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DE CORTE AND LIEVENS

THE RISK OF ADVERSE IMPACT IN SELECTIONS
BASED ON A TEST WITH KNOWN EFFECT SIZE

WILFRIED DE CORTE
FILIP LIEVENS
Ghent University

The authors derive the exact sampling distribution function of the adverse impact (AI)
ratio for single-stage, top-down selections using tests with known effect sizes. Subse-
quently, it is shown how this distribution function can be used to determine the risk that a
future selection decision on the basis of such tests will result in an outcome that reflects
the presence of AI. The article therefore provides test and selection practitioners with a
valuable tool to decide between alternative selection predictors.

Keywords: adverse impact; selection; test; effect size

In both educational and organizational settings, predictors of future
achievement such as psychological tests and other measures are often used to
decide which candidates will be selected from a given pool of applicants
(e.g., Gatewood & Feild, 2001). Typically, candidates are top-down selected,
retaining only the higher scoring applicants on a predictor. Although top-
down selection on the basis of a valid predictor (i.e., a predictor that corre-
lates positively with the future achievement or criterion behavior) corre-
sponds to the optimal selection rule, the practice may also result in what is
commonly referred to as adverse impact (AI). This phenomenon occurs
when an applicant group is not homogeneous but instead is a mixture of
members from so-called majority and minority populations and when these
populations have different average scores on a predictor. In that case, top-
down selection is expected to result in different hiring rates for the two candi-
date groups, with the members of the population with the higher average (i.e.,
the majority population) being selected more frequently than those of the mi-
nority or lower scoring population. The latter finding is AI, and the AI ratio,
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which is defined as the ratio between the selection rate in the minority appli-
cant group, si, and that in the majority group, sa, is typically used to quantify
the extent of the phenomenon: AI Ratio = sa / sa (cf. U.S. Equal Employment
Opportunity Commission, 1978).

Over the past few decades, the issue of AI has received a lot of attention in
the selection literature. The main reason for this is that extensive studies con-
sistently indicate that the most valid predictors of a broad range of academic
and organizational criterion behaviors show marked differences in average
performance between populations that differ in terms of age, sex, and in par-
ticular ethnicity (e.g., Hough, Oswald, & Ployhart, 2001; Sackett, Schmitt,
Ellingson, & Kabin, 2001; Schmitt, Clause, & Pulakos, 1996). Thus, using
meta-analysis (Hedges & Olkin, 1985; Hunter & Schmidt, 1990) to integrate
the results of previous research, it is found that cognitive ability predictors
show an effect size (i.e., a standardized mean difference) of about 1 between
White and Black populations (Roth, Bevier, Bobko, Switzer, & Tyler, 2001).
Data related to the effect size of other important selection predictors, such as
personality inventories, biodata questionnaires, and selection interviews,
have become available as well (e.g., Bobko, Roth, & Potosky, 1999; Hough
et al., 2001; Ones & Anderson, 2001).

In conjunction with the above-reported studies, other research has focused
on the expected level of AI as a function of the effect size of the intended
selection predictors (e.g., Sackett & Ellingson, 1997; Schmitt, Rogers, Chan,
Sheppard, & Jennings, 1997). To study this relationship, it is assumed that
the predictor scores have a normal distribution with the same variance but a
different mean value in the majority and the minority applicant populations.
As indicated by previous research (e.g., Crawford, Gray, & Allan, 1995;
Plomin, 1999; Schmidt, Hunter, McKenzie, & Muldrow, 1979; Tiffin & Vin-
cent, 1960), the assumption is often adequate for general ability predictors in
unscreened candidate populations. Equating, without a loss of generality, the
within-population variance of the predictor scores to 1, and using Y and X to
denote the predictor scores in the minority and the majority applicant popula-
tions, respectively, this assumption can be rewritten as Y ~ N(0, 1) and X ~
N(�, 1), where � is the population effect size of the predictor. A selection with
an overall selection rate, S, from a total applicant population with mixture
proportions �a and �i = 1 – �a for the majority and the minority applicants is
then expected to result in an AI ratio equal to [1 – �(pc)] / [1 – �(pc – �)],
where �(•) denotes the standard normal distribution function, and pc is the
predictor cutoff value such that the intended overall selection ratio is achieved:
�[1 – �(pc)] + �a[1 – �(pc – �)] = S (e.g., Morris, 2001; Sackett & Ellingson,
1997).

The above procedure to assess the extent of AI shows two major problems.
First, the procedure assumes that the applicant group is infinitely large and
hence results in the population value of the AI ratio. However, selections
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always relate to finite applicant samples, and it is shown hereafter that this
population value often offers only a crude estimate of the level of AI one may
really expect to obtain with small or medium-sized applicant samples. Sec-
ond, the approach, henceforth referred to as the population approach, is inad-
equate to clarify the way in which the actual value of the AI ratio will vary
from one applicant sample (or from one application of the selection predic-
tor) to another. To address both problems, this article details the exact sam-
pling distribution function (SDF) of the AI ratio, given the number of appli-
cants from the majority and the minority populations (na and ni, respectively);
the number of selected applicants, m; and the value of the population effect
size � of the intended selection predictor. Under the above-detailed assump-
tion that Y ~ N(0, 1) and X ~ N(�, 1), and assuming that the applicant pool is a
random sample from the total population, the SDF tabulates the exact cumu-
lative probabilities for the different possible sample AI ratio values as a func-
tion of the predictor effect size parameter �. Observe that the dependency on
� is shared by the above-discussed population method to assess the expected
AI. Also, although the value of � is typically unknown, this should not pose a
major problem, because fairly accurate estimates of the population effect size
are available for many currently used selection predictors (cf. the above-cited
studies). The practical importance of the SDF thus obtained is further ampli-
fied by showing how this distribution can subsequently be used to assess the
probability that an as yet unimplemented selection will result in a selection
outcome that reflects the condition of AI (see below). The latter probability
will henceforth be referred to as the risk of AI.

As discussed below, alternative formulations of the SDF of the AI ratio are
easily obtained using, for example, results on the distribution of the ratio of
two probabilities (cf. Agresti, 2002). Unfortunately, these alternative expres-
sions cannot immediately be applied to study the sampling variability of the
AI ratio for an intended but not yet implemented selection because these
expressions depend on the population minority and majority selection rates
for which, in that case, no estimates are available. To resolve this problem, an
explicit assumption must be made with respect to the distribution of the pre-
dictor scores in the two applicant populations such that the required estimates
can be inferred from the population effect size value of the intended selection
predictor, the number of minority and majority candidates in the applicant
pool, and the required number of selectees. The distributions thus obtained,
although now also expressed in terms of the predictor population effect size,
will not match the presently derived SDF of the AI ratio, however. As a con-
sequence, the assessment of the risk of AI, as computed from these distribu-
tions, will differ from the correct assessment, as based on the present exact
SDF, and it will be illustrated that the discrepancy may often be not only of
theoretical but of practical importance as well.
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The next section discusses the derivation of the exact (i.e., small-sample)
SDF of the sample AI ratio as a function of the population effect size � of the
selection predictor, given the number of minority and majority candidates in
the applicant pool and the required number of selectees. Following this, it is
shown how this SDF can be used to assess the risk of AI of an intended selec-
tion. The relationship between the present proposal and the available statisti-
cal tests to assess AI is explored in yet a further section. Other potential appli-
cations of the approach, as well as its limitations and possible extensions, are
discussed in the final two sections of the article.

SDF and the Expected Value of the AI Ratio

The presently derived SDF of the AI ratio applies to the same situations as
those addressed by the above-described population approach in that both
developments focus on selections in which candidates are top-down selected
on the basis of their scores on the predictor. The derivation of the SDF relies
also on the same stochastic model for the predictor scores as the one invoked
to determine the population AI. Thus, it is throughout understood that Y ~
N(0, 1) in the minority applicant population and that X ~ N(�, 1) in the major-
ity applicant population, with � the given population effect size of the predic-
tor. However, in contrast to the population derivation, knowledge of the mix-
ing proportions �i and �a is no longer assumed, and the reference to the
population overall selection rate, S, is dropped as well. Instead, the derivation
is conditional on the numbers ni and na of candidates from the minority and
the majority applicant populations in the actual applicant sample. Both num-
bers, together with the number of candidates that one intends to select, m,
determine the sample overall selection rate, s, and the numbers ni, na, and m
are henceforth considered as given, fixed quantities. Finally, as is standard
practice (e.g., Stuart & Ord, 1994), it is assumed that the actual applicants
represent random draws from their respective populations. Observe that the
latter assumption is in fact less restrictive than the corresponding assumption
of the population approach, whereby the applicant sample is effectively
equated to the applicant population. Also, as discussed in the final section,
the random-sample assumption can, if required, be replaced by a more
suitable one.

To obtain the SDF of the sample AI ratio A, henceforth denoted as F(A), it
is first observed that this function is completely specified by the distribution
function of the number selected from the minority applicant group. In gen-
eral, the latter distribution function is defined for values, j, of the number se-
lected from the minority group, J, that are in the range l � j � u, where l =
max(0, m – na) and u = min(m, ni). Also, with top-down selection, results
from the theory of order statistics (David, 1981) can be used to determine the
values of the distribution function of J. To apply these results, let Y(j) indicate
the jth-order statistic from the sample of minority group observations; that is,
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Y(j) corresponds to the jth smallest predictor score in the sample of the minor-
ity candidates, such that Y(l) and � �Y ni

represent the smallest and the largest
predictor score within this sample, respectively. Similarly, let X(i) denote the
ith-order statistic of the sample of majority group predictor scores. The prob-
ability that at most j (with l � j � u) candidates from the minority group are se-
lected, P(J � j), can then be equated to the probability that � �Y n ji � has a
smaller value than � �� �X n m ja � � � 1 . Next, because of the independence of the
observations in the two samples, it is further obtained that

� � � �	 
 	 
� �
� � � �

P J j P X Y

f x g y dy dx

n m j n j
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where f(x) and g(y) represent the density functions of the order statistics

� �� �X n m ja � � � 1 and � �Y n ji � , respectively. Using the earlier discussed distribu-
tional assumptions, these densities can subsequently be detailed as
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where �(•) and �(•) indicate the standard normal density and distribution
function, respectively. Obviously, for j = u, P(J � j = u) = 1, and the SDF of the
AI ratio, F(A), for values aj = (j / ni) / [(m – j) / nva] with l � j � u � m can be
obtained by equating F(A = aj) to P(J � j). Also, for j = u = m, the value of the
AI ratio is not defined, but the corresponding value F(A = am) can in that case
still be conveniently equated to 1.

The above-detailed derivation of F(A) shows that the determination of the
expected value of the AI ratio, E(A), is straightforward only in the case that m
> ni. Otherwise, there is a nonzero probability that none of the candidates
from the majority applicant group is selected, resulting in an undefined ex-
pected value. To avoid the latter complication it is suggested that the determi-
nation of E(A) be limited to only the finite terms of aj. More specifically, and
using f(aj) to denote the probability mass function of the AI ratio, E(A) is
henceforth defined as

� � � � � �E A f a a f ajj l

m
j jj

m






�




�� �1

1

1
,
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when m � ni and as

� � � �E A f a ajj l

u
j



� 1
,

otherwise. This “unorthodox” proposal is of little practical consequence,
however, unless the required number of selected applicants is very small (i.e.,
less than one or two). In all other cases, the probability of the event that only
minority applicants are selected can be virtually neglected because the
majority applicant population typically outperforms the minority applicant
population on the predictors that are generally used in actual selection appli-
cations. Also, as discussed below, the proposal does not affect the assessment
of the risk that a future selection will result in an AI outcome.

When the population effect size of the selection predictor, �, equals zero,
the SDF of the AI ratio reduces, for l � j < u, to
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where n = ni + na denotes the total number of applicants. Through computa-
tion, it can be further verified that the above expression equals
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with h(k; m, ni, n) the familiar hypergeometric distribution with parameters
m, ni, and n. This is a somewhat unexpected result, given the difference
between the above-detailed assumptions and the stochastic model that under-
lies the hypergeometric distribution.

With the above result in mind, it might be suggested that the SDF F(A) can
in general (i.e., for effect size values that differ from zero) be modeled as an
extended (cumulative) hypergeometric distribution. More specifically, it
might be proposed that for � � 0, F(A) can be written as

� �h k m n n
k l

j
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is the extended hypergeometric distribution (Harkness, 1965; Johnson, Kotz,
& Kemp, 1993) and expresses the ratio of the odds that a candidate from the
minority applicant population will be selected and the corresponding odds
for a candidate from the majority population. Also, given the present assump-
tions (i.e., Y ~ N[0, 1] and X ~ N(�, 1]), the latter odds ratio can be further
specified as

� �	 
 � �
� � � �	 


�
�

�



� �

� �

1

1

� �

� �

p p

p p

c c

c c

,

where pc is as defined above.
However, it is easily verified that the thus proposed formulation does not

match the exact SDF F(A). The discrepancy between the two expressions can
be explained by observing that the extended hypergeometric formulation is
based on the assumption that the distribution of the number selected from the
minority applicant group, J, can be modeled as the conditional distribution of
the first of two binomial random variables, given that their sum is fixed (cf.
Johnson et al., 1993). The two binomial variables involved are the number of
minority selected applicants, J (with J ~ Bin[ni, qi] and qi the selection proba-
bility of a minority applicant) and the number of selected majority applicants,
K (with K ~ Bin[na, qa]), whereas the fixed-sum condition is J + K = m, the
total number selected. This representation fails in the present context, how-
ever. Although it is reasonable to assume that under random sampling, the
selection probabilities qa and qi are constant within each total applicant sam-
ple of size ni + na, this is no longer true over different total applicant samples.
Over the latter samples, the values of qa and qi must be allowed to vary to
account for the fact that the selection probability of a minority (majority)
applicant depends on the set of actually sampled values of the ni + na predictor
scores. Thus, the qi value is expected to be larger (smaller) in a total applicant
sample where the majority applicants happen to have rather low (high) pre-
dictor scores. Finally, observe that the above variability will be of no effect
(i.e., the effect will cancel out evenly over repeated samples) in case that the
population effect size of the predictor, �, equals zero, which explains why the
hypergeometric distribution fits the presently derived SDF of the AI ratio for
� = 0.

Illustration

The following two examples illustrate the above detailed results. The first
example presents the SDF of the AI ratio, F(A), associated with a selection
using predictors that vary in their population effect size value. The second
example focuses on the difference between the expected value of the AI ratio,
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E(A), as obtained in the present exact (i.e., finite-sample) approach and the
corresponding value predicted by the traditional population method.

To illustrate the determination of F(A), consider the situation in which stu-
dents, 240 from the majority (i.e., na = 240) and 60 from the minority popula-
tion (i.e., ni = 60), apply for one of the 30 available openings (i.e., m = 30) in a
medical education program. In that case, 31 different selection outcomes and
hence 31 different values for the AI ratio are possible. Either j = 0, 1, 2, . . . , 30
minority candidates, with corresponding numbers selected from the majority
group of m – j = 30, 29, . . . , 0, can be selected. Also, the associated set of pos-
sible values for the AI ratio is, for 0 � j � m – 1, {a0, a1, . . . , am – 1} = {0.000,
0.138, . . . , 116.000}; whereas for j = m, the value of the corresponding AI
ratio, am, is undefined.

Although the above example selection situation is always characterized
by the same set of possible values for the AI ratio, regardless of the value of
the population effect size of the selection predictor, �, it is obvious that the
probability with which these values will occur over repeated samples of can-
didates will vary as a function of �. This is shown in Table 1, which details
(part of) the SDF of the AI ratio for the example selection when predictors
with values of � = 0.0, 0.2, 0.5, and 1.0 are used to perform the selection. By
and large, the values of � are chosen to reflect rather realistic selection situa-
tions. Thus, the choice � = 1.0 corresponds to the use of a college application
test such as the SAT in a situation in which the applicants belong to different
ethnic populations (cf. Roth et al., 2001). Alternatively, � = 0.0 indicates the
use of a neutral predictor or the implementation of random selection.

For each value of the AI ratio, aj, the tabled values correspond to the prob-
ability that this value or a smaller value will be obtained. Thus, for a neutral
predictor it is shown that the probability to obtain a selection outcome with an
associated value of, for example, at most 0.615 for the AI ratio (i.e., the value
of the SDF evaluated at aj = 0.615, F[A = aj = 0.615]) is 0.242. The corre-
sponding probability when using a test with an effect size of 0.5 is 0.885,
whereas the use of a predictor with an effect size of 1.0 is almost certain to
result (i.e., with .998 probability) in an AI ratio that is not larger than 0.615.
Alternatively, the Table 1 values are also useful to derive an (approximate)
90% probability interval for the sample AI ratio given the value of �. For the
present example this interval extends from 0.286 to 1.714 for � = 0.0,
whereas the interval is bounded by 0.000 and 0.800 in case that � = 0.5.

To illustrate that the traditional population approach results in a biased
estimate of the expected AI ratio value, E(A), compared with the correspond-
ing correct value obtained by the present exact method, the second example
explores the difference between the two resulting values of E(A) for a variety
of selection scenarios. To exclude the above-discussed eventuality that the
value of E(A) may be undefined, only scenarios for which the number
selected, m, is larger than the number of minority group applicants, ni, are
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considered. More specifically, the studied situations vary in terms of (a) the
overall selection rate, s, with s = 0.15, 0.25, and 0.50; (b) the total number of
applicants, n, with n = 20, 40, 100, and 500; and (c) the population value of
the selection predictor, �, with � = 0.0, 0.2, 0.5, and 1.0. Also, all situations
are characterized by the same ratio, equal to 0.9, between the number of
majority candidates and the number of minority applicants.

Table 2 summarizes the results of the above-detailed comparison. In gen-
eral, these results confirm that the population method (cf. the values reported
in the rows for which the total number of candidates is �) underestimates the
E(A) value for all finite samples and hence for all realistic selections.

The underestimation does not relate to the normal distribution assumption
for the predictor scores, because this assumption is shared by both the present
exact and the former population methods. Also, the underestimation is espe-
cially important for small sample selections with a low selection rate. Thus,
for selections with a selection rate s of, for example, 0.15, a total number of
applicants of 20, and a selection predictor effect size of 0.50, the underesti-
mation (compared with the exact value) equals as much as (0.641 – 0.421) �
100 / 0.641 = 34.3%. For larger applicant samples, the results between the
traditional and the present exact method tend to converge, however, but even
for medium-sized applicant groups (e.g., n = 100) there remains a noticeable

DE CORTE AND LIEVENS 9

Table 1
Sampling Distribution Function of the Adverse Impact (AI) Ratio When Selecting 30
Candidates From a Total of 300 Applicants (60 minority and 240 majority candidates), Using
a Selection Test With Population Effect Size, �, Equal to 0.0, 0.2, 0.5, and 1.0

Effect Size Selection Test

J K AI Ratio � = 0.0 � = 0.2 � = 0.5 � = 1.0

0 30 0.000 0.001 0.007 0.058 0.394
1 29 0.138 0.008 0.044 0.237 0.770
2 28 0.286 0.037 0.146 0.495 0.940
3 27 0.444 0.110 0.321 0.732 0.988
4 26 0.615 0.242 0.532 0.885 0.998
5 25 0.800 0.420 0.725 0.960 1.000
6 24 1.000 0.609 0.862 0.988 1.000
7 23 1.217 0.770 0.942 0.997 1.000
8 22 1.455 0.883 0.979 0.999 1.000
9 21 1.714 0.949 0.994 1.000 1.000
10 20 2.000 0.981 0.998 1.000 1.000
11 19 2.316 0.994 1.000 1.000 1.000
12 18 2.667 0.998 1.000 1.000 1.000
13 17 3.059 1.000 1.000 1.000 1.000

Note. J indicates the number of selected minority applicants. K indicates the number of selected majority ap-
plicants.



difference between the population-based value and the corresponding correct
value.

Further Comments

Although the population method underestimates the AI ratio value that
one may expect to obtain, the above results show that the underestimation
need not always be of practical importance. In addition, the refinement in the
determination of E(A) as obtained by the present method can be questioned
by observing that many selections are part of an ongoing program, resulting
in a total applicant sample (as aggregated over the years) that is quite large.
As an example, consider a university that each year uses the same predictor
(or composite predictor) to admit candidates to a Ph.D. program. In such a
case, and because of the larger aggregate sample, the population and the pres-
ent methods will produce similar values of E(A). Observe, however, that this
aggregation of small sample selections to one large sample selection is
appropriate only in the case that an identical predictor (or predictor compos-
ite) is used at each instance. In particular, the use of the same predictors, but
weighed somewhat differently over the years, and changing the predictor
basis to include an additional predictor are both practices that preclude the

10 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT

Table 2
Expected Adverse Impact Ratio, E(A), for Selections That Vary in Terms of the Overall
Selection Rate, the Total Number of Applicants, and the Population Effect Size of the
Selection Predictor, Given an Applicant Group Consisting of 90% Majority and 10%
Minority Applicants

Number of
Effect Size Selection Predictor

Selection Ratio Applicants � = 0.0 � = 0.2 � = 0.5 � = 1.0

0.15 20 1.492 1.084 0.641 0.232
0.15 40 1.191 0.864 0.508 0.181
0.15 100 1.068 0.773 0.452 0.159
0.15 500 1.013 0.733 0.427 0.148
0.15 Infinite 1.000 0.723 0.421 0.146
0.25 20 1.204 0.929 0.600 0.252
0.25 40 1.092 0.839 0.538 0.222
0.25 100 1.035 0.793 0.507 0.208
0.25 500 1.007 0.771 0.492 0.200
0.25 Infinite 1.000 0.766 0.488 0.199
0.50 20 1.092 0.895 0.635 0.314
0.50 40 1.044 0.853 0.602 0.295
0.50 100 1.017 0.830 0.585 0.285
0.50 500 1.003 0.818 0.576 0.280
0.50 Infinite 1.000 0.815 0.574 0.279



aggregation of the selections. Such practices are no exception, though, as
organizations continuously strive for more optimal selection strategies. In
addition, many selections are not part of ongoing programs but occur on an
ad hoc basis to meet such irregular demands for new employees as implied
by, for example, a start-up or a reallocation of business and production
activities.

Whereas the present refinement in the estimation of E(A) is less practi-
cally relevant for large sample selections, this is much less the case as far as
the derivation of the SDF of the AI ratio is concerned. Obviously, the latter
distribution will become more narrowly centered for larger applicant sam-
ples, but the SDF will continue to show considerable variability unless the
sample is extremely large. To illustrate this, consider the selection of 750 new
employees from an applicant group of 5,000 candidates. With 4,000 majority
and 1,000 minority applicants, and using a predictor with an effect size of, for
example, 0.4, the (approximate) 90% probability interval for the AI ratio will
in that case still extend from 0.425 (5.7 percentile) to 0.608 (95.3 percentile).
This shows that the present derivation of the SDF of the AI ratio remains of
substantial importance, even for large sample selection decisions. In addi-
tion, and as discussed in the next section, this SDF can also be used to asses
the risk that an intended selection, using a predictor with a known effect size,
will result in an AI outcome.

Assessing the Risk of AI

To assess the probability that a future application of a selection predictor
will lead to an AI outcome, two related issues must be resolved. First, it must
be decided which of the possible selection outcomes will be judged to reflect
AI. Second, one must determine the probability that these AI outcomes will
be obtained when the predictor is applied to perform a future selection. As
shown hereafter, the first issue is resolved either by convention or through the
use of a statistical test, whereas the present derivation of the SDF of the AI
ratio addresses the second issue.

Determination of the AI Outcomes

Given the total set of possible selection outcomes as determined by the
values of na, ni and m, the first task is to assess which, if any, of these out-
comes will be considered as unacceptable because they are characterized by
too few minority hires compared with the corresponding number of majority
hires. Although the distinction between AI and no AI outcomes is intrinsi-
cally judgmental and therefore cannot be solved in any absolute way, two
approaches are currently used to settle the issue (e.g., Morris, 2001). In the
first, convention-based approach, the so-called four-fifths rule of thumb
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(U.S. Equal Employment Opportunity Commission, 1978) is invoked to dis-
tinguish between unacceptable (AI) and acceptable (no AI) outcomes.
According to this rule, a selection outcome reflects AI if the selection rate for
the minority group is less than four fifths of the selection rate for the majority.
In the second approach, a statistical test, such as Fisher’s exact test, is used to
determine if an outcome is unacceptable.

Obviously, both approaches frequently lead to a different demarcation of
AI versus no-AI outcomes. To illustrate this, reconsider the above-discussed
example situation in which 30 candidates are selected from a candidate sam-
ple that consists of 240 applicants from the majority population and 60 candi-
dates from the minority population. In this situation, and as can be verified
from the data in Table 1, only the outcomes for which at most 4 minority
applicants are selected will be judged to reflect AI when the four-fifths rule is
used to decide which outcomes show AI. The application of Fisher’s exact
test does not lead to the same conclusion, however, because the correspond-
ing hypergeometric distribution function (which, as argued above, is identi-
cal to the presently derived SDF of the AI ratio for � = 0) indicates that the
probability to select 4 or fewer minority candidates is equal to .242 (cf. the
second column of Table 1). This is a much higher value than the .05 probabil-
ity that corresponds to a one-sided test at the conventional 5% significance
level. Using the latter significance level, the hypergeometric distribution
probabilities and hence Fisher’s exact test show that only the outcomes for
which no more than 2 minority applicants are selected are unacceptable.

The above-exemplified discrepancy between the results of the two
approaches to determine AI outcomes does not affect the below-detailed pro-
cedure to assess the risk of AI, however. As argued above, the distinction
between AI and no AI outcomes is essentially judgmental and the risk assess-
ment can be performed irrespective of the approach used to distinguish
between the two types of outcome.

Determination of the Risk of an AI Outcome

Given the adopted distinction between AI and no-AI outcomes, the next
step is to assess the risk (i.e., the probability) that a future selection on the
basis of a predictor with known population effect size will lead to one of the
AI outcomes. This assessment requires the specification of the SDF of the
selection outcomes that corresponds to the population effect size of the selec-
tion predictor. However, the latter SDF is identical to the SDF of the AI ratio
statistic obtained in the previous section because each possible value of the
AI ratio corresponds to exactly one of the different possible selection out-
comes. As a consequence, the presently derived SDF of the AI ratio suffices
to assess the risk of an AI outcome.

12 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT



To illustrate the procedure, consider again the example situation in which
30 candidates are selected from an applicant pool with 240 majority and 60
minority candidates. For this situation, the application of Fisher’s exact test
indicated that only the outcomes with at most 2 minority admissions are
unacceptable. Suppose now that the organization intends to use a predictor
that has a population effect size value, �, equal to 0.5. In that case, the SDF of
the AI ratio that corresponds to this effect size shows a probability of 0.495
(the value in the third row of the sixth column in Table 1) and therefore a risk
of nearly 50% that the latter selection will result in an AI outcome (i.e., an
outcome for which fewer than 3 minority candidates are admitted). Alterna-
tively, if admissions were based on a predictor with an effect size value of 0.2,
the results in Table 2 indicate a much lower risk of only 14.6% of obtaining an
AI outcome.

Relationship Between Selection
Characteristics and Risk of AI

To provide a more general overview of the relationship between the char-
acteristics of the intended selection and the corresponding risk of obtaining
an AI selection outcome, the risk is determined for a variety of intended
selection decisions. The studied selections differ in terms of (a) the propor-
tional representation of the majority and minority candidates in the total
applicant sample (i.e., either 90% vs. 10% or 80% vs. 20%), (b) the overall
selection rate, s (i.e., s = 0.05, 0.10, 0.25, and 0.50), (c) the total number of
candidates, n (i.e., n = 40, 100, 200, 300, 500, and 1,000), and (d) the effect
size � of the intended selection predictor (i.e., � = 0.10, 0.20, 0.30, 0.50, and
0.80). Table 3 summarizes the obtained results. For each selection, two val-
ues are reported for the risk that the intended selection will result in an AI out-
come. The first value is calculated from the exact SDF of the AI ratio,
whereas the second value, in parentheses, corresponds to an alternative esti-
mate of the risk of AI. As detailed in the next section, the alternative estimate
is based on a large-sample approximation of the SDF of the AI ratio.

Apart from the obvious result that predictors with higher effect size values
result in higher risk values, the tabled values also show that selections with as
many as 300 to 500 applicants may have an associated risk of AI equal to
zero, especially when the selection ratio is low and the proportional represen-
tation of the minority applicants is small. The reason for this is that in these
cases, Fisher’s exact test does not permit one to distinguish between AI and
no-AI outcomes, because the probability that none of the minority candidates
is selected using a neutral predictor exceeds the conventional 5% signifi-
cance level. The results furthermore indicate that the risk of AI is higher for
higher selection rates, larger total numbers of applicants, and a more substan-
tial proportional representation of the minority candidates in the applicant

DE CORTE AND LIEVENS 13
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sample, but these main effects must be further qualified because they also
tend to interact. It therefore seems less advisable to propose a set of simple
rules to gauge the risk of AI as related to the characteristics of the intended
selection. Instead, the results suggest that the practitioner can better apply the
present risk calculation using the actual values of the number of majority and
minority candidates, the number of required selectees, and the effect size
estimate of the intended selection predictor.

Relationship With Traditional
Statistical Tests for Adverse Impact

Thus far, the discussion has focused on the assessment of the risk that an
intended selection will result in a selection outcome that reflects AI. Although
this focus differs from the one adopted in traditional statistical tests (e.g., the
z-test of Morris & Lobsenz, 2000) of AI, these tests are often based on distri-
butions of the sample AI ratio (or a simple transform of this ratio) that can
also lead to such a risk assessment. The resulting assessment will be inaccu-
rate, however, because these distributions either are less appropriate, as is the
case for the above-discussed extended hypergeometric distribution, or repre-
sent large-sample approximations of the exact distribution. Also, these distri-
butions typically depend on population values for the minority and majority
selection rates instead of on the predictor population effect size value � such
that their application to assess the risk of AI of a not yet implemented selec-
tion requires a transformation of the available sample and predictor informa-
tion. But this transformation—and it is important to emphasize this—cannot
succeed unless an explicit assumption is made with respect to the distribution
of the predictor scores in the majority and the minority candidate popula-
tions. Alternative approaches to the risk assessment of a future selection, as
based on these other distributions, therefore require the same assumptions as
the present proposal. In particular, both the present and the alternative
approaches need to assume that the majority and the minority candidates rep-
resent random draws from their respective populations, and they all depend
on an explicit model as to the way in which the predictor scores are distrib-
uted in these populations.

To demonstrate the above conclusion, as well as to show that the alterna-
tive approaches may often result in poor risk estimates, the z-test proposed by
Morris and Lobsenz (2000) is considered in some detail. This z-test is based
on the finding that the natural log of the sample AI ratio A, log(A), is approxi-
mately normally distributed when the applicant sample is large (Agresti,
2002), with expectation equal to log �, where � = Si / Sa indicates the popula-
tion AI ratio, and Si and Sa correspond to the minority and the majority popu-
lation selection rates. Also, the standard deviation of the distribution, �log(A),
is
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where ni and na represent, as before, the number of minority and majority
candidates in the applicant sample (cf. Morris & Lobsenz, 2000).

To apply the above distribution to assess the risk of AI, the population se-
lection rates Si and Sa must be estimated. Yet, given the available selection in-
formation (i.e., the values of ni, na, and m, as well as an estimate of �), it is ob-
vious that this estimation requires an explicit assumption with respect to the
distribution of the predictor scores in the two applicant populations. Thus,
using as before the assumption that Y ~ N(0, 1) and X ~ N(�, 1), the population
selection rates Si and Sa can be determined as 1 – �(pc) and 1 – �(pc – �), re-
spectively, where the predictor cutoff value pc is such that the intended overall
selection rate s, with s = m / (ni + na), is achieved given the actual proportional
representation of the minority and minority candidates in the sample applicant
group:
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Because the z-test relies on approximate, large-sample distributions, the
related assessment of the risk of AI will be credible only in case that the nor-
mal approximation is sufficiently acceptable. This means in particular that
the usage of these distributions (and of the z-test in particular) is recom-
mended only for selection situations in which the expected number of se-
lected candidates from the smallest applicant group is at least equal to five
(cf. Morris & Lobsenz, 2000). Yet, even for selections that meet this require-
ment, the resulting risk assessment may still differ from the correct assess-
ment to such a degree that the difference is practically meaningful as well. To
illustrate this, consider a situation in which 400 majority and 100 minority
candidates compete for 25 available vacancies, such that the expected num-
ber of selected minority applicants equals 5, and the large-sample approxi-
mate distribution of log(A) can be applied. With random selection (i.e., selec-
tion based on a neutral predictor with population effect size � equal to zero), it
is then obtained that the distribution of log(A) is approximately normal, with
an expected value of zero and a standard deviation of

1 05
100 05

1 05
400 05

0 487�
�

�
�� 
.

.
.
.

. .

Using the conventional 5% significance level, the one-sided z-test therefore
indicates that selection outcomes with an associated value of log(A) of at
most –1.645 � 0.487 = –0.801 will be considered as outcomes that reflect AI.
Suppose now that instead of random selection, one intends to use a predictor
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with a population effect size equal to 0.2. In that case, the assumption on the
normal distribution of the predictor scores, together with the available values
of ni = 100, na = 400, and m = 25, permits one to determine the majority and
minority selection rates that correspond to this effect size value as 0.054 and
0.035, respectively. Thus, when the effect size equals 0.2, log(A) has an ex-
pected value of log(0.035/0.054) = –0.423 and a standard deviation of

1 035
100 035

1 054
400 054

0 565�
�

�
�� 
.

.
.
.

. ..

The risk to obtain an AI outcome, using the predictor with effect size 0.2,
therefore corresponds to the probability that a normal distributed random
variable with expectation –0.423 and standard deviation 0.565 will not
exceed the earlier determined critical value of –0.801. The latter probability
equals .25, and it can be verified from the results in Table 3 that this result is
more than twice the correct risk value of .11, as determined on the basis of the
exact SDF of the AI ratio. Also, given the large discrepancy between the two
risk assessments, it seems difficult to deny that the difference is also practi-
cally relevant.

Obviously, the discrepancy between the correct and the above derived,
large sample based risk assessment will become smaller when the exact SDF
converges to the corresponding large-sample approximation. As observed
above, this convergence depends on the expected number of selected appli-
cants from the smallest applicant group, but this general rule does not indi-
cate how the two risk estimates actually compare for a broad range of selec-
tion situations. We therefore computed the risk, according to the large-
sample approximation of the SDF of the AI ratio, for the entire set of earlier
analyzed selection situations and added the results in parentheses following
the corresponding correct values already reported in Table 3. For selection
situations with an expected number of selected minority applicants that is
less than five, the large-sample approximation of the SDF of the AI ratio is
generally not recommended (see above), and the associated risk value is
therefore reported as two asterisks (“**”). In general, the results confirm the
earlier finding that assessments based on approximate sampling distributions
are not trustworthy unless the total applicant sample is large. Given this
observation, and the fact that the approximate assessment requires both iden-
tical assumptions and identical data as the exact procedure, the usage of the
former assessment can only be justified on the grounds that it is simpler to
compute. However, even this final justification no longer applies because an
easily applicable computer program to perform the correct risk calculation is
made available to the interested audience. The program, as well as two addi-
tional codes to handle the below discussed extensions, can be downloaded at
http://allserv.rug.ac.be/~wdecorte/software.html.
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Some Extensions

Thus far, the derivation of the exact SDF of the AI ratio and the subsequent
assessment of the risk of AI has been obtained in the understanding that the
composition of the applicant pool, in terms of the numbers of majority and
minority candidates, is available. This may not always be the case, however,
in that the group membership of the applicants may become known only at
the time that the selection is actually performed. But even then the present re-
sults can still be used to derive the SDF of the AI ratio. To obtain this distribu-
tion, it is then assumed, just as in the traditional procedure, that a population
estimate of the proportion of minority applicants in the total candidate popu-
lation is available. The assumption implies that the number of minority appli-
cants in the applicant pool has a binomial distribution: ni ~ Bin(n, �i), with n
the total number of applicants and �i the proportion of minority candidates in
the total applicant population. Using b(ni) to denote the corresponding bino-
mial frequency function, and letting F(A | ni) denote the SDF of the AI ratio,
given that the number of minority applicants equals ni, it then follows that the
(marginal) SDF function of the AI statistic is equal to
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The latter (marginal) distribution function of the AI ratio can subsequently be
used as before to assess the risk of obtaining an AI outcome.

A second extension addresses an issue that can be particularly relevant
with very small sample selection decisions. For such selections, it may be
unrealistic to assume that the minority and majority applicants are random
representatives of their respective populations, because the actual applicant
pool is the result of some systematic recruitment effort. One way to address
this situation is to consider the actual candidate pool not as a random sample
of the initial population but rather as a sample from a restricted subset of this
population and to adapt the predictor distribution assumption accordingly. To
illustrate the proposal, consider an example in which the recruited candidates
are prescreened on the basis of rudimentary biographical information. In that
case, the rate of selectivity applied in the prescreen, together with an estimate
of the correlation between the biographical prescreen and the intended selec-
tion predictor, can be combined with standard results on truncated binormal
distributions to derive a more suitable expression for the distribution of the
predictor scores in the prescreened applicant populations. Using the latter
distribution instead of the normal distribution, the earlier discussed proce-
dure can then again be applied to obtain the SDF of the AI ratio and to assess
the risk of AI. Obviously, the above proposal is not relevant when the
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required information is not available. However, in that case, all procedures,
including the population approach, for the prediction of AI will fail.

Discussion

In the previous sections of this article, we presented and exemplified a
two-step procedure that enables selection practitioners to estimate the risk
that a future selection decision will lead to an outcome that reflects AI. When
compared with other procedures that serve a similar purpose, it was found
that the present proposal is always to be preferred because it is based on the
exact instead of an approximate or an inadequate formulation of the SDF of
the AI ratio and because it achieves the risk estimation without any additional
assumptions. In this section, we briefly discuss the dependency of the proce-
dure on the population predictor effect size value and indicate a further exten-
sion of our method. We also delineate the limitations of the procedure.

Just as the traditional procedure to estimate the expected AI, the present
method requires data on the population effect size � of the intended selection
predictor. It could therefore be argued that both procedures are rather point-
less because, as shown above, knowledge of � implies also knowledge of the
value of the AI ratio at the population level. The argument is not appropriate,
however, in that it is shown above that even a predictor with a substantial pop-
ulation effect size may, when applied to a given sample of candidates, result
in a selection outcome that does not show AI. AI at the population level is
quite different from AI at the actual sample level. Selection practitioners
always deal with applicant samples, never with the applicant population.
They are therefore best helped by a procedure, such as the present one, that
focuses on the selection results that may be expected at the sample level.
Obviously, the accuracy of the results thus obtained will depend on the preci-
sion of the population effect size estimate, but it is repeated that such fairly
accurate estimates have become available for most of the popular selection
predictors (e.g., Bobko et al., 1999; Hough et al., 2001; Roth et al., 2001).
Also, to account for the remaining imprecision of these estimates, the risk
assessment can be determined for both the lower- and the upper-bound val-
ues of the predictor effect size, resulting in an optimistic as well as a conser-
vative assessment of the risk. Finally, observe that the dependency of the risk
assessment on the predictor effect size value is entirely similar to the way in
which, for example, the expected quality of an intended selection, as expressed
in terms of the expected criterion performance of the selected candidates,
depends on the estimated (population) validity of the predictor. Predictions
of future selection outcomes necessarily rely on estimated quantities. If the
latter estimates are reasonably trustworthy, as can be argued for both validity
and effect size estimates, it seems good practice to make optimal use of this
information, because otherwise, a selection practitioner is left without guid-
ance when deciding between alternative predictors.
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Thus far, this article has focused on selections in which a single predictor
is used to perform the selection, but selection decisions are often based on the
aggregate result (i.e., the weighed sum) of the scores as obtained on several
different predictors. The extension of the present proposal to selections on
the basis of such aggregate or composite predictors is straightforward, how-
ever, provided that estimates of the predictor correlations and effect sizes are
available. For in that case, the effect size of the composite, �c, can be simply
determined as �c = b�� / b�Rb, where � is the vector of individual predictor
effect sizes, b represents the weights with which the individual predictors are
combined to the composite predictor, and R denotes the correlation matrix of
the predictors. With this extension, the risk assessment can be performed not
only for single-predictor selections but for composite-predictor selections as
well.

Even with the above extension, the procedure still shows a number of limi-
tations. As recognized from the onset, the method can be applied only to sin-
gle-stage selection situations, and it is highly unlikely that this limitation can
be overcome. Although the approach can, at least in principle, be extended to
cope with multistage situations, the resulting expressions for the SDF of the
AI statistic are numerically intractable, leaving no other option than to use
Monte Carlo simulation methods to study the sampling variability of the sta-
tistic for other than single-stage selections. Also, even for single-stage deci-
sions, it must be remembered that the results of the procedure are valid pro-
vided that the underlying stochastic model is appropriate and that the
predictor data that are used to determine the composite effect size are accu-
rate. The latter dependency is not unique to the present proposal, however,
because the currently used method to derive the population estimate of the AI
statistic is based on even stronger assumptions and requires identical predic-
tor data to obtain the estimate. For single-stage decisions, it can therefore be
concluded that the present procedure provides selection practitioners with a
valuable tool to decide between alternative selection predictors. The proposal
may also contribute to the construction of predictor composites for situations
in which both the goals of diversity and quality are of importance. Because of
this potential and as the program to implement the method is made widely
available, it is hoped that the procedure will find routine application in the
design of selection decisions in both educational and organizational settings.
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