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Predicting Adverse Impact and Mean Criterion Performance in
Multistage Selection

Wilfried De Corte and Filip Lievens
Ghent University

Paul R. Sackett
University of Minnesota, Twin Cities Campus

The authors present an analytical method to assess the average criterion performance of the selected
candidates as well as the adverse impact and the cost of general multistage selection decisions. The
method extends previous work on the analytical estimation of multistage selection outcomes to the case
in which the applicant pool is a mixture of applicant populations that differ in their average performance
on the selection predictors. Next, the method was used to conduct 3 studies of important issues
practitioners and researchers have with multistage selection processes. Finally, the authors indicate how
the method can be integrated into a broader analytical framework to design multistage selection decisions
that achieve intended levels of selection cost, workforce quality, and workforce diversity.

Keywords: adverse impact, personnel selection, estimation procedure, quality selected workforce

The use of multiple predictors (tests, interviews, simulation
exercises) in selection decisions is common. Whenever multiple
predictors are used, decisions need to be made about how the
predictor information is to be combined. Regression weights or job
analytically determined importance weights are commonly used in
settings where all predictors are administered to all applicants.
Issues of adverse impact against members of protected groups may
also come into play. For example, although criterion-related va-
lidity is maximized by using regression weights, it may be that
alternative combinations of the same predictors can produce va-
lidity levels quite close to those produced by the optimal regres-
sion weights but with less adverse impact. Decision makers may,
of course, vary in their willingness to accept a given reduction
from optimal validity in return for a given gain in minority group
selection.

In many cases, however, multiple predictors are used in a
sequential, multiple-hurdle fashion. Although it is clearly optimal
for purposes of predictive accuracy to administer all predictors to
all candidates, cost and logistic concerns frequently make this
infeasible. Thus, it is common to use multistage selection, in which
a subset of predictors is used for initial screening, and additional
predictors are used for subsequent selection decisions. Inexpensive
predictors, predictors lending themselves to unproctored adminis-
tration (e.g., application blanks), and predictors amenable to group
administration are common candidates for use in initial screening
decisions, whereas more expensive predictors requiring proctored
and/or individualized administration are subsequently adminis-
tered to a smaller, more manageable number of candidates.

Given that the choice to use multistage selection is a pragmatic
one, it is important to anticipate the effects on key selection
outcomes of various choices made in multistage selection. Three
outcomes of interest to many firms are the selection cost, the
criterion performance of those selected (i.e., validity), and the
minority hiring rates among those selected (i.e., adverse impact;
Sackett, Schmitt, Ellingson, & Kabin, 2001). Given an applicant
pool of a given size and composition, a fixed number of openings,
and a decision to use a set of predictors, there are a variety of
decisions to be made, each of which affects the selection cost, the
mean performance of those selected, and the minority hiring rate.
The first is determining which predictors to administer at an initial
stage and which to administer at subsequent stages. The second is
the cutoff score or selection ratio to apply to predictors used at an
initial stage. At times, there may be a clear criterion-referenced
basis for such a decision (as in the case of a job requiring a person
to lift 35 lb). In many cases, though, validity evidence may indicate
a linear test–criterion relationship, and there may be no single
criterion level seen as a uniquely meaningful threshold. Thus, a
decision is required about the proportion of the pool that will
advance to subsequent stages in the selection procedure. The third
is determining how final selection decisions should be made. Here
the key decision is whether the predictors used in initial screening
also play a part in the final-selection decision (i.e., if A is admin-
istered at Stage 1 and B at Stage 2, is the final selection done on
the basis of B only or on the basis of A � B)?

To resolve these decision problems, before the selection is
actually performed, the practitioner must at least be able to deter-
mine the expected criterion performance and adverse impact that
correspond to a particular set of choices with respect to the
stage-specific selection rates and predictor weights. An analytical
method to carry out this estimation for the general multistage
selection scenario is not available, however (cf. Sackett & Roth,
1996). At present, only single-stage selections can be addressed
analytically (cf. De Corte & Lievens, 2003; Schmitt, Rogers, Chan,
Sheppard & Jennings, 1997), whereas Monte Carlo simulation

Wilfried De Corte, Department of Data Analysis, Ghent University,
Ghent, Belgium; Filip Lievens, Department of Personnel Management and
Work and Organizational Psychology, Ghent University; Paul R. Sackett,
Department of Psychology, University of Minnesota, Twin Cities Campus.

Correspondence concerning this article should be addressed to Wilfried
De Corte, Department of Data Analysis, Ghent University, H. Dunantlaan
1, 9000, Ghent, Belgium. E-mail: wilfried.decorte@rug.ac.be

Journal of Applied Psychology Copyright 2006 by the American Psychological Association
2006, Vol. 91, No. 3, 523–537 0021-9010/06/$12.00 DOI: 10.1037/0021-9010.91.3.523

523

Published in Journal of Applied Psychology, Volume 91, Issue 3, May 2006, Pages 523-537
https://doi.org/10.1037/0021-9010.91.3.523



methods have thus far been used for selection scenarios that are
limited to two stages (Sackett & Roth, 1996).

To overcome this limitation, as well as to avoid inherently
variable estimates, which are typically the result of using simula-
tion methods, the first aim of this article is to present a widely
applicable, analytical method to assess the cost, the standardized
average criterion performance, and the group-specific adverse
impact ratios of intended multistage selections. We also make
available a computer program that implements the method. The
present method extends previous related work on the analytical
computation of multistage selection outcomes (Cronbach &
Gleser, 1965; De Corte, 1998) to the case in which the applicant
pool is not homogeneous but rather is a mixture of several appli-
cant groups (both majority and minority groups) that differ in
terms of their average performance on the predictors. The method
is also related to the commonly used simulation approach (e.g.,
Doverspike, Winter, Healy, & Barrett, 1996; Hattrup & Rock,
2002; Sackett & Roth, 1996) in that it is based on the same
assumptions and that its application is contingent on identical
information with respect to the predictors and the criterion dimen-
sions. Yet, as compared with the simulation-based approach, the
present analytical method has three distinct advantages. First, the
results of the simulation-based approach vary over repeated appli-
cations on the same input data, whereas the analytical method
always results in the same point estimate. Basically, the value
obtained by the present method equals the average result that
would be obtained over (infinitely) many repeated implementa-
tions of the simulation-based approach. Second, the computation
of the analytical result is dramatically faster. As we explain later,
this enables the integration of the method within a Monte Carlo
procedure to handle situations in which the selection practitioner is
uncertain about (some of) the values of the predictor and criterion
characteristics of the intended selection decision. Finally, we argue
in the final section of the article that the present method is required
for the systematic design of multistage selection decisions that aim
to achieve a given set of goals in terms of cost, workforce quality,
and desired levels of workforce diversity.

The second aim of the article is to use the method to conduct
three studies of important issues practitioners and researchers have
with multistage selection processes. In the first study, we investi-
gated the changes in group differences at each stage in the process.
We estimated at each stage the progressive levels of predictor and
predicted criterion mean group differences and adverse impact.
These results extend results obtained by Roth, Bobko, Switzer, and
Dean (2001) on two-stage selection. In the second study, we
investigated the consequences of various decision options in mul-
tistage selection (cf. Sackett & Roth, 1996). We specifically in-
vestigated the trade-offs among cost, validity, and adverse impact
as a function of the order of the predictors. In the third study, we
applied the method to a Monte Carlo simulation to investigate the
merits of alternative selection scenarios where there was uncer-
tainty about specific features of the selection process.

The article is structured as follows. We start by presenting the
basic features of the selection decision scenarios that the method
intends to address and detail the objectives of the analytical
method. Next, we provide a short, nontechnical description of the
method and summarize the boundary conditions of its usage. We
also briefly describe a computer program to implement the
method. Then we discuss the applications introduced above. Fi-

nally, we reconsider the relevance of the method for the more
optimal design of multistage selection decisions in which goals of
selection cost, quality, and adverse impact are of importance.

Method

Studied Selection Scenarios and Purpose of the Method

The present method focuses primarily on the prototypical scenario that
the Standards for Educational and Psychological Testing (American Ed-
ucational Research Association, American Psychological Association, &
National Council on Measurement in Education, 1999) labeled as the fixed
applicant pool. This scenario occurs when a position is announced with an
application deadline. Once that deadline is reached, the organization knows
the size and makeup of the applicant pool, and we henceforth consider the
case in which the candidates come from several applicant populations that
differ in terms of their average scores on one or more available selection
predictors and in terms of one or more relevant criterion dimensions. The
standardized mean difference (i.e., the mean group difference) is used to
express the extent to which the average predictor or criterion scores of the
minority groups deviate from the corresponding averages of the majority
group. The method focuses on multistage selection, in that at each selection
stage, the remaining candidates are screened on a weighted composite of
the predictors administered thus far and in that only the candidates who
score sufficiently high on the composite predictor are retained for further
scrutiny (or receive a job offer at the last stage). In what follows, a
distinction is made between stage-specific retention rates, which indicate
the proportion of the total number of applicants that are retained at the end
of a given selection stage, and stage-specific selection rates, which refer to
the proportion of remaining candidates selected at a given stage. Although
retention and selection rates convey the same information in single-stage
selections, it is important to distinguish between both rates in the context
of multistage selection. Thus, in a three-stage selection in which 60% of the
applicants are retained after the first stage, half of the remaining candidates
are dropped at the second stage, and only one third of the remaining
candidates receive a job offer, the stage-specific selection rates are .60, .50,
and .33, whereas the corresponding stage-specific retention rates are .60,
.30, and .10.

This characterization of the multistage selection scenario also includes
situations in which the screening decisions are based on only the stage-
specific predictors (in which case the earlier administered predictors re-
ceive a zero weight in the composite) as well as situations in which the
retention decision in each stage is based on single-predictor information. In
the latter case, the number of stages equals the number of predictors, and
the predictor composites all reduce to the corresponding single predictor.

Given any particular set of choices of the selection practitioner with
respect to (a) the total number of stages, (b) the stage-specific selection
rates, and (c) the weights with which the predictors administered thus far
will be used to determine the stage-specific composite predictor scores, the
method determines for each stage the standardized average score of the
retained applicants on a composite criterion that is a weighted combination,
with user-specified weights, of the relevant criterion dimensions. Thus,
stage-specific standardized average criterion scores are obtained for the
overall sample as well as separately for each of the different applicant
groups.

Apart from these average criterion scores, the method also determines
two sets of adverse impact (AI) ratios. The first set of AI ratios is
stage-specific, whereas the second set of AI ratios is cumulative. The two
sets of AI ratios are both considered because they convey different pieces
of information on the adverse impact of the selection. The cumulative AI
ratios report the adverse impact cumulated over all selection stages thus far
completed, whereas the stage-specific ratios indicate the adverse impact for
a given selection stage. As illustrated in the Study 1: Progressive Group
Differences in Multistage Selection section, the combination of both indi-
ces allows for an improved analysis of adverse impact.
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Finally, the method computes the predictor mean differences between
subgroups after each stage. This improves and extends results obtained by
Roth, Bobko, Switzer, and Dean (2001) on the effects of prior selection
when using a first predictor on the subgroup differences with respect to a
second, related predictor. Roth et al.’s (2001) results are improved because
the present method provides an analytical computation of the effects of
prior selection instead of an approximate, simulation-based estimation. The
results are also extended because the method determines these effects not
only in case of prior selection on a single predictor but also in case of prior
sequential selection on several generally weighted predictor composites.

Boundary Conditions and Assumptions

The application of the present method is contingent on a number of
boundary conditions and assumptions. A first set of conditions relates to
the features of the studied selection scenario described earlier and to the
method of referral that is adopted in the different selection stages. In
particular, the method aims at multistage selections from fixed applicant
pools in which the candidates come from different populations. In addition,
it is understood that at each stage, only (and all) candidates are retained
who score at or above a certain cutoff score on the stage-specific predictor
(or predictor composite). So, pass–fail decisions are made at each stage,
resulting in a noncompensatory, multiple-hurdle selection process, as is
often seen in practice.

Second, to derive the standardized average criterion scores of the se-
lected applicants, the adverse impact ratios, and the predictor mean sub-
group differences after previous screening, an assumption is made. In
particular, it is assumed that the available predictors and the relevant
criterion dimensions have a joint multivariate normal distribution with the
same variance–covariance matrix but different means in the subgroup
populations. This assumption generalizes the one that is currently used in
the single-stage analytical method (e.g., De Corte & Lievens, 2003) and is
identical to the assumption that underlies the simulation-based approximate
calculations (e.g., Doverspike et al., 1996; Sackett & Roth, 1996).

Finally, the application of the method requires that certain selection
input data are available. As discussed later in the Limitations section, these
input data values must be chosen carefully because the results of the
calculations depend on them. The data requirements, as well as the fact that
the results are contingent on the values of the input data, are not unique to
the present method, however. The use and the results of, for example, the
simulation approach depend on the same data. More specifically, both the
simulation and the present analytical method require data with respect to
(a) the predictor–criterion correlations, (b) the mean subgroup differences
for the predictors and the criteria, (c) the intercorrelations among the
predictors and among the criteria, and (d) the proportional representation of
the different applicant groups in the total applicant population. We see two
possible bases for obtaining these data. First, estimates of the validities,
intercorrelations, and mean subgroup differences of many popular predic-
tor variables can be obtained from the numerous meta-analytic studies on
this subject (e.g., Bobko et al., 1999; Hough, Oswald, & Ployhart, 2001;
Ones & Anderson, 2002; Salgado, Anderson, Moscoso, Bertua, & De
Fruyt, 2003; Schmidt & Hunter, 1998). Many of these studies also provide
fairly accurate values for the subgroup mean differences and the intercor-
relations of the most common aspects of job performance (e.g., Roth,
Huffcutt, & Bobko, 2003). Second, the selection input parameter data
might be retrieved from relevant values gathered during previous admin-
istrations of a selection system. Organizations have often been using a set
of predictors for selection decisions for some years. Hence, local data on
the mean subgroup differences, validities, and intercorrelations of these
predictors are available.

Method and Implementation

The appendix provides a detailed account of the method to derive the
required results from the information on the intended selection scenario

and the values of the selection input parameters. In general terms, the
method proceeds in four steps. In the first step, the data on the predictor
correlations are used together with the intended weighting scheme of the
predictors to compute the correlation matrix of the stage-specific compos-
ite predictors at each stage. These computations are based on standard
formulas to calculate the variance–covariance matrix of linear combina-
tions of variables. Next, the method computes the cutoff values of the
composite predictors that correspond to the intended retention rates at the
end of each stage. To achieve this purpose, several nonlinear equations are
solved, one for each selection stage. These cutoff values and the earlier
computed variance–covariance matrix of the stage-specific (composite)
predictors are subsequently used in the third step to determine at each stage
and for each applicant population the proportion of retained applicants. All
these proportions are obtained by evaluating the value of suitably truncated
multinormal distributions with algorithms that generalize the thus far
adopted approach to the computation of single-stage selection rates (e.g.,
Taylor & Russell, 1939) to the general case of multistage selection. The
resulting proportions enable a straightforward computation of the stage-
specific and the cumulative AI ratios of the intended selection with respect
to each of the different applicant groups.

In the final step, the method calculates for each stage the average
(composite) criterion score of the applicants that are retained at the end of
the stage. These calculations are performed for each applicant group
separately and for the total group of remaining applicants. As detailed in
the appendix, these average criterion scores can be obtained by using a
regression equation in which the average scores of the retained/selected
applicants on the (thus far implemented) stage-specific predictors are
combined according to the optimal regression weights for regressing the
composite criterion on these predictors. Also, the required stage-specific
average predictor scores are computed with formulas that evaluate the
expectation of truncated multinormal distributions (cf. Muthén, 1990;
Tallis, 1961) and by extending these formulas to the situation where the
joint distribution of the predictors is a mixture of multinormals with the
same variance–covariance matrix but different mean vectors, as is pres-
ently the case. In the special case of single-stage selection from a homo-
geneous applicant population, these formulas reduce to those used by
Brogden (1949), Cronbach and Gleser (1965), Naylor and Shine (1965),
and many others to compute the average criterion score of the selected
applicants.

To implement the method, Wilfried De Corte wrote and compiled a
computer program to an executable code that runs on a personal computer
under the Windows 95/98, NT, XP, and 2000 operating systems. The
computer program and a manual that describes the preparation of the input
file and the actual usage of the program can freely be downloaded from the
Internet (see De Corte, 2005). The documentation also contains an example
application and provides further details on the output generated. Because of
the increasing numerical complexity, the program is at present limited to
the analysis of sequential selections with no more than 4 stages, 10
predictors, 5 criterion dimensions, and 5 different applicant populations,
but these limitations should not pose a problem for most practical appli-
cations. As explained in the Study 3: Uncertainty in the Selection Param-
eter Data section, the program also provides the opportunity to embed the
analytical computations within a Monte Carlo procedure to handle uncer-
tainty in (some of) the selection parameter data.

Study 1: Progressive Group Differences
in Multistage Selection

We noted in the introductory section that the present method
results in a comprehensive overview of both the intermediate and
the final (expected) outcomes of an intended selection decision.
Such an overview may interest the practitioner because it provides
a detailed account of the expected applicant flow through the
selection stages, thereby showing which stage, if any, is likely to
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result in a disproportional retention/selection of certain applicant
groups. In addition, the method helps to understand the causes of
such eventual disproportional retention rates by calculating how
the initial group differences on the predictors and the criterion
evolve through the subsequent stages. To illustrate the potential of
the method for addressing these issues and to familiarize the
practitioner with the workings and the results of the method, we
apply it to a representative example situation.

Selection Scenario and Parameter Data

The application relates to a situation in which (a) the total
applicant population was a mixture of White, Black, and Asian
candidate populations (with mixture proportions of .70, .20, and
.10, respectively), (b) four predictors were available to perform the
selection (i.e., biodata [BI], a test of cognitive ability [CA], a
measure of conscientiousness [CO], and a structured interview
[SI]); and (c) the overall performance criterion was a weighted
sum of two constituting dimensions, with weights of 3 and 1 for
the task (job) performance and the contextual performance dimen-
sions, respectively (cf. Borman, Penner, Allen, & Motowidlo,
2001; Motowidlo, Borman, & Schmit, 1997).

Table 1 displays the input parameter data used for the predictor
and criterion mean subgroup differences, for the predictor validi-
ties and intercorrelations, as well as for the correlation between the
two criterion dimensions. The reported data are based on the
results of previous meta-analytic studies (cf. Bobko et al., 1999;
Hough et al., 2001; Hunter & Hunter, 1984; Roth, Huffcutt, &
Bobko, 2003; Salgado et al., 2003), and they correspond to uncor-
rected values (henceforth also referred to as population estimates)
of the selection input parameters in the (unscreened) applicant
populations. Uncorrected values were preferred over corrected
estimates because the information was gathered from different
sources that either did not always provide corrected values or used
different corrections.

On the basis of these input data, the present method was applied
to determine the effects of a three-stage selection scenario with
retention rates of .60, .30, and .10 (and, hence, with selection rates

of .60, .50, and .33) in the consecutive stages. In Stage 1, only the
BI information was used to screen the candidates, whereas the
retention decisions in Stages 2 and 3 were based on a regression-
based composite of the CO and the CA predictors and the SI
information, respectively. Thus, the Stage 1 predictor composite
(P1) equaled the BI predictor, the Stage 2 predictor (P2) was a
weighted composite with weights of .223 and .319 for CO and CA,
and the Stage 3 composite predictor (P3) corresponded to the SI.

Results

The results of the application are summarized in Tables 2 and 3.
Table 2 shows how the mean subgroup differences of the predic-
tors and the composite predictors evolved through the sequential
selection process.

On the basis of Table 2, we can infer that the Black–White and
the Asian–White mean predictor and composite predictor differ-
ences changed substantially as a result of the previous screenings.
For example, the initial mean Black–White difference on the CA
predictor changed from a value of �1.000 in the unscreened group
(cf. the prior-to-selection value) to the value of �0.520 (cf. the
after Stage 3 value) in the finally selected part of this group. Thus,
after the final stage, the mean difference on the CA predictor
between the selected Black and the selected White applicants was
no longer equal to �1.000 but had shrunk to a value of �0.520.

The mean subgroup difference values reported for the composite
predictors can be interpreted in a similar way. Consider, for
example, the mean subgroup difference values of P2. In the initial,
unscreened applicant pools, this composite showed mean subgroup
differences from the White population of �0.871 and 0.118 for
Black and Asian populations, respectively, whereas after the
screening on the basis of P1, in Stage 1, these values were �0.783
and 0.178, respectively. Therefore, depending on the nature of the
previous screening, mean differences between retained groups on
(composite) predictors may either decrease or increase.

Observe that the method took the above-reported changes of the
predictor and predictor composite subgroup mean differences into
account when computing the adverse impact and the average

Table 1
Average Value and Standard Deviation of the Effect Sizes (i.e., Standardized Subgroup Mean Differences) and Intercorrelations of the
Performance Predictors and the Performance Criteria

Variable

Effect size da Intercorrelation matrix

Black Asian 1 2 3 4 5 6

M SD M SD M SD M SD M SD M SD M SD M SD

Predictor
1. Biodata �0.33 0.08 �0.23 0.08 —
2. Cognitive ability �1.00 0.25 0.20 0.12 .19 .05 —
3. Conscientiousness �0.09 0.09 �0.08 0.09 .51 .10 .00 .06 —
4. Structured interview �0.23 0.07 �0.13 0.07 .16 .07 .24 .05 .12 .12 —

Criterion dimension
5. Task performance �0.45 0.07 0.10 0.15 .28 .07 .30 .08 .18 .04 .30 .04 —
6. Contextual performance 0.07 0.06 0.02 0.06 .25 .10 .16 .08 .20 .09 .26 .04 .17 .16 —
7. Composite criterion �0.39 — 0.10 — .33 — .32 — .22 — .35 — .95 — .45 —

Note. The composite criteria is a weighted sum of task performance (with a weight of 3) and contextual performance (with a weight of 1). Dashes under
SD indicate that this type of value is not applicable.
a Standardized subgroup mean differences are relative to the White (majority) applicant population.
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criterion score values at the different selection stages. Therefore,
the method not only improves and extends earlier approaches with
regard to the determination of the effects of previous screening on
the subgroup mean differences of subsequently administered pre-
dictors (cf. Roth et al., 2001), but also incorporates these effects
into the calculation of the selection outcome values.

Table 3 presents information on two of the main outcomes of
multistage selection decisions that are relevant to organizations. In
particular, Table 3 presents the AI ratios (cumulative and stage
specific) and the standardized average criterion score (stage-
specific and total) of the candidates retained at each stage. Recall
that in Stage 1, the top-scoring 60% of the candidates on P1 (i.e.,
the BI predictor) were retained. This resulted in cumulative and
stage-specific AI ratios of 0.797, 0.859, and 1.000 and in stan-
dardized average criterion scores of �0.058, 0.397, and 0.259 for
the Black, the Asian, and the White applicant groups, respectively.
At Stage 2, recall that in this illustration, the remaining candidates
were screened on the basis of composite P2 (i.e., a composite of
CA and CO), and the mean difference on this composite between
the Black and Asian applicants retained in Stage 1 and the simi-
larly retained White applicants changed from �0.871 and 0.118 to
�0.783 and 0.178, respectively (cf. Table 2). Selecting the top-
scoring 50% of individuals at this stage produced stage-specific
Black and Asian AI ratios of 0.432 and 1.137, respectively,
whereas the corresponding cumulative AI ratios were 0.344 and
0.977. Additionally, the standardized average criterion scores of
the Black, Asian, and White candidates that passed Stage 2 in-
creased, as compared with the Stage 1 averages, to 0.356, 0.590,
and 0.492, respectively, and the standardized average criterion

score of all applicants retained changed from 0.218 at the end of
Stage 1 to 0.492 at the end of Stage 2.

Finally, in the last stage, the remaining 30% (.60 � .50 � .30)
of the candidates were screened using composite P3 (equal to the
SI predictor). Although this composite showed mean differences of
�0.230 and �0.130 in the unscreened Black and Asian candidate
populations, the corresponding mean differences at the beginning
of Stage 3 were �0.063 and �0.137 (cf. Table 2). Furthermore,
applying a selection rate of one in three in this stage to obtain the
intended hiring rate of 0.10 led to stage-specific Black and Asian
AI ratios of 0.930 and 0.854, respectively. The corresponding
cumulative AI ratios were 0.320 and 0.834, respectively, whereas
the standardized criterion averages of the applicants finally se-
lected further rose to 0.656, 0.921, and 0.793 for the Black, the
Asian, and the White candidate groups, respectively, resulting in
an overall average criterion score of 0.795 for all selected
applicants.

Apart from the results shown in Tables 2 and 3, the computer
program completed the applicant flow analysis by computing, for
each applicant group and for each stage, the stage-specific and the
cumulative retention rates. The present method therefore provided
a comprehensive account of all the major effects of general mul-
tistage selections. It must be remembered, though, that all the
obtained results were conditional on the values used for the selec-
tion input parameters. Whereas this dependency is of no conse-
quence when the method is used to determine the outcomes of a
specific hypothetical selection scenario with deliberately chosen
input values, it becomes a reason for concern when the method is
applied to study the consequences of planned but not yet imple-
mented selections. In that case, the relevant input values may be
expected to vary from one application to the other, and we there-
fore address in Study 3 how to account for this variability in the
selection input. However, we first explored how the present
method may help to advance the understanding of multistage
selection and, in particular, the understanding of the effects of
different orders of predictor administration.

Table 3
Adverse Impact Ratios and Average Criterion Scores of the
Selected Applicants in a Three-Stage Selection

Stage Black Asian White Total

Cumulative adverse impact ratios

1 0.797 0.859 1.000
2 0.344 0.977 1.000
3 0.320 0.834 1.000

Stage-specific adverse impact ratios

1 0.797 0.859 1.000
2 0.432 1.137 1.000
3 0.930 0.854 1.000

Standardized average criterion score selected applicants

1 �0.058 0.397 0.259 0.218
2 0.356 0.590 0.492 0.492
3 0.656 0.921 0.793 0.795

Table 2
Predictor and Composite Predictor Standardized Subgroup
Mean Differences

Group and predictor

Standardized subgroup mean difference

Prior to
selection

After
Stage 1

After
Stage 2

After
Stage 3

Predictor

Black applicant group
Biodata �0.330 �0.134 �0.033 �0.044
Cognitive ability �1.000 �0.963 �0.489 �0.520
Conscientiousness �0.090 0.010 0.275 0.252
Structured interview �0.230 �0.199 �0.063 �0.021

Asian applicant group
Biodata �0.230 �0.096 �0.138 �0.137
Cognitive ability 0.200 0.225 0.133 0.156
Conscientiousness �0.080 �0.012 �0.072 �0.068
Structured interview �0.130 �0.109 �0.037 �0.037

Composite predictor

Black applicant group
P1 �0.330
P2 �0.871 �0.783
P3 �0.230 �0.063

Asian applicant group
P1 �0.230
P2 0.118 0.178
P3 �0.130 �0.137

Note. P1–P3 are Stage 1–Stage 3 predictor composites.
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Study 2: Multistage Selection Design: Impact
of Predictor Sequence

Purpose

As noted in the introductory section, the present method can also
be used to study issues related to multistage selection design, in the
hope of deriving generally applicable design principles. To illus-
trate this usage, we implemented the method to address a key
question that practitioners and researchers are likely to have about
multistage selection design. More specifically, we used the method
to study the effects of different ways of sequencing predictors. To
keep the scope of the investigation feasible, albeit realistic, we
focused on the situation in which two of the available predictors
showed virtually identical validities but were substantially differ-
ent in terms of (administration) cost and subgroup mean differ-
ences. Table 1 shows an example of this situation (see the data for
when only the task performance criterion dimension is retained). In
that case, both the CA and the SI predictors had a validity of .30
for predicting task performance, whereas the Black–White mean
differences of the two predictors ranged from �1.00 (CA) to
�0.23 (SI). Therefore, the second study considered only the task
performance criterion and used these two predictors, together with
the CO predictor, for exploring the effects of different administra-
tion orders. Similar to Study 1, the average quality of the appli-
cants selected (as expressed in terms of the average criterion value
of the employees selected) and adverse impact served as the two
selection outcomes. In addition, the computer program was ex-
panded with an option to calculate the cost of general multistage
scenarios as a third selection outcome. A simple cost metric was
used that accounted for only the costs associated with administer-
ing the predictors and, hence, did not consider, for example,
development costs. In the scenarios that were studied here, there
were two low-cost predictors (CA and CO), with an estimated
administration cost of $35 per candidate, and one high-cost pre-
dictor (SI), with an estimated administration cost of $100 per
candidate. Note that there is nothing sacrosanct about the values
chosen for this illustration.

Implementation

To obtain a clear picture of the effects of different predictor
sequencing, we focused on situations in which the total applicant
group consisted of only Black (20%) and White (80%) candidates.
For the same reason, all studied scenarios were characterized by an
identical final retention rate of .20, and they all related to selec-
tions in which the criterion was limited to the task performance
dimension. Finally, to gauge the overall selection cost, we exam-
ined a situation in which the total number of applicants was equal
to 1,000. On the basis of these specifications and the Table 1
values for the predictors and the task performance criterion, we
used the present method to analyze various scenarios in the hope
of deriving a general rule for sequencing the predictors in multi-
stage selection. As discussed in this study’s Results section, the
search was only partly successful because the applicability of the
obtained rule depended on certain boundary conditions. We detail
these conditions in this study’s Results section, and we also explain
how they affect the applicability of the derived rule.

Results

We began the study by testing a basic set of six scenarios that
related to two-stage selections, using only the CA and SI predic-
tors. Table 4 presents these scenarios. Per scenario, the order in
which the different predictors were used in the stages (cf. the
details under the heading Predictor sequence in Table 4) and the
stage-specific selection rates are given. Basically, these first six
scenarios in Table 4 comprise three consecutive blocks of two
scenarios. Within each of these blocks, the first (uneven num-
bered) scenario differs from the second (even numbered) scenario
only in terms of the order with which the two high-validity
predictors (CA and SI) were administered. This setup was chosen
to enable a straightforward evaluation of the effects of a different
sequencing of the two predictors. In addition, given that these
effects were likely to vary depending on the rates of selectivity
with which the CA and SI predictor were applied, we analyzed
blocks in which the CA and SI predictors were used with the same
level of selectivity (e.g., Scenarios 1 and 2).

Inspection of the results of the two-stage scenarios shows that
the order in which equally valid predictors were administered had
little if any effect on the average quality of the selected applicants,
irrespective of the rate of selectivity with which the predictors
were used. However, the results for the adverse impact criterion
tell a different story. When predictors differed in subgroup mean
differences, it seems that the predictor with the highest impact
(here CA) was best administered first, provided that the level of
selectivity with which the predictor was applied did not exceed
that of the lower impact predictor (compare Scenarios 1–4 with
Scenarios 5 and 6). This is a rather unexpected result, and at the
end of this section, we show how a careful analysis of the bound-
ary conditions under which it applies suggests an explanation of
this finding.

Another interesting albeit much less surprising result from the
two-stage scenarios is that giving more weight in the selection to
the high-impact predictor (i.e., using this predictor with a lower
selection rate) was associated with lower values for the adverse
impact ratio. Finally, turning to the test cost measure, it can be
verified that a judicious analysis of the expected return of alter-
native scenarios, as provided by the present method, may often be
quite beneficial. In particular, this type of analysis may avoid the
implementation of scenarios that are considerably more costly than
others and yet offer virtually the same or an even worse return in
terms of adverse impact and quality of the selected applicants (e.g.,
compare Scenarios 1 and 2 or Scenarios 3 and 6). Obviously, the
latter observation relates to the present condition in which the
high-impact predictor was substantially cheaper than the low-
impact predictor, but this condition is likely to prevail in many
selection applications because most high-validity, low-impact pre-
dictors (e.g., SIs and work sample tests) are more costly than
readily available, roughly equally valid but higher impact CA
predictors.

Next, the study moved to three-stage scenarios to further test the
tentative rule of administering the highest impact predictor (here
CA) first, provided that the level of selectivity with which the
predictor is applied does not exceed that of the lower impact
predictor. The difference between these three-stage scenarios and
the two-stage scenarios is that a low-impact, low-validity predictor
(CO) was used in the second stage. Inspection of Scenarios 7
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through 14 in Table 4 reveals that the tentative rule seems to
generalize to such three-stage selection strategies. Again, a com-
parison of the scenarios within each of the four blocks (i.e.,
comparing Scenario 7 with 8 and 9 with 10, etc.) shows that the
order of CA and SI predictor administration had almost no effect
on the average criterion score of the selected employees. However,
in line with the two-stage scenarios, the same comparisons re-
vealed that the adverse impact ratio was higher when the high-
impact predictor was used first, as long as its associated level of
selectivity was less than or equal to the selectivity level with which
the low-impact predictor was implemented. Hence, it is again true
that costly scenarios may often be outperformed in terms of quality
and adverse impact by other, cheaper scenarios. Finally, the second
group of scenarios showed that assigning more weight to the
low-impact predictors (i.e., applying the predictors with a low
selection rate, such that they tended to dominate the overall selec-
tion) increased the proportion of minority hires, but the selected
employees had a lower average criterion score, especially in cases
where the low-validity, low-impact predictor (the CO predictor in
this example) was predominant (cf. Scenario 9).

The generality of the rule was further scrutinized by examining
three-stage scenarios wherein the CO predictor was added in the
first stage (cf. the Scenarios 15 and 22). Results of this third group
of scenarios largely duplicated those of the second group of
scenarios, except with respect to the selection cost measure. Be-
cause these scenarios differed from the corresponding scenarios in
the second group only in terms of the staging of the CO predictor
(e.g., Scenario 15 applied the same selection rates for the three
predictors as Scenario 7 did, but Scenario 15 implemented the CO
predictor in the first stage instead of the second; Scenarios 16 and

8 corresponded in the same way, etc.), this finding suggests that
the staging order of a low-validity, low-impact predictor is relevant
only as far as the total cost of the selection procedure is concerned.

Finally, we examined whether the rule still held (a) for other
than the present .80 versus .20 majority–minority composition of
the total applicant pool, (b) when the final retention rate of the
selection differed from the present value of .20, and (c) when the
BI predictor was substituted for the CO measure. Generally, these
additional analyses (detailed results are available from Wilfried De
Corte) confirmed the tentative principle that, in terms of adverse
impact, it is better to sequence the high-impact, valid predictor
before the low-impact, equally (or almost equally) valid predictor
(instead of the reverse order), provided that the high-impact pre-
dictor is not applied more selectively than the low-impact
predictor.

However, additional analyses also identified conditions wherein
the rule about the sequencing of equally valid predictors was no
longer generally applicable. In particular, we found that our ten-
tative rule depends on the level of correlation between the two
valid predictors (i.e., the CA and SI predictors in the example).
When the predictors do not correlate, the advantage of using first
the high-impact predictor vanishes at equal levels of selectivity,
and the advantage is substantially reduced in situations where the
high-impact predictor is applied with a lower selectivity level than
that used for the low-impact predictor. The boundary condition on
the correlation between the equally valid predictors also suggests
an explanation for the finding about the preferred sequencing of
these predictors. When the two predictors have a positive correla-
tion, the mean group difference on the predictor that is applied
after the first predictor selection is smaller in the retained groups

Table 4
Studied Multistage Selection Scenarios

Scenario

Selection rate Predictor sequence Average
criterion

score
Black AI

ratio
Total test

costS1 S2 S3 S1 S2 S3

1 .45a .45 — CA SI — 0.525 0.310 79,721
2 .45a .45 — SI CA — 0.528 0.265 115,653
3 .50 .40 — CA SI — 0.520 0.339 85,000
4 .50 .40 — SI CA — 0.526 0.247 117,500
5 .33a .67a — CA SI — 0.527 0.251 68,333
6 .33a .67a — SI CA — 0.521 0.332 111,667
7 .50 .80 .50 CA CO SI 0.532 0.333 92,500
8 .50 .80 .50 SI CO CA 0.535 0.290 131,500
9 .70 .41a .70 CA CO SI 0.468 0.456 88,071

10 .70 .41a .70 SI CO CA 0.463 0.424 134,500
11 .67a .60 .50 CA CO SI 0.506 0.431 98,333
12 .67a .60 .50 SI CO CA 0.514 0.301 137,333
13 .50 .60 .67a CA CO SI 0.520 0.330 82,500
14 .50 .60 .67a SI CO CA 0.511 0.381 128,000
15 .80 .50 .50 CO CA SI 0.533 0.332 103,000
16 .80 .50 .50 CO SI CA 0.536 0.289 129,000
17 .41a .70 .70 CO CA SI 0.469 0.453 77,857
18 .41a .70 .70 CO SI CA 0.472 0.419 85,816
19 .60 .67a .50 CO CA SI 0.507 0.429 96,000
20 .60 .67a .50 CO SI CA 0.519 0.299 109,000
21 .60 .50 .67a CO CA SI 0.520 0.328 86,000
22 .60 .50 .67a CO SI CA 0.516 0.378 105,500

Note. S1–S3 � Stages 1–3; AI � adverse impact; CA � cognitive ability; SI � structured interview; CO �
conscientiousness. Dashes indicate that this type of value is not applicable.
a Proportion was rounded.
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than the corresponding differences in the initial groups (cf. the
Study 1: Progressive Group Differences in Multistage Selection
section and the results presented in Roth et al., 2001). However,
this reduction in mean group difference is more substantial when
the mean group difference on the first predictor is large compared
with the corresponding reduction when the first predictor shows
only a small mean group difference. To illustrate this, consider
Scenarios 1 and 2 in Table 4. In Scenario 1, the application of the
high-impact CA predictor in the first stage reduces the Black–
White mean difference on the SI predictor in the retained groups
from the initial value of �0.230 to a value of �0.057, whereas the
reverse application order of the predictors results in the much
smaller reduction from �1.000 to �0.963 for the corresponding
difference on the CA predictor. So, applying a high-impact pre-
dictor before a low-impact predictor lowers the mean difference on
the latter predictor more considerably compared with the corre-
sponding reduction when the predictors are applied in the reverse
order. As a consequence, the latter order is expected to result in a
lower value of the cumulative AI ratio than that obtained when the
high-impact predictor is administered first.

Study 3: Uncertainty in the Selection Parameter Data

Extension of the Method

Up to this point, we have proceeded as if values of key input
parameters (e.g., predictor–criterion correlations, interpredictor
correlations) were known with certainty. However, there are mul-
tiple sources of uncertainty for many of the input parameters. One
is true (i.e., nonartifactual) variability in mean subgroup difference
and correlation measures when using meta-analytic estimates as
input to our procedure. Consider, for example, the scenario in
which the mean predictor–criterion correlation is .30, with a
residual standard deviation of .05 after removing variability due to
sampling error and other artifacts. Thus, there are as-yet-
unidentified substantive or methodological features that result in
variability from situation to situation. A given user cannot count on
obtaining the mean value of .30 in his or her organization. Thus,
when examining the effects of using that predictor as part of a
sequential selection system, it is reasonable to ask whether a given
pattern of findings (e.g., one sequencing of predictors produces
higher mean performance among those selected than another se-
quencing) holds throughout the range of possible predictor–
criterion correlations that the user might plausibly obtain.

The previous example focuses on nonartifactual variation. A
user might also be interested in the effects of artifactual variation,
such as that due to sampling error. Even if population validity were
known with certainty, obtained values would vary from setting to
setting because of sampling error. Thus, a user may be interested
in knowing whether the advantage of one sequencing of predictors
over another holds across the range of predictor–criterion corre-
lation values that might result from sampling error.

To handle the inevitable variability in the input parameter data,
we propose to integrate the present analytical method within a
Monte Carlo simulation procedure in which the calculations are
repeated many times. In each such repetition, a value for each data
input parameter is randomly drawn from the distribution that
represents the expected variability of that parameter, and the
combination of the thus obtained input parameter values is used to

calculate the selection outcome values. The frequency distribution
of the values obtained over the entire set of replications, for
example, for the average quality of the selected workforce, can
then be regarded as an approximation of the distribution function
of this selection outcome (cf., e.g., Rich & Boudreau, 1987). The
frequency distribution and, in particular, selected percentile values
of this distribution can therefore be used to determine, for exam-
ple, a 90% probability interval for the selection outcome indices.
We chose not to label these intervals confidence intervals because
they do not relate to a parameter of a statistical model (cf. Stuart,
Ord, & Arnold, 1999).

To actually apply the Monte Carlo procedure, the appropriate
distributions of the data input parameters must be specified. Sim-
ilar to previous applications of the procedure to assess the utility of
selection decisions under uncertainty (e.g., Rich & Boudreau,
1987), the program that implements the extended method provides
two options. The first option is based on rectangular sampling
distributions for the input variables, requiring the specification of
lower and upper bound values of these input parameters, whereas
the second option assumes normal distributions, in which case the
average value and the standard deviation of the input parameter
must be provided. The type of distribution and even more so the
values of the parameters of the distributions should be chosen
carefully, however, because the results of the Monte Carlo exten-
sion are adequate only in so far as the distributions are represen-
tative for the variability that is actually of interest. Thus, in
applications in which artifactual sources of variability (e.g., sam-
pling error) as well as true (i.e., nonartifactual) variability are of
interest, one may prefer normal distributions and equate the ex-
pected value and the standard deviation of the distribution to the
average and the uncorrected standard deviation of the input pa-
rameter, respectively, as reported in previous summary studies.
The probability intervals mentioned earlier can then be perceived
as estimates of the corresponding total variability intervals of the
selection outcomes. In other applications, certain possible sources
of variability may not apply, such that less liberal values for the
standard deviation parameter are indicated, leading to a probability
interval for the selection outcomes that must be interpreted
accordingly.

The Monte Carlo approach is not only useful for addressing the
issue of variability; it also permits studying whether the relative
standing of alternative selection scenarios is consistent over the set
of likely values for the selection input variables. Although a
selection scenario may on average (i.e., over the entire set of
Monte Carlo replications) lead to, for example, a higher selection
quality than a second scenario, the same conclusion need not apply
at the level of each individual replication. Suppose, for example,
that Scenario A leads on average to a selected workforce that
scores 0.1 standard units higher than the workforce obtained under
Scenario B, but the latter scenario outperforms Scenario A in 45%
of the replications. In that case, the relative standing of the two
scenarios is not really consistent over the set of likely value
combinations for the selection input parameters, and it would
therefore be incorrect to conclude that Scenario A is consistently
better than Scenario B. If, on the other hand, a great majority of the
replications show a better selection quality for Scenario A, the
practitioner may be quite confident that this scenario will also
outperform Scenario B when applied to his or her intended selec-
tion decision.
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As illustrated in this example, the issue of consistency in the
relative standing of alternative scenarios is of crucial importance
when one intends to apply the present method within a decision-
making context. In particular, the use of the method as a tool to
decide between alternative selection scenarios critically depends
on whether the relative position of these alternative scenarios is
more or less stable over the expected variability in the selection
parameter data. The next example therefore shows how the Monte
Carlo extension of the method can be used to investigate this
consistency issue. The example also clarifies the computation of
the probability intervals of the relevant selection outcomes that we
introduced earlier.

Illustration

For reasons of convenience, the example focuses on Scenarios 7
through 14 (cf. Table 4) that were analyzed in the previous section
as part of the study on the impact of different predictor sequencing.
As reported previously, these eight scenarios all relate to a situa-
tion in which the total applicant pool is composed of 80% White
(majority) and 20% Black (minority) candidates. Also, all scenar-
ios share the same final retention rate of .20, which is attained after
a three-stage selection process. The purpose is to test whether the
relative position of these eight scenarios is maintained over a large
set of possible value combinations for the selection input param-
eters. To achieve this purpose and to assure a rather severe test of
the consistency issue, we applied the extended Monte Carlo ver-
sion of the method, using values for the distribution parameters of
the input variables that correspond to the condition of high uncer-
tainty for the parameter values, including both sampling error and
variability due to systematic effect sources. More specifically, at
each of a total of 10,000 replication samples, the value of each
input parameter was randomly drawn from a normal distribution
with expectation equal to the value of the parameter, as shown in
Table 1. The standard deviations of the input parameter distribu-
tions (cf. the values reported between brackets in Table 1) are
based on results presented by Bobko et al. (1999); Hattrup, Rock,
and Scalia (1997); Hough et al. (2001); Hunter and Hunter (1984);

McManus and Kelly (1999); Murphy and Shiarella (1997); Roth et
al. (2003); and Salgado et al. (2003). These standard deviations
reflect the uncorrected variability of the corresponding input pa-
rameter. Also, some scale parameter values and, in particular,
those related to the standard deviation of the mean Asian–White
subgroup differences on Predictors 1, 3, and 4 and the contextual
performance criterion, were chosen to be equal to the correspond-
ing numbers for the Black subgroup because no other appropriate
estimates could be found in the literature.

The results of these analyses are reported in Tables 5 and 6.
Table 5 displays, for each scenario, the mean (as computed over
the 10,000 Monte Carlo samples) of the final-stage, cumulative AI
ratio and the standardized average criterion score of all finally
selected applicants.

As expected, the latter mean values are virtually identical to the
corresponding standardized average scores as computed on the
basis of the mean value of the data input parameters (cf. the
average criterion score reported in Table 4 for the scenarios).
Alternatively, the Black subgroup’s average AI ratios in Table 5
are all somewhat larger than the corresponding Table 4 values.
This is because equal offsets from the subgroup mean difference
values result in unequal offsets for the AI ratio value. Thus, a
change of, for example, the CA mean subgroup difference from
�1.0 to �0.9 results, all else being equal, in a higher increase of
the AI ratio as compared with the decrease associated with a
change in the mean subgroup difference from �1.0 to �1.1.

Table 5 also details the 90% probability intervals for these
outcomes as based on the Monte Carlo replications. Because these
replications mimic the variability of the selection input variables
over both sampling error and other sources of variability, these
probability intervals can be regarded as total variability intervals
for the corresponding selection outcomes of quality and adverse
impact. By and large these intervals show that the outcomes vary
substantially over the studied set of possible value combinations
for the selection input parameters. For most of the analyzed selec-
tion scenarios, there is also a considerable overlap between the
corresponding probability intervals, suggesting that the relative

Table 5
Mean Value (Over 10,000 Monte Carlo Samples) of the Standardized Average Criterion Score
and the Adverse Impact (AI) Ratio, as Well as the Corresponding 90% Probability Intervals for
the Eight Studied Selection Scenarios

Scenario

Selection rate
Predictor
sequence Average

criterion
score

Black AI
ratio

90% probability interval

S1 S2 S3 S1 S2 S3
Average

score
Black AI

ratio

7 .50 .80 .50 CA CO SI 0.532 0.340 0.432–0.631 0.195–0.510
8 .50 .80 .50 SI CO CA 0.534 0.300 0.422–0.644 0.154–0.478
9 .70 .41a .70 CA CO SI 0.468 0.460 0.383–0.554 0.309–0.624

10 .70 .41a .70 SI CO CA 0.463 0.429 0.368–0.556 0.269–0.604
11 .67a .60 .50 CA CO SI 0.507 0.434 0.422–0.592 0.291–0.590
12 .67a .60 .50 SI CO CA 0.513 0.311 0.398–0.623 0.160–0.495
13 .50 .60 .67a CA CO SI 0.519 0.338 0.415–0.619 0.188–0.516
14 .50 .60 .67a SI CO CA 0.510 0.386 0.417–0.603 0.236–0.555

Note. S1–S3 � Stages 1–3; CA � cognitive ability; CO � conscientiousness; SI � structured interview.
a Proportion was rounded.
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standing of the scenarios may often differ from one set of input
parameter values to the other.

To test for this presumed inconsistency, the percentage of Monte
Carlo samples in which the first scenario dominated the second
scenario was tabulated for each pair of selection scenarios and for
each selection outcome. Table 6 summarizes the results of this
tabulation. Table 6 also mentions, per pair of scenarios, the dif-
ference between the outcome value obtained for the first (row) and
the second (column) scenarios.

The basic finding that emerges from Table 6 is that scenarios
that differ at least noticeably for a given outcome are fairly
consistently different for each of the examined combinations of
values for the selection input parameters. For example, with re-
spect to the selection quality outcome (upper triangle of Table 6),
Scenario 7 results in a workforce quality that is only 0.026 stan-
dard units higher than the quality associated with Scenario 11. Yet,
despite this very small difference, Scenario 7 dominates Scenario
11 in 89% of the individual Monte Carlo replications. Even the
order within pairs of scenarios that differ between 0.01 and 0.02
standard units is very well preserved because the scenario with the
largest outcome of the pair on average outperforms the lower
outcome scenario on nearly 80% or more of the replications.
Regarding comparisons between more different scenarios, the data
are even more conclusive, indicating that scenarios that show a
practically relevant difference are indeed consistently different.
Note that it is not surprising that there is no straightforward linear
relationship between the difference in average outcome and the
corresponding consistency percentage because the latter percent-
age also depends on whether the scenarios differ in terms of one or
several design aspects (e.g., the stage-specific selection rates, the
order of the predictors).

The results on the consistency with which the scenarios differ in
terms of the adverse impact outcome (lower triangle of Table 6)
further corroborate the above derived trend. All this suggests that
the relative standing of alternative selection scenarios in terms of
both selection quality and adverse impact is consistent over vari-
ability in the selection input values. Although the absolute value of
the outcomes associated with a scenario are quite dependent on the
input parameter values, the relative positions of the scenarios in
relation to one another is much more robust. As a consequence, we
propose that the present method to assess selection outcomes is
also practically relevant when the input parameter values are fairly
uncertain.

General Discussion

Methodological Contribution

In terms of methodological contributions, the article presented a
method and a related computer program that enable selection
researchers and practitioners to explore the consequences of an
intended multistage selection decision in terms of the selection
cost, the selection quality, and the level of adverse impact when
the applicants come from populations that have a different average
score on the selection predictors. Although the method is based on
assumptions identical to those of the existing simulation approach
and its application is contingent on the same information (as the
simulation approach) with respect to the nature of the intended
selection and the characteristics of the predictors and the criteria,
it has some important added benefits. To start with, it produces a
point estimate of the major selection outcomes. Repeated applica-
tions on the same input data obtained by a simulation-based
approach can at best approximate this point estimate.

Table 6
Comparison of the Studied Selection Scenarios Over the Monte Carlo Replications: Difference in
Average Outcome and Percentage With Which the Row Scenario Dominates the Column
Scenario for Selection Quality (Upper Triangle) and Black Adverse Impact Ratio (Lower
Triangle)

Scenario

Scenario

7 8 9 10 11 12 13 14

7 �0.002 0.064 0.070 0.026 0.019 0.013 0.022
43.6 97.7 98.1 89.0 80.1 79.1 88.8

8 �0.041 0.066 0.072 0.028 0.021 0.015 0.024
0.2 96.4 97.7 81.2 92.0 86.7 84.5

9 0.120 0.160 0.005 �0.039 �0.045 �0.051 �0.042
99.9 100.0 65.8 1.5 7.8 1.7 0.5

10 0.088 0.129 �0.031 �0.044 �0.050 �0.057 �0.048
99.4 100.0 3.9 3.4 2.9 0.6 0.2

11 0.094 0.134 �0.026 0.006 �0.006 �0.013 �0.004
100.0 100.0 7.3 60.5 42.3 20.3 37.6

12 �0.030 0.011 �0.149 �0.118 �0.124 �0.006 0.003
7.0 84.7 0.0 0.0 0.1 30.2 55.2

13 �0.002 0.038 �0.122 �0.090 �0.096 0.028 0.009
40.8 99.8 0.0 0.0 0.0 98.8 73.8

14 0.046 0.087 �0.074 �0.042 �0.048 0.076 0.048
99.1 100.0 0.0 0.7 0.5 99.9 100.0

Note. The uppermost number within each cell corresponds to the difference in average outcome (upper
triangle) or to the difference in Black adverse impact ratio (lower triangle) between the row and the column
scenario.
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Next, because the analytical method is computationally very
fast, the method is easily integrated within a Monte Carlo approach
to handle uncertainty, and variability in particular, in the values of
the predictor–criterion parameter values. This integration results
in two further benefits. First, it permits the derivation of appropri-
ate probability intervals for the selection outcome variables,
thereby representing the variability in the results that one may
expect to obtain from one application of the intended selection to
the other. Second, the integration makes it possible to study
whether the relative positions of selection scenarios, in terms of the
associated outcomes, are consistent over a range of possible value
combinations for the selection input parameters.

The method is also generally applicable and comprehensive
because it can deal with more than two applicant groups and more
than two selection stages. In addition, the method can be extended
to deal with the eventuality that the applicant populations not only
have different predictor and criterion averages, but also show
different predictor and criterion variances. Finally, with some
minor modifications and provided that suitable additional data are
available, the principles of the method can also be used to assess
other measures of selection quality, such as the success ratio and
the utility of the intended selection.

Substantive Contribution

In terms of substantive contributions, the article explored a key
issue in multistage selection decisions about the sequencing of
equally valid predictors. To favor acceptable levels of adverse
impact, it may seem reasonable to reserve the high-impact predic-
tor for the last stage. The present program was used to examine the
viability of this intuition across a fairly comprehensive set of
scenarios. Results showed that the opposite seems to be true in
most cases. In fact, an important new substantive finding was that
if predictors have roughly equal validity but substantially different
subgroup mean differences, it is better to sequence the high-
impact, valid predictor before the low-impact predictor (instead of
the reverse order). Moreover, the study revealed that it is better to
use the high-impact predictor before the low-impact predictor, not
only when the high-impact predictor is used with a substantially
lower level of selectivity than that applied to the low-impact
predictor, but also when there are equal levels of selectivity. We
also discovered that this rule generalizes over various proportions
in the majority–minority composition of the total applicant pool,
over different rates of final selectivity, and over settings in which
a third predictor is used either before or in between the two
predictors. Although this rule is neither intuitively nor logically
evident, it is not totally unexpected because Sackett and Roth
(1996, p. 564) also observed that use of the high-impact predictor
at the initial stage need not necessarily lead to higher minority
hiring rates. Yet, the present findings provide a more precise
indication about the conditions under which this will be the case.

On the basis of this information, one might be tempted to
conclude that it is indeed feasible for multistage selections to
derive generally applicable design principles that go beyond the
sort of guidelines that follow from sheer logic. Examples of such
logic-based rules are the following: (a) Assigning more weight to
valid predictors as compared with less valid predictors (i.e., using
the valid predictors more selectively than the less valid predictors)
leads to increased average criterion scores for the selected appli-

cants (cf. the results presented earlier as well as those of Sackett &
Roth, 1996), and (b) using stage-specific predictors that combine
the information of all the already administered predictors leads to
a similar increase as compared with the use of only the stage-
specific predictor information (cf. Sackett & Roth, 1996). This
conclusion is premature, however. In particular, we recommend
that researchers use extreme caution when endeavoring to search
for general rules of thumb in multistage selection. In fact, in other
analyses, we discovered that there are boundary conditions to the
“general” rule. The rule about the sequencing of equally valid
predictors is of only limited generalizability because it requires
further amendment depending, among other things, on the level of
intercorrelation between the predictors. When the predictors do not
correlate, the advantage of using the high-impact predictor first
vanishes at equal levels of selectivity, and the advantage is sub-
stantially reduced in situations in which the high-impact predictor
is applied with a lower selectivity level than that used for the
low-impact predictor.

The fact that the present rule on the sequencing of predictors is
of only limited generalizability is not an exception. We analyzed a
great number of multistage scenarios, searching for guidelines that
generalize over a broad class of settings. Yet, time and again we
found (as already proposed by Sackett & Roth, 1996) that “there
are no simple rules that can be offered about which approach to
hurdle based selection is preferred” (p. 569). Informative design
principles are typically contingent on both the generic and the
specific characteristics of the selection situation at hand. Although
this is a rather unfortunate conclusion, it underscores at the same
time the importance of the present method and computer program
because they provide the means to allow researchers and practi-
tioners to study the merits of alternative designs, given the partic-
ularities of the situation at hand.

As a last substantive contribution, the results of the Monte Carlo
extension of the method indicate that the rank order of alternative
selection scenarios, according to their quality or adverse impact, is
fairly robust for variability in the selection input parameter values.
This finding adds to the practical value of the method because it
indicates that its application does not critically depend on the
availability of accurate sample estimates for the selection input
parameters. Reasonably approximate values, which are offered by
meta-analyses, seem to be sufficient. Of course, future research
with the same as well as different sets of predictors is needed to
confirm this.

Limitations

The present method is not without limitations. First, identical to
the simulation approach, the application of the method and the
accuracy of the obtained results are contingent on a number of
boundary conditions. We summarized these conditions in the
Boundary Conditions and Assumptions section, and we recall here
the assumption about the joint distribution of the predictor–
criterion scores in the different applicant populations. When this
assumed distribution is a poor approximation of the predictor–
criterion distribution in the studied applicant samples, the results
are systematically inaccurate.

Second, the effects of eventual refusal to accept a job offer by
some of the selected candidates or applicant withdrawal along the
process remain unaccounted for. However, the incorporation of the
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effects of applicant withdrawal/refusal requires fairly detailed in-
formation about the underlying process of refusal and its eventual
relation with performance on the predictor variables (Murphy,
1986; Ryan, Sacco, McFarland, & Kriska, 2000; Schmit & Ryan,
1997). This information is usually not available, or it may be
situation specific and therefore less suitable to model within a
generally applicable procedure, whether the method is analytical or
based on simulation.

Third, the earlier conclusion of robustness for the uncertainty in
the input parameters should not be mistaken as an excuse to pay
less attention to the values used for the correlations and mean
subgroup differences of the predictors and the criterion dimen-
sions. Instead, the practitioner who intends to use these methods to
perform what-if analyses of alternative selection scenarios is en-
couraged to ensure that the input data on the proportional compo-
sition of the total applicant group and the predictor–criterion
correlations and mean subgroup differences are as accurate as
possible. Accurate estimates constitute the best guarantee that
practitioners can avoid poor or even misleading results. Given that
some inaccuracy of the predictor–criterion data might be expected,
we strongly recommend using the Monte Carlo extension of the
analytical method. Accordingly, users receive information about
the potential variability of the results over different actual appli-
cations of an intended scenario.

Implications for Future Research

Now that this study presented an analytical method to assess the
adverse impact and the average criterion performance of selected
applicants for general multistage selection decisions, the next step
for future research should be to use this method to achieve another
important objective: the design of multistage selection decisions
that aim to achieve a given set of goals in terms of workforce
quality and desired levels of workforce diversity. As observed
throughout this article, it seems that this design issue cannot be
fully addressed by means of general rules of thumb because the
available evidence shows that these rules are either limited in
scope and guidance or overly complex to match the particularities
of the selection at hand. Instead of using the present method to
continue the search for such general rules of thumb, we believe
that this method can better be integrated in a much more direct
approach to the design of multistage selections, namely the ap-
proach of multicriteria optimization.

In the present context, the method of multicriteria optimization
could assist the design problem by providing both a tabular and a
pictorial overview of all the feasible selection scenarios that result
in an optimal trade-off between the typically conflicting goals of
low-cost, low-adverse impact, and high quality of the selected
applicants. In the language of multicriteria optimization, these
optimal trade-off scenarios are also called Pareto optimal in the
sense that any other feasible scenario that differs from them results
in either a decrease of the selection quality or an increase of the
cost or the level of adverse impact, and the entire set of optimal
scenarios (and, in particular, the set of associated trade-offs) is
usually referred to as the Pareto surface (Keeney & Raiffa, 1993).
Given a tabular or, preferably, a pictorial representation of this
Pareto surface, the practitioner could then decide on the preferred
optimal trade-off and the associated scenario.

Despite the potential of the multicriteria optimization approach
and its popularity in other domains (e.g., engineering, economics,
and management science), it has not yet been proposed to assist in
the design of selection scenarios. One plausible reason for this
omission is that the multicriteria optimization approach requires
that the effects of alternative design choices on the relevant ob-
jectives be computed analytically instead of only approximately, as
was previously possible with the simulation-based method. The
present method has removed this barrier so that the final step
toward the implementation of the multicriteria optimization ap-
proach to the design of more optimal multistage selection scenar-
ios comes within reach.
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Appendix

Calculation of the Adverse Impact (AI) Ratio and the Standardized Average Criterion Score in
Multistage Selection

In this appendix, we detail the computation in general multistage
selection of the cumulative and stage-specific AI ratios, A(r) and A(h),
as well as the stage-specific standardized average criterion scores,
C*�s� � �C*1

�s�, . . . ,C*S
�s��� (with S the total number of stages), of the

applicants retained thus far. We also briefly indicate how the mean sub-
group differences, after previous screenings, of the predictors and the
composite predictors can be determined. Throughout, the symbol j, with
j � 1, . . . , J, is used to identify the different applicant populations, and the
majority (reference) population arbitrarily corresponds to the last (i.e., the
Jth) applicant population. Also, the vector q � (q1, . . . , qJ)� summarizes
the proportional representation of the different applicant groups in the total
applicant population.

To obtain the required quantities, we invoke the assumption introduced
earlier that the predictors X � (X1, . . . , Xr, . . . , XR)� and the criterion
dimensions Y � (Y1, . . . , Yt, . . . , YT)� have a joint multivariate normal
distribution in the different applicant populations. The assumption implies
that the composite predictors P � (P1, . . . , PS)� and the composite
criterion C also follow a multivariate normal distribution with the same
variance/covariance matrix but with different mean vectors in these pop-
ulations. Also, when we assume, without loss of generality, that (X�, Y�)�
have a multivariate standard normal distribution in the majority applicant
group, and when we rescale the stage-specific predictors and the composite
criterion within each population to the corresponding unit variance predic-
tors, P* � �P*1, . . . , P*s, . . . , P*S��, and unit variance composite crite-
rion, C*, we find that the joint distribution of P* and C* is standard S �
1-variate normal with correlation matrix RP*C* in the majority group: (P*,
C*) � NS � 1(0, RP*C*). Alternatively, the joint distribution of P* and C*
in the jth minority applicant group can be written as (P*, C*) � NS�1

[(d�P*j, dC*j)�, RP*C*].
Using the vector bs to summarize the weights with which the predictors

administered thus far are combined to the stage-specific predictor composite at
stage s, Ps, we determine the general elements RP *s P *s� and RP *s C* of RP*C* as

RP *s P *s� �
�b�s, 0��RX�b�s, 0���

��b�s, 0��RX�b�s, 0�����b�s�, 0��RX�b�s�, 0���

and

RP *s C * �
�b�S, 0��RXY�0�, w���

��b�s, 0��RX�b�s, 0����w�RYw
,

respectively, where 0 is a zero vector of the appropriate order, w represents the
vector of preassigned weights to the T criterion dimensions, RX and RY are the
correlation matrices of the predictors and the criterion dimensions, and RXY is
the joint correlation matrix of X and Y. Alternatively, the general element dP *s j

of dP*j equals �b�s, 0��dXj /��b�s, 0��RX�b�s, 0���, whereas dC*j � w�dYj /�w�RYw,
where the vector dXj � �dX1j, . . . , dXr j, . . . , dXR j�� indicates the mean subgroup
differences, relative to the reference (majority) group, of the R selection predictors
for applicant group j; whereas the vector dYj � �dY1j, . . . , dYtj, . . . , dYTj�� refers
to the mean subgroup differences for the same group (and again relative to
the majority group) of the T criterion dimensions.

Given the above results, the retention rate for the jth applicant group at
the end of the sth stage, rsj, can be equated to the value of a suitably
truncated standard s-variate normal distribution. More specifically, using
the notation 	(c1, . . . , cs; R) to refer to the upper tail probability of the
s-variate standard normal distribution with correlation matrix R evaluated
at the cutoff values c1, . . . , cs, the value of rsj can be determined as

rsj � 	� p*c1 � dP*1j, . . . , p*cs � dP*sj; RP*
�s��,

where RP*
�s� denotes the correlation matrix of the first s composite predictors,

and the composite predictor cutoffs, p*c � � p*c1, . . . , p*cs��, have values
such that the intended, stage-specific retention rate for the total applicant
group, rs, is attained. Because the latter retention rate is equal to 
jqjrsj, it
follows that the entire set of composite predictor cutoffs p*c can be sequen-
tially computed as the solution values of the following system of S
equations:

�
j

qj	�p*c1 � dP*1j; RP*
�1��

� r1

···
�

···�
j

qj	� p*c1 � dP *1j, . . . , p*cS � dP *S j ; RP*
�S��

� rS .

Once the composite predictor cutoff values have been determined, the
computation of, for example, the cumulative adverse impact ratios A�r�

� ��asj
�r��� is straightforward. As the cumulative AI ratio of the intended

selection for the jth applicant population at the end of stage s, asj
�r�, is equal

to the ratio between the stage s retention rate for this group and the
corresponding rate for the last (i.e., the majority) group, its value can be
calculated as

asj
�r� �

rsj

rsJ
�

	� p*c1 � dP *1j , . . . , p*cs � dP*sj; RP*
�s��

	� p*c1, . . . , p*cs; RP*
�s��

,

because, by earlier convention, dP*J � �dP*1J, . . . , dP *SJ�� � 0.
To determine the value of C*s

�s�, we invoke the equations of Muthén
(1990) and Tallis (1961) on the moments of the truncated multinormal
distribution. From these equations, and adopting the simplified notation
p*c1j, . . . , p*cSj for the cutoffs p*c1 � dP*1 j, . . . , p*cS � dP *S j , it follows that
the average score after stage s of the retained applicants from the jth
population, C*sj, can be computed as

C*sj � dC *j �

�
l

s

RP *l C*�� p*clj�	�f l j
�1�, . . ., f l j

�l�1�, f l j
�l�1�, . . . , f l j

�s�; RP*
�l,s��

	�p*c1J, . . . , p*csj; RP*
�s��

,

where �(�) represents the standard normal density, RP*
�l, s� denotes the matrix

of partial correlations of P*1, . . . , P*l�1, P*l�1, . . . , P*s controlling for P*l,
and, for 1 � k � s and k 
 l,

f lj
�k� �

p*ckj � RP *k P *l p*cl j

�1 � RP *k P *l
2 ,

with RP *k P *l the correlation between the composite predictors P*k and P*l. It
can be shown that the thus obtained averages correspond to

C*sj � dC *j � �
l�1

s

�ls P*slj

where �ls is the regression weight of predictor P*l when regressing C* on
the predictors P*1, . . . , P*s, and P*slj is the average score of the group j
retained applicants on predictor P*l after the first s stages. The averages C*sj

(with j � 1, . . . J) can then be combined with the group-specific retention
rates, rs1, . . . , rsJ, and the proportional representation values, q1, . . . qJ, to
derive the average criterion score of the stage s selected applicants, C*s:
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C*s � �
j

qjrsjC*sj /rs.

Finally, the standardized average criterion score of the stage s selected
applicants, C*s

�s�, can be computed as

C *s
(s) �

C*s � C*

�C*
,

where C* � 
j qj dC *j and �C* � �1 � 
j qj �dC *j � C*�2 correspond to
the average and the standard deviation of the composite criterion C* in the
total applicant population.

With some minor modifications, part of the above procedure can also be
applied to calculate the mean subgroup differences, after previous screen-

ings, of the predictors and the predictor composites. Thus, the mean
difference after stage s on, for example, predictor Xr between the retained
part of minority group j and the retained part of the majority group J is
obtained as Xrsj – XrsJ, where, for example,

Xrsj � dXrj �

�
l

s

RP *l Xr�� p*clj�	�f l j
�1�, . . . , f l j

�l�1�, f l j
�l�1�, . . . , f l j

�s�; RP*
�l,s��

	�p*c1j , . . . , p*csj; RP*
�s��

.
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