
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2017

Large scale kernel methods for online AUC
maximization
Yi DING

Chenghao LIU

Peilin ZHAO

Steven C. H. HOI
Singapore Management University, CHHOI@smu.edu.sg

DOI: https://doi.org/10.1109/ICDM.2017.18

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Theory and Algorithms Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
DING, Yi; LIU, Chenghao; ZHAO, Peilin; and HOI, Steven C. H.. Large scale kernel methods for online AUC maximization. (2017).
Proceedings of 2017 IEEE International Conference on Data Mining (ICDM). Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3969

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/155250027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICDM.2017.18
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3969&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Large Scale Kernel Methods for Online AUC
Maximization

Yi Ding∗, Chenghao Liu†, Peilin Zhao‡ and Steven C.H. Hoi†
∗Department of Computer Science, The University of Chicago, USA

†School of Information Systems, Singapore Management University, Singapore
‡School of Software Engineering, South China University of Technology, Guangzhou, China

Email: ∗dingy@uchicago.edu, †chliu@smu.edu.sg, ‡peilinzhao@hotmail.com, †chhoi@smu.edu.sg,

Abstract—Learning to optimize AUC performance for classify-
ing label imbalanced data in online scenarios has been extensively
studied in recent years. Most of the existing work has attempted
to address the problem directly in the original feature space,
which may not suitable for non-linearly separable datasets. To
solve this issue, some kernel-based learning methods are proposed
for non-linearly separable datasets. However, such kernel ap-
proaches have been shown to be inefficient and failed to scale well
on large scale datasets in practice. Taking this cue, in this work,
we explore the use of scalable kernel-based learning techniques as
surrogates to existing approaches: random Fourier features and
Nyström method, for tackling the problem and bring insights to
the differences between the two methods based on their online
performance. In contrast to the conventional kernel-based learn-
ing methods which suffer from high computational complexity
of the kernel matrix, our proposed approaches elevate this issue
with linear features that approximate the kernel function/matrix.
Specifically, two different surrogate kernel-based learning models
are presented for addressing the online AUC maximization task:
(i) the Fourier Online AUC Maximization (FOAM) algorithm that
samples the basis functions from a data-independent distribution
to approximate the kernel functions; and (ii) the Nyström Online
AUC Maximization (NOAM) algorithm that samples a subset of
instances from the training data to approximate the kernel matrix
by a low rank matrix. Another novelty of the present work is
the proposed mini-batch Online Gradient Descent method for
model updating to control the noise and reduce the variance of
gradients. We provide theoretical analyses for the two proposed
algorithms. Empirical studies on commonly used large scale
datasets show that the proposed algorithms outperformed existing
state-of-the-art methods in terms of both AUC performance and
computational efficiency.

I. INTRODUCTION

AUC (Area Under ROC curve) [1] has played a significant
role in evaluating machine learning performance, including
the spam detection dataset wherein the spam emails occupy
only a tiny fraction of all emails, and the medical diagnosis
dataset where cancer cases are treated with higher bias in
the learning process than the benign ones. In recent years,
AUC, which measures the probability for a randomly drawn
positive instance to have a higher decision value than a
randomly sample negative instance, has become one of the
most widely-used performance measurements for handling
the label imbalance phenomenon. Given its important role in
theory and application, current research on AUC has escalated
to a point where it has become the direct learning objective
of interest in both batch and online scenarios [2]–[7].

To achieve high efficiency and scalability in real-world
applications, online AUC maximization (OAM) for streaming
data has attracted increasing research interests over the years.
The key challenge of OAM is that the objective function
involved is represented by the sum of pairwise losses be-
tween instances of different classes, making conventional
online learning algorithms unsuitable to optimize it directly.
To address this issue, two popular types of online AUC
maximization frameworks have been proposed. The first type
is the buffer-based sampling method [4], [7], [8], which
maintains some historical instances in the buffer to represent
the observed data with opposite class. The other type is the
one-pass AUC optimization method [5] using squared loss as
the loss function and a new adaptive gradient method for OAM
to exploit the second order information [6], which has achieved
improved online performance at comparable time costs over
the first order OAM methods.

Non-separability of data is a common characteristic found in
many real-world applications. Therefore, in order to investigate
the nonlinearity of the data and conduct effective model up-
dates, it is essential to introduce kernel tricks and learn kernel-
based models that are capable of handling non-separable
datasets. A kernelized online imbalanced learning method was
proposed recently in [7]. It considered conventional online
kernel learning technique with a bounded support vector
size. However, this approach requires high computational and
storage costs for the kernel matrix and thus unsuitable for large
scale learning tasks in practice.

In contrast to the work in [7], here we present a novel
framework with the introduction of surrogate kernel-based
learning models to address the non-separability and scalability
problems involving OAM tasks. In particular, we use function-
al approximation strategy to approximate the kernel function
by mapping data in the original space to the new feature space
which is often of high dimensions, and then conducting OAM
in the new feature space, which is referred as the Kernel-based
Online AUC Maximization (KOAM). Specifically, we propose
two new algorithms for KOAM: (i) KOAM with Random
Fourier Features (FOAM) algorithm that uses the random
Fourier features to approximate the shift-invariant kernels; and
(ii) KOAM with Nyström method that applies the Nyström
method to approximate the kernel matrix. Both theoretical
and empirical results are provided to examine the efficacy of

both algorithms. In addition, we adopts a mini-batch Online
Gradient Descent method for model updating to control the
noise and reduce the variance efficiently.

The rest of this paper is organized as follows. We first
review some related work. Secondly, we present the two
proposed algorithms that serve as suitable surrogate kernel-
based learning models for online AUC maximization involving
large scale datasets. Then, we offer their theoretical analyses
and empirical studies, respectively. Finally, we conclude the
paper with a brief summary of the present work.

II. RELATED WORK

The present work is closely related to three core topics of
data mining and machine learning, namely, online learning,
AUC maximization, and kernel-based online learning. In what
follows, we briefly review some of the important related work
in each of the topics.

Online Learning. Online learning represents a family of
efficient and scalable machine learning algorithms that has
enjoyed solid theoretical guarantees and reported notable
empirical performances in many real-world applications [9]–
[11]. The first and most well-known online algorithm is the
Perceptron [12]. After introducing the principle of “maximum
margin” for classification, the Passive-Aggressive (PA) algo-
rithm [13] was proposed followed by several second order
online algorithms [14], [15], which attempt to use parameter
confidence information to improve online performance. In re-
cent years, many studies have tried to explore the connections
between online learning and stochastic optimization [16], [17].
This has led to an enhancement on the theoretical foundation
of online learning and attracted new research interests from
other communities such as theoretical computer science and
statistics.

AUC Maximization. Due to its significance for measur-
ing the label imbalanced classification task, AUC has been
deemed recently as the objective function to optimize [2]–[5].
In the initial efforts, the general framework for optimizing
multivariate performance measurements including AUC [3]
was presented in the setup of batch learning. For online setting,
two categories of online AUC maximization framework have
been proposed very recently. The first framework is based on
the idea of buffer sampling [4], [7], [8] using a fixed-size
buffer to store the observed data with opposite class label
for loss calculation. A typical buffer update policy for this
framework is available in [4], which leverages the reservoir
sampling technique to solve oblivious problem for streaming
data. Instead of using pairwise hinge loss [4] as the surrogate
loss function, [5] and [6] considered the square loss as the loss
function and introduced the one-pass AUC optimization mode,
which maintained the mean vector and covariance matrices for
model updating purposes.

Kernel-based Online Learning. Compared to conventional
kernel-based batch learning [18], kernel-based online learn-
ing [19] is more computationally favorable in that it only needs
to go through the training instances once in the learning pro-
cess. The conventional kernel-based online learning algorithms

maintain a set of support vectors to form the kernel-based
prediction model. Using the principle of “budget online kernel
classification” proposed in [20] and subsequently extended by
several others [21], the kernel matrix is computed during the
online phase. To address the high storage requirement of the
support vectors and high kernel matrix computational cost
of conventional kernel-based online learning approaches, one
way is to solve the kernel learning problem by approximating
the kernel function with a suitable linear data representation
in the new feature space. The most popular methods for such
approximation tasks are the random Fourier features [22] and
the Nyström method [23]. For instance, both of these methods
have been successfully used to speed up kernel-based batch
learning without any deterioration reported in the accuracy
performance [24].

Despite the extensive work in these three different fields, to
the best of our knowledge, the present work represents a first
attempt to explore the use of surrogate kernel-based learning
models for improving online AUC maximization performance
involving large scale datasets.

III. ALGORITHMS

A. Problem Setting

Consider a kernel-based online binary classification task
over an incoming sequence of (xt, yt), t = 1, 2, . . . , T ,
where xt ∈ Rd is the observed instance in the original
feature space received at the t-th trial and yt ∈ {−1,+1}
is the true class label of xt that is only revealed by the
environment when each online prediction round ends. Without
loss of generality, we assume positive class is the minority
class while the negative class is majority. In the kernel-based
online AUC maximization task, our goal is to learn a kernel-
based prediction model f(x) to correctly classify an incoming

instance xt ∈ Rd given by: f(x) =
S∑
i=1

αiκ(xi,x), where

S is the number of support vectors, αi is the coefficient of
the i-th support vector, and κ(xi,x) is the kernel function
between two data points. Noted that this formulation is the
general framework of existing kernel-based online learning
on a budget, which tries to bound the number of support
vectors in order to find a trade-off between the computational
efficiency and classification performance. However, here we
introduce a functional approximation scheme to avoid such
sophisticated budget maintenance efforts. Instead of relying
on inner product between data points, our idea is to explicitly
construct a new feature representation z(x) ∈ RK such that
the inner product between new data vectors is capable of
approximating the kernel function: κ(xi,xj) ≈ z(xi)

>z(xj).
In this way, we can simply project x in the original feature
space to z in another new feature space before applying
linear learning methods to approximate nonlinear kernel-based
models. Thus, the above formulation can be reformulated as

f(x) =
S∑
i=1

αiκ(xi,x) ≈
S∑
i=1

z(xi)
>z(x) = w>z(x), where

w> =
S∑
i=1

αiz(xi) is the weight vector learned in the new

feature space. So far, we have transformed the problem of
kernel-based online AUC maximization to a regular online
AUC maximization task in the new feature space. Based on
this result, we introduce the general framework of online AUC
maximization in the next paragraphs.

To begin with, we define the AUC performance measure-
ment [1] explicitly for binary classification task on the new
feature space from the input. Given a dataset D = {(zi, yi) ∈
RK × {−1,+1}| i ∈ [n]}, where [n] = {1, 2, . . . , n}, it is
natural to divide it into two groups: the set of positive instances
D+ = {(z+

i ,+1)| i ∈ [n+]} and the set of negative instances
D− = {(z−j ,−1)| j ∈ [n−]}, where n+ and n− are the
numbers of positive and negative instances, respectively. For a
linear classifier w ∈ RK and dataset D, its AUC performance
measurement is written as:

AUC(w) =

∑n+

i=1

∑n−
j=1 I(w>z+i >w>z−j)

+ 1
2
I
(w>z+i =w>z−j)

n+n−
,

where Iπ is the indicator function that outputs a ′1′ if the
prediction π holds and ′0′ the other way round. Since we apply
the buffer-based approach for online AUC maximization, the
indicator function Iπ is replaced with the convex surrogate,
i.e., the pairwise hinge loss function `(w>(z+

i − z−j)) =

max{0, 1 − w>(z+
i − z−j)}, and then the optimal classifier

is the one minimizing the following objective function

P(w) =
1

2
‖w‖22 +

η
n+∑
i=1

n−∑
j=1

`(w>(z+
i − z−j))

2n+n−
, (1)

where 1
2‖w‖

2
2 is a regularization term to control the com-

plexity of the model and η is the positive penalty parameter
to trade off the cumulative loss and regularization term.

The main challenge of optimizing the loss function (1)
lies in that it belongs to the pairwise loss function involving
the current instance and all the observed training instances
with the opposite label, making it undesirable to store all
the observed instances for each class in online scenarios. In
order to address this issue, two fixed-size buffers [4], [8] are
introduced for each class in loss calculation, B+ with size N+

and B− with size N−, respectively. With this, we show the
general framework of kernel-based online AUC maximization
in Algorithm 1.

In Algorithm 1, there are two core components, i.e., Up-
dateBuffer and UpdateClassifier. When the instance (xt, yt)
arrives at trial t, the two buffers are updated and then the
weight model wt is updated by comparing zt to the instances
in Bt+ if yt = −1 and to the instances in Bt− if yt = +1.

For the UpdateBuffer part, we apply the buffer update
policy known as Reservoir Sampling [25] which is similar
to [4]. The reservoir sampling technique can guarantee that
the buffer maintains a uniform sampling from the preceding
data stream at any time. Specifically, when an instance (zt, yt)
arrives, we add it to the buffer Btyt if |Btyt | < Nyt . Otherwise,
with probability Nyt

Nt+1
yt

, we update the buffer Btyt by randomly

replacing one instance in Btyt with zt. Algorithm 2 gives the
details of the reservoir sampling technique.

Finally, we arrive at the routine of UpdateClassifier. The
method used in [4] is the sequential Online Gradient Descen-
t [26], i.e., wt as wt+1 = wt − η∇Pt(w), where η is the

Algorithm 1 The Framework for Kernel-based Online AUC
Maximization (KOAM)

Input: the penalty parameter η, the maximum buffer size
N+ and N−, the Gaussian kernel function κ(·, ·) with
parameter σ.
Initialize w1 = 0, B1

+ = B1
− = ∅, N1

+ = N1
− = 0.

for t = 1, 2, . . . , T do
Receive a training instance (xt, yt).
KernelRepresentation: Project input xt to new feature
representation zt by kernel-based learning models.
if yt = +1 then
N t+1

+ = N t
+ + 1, N t+1

− = N t
−, Bt+1

− = Bt−,
Bt+1

+ = UpdateBuffer(Bt+, zt, N+, N
t+1
+),

wt+1 = UpdateClassifier(wt, zt, yt, η, B
t+1
−).

else
N t+1
− = N t

− + 1, N t+1
+ = N t

+, Bt+1
+ = Bt+,

Bt+1
− = UpdateBuffer(Bt−, zt, N−, N

t+1
−),

wt+1 = UpdateClassifier(wt, zt, yt, η, B
t+1
+).

end if
end for

Algorithm 2 UpdateBuffer by Reservoir Sampling

Input: Bt, zt, N , N t+1.
Output: updated buffer Bt+1.
if |Bt| < N then
Bt+1 = Bt ∪ {zt} .

else
Sample Z from a Bernoulli distribution with Pr(Z =
1) = N/N t+1 .
if Z = 1 then

Randomly delete an instance from Bt.
Bt+1 = Bt ∪ {zt}.

end if
end if
Return Bt+1.

learning rate parameter and ∇Pt(w) is the gradient term of
the loss function. Although it is an efficient and commonly
used scheme for online model updates, its key limitation lies
in that it uses noisy gradient estimated from a random instance
of the dataset, which probably leads to slow convergence and
poor performance especially when the variance of the noisy
gradient is large [27]. To overcome this limitation, we adopt
the mini-batch Online Gradient Descent (mini-batch OGD)
updating strategy. Specifically, wt+1 = wt − η∇Lt(wt),
where Lt(wt) = 1

|B|
∑

zi∈B `(ytw
>
t (zt−zi)). So, the update

is performed on an average of the gradients with reference to
all the instances in the buffer at a time, rather than only single
instance. The idea of mini-batch OGD is motivated by the
variance reduction principle such that using multiple instances
per iteration for computing the gradient could help reduce
the variance of model updating per iteration. The procedure
described above is detailed in Algorithm 3.

B. Random Fourier Features for KOAM
In this subsection, we present the kernel-based online AUC

maximization algorithm using random Fourier features with
the general framework described above. Random Fourier pro-
jection maps the original input data into a low dimensional
space spanned by the vectors drawn from the Fourier transform
of a shift-invariant kernel function. The key to the random
Fourier strategy lies in the Bochners theorem which links the
positive definite kernels to their Fourier transform [28]. For a
positive definite shift-invariant kernel defined as κ(x1,x2) =
κ(x1 − x2) where κ is the kernel function, the Bochners
theorem ensures that each kernel is the inverse Fourier trans-
form resulting from a proper probability distribution. Let p(u)
be the proper probability distribution denoting the Fourier
transform of κ(x1 − x2),

κ(x1,x2) = κ(x1 − x2) =

∫
p(u)eiu

>(x1−x2)du. (2)

When we expand this formulation by expressing it as an
expectation of function with variable u, we have
κ(x1,x2) = Eu[eiu

>x1 · e−iu
>x2]

= Eu[cos(u>x1) cos(u>x2) + sin(u>x1) sin(u>x2)]
= Eu[[cos(u>x1), sin(u>x1)] · [sin(u>x2), sin(u>x2)]].

(3)

From this derivation, (2) can be obtained by only keeping
the real part of the complex function. From (3), it is drawn
that the shift-invariant kernel function can be expressed by
the expectation of inner product of the new feature represen-
tation for the original feature vector, where the new feature
representation is z(x) = [cos(u>x), sin(u>x]. Therefore, we
can approximate the expectation in (3) by sampling multiple
random Fourier elements u1, · · · ,um independently from the
distribution p(u) to obtain a new representation of input
x: zt(x) = (cos(u>1 x), sin(u>1 x), · · · , cos(u>mx), sin(u>mx)),
where m is the number of sampled Fourier components.
With this projection, the OAM in the original space can be
solved by the KOAM in the new feature space. In this paper,
we apply the shift-invariant Gaussian kernel κ(x1,x2) =
exp(−‖x1 − x2‖22/2σ2) [22], and thus obtain the corre-
sponding random Fourier component u with the distribution
p(u) = N (0, σ−2I). In online setting, we construct the new
feature representation of an incoming instance in the Ker-
nelRepresentation step of the KOAM shown in Algorithm 1.
Note that although the random Fourier feature technique has
been applied to several machine learning research tasks such
as conventional classification [22], [29]–[31], kernel-based
clustering [32], and data projection [33], the current work
represents a first attempt to adopt it in kernel-based online
AUC maximization task. We refer to the proposed kernel-
based OAM algorithm using random Fourier features as the
Fourier Online AUC Maximization (FOAM) with the details
given in Algorithm 4.

C. KernelRepresentation: Nyström Method for KOAM

In contrast to the FOAM algorithm that approximates the
kernel function directly before applying the general framework
of KOAM, the following Nyström method for online AUC
maximization (NOAM) algorithm represents an attempt to
approximate the kernel matrix indirectly during the online
updating phases. The key motivation of exploring the Nyström
method [23] for KOAM task lies in that the random Fourier

Algorithm 3 UpdateClassifier by mini-batch OGD

Input: wt, (zt, yt), B, η.
Output: updated classifier wt+1.
Define A = {zi|`(ytw>t (zt − zi)) > 0, zi ∈ B}.
Let Lt(wt) = 1

|B|
∑

zi∈A `(ytw
>
t (zt − zi)).

Calculate gradient ∇Lt(wt) = − 1
|B|
∑

zi∈A yt(zt − zi)/2.

wt+1 = wt − η∇Lt(wt).
Return wt+1.

Algorithm 4 Kernel-based OAM Algorithm with Random
Fourier Features (FOAM)

Input: the penalty parameter η, the number of sampled
random Fourier components m, the maximum buffer size
N+ and N−, the Gaussian kernel function κ(·, ·) with
parameter σ.
Initialize w1 = 0, B1

+ = B1
− = ∅, N1

+ = N1
− = 0.

Draw m i.i.d random Fourier components: u1, · · · ,um
sampled from distribution p(u) = N (0, σ−2I).
for t = 1, 2, . . . , T do

Receive a training instance (xt, yt).
zt(xt) = (cos(u>1 x), sin(u>1 x), · · · , cos(u>mx), sin(u>mx)).
if yt = +1 then
N t+1

+ = N t
+ + 1, N t+1

− = N t
−, Bt+1

− = Bt−,
Bt+1

+ = UpdateBuffer(Bt+, zt, N+, N
t+1
+),

wt+1 = UpdateClassifier(wt, zt, yt, η, B
t+1
−).

else
N t+1
− = N t

− + 1, N t+1
+ = N t

+, Bt+1
+ = Bt+,

Bt+1
− = UpdateBuffer(Bt−, zt, N−, N

t+1
−),

wt+1 = UpdateClassifier(wt, zt, yt, η, B
t+1
+).

end if
end for

components for the new feature vector representation have
been randomly sampled from a data-independent distribution,
hence failing to take full advantage of the important char-
acteristics available in the original data. To address this, we
introduce a data-dependent sampling technique, namely the
Nyström method, to approximate the kernel function indirectly
by constructing a low rank matrix from sampling a subset
of training instances. Before we present our algorithm based
on the Nyström method for kernel-based online AUC maxi-
mization task, we briefly review the Nyström method in what
follows. To begin with, we provide some notations. Suppose
the kernel matrix is K ∈ RT×T with rank r. The Singular
Value Decomposition (SVD) of K is K = VDV>, where
the columns of V are orthogonal and D = diag(σ1, · · · , σr)
is the diagonal matrix containing the singular values of K
in non-increasing order. For k < r, Kk =

∑k
i=1 σiViV

>
i =

VkDkV
>
k is the best rank-k approximation of K, where Vi

is the i-th column of matrix V.
The Nyström method used here is to approximate a kernel

matrix K by randomly sampling Q columns from K, where
Q � T . Then, a much smaller kernel matrix W ∈ RQ×Q is

formed based on the sampled matrix C ∈ RT×Q. The columns
and rows of K can be rearranged based on this sampling so
that K and C be written as follows:

K =

[
W K>21

K>21 K22

]
C =

[
W
K21

]
.

With this, the rank-k Nyström approximation becomes K̂ =
CW†

kC
> ≈ K, where Wk is the best rank-k approximation

of W, and W†
k is the pseudo inverse of the matrix Wk.

After approximating the kernel matrix based
on equation (III-C), the kernel function between
two data points can thus be approximated as:
κ̂(xi,xj) = (CiVkD

− 1
2

k)(CjVkD
− 1

2

k)> = (κ(x1,xi), · · · ,
κ(xQ,xi)VkD

− 1
2

k)(κ(x1,xj), · · · , κ(xQ,xj)VkD
− 1

2

k)>.
Therefore, a new instance can be represented naturally as:

zt(x) = [κ(x1,x), · · · , κ(xQ,x)]VkD
− 1

2

k . (4)
Now, we can plug the Nyström data representation into the

KOAM framework. It is not difficult to note that the main
challenge is how to construct the new feature representation
for every newly arrived training instance and formulate the
kernel matrix K̂ simultaneously in online scenarios. To tackle
this, we propose the following strategy to achieve both goals.
In the very beginning, we simply run the regular kernel-based
online AUC maximization to maintain and update a kernel-
based model wt =

∑
xi∈St αiφ(xi), where St is the indices

of the support vector (SV) set, φ is the feature map, i.e.,
〈φ(x1), φ(x2)〉 = κ(x1,x2) (note, we only use φ(xi) for
convenience), until the size of the SV set reaches the pre-
defined sample size Q. Then, we use the maintained Q SVs to
approximate the kernel values of other new instances, which is
equivalent to applying the first Q columns to approximate the
whole kernel matrix. After the low rank approximated kernel
matrix is obtained, we construct new feature representation for
the incoming instance determined using (4) before applying
the KOAM framework. Noted that we should not drop old
B̂+ and B̂− here. We just convert the instances in B̂+ and
B̂− using (4) to get new B+ and B−. We label this proposed
approach as Nyström Online AUC Maximization (NOAM) as
summarized in Algorithm 5.

IV. THEORETICAL ANALYSES

A. Regret Bound for FOAM

Theorem 1. Assume we learn with a Gaussian kernel of
bandwidth σ, i.e., κ(x1,x2) = exp(−‖x1 − x2‖22/2σ2), and
the input data is bounded by a ball Rd of diameter R. Let
`(·) : R → R be a convex loss function that is Lipschitz
continuous with Lipschitz constant L. Let wt, t ∈ [T] be the
sequence of classifier generated by FOAM in Algorithm 4.
For any f∗ =

∑T
t=1 αtκ(x,xt), we have the following regret

bound with probability at least 1− 28(dRσ2ε)
2 exp(− mε2

4(d+1))
T∑
t=1

[Lt(wt)− Lt(f∗)] ≤ (
‖f∗‖1 + L2

2
+ L)

√
T ,

where ‖f∗‖1 =
T∑
t=1
|αt|.

Algorithm 5 Kernel-based OAM Algorithm with Nyström
Method (NOAM)

Input: the penalty parameter η, the sample budget Q, rank
approximation k, the maximum buffer size N+ and N−, the
Gaussian kernel function κ(·, ·) with parameter σ.
Initialize SV set S = ∅, coefficient set of SVs α = ∅,
model f1 = 0, w1 = 0, B̂1

+ = B̂1
− = ∅ before Nyström ap-

proximation, B1
+ = B1

− = ∅ after Nyström approximation,
N1

+ = N1
− = 0.

if |St| < Q then
for t = 1, 2, . . . , T0 do

Receive a training instance (xt, yt).
zt = φ(xt).
if yt = +1 then
N t+1

+ = N t
+ + 1, N t+1

− = N t
−, B̂t+1

− = B̂t−,
B̂t+1

+ = UpdateBuffer(B̂t+, zt, N+, N
t+1
+),

wt+1 = UpdateClassifier(wt, zt, yt, η, B̂
t+1
−).

else
N t+1
− = N t

− + 1, N t+1
+ = N t

+, B̂t+1
+ = B̂t+,

B̂t+1
− = UpdateBuffer(B̂t−, zt, N−, N

t+1
−),

wt+1 = UpdateClassifier(wt, zt, yt, η, B̂
t+1
+).

end if
end for

end if
wT0+1 =

∑
xi∈ST0+1

αiκ(xi, ·).
Construct the kernel matrix W from St.
[Vt,Dt] = eigs(W, k), where Vt and Dt are Eigenvectors
and Eigenvalues of W, respectively.
Initialize wT0+1 = (α1, · · · , αQ)(D

− 1
2

t Vt)
−1.

Convert the instances in B̂T0+1
+ and B̂T0+1

− using (4) to get
new BT0+1

+ and BT0+1
− .

for t = T0 + 1, . . . , T do
Receive a training instance (xt, yt).
zt(xt) = D

− 1
2

t Vt(κ(x1,x), · · · , κ(xQ,x))>.
if yt = +1 then
N t+1

+ = N t
+ + 1, N t+1

− = N t
−, Bt+1

− = Bt−,
Bt+1

+ = UpdateBuffer(Bt+, zt, N+, N
t+1
+),

wt+1 = UpdateClassifier(wt, zt, yt, η, B
t+1
−).

else
N t+1
− = N t

− + 1, N t+1
+ = N t

+, Bt+1
+ = Bt+,

Bt+1
− = UpdateBuffer(Bt−, zt, N−, N

t+1
−),

wt+1 = UpdateClassifier(wt, zt, yt, η, B
t+1
+).

end if
end for

Remark. Generally, the higher the dimensionality m, the
higher the probability of the bound to be achieved, which
means that sampling more random Fourier features could
approximate the kernel function more accurately. Also, setting
ε = 1

2
√
T

requires sampling m = O(T) random components
to achieve a high probability, leading to high-dimensionality
in the new feature space. Even this, the learning time for
each instance O(c1T) is much less than the time cost for
classification by regular kernel learning framework O(c2T),

where c1 is the time complexity for a scalar product in FOAM
while c2 is the time complexity for computing the kernel
function including the kernel matrix. Since c1 � c2, the
proposed FOAM is still much faster than the KOAM based
on regular kernel learning techniques.

B. Regret Bound for NOAM
Theorem 2. Assume we learn with kernel κ(x1,x2) ≤ 1.
Let `t(·) : R → R be a convex loss function that is
Lipschitz continuous with Lipschitz constant L. Let the se-
quence of T instances x1, · · · ,xT form a kernel matrix
K ∈ RT×T , and Kk is the best rank-k approximation of K,
Kmax = maxiKii, dKmax = maxij

√
Kii + Kjj − 2Kij . Let

wt, t ∈ [T] be the sequence of classifier generated by NOAM
in Algorithm 5 with budget size Q. For f∗ that minimize
1
2‖f‖H + λ

T

∑T
t=1 Lt(f) with probability at least 1 − ε, we

have
T∑
t=1

[Lt(wt)− Lt(f∗)] ≤ (
‖f∗‖1 + L2

2
+ L)

√
T +O(

√
T).

Remark. The above sun-linear regret O(
√
T) may be better

than that in FOAM since NOAM does not need a large value
of Q to achieve the O(

√
T) bound.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the empirical performance of
the proposed algorithms: FOAM and NOAM, by comparing
them to existing state-of-the-art algorithms in terms of AUC
performance and parameter sensitivity. In addition, we also
examine the performance of both methods with varied number
of random samples so as to verify the theoretical differences
between these two methods.

A. Algorithms Considered for Comparison
The algorithms considered in our experiments include:
• OAMseq: The buffer-based OAM algorithm with reservoir

sampling and sequential updating method [4].
• OAMgra: The buffer-based OAM algorithm with reservoir

sampling and online gradient updating method [4].
• OPAUC: The one-pass AUC optimization algorithm with

square loss function [5].
• AdaOAM: The adaptive gradient method for online AUC

maximization [6].
• KOIL: The buffer-based kernelized online imbalanced

learning algorithm for AUC maximization [7].
• FOAM: The proposed random Fourier feature method for

surrogate kernel-based online AUC maximization.
• NOAM: The proposed Nyström method for surrogate

kernel-based online AUC maximization.

B. Experimental Testbed and Setup
To examine the performance of FOAM and NOAM com-

pared with other existing state-of-the-art methods, we conduct
extensive experiments on 12 benchmark datasets by main-
taining consistency to the previous studies on online AUC
maximization. Table I gives the detailed characteristics of the
12 binary-class datasets used in our experimental studies. All
of these datasets can be downloaded from LIBSVM 1, UCI

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

TABLE I: Details of benchmark datasets.

datasets # inst # dim T−/T+

vowel 528 10 10.000
vehicle 846 18 3.251

svmguide3 1,243 22 3.199
spambase 4,601 56 1.538
satimage 6,435 36 3.137
pendigits 10,992 16 8.620
magic04 19,020 10 1.843
shuttle 43,500 9 3.6316

KDDCUP08 102,294 117 163.196
ijcnn1 141,691 22 9.303

covtype 581,012 54 1.051
KDDCUP99 1,131,571 127 6.628

machine learning repository 2, and KDD CUP competition
website 3. These datasets are chosen fairly randomly to cover a
variety of domains with different characteristics. Note that sev-
eral datasets (vowel, vehicle, shuttle, satimage, pendigits) are
originally multi-class, which are converted to class-imbalanced
binary datasets in our experiments.

In the experiments, the features have been normalized,
i.e., xt ← xt/‖xt‖, which is reasonable since instances
are received sequentially in online setting. Each dataset has
been randomly divided into 5 folds, in which 4 folds are for
training and the remaining is for testing. We also generate 4
independent 5-fold partitions per dataset to further reduce the
effects of random partition on the algorithms. Therefore, the
reported AUC results are averaged of the 20 runs for each
dataset. 5-fold cross validation is conducted on the training
sets to decide on the appropriate learning rate η ∈ 2[−10:10].
For all the algorithms except OPAUC and AdaOAM, the buffer
size is fixed at 100. The parameter m in FOAM is set to Q
in NOAM, and the parameter k in NOAM is set to 0.4Q. All
experiments for online setting comparisons were conducted on
the MATLAB platform and a workstation with 16GB memory
and 3.20GHz CPU.

C. Evaluation on Benchmark Datasets

Table II summarizes the average AUC performance of the
algorithms in comparison, across all the 12 datasets in online
settings. Note that ’N/A’ means that no result was attained
after a running time of 105 seconds or the memory overflow
occurs due to heavy memory requirements of some algorithms.
From Table II, several observations have been drawn.

First of all, in terms of AUC performance for online
AUC maximization tasks, we found that kernel-based methods
including KOIL, FOAM, and NOAM, generally fare better
than their non-kernelized counterparts, which justifies the mo-
tivation behind the use of kernel techniques for solving OAM
tasks. Among all the algorithms considered, the proposed
FOAM and NOAM reported the best AUC values on almost

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3http://www.sigkdd.org/kddcup/index.php

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.sigkdd.org/kddcup/index.php

TABLE II: Evaluation of AUC performance on benchmark datasets.

Algorithm vowel vehicle svmguide3

AUC Time Cost(s) AUC Time Cost(s) AUC Time Cost(s)

OAMseq 0.9013± 0.0415 0.4878 0.8071± 0.0372 0.9222 0.7171 ± 0.0366 1.3507

OAMgra 0.9075± 0.0394 0.4514 0.8090± 0.0246 0.8413 0.7207 ± 0.0392 1.2742

OPAUC 0.8892± 0.0503 0.0235 0.8168± 0.0257 0.0428 0.7090 ± 0.0432 0.0682

AdaOAM 0.9032± 0.0471 0.0381 0.8196± 0.0264 0.075 0.7310 ± 0.0382 0.0980

KOIL 0.9945± 0.0027 0.4677 0.7909± 0.0389 4.4244 0.7184 ± 0.0548 7.8424

FOAM 0.9300± 0.0360 0.6219 0.8418± 0.0248 1.2407 0.7476 ± 0.0352 1.9704

NOAM 0.9198± 0.0384 0.3235 0.8423± 0.0251 0.5852 0.7528 ± 0.0344 1.1113

Algorithm spambase satimage pendigits

AUC Time Cost(s) AUC Time Cost(s) AUC Time Cost(s)

OAMseq 0.9254± 0.0089 5.8854 0.9955± 0.0016 5.8843 0.9775 ± 0.0034 13.0094

OAMgra 0.9251± 0.0092 5.7011 0.9956± 0.0020 5.4609 0.9778 ± 0.0032 12.4870

OPAUC 0.8419± 0.0141 0.4924 0.9947± 0.0020 0.3074 0.9604 ± 0.0061 0.6616

AdaOAM 0.8874± 0.0093 0.6519 0.9955± 0.0018 0.4581 0.9664 ± 0.0056 0.6383

KOIL 0.9065± 0.0224 68.5431 0.9642± 0.0036 9.8999 0.9830 ± 0.0035 174.7840

FOAM 0.9271± 0.0081 8.0887 0.9970± 0.0014 7.8983 0.9838 ± 0.0041 18.0551

NOAM 0.9294± 0.0088 6.4919 0.9977± 0.0016 5.5976 0.9854 ± 0.0044 13.0201

Algorithm magic04 shuttle KDDCUP08

AUC Time Cost(s) AUC Time Cost(s) AUC Time Cost(s)

OAMseq 0.7889± 0.0116 23.3121 0.9812± 0.0014 55.1749 0.9062 ± 0.0133 116.1822

OAMgra 0.7800± 0.0126 22.2374 0.9814± 0.0013 52.5216 0.9094 ± 0.0148 114.1183

OPAUC 0.7636± 0.0084 1.1869 0.9844± 0.0015 2.9681 0.9040 ± 0.0122 22.3601

AdaOAM 0.7980± 0.0072 1.6779 0.9846± 0.0015 4.1887 0.9079 ± 0.0122 26.7904

KOIL 0.7956± 0.0227 266.9989 0.9863± 0.0021 503.6254 0.8687 ± 0.0115 903.7449

FOAM 0.8227± 0.0089 33.8771 0.9929± 0.0016 69.4108 0.9188 ± 0.0134 164.5357

NOAM 0.8294± 0.0133 24.8760 0.9931± 0.0014 51.7314 0.9214 ± 0.0127 143.7298

Algorithm ijcnn1 covtype KDDCUP99

AUC Time Cost(s) AUC Time Cost(s) AUC Time Cost(s)

OAMseq 0.9211± 0.0083 176.3466 0.7978± 0.0138 2272.5596 0.9956 ± 0.0013 4519.3686

OAMgra 0.9224± 0.0078 174.8347 0.7913± 0.0163 2195.9358 0.9953 ± 0.0017 4448.1765

OPAUC 0.9363± 0.0022 63.4248 0.7839± 0.0093 533.4639 0.9954 ± 0.0007 915.4200

AdaOAM 0.9366± 0.0022 69.0924 0.8059± 0.0087 547.1813 0.9956 ± 0.0018 979.1088

KOIL 0.8968± 0.0280 1468.2975 N/A N/A N/A N/A

FOAM 0.9502± 0.0048 243.5067 0.8087± 0.0082 2286.1813 0.9960 ± 0.0021 4466.7716

NOAM 0.9599± 0.0029 193.8069 0.8105± 0.0075 2041.5380 0.9956 ± 0.0018 4103.3958

all the 12 datasets, thus highlighting the efficacy of surrogate
kernel-based learning models for solving OAM tasks.

Second, in terms of efficiency, the time costs of the non-
buffer based algorithms (OPAUC and AdaOAM) are much
lower than the other five buffer-based algorithms. This can be
mainly attributed to their differences in loss functions and thus
the differing updating and maintenance schemes considered.

However, for the buffer-based algorithms, it is noted that
the functional kernel approximation approaches (FOAM and
NOAM) are more efficient than the regular kernelized AUC
learning approaches with fixed size budgets (KOIL), while
comparable with the non-kernelized methods (OAMseq and
OAMgra), especially on the large datasets. This observation
highlights the higher efficiency of the random Fourier features

110 220 330 440 550 660 770

0.65

0.7

0.75

0.8

0.85

number of iterations

av
er

ag
e

A
U

C

OAMseq
OAMgra
OPAUC
AdaOAM
KOIL
FOAM
NOAM

(a) vehicle

120 240 360 480 600 720 840 960
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

number of iterations

av
er

ag
e

A
U

C

OAMseq
OAMgra
OPAUC
AdaOAM
KOIL
FOAM
NOAM

(b) svmguide3

500 1000 1500 2000 2500 3000 3500 4000

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

number of iterations

av
er

ag
e

A
U

C

OAMseq
OAMgra
OPAUC
AdaOAM
KOIL
FOAM
NOAM

(c) spambase

1200 2400 3600 4800 6000 7200 8400 9600
0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

number of iterations

av
er

ag
e

A
U

C

OAMseq
OAMgra
OPAUC
AdaOAM
KOIL
FOAM
NOAM

(d) pendigits

2200 4400 6600 8800 11000 13200 15400 17600
0.72

0.74

0.76

0.78

0.8

0.82

number of iterations

av
er

ag
e

A
U

C

OAMseq
OAMgra
OPAUC
AdaOAM
KOIL
FOAM
NOAM

(e) magic04

1.5 3 4.5 6 7.5 9 10.5 12

x 10
4

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

number of iterations

av
er

ag
e

A
U

C

OAMseq
OAMgra
OPAUC
AdaOAM
KOIL
FOAM
NOAM

(f) ijcnn1

Fig. 1: Evaluation of convergence rate on selected benchmark datasets.

10 20 30 40 50 60 70 80 90 100 110
0.8

0.805

0.81

0.815

0.82

0.825

0.83

0.835

0.84

number of random samples

T
es

t A
U

C

FOAM
NOAM

(a) vehicle

20 40 60 80 100 120 140 160
0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

number of random samples

T
es

t A
U

C

FOAM
NOAM

(b) svmguide3

20 40 60 80 100 120 140 160 180 200 220
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

number of random samples

T
es

t A
U

C

FOAM
NOAM

(c) spambase

20 40 60 80 100 120 140 160 180 200 220
0.9825

0.983

0.9835

0.984

0.9845

0.985

0.9855

0.986

0.9865

0.987

0.9875

number of random samples

T
es

t A
U

C

FOAM
NOAM

(d) pendigits

20 40 60 80 100 120 140 160 180 200 220
0.81

0.812

0.814

0.816

0.818

0.82

0.822

0.824

0.826

0.828

number of random samples

T
es

t A
U

C

FOAM
NOAM

(e) magic04

20 40 60 80 100 120 140 160 180 200 220
0.925

0.93

0.935

0.94

0.945

0.95

0.955

number of random samples

T
es

t A
U

C

FOAM
NOAM

(f) ijcnn1

Fig. 2: Comparison of FOAM and NOAM with varied number of random samples.

and Nyström method over conventional kernel-based online
learning methods. Between FOAM and NOAM on time costs,
NOAM generally consumes less time to train than FOAM,
mainly due to the lower dimensionality of the weight model

(0.4Q) than that of FOAM (Q). This observation coincides
well with our theoretical analysis that NOAM does not require
a large Q to achieve high performance. On the very large
datasets such as covtype and KDDCUP99, the regular kernel-

ized method KOIL fails to return any useful results within the
available computational budget considered in the experimental
studies. This shows that KOIL does not scale well on large
datasets in practice due to the high computational time and
memory incurred on the large kernel matrix.

Furthermore, it is also observed that the NOAM almost al-
ways outperforms the FOAM (except on the “vowel” and “KD-
DCUP99” datasets). This can be explained by the fundamen-
tally different approximation strategies between the random
Fourier features and the Nyström method. Specifically, random
Fourier features approach samples basis functions from a data-
independent distribution to form a data-independent represen-
tation, while the Nyström method samples a subset of the train-
ing instances which constitute to the basis functions that form
a data-dependent representation. Based on this deduction, it is
natural for the empirical AUC performance of the NOAM to
exceed that of the FOAM, which is consistent to the theoretical
comparison made between the random Fourier features and the
Nyström method for large scale kernel learning [24].

We now study the online performance of all the algorithms
considered in the present work. In particular, the results of
these algorithms on 6 of the datasets are summarized in
Figure 1 for further discussions. Specifically, the reported
AUC performance is the average AUC values of the online
models on the test datasets, based on 20 runs. From the results,
once again both the proposed FOAM and NOAM algorithms
are observed to significantly outperform the other methods in
online mode.

D. Evaluation of FOAM and NOAM with Varied Number of
Random Samples

To analyze the differences between FOAM and NOAM, the
resultant AUC performance with varied number of random
samples are studied. The results are summarized in Figure 2.
Note that in our study we restrict the maximum number of
random samples to vary from 100 to 200, even for large
datasets, which is empirically verified to guarantee good AUC
performance. From the curve trends of the figures, it is
observed that a higher number of the random features leads to
the higher AUC values. This indicates that a higher number
of random features in the algorithms can be beneficial to the
AUC performance. It is also observed that on all datasets, the
NOAM based on the Nyström method outperforms the FOAM
based on the random Fourier features method with different
sizes of random samples. Notably, the results further confirms
the superiority of the data-dependent sampling method over
the data-independent sampling counterpart.

VI. CONCLUSION

This paper investigates a kernel-based online AUC maxi-
mization (KOAM), which aims to address online AUC maxi-
mization issue by learning a kernel-based prediction function.
We have proposed two different surrogate kernel-based learn-
ing models for solving online AUC maximization problem
involving large scale datasets, namely, (i) the Fourier Online
AUC Maximization (FOAM) algorithm which samples the

basis functions from a data-independent distribution to approx-
imate the kernel functions; and (ii) the Nyström Online AUC
Maximization (NOAM) algorithm which samples a subset of
instances from the training data to approximate the kernel
matrix with a low rank matrix. To further control the noise
and variance, we adopted the mini-batch OGD method for
model updating with pairwise loss function. We compared
the differences between the two proposed algorithms both
theoretically and empirically on a variety of large scale dataset-
s. The encouraging results highlighted the high efficacy and
efficiency of the proposed algorithms over existing state-of-
the-art approaches for online learning .

VII. APPENDIX

A. Proof of Theorem 1
Proof. Given f∗(x) =

∑T
t=1 αtκ(x,xt), according to

the Representer Theorem [34], we have a corresponding
linear model: w∗ =

∑T
t=1 αtzt(xt), where zt(x) =

(cos(u>1 x), sin(u>1 x), · · · , cos(u>mx), sin(u>mx)), To prove
our theorem, the first step is to bound the regret between the
sequence of linear model wt learned by our online learner and
the linear model w∗ learned in the new feature space.

To begin with, we have
‖wt+1 −w∗‖2 = ‖wt − η∇Lt(wt)−w∗‖2
= ‖wt −w∗‖2 + η2‖∇Lt(wt)‖2 − 2η∇L>t (wt)(wt −w).
Combining this with the convexity of the loss function:
Lt(wt)−Lt(w) ≤ ∇L>t (wt)(wt−w), we have the following

Lt(wt)− Lt(w) ≤ ‖wt −w‖2 − ‖wt+1 −w‖2

2η
+
η

2
‖∇Lt(wt)‖2.

Summing the above over t = 1, · · · , T leads to:
T∑
t=1

[Lt(wt)− Lt(w∗)]

≤ ‖w1−w‖2−‖wT+1−w‖2
2η + η

2

T∑
t=1
‖∇Lt(wt)‖2

≤ ‖w‖
2

2η + η
2L

2T.

(5)

Now, we study the relationship between
∑T
t=1 Lt(w∗) and∑T

t=1 Lt(f∗). According to Claim 1 on the uniform conver-
gence of Fourier features in [22], we have a high probability
bound for the difference between the approximated kernel
value and the true kernel value, i.e., with probability at least
1− 28(dRσ2ε)

2 exp(− mε2

4(d+1)), we have ∀i, j
|z>i zj − κ(xi,xj)| < ε. (6)

When (6) holds, we have
T∑
t=1

[Lt(w∗)− Lt(f∗)]

=
T∑
t=1

∑
zi∈Bt

−yt

[`t(ytw
∗>
t (zt − zi))− `t(yt(f∗(xt)− f∗(xi)))]

|Bt−yt |

≤
T∑
t=1

∑
zi∈Bt

−yt

|`t(ytw∗>t (zt − zi))− `t(yt(f∗(xt)− f∗(xi)))|
|Bt−yt |

≤
T∑
t=1

∑
zi∈Bt

−yt

L
T∑
j=1

|αjz>j (zt − zi)− αj(κ(xj ,xt)− κ(xj ,xi))|
|Bt−yt |

≤
T∑
t=1

∑
zi∈Bt

−yt

L
T∑
j=1

|αj ||z>j zt − κ(xj ,xt)|+ |αj ||z>j zi − κ(xj ,xi)|
|Bt−yt |

≤
T∑
t=1

∑
zi∈Bt

−yt

L
T∑
j=1

2|αj |
|Bt−yt |

≤ 2εLT‖f∗‖1.

(7)

Combining (5) and (7), we obtain
T∑
t=1

[Lt(wt)− Lt(f∗)] ≤
‖w‖2

2η
+
η

2
L2T + 2εLT‖f∗‖1.

By setting η = 1√
T

and ε = 1
2
√
T

, we have
T∑
t=1

[Lt(wt)− Lt(f∗)] ≤ (
L2

2
+ L+ ‖f∗‖1)

√
T ,

which completes the proof with sub-linear regret O(
√
T).

B. Proof of Theorem 2
Proof. Similar with 1, we bound the regret concerning w∗ in
new feature space as in (5) before bounding

∑T
t=1[Lt(wt)−

Lt(f∗)]. As Corollary 1 shown in [35], we could bound the
gap between the suffered loss above by approximation with
respect to the spectral norm of kernel approximation gap:
T∑
t=1

[Lt(wt)− Lt(w∗)] ≤
√

2λL‖K̂−K‖
1
4
2 (1 + (

‖K̂−K‖2
4

)
1
4). (8)

Then, we should bound the spectral norm of the approximated
kernel gap ‖K̂ − K‖2. As Theorem 2 in [35] shows, this
could be bounded by the spectral norm of the best rank-k
approximated kernel gap ‖K −Kk‖2 = σk+1: ‖K̂ −K‖2 ≤
σk+1 + ∆Q, where ∆Q is

∆Q =
2T√
Q
Kmax(1 +

√
T −Q
T − 0.5

1

β(Q,T)
log

1

ε

dKmax

K
1
2
max

). (9)

β(Q,T) = 1− 1
2 max{Q,T−Q} and ‖K‖2 is the spectral norm

of K. Combining (7), (8), (9), we obtain
T∑
t=1

[Lt(wt)− Lt(f∗)] ≤ ‖f
∗‖21
η

+ η
2
L2T+

√
2λL(σk+1 + ∆Q)

1
4 (1 +

σk+1+∆Q

4
).

Obviously, the larger the size of Q, the smaller value of ∆Q,
leading to a tighter bound. Mostly ∆Q = O(T) and thus√

2λL(σk+1 + ∆Q)
1
4 (1 +

σk+1+∆Q

4) = O(
√
T). By setting

η = 1√
T

, we complete the proof.

ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Prime Ministers Office, Singapore under its Interna-
tional Research Centres in Singapore Funding Initiative.

REFERENCES

[1] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
of receiver operating characteristic (roc) curve.” in Radiology, 1982.

[2] C. Cortes and M. Mohri, “Auc optimization vs. error rate minimization,”
in NIPS, 2003.

[3] T. Joachims, “A support vector method for multivariate performance
measures,” in ICML, 2005, pp. 377–384.

[4] P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang, “Online AUC maximiza-
tion,” in Proceedings of the 28th International Conference on Machine
Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pp. 233–240.

[5] W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou, “One-pass auc optimization,”
in ICML (3), 2013, pp. 906–914.

[6] Y. Ding, P. Zhao, S. C. H. Hoi, and Y. Ong, “An adaptive gradient
method for online AUC maximization,” in AAAI 2015, January 25-30,
Austin, Texas, USA., 2015, pp. 2568–2574.

[7] J. Hu, H. Yang, I. King, M. R. Lyu, and A. M. So, “Kernelized online
imbalanced learning with fixed budgets,” in AAAI 2015, January 25-30,
Austin, Texas, USA., 2015, pp. 2666–2672.

[8] P. Kar, B. K. Sriperumbudur, P. Jain, and H. Karnick, “On the general-
ization ability of online learning algorithms for pairwise loss functions,”
in ICML 2013, Atlanta, GA, USA, 16-21 June, 2013, pp. 441–449.

[9] S. C. H. Hoi, J. Wang, and P. Zhao, “LIBOL: a library for online learning
algorithms,” Journal of Machine Learning Research, vol. 15, no. 1, pp.
495–499, 2014.

[10] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge University Press, 2006.

[11] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2012.

[12] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[13] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” Journal of Machine Learning
Research, vol. 7, pp. 551–585, 2006.

[14] M. Dredze, K. Crammer, and F. Pereira, “Confidence-weighted linear
classification,” in ICML, Helsinki, 2008, pp. 264–271.

[15] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regularization
of weight vectors,” in NIPS 2009, 7-10 December, Vancouver, British
Columbia, Canada., 2009, pp. 414–422.

[16] J. C. Duchi and Y. Singer, “Efficient online and batch learning using
forward backward splitting,” Journal of Machine Learning Research,
vol. 10, pp. 2899–2934, 2009.

[17] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss,” Journal of Machine Learning Research,
vol. 14, no. 1, pp. 567–599, 2013.

[18] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[19] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” in NIPS, 2001, pp. 785–792.

[20] K. Crammer, J. S. Kandola, and Y. Singer, “Online classification on a
budget,” in NIPS 2003, December 8-13,Vancouver and Whistler, British
Columbia, Canada, 2003, pp. 225–232.

[21] F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online
learning,” Journal of Machine Learning Research, vol. 10, pp. 2643–
2666, 2009.

[22] A. Rahimi and B. Recht, “Random features for large-scale kernel ma-
chines,” in NIPS 2007, Vancouver, British Columbia, Canada, December
3-6, 2007, pp. 1177–1184.

[23] C. K. I. Williams and M. W. Seeger, “Using the nyström method to
speed up kernel machines,” in NIPS, 2000, pp. 682–688.

[24] T. Yang, Y. Li, M. Mahdavi, R. Jin, and Z. Zhou, “Nyström method vs
random fourier features: A theoretical and empirical comparison”,” in
NIPS2012, 2012, pp. 485–493.

[25] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37–57, 1985.

[26] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in ICML 2003, August 21-24, 2003, Washington,
DC, USA, 2003, pp. 928–936.

[27] C. Wang, X. Chen, A. J. Smola, and E. P. Xing, “Variance reduction for
stochastic gradient optimization,” in NIPS 2013, December 5-8, Lake
Tahoe, Nevada, United States., 2013, pp. 181–189.

[28] W. Rudin, Fourier Analysis on Groups, ser. A Wiley-interscience pub-
lication. Wiley, 1990.

[29] L. Bo and C. Sminchisescu, “Efficient match kernel between sets
of features for visual recognition,” in NIPS 2009, Vancouver, British
Columbia, Canada, December 7-10, 2009, pp. 135–143.

[30] S. C. H. Hoi, J. Wang, P. Zhao, J. Zhuang, and Z. Liu, “Large scale
online kernel classification,” in IJCAI 2013, Beijing, China, August 3-9,
2013.

[31] J. Lu, S. C. Hoi, J. Wang, P. Zhao, and Z.-Y. Liu, “Large scale online
kernel learning,” Journal of Machine Learning Research, vol. 17, no. 47,
pp. 1–43, 2016.

[32] R. Chitta, R. Jin, and A. K. Jain, “Efficient kernel clustering using
random fourier features,” in ICDM 2012, Brussels, Belgium, December
10-13, 2012, pp. 161–170.

[33] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in NIPS 2009, Vancouver, British Columbia,
Canada, December 7-10, 2009, pp. 1509–1517.

[34] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in COLT, 2001, pp. 416–426.

[35] C. Cortes, M. Mohri, and A. Talwalkar, “On the impact of kernel
approximation on learning accuracy,” in AISTATS 2010, Chia Laguna
Resort, Sardinia, Italy, May 13-15, 2010, pp. 113–120.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2017

	Large scale kernel methods for online AUC maximization
	Yi DING
	Chenghao LIU
	Peilin ZHAO
	Steven C. H. HOI
	Citation

	tmp.1522991397.pdf.NAxoZ

