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ABSTRACT
Social recommendation has been an active research topic over the
last decade, based on the assumption that social information from
friendship networks is bene�cial for improving recommendation
accuracy, especially when dealing with cold-start users who lack
su�cient past behavior information for accurate recommendation.
However, it is nontrivial to use such information, since some of a
person’s friends may share similar preferences in certain aspects,
but others may be totally irrelevant for recommendations. �us
one challenge is to explore and exploit the extend to which a user
trusts his/her friends when utilizing social information to improve
recommendations. On the other hand, most existing social recom-
mendation models are non-interactive in that their algorithmic
strategies are based on batch learning methodology, which learns
to train the model in an o�ine manner from a collection of training
data which are accumulated from users� historical interactions with
the recommender systems. In the real world, new users may leave
the systems for the reason of being recommended with boring items
before enough data is collected for training a good model, which re-
sults in an ine�cient customer retention. To tackle these challenges,
we propose a novel method for interactive social recommendation,
which not only simultaneously explores user preferences and ex-
ploits the e�ectiveness of personalization in an interactive way,
but also adaptively learns di�erent weights for di�erent friends.
In addition, we also give analyses on the complexity and regret of
the proposed model. Extensive experiments on three real-world
datasets illustrate the improvement of our proposed method against
the state-of-the-art algorithms.

1 INTRODUCTION
Recommender systems have become a hot research topic in
academia and been widely adopted in industry as well. Moreover,
the rising of social networks and rapid development of web services
actuate the emergence of recommendation in social media. People
not only rate movies or TV series on IMDB, but also interact with
each other on Facebook and see the latest updates of their favorite
idols on Twi�er. �is brings the idea of social recommendation
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which tries to utilize available information (e.g., ratings) from users’
friends to infer their preferences. Lots of existing work [1–12] has
proved that incorporating social information from social networks
does help to improve the accuracy of conventional recommendation
methods [16–18]. At the same time, as more and more web service
providers begin incorporating social elements into their services,
social recommendation has also become a well studied topic in
which most of their algorithmic strategies are to learn the model
o�-line via batch learning without any interactions from users. �e
training data in batch learning is normally obtained through the ac-
cumulation of users’ historical interactions with the recommender
systems, which may run the risk of users in real world leaving the
systems because of many boring items being recommended to them
before enough data is collected for training a good o�-line model,
resulting in ine�cient customer retention. Besides, although social
information from friends has been proved to be very useful for the
improvement of recommendation accuracy, some of these friends
may share similar preferences with the target user while others may
be totally irrelevant for recommendations because of domain dif-
ferences. �is poses two challenges to us: �rst, how can we provide
good-quality recommendations as soon as possible even when the
target user has li�le past behavior data in order to maximize user
retention in social recommendation; second, how to dynamically
learn di�erent weights for di�erent friends which can best serve the
recommendation accuracy when receiving more and more feedback
from users.

To handle the �rst challenge, multi-armed bandit (MAB) serves
as a competent candidate for recommendation with user inter-
actions given its capability of simultaneously exploiting existing
information that matches user interest and exploring new infor-
mation that can improve global user experience, which is known
as the exploitation-exploration trade-o� dilemma. �us casting the
mechanism of multi-armed bandit into social recommendation can
help mitigate the dilemma of user retention. A signi�cant amount
of work has been done on stochastic multi-armed bandit algo-
rithm to provide principled solutions to the exploitation-exploration
dilemma [51, 53, 55, 56]. In addition to the vanilla stochastic linear
bandit models, contextual bandit algorithms [23, 34, 43, 50] become
promising solutions when side information like contextual content
(e.g., texts, tags, etc.) about users and items is available in scenarios
such as mobile recommender systems [36], news recommenda-
tion [45] and display advertising [39, 44]. In general, the multi-
armed bandit based algorithms try to get a good understanding of
user preferences and thus achieve a high-quality recommendation
as soon as possible through collecting a small amount of interactive
feedback (e.g., behaviors such as ratings, clicks and favorites etc.)
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from users. We will give a detailed description on how multi-armed
bandit can be incorporated into social recommendation later.

As for the second challenge, it is also necessary to exploit and
explore the extend to which the current user trusts her friends when
utilizing social information to improve recommendations. Since our
goal is to adaptively learn the weights of di�erent friends as more
and more user interactive feedback becomes available, we employ
a modi�ed multi-arm bandit schema to dynamically update these
weights upon receiving new feedback from users a�er they interact
with the systems (e.g., give feedback such as clicks or ratings).

On the other hand, all the contextual bandit models we men-
tioned utilize content data such as tags and texts to construct an
explicit feature vector (for each user and item) which will be used
to determine the expected reward of the bandit. In practice, it is not
always the case that the content data used to extract user and item
feature vectors can be easily obtained, which makes the contextual
bandit algorithms ineligible for producing accurate recommenda-
tions. Inspired by Zhao et al.’s work [33] and Qin et al.’s work [32],
we borrow the idea from matrix factorization [16] which factorizes
the observed user feedback into latent feature vectors in order to
address our social recommendation problem in the scenario where
there is no content information to construct explicit feature vectors
and only user feedback (e.g., ratings, clicks, bookmarks etc.) can be
observed. We employ the factorized latent user and item feature
vectors to represent content information, extend the classical ma-
trix factorization and combine it with the contextual multi-armed
bandit in social recommendation.

In summary, we make the following contributions.
• We propose a novel interactive social recommendation model
(ISR) which di�ers from and is superior to previous work in
the following aspects.
(1) Previous work on social recommendation [1–12] does not

consider interactive learning.
(2) Given a user in social recommendation, some existing

methods simply compute the weights (i.e., degree of trust)
for his/her friends uniformly (i.e., give equal weight to
every friend) [1, 2, 4], which is a suboptimal solution be-
cause of the domain di�erences. Some others obtain these
weights by calculating the rating similarities between the
given user and his/her friends [2, 7], which is in a static
way as well.
�is being the case, our solution is novel in the sense of
adaptively learning these weights.

• We give a rigorous regret analysis to show that part of our pro-
posed interactive social recommendation model has a regret
bound of O(

√
T ).

• We conduct extensive experiments on three real-world
datasets and demonstrate the improvement of our proposed
ISR model against the state-of-the-art methods.

2 RELATEDWORK
�ere has been no shortage of existing work on social recommenda-
tion whose appearance should be a�ributed to the advent of social
networks. As the rich information on social network becomes avail-
able [13, 15], social recommendation which makes use of social in-
formation from social networks to enhance recommender systems

has a�racted lots of a�ention from researchers due to the encourag-
ing improvement (particularly for cold-start users) obtained against
its non-social counterpart. Indeed, we are inevitably much easier to
be in�uenced by our friends than strangers to change habits, adopt
novel technologies, accept new ideas etc. �erefore, the purpose of
social recommendation [1–8, 10–12] is to utilize the information
of social in�uence inferred from social networks to help boost the
performance of traditional methods such as collaborative �ltering
in recommender systems. More speci�cally, Ma et al. [1] propose a
probabilistic matrix factorization model which factorizes user-item
rating matrix and user-user linkage matrix simultaneously. �ey
later present another probabilistic matrix factorization model which
aggregates a user’s own rating and her friends’ ratings to predict
the target user’s �nal rating on an item. In [4], Jamali and Ester
introduce a novel probabilistic matrix factorization model based on
the assumption that users’ latent feature vectors are dependent on
their social ties’. Last but not least, Wang et al. [12, 14] propose to
distinguish di�erent tie types in social recommendation through
presenting a method which can simultaneously classify strong and
weak ties in a social network with respect to optimal recommenda-
tion accuracy as well as learn the latent feature vectors for users
and items.

�ere always exists a trade-o� between utilizing the information
available so far (exploitation) and acquiring new knowledge (explo-
ration). �is kind of problems has been widely studied extensively
in many �elds such as Machine Learning, �eoretical Computer Sci-
ence, Operations Research etc. �is mature, yet very active, research
area is known as “multi-armed bandit” in literature [44, 46, 48, 49].

Being �rst introduced by Robbins [58], multi-armed bandit is
able to provide us with a clean, simple theoretical formulation for
analyzing the trade-o� between exploration and exploitation, and
thus has been widely utilized by researchers to solve the challenges
in balancing the trade-o� faced by exploitation-exploration prob-
lems. We refer readers to [30, 51, 54] for a more general treatment.

Depart from the conventional stochastic multi-armed ban-
dit [51, 55, 56], contextual bandit algorithms [20–25, 28, 29, 31,
35, 36, 38, 42, 45, 47, 50, 52] have a�racted lots of a�ention from
researchers because they have achieved much more promising per-
formance than their context-free counterparts. Contextual bandit
se�ings normally assume that the expectation of the reward (also
known as payo�) for an action of a user on an item is a linear
function of the corresponding context, e.g., the dot product of user
feature vector and item feature vector[50], which gives much �exi-
bility for di�erent choices of expected reward function. For instance,
Chu et al. [38] and Li et al. [45] use ridge regression to calculate
the expectation and con�dence interval of the reward of an action.
In particular, methodology for the unbiased evaluation of context
bandit algorithm is introduced in [42]. Besides the linear reward,
Filippi et al. propose a parametric bandit algorithm for non-linear re-
wards. Later, a general approach to encoding prior knowledge for ac-
celerating contextual bandit learning is introduced in [35] through
employing a coarse-to-�ne feature hierarchy which dramatically
reduces the amount of exploration required. Boune�ouf et al. [36]
investigate exploitation and exploration dilemma in mobile context-
aware recommender systems and present an approach to the adap-
tive balance of exploitation/exploration trade-o� regarding the
target user’s situation. By utilizing a Gaussian process kernel and
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taking context into consideration, Vanchinathan et al. [29] intro-
duce a novel algorithm that can e�ciently re-rank lists to re�ect
user preferences over the items displayed. Moreover, a contextual
combinatorial bandit that plays a “super arm” at each round is
proposed by Qin et al. [32] to dynamically identify diverse items
which new users are very likely to be fond of. Tang et al. explore
ensemble strategies of contextual bandit algorithms to obtain ro-
bust predicted click-through rate of web objects [31], and later they
propose a parameter-free bandit strategy which uses online boot-
strap to derive the distribution of predicting models [25]. Recently,
a combination of linear bandit with cascade model is introduced
in [21] to deal with the large-scale recommendation and the dynam-
ical pa�ern of reward as well as the context dri� in the course of
time is taken into account to formulate a time varying multi-armed
bandit by Zeng et al. [22].

Others have also explored another variant which is designed to
model dependency in the bandit se�ing [20, 23, 24, 27, 28, 34, 37].
In particular, authors in [27, 34] conduct investigations about con-
textual bandit with the probabilistic dependencies of context and
actions being taken into consideration. Gentile and Li et al. [24, 28]
investigate adaptive clustering algorithms based on the learntmodel
parameters for contextual bandit under the assumption that con-
tent is recommended to di�erent groups (clusters) of users such
that users within each group (cluster) tend to share similar interest,
followed by Zhou and Brunskill who propose a contextual bandit
algorithm that explores the latent structure of users through learn-
ing the distribution of users over di�erent (�xed number) latent
classes to make personalized recommendations for new users [20].

�ere is also some work that incorporates matrix factorization
into the bandit se�ing [26, 33], among which Kawale et al. [26]
employ �ompson sampling to perform online recommendation
and Zhao et al. [33] propose an interactive collaborative �ltering
method based on probabilistic matrix factorization. We remark that
neither of these models takes social information into consideration.

Cesa-Bianchi et al. [34], Wu et al. [23] andWang et al. [19] study
the bandit se�ing where information from social networks is taken
into account. Speci�cally, Cesa-Bianchi et al.’s model utilizes a
graph Laplacian to regularize the model so that users and their
friends have similar bandit parameters and Wu et al.’s model, on
the other hand, assumes the reward in bandit is generated through
an additive model, indicating that friends’ feedback (reward) on
their recommendations can be passed via the network to explain
the target user’s feedback (reward). Wang et al. examine the bandit
se�ing from another view through combining it with matrix com-
pletion. However, all the proposed models in [19, 23, 34] assume
the weights for di�erent friends to be �xed, without learning these
weights adaptively to best serve the recommendation accuracy. Be-
sides, their focus is orthogonal to ours in this work as they are based
on explicit features whose model formulations and experimental
se�ings are di�erent from those based on latent features.

3 MULTI-ARMED BANDIT METHODOLOGY
IN RECOMMENDATION

In practice, we o�en face many situations where it is necessary
to �nd a balance between exploiting our current knowledge and
obtaining new knowledge through searching unknown space. Take

recommender systems as an example, ultimately we would like to
recommend “good” items to users with the best knowledge we have
so far as well as explore users’ other interests which we have no idea
about through exposing some “random” items to them and observ-
ing their corresponding reactions to these random recommenda-
tions. As is discussed previously, multi-armed bandit is adequate as
an appropriate solution for this exploitation-exploration dilemma.
In this section, we will give a mathematical description of the gen-
eral idea for multi-armed bandit (MAB) strategy in the context
of recommender systems, as well as several existing multi-armed
bandit models which are to be used as baselines for comparison
with our proposed model in the experiments.

Formally, a K-armed bandit consists of K arms, representing K
candidate items to be recommended to a user and pulling an arm
means recommending an item to a user. In a general stochastic
formation, for each user u, these K arms can also be treated as
K probability distributions [Du,1,Du,2, · · · ,Du,K ] with associated
expected values (i.e., means) [µu,1, µu,2, · · · , µu,K ] and variances
[σu,1,σu,2, · · · ,σu,K ] where the distribution Du,i is initially un-
known. A bandit algorithm proceeds in discrete trials (rounds)
t = 1, 2, 3, · · · , and given a user u, it chooses one item i out of the
K candidates(through pulling one of the K arms) and recommends
it to the user u in each trial (round). A�er each recommendation,
the algorithm receives a reward ru,i (t) ∼ Du,i (t) for picking item
i as the recommendation for user u. �e total expected regret is
used to measure the performance of bandit algorithms. For a bandit
algorithm running totally T trials (rounds), the total expected regret
RT is de�ned as follows:

RT =
∑
u∈U

[
E

[ T∑
t=1

µ∗

]
− E

[ T∑
t=1

µu,i (t )
] ]

, (1)

whereU is the set of users for evaluation and µ∗ =max j=1,2, · · · ,K µ j
is the expected reward from the best arm (i.e., best candidate item)
in each round. Our objective is to �nd an optimal set of items,
minimizing the total expected regret RT , as the recommendation
for each user, which equals to maximizing the cumulative expected
reward during T rounds for every user:

Iu (T ) =
T⋃
t=1

argmax
i

E[ru,i (t )] =
T⋃
t=1

iu (t ) . (2)

Most bandit strategies maintain empirical average rewards which
will be updated in every round for each arm chosen. We denote
r̂u,i (t) as the empirical average reward of arm (i.e., item) i a�er t
rounds for user u, and pu,i (t) as the probability of picking arm i for
user u (i.e., recommending item i to user u) in round t .
ϵ-greedy. �e ϵ-greedy algorithm is widely used because of its sim-
plicity, and obvious generalizations for sequential decision prob-
lems. In each round t = 1, 2, · · · the algorithm selects the item
with the highest empirical average reward from the K candidate
items with probability 1 − ϵ , and selects a random item with prob-
ability ϵ . In other words, given initial empirical average rewards
r̂u,1(0), r̂u,2(0), · · · , r̂u,K (0) for user u,

pu,i (t + 1) =

1 − ϵ + ϵ/K, if i = argmax

j=1, ··· ,K
r̂u, j (t )

ϵ/K, otherwise.
(3)

Boltzmann Exploration (So�max). So�max methods are based
on Luce’s axiom of choice [57] and pick each item for recommen-
dation with a probability that is proportional to its average reward.
�erefore items with greater empirical average rewards should be
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picked with higher probabilities. In the following we will describe
Boltzmann Exploration [41], a So�max method which selects an
item using a Boltzmann distribution. Given the initial empirical
average rewards of the K candidate items for user u (denoted as
r̂u,1(0), r̂u,2(0), · · · , r̂u,K (0)), the probability of picking item i as
recommendation for user u in round t + 1 is:

pu,i (t + 1) =
e r̂u,i (t )/τ∑K
j=1 e

r̂u, j (t )/τ
, (4)

where τ is a temperature parameter controlling the randomness
of the choice. We would like to point out that Boltzmann Explo-
ration acts like pure greedy when τ tends to 0, and selects items
for recommendations uniformly at random as τ tends to in�nity.
Upper Con�dence Bounds (UCB). Lai and Robins are the �rst to
introduce the technique of upper con�dence bounds for the asymp-
totic analysis of regret in stochastic bandit models [55]. Later Auer
employs the UCB based algorithm to show how con�dence bounds
can be applied to elegantly deal with the trade-o� between exploita-
tion and exploration in online learning [52].�en the family of UCB
algorithms are proposed in [51] as a simple and elegant implemen-
tation of the idea for optimism under uncertainty. In addition to
the empirical average reward, UCB maintains the number of times
that each item is picked for recommendation up to round t as well.
Initially all the items are assumed to be chosen once and a�erwards
the algorithm greedily selects item i in round t as follows:

i(t ) = argmax
j=1, ··· ,K

(
r̂u, j (t ) +

√
2 log t
nj (t )

)
, (5)

wherenj (t) represents the number of times item j has been selected
for recommendations so far. We note that r̂u, j (t) is the empirical
mean estimate of ru, j (t) in round t given previous observations in

the past t − 1 rounds and
√

2 log t
nj (t )

is an upper con�dence bound.

�is can be interpreted as a good trade-o� between exploitation,

i.e., r̂u, j (t), and exploration, i.e.,
√

2 log t
nj (t )

.

Linear UCB (LinUCB). Li et al. propose a linear model under
the UCB framework (called LinUCB) through combining linear
bandit and contextual bandit together to focus on the problem of
personalized news article recommendation [45]. LinUCB assumes
that the mean of ru,i (t) can be obtained through the dot product
of an item-dependent coe�cient with the concatenation of user
u’s and item i’s feature vectors in round t , which is linear with
respect to the item-dependent coe�cient given that the user and
item feature vectors are known to us.

However, explicit feature vector may not be always available in
practice. Take movie recommendation as an example, most of the
state-of-the-art methods are based on collaborative �ltering where
user and item latent feature vectors are learnt through low rank
matrix factorization. �erefore, given the success of collaborative
�ltering in recommender systems, we formulate LinUCB through
employing the latent feature vectors learnt by low rank matrix
factorization instead of explicit feature vectors extracted directly
from texts or labels in this paper, which is similar to algorithm 2
in [33].

As such, a common strategy widely adopted by many matrix fac-
torization based collaborative �ltering algorithms is to approximate
the feedback (e.g., ratings, clicks etc.) through the inner product of

user and item latent feature vectors (pu and qi ):

ru,i = pᵀuqi . (6)

To incorporate the low rank matrix factorization into LinUCB, we
reformulate the bandit strategy for item selection in the same way
as [33]:

i(t ) = argmax
j=1, ··· ,K

E
[
ru, j (t )

]
= argmax
j=1, ··· ,K

Epu
[
pᵀu |t

]
qj

= argmax
j=1, ··· ,K

(
p̂ᵀu,t qj + c

√
qᵀj Σ−1u,t qj

)
. (7)

And we treat the user feedback for an item as the reward of picking
this item for recommendation.

We conclude this section by pointing out that all of these existing
models handle users’ preferences over items without considering
the in�uences from their friends on social networks, nor do they
adaptively learn the di�erent weights for di�erent friends to best
serve the recommendation accuracy. �is motivates us to develop
a novel multi-armed bandit (MAB) model that is capable of taking
not only user-item interactions but also social information from
social networks into consideration and learning these weights dy-
namically so that a boost in terms of recommendation quality can
be achieved.

4 INTERACTIVE SOCIAL
RECOMMENDATION

In this section, we propose our interactive social recommendation
model (ISR) which is capable of re�ning itself to best serve the
customers a�er each interaction with a user.

Let U be the set of users for evaluation and I be the set of
candidate items, given a user u ∈ U, Nu denotes the set of her
friends, i.e., her directly connected users, and wu,f is the weight
for the edges (connections) between user u and her friend f ∈ Nu .
Recall that the vanilla matrix factorization presented in (6) has been
widely adopted by collaborative �ltering in both academia and in-
dustry [17]. �us given the great success of matrix factorization in
recommendation during the past years, lots of social recommen-
dation models [1, 2, 4, 5, 10] actually are extensions based on the
vanilla matrix factorization, among which Ma et al. propose the
STE (Recommendation with Social Trust Ensemble) model that uses
a weighted aggregation of a user’s own preferences and her friends’
preferences to predict the target user’s �nal feedback (e.g., rating)
on an item:

ru,i = αpᵀuqi + (1 − α )
∑
f ∈Nu

wu, f pᵀf qi , (8)

where α is a pre-set parameter controlling the relative importance
of the target user’s own preferences and her friends’ in�uences,
which naturally simulates the real-world scenario in which peo-
ple’s �nal decisions depend on both own preferences and friends’
in�uences. Although this idea is elegant and e�ective in reducing
the inaccuracy of traditional matrix factorization, it has some limi-
tations: 1) It is an o�ine method depending on batch learning and
not applicable for real-world recommender systems which serve
in an online and interactive manner. 2) It assumes a pre-calculated
and �xed weight for each friend, which may not always hold as
the degree of trust between users and their friends tends to change
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Algorithm 1: Interactive Social Recommendation
Input: c1, c2 ∈ R+, α ∈ [0, 1], λp , λw

Graph G(U , E), where U is the set of users, E is the set of
edges indicating the connected linkage graph.
MAP solutions for item latent feature vectors:
q1, q2, q3, · · · q|I |

Initialization:
Σu,1 ← λp I , hu,1 ← 0
∆u,1 ← λw I , zu,1 ← 0
for t ← 1 to T do

pu,t ← Σ−1u,thu,t
wu,t ← ∆−1u,t zu,t
where wu = [w

†

u, f1
, w†u, f2, w

†

u, f3
, · · ·w†u, f |Nu |

]
ᵀ ,

and f1, f2, · · · , f3 ∈ Nu .
foreach i ∈ I do

foreach f ∈ Nu do
sf ,i = pᵀf qi

end
su,i = [sf1,i , sf2,i , sf3,i , · · · , sf |Nu |,i ]

ᵀ ,
where f1, f2, · · · , f3 ∈ Nu .

дu,i (t ) ← α
(
pᵀu,t qi + c1

√
qᵀi Σ−1u,t qi

)
+ (1 − α )

(
wᵀu,t su,i + c2

√
sᵀu,i∆

−1
u,t su,i

)
end
Choose the item i = argmax дu, j (t ) where j = 1, · · · , K , with
ties broken arbitrarily.

Receive a real-value reward ru,i (t ).

Update:
Σu,t+1 ← Σu,t + qiq

ᵀ
i

∆u,t+1 ← ∆u,t + su,i s
ᵀ
u,i

hu,t+1 ← hu,t +

(
ru,i (t ) − (1 − α )wᵀu,t su,i

)
qi

α

zu,t+1 ← zu,t +

(
ru,i (t ) − αpᵀu,t qi

)
su,i

1 − αend
Output: P = {pu : u ∈ U},W = {wu : u ∈ U}

when new user feedback is observed. Our proposed ISR model, on
the other hand, is capable of addressing these limitations.

�e ISR Model
A modi�ed version of linUCB is proposed in [33] via replacing the
dot product of contextual feature vectors and coe�cients with prob-
abilistic matrix factorization, where the reward of recommending
an item i to a user u in round t is regarded as the feedback (such as
ratings, clicks etc.) of user u on item i:

ru,i (t ) = pᵀu (t )qi . (9)

�e ISR model extends this formula (9) by incorporating the
social part:

ru,i (t ) = αpᵀu (t )qi + (1 − α )
∑
f ∈Nu

w†u, f (t )p
ᵀ
f qi , (10)

where same as in (8), α is the importance controlling parameter in
range [0, 1] andw†u,f =

wu, f∑
v∈Nu wu,v

is the normalized edge weight

between u and f . �en the item that has the largest weighted sum
of expected rewards from u and all her friends f ∈ Nu is selected:

i(t ) = argmax
j=1, ··· ,K

E
[
αr̂u, j (t ) + (1 − α )

∑
f ∈Nu

ŵ†u, f rf , j (t )
]

= argmax
j=1, ··· ,K

(
α p̂ᵀu (t )qj + (1 − α )

∑
f ∈Nu

ŵ†u, f (t )p
ᵀ
f qj

)
, (11)

where K is the number of candidate items for u in round t . For
convenience, we construct a social weight coe�cient vector for each
user u (denoted as wu ) that consists of all the edge weights for her
friends : wu = [w

†

u,f1
,w†u,f2

,w†u,f3
, · · ·w†u,f |Nu |

]
ᵀ
, and by further

denoting su,i = [sf1,i , sf2,i , sf3,i , · · · , sf |Nu |,i ]
ᵀ where sf ,i = pᵀf qi ,

we can rewrite (11) as follows:

i(t ) = argmax
j=1, ··· ,K

(
α p̂ᵀu,t qj + (1 − α )ŵᵀu,t su, j

)
. (12)

In plain English, our ISR model aims to �nd an optimal set of
items as recommendations for di�erent users, such that the accu-
mulated expected reward of the recommendations over all users
will be maximized.

Given the fact that user preferences tend to change in the course
of time while item characteristics normally remain static, it is natu-
ral for our ISRmodel to place more focus on the knowledge obtained
in the last round for the target user rather than for the item, espe-
cially when a su�cient amount of feedback has been collected to
infer the latent feature spaces for items. �erefore, we will assume
that the item latent feature vectors have already been pre-learnt
through the maximum a posterior (MAP) estimate under matrix
factorization. We will talk more about this experimental se�ing
later in Section 5.

If the item latent feature vectors remain �xed, then the reward
in (10) becomes linear with respect to the user latent feature vectors
with the social weight coe�cient vectors treated as constants, and
also linear with respect to the social weight coe�cient vectors with
the user latent feature vectors treated as constants. Our goal is
to �nd the best user latent feature vectors and the optimal edge
weights for their friends.

�e uncertainty of the reward comes from two parts: self-reward
(pᵀu qj ) and social-reward (wᵀu su, j ), whose uncertainty derives from
the estimation for user latent feature vector pu and social weight
coe�cient vector wu respectively. According to ridge regression,
the uncertainty of estimation for pu is:

| |qi | |Σ−1u,t
=

√
qᵀi Σ

−1
u,t qi , (13)

where Σ−1u,t is the inverse covariance matrix for u’s self-reward in
round t . And similarly, the uncertainty in the estimation of wu can
be formulated as follows:

| |su,i | |∆−1u,t
=

√
sᵀi ∆

−1
u,t si , (14)

where ∆−1u,t is the inverse covariance matrix for u’s social-reward
in round t . ISR chooses the item with the highest upper con�dence
bound in each round:

i(t ) = argmax
j=1, ··· ,K

[
α

(
pᵀu,t qj + c1

√
qᵀj Σ−1u,t qj

)
+ (1 − α )

(
wᵀu,t su, j + c2

√
sᵀu, j∆

−1
u,t su, j

)]
, (15)
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where c1 and c2 are two parameters used to determine the con-
�dence. �e details of our proposed ISR model are given in Algo-
rithm 1.
Complexity. Exploitation-exploration is essentially all about the
parameter space for exploration. Existing multi-armed bandit
(MAB) based recommendation methods normally treat each item as
an arm, which results in |I | (i.e., total number of candidate items)
parameters for each user. LinUCB [45] reduces the number of pa-
rameters for each user toO(d) (i.e., the sum of the length of user and
item feature vectors) by a linear model, so does the modi�ed Lin-
UCB under matrix factorization introduced in [33] (whose number
of parameters is exactly d , the length of item latent feature vector,
for every user). As for our ISR model, given a user u, there is one
more parameterwuf for each friend f ∈ Nu of user u, thus we will
have |Nu | (number of u’s friends) parameters added to the social
part of our ISR model. �erefore, ISR requires d + |Nu | parameters
for each user u.
Regret. We remark that the self-reward part of our proposed ISR
model has a regret bound of O(

√
T ) under certain assumptions.

To maintain the continuity and readability, we leave the concrete
regret analysis in the end of this paper. Readers are referred to
appendix A for more details.

5 EMPIRICAL EVALUATION
We report the results of our experiments on three real-world public
datasets and compare the performance of the proposed Interactive
Social Recommendation (ISR) model with various baselines includ-
ing bandit based interactive methods and non-bandit based o�ine
methods in terms of di�erent evaluation metrics.

5.1 Experimental Setup
Although an online experimental se�ing with real time user-system
interactions is most appropriate for evaluations of di�erent algo-
rithms in this paper, it is typically impossible to have such an
environment in academic research [45]. �erefore, we follow the
unbiased o�ine evaluation strategy for bandit alorithms proposed
in [42] under the assumption that the user-system interactions
(ratings) recorded in our experimental datasets are not biased by
the recommender systems and these records can be regarded as
unbiased user feedback in our experimental se�ing.

Flixster Douban Epinions
#users 76013 64642 10702
#items 48516 56005 39737

#ratings 7350235 9133529 482492
#ratings per user 96.70 141.29 45.08
#ratings per item 151.50 163.08 12.14

#social connections 1209962 1390960 219374
Table 1: Overview of datasets

Datasets. We use the following three real-world datasets, whose
basic statistics are summarized in Table 1.
• Flixster. �e Flixster dataset containing information of user-
movie ratings and user-user friendships from Flixster, an
American social movie site for discovering new movies (h�p:
//www.�ixster.com/).
• Douban. �is dataset is extracted from the Chinese Douban

movie forum (h�p://movie.douban.com/), which contains user-
user friendships and user-movie ratings.

• Epinions.�is is the popular consumer review dataset, Epin-
ions, which consists of user-user trust relationships and user-
item ratings from Epinions (h�p://www.epinions.com/).

For all datasets, we split the data into two user-disjoint sets :
training set and test set. �e test set is constructed by randomly
choosing 200 users who have at least 120 ratings and 20 social
connections, leaving the remaining users and their ratings in the
training set.
Methods for Comparisons. We compare ISR with several state-
of-the-art approaches including three exploitation-exploration
(i.e., MAB based) interactive methods (ϵ-greedy, So�max, LinUCB),
one non-interactive personalized social recommendation method
(STE), one non-interactive personalized non-social recommendation
method (PMF) and one non-interactive non-personalized non-social
recommendation method (Random). �us, the following seven rec-
ommendation methods, including six baselines, are tested.
• ISR. Our proposed ISR model, which is an interactive person-
alized social recommendation approach.
• ϵ-greedy. As is presented in (3), it is one of the most popular

exploitation-exploration strategies in literature. In our problem
se�ing, the expected reward of item i for user u at round t ,
r̂u,i (t), is assumed to be estimated by the dot product of user
latent feature vector at round t (pu,t ) and item latent feature
vector (qj ). �us the ϵ-greedy algorithm picks the item with
the largest estimated reward based on the current knowledge
with probability 1 − ϵ at round t :

i(t ) = argmax
j=1, ··· ,K

p̂ᵀu,t qj , (16)

and randomly picks an item with probability ϵ .
• So�max. Another well-studied exploitation-exploration strat-
egy described in (4), which is ��ed into our problem se�ing
through substituting r̂u,i (t) with p̂ᵀu,tqj (i.e., r̂u,i (t) = p̂ᵀu,tqj ),
in a similar way to ϵ-greedy.
• Linear UCB (LinUCB). Algorithm 2 in [33] where c is a tuning
parameter, see equation (7) in section 3.
• STE. �is is a personalized social recommendation method

proposed by Ma et al. [2] which aggregates a user’s own rating
and her friends’ ratings to predict the target user’s �nal rating
on an item.
• PMF. �e classic personalized non-social probabilistic matrix
factorization model �rst introduced in [16].
• Random. Randomly recommend unrated items to each user.
As is pointed out in section 2 that the three models proposed

in [19, 23, 34] are designed for explicit features rather than latent
features, resulting in di�erent model formulations and experimental
se�ings from ours. �is being the case, their work is orthogonal to
ours and we are unable to compare ISR with these three models.
Evaluation Metrics. We evaluate di�erent models in two aspects:
1) recommending one single item in each round and 2) recommend-
ing multiple items in each round. If we only recommend a single
item in each round, one straightforward measure is to count the
number of hit (i.e., recommendation in which the recommended
item has a rating that is no smaller than 4) a�er T rounds and
average it by the number of users. �us based on this methodol-
ogy, we adopt two metrics, cumulative Precision@T and cumulative
Recall@T , for the evaluation in the scenario of single item recom-
mendation per round.
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Flixster Douban Epinions
Cumulative Precision Cumulative Precision Cumulative Precision

Round T 20 40 80 120 20 40 80 120 20 40 80 120
ϵ -greedy 0.6065 0.5358 0.4346 0.3689 0.6362 0.5588 0.4496 0.3804 0.6943 0.5749 0.4337 0.3537
So�max 0.6138 0.5427 0.4385 0.3719 0.6380 0.5616 0.4510 0.3814 0.6967 0.5776 0.4351 0.3547
LinUCB 0.7798 0.6393 0.4792 0.3897 0.8073 0.6582 0.4918 0.3989 0.6884 0.5763 0.4399 0.3616
ISR 0.8442 0.6824 0.5059 0.4088 0.8790 0.7094 0.5221 0.4203 0.7790 0.6379 0.4786 0.3899

Imprv 8.26%* 6.74%* 5.57%* 4.90% 8.88%* 7.78%* 6.16%* 5.37%* 11.81%* 10.44%* 8.80%* 7.83%*
Cumulative Recall Cumulative Recall Cumulative Recall

Round T 20 40 80 120 20 40 80 120 20 40 80 120
ϵ -greedy 0.0960 0.1698 0.2745 0.3464 0.0792 0.1283 0.1957 0.2338 0.1030 0.1629 0.2437 0.2811
So�max 0.0975 0.1720 0.2772 0.3494 0.0797 0.1287 0.1960 0.2345 0.1037 0.1634 0.2443 0.2818
LinUCB 0.1229 0.2019 0.3022 0.3658 0.1007 0.1516 0.2138 0.2451 0.1021 0.1632 0.2472 0.2869
ISR 0.1333 0.2161 0.3195 0.3845 0.1097 0.1629 0.2270 0.2582 0.1150 0.1811 0.2694 0.3094

Imprv 8.46%* 7.03%* 5.73%* 5.11% 8.94%* 7.45%* 6.17%* 5.35%* 10.90%* 10.83%* 8.98%* 7.84%*
Table 2: Cumulative precision and recall on test users (bold font highlights the winner).

• Cumulative Precision@T (Pre@T ).

Precision@T =
1

|Utest |

∑
u∈Utest

1
T

T∑
t=1

θhit ,

where θhit = 1 if the rating of the target user u on the rec-
ommended item i in round t is equal to or higher than 4 and
θhit = 0 otherwise.Utest denotes those users in the test set.
• Cumulative Recall@T (Rec@T ).

Recall@T =
1

|Utest |

∑
u∈Utest

T∑
t=1

θhit
|Ru |

,

where Ru is the set of items that have been rated no less than
4 by user u in the test set.

When recommending multiple items in each round, the relative
rankings of these candidate items become fairly important for the
evaluation. Normalized Discounted Cumulative Gain (NDCG) is
such a top-n recommendation measure suitable for this purpose.
Let S(u) be the set of all items rated by useru in the test set andC(u)
be the set of candidate items to be ranked in the test set for user
u. We denote R(u) as the ranking of items in C(u) in a descending
order, then for any item i in S(u), its position in R(u) is noted as
rankui .
• NDCG. In the context of recommender systems, NDCG is
de�ned as follows:

NDCG =
1
|U |

∑
u∈U

DCGu
IDCGu

,

where DCG and IDCG (Ideal Discounted Cumulative Gain)
are in turn de�ned as:

DCGu =
∑

i∈S (u)

1
log2(rankui + 1)

, and IDCGu =
|S (u)|∑
i=1

1
log2(i + 1)

.

�us the NDCG value for exploitation-exploration (MAB based)
interactive methods will take the summation over all T rounds and
then average on the number of total rounds. In our experiments, we
test NDCG@n (where n = 3, 5), indicating that C(u) only contains
items with top-n largest rating values from u.

5.2 Experimental Results
For exploitation-exploration (MAB based) algorithms including
ϵ-greedy, So�max, LinUCB and ISR, probabilistic matrix factoriza-
tion is �rst used to train all the item latent feature vectors which
will remain unchanged therea�er and be utilized to learn the user

latent feature vectors (and the social weight coe�cients for ISR)
later. Furthermore, “*” in Table 2 and Table 3 indicates that the
corresponding result is signi�cant by Wilcoxon signed-rank test at
p < 0.05.
Recommending a single item in each round. In this evalua-
tion scenario, up to 120 rounds of interactions are studied for each
exploitation-exploration algorithm, given that each user in the test
sets has at least 120 ratings. We compare the performance of our
proposed ISRmodel with other three exploitation-exploration meth-
ods: ϵ-greedy, So�max and LinUCB, in term of cumulative precision
and recall. Table 2 presents the performances of all four approaches
on all three datasets for T = 20, 40, 80 and 120, with the last row
showing the improvement of ISR over the best baseline. Clearly, the
proposed ISR model outperforms all three exploitation-exploration
baselines, with a trend towards a decreasing improvement as T
becomes larger. Take cumulative precision as an example, as T
increases from 20 to 120, the improvement of ISR over the best
baseline decreases from 8.26% to 4.90% on Flixster, from 8.88% to
5.37% on Douban and from 11.81% to 7.83% on Epinions. One pos-
sible reason is that during the �rst several runs of the model when
very li�le feedback is available, ISR model is capable of making
much be�er recommendations than the baselines due to the bene�t
of taking social in�uences into consideration. On the other hand,
these models will receive more and more feedback, which may
increase their recommendation accuracy (especially for non-social
exploitation-exploration baselines) as T increases, resulting in a
less improvement for ISR against the baselines.
Recommending multiple items in each round. In the scenario
of recommending m (m > 1) items per round, we study up to
T = 120

m rounds of interactions when evaluating each algorithm. In
our experiments, we test the performance of di�erent algorithms
by se�ingm = 3 andm = 5 and study up to T = 40 and T = 24
rounds of interactions. Moreover, each of the two non-MAB based
baselines (i.e., PMF and STE) is designed to have three variants: -os
(short for out of sample), -half and -all. For variant -os, we train
the model on the training set and test its performance on the test
set. Note that as the training set and test set are user-disjointed,
users in the test set will never appear in the training set (i.e., out of
sample), which may result in very poor performance for non-MAB
based models. As for the other two variants, we randomly select
η ratings to train the user latent feature vector for each user u in
the test set. We set η to be the number of observable ratings during
the �rst T

2 rounds in the test set for the -half variant and be the
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Flixster Douban Epinions
NDCG@3 NDCG@5 NDCG@3 NDCG@5 NDCG@3 NDCG@5

Round T 20 40 12 24 20 40 12 24 20 40 12 24
ϵ -greedy 0.2398 0.2793 0.2267 0.2894 0.2646 0.3260 0.2932 0.3668 0.1503 0.1769 0.1559 0.1918
So�max 0.2421 0.2859 0.2197 0.2739 0.2588 0.3202 0.2906 0.3617 0.1454 0.1733 0.1479 0.1888
LinUCB 0.2537 0.2838 0.2403 0.2865 0.3325 0.3692 0.3269 0.3780 0.1516 0.1762 0.1546 0.1943
ISR 0.2802 0.3197 0.2657 0.3250 0.3510 0.3949 0.3490 0.4060 0.1640 0.1999 0.1629 0.2098

Imprv 10.45%* 11.82%* 10.57%* 12.30%* 5.56%* 6.96%* 6.76%* 7.41%* 8.18% 13.00%* 4.49% 7.98%*
Table 3: NDCG@n for ϵ-greedy, So�max, LinUCB and ISR on three datasets (bold font highlights the winner).
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(a) Flixster (b) Douban (c) Epinions
Figure 1: NDCG@3 and NDCG@5 for Random, LinUCB, ISR, PMF and STE as well as their variants on three datasets

number of all available ratings in the test set for the -all variant. In
other words, the - all variant is trained on all available observations
in the test set, indicating the best solution we can obtain and the
performance of -half should intuitively lie between -all and -os.
In Figure 1, we can see seven straight horizontal lines (they are
straight because these non-MAB based o�-line models do batch
trainings and have nothing to do with the rounds of interactions)
in each of the six sub-�gures, representing the Random baseline
(the lowest one) as well as the three variants for each of PMF and
STE: PMF-all, PMF-half, PMF-os and STE-all, STE-half, STE-os. It
is easy to observe that PMF-half lies between PMF-all and PMF-
os, and similarly STE-half lies between STE-all and STE-os, which
veri�es our assumptions above. On the other hand, LinUCB and
ISR which can be regarded as the exploitation-exploration (MAB
based) versions of PMF and STE to some extent, start with very
poor performance, gradually get improved when receiving more
and more feedback in rounds of interactions and closely approach
PMF-all and STE-all respectively in round 120. For both NDCG@3
and NDCG@5 on all three datasets, the -half baselines outperform
their MAB based algorithms (LinUCB and ISR) in early rounds be-
fore being surpassed by their exploitation-exploration counterparts
soon a�er. �is is reasonable since the -half variant can get access
to a portion of the observations in the test set to learn the user
preferences, but when more user feedback is available the MAB
based algorithm gets improved through dynamically adapting to
user feedback and �nally reaches a comparable performance with

the -all variant. Besides, our proposed ISR outperforms LinUCB
which does not utilize social information, through the bene�t of
taking social in�uences from friends into account and adaptively
learning weights for these friends. In addition to LinUCB, we also
compare ISR with other exploitation-exploration baselines includ-
ing ϵ-greedy and So�max, whose results are list in Table 3. With
no surprise, we observe that ISR beats both of them in all cases .
Impact of controlling parameter α . As a controlling parame-
ter, α balances the target user’s own preferences and the tastes of
her friends. It controls the extent to which ISR should trust the
target user’ own interests and how much the model should em-
phasis on the tastes of her friends. In two extreme cases, ISR will
only consider the target user’s own preferences without any so-
cial in�uences when α is set to 1 and merely take the preferences
of the target user’s friends into account when α is set to 0. With
α being set to other real values between 1 and 0, ISR will take
both the target user’s and her friends’ interests into consideration
when making recommendations. Figure 2 shows the impact of α
on both cumulative precision and recall for all three datasets. We
observe that the optimal α equals to 0.4 on Flixster and Epinions,
and equals to 0.5 on Douban, which con�rms the e�cacy of fusing
favors of the target user and her friends together in improving the
recommendation accuracy. Moreover, each of the plots in Figure 2
looks analogous to a parabolic shape for both cumulative precision
and recall on all datasets, indicating that α with either a larger
or smaller value than the optimal one may cause a decline in the
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Figure 2: Impact of di�erent α values in ISR on cumulative precision and recall for three datasets in round 120
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Figure 3: Relative edge weight changes a�er round 120

performance of the algorithm. In other words, it is necessary to
�nd a good balance between the tastes of the target users and their
friends — leaning too much against either of them may result in
suboptimal recommendations.

Learning the edge weights. Last but not least, we also present
some statistics on the learned edge weights by ISR. As discussed in
section 4, we adopt the normalized edge weights so that the initial
edge weights depend on the number of friends for each user (i.e.,
initial weights are equally set to 1

|Nu |
for all edges of user u). �us

we show the relative changes in edge weights with respect to their
initial values a�er 120 rounds of ISR in Figure 3, where positive
bin values on X axis indicate relative increases and negative ones
indicate relative decreases. We observe that weights of 1829 edges
in Flixster, 2117 edges in Douban and 2075 edges in Epinions are
updated during the 120 rounds where most of them have a relative
change between −80% and 80% of their initial values, demonstrating
the necessity of learning the edge weights.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel interactive social recommenda-
tion model (ISR), which can not only dynamically adapt itself based
on user feedback but also adaptively learn di�erent weights for
di�erent friends in social networks. We employ the similar idea
of multi-armed bandit (MAB) strategy for the interactive learning
procedure and analyze the regret bound of our proposed ISR model.
We evaluate the performance of the proposed ISR model and com-
pare with various baselines including MAB based algorithms and
non-MAB based ones in terms of cumulative precision, cumulative
recall and NDCG@n on three real-world datasets, demonstrating
the advantages of ISR against these state-of-the-art approaches.

Despite the promising results obtained, some open issues remain
unsolved in this paper. First of all, some users might get new friends
during the interactions, which will lead to the problem of incre-
mental social information. Second, there always exist popular users
who have lots of friends, making the exploration space consider-
ably huge. It will be quite interesting and challenging to investigate
these two problems and we leave them for future work.
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A REGRET OF SELF-REWARD FOR ISR
Recall that for UCB based algorithm, take (5) and (7) for instance, the choice of item in
each round is:

i(t ) = argmax
j=1, ··· ,K

(
r̂ j (t ) + ĉ j (t )

)
, (17)

where for each item j = 1, · · · , K , the true mean reward r j (t ) in round t lies in a
con�dence interval:

Cj (t ) :
[
r̂ j (t ) − ĉ j (t ) , r̂ j (t ) + ĉ j (t )

]
. (18)

To be brief, the estimation of r j (t ) is supposed to be as optimistic as possible and
then the item with the best optimistic estimate will be chosen.

As such, we formulate the regret in the vanilla stochastic multi-arm bandit se�ing
as a simpler version of that indicated in (1):

RT =
T∑
t=1

(
µ∗ − ri (t )

)
, (19)

where u∗ denotes the expected reward of the best item. �en [51] shows that a�er
running the UCB based algorithms, with high probability:

RT =
T∑
t=1

(
µ∗ − ri (t )

)
≤

T∑
t=1

(
r̂i (t ) + ĉi (t ) − ri (t )

)
≤

T∑
t=1

(
r̂i (t ) + ĉi (t ) −

(
r̂i (t ) − ĉi (t )

))
= 2

T∑
t=1

ĉi (t ) . (20)

Con�dence Intervals. It is easy to show that through concatenating all feature
vectors into a single “larger” one, the self-reward part of ISR can be treated as a special
case of general linear stochastic bandit [40], which in each round chooses the item
such that:

i(t ) = argmax
j=1, ··· ,K

(
p̂ᵀt qt, j + c

√
qᵀt, jΣ

−1
t qt, j

)
. (21)

And the ellipsoid con�dence interval for p is:
Ct = {p

�� | |p − p̂ | |Σ−1
t
≤ c } , (22)

where | |x | |Σ =
√

xᵀΣx. Given that Σt is a symmetric positive de�nite matrix and:

| |p − p̂t | |Σ−1t
=

√
(p − p̂t )ᵀΣ−1t (p − p̂t ) , (23)

if we set Σt to be identity matrix, resulting in a norm-2 regularization on p− p̂t , then
p̂t can be estimated through the standard ridge regression:

p̂t = argmin
p

t−1∑
t ′=1

(
r̂i (t ′) − pᵀqt ′,i

)
+ λ | |p | |2 . (24)

�e corresponding regret is then measured as follows:

RT =
T∑
t=1

(
pᵀt qt, j∗ − pᵀt qt, j

)
, (25)

where j∗ = argmax
j=1, ··· ,K

pᵀt qt, j .

As a common se�ing, we follow the assumption that everything is Gaussian, e.g.,
the distribution D described in Section 3 follows a Gaussian distribution with µ and
σ as mean and variance respectively. �us from the solution of ridge regression, we
have:

Σt = λp I +
t∑

t ′=1
qt ′,iq

ᵀ
t ′,i , (26)

making Ct in (22) a valid ellipsoid con�dence set containing the true p with a very
high probability controlled by c . Abbasi-Yadkori et al. [40] give a general condition
on the use of valid con�dence ellipsoid, which says if the linearity of true model and
the independence of the rewards with R-sub-Gaussian (with R ≥ 0) hold, and p as
well as q are bounded by some constants, i.e., | |p | | ≤ S and | |q | | ≤ L, then for any
0 ≤ δ ≤ 1 and all t ≥ 0, with probability at least 1 − δ , the true optimal value p∗ lies
in the following ellipsoid con�dence set Ct :

p ∈ Rd : | |p − p̂t | |Σ−1t
≤ R

√
d log

(
1 + tL2/λ

δ

)
+ λ

1
2 S . (27)

We refer readers to �eorem 2 in [40] for more details.
�erefore, applying (27) with R-sub-Gaussian tails on the noise, p and q upper

bounded by S and L, Ct in (22) will be at most:

O

(
R

√
d |I | log t

δ
+ λ

1
2 S

)
, (28)

where d is the latent feature dimension and |I | is the number of candidate items.
Regret Bound. Under the assumption that λ ≥ maxq | |q | |2 and based on the proof
of �eorem 3 in [40], we can further write (20) as follows:

RT ≤ 2
T∑
t=1

ci (t ) = 2
T∑
t=1

ct | |qt,i | |Σ−1t
≤ 2

√√√ T∑
t=1

c2t | |qt,i | |
2
Σ−1t

(29)

≤ 2

√√√
c2T

T∑
t=1
| |qt,i | |2

Σ−1t
= 2cT

√√√ T∑
t=1
| |qt,i | |2

Σ−1t
, (30)

where (29) is obtained by applying Cauchy-Schwarz inequality 1 and (30) is obtained
based on the fact that ct is monotonically increasing. Again, Abbasi-Yadkori et al. [40]
prove that if λ ≥ maxq | |q | |2 holds, then:

T∑
t=1
| |qt,i | |2

Σ−1t
≤ 2 log det(ΣT ) ≤ O

(
d |I | log T

)
. (31)

Last, by pu�ing (29) and (31) together, we have:

RT ≤ O
(
dRS |I |λ

1
2 log

(T
δ

)√
T
)
, (32)

and if we further ignore the logarithmic factors and regards the latent feature dimen-
sion parameter d as a constant, then the regret of the self-reward part of ISR is at most
O

(√
T
)
.

1h�ps://en.wikipedia.org/wiki/Cauchy-Schwarz inequality
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