, it was shown that LPA induced tyrosine 
phosphorylation of c-Met in these cells, suggesting that 
LPA and HGF induce a cooperative migratory response 
caused by the transactivation of c-Met (Shida et al., 
2004). 
LPA2 is over-expressed in human gastric cancer, and is 
found more frequently in the intestinal type (67%) than 
in the diffuse type gastric cancer (32%) (Yamashita et 
al., 2006). However, LPA2 expression is more 
correlated with a higher rate of lymphatic invasion, 
venous invasion, and lymph node metastasis in diffuse-

type gastric than in intestinal type gastric cancer 
(Yamashita et al., 2006). 

Allergic lung inflammation 
Note 
In a murine model of allergic airway inflammation 
using SEA-sensitization, Zhao et al. show that Lpa2+/-

heterozygous mice have reduced airway inflammation 
and pathogenesis of asthma (Zhao et al., 2009). This 
suggests that LPA2 may play a critical role in the 
detrimental effects of the onset of asthma in this model 
of the disease. However, recently a novel role for LPA2 
in suppressing dendritic cell activation and allergic 
immune responses has been reported (Emo et al., 
2012). Emo et al. showed that Lpa2-deficient bone 
marrow-derived dendritic cells are hyperactive 
compared to wild-type cells in that they can stimulate 
greater CD4+ T cell proliferation and induce higher 
levels of IL-13 secretion from T cells in co-culture.  
In a model of allergic airway inflammation, Lpa2-
deficient mice succumbed to greater allergic lung 
inflammation, as seen by higher BAL cell counts, 
increased eosinophilia, increased airway 
hyperresponsiveness, and greater serum IgE levels. 
These data suggest that LPA2 may be acting as an 
inhibitory receptor to possibly dampen innate immune 
responses, particularly in this model of allergic airway 
inflammation. 

Disease 
Asthma. 

Fibrosis 
Note 
TGF-β has known roles in the pathogenesis of lung 
inflammation and fibrosis. In models of bleomycin-
induced lung injury and renal ischemia-reperfusion 
injury, LPA2 signaling through Gαq activates αvβ6 
integrin through a Rho and Rho-kinase dependent 
mechanism. Activated αvβ6 can bind to latent TGF-β, 
leading to its activation (Xu et al., 2009; Geng et al., 
2012). 
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