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Understanding the Benefit of Taxi Ride-Sharing - A
Case Study of Singapore

Abstract—This paper assesses the potential benefit of ride-
sharing for serving more taxi requests and reducing city traffic
flow. It proposes a simple yet practical framework for taxi ride-
sharing and scheduling. The proposed framework recommends
ride-sharing plans with limited waiting time and limited extra
travel time to minimize the discomfort of travellers; it also helps
travellers who share ride with other travellers achieve desired
taxi fare saving; and helps taxi drivers who serve multiple taxi
requests via one single trip to gain more earnings. Therefore, both
travellers and drivers are economically motivated to participate
in the ride-sharing practice. Comprehensive simulation study is
conducted based on real taxi booking data in the city of Singapore
and evaluates the effect of various factors in the ride-sharing
practice e.g., waiting time, extra travel time, and taxi fare saving.
The results demonstrate ride-sharing could serve 20%-25% more
taxi booking requests during peak hours with limited number of
taxis and hence greatly improve the taxi shortage problem of
certain hot spot areas. It also indicates there is around 2-3km
travel distance saving per taxi trip on average, which is around
20%-30% of the average ride distance. This finding suggests ride-
sharing may has the potential to help reduce the traffic flow, gas
consumption, and air pollution of a modern big city.

I. INTRODUCTION

Taxis provide flexible point-to-point service to general pub-
lic. They are a vital element in a city public transport system
functioning in accordance with public demand. In a modern
metropolis like Singapore with over 5 million people, there are
approximately 28,000 taxis and 99,000 licensed taxi drivers,
providing more than 1 million taxi trips daily according to
the statistics of Singapore Land Transport Authority (the
regulatory agency for land transportation)1. Despite the large
number of taxis, people still suffer from the difficulty of
hailing a taxi, especially during peak hours. Figure 1 shows the
temporal distribution of taxi booking requests and the booking
success rate of a normal working day in Singapore from a
very popular taxi booking app GrabTaxi. The figure shows
the booking success rate is extremely low during the peak
hours, e.g., only around 30% of the bookings are successful
during the morning peak at 8 am. On the other hand, despite
many unfulfilled taxi requests, vehicles (including both taxis
and private cars) on road are traveling with many empty seats.
For example, the mean occupancy rate of private car trips in
US is only 1.6 person per mile [1].

With the newly emerging concept of “sharing economies”,
people start to hope that ride-sharing may represent an
important opportunity to improve the usage of empty car
seats and satisfy people’s increasing travel demand without
increasing the number of vehicles, therefore, reducing traffic
congestion, fuel consumption, and air pollution in the city.
Traditionally, ride-sharing/carpooling is mainly pre-arranged

1http://www.lta.gov.sg/content/ltaweb/en/publications-and-research.html
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Fig. 1. Average hourly booking statistics on weekdays based on real taxi
booking data of Singapore in June 2014.

between a small group of travellers with the same origin
and/or destination, e.g., airport. With today’s rapid deployment
of information and communication technologies, e.g., geo-
locating smartphones and mobile network, large-scale and
real-time ride-sharing becomes more and more popular. A lot
of mobile apps and systems, e.g., Lyft, Avego, and Zimride,
are developed for private carpooling, which match private
car drivers who have fixed trip schedules with riders who
have similar demands. While some recent research works [2],
[3] discuss efficient scheduling algorithms for real-time taxi
ride-sharing. Traditional taxi service provides traveller(s) an
exclusive usage of the taxi, i.e, the taxi cannot pick up other
travellers before dropping off the current traveller(s) on board.
On the other hand, the shared taxi service can have multiple
travellers on board with different origins and/or destinations
at the same time. The proposed algorithms try to efficiently
assign the most convenient taxis to pick up ad-hoc bookings
on their way and plan the optimal route schedule to reduce the
total travel distance. They provide service quality constraints
to minimize traveller discomfort based on waiting time and
service delay caused by detour.

Although the existing works [2], [3] enable ride-sharing
to certain degree, they are not very practical because of
the following reasons. 1) Some algorithms depend on very
complicated index structures with relatively high implementa-
tion and maintenance cost. 2) Many algorithms may cause
discomfort to travellers because the algorithms may force
taxis to constantly change travel route and board new travel
companions. 3) Some algorithms are not taxi-driver-friendly
because the drivers are required to strictly follow the planed
routes, and they need to constantly monitor new coming pick
up assignments and the changes of travel routes, which will
disturb the driving and cause great danger to both drivers and
travellers. 4) The design and evaluation of the algorithms do
not emphasize the economy perspective of taxi ride-sharing.
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For example, there is no guaranteed taxi fare saving for
travellers and profit increase for taxi drivers, which are very
important enablers of a successful taxi ride-sharing system.

This paper seeks to understand the outcome of ride-sharing.
A simple yet practical taxi ride-sharing framework is proposed,
which is very easy to implement and also easy to be embedded
into current taxi booking apps. The framework forms a shared
trip plan before assigning the trip plan to a taxi. Therefore,
the travellers are informed with a fixed trip route/schedule so
that they will not feel the discomfort of changing the travel
route and travel companions unexpectedly. On the other hand,
the taxi driver is given a fixed trip plan before he/she starts
the journey. Therefore, the driver can focus on the driving and
does not need to worry about changing the travel route which
can greatly improve driving safety. In addition, the framework
design considers the economy aspect of taxi ride-sharing by
offering travellers a constraint on taxi fare saving and drivers
a shared trip surcharge. Consequently, travellers can choose to
share a trip with others only when the sharing can save them
satisfying amount of taxi fare (e.g., 20%). At the same time,
the framework entitles taxi drivers to charge a fixed shared trip
surcharge (e.g., 10% of the normal taxi fare), which serves as
the incentive to motivate them to take shared trip jobs.

Extensive simulation study is performed to investigate the
benefit of taxi ride-sharing based on real taxi booking data
in the city of Singapore. The real booking data are obtained
from GrabTaxi, a very popular taxi booking app in Singapore.
To make the study comprehensive, various factors in the taxi
ride-sharing practice is considered e.g., waiting time, extra
travel time limitation, taxi fare saving, and driver’s surcharge
of ride-sharing. The findings show that taxi ride-sharing could
serve 20%-25% more taxi requests during peak hours with
limited number of taxis and effectively address the issue of
taxi shortage of certain hot spot areas. The simulation also
indicates there is around 2 to 3 km travel distance saving per
taxi trip on average, which is around 20%-30% of the average
ride distance. This suggests that taxi ride-sharing may have
the potential to help reduce the traffic flow, gas consumption,
and air pollution.

II. RELATED WORK

Taxi ride-sharing has become more and more popular owing
to its potential benefit. There are mainly two classes of
taxi ride-sharing studies, namely static taxi ride-sharing and
dynamic taxi ride-sharing. Static taxi ride-sharing requires
all taxi trips to be known beforehand. Therefore, a globally
optimal sharing plan could be derived to maximise the collec-
tive benefits of sharing, e.g., cumulative trip length reduction.
For instance, Santi et al. [4] propose a shareability network
structure to model the spatial and temporal proximity of the
taxi trips and apply a classical graph algorithm to determine
the best trip sharing strategy. Their study reveals that a large
amount of taxi trips are routinely shareable while keeping the
traveler discomfort low in terms of prolonged travel time in
big cities (e.g., New York).

Dynamic taxi ride-sharing matches real-time trip requests
with running taxis. The trip requests are not required to

be known beforehand, and the taxis are allowed to re-route
and pick up new trip requests on the fly. Because of the
dynamic nature of the problem, it requires the system to be
able to respond quickly while receiving a new trip request.
Ma et al. [2] propose a T-Share service model with an
efficient spatio-temporal taxi index structure to quickly retrieve
a candidate taxi to serve the new trip request which satisfies
the pick-up and drop-off delay constraints of the request and
meanwhile incurs the minimum additional travel distance. The
taxi searching algorithm of T-share follows an incremental
approach which expands the search area from the origin and
destination of a trip request step by step until the nearest avail-
able taxi is found. Shemshadi et al. [3] improve the efficiency
of the taxi searching algorithm by replacing the incremental
search approach with a decremental search approach. They
introduce an economic search margin to limit the expansion of
search area and gradually reduce the search area. Later, Huang
et al. [5] design effective kinetic tree algorithms for optimal
taxi scheduling to serve dynamic requests with guaranteed
service quality (i.e. pick-up and drop-off time delay). Given
a trip request and a candidate taxi, the algorithm finds the
best way to accommodate the trip to the current route plan
of the candidate taxi. Both ride sharing algorithms discussed
above relay on very complicated index structure which incurs
high maintenance cost, and the success of the algorithms
requires all taxis in the system to follow the complicated
and dynamic travel plan strictly at all times, which is highly
unrealistic in the real-world scenarios. In terms of the effect
of taxi ride-sharing, both methods only consider the pick-up
and drop-off time delay as the impact factors. In the real-
world, there could be many other factors which can affect
travelers or drivers for adopting taxi ride-sharing application,
for example, the travelers’ discomfort of changing trip routes
and trip companions on the fly, the travelers’ incentive in the
form of reduced taxi fare, and the taxi drivers’ incentive in the
form of increased profit. This paper proposes a more practical
taxi ride-sharing framework which relies on simple scheduling
protocol and easy-to-maintain data structure. It considers more
practical factors such as minimizing travelers’ discomfort of
changing trip routes and trip companions on the fly and also
economy factors for both travelers and taxi drivers. Recently,
Javier et al. [6] proposed a dynamic trip sharing algorithm
based on request-trip-vehicle shareability graph (RTV-graph),
which computes all possible combinations of trips that could
share a vehicle and vehicles that can serve them. Then, shoving
an integer linear assignment problem to find the optimal
assignment of vehicles to trips. The construction of the RTV-
graph incurs a large amount of shortest path computation. To
compute the RTV-graph efficiently for dynamic ride-sharing,
the work relies on a precomputed static shortest path and
travel time look-up table. However, in real-world, the vehicle
travel time in an urban road network is hardly static. The
framework proposed in this paper does not depend on static
shortest path look-up table and could incorporate real-time
traffic condition, thus is more practical. Gidofalvi et al. [7]
design a trip grouping algorithm for dynamic ride sharing. It
assumes trip requests are queued to be scheduled for certain
time. Then, it groups ”closeby” requests as a rider group
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to be served by a taxi using some heuristics, for example,
expiration time, estimated combination saving, and greedy
grouping. It utilizes space partitioning and parallelisation to
optimize the algorithm performance. However, this heuristic-
based algorithm does not guarantee any waiting time and cost
constraints as previous work does.

There are recent works on applying ride-sharing to shared
autonomous vehicles (SAV) [8], [9]. The framework proposed
in this paper is readily applicable to scheduling SAV fleets.
However, some of the benefits of the framework may not
be very obvious comparing with applying to taxi fleets, e.g.,
the benefit of avoiding frequently updating driving routes on
the fly. Unlike human drivers, SAVs can strictly follow the
scheduled routes and will not be distracted by frequent route
updates during driving. This paper implements another ride-
sharing strategy which is similar to the ones proposed for SAV
ride-sharing [8] that allows the vehicle to change route at most
once while it is serving a trip request to pick up another ad-hoc
request. This strategy is compared with the proposed practical
ride-sharing framework in the simulation study.

In operation research, early research studies a dial-a-ride
problem (DARP) which refers to the matching between one
driver and multiple riders with specified trip requests. The
main objective is to plan minimum cost driver routes to accom-
modate as many riders as possible under a set of constraints
(e.g, departure and arrival time). Exact dynamic programming
algorithms have been developed for this problem [10]. Later,
a multiple driver version of this problem is formulated using
mixed-integer programming, and a branch-and-cut algorithm
is proposed to solve this problem [11]. The traditional DARP
considers static scenario where the set of rider requests and
drivers are known ahead of time, and optimal solution can only
be found for small to medium size instances. This is unrealistic
for large-scale and ad-hoc taxi service. Recent research studies
dynamic DARP problem [12], [13]. The main idea is to divide
the whole time span into a set of short time periods and to
solve a static version of the problem based on the drivers and
riders that are known at the time of execution. Therefore, these
algorithms are not able to provide immediate responses to ad-
hoc rider requests. Most of the proposed applications above
only consider departure time and arrival time as constraints
and/or have not been tested for real-life large-scale datasets.
A comprehensive survey of this problem has been presented
in [14].

There are some other variants of the general ride-sharing
problem. For example, the slugging problem assumes the
pick-up and drop-off points are pre-determined by the driver
while the riders are required to walk to the meeting point for
picking up and then to walk to their destinations from the
drop-off point [15], [16]. The commute ride sharing problem
mines historical mobility data of daily commuters and groups
the commuters with similar travel patterns together to share
ride [17], [18]. These problem formulations are different from
the taxi ride-sharing problem studied in this paper, and thus
are out of the scope of discussion. Interested readers can refer
to [19] for a comprehensive survey.

III. PRACTICAL TAXI RIDE-SHARING FRAMEWORK

In this section, a practical dynamic taxi ride-sharing frame-
work is proposed which is simple and respects both travelers’
and drivers’ convenience and economic interests. The frame-
work involves a taxi dispatch server, travelers who submit
taxi booking requests to the server via a mobile app, and
taxi drivers who constantly update the server their locations
and status and receive job assignments from the server. The
framework makes sure that both the traveler and the taxi driver
are aware of the (share) trip route and schedule before the
start of a trip to minimize traveler’s discomfort and to reduce
potential inconvenience and risk of the driver. Therefore, the
framework maintains a cache at the server side which records
the incoming taxi booking requests for a short while. It forms
valid shared trip plans among the cached booking requests
based on certain constraints which will be explained later.
When a shared trip plan is formed, the server informs the
travelers involved and try to recommend a suitable taxi to
serve the shared trip plan. Once the travelers and the driver
agree on the shared trip plan, the driver goes to pick up the
travelers based on the fixed schedule, and there is no change
of route or schedule during the trip.

Five constraints are defined when forming a valid shared
trip plan with respect to the service quality (e.g., waiting time,
departure/arrival delay, taxi capacity) and economical interests
of travelers and taxi drivers (e.g., taxi fare saving and shared
trip surcharge).

• Waiting time defines the maximum time allowed be-
tween the time when a traveler submits a request and
the time when a taxi is assigned to serve the trip. It
consists of the time that a traveler’s request being cached
in the system for the formation of the shared trip plan,
and the time for a taxi being assigned to serve the trip.
This constraint guarantees a fast response of the taxi ride-
sharing system to a traveler’s taxi booking request.

• Departure delay constraint defines the maximum travel
time of the taxi from its current location to the pick-up
location of the traveler after a taxi is being assigned to
serve the trip. This constraint guarantees that each traveler
can enjoy a taxi service within a short time period after
the system confirms that a taxi has been assigned to serve
him/her.

• Arrival delay constraint is the maximum time caused
by the detour as a shared trip needs to serve two requests
that is acceptable to the travelers. It refers to the extra
time that a traveler has to spend on the shared trip route,
as compared with normal trip route without sharing. This
constraint prevents the system from assigning unreason-
able shared trip plan which takes long detour and causes
unacceptable delay to the travelers.

• Capacity constraint defines the maximum number of
passengers per trip request. This constraint avoids form-
ing shared trips that exceed taxi capacity.

• Share trip surcharge refers to the extra surcharge col-
lected for each shared trip, represented in the form of a
fixed percentage of the total taxi fare (e.g., 10% of the
total taxi fare). This extra amount of fare serves as the



4

incentive to encourage taxi drivers to serve shared trips as
shared trips are more economic and drivers earn more for
each kilometer they drive, as compared with the normal
taxi trips that only serve one request.

• Taxi fare saving rate constraint refers to the minimum
saving a traveler expects to have via sharing his/her trip
with another traveler, again represented in the form of a
fixed percentage of the total taxi fare (e.g., 15% of the
total taxi fare). This constraint guarantees that travelers
actually pay less by sharing trips with others, and hence it
serves as an incentive, in addition to higher taxi booking
success rate, to encourage more travelers to participate
into taxi ride-sharing.

A. Preliminaries

The proposed taxi ride-sharing framework is built based on
a road network G = {V,E,W}. The vertex set V represents
road junctions, and the edge set E represents road segments.
Each edge e(vi, vj) ∈ E (vi, vj ∈ V ) is associated with a
weight W (vi, vj) ∈W which is the travel cost along the edge
e. In the framework, the travel cost is set to the travel time.
However, the framework is readily applicable to the case where
the travel cost is measured by distance. Given two vertices
s and e on the road network, a path p(s, e) from s to e is
an edge sequence 〈e(v0, v1), e(v1, v2), . . . , e(vk−1, vk)〉 where
s = v0, e = vk and ∀e(vi−1, vi) ∈ p(s, e), e(vi−1, vi) ∈ E.
The travel cost of the path p(s, e) is denoted as W (p(s, e)) =∑k−1

i=0 W (vi, vi+1). For a given pair of vertices s and e, their
shortest path, denoted as sp(s, e), refers to the path from s
to e with minimum cost, sp(s, e) = argminp(s,e)W (p(s, e)),
and W (sp(s, e)) refers to the travel cost of the shortest path
from s to e. A meter function M(p(s, e)) is used to calculate
the normal taxi fare of a trip from s to e on the road network
based on the length of path p(s, e).

Definition 3.1 (Taxi Booking Request): A taxi booking
request r = {s, e, t, n, w, dd, ad, δ} with respect to a road net-
work G = {V,E,W} is defined by a pick-up point s ∈ V , a
drop-off point e ∈ V 2, a submit time t, a passenger number n,
and four constraint parameters including a maximum waiting
time w, a maximum departure delay time dd, a maximum
arrival delay time ad, and a taxi fare saving rate δ. �

It is assumed all requests ris that have not yet been served
are queued at a cache C maintained by the server, based on
ascending order of their submitted time ri.t. A taxi booking
request ri can be satisfied by either a shared-trip or a single
trip (normal taxi trip that only serves ri). The taxi ride-sharing
framework gives shared trip a higher priority, and hence the
server will try to satisfy a booking request ri using a shared
trip. Given a request ri, the waiting time wi is partitioned into
two parts denoted as ri.w1 and ri.w2 with ri.w1 + ri.w2 =
ri.w. it is assumed the server has up to ri.w1 time to find
another taxi booking request rj ∈ C that can be shared with
ri; and has up to ri.w2 time to locate a suitable taxi to serve

2To simplify the discussion, this paper assumes s and e are located at
vertices of V , but it can be simply extended to support cases where s or e is
located at any edge e ∈ E of the road network.

ri by either a shared trip or a single trip, which are formalised
in Definition 3.2 and Definition 3.3 respectively.

Note if the server fails to locate a suitable request rj that
can share its trip with ri within ri.w1, ri will take a single
trip. To be more specific, the longer the ri.w1 is, the higher
the chance that a trip rj that can share the trip with ri can be
found; on the other hand, the longer the ri.w2 is, the higher
the chance that a free taxi can be identified to serve ri (and
maybe rj together). A system parameter θ in the range of
(0, 1) is introduced which is the ratio of ri.w1 to ri.w, i.e.,
ri.w1 = θ · ri.w. By default, θ is set to 0.5, while its value
can be tuned.

Definition 3.2 (Single Trip Plan): A valid single trip plan
T sin(tf , n, p = 〈v1, v2〉, e, texp, d) w.r.t. a booking request
r contains a formation time tf when the single trip plan
is formed, a passenger number n, a path p from v1 to v2
with v1 = r.s to v2 = r.e to serve r, an expiration time
texp = r.t + r.w, which is the latest time that a taxi shall
be located and assigned to serve the trip plan T sin, and a
departure delay constraint d = r.dd. Note only taxis that can
reach v1 by d are considered as qualified taxis which might
be assigned to serve T sin. �

For a single trip, there is no need to consider the arrival
delay constraint ad and taxi fare saving rate constraint γ as
there is no taxi ride-sharing involved. In other words, a single
trip does not take any detour, and the traveler only needs to pay
the normal taxi fare M(p(s, e)) based on the path p(s, e) taken
by the taxi. Without loss of generality, this paper assumes the
taxi driver takes the shortest path, i.e., T sin.p(s, e) = sp(s, e).

Definition 3.3 (Shared Trip Plan): 3 A valid shared trip
plan T sha(tf , n, p = 〈v1, v2, v3, v4〉, texp, d) with respect to
two booking requests r1 and r2, contains a formation time
tf when the shared trip plan is formed, a passenger number
n = r1.n + r2.n, an ordered route p that the taxi driver will
take to serve the requests, passing by locations v1, v2, v3, and
v4 in order, an expiration time texp that is the latest time a taxi
needs to be assigned to serve T sha, and a departure delay time
constraint dd. To be more specific, given v1, v2 ∈ {r1.s, r2.s}
and v3, v4 ∈ {r1.e, r2.e} which means the shared trip needs
to reach those two pickup locations first before sending the
travelers to the drop-off locations to guarantee r1 and r2 do
share part of the journey. Without loss of generality, this paper
assumes the taxi driver always takes the shortest path, i.e.,
∀vi, vi+1 ∈ T sha.p, p(vi, vi+1) = sp(vi, vi+1), i.e., T sha.p =
sp(v1, v2) + sp(v2, v3) + sp(v3, v4). The expiration time texp
is set to min(r1.t+r1.w, r2.t+r2.w), and the departure delay
d is set to min(r1.dd, r2.dd)−W (p). �

A valid shared trip plan needs to satisfy the following
constraints.

• Location order constraint. The condition v1, v2 ∈
{r1.s, r2.s} and v3, v4 ∈ {r1.e, r2.e} in above definition
is to guarantee that i) the taxi route p serves both
requests; i) for booking request r1 or r2, the planed
shared trip reaches its pick-up location before the drop-off

3To simplify the discussion, this paper assumes a shared trip plan is to serve
two taxi booking requests, while the definition can be easily generalized to
serve multiple requests.
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location; and iii) there is at least one part of the journey
(e.g., sp(v2, v3)) that the planned shared trip serves both
requests (i.e., the travelers of r1 and travelers of r2 are in
taxi simultaneously) to make sure this is indeed a shared
trip.

• Departure delay constraint. The constraint d =
min(r1.dd, r2.dd)−W (p) in above definition is to guar-
antee that the planned shared trip can reach r1.s by r1.dd
and reach r2.s by r2.dd.

• Arrival delay constraint. Without loss of generality, this
paper assumes r1.e = v3 and r2.e = v4. The planned
shared trip will reach r1’s drop-off location latest by d+
W (p)−W (sp(v3, v4)), and reach r2’s drop-off location
latest by d+W (p). The arrival delay constraint is satisfied
iff r1.ad ≤ d + W (p) − W (sp(v3, v4)) and r2.ad ≤
d +W (p) to make sure the detour taken by the shared
trip is still able to send the travelers to their drop-off
locations by the specified arrival delay.

• Capacity constraint. The constraint n ≤ cmax is to
guarantee that total number of passengers of the planned
shared trip does not exceed the maximum taxi capacity
cmax.

• Taxi fare constraint. Given a planned shared trip T sha,
the taxi fare f is derived based on M(T sha.p) ×
(1 + α). Here, M(T sha.p) captures the total nor-
mal taxi fare based on the travel distance of the
shared trip, and α stands for share trip surcharge.
The fare f will be distributed between r1 and r2
according to their respective normal taxi fare with-
out sharing, i.e., f1 = M(sp(r1.s,r1.e))·f

M(sp(r1.s,r1.e))+M(sp(r2.s,r2.e))
is the amount of fare paid by r1, and f2 =

M(sp(r2.s,r2.e))·f
M(sp(r1.s,r1.e))+M(sp(r2.s,r2.e))

is the amount of fare paid
by r2. Only if f1 ≤ M(sp(r1.s, r1.e)) × (1 − r1.δ)
and f2 ≤ M(sp(r2.s, r2.e)) × (1 − r2.δ), the taxi fare
constraint is satisfied to make sure both r1 and r2 can
save the specified minimum amount of taxi fare and hence
T sha is valid.

Given a formed shared trip plan, all the taxis that can reach
the first pick up location v1 within the departure delay time d
and with a capacity c ≥ n are qualified taxis, and any of them
could be assigned to serve the shared trip.

B. Framework Overview
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Fig. 2. The workflow of the practical taxi ride-sharing framework.

Figure 2 visualizes the workflow of the proposed taxi ride-
sharing framework. When a traveler submits a new booking
request ri, ri first goes through the shared trip formation
process. The process browses all the active booking requests
pending in the server cache C to find another booking request
rj ∈ C that can form a valid shared trip plan with ri. Recall
that ri and rj can form a valid shared trip plan only if all the
five constraints discussed previously are satisfied, including
location order constraint, departure delay constraint, arrival
delay constraint, capacity constraint, and taxi fare constraint.
If such rj could be found, the system generates a shared trip
plan T sha

x with regard to ri and rj , inserts T sha
x into a trip

queue Q waiting for the scheduling process to assign a free taxi
to serve this trip, and removes rj from the cache. Otherwise, ri
will be inserted into the cache C, under the assumption that ri
might be able to form a valid shared trip with another request
rl that will be submitted in the near future. As mentioned
above, each request ri specifies a maximum waiting time w.
It will only spend up to θ · ri.w time in the cache C. In other
words, if ri cannot form a valid shared trip plan with another
request rj within θ · ri.w, the server will form a single trip
plan T sin

y for ri, insert T sin
y into the trip queue Q, and remove

ri from C.
To sum up, this framework emphasise on system simplicity

and the capability of forming valid shared trip plans in
real-time, rather than finding the optimal solutions. When
generating the shared trip plan, a greedy strategy is used to find
the locally best booking request in the system cache for the
new incoming booking, but not try to find a globally optimal
share plans for all cached bookings. The locally best booking
request means the booking request which can form a shared
trip plan with the new incoming booking with the lowest
travel cost. This will reduce the computational complexity
and improve the system response time. When generating the
shared trip plan, this framework also does not consider the taxi
status in the system (e.g., the framework does not consider
generating the shared trip plan which is easier to find an
available taxi nearby based on the current location of the taxis
in the system) for the same reason. Because in a real system,
the simplicity and short response time is often more important
than optimality. Tfhe implementation detail of the framework
is provided in supplementary materials.

IV. EXPERIMENTS

In this section, experiments are conducted to study the
benefit of the proposed taxi ride-sharing strategy based on
real-world taxi booking data in the city of Singapore. The
effect of different constraints in taxi booking service is evalu-
ated, including available taxi number, waiting time, departure
delay, arrival delay, taxi ride-sharing surcharge, and taxi fare
saving constraint4. The results indicate taxi ride-sharing could
significantly improve taxi booking success rate during peak

4Because the passenger number information is not available in the booking
data, the capacity constraint cannot be implemented in the simulation. How-
ever, in the real world, travelers who use the taxi ride sharing service usually
travel alone or not with many others. Therefore, combining two bookings
normally will not exceed the maximum capacity of a normal taxi (i.e., 4).
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hours when the demand is high, reduce travelers’ travel cost,
and improve taxi drivers’ profit.

A. Experiment Setup

Three simulation programmes are implemented including
the proposed taxi ride-sharing framework, denoted as SHARE1,
a variant taxi ride-sharing algorithm, demoted as SHARE2,
using a similar strategy used for SAV ride-sharing [8], and
a normal taxi service strategy, denoted as NORMAL. SHARE2

uses the same constraints as SHARE1, but it does not cache
booking requests to form shared trip plans beforehand. A
booking request is immediately processed for taxi scheduling,
and an occupied taxi can change route on-the-fly to pick up
another qualifying booking to share the trip.

The experiment uses real taxi booking requests of all
working days from 1 June to 30 June, 2014 in Singapore in
total of 22 days from GrabTaxi, a popular taxi booking app
in the market, as the input of the simulation. It generates the
road network based on the real Singapore map retrieved from
OpenStreetMap. The road network contains 49, 593 vertices
and 109, 251 edges. It obtains the travel cost of the edges by
analysing the real taxi trajectory data collected in a duration
of six months. For each edge, the average taxi travel time for
every hour of a day is calculated, and this real travel time
information in used through out the experiment.

In order to make the simulation more realistic, the pro-
grammes simulate the real taxi movement during their free
time in the experiments. Initially, the taxis are distributed
around the Singapore road network based on the real taxi
distribution at the time of study which is extracted from
the real taxi trajectory data. The roaming strategy proposed
by [20] is adopted to simulate a taxi’s movement when it
is not assigned to serve any booking. The roaming strategy
divides the road network into mutually exclusive zones (e.g.,
grids), and assumes the free taxi makes probabilistic moves
toward different zones based on their relative attractiveness.
The attractiveness of a zone i is defined as bi

W (sp(i,p))2 , where
bi is the number of bookings issued from zone i in the
hour of the study time, p is the current taxi location, and
W (sp(p, i)) is the travel cost of the shortest path from p to
the center point of i. The simulation assumes the taxi fare
is estimated based on the travel distance and the trip start
time. It applies the flag-down fare, distance rate, and time-
based surcharge rate from the Land Transport Authority of
Singapore (http://www.lta.gov.sg), and does not consider other
charge such as waiting time rate and city area surcharge.

To evaluate the benefit of taxi ride-sharing, the following
metrics, taxi booking success rate, average travel distance
saving per trip, average taxi fare, and average driver profit,
are considered. Table I lists the parameters to be evaluated
with their default values and value ranges.

Simulation results are reported in the following subsections.
Simulation is first conducted for one day time period to
understand the general pattern of the effect of taxi ride-sharing
at different time of a day, as reported in Section IV-B. Then,
subsequent simulation focuses on the peak hours of a day,
when the taxi shortage problem becomes the most severe and

TABLE I
PARAMETER SETTINGS. THE VALUES HIGHLIGHTED BY BOLD ARE THE

DEFAULT VALUES.

Parameter Notation Value Range

Taxi number n {400, 500, 600, 700, 800, 900, 1000}
Waiting time (sec.) w {60, 180, 300, 600, 900, 1200, 1500}

Departure delay (sec.) dd {300, 600, 900, 1200, 1500}
Arrival delay (sec.) ad {300, 600, 900, 1200, 1500}

taxi ride-sharing surcharge δ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
Taxi fare saving rate α {0, 0.1, 0.2, 0.3, 0.4}

the benefit of taxi ride-sharing is the most significant, and
study the main benefits of taxi ride-sharing under different
parameter settings, as reported in Section IV-C. Every simula-
tion is repeated by 5 times, and the 5-time average is reported
as results.

B. One-day simulation results
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Fig. 3. Hourly booking success rate (3 June 2014).
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Fig. 4. Taxi utilised for serving at least one booking during each hour of a
day.

Figure 3 demonstrates the hourly booking success rate of
the three simulations of a normal working day in June 20145.
The default parameter setting is applied.

The figure shows the advantage of ride-sharing is more
significant when the taxi demand is very high, especially
during the peak hours (e.g., 8am, 9am, and 6pm). For example
during the morning peak, NORMAL can only serve 30%-40%

5The simulation results based on other working days follow a very similar
pattern and hence are omitted to avoid redundancy.
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Fig. 5. The average waiting time of the served bookings during each hour
of a day.

of the bookings, while SHARE1 and SHARE2 could serve 55%-
62% of the bookings. On the other hand, during non-peak
hours when the demand on taxi is not high, all three strategies
can almost achieve 100% success rate. Consequently, there is
no room for taxi ride-sharing to improve. It is also noticeable
that the performance in terms of success rate of SHARE1 and
SHARE2 is comparable.

To better understand the taxi demand and taxi supply during
the non-peak hours, the hourly taxi utilization rate is demon-
strated by Figure 4. The taxi utilization rate is the percentage
of taxis that have been utilized to serve at least one booking
during each hour. As shown by the figure, during most non-
peak hours (e.g., 10am-4pm), the taxi utilization rate under
SHARE1 and SHARE2 is lower than that under NORMAL. This
observation demonstrates that the taxi ride-sharing strategies
could serve almost the same number of booking requests using
a smaller number of taxis, which contributes directly to the
improvement of traffic congestion and air pollution. The figure
also shows the taxi utilization rate of the SHARE1 is slightly
lower than that of SHARE2. During peak hours when the
taxi demand is high, the taxi utilization rate of all the three
strategies is close to 100%. This means the demand during the
peak hours is very high and it exceeds the taxi fleet capacity.
In order to support the large number of taxi requests without
increasing the number of taxis, taxi ride-sharing is an almost
free solution.

The simulation also evaluates the average actual waiting
time of the served bookings under three different strategies.
Here, the actual waiting time of a booking refers to the
duration from the time a booking is submitted to the time
a taxi is assigned to serve the booking. It is found during the
peak hours, the average actual waiting time under NORMAL
is much longer than the average waiting time under SHARE1

and SHARE2. It indicates when the taxi demand is so high that
exceeds the taxi fleet capacity, it is very hard for a traveler to
get a taxi and even when the traveler is lucky to get a taxi,
he/she has to wait long time for the taxi to come and pick her
up. On the other hand, when SHARE1 and SHARE2 are applied,
the travelers’ actual waiting time could be greatly reduced.
When the two different ride-sharing strategies are compared,
it could be observed that the average actual waiting time under
SHARE1 is longer than that under SHARE2, especially during
the non-peak hour. This is because the original taxi ride-

sharing strategy SHARE1 caches the submitted bookings in a
cache C for a while (e.g., 300 sec.) to generate trip plans,
and then schedules taxis for formed trip plans. Therefore,
there is a time gap between the booking submission and the
scheduling, which extends the actual waiting time. During the
non-peak hours, when the demand is low, a booking in most
cases has to be cached for longer time before it forms a valid
shared trip plan with another booking or forms a single trip
plan eventually, which results in longer waiting time. Different
from SHARE1, the variant taxi ride-sharing strategy SHARE2

performs the taxi scheduling directly.
To sum up, this set of simulation demonstrates taxi ride-

sharing have the potential to improve taxi service quality
by improving the taxi booking success rate, reducing the
needed number of taxis running on the road, and reducing the
travelers’ waiting time. The advantage of taxi ride-sharing is
more prominent during the peak-hours when the taxi demand
is much higher and the taxi shortage problem is more severe.
In addition, the original taxi ride-sharing strategy SHARE1

relieves travelers from the inconvenience of changing the travel
route and travel companion during their trip. However, it may
result in a slightly longer waiting time, as compared with
the variant ride-sharing strategy SHARE2. On the other hand,
SHARE2 sacrifices a little on the traveler’s convenience by
allowing taxis to change trip routes for at most once to gain
a better waiting time performance.

C. Peak-hour simulation results

As demonstrated by the previous subsection, the benefit of
taxi ride-sharing is more prominent during the peak hours of
a day when the demand on taxis is very high. This subsection
further investigates the benefit of taxi ride-sharing by focusing
on the peak hours. More simulation is conducted based on the
booking data corresponding to the morning peak hours (i.e.,
8am-9am), and the taxi booking success rate, average travel
distance saving per trip, average taxi fare, and average driver
profit with different parameter settings are examined.

The impact of number of taxis running. The experiment
increases the taxi number from 400 to 1000 and keep all
other parameters to their defaults, with the results shown
in Figure 6. First, It is easily observed that the booking
success rate increases as the taxi number increases, and the
taxi ride-sharing strategies generally serve 20% more booking
requests than the normal non-sharing strategy NORMAL (see
Figure 6a). Second, the average travel distance saved per
trip by applying taxi ride-sharing is investigated. The result
in Figure 6b shows SHARE1 can reduce about 2-3km travel
distance per trip on average (e.g., about 20%−30% of average
travel distance per trip), and SHARE2 saves slightly more travel
distance per trip. Third, the average taxi fare the travelers need
to pay per trip is studied. The results show the taxi ride-sharing
strategies SHARE1 and SHARE2 are able to save travelers 4
to 5 dollars per trip on average, which is around 30% of the
normal taxi fare travelers usually need to pay. Finally, the
average taxi driver profit is investigated. As shown by the
result in Figure 6d, with the increase of taxi numbers, the
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Fig. 6. Simulation results with increasing taxi number.

average taxi driver’s profit decreases. However, the taxi ride-
sharing strategies allow the taxi drivers to earn more than the
normal non-sharing strategy. Generally, it could be observed
from Figure 6c and Figure 6d that SHARE1 makes the travelers
pay a slightly higher taxi fare, and hence allows the taxi drivers
to earn more profit, as compared with SHARE2.

The impact of the waiting time constraint. The experiment
increases the waiting time from 60 seconds to 1500 seconds
and keep all other parameters as default. As shown by the
simulation results in Figure 7, the waiting time constraint
parameter has a very limited impact on the simulation results
of both NORMAL and SHARE2 because these two strategies do
not keep the newly submitted booking request in the cache C
for pairing with another booking request for taxi ride-sharing.
However, the waiting time constraint has a more significant
influence on the original taxi ride-sharing strategy SHARE1 as
the waiting time constraint directly affects the duration that
a newly submitted booking request needs to wait in C for
taxi ride-sharing, thus affecting the chance of the formation of
shared trip plans. For SHARE1, with the waiting time constraint
increases, the booking success rate increases (see Figure 7a),
the average travel distance reduced per trip also increases (see
Figure 7b), while the average taxi fare per trip paid by the
travelers and the taxi drivers’ profit decrease.

The impact of the departure delay constraint and the
arrival delay constraint. The experiment increases the two
delay constraints from 300 seconds to 1500 seconds respec-
tively and set the rest parameters to their defaults. The results
are shown in Figure 8 and Figure 9 respectively. Figure 8
demonstrates with the increase of departure delay constraint,
the success rate increases until the departure delay constraint
reaches 900 seconds. After that, with the further increase of
the departure delay, the success rate starts to decrease. The
other metrics basically follow the same pattern. This is because
a larger departure delay constraint indicates that the traveler
is willing to wait for a longer duration for an available taxi
to drive to the specified pick-up location. Therefore, when
the system performs taxi scheduling, it can search taxis in a
larger range, which increases the chance of finding a free taxi
to serve a booking, thus increasing the booking success rate.
However, if the departure delay constraint is too large, the
system is more likely to assign distant taxis to serve booking
requests. As a result, the taxis will waste more time on the way
to reach the travelers’ pickup locations, which reduces their

chance of serving more future booking requests. This is the
reason that the success rate decreases with very large departure
delay constraint. However, there is no obvious patterns while
changing the arrival delay constraint. Therefore, the departure
delay that the travelers can tolerant has a stronger impact on
the taxi dispatch system, as compared with arrival delay.

The impact of the taxi fare saving rate constraint. The
experiment increases the taxi fare saving rate constraint from
0% to 40% and set all other parameters as default. The
simulation results are shown in Figure 10. As the taxi fare
saving rate is only applicable to the taxi ride-sharing strategies
SHARE1 and SHARE2, it does not affect the normal non-
sharing strategy NORMAL. A higher taxi fare saving rate
constraint means the travelers expect a higher saving by using
taxi ride-sharing service, and hence the shared part of their
trips is expected to be longer. Therefore, it is harder for the
system to match two booking requests to form a valid shared
trip plan. Consistent with the expectation, the booking success
rate, travel distance saving, and taxi drivers’ profit all drop
significantly when the taxi fare saving rate constraint increases.

The impact of increasing the taxi ride-sharing surcharge
parameter. The experiment increases the taxi ride-sharing
surcharge from 5% to 50% and set all other parameters to
the default setting. The results are demonstrated in Figure 11.
As the taxi ride-sharing surcharge is only applicable to the
taxi ride-sharing strategies, it does not affect the normal
non-sharing strategy NORMAL. As shown in the figure, this
parameter has a direct impact on the average taxi fare and
the average profit of the drivers. As the taxi drivers charge
more for taxi ride-sharing, the travelers’ taxi fare on average
increases as well as the taxi drivers’ profit (see Figure 11c and
Figure 11d). When the taxi ride-sharing surcharge is very high
(i.e., more than 40%), the success rate and the average travel
distance saving metrics drop (see Figure 11a and Figure 11b).
This is because when the taxi ride-sharing surcharge is larger,
it becomes more difficult to find two booking requests that
can form a valid shared trip satisfying the travelers’ taxi fare
saving rate constraint.

To sum up, in this subsection, comprehensive experiments
are conducted to investigate the detailed benefit of the taxi
ride-sharing strategies during the peak hours of a day. The
results find generally taxi sharing strategies (i.e., SHARE1 and
SHARE2) could achieve a much higher booking success rate
and save more travel distance of the taxi trips, as compared
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Fig. 7. Simulation results with increasing waiting time constraint.
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Fig. 8. Simulation results with increasing departure delay constraint.
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Fig. 9. Simulation results with increasing arrival delay constraint.
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Fig. 10. Simulation results with increasing taxi fare saving rate constraint.
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Fig. 11. Simulation results with increasing taxi ride-sharing surcharge constraint.
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with the normal non-sharing strategy NORMAL. They enable
the travelers to pay less taxi fare per trip and allow the taxi
drivers to earn more profit for each kilometre they drive.
The performances of SHARE1 and SHARE2 are comparable,
but SHARE1 has the additional advantage of releasing the
drivers and the travelers from the discomfort of on-the-fly
route changes.

V. CONCLUSION

This paper seeks to understand the potential benefit of ride-
sharing in a big urban city with very heavy transportation
demand. A practical taxi ride-sharing strategy is proposed
which fully considers travelers’ comfort, drivers’ convenience,
and ease of implementation and maintenance. The proposed
strategy also takes the economic factors into consideration.
It motivates drivers to serve taxi ride-sharing trips by offering
more profit, and encourages travelers to share taxis with others
by enjoying attractive taxi fare discount.

Extensive simulation study is conducted based on real taxi
booking data of Singapore city. The results indicate the effect
of taxi ride-sharing is more prominent during peak hours
when the taxi demand is very high and exceeds the taxi fleet
capacity. Taxi ride-sharing enables the taxi fleet, to serve 20%-
25% more booking requests and greatly reduces the traveler’s
waiting time during the peak hours. Therefore, it is highly
recommend the taxi company to apply the taxi ride-sharing
service during the peak hours of the city transportation. On
the other hand, applying ride-sharing during non-peak hours
could reduce the taxi utilization rate, which may cause some
taxi drivers to loose their jobs.

In the future, simulation study based on the taxi booking
data of other big cities is expected to make this study more
general. In addition, the authors plan to find efficient opti-
mization algorithms to maximize the global performance of
the ride-sharing.
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