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Abstract—The knowledge of traffic health status is essential
to the general public and urban traffic management. To identify
congestion cascades, an important phenomenon of traffic health,
we propose a Bus Trajectory based Congestion Identification
(BTCI) framework that explores the anomalous traffic health
status and structure properties of congestion cascades using bus
trajectory data. BTCI consists of two main steps, congested seg-
ment extraction and congestion cascades identification. The former
constructs path speed models from historical vehicle transitions
and design a non-parametric Kernel Density Estimation (KDE)
function to derive a measure of congestion score. The latter
aggregates congested segments (i.e., those with high congestion
scores) into traffic congestion cascades by unifying both attribute
coherence and spatio-temporal closeness of congested segments
within a cascade. Extensive evaluations on 11.8 million bus
trajectory data show that (1) BTCI can effectively identify con-
gestion cascades, (2) the proposed congestion score is effective in
extracting congested segments, (3) the proposed unified approach
significantly outperforms alternative approaches in terms of
extended precision, and (4) the identified congestion cascades
are realistic, matching well with the traffic news and highly
correlated with vehicle speed bands.

I. INTRODUCTION

Like human health, it is very important to know about the
traffic health of roads in a city. From the general public point
of view, knowledge of the traffic status allows road users to
anticipate and avoid transportation delays. On the other hand,
for urban traffic management, monitoring the traffic health is
essential for transportation operators to optimize traffic flow.
Traffic congestion is a phenomenon of traffic health that pretty
much everyone in a crowded city has experienced with. Not
only small disturbances in heavy traffic can be amplified into
a traffic congestion, mis-timed traffic lights at junctions, car
accidents, or road works can all cause congestions1.

To detect congestions, a common practice today is via
vehicle sensing, e.g., Pneumatic road tube counting, which
requires expensive installation at roads or junctions and
usually is not effective on high-volume, multi-lane highways,
where congestions often take places. Moreover, the reporting
of accidents or traffic congestions heavily relies on expert
judgment and decision. Due to subjective and imprecise human
judgement, traffic congestion events may not be consistently
and accurately detected and reported. Furthermore, existing
traffic health status is usually presented in forms of speed

1https://en.wikipedia.org/wiki/Traffic congestion

indicators, e.g., Waze2 and Google Map provide live map
of traffic health status reports, which color low speed road
segments in red. These speed indicators, however do not address
the formation and lifecycle of some congestion events. Thus,
finding an effective solution to identify traffic congestion events,
and potentially leading to explanation of their happenings,
remains an important open problem.

In this work, we propose to explore explanation data to
identify traffic congestion events, which serves as the first step
to better understand the traffic congestion event in order to
provide a timely traffic health monitoring and reporting. To
illustrate this idea, we utilize thousands of buses equipped
with GPS systems to generate a tremendous amount of bus
trajectory data. Treating these buses as mobile sensors, the
collected bus trajectory data provides the “pulses” of the traffic
health and has a potential to be exploited for detection of traffic
congestions, which is a nontrivial problem. Notice that a traffic
congestion does not only exist in one single location point. It
usually grows into a region and continues to expand over time
before it eventually shrinks geographically and disappears. We
term this lifecycle of congestion expansion and shrinking as
congestion cascade.

Example I.1. (Congestion Cascade) Figure 1 illustrates a real
example of traffic congestion on 2016-05-25. An accident
happened at 16:01 near location point A. After then, the
traffic piled up from A towards C and progressively resulted in
congestions over time. The formation of the congestion from
A towards B was reported at 16:16, followed by another report
from A to C at 16:34. While this congestion event may be
manually identified, it would be much more cost effective to
utilize sampled vehicle trajectory data to uncover the above
and many other similar events. For illustration, suppose we
have two overlapping road segments as SEG0 and SEG1
covering [F,E,D,C] and [E,D,C,B], respectively. On 25 May
2016, Figure 1(b) reveals a speed slowdown on SEG0 after
16:00 (median speed is less than 5 km/hr) with significant speed
drop compared with its historical norm shown in Figure 1(c)
(median speed is around 10 km/hr). Figure 1(d) also reveals
a speed slowdown on SEG1 after 16:15 (after some minutes
after), with significant speed drop compared with its historical
norm in Figure 1(e). These observations, collectively indicating
the formation of a traffic congestion, motivating us to exploit

2https://www.waze.com/livemap
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Fig. 1: Speed Drop of Traffic Flow from SEG0 to SEG1

vehicle trajectories to identify traffic congestion cascade.

Congestion cascade is essentially a spatio-temporal phe-
nomena of traffic health. We therefore formulate the research
problem of identifying congestion cascades as follows.

Problem I.1. (Congestion Cascade Identification)
Given: a database of historical vehicle trajectories H and a
target set of vehicle trajectories D collected over a time period
of interest T.
Identify: congestion cascades within T by considering potential
factors such as direction of congestion influence, spatio-
temporal closeness, and congestion level compared with the
relevant historical trends.

Assuming no prior knowledge of incidents, the congestion
cascade identification problem is very challenging, as we seek
to identify the lifecycle and spatial scope of congestion cascades
instead of only highlighting the evidence of individual conges-
tions (e.g., slow and abnormal traffic flow of road segments
as Waze does). To achieve our goal, we characterize traffic
congestion cascades by taking into account the anomalous
traffic health status and structure properties of congestion
cascades.

To achieve our goal, we propose a novel Bus Trajectory
based Congestion Identification (BTCI) framework that consists
of two major components: (1) congested segment extraction,
and (2) congestion cascade clustering. In BTCI, we first
leverage spatial and temporal dependencies embedded in
historical vehicle trajectory data H to statistically capture the
general (normal) traffic health on road segments at all time
windows (called spatio-temporal segments or simply segments).
Compared against the norm of traffic, we propose a novel
statistics-based method to quantify a congestion score for each
segment during the time period of interest T using the targeted

set of vehicle trajectories D. Next, we propose a clustering
algorithm to aggregate congested segments (i.e., those with
high congestion scores) into traffic congestion cascades by
considering the structure properties and abnormal traffic health
status of potential congestion cascades.
Contributions. This paper addresses the challenges in
congestion cascades identification and makes the following
contributions:
Approach. We exploit vehicle trajectory data to cost-effectively
identify congestion cascades.
Framework. We propose the BTCI framework to identify
congestion cascades, which include innovative algorithms
for congested segment extraction and congestion cascade
construction.
Concepts. We propose novel concepts that best captures con-
gestion cascades, including structure properties (i.e., direction
of congestion influence and spatio-temporal closeness) and
anomalous traffic health (i.e., congestion scores).
Unified Generative Model. We adopt a generative model to
learn cluster memberships for congested segments based on
both attribute similarities and structure closeness.
Experimentation with Real Data. Experiments on bus trajec-
tory data show that the BTCI framework is able to identify
congestion cascades with coherence in space, time, direction of
traffic flow, and congestion scores among engaged segments.

The remainder of this paper is organized as follows. Section
II presents our framework. Section III introduces our method for
congestion score estimation. Section IV presents the proposed
unified approach for congestion cascade identification. Section
V evaluates our framework using real-world dataset. Section
VI reviews the related work. Section VII concludes this study.

II. PRELIMINARY

In this section, we formally define terminologies and give
an overview of our proposed framework. Table I summarizes
the notations to be used.

A. Definitions

Definition II.1. (Road Network) A road network is a directed
graph RN=(V ,E), where each node v ∈ V represents an end
point of some road segment, and each directed edge e ∈ E is
a stretch of road segment connecting point es to next point ed.

Definition II.2. (Path) A path is a sequence of connected
edges, i.e., r: (e1, e2, ..., en), where ei+1.s = ei.d (1 ≤ i < n).
The length of path r is measured by its number of nodes, i.e.,
|r| = n+1. A path r is essentially a sequence of road segments
where traffic flows from e1.s to en.d.

Definition II.3. (Vehicle Transition) Given a path r and two
adjacent timestamps, t and t+1, a vehicle transition on path r is
denoted as (id, loctr, loc

t+1
r ), where id is the vehicle ID; (loctr,

loct+1
r ) are the locations of the vehicle on r at timestamps t

and t+1.

Definition II.4. (Speed) The speed of a vehicle transition
(id, loctr, loc

t+1
r ) is estimated by ∆(loctr, loc

t+1
r )/∆(t, t+ 1),



where ∆(loctr, loc
t+1
r ) is the spatial distance and ∆(t, t + 1)

is the time difference.

Obviously the behavior of vehicle transitions on bustling
road segments in morning peak hours is different from that
on quiet road segments in late evenings. Capturing varied
vehicle transition behaviors across different time periods and
road segments is essential for precise speed modeling and
congestion cascade identification. Hence, we consider vehicle
transitions within a spatio-temporal unit of traffic, called spatio-
temporal segment or segment in short, as follows.

Definition II.5. (Segment) A segment (r, [t∗, t∗ + δt]) is a
spatio-temporal unit of interest, where r is a path, and [t∗, t∗+
δt] is a time window from a time-of-the-day t∗ to another
time-of-the-day t∗ + δt.

Note that we use t to denote a time point, δt to denote a
time interval, and t∗ to denote a time-of-the-day.

Example II.1. Suppose the time window is 15 mins. Let the
time window slide every minute. Then, there are 1440 different
time windows T={[00:00,00:15), ..., [23:59,00:14)} in a day.
Suppose we have a set of possible road paths R={(e1, e2, e3),
(e2, e3, e4), · · · } on the road network. In total, we obtain
|T |× |R| segments, S={S1, ..., S|T |×|R|}, where each segment
Si=(ri, [t∗i , t

∗
i + δt]) is associated with a road path ri ∈ R

and a time window [t∗i , t
∗
i + δt] ∈ T . We say two segments

are spatio-temporally overlapped if both their paths and time
windows are partially overlapped, e.g., (e1, e2, e3) spatially
overlaps (e2, e3, e4) and [10:00,10:15) temporally overlaps
[10:01,10:16). Note that the path length and time window can
be empirically determined as long enough to observe vehicle
movements within the path and a time window.

Definition II.6. (Congested Segment) A congested segment
(also called c-segment) Si = (ri, [t

∗
i , t
∗
i + δt]) is a segment

whitn a target day with a high congestion score CSi where
CSi is greater than a given congestion threshold ε.

As observed in Example I.1, a congestion may be contagious
spatially and temporally over nearby segments. Moreover, the
traffics of segments in a congestion cascade flow in the same
direction. We define a congestion cascade as follows.

Definition II.7. (Congestion Cascade) A congestion cascade
consists of a set of congested segments with spatio-temporal
closeness and coherent traffic flow direction.

B. An Overview of the BTCI Framework

The main idea of the proposed BTCI framework is to
extract congested segments, by comparing against the statistical
norm of traffics, derived from the historical vehicle transitions
database H (which can be seen as a sequence of snapshots S1,
..., St of vehicle locations over the road network) from a target
set of vehicle transitions D during a target day of interest T
(which consists of a sequence of snapshots St′+1, ..., St′+m
where t′ ≥ t). Figure 2 depicts the proposed framework that
consists of two components: (1) congested segment extraction,
and (2) congestion cascade clustering.

TABLE I: Summary of Notation

Sym. Definition
t a time point
[t∗, t∗ + δt] a time window starts at t∗ and ends at t∗ + δt
ri a path ei1, · · · , eik
St a trajectory snapshot at time t
Si=(ri, [t∗i , t

∗
i + δt]) a segment on ri during [t∗i , t

∗
i + δt]

CSi congestion score of segment Si
CG = {S1, ..., Sq} a congestion cascade
H vehicle transitions database
D vehicle transitions of target day
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Fig. 2: Overview of the BTCI Framework

Congested Segment Extraction. This component aims to
assign a congestion score to each segment in D. First, we derive
path speed model that captures the speed norm of vehicles
for each segment from H. We argue that a congestion is a
slow-speed anomaly different from the usual speed pattern. For
each segment Si=(ri, [t∗i , t

∗
i + δt]), we adopt a non-parametric

approach to statistically derive a path speed model, which does
not assume fixed number of clusters in the model and thus can
better accommodate the complexity of the data. Second, we
consider the spatio-temporal dependency of speed patterns and
adaptively determine a congestion score for each segment.
Congestion Cascade Clustering. As the traffic flow of nearby
segments may affect each other, we assume that a congestion
cascade constitutes a group of spatially and temporally clustered
congested segments. Thus, this component aggregates relevant
cascades through congested segment clustering such that each
resultant congestion cascade shows coherent structure properties
and anomalous traffic health status.

III. CONGESTED SEGMENT EXTRACTION

Problem Analysis. As discussed, our idea is to establish the
statistical norm of traffic speed based on historical data H and
then use an effective scoring function to measure the slow-
speed anomaly of a segment based on the deviation of observed
speeds D on the target day from its norm with the same (road
path, time window) pair. The extraction of congested segments
is carried out in two steps: (1) we pre-compute the path speed
model for each segment Si to assess the congestion score for
the observed speed data of segment Si, (2) we determine the
speed threshold for segment Si using the path speed model
f̂Si of the same (road path, time window) pair and derive the
congestion score based on speed observations of segment Si.
The larger the congestion score, the more likely the segment
Si is congested. The problem of congested segment extraction
is defined as follows.

Problem III.1. (Congested Segment Extraction) Given a set of
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Fig. 3: Examples of Path Speed Modeling.

segments S1, ..., Sp, find a set of congested segments, denoted
as c-segments, CS={Si|CSi ≥ γ} where CSi denotes the
congestion score of segment Si and γ denotes the score
threshold for qualifying congested segments. γ is to be
determined empirically.

A. Modeling of Path Speed

We aim to derive a speed model for each unit path r at a time
window [t∗, t∗ + δt] from historical snapshots. We first extract
all vehicle transitions on road r from the snapshots and derive
speed data of vehicle transitions, denoted as {s1, · · · , sn},
where sj is the speed of a vehicle transition on path unit r at
the above time window.
Non-Parametric Approach: We propose to profile each
segment Si=(ri, [t∗i , t

∗
i + δt]) using {s1, · · · , sn} by Kernel

Density Estimation (KDE). Rather than prescribing some
known distribution (e.g., Gaussian with a single mode), KDE
[1] uses the sum of kernel functions centered at data points to
estimate the density. Typically, an isotropic Gaussian kernel
is chosen for each training point, with a single shared hyper-
parameter. The estimate of the probability density at each
point in the data space relies on data points lying within
its neighborhood, specified by the bandwidth of the kernel.
The bandwidth of isotropic Gaussian kernel h determines
how widely it expands from the data point. A kernel density
estimator is then trained by determining the variance of
the kernels, which controls the smoothness of the overall
distribution. Allowing adaptive kernel bandwidth over the data
space of vehicle speeds, our speed estimators can capture traffic
conditions that vary among segments. To avoid overfitting
or underfitting, the kernel bandwidth ĥSi is determined by
maximizing the cross-validated likelihood for historical speed
data {s1, · · · , sn} for each segment Si.

B. Adaptive Congestion Score

Based on the path speed model obtained for a segment Si
(with path ri in [t∗i , t

∗
i + δt]), we assign a congestion score to

the corresponding segment in target transition set D, such that
the larger the congestion score is, the more likely the segment
Si is congested.

To derive the congestion score from speed observations in
segment Si, we consider the probability of a new observation
to belong to slow-speed anomaly. Namely, we use the lower
tail region (e.g., the slowest 10% of the speed distribution)
to represent the area of anomalous slow speeds. As such, a

speed observation is considered as an evidence of congestion
if the value falls within the lower tail region. Suppose Si has
ki speed observations falling within the lower tail region, the
congestion score of Si is then defined to be CSi = ki

ni
, i.e.,

the proportion of anomalous slow speed observations.

Example III.1. Figure 3 shows two examples of path speed
models using KDE based on one-month historical speed data
for two segments. Figure 3(a) depicts the model for the segment
during [11:12,11:27) on one path. The grey histogram is the
distribution of historical speed data on the segment, and the
curve is the KDE after fitting historical data with an adaptive
kernel (ĥS1

=5.27). The speed observations are depicted in blue
+ marks. We observe three modes in [11:12,11:27). Take a
lower tail threshold c=10% as an example. We obtain a speed
threshold at 5.25 km/hr (indicated by red vertical line). The
congestion score of this segment is Cs=0.063, as 1 out of
16 speed observations in the segment falls below the speed
threshold. Figure 3(b) depicts the model for the same path
during another time window [18:29,18:44). As shown the
historical speed skewed to the slowest mode, we have a lower
speed threshold at 3.61 km/hr. As there are 11 out of 16 speed
observations falling below the threshold, this segment has a
higher congestion score Cs=0.688.

IV. CONGESTION CASCADE IDENTIFICATION

Congestions are contagious as a congested path may cause
the neighboring paths to be congested. The phenomena of
a congestion cascade involves several neighboring paths
congested around the same time (or for a period of time),
i.e., each road path involved in the cascade has one or more
c-segment detected. Additionally the traffic flows of involved
c-segments follow the same direction. Accordingly, we refine
the definition of congestion cascade as follows.

Definition IV.1. (Congestion Cascade) A congestion cascade
is a weighted graph of c-segments CG={S1, ..., Sm}, where
a node represents a c-segment Si and an edge (Si,Sj) reveals
that Sj is influenced (infected) by Si. The influence relation
between two desired c-segments suggests the following two
properties of a congestion cascade: (1) coherent traffic flow
direction, and (2) spatio-temporal closeness among the two
c-segments.

For example, consider SEG0 and SEG1 in Figure 1. We
observe congestion from 16:00 to 18:00, and we obtain two
c-segments, (SEG0, [16:00,1800)) and (SEG1, [16:00,1800))
respectively. A congestion cascade consisting of the two c-
segments can be identified based on the spatial and temporal
closeness of the c-segments.

Problem IV.1. (Congestion Cascade Identification)
Given: a set of c-segments CS={Si|CSi ≥ γ}.
Find: a set of congestion cascades {CG1, ..., CGq} based on
Definition IV.1.

In the following, we propose three approaches to identify
congestion cascades: (1) connectivity-based, and (2) attribute-



based, and (3) unified generative model approaches.

A. Connectivity-Based Approach

To find congestion cascades that satisfy the two properties in
Definition II.7, an idea is to encode flow direction and spatio-
temporal closeness between a pair of c-segments as a relation-
ship, and thus form connected graphs of c-segments. Naturally,
each of those connected graphs represents a congestion cascade
by satisfying the requirements. To encode both flow direction
and closeness in spatio-temporal in the connection between
two c-segments, we define segment overlap as follows:

Definition IV.2. (Segment Overlap) A pair of c-segments Si =
(ri, [t

∗
i , t
∗
i + δt]) and Sj = (rj , [t

∗
j , t
∗
j + δt]) are connected,

denoted as e(Si, Sj), if (1) rj and rj overlaps spatially, and
(2) [t∗i , t

∗
i + δt] and [t∗j , t

∗
j + δt] overlaps temporally.

As such, the overlaps among c-segments can be represented
as a set of connected components {CG1, ..., CGq}, where each
connected component CGk = {Sk1, ..., Skl} consists of nodes
for c-segments Ski, and edges for each pair of overlapped c-
segments among Sk1, ..., Skl. We perform breadth-first search
(BFS) to collect connected components CG1, ..., CGq. The
size of a congestion cascades CGk = {Sk1, · · · , Skl} is l.
The spatial scope of CGk is defined as the union of paths in
c-segments ∪li=1rki. The temporal scope of CGk is defined
as the interval [min({t∗ki}), max({t∗ki})+δt], 1 ≤ i ≤ l.

Example IV.1. Consider again the example in Figure 1. Note
that the upstream segment [E,D,C,B] at time [16:15,16:30)
and the downstream segment [F,E,D,C] at time [16:15,16:30)
share the same traffic flow direction and are spatio-temporally
close. Thus, the connectivity-based approach considers them
as belonging to the same congestion cascade.

B. Attribute-based Approach

While the connectivity-based approach considers both tem-
poral and spatial connectivities among congested segments of a
congestion cascade, it does not consider coherence of attribute
values associated with congested segments, e.g., segment’s
congestion score, average speed of bus observations, and so
on. Therefore, we introduce the attribute-based approach to
generate cascades with attribute coherence.

A few clustering methods can be adopted to group congested
segments into congestion cascades (e.g., k-means, K-Medoids,
spectral clustering, DENCLUE [2]). A challenge arising in
our problem setting is that different attribute domain has its
own numeric scale and data distribution. As DENCLUE can
better capture major peaks of data according to individual
distribution of attribute domains, we thus adopt it to derive
attribute-based clusters. In our problem setting, each c-segment
is represented as an attribute vector consisting of the start and
end location coordinates of path, start and end timestamps,
traffic flow direction, and congestion score. These attributes
can be categorized into four aspects: spatial, temporal, traffic
flow direction, and congestion score aspects.

DENCLUE utilizes two parameters to derive local maxima of
the density function as clusters. The first parameter determines

the influence of a point in its neighborhood and the second
one describes whether a density-attractor is significant. Please
refer to [2] for details on parameter settings. As DENCLUE
is not controlled by number of clusters, we first find local
maxima of the density function as centroids in each aspect.
Then, we enumerate all combinations of centroids in each
aspect. For example, suppose we have two spatial centroids
and two temporal centroids. Then we obtain in total four
centroids (2×2) in the spatio-temporal space. Typical temporal
centroids, morning and evening peak hours, are observed from
the start and end time of c-segments. Lastly, we randomly
choose K initial centroids and assign memberships using k-
means algorithm to K clusters.

C. Unified Generative Model

Neither connectivity-based nor attribute-based approaches
consider both spatio-temporal connectivities and attribute
coherence together. The connectivity-based approach also does
not consider the weights of connections that indicate the level
of spatial and temporal overlaps between congested segments.
In addition, some c-segments in reality may not be involved
in major congestion cascades. Including such c-segments in
congestion cascades only introduces noises and results in
incoherences. To address these pitfalls, we introduce a unified
congestion cascade identification approach designed to derive
congestion cascades that exhibit similar attributes’ values as
well as strong spatial and temporal connectivity.

The unified approach represents the input set of congested
segments as a 4-tuple graph G = (CS,E,A,W ) where CS
and E denote the set of congested segments and edges of con-
nected segment pairs defined by spatial and temporal overlaps.
A denotes a set of segment attributes {a1, · · · , aj} associated
with nodes in CS where ak(Si) denotes the ak attribute value
of c-segment Si. W , expressed by a connection weight function
w(Si, Sj), denotes the set of weights corresponding to edges
in E. We aim to take into account both attribute coherence
and connection strength into clustering with the following
properties: (1) c-segments with similar attribute values have
similar clustering membership, and (2) strongly adjacent c-
segments have similar clustering membership.

To achieve our goal, we adopt GenClus, a general soft
clustering approach developed for attributed heterogeneous
networks [3]. In our problem setting, the c-segment graph
consists of vertices with a number of attributes, including start
and end location coordinates of path, start and end timestamps,
traffic flow direction, and congestion score and weighted edges
representing direction-aware spatio-temporal closeness. The
core of the unified approach is a probabilistic generative
model that assumes attributes values and connectivity strength
are generated corresponding to a clustering. The generative
process is as follows. Consider K clusters, each of which
represents a congestion cascade. Each cascade has j latent
factors (also called cluster attribute parameters), denoted by
β that influence (i.e., probabilistically generate) the attributes
of c-segments. Here β is modeled by a combination of j
univariate Gaussian distributions over K clusters. Thus, for



each c-segment Si, we sample a cluster k from K clusters
according to a mixture weight estimated by the similarity in
both attribute and clustering membership in each cluster. Given
cluster k and its cluster attribute parameters βk, we then sample
each attribute for Si.

Given the spatio-temporal connectivity W , and the cluster
attribute parameters β, the likelihood of observing all attribute
values Λ and a clustering Θ can be formally modelled as
follows.

p(Λ,Θ|W,β) =
∏
λ∈Λ

p(λ|Θ, β)p(Θ|W ) (1)

where p(λ|Θ, β) is the generative probability of observing an
attribute value λ ∈ Λ, the given Θ and β, and p(Θ|W ) is the
probability of Θ given graph connectivity structure W . The
goal is to find the best clustering that maximizes the likelihood
in Eq. (1), which entails finding the best parameters β and Θ.
The generation of attributes and connectivity are considered
separately.
Modelling Attribute Generation. In BTCI, we consider the
following eight attribute domains: (1) congestion score, (2)
latitude of start point, (3) longitude of start point, (4) latitude of
end point, (5) longitude of end point, (6) traffic flow direction
in degree, (7) start time of a segment, and (8) end time of a
segment. We assume each attribute domain follows a mixture
of K Gaussian distributions βk=(βk1, · · · , βk8), 1 ≤ k ≤
K, where each attribute domain aj in a cluster k follows
a Gaussian distribution with parameters βj=(µkj , σ2

kj), i.e.,
λkj ∼ N (µkj , σ

2
kj), 1 ≤ j ≤ 8. µkj and σkj are mean and

standard deviation of Gaussian distribution for attribute domain
aj in cluster k. θv,k is the membership of c-segment v in cluster
k. The probability density for the observed attribute values of
all c-segments in a given clustering Θ is then:

p(Λ|Θ, β) =

8∏
j=1

∏
v∈CS

K∑
k=1

θv,k
1√

2πσ2
kj

e
(−

(λv−µkj)
2

2σ2
kj

)

(2)

where CS is the set of c-segments, Θ is a clustering assignment,
β is the cluster attribute parameters, and attributes are assumed
to be independent from each other.
Modelling Connectivity Generation. Based on GenClus, the
connectivity strength of the c-segment attributed graph is also
generated from the clustering. The model assigns to every
c-segment v a distribution of cascade memberships over K
cascades, θv,k, 1 ≤ k ≤ K. The idea is that if an edge weight
w(vi, vj) of given two c-segments vi and vj is greater and their
cluster memberships θi and θj are similar, they are considered
as being more consistent with each other and thus more likely
to belong to the same cluster. To measure the consistency of a
clustering Θ, GenClus utilizes a cross-entropy-based probability
density function for every adjacent pair θi, θj as follows.

f(θi, θj , w(vi, vj)) = w(vi, vj)

K∑
k=1

θj,k log θi,k (3)

where f(θi, θj , e) yields a greater value if the clustering
memberships of vi and vj are more similar and they are
connected with a greater adjacent strength w(vi, vj). GenClus
utilizes a log-linear model to derive the probability of Θ given
the edge weights W as follows.

p(Θ|W ) = exp

 ∑
w(vi,vj)∈W

f(θi, θj , w(vi, vj))

 (4)

Combination. Eq. (1) can be easily obtained by combining
Eq. (2) and Eq. (4).

In the following, we discuss several issues in the process of
model parameter learning which are carried out by BTCI to
identify congestion cascades.
Cluster Initialization. Good initial clusters are essential for
final clustering quality. There are a number of studies on
selecting good centroids [2][4]. We follow the idea of density-
based clustering in Section IV-B to obtain initial K clusters.
Cluster Optimization. The goal in cluster optimization is
to utilize both connectivity structure and attribute information
to derive the best clustering for the graph G. GenClus is
an iterative algorithm that alternatively optimizes clustering
to maximize the objective function in Eq. (1). We adopt
EM algorithm to optimize clusters iteratively. Please refer
to GenClus [3] for details.
Distilling Congestion Cascades. Major clusters that are
highly coherent in attribute values and spatio-temporal close-
ness are promising candidates of congestion cascades. However,
some c-segments in reality may be disengaged in some
congestion cascades, i.e., some c-segments may not be part
of any congestion cascades. These cases represent noises and
introduce incoherences in the resultant clustering. To distill
truly interesting congestion cascades, we introduce two post-
processes to tackle (1) weak c-segments and (2) incoherent
c-segments as follows.
Weak C-Segment Filtering. Once we obtain cluster membership
for each c-segment v ∈ CS, we assign v exclusively to the clus-
ter with the strongest membership, i.e., κ = argmaxk p(zv =
k|Θ, β). Some c-segments unfortunately have very small
likelihood to its assigned cluster κ and are known as weak c-
segments. Weak c-segments may represent noises to congestion
cascades. Thus, we introduce a membership threshold (ε) to
eliminate weak c-segments from hard clustering result (i.e.,
ε ≤ p(zv = κ|Θ, β)).
Incoherent C-Segment Filtering. Some c-segments are engaged
in its belonging clusters due to partial coherence in a subset
of attribute values and/or weak spatio-temporal adjacency. We
refer these c-segments as incoherent c-segments. The dissimilar
attribute values of incoherent c-segments present incoherence
of corresponding attribute domains to belonging cluster. For
example, noisy c-segments, with low generative probability in
temporal space but high generative probabilities in other spaces,
contribute temporal incoherence to belonging cluster. To distill
clusters with higher overall attribute coherence, we introduce a
coherence threshold (ϕ) to recursively perform soft-clustering
on incoherent clusters until each sub-cluster satisfies specified
ϕ (i.e., σik ≤ ϕ, ∀1 ≤ i ≤ 8).

Algorithm 1 summarizes the unified approach for detecting
congestion cascades with integration of proposed distilling
strategies. Line 1 is the cluster initialization. Line2 2-5 illustrate
the cluster optimization process. Lines 6-13 depict the process
to distill congestion cascades.



Algorithm 1: Congestion Cascade Identification
Input: G=(CS,E,A,W ): c-segment attributed graph, K: cluster

number, ε: membership threshold, ϕ: coherence threshold;

Output: CG: the set of congestion cascades, β: attribute component
parameters;

/* step 1: cluster initialization */
1 Θ, β ← Initialization(G);
/* step 2: cluster optimization */

2 repeat
3 updateAssignments(Θt−1, βt−1), ∀v ∈ CS;
4 updateParameters(p(ztv |Θt−1, βt−1)), ∀v ∈ CS;
5 until maximum iteration;
/* step 3: distilling congestion cascades */

6 Θε ← weakC-SegmentFiltering(Θ, ε);
7 ΘNε ← getNoisyCluster(Θε);
8 for θNε ∈ ΘNε do
9 repeat

10 θN
′

ε ← soft-clustering(θNε );
11 ΘGε ∪ getCoherentCluster(θN

′
ε , ϕ);

12 θNε ← getNoisyCluster(θN
′

ε , ϕ);
13 until θNε is empty;

14 return (Θε - ΘNε ) ∪ ΘGε ;

Example IV.2. Figure 4 illustrates the resultant cascades of
a c-segment attribute graph using three proposed approaches.
In the graph, each node is a c-segment associated with one
attribute value and each edge is weighted by the spatio-temporal
closeness between two connected c-segments. In Figure 4(a),
connectivity-based approach returns the entire graph as a
cascade. In Figure 4(b), attribute-based approach identifies
{S1, S2, S3} and {S0, S4, S5} as cascades by attribute coher-
ence. {S0, S4, S5} is unsatisfactory as S0 is spatio-temporally
distant from S4 and S5. Lastly, in Figure 4(c) unified approach
returns {S0, S1, S2} and {S3, S4, S5} considering both spatio-
temporal connectivity and attribute coherence in cascades
identification.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed BTCI framework
using real datasets and report empirical findings in the following
aspects: (1) evaluation on c-segment extraction, (2) evaluation
on congestion cascade identification, (3) case studies, and (4)
sensitivity tests on parameters.

A. Datasets and Settings

Dataset. We acquired a dataset consisting of bus trajectory
data3 and the bus stop network of Singapore. There are two
sets of bus trajectory data from different time periods: one
from 2016-05-20 to 2016-06-20, and the other for the entire
July 2016, known as the May-June dataset and July dataset,
respectively. We extract the bus transitions from the snapshots
of bus locations. The May-June and July datasets contain 25,611
and 24,973 snapshots, respectively. We then derive the speed
observations from the snapshots for the May-June and July
datasets.

In this paper, we focus on bus transitions on a highway
in Singapore. We obtain 11.8 million bus transitions from
all buses passing through the highway which has 18 bus

3We could not reveal the source due to non-disclosure agreement.
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Fig. 4: Congestion Cascade Identification Approaches

stops. Accordingly, we derive all paths corresponding to road
segments covering four bus stops (note that each path is
overlapped with nearby paths with some bus stop difference).
There are 82 such paths. We then adopt a 15-minute sliding time
window with 1-minute shift over the the entire day to generate
1440 different time intervals. Hence, there is a total of 118,080
(82×1440) segments for a day. After discarding segments with
less than ten speed observations, we obtain 87,052 segments
from the May-June dataset. The speed observations from the
May-June dataset are used for constructing the path speed
models of segments, while that from the July dataset are for
evaluating the BTCI framework, i.e., assessing the performance
of c-segment extraction and congestion cascade identification.

B. Evaluation on C-Segment Extraction

The goal of this evaluation is to demonstrate that the
proposed congestion score is a good indicator of congestions.
As we do not have the complete ground-truth of traffic health
status for all paths (and segments) on the examined highway, we
resort to the use of an external source of vehicle speed band
data which express the average speed of general vehicles on
different road segments of the highway in 4 bands, [0,20),
[20,40), [40,60), and [60, ∞), denoted by 1, 2, 3 and 4,
respectively. For each road segment r′, the speed band data
contains a time series of (r′, tj , speed bandj) tuples, where
speed bandj is the band value. Due to mismatch in spatial
scope of the speed band data and our spatio-temporal segments,
we compute the average speed band value for each segment
(r, [t∗, t∗ + δt]).
Congestion Score v.s. Vehicle Speed. While we do not have
the complete ground truth of congestions for the highway
under examination, we explore in our evaluation a common
knowledge that vehicles speeds in a congestions are slow. In
other words, an effective congestion indicator is supposed to
be highly correlated to vehicle speeds in congestions. Thus, we
measure the Pearson correlation coefficient between average
vehicle speed band data and congestion scores of segments and
plot the result in Figure 5, using data in five randomly selected
days in July with known congestion incidents. For comparison,
we also include the correlation of average bus speed, an
alternative congestion indicator, with the speed bands. Our
result shows a negative correlation between congestion score
and average speed band value (i.e., the higher the congestion
score, the lower the speed), while the average bus speed shows
a positive correlation with the speed band value4. By varying
the low tail threshold, we observe the strongest correlation
0.535 occurs when c=0.15. Generally speaking, the correlation

4For ease of comparison, we show the absolute value of correlations.
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Fig. 5: Correlation with Average Speed Band

of the congestion score is stronger than that of average bus
speed, which suggests that average bus speed may not be as
good a congestion indicator as the proposed congestion score.

C. Evaluation on Congestion Cascade Clustering

We conduct experiments to evaluate the accuracy of identified
congestion cascades against traffic news reported by the traffic
authority5. Table II shows two reports of traffic news on
2016-07-20. To evaluate against the traffic news reports, we
rank all identified congestion cascade by a ranking function
D × wScr where D is the graph density of a cascade and
wScr = 1

|CGl|
∑
S∈CGl p(zS = κ|Θ, β)×CS , i.e., the average

congestion score of c-segments in the cascade CGl weighted
by the membership to the cascade. Intuitively, a cascade with
spatially and temporally concentrated (i.e., higher D) and
severely congested (i.e., higher wScr) c-segments is ranked
higher. We also introduce extended precision (EP) to measure
the effectiveness of identifying and ranking congestion cascades
to catch congestion events reported in traffic news.
Extended Precision (EP). Extended precision (EP) considers
the coverage ratio of the spatial and temporal scopes of
congestion reported by the traffic news. Let a cascade CGi =
{Si1, · · · , Sin} be associated with a spatial scope Ri=∪nl=1ril
and a temporal scope Ti=[min({t∗il}), max({t∗il})+δt], 1 ≤ l ≤
n. We define the ratio of spatial coverage between a traffic
news Ej = (rgj , t

g
j ) and a cascade CGi as follows.

RS(Ri, r
g
j ) =

Ri ∩ rgj
Ri ∪ rgj

(5)

where Ri ∩ rgj and Ri ∪ rgj are the spatial intersection and
union of CGi and Ej , respectively. RS(Ri, r

g
j ) ranges within

(0,1), which gives a higher ratio when the cascade CGi greatly
overlaps with the traffic news Ej by space. The temporal
coverage RT (Ti, t

g
j ) between a ground-truth time-stamp Ej

and an identified temporal scope CGi is given as follows.
RT (Ti, t

g
j ) = IT (tgj ∈ Ti) (6)

where RT (Ti, t
g
j ) returns 1 if the condition holds or 0 otherwise.

Therefore, the extened precision for top-P cascades against
news reports E is defined as follows.

EP@P =
1

P

P∑
i=1

|E|∑
j=1

RS(Ri, r
g
j )× RT (tgj ∈ Ti) (7)

A cascade is spatially and temporally accurate if it overlaps
with more ground-truth without excessively expands its spatio-
temporal scope. Higher EP indicates that higher-ranked
cascades highly overlap with traffic news.
Comparison of Approaches. We perform congestion cascades
identification using (1) CONN: connectivity-based, and (2)

5The traffic news are reported at https://twitter.com/ltatrafficnews.

TABLE II: Two Reported Traffic News on 2016-07-20

GT1 16:38 AYE To MCE After Exit A with congestion till Exit B
GT2 16:42 AYE To MCE After Exit A with congestion till Exit B

TABLE III: Extended Precision (EP@5) with c=0.1 and γ=0.3

P CONN DENS Unified(ϕ=1.0,K=5,ε=0.3)
1 0.0 0.25 0.4
2 0.13 0.27 0.35
3 0.14 0.23 0.28
4 0.14 0.21 0.23
5 0.13 0.17 0.18

DENS: attribute-based, and (3) Unified: unified approaches.
Based on five days of bus trajectory data and traffic news in
July, we report the accuracy of congestion cascades identified
by the examined approaches in Table III. Firstly, Unified has
the best EP compared to other approaches. In particular, Unified
yields the highest EP (0.4) at top-1 position. Secondly, as P
increases, the EP of Unified decreases but remains the best.
Thirdly, DENS outperforms CONN but it is still inferior to
Unifed, showing the strength of Unified which factors in both
spatio-temporal connectivity and attribute coherence.

D. Case Study

To validate the practical value of BTCI, we further analyze
cases of the identified congestion cascades on 2016-07-20
against the news reports summarized in Table II. Table IV shows
the set of congestion cascades obtained with the parameter
settings (c=0.1,γ=0.3,ϕ=1.0,K=15,ε=0.3) in Unified approach.
Each row provides detail of an identified congestion cascade,
including number of c-segments (cSeg), number of connected
components (nCC), number of impacted bus stations (uStn),
number of unique time points (uTpt), temporal scope (T ),
average speed (mSpd), average membership (mMem), graph
density (D), average congestion scores (wScr), the ranking
metric (D × wScr), and a flag for “News Hit”. In addition,
we show some speed distribution of some cascades in Figure
6, where the curves plot the historical speed distribution from
H and the blue histograms show the deviation of observed
speed values. Among the top-5 cascades CG1 and CG2 overlap
with the reported traffic news. Between them, CG1 overlaps
with both GT1 and GT2 for around 2325 meters, both with
0.63 spatial coverage during [16:31-17:12). Figure 6(a) and
Figure 6(b) also show that both CG1 and CG2 have obvious
deviation in observed bus speed toward the slow end against the
historical norms. On the other hand, CG3, CG4 and CG5 are
not reported in the news but the evidence of these congestions
is very strong. For example, CG56 consists of 593 c-segments
with high congestion scores, which are spatially and temporally
close to each other (involving 13 bus stations during [6:27-
9:25). Figure 6(c) also indicates serious deviation towards the
very slow speed against the norm. The average historical speed
within the same spatio-temporal scope of CG5 is 21.84 km/hr,
whereas the average observed speed in CG5 drops to 12.97
km/hr with 77% of the speed values slower than 20 km/hr.
Spatio-Temporal Closeness. Beyond extended precision, we
empirically evaluate the spatial and temporal closeness of c-

6Due to space constraint, we skip the discussion of CG3 and CG4.



TABLE IV: Identified Congestion Cascades by Unified (c=0.1,γ=0.3,ϕ=1.0,K=15,ε=0.3) using Bus Trajectories on 2016-07-20

Rank Cascade cSeg nCC uStn uTpt T mSpd mMem D wScr D×wScr “News Hit”
1 CG1 58 1 8 42 [16:31-17:12) 15.27 0.485 0.83 0.543 0.451 Yes
2 CG2 13 1 8 29 [16:11-16:39) 15.31 0.956 0.86 0.492 0.423 Yes
3 CG3 27 1 4 48 [18:01-18:48) 10.59 1.000 0.61 0.559 0.341 No
4 CG4 250 1 10 88 [9:12-10:39) 12.05 0.349 0.32 0.580 0.186 No
5 CG5 593 1 13 179 [6:27-9:25) 12.98 0.465 0.14 0.586 0.082 No

TABLE V: Identified Congestion Cascades by DENS(c=0.1,γ=0.3,K=15) using Bus Trajectories on 2016-07-20

Rank Cascade cSeg nCC uStn uTpt T mSpd mMem D wScr D×wScr “News Hit”
1 DG1 16 2 4 44 [10:19-10:34)[10:36-11:03) 10.2 1.0 0.77 0.578 0.445 No
2 DG2 43 2 10 62 [16:11-17:12) 11.9 1.0 0.58 0.530 0.307 Yes
3 DG3 16 1 9 46 [10:19-11:04) 10.2 1.0 0.50 0.607 0.303 No
4 DG4 16 3 10 44 [10:19-11:02) 9.4 1.0 0.42 0.622 0.261 No
5 DG5 31 2 5 90 [8:54-9:15][9:23-10:30] 9.0 1.0 0.35 0.593 0.208 No
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Fig. 6: Speed Distribution of CG1, CG2, and CG5 in Table IV

segments returned by each of the top 5 identified congestion
cascades. We observe that each identified cascade in Table IV
consists of c-segments that are east-bound and spatially nearby.
For example, CG1, CG2 and CG5 center around the upper left
stretch of the highway during different time periods. On the
other hand, we observe that several cascades have c-segments
temporally close to one another and the cascades occur during
short periods of time as shown in Table IV. For example,
CG1 has a short and continuous temporal scope [16:31-17:12).
While CG5 is a prolonged congestion, the congestion in the
involved segments is particularly serious for the long period.
Comparison with DENS. Table V shows the top 5
identified congestion cascades with the parameter settings
(c=0.1,γ=0.3,K=15) in DENS approach. Compared to Unified
approach, the spatio-temporal connectivity of c-segments in
each of the top 5 identified congestion cascades returned by
DENS is sacrificed. For example, DG1 and DG5 in Table V
are discontinuous in time (T ). Even though DG2 and DG4
have continuous temporal scopes, they are disconnected into
2 and 3 connected components (nCC) in space, respectively.
The common disconnectivity in cascades returned by DENS
suggests that DENS may not be a practical solution, as the
result is not aligned with our intuition.

E. Sensitivity Study of Parameters

Impact of Lower Tail Threshold. Due to the lack of ground-
truth in congested and non-congested segments, we have to
empirically decide the congestion score threshold γ to extract
c-segments. The higher γ is, the bar for being considered
as a c-segment is higher, and thus less qualified c-segments.
Table VI shows some structural properties of c-segment graphs
extracted from the selected five days in July dataset, including
average number of c-segments (cSeg), average number of
edges (E), average graph density (D), and average number
of connected components (nCC). As γ increases, the number

TABLE VI: C-Segment Network: c=0.1 with varying γ

γ cSeg E D nCC
0.1 697.4 39495.2 0.094 24.8
0.3 450.0 28351.2 0.143 12.8
0.5 236.6 14644.4 0.433 5.4
0.7 72.2 2643.2 0.242 2.4
0.9 2.4 6.8 0.062 0.6

TABLE VII: Unified(c=0.1,γ=0.3) with varying K and ε

K nCC uStn uTpt D × wScr EP@3
5 1.5 6.5 41.9 0.47 0.28
10 1.4 6.5 40.5 0.45 0.12
15 1.4 6.4 38.9 0.44 0.12
20 1.3 6.4 38.0 0.43 0.12
ε nCC uStn uTpt D × wScr EP@3
0.0 1.5 6.5 41.9 0.58 0.28
0.3 1.5 6.5 41.9 0.58 0.28
0.6 1.4 6.5 39.0 0.57 0.2
0.9 1.3 4.8 26.9 0.6 0.0

of extracted c-segments and the size of these c-segments (in
terms of cSeg and Ē) decrease. As a result, nCC decreases.
Note that γ controls the degree for segments to be considered
as congested, but not necessarily the density of the resultant
c-segment network. We set γ=0.3 for all experiments.
Impact of Number of Clusters. K controls the number
of resultant cascades. A greater K results in more cascades.
Table VII reports the average number of connected components
(nCC), average number of impacted bus stations (uStn),
average number of unique time points (uTpt), and average
ranking scores (D × wScr) of resultant cascades extracted
from the selected five days in July dataset. Based on the five
selected days of bus trajectory data and reported congestion
news in July corresponding to various K, we observe that K=5
results in highest average EP@3 in Table VII.
Impact of Membership Threshold. ε controls the strength of
a c-segment associated to a cascade. With a higher ε only the
c-segments strongly associated with a cascade is qualified as
its member. Table VII shows how the resultant cascades behave
with ε varied from 0.0 to 0.9. As ε increases, cascades are
more concentrated spatially and temporally (smaller uStn and
uTpoint), stronger engagement (greater D × wScr). When
ε is too strict (e.g., 0.9), the resultant cascades even exclude
congestions reported in traffic news (i.e., EP@3=0.0). In our
work, we empirically set ε=0.3 as it returns results consistent
with the reported traffic congestion news with the best accuracy
EP@3=0.28.



VI. RELATED WORKS

Attributed Graph Clustering. There are many works on
attributed graph clustering reported in literature, which can be
categorized into two classes, distance-based [5][6] and model-
based [7][3]. Distance-based approaches typically design a
distance measure to fuse structural and attribute information
and then apply standard clustering techniques (e.g., K-Medoids,
spectral clustering) for attributed graph partitioning. Model-
based approaches formulate a joint modelling of the edge
connections and vertex attributes and use the model to infer
the optimal clustering that best explains the attribute values
and edge patterns. For example, Sun et al. propose a proba-
bilistic generative model, a soft clustering solution that can
handle various heterogenous networks with categorical/numeric
attributes and binary/weighted edges [3].
Traffic Anomaly Detection. The problem of detecting
traffic anomalies has attracted considerable attention recently
[8][9][10][11][12][13]. Some detect individual transport links
with observed anomalous change of traffic flow [9], while
some discovers anomalies with arbitrary spatio-temporal scope
[11][13]. Zheng et al. in [13] propose to detect collective
anomalies, where each anomaly refers to a collection of nearby
regions that are anomalous during a few consecutive time
intervals. They integrate multiple signals such as taxi flow
and social media to determine anomalies with spatio-temporal
scope. However, the structure properties and traffic health status
of detected anomalies remain undiscovered. Moreover, those
detected anomalies do not include congestion cascades. Some
work relies on unique data sources (e.g., incident data) for
impact modeling and prediction of incidents [11].
Traffic Condition Estimation. In traffic engineering, many
research have been devoted to estimate traffic conditions on
a road network [14][15][16][17]. These works rely on traffic
sensors, loop detectors, cameras, and other instructions to obtain
real-time traffic data to estimate vehicle speed, traffic density,
and volume. Recently, research have also been carried out to
utilizing Twitter as a new data source for detection [18][19][20]
or visualization [21][22] of traffic events. Among multi-typed
traffic events (e.g., congestion, accident, road construction and
so on), only some works focus on studying traffic congestions
estimation [19][20]. Due to inherent sparsity and low resolution
of geographic locations in Twitter data, Wang et al. [20] propose
a coupled matrix and tensor factorization model to effectively
integrate rich information for traffic congestion estimation.

VII. CONCLUSIONS

We address a novel problem of identifying congestion
cascades from sampled vehicle trajectories. To uncover con-
gestion cascades, we propose Bus Trajectory based Conges-
tion Identification (BTCI) framework that consists of two
major components: (1) congested segment extraction, and (2)
congestion cascade clustering. We first statistically capture
the normal traffic health on segments from historical vehicle
trajectory data and then we propose a statistics-based method
to quantify a congestion score against the norm of traffic for
segments during the time period of interest. Next, we propose to

aggregate congested segments into traffic congestion cascades
by considering the spatio-temporal closeness and attribute
coherence of segments in a cascade. Experimentation using
11.8 million bus transitions shows that the BTCI framework
can effectively identify congestion cascades.
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