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Revised Estimates of Dimension and Exercise Variance Components in
Assessment Center Postexercise Dimension Ratings

Charles E. Lance, Tracy A. Lambert, and
Amanda G. Gewin

The University of Georgia

Filip Lievens
Ghent University

James M. Conway
Central Connecticut State University

The authors reanalyzed assessment center (AC) multitrait–multimethod (MTMM) matrices containing
correlations among postexercise dimension ratings (PEDRs) reported by F. Lievens and J. M. Conway
(2001). Unlike F. Lievens and J. M. Conway, who used a correlated dimension-correlated uniqueness
model, we used a different set of confirmatory-factor-analysis–based models (1-dimension-correlated
Exercise and 1-dimension-correlated uniqueness models) to estimate dimension and exercise variance
components in AC PEDRs. Results of reanalyses suggest that, consistent with previous narrative reviews,
exercise variance components dominate over dimension variance components after all. Implications for
AC construct validity and possible redirections of research on the validity of ACs are discussed.

Assessment centers (ACs) exhibit some of the highest criterion-
related validities among alternative predictors of job performance
(Gaugler, Rosenthal, Thornton, & Bentson, 1987; Schmidt &
Hunter, 1998). Nevertheless, the construct validity of AC postex-
ercise dimension ratings (PEDRs), that is, dimension ratings that
are made at the completion of each exercise, has continued to be
called into question for over 20 years (Lance, Newbolt, et al.,
2000). Thus there is an apparent evidential dilemma that ACs
demonstrate criterion-related validity but not construct validity
(Lievens & Klimoski, 2001; Sackett & Tuzinski, 2001)

ACs were originally designed to assess candidate performance
relating to various dimensions (e.g., Organizing & Planning, Per-
ception, Oral and Written Communication) as they are assessed in
various exercises (e.g., Leaderless Group Discussion, In-Basket,
Role Play, etc.). Sackett and Dreher (1982) found, however, that
factor analysis of PEDRs resulted in factors that reflected exer-
cises, not the dimensions that were intended to be assessed. Sub-
sequently, a number of additional studies have investigated the
construct validity of PEDRs by using factor analysis, but only a
few of these (e.g., Arthur, Woehr, & Maldegen, 2000) have sup-
ported a theoretical structure that includes both exercise and di-
mension factors. However, dozens of other studies have replicated
Sackett and Dreher’s (1982) basic findings that PEDRs substan-
tially reflect the exercises in which they are assessed and not the

dimensions they are designed to assess (Howard, 1997; Lance,
Newbolt, et al., 2000; Lievens & Klimoski, 2001; Sackett &
Tuzinski, 2001). As Robertson, Gratton, and Sharpley (1987)
stated “it is exercises (work samples) not dimensions that best
represent the underlying structure of assessor ratings” (p. 193).
Furthermore, these findings hold true despite various experimental
efforts to increase dimension variance and decrease exercise vari-
ance in PEDRs (Lance, Newbolt, et al., 2000; Lievens, 1998;
Woehr & Arthur, 1999). “This robust finding . . . has led many
researchers to question the construct validity of assessment rat-
ings” (Schleicher, Day, Mayes, & Riggio, 2002, p. 735). Howard
(1997) summarized this state of affairs by stating “exercises and
not dimensions are the currency of assessment centers” (p. 21).

However, findings from a recent large-scale quantitative review
of multitrait–multimethod (MTMM) studies of the construct va-
lidity of PEDRs seem to indicate otherwise (Lievens & Conway,
2001). Although previous narrative reviews have concluded that
exercise variance dominates over dimension variance in PEDRs,
Lievens and Conway’s (2001) quantitative review of 34 MTMM
studies indicated that PEDRs reflect equal proportions of exercise
and dimension variance, a more optimistic conclusion for the
traditional AC community but one that conflicts with other reviews
of this literature. How can this be? One possibility is that Lievens
and Conway’s quantitative review was more objective and conse-
quently more accurate than previous qualitative reviews. A second
possibility is that their findings were biased as the result of
adopting a particular approach to the analysis of MTMM data, the
correlated trait-correlated uniqueness (CTCU) model. In fact,
Lievens and Conway noted that a “limitation of this . . . model is
that if the restriction of independent methods does not hold, it
suffers from a biasing effect” (p. 1212). The purpose of this study
was to reanalyze the data reported by Lievens and Conway with
the goal of determining whether findings based on the CTCU
model may have led to upwardly biased estimates of proportions of
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trait (i.e., dimension) variance components in PEDRs and, if so, to
estimate the extent of this bias.

In the remainder of this article, we first summarize and critique
the Lievens and Conway (2001) quantitative review. Second, we
point to specific sources of bias in the estimation of trait and
method variance components under the CTCU model. Finally, we
reanalyze data reported by Lievens and Conway and, in doing so,
show that analyses based on a different set of models than those
reported by Lievens and Conway result in estimated proportions of
trait (i.e., Dimension) and method (i.e., Exercise) variance repre-
sented in PEDRs that are consistent with previous narrative re-
views and that suggest that Exercise effects do in fact dominate
over Dimension effects in AC PEDRs.

The Lievens and Conway (2001) Review

Lievens and Conway (2001) assembled an impressive database
consisting of 34 MTMM matrices of AC ratings that (a) were
composed of correlations among PEDRs, (b) included at least three
Dimensions and two Exercises, (c) in which assessors rotated
across AC Exercises, (d) were positive definite, and (e) had “sam-
ple size. . .greater than 50 and greater than the number of param-
eters estimated” (p. 1206). Lievens and Conway fit a number of
confirmatory factor analysis (CFA) models to each MTMM ma-
trix, including (a) a correlated-Dimensions 0-Exercise (CD0E)
model, (b) a 0-Dimension correlated-Exercises (0DCE) model, (c)
a correlated-Dimension correlated-Exercises (CDCE) model, and
(d) a 1-Dimension correlated-Exercise model (1DCE) model. We
note here that the majority of previous CFAs of PEDR MTMM
matrices have supported either the 0DCE model, indicating strong
cross-situational (i.e., cross-Exercise) specificity in AC perfor-
mance, or a 1DCE model, indicating cross-situational consistency
(convergent validity) in assessing a “general trait or person factor”
(Schleicher et al., 2002, p. 735) plus cross-situational (i.e., cross-
Exercise) specificity in AC performance, although overall
goodness-of-fit for these models is not always strong. Lievens and
Conway also fit two other models to each PEDR MTMM matrix:
Browne’s (1984) Direct Product (DP) model and Marsh’s (1989)
correlated-dimension correlated-uniqueness (CDCU) model in
which exercise effects are modeled as covariances between the
uniquenesses of PEDRs measured in the same exercise. For each
model fit, the model was judged to be appropriate if it returned a
convergent and admissible solution and if it provided acceptable
model goodness-of-fit indices. Lievens and Conway found that
53% of the CDCU models resulted in proper and well-fitting
solutions. For the other models, these percentages were as follows:
DP, 52%; CD0E, 3%; 0DCE, 24%; 1DCE, 29%; and CDCE, 9%.
Primarily on the basis of these results, Lievens and Conway chose
the CDCU model to conduct their quantitative review. We note
here that their criteria for model selection—model fit, conver-
gence, and admissibility—are important and appropriate. How-
ever, we also note that selection of the two CFA models that have
found empirical support in previous literature, the 0DCE and
1DCE models, would also have resulted in 53% of the MTMM
matrices being retained. We return to this issue later.

Having selected the CDCU model as the analytic model of
choice, Lievens and Conway (2001) estimated Dimension variance
components as PEDRs’ squared loadings on Dimension factors
and the Exercise variance components using a residualized CFA
technique described by Scullen (1999) and found overall that the

proportions of Dimension and Exercise variance in PEDRs were
equal (34%) across the studies analyzed. We note that Lievens and
Conway based their analyses on all CDCU solutions (admissible as
well as inadmissible), although they commented that their “con-
clusions did not change much when only the 18 admissible
[CDCU] solutions (those free of improper estimates) were consid-
ered” (p. 1208). They also investigated the effects of various AC
design factors on proportions of Dimension and Exercise variance
in PEDRs, but we are not concerned about these issues here. Our
concern is that the CDCU model that they chose as their analytic
approach likely provided biased estimates of trait (i.e., dimension)
and method (i.e., exercise) variance components.

Bias in CFA Parameter Estimates Under the CDCU
Model

Lance, Noble, and Scullen (2002) recently provided a critique of
correlated trait-correlated method (CTCM, analogous to the CDCE
model) and correlated trait-correlated uniqueness (CTCU, analo-
gous to the CDCU model) models for MTMM data. Lance et al.
(2002) noted that the CTCU model has gained popularity among
researchers, because it does, in fact, return convergent and proper
solutions for MTMM data more often than does the CTCM model.
However, beyond this advantage, Lance et al. (2002) identified
several, and in some cases severe, shortcomings of the CTCU
model. The two most relevant shortcomings here are (a) the
necessary assumption of orthogonal Method (i.e., exercise) effects,
and (b) the potential for upward bias in Trait (i.e., dimension)
factor loadings under the CTCU model. The following section
explains these problems in some detail.

Under the CTCM model, monotrait–heteromethod (MTHM),
heterotrait–heteromethod (HTHM), and heterotrait–monomethod
(HTMM) correlations are modeled as functions of estimated model
parameters, respectively, as follows:

MTHM � �Tij�Tij’ � �Mij�Mij’�MjMj’, (1a)

HTHM � �Tij�Ti’j’�TiTi’ � �Mij�Mi’j’�MjMj’, (1b)

HTMM � �Tij�Ti’j�TiTi’ � �Mij�Mi’j, (1c)

where �Tij refers to the standardized loading of the ijth Trait-
Method Unit (TMU, i.e., a measure of the ith Trait as measured by
the jth measurement Method) on the ith latent Trait factor, �Mij is
the ijth TMU’s loading on the jth Method factor, �TiTi’ refers to
the correlation between different Trait factors, and �MjMj’ refers to
the correlation between different Method factors. Under the CTCU
model these correlations are modeled as follows:

MTHM � �Tij�Tij’, (2a)

HTHM � �Tij�Ti’j’�TiTi’, (2b)

HTMM � �Tij�Ti’j�TiTi’ � ���ij,i’j�. (2c)

Comparing Equations 1c and 2c, one can see that the CTCM and
CTCU models account for common Method effects in HTMM
correlations by alternative parameterizations of the same covari-
ance component as follows: (a) the CTCM model uses the com-
mon causal effect of the measurement Method shared in common
(i.e., �Mij�Mi’j in Equation 1c) and (b) the CTCU model uses the
covariance between the uniquenesses of TMUs that share the same
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measurement Method (i.e., ��(ij,i’j) in Equation 2c). However,
under the CTCM model, Method effects appear also for MTHM
(�Mij�Mij’�MjMj’ from Equation 1a) and HTHM (�Mij�Mi’j’�MjMj’

from Equation 1b) correlations. That is, some portion of the
MTHM and HTHM correlations are assumed to be due to effects
of correlated Methods on TMUs. Note however, that these com-
ponents do not appear for the MTHM and HTHM correlations
under the CTCU model (Equations 2a and 2c). In special cases in
which one or both of the �Mijs � 0 or �MjMj’ � 0, Equations 1a
and 1b reduce to their corresponding Equations 2a and 2b. If,
however, all �Mijs � 0 and �MjMj’ � 0, that is, if TMUs’ loadings
on Method factors are nonzero and correlations between different
Methods are nonzero, then Equations 2a and 2b are misspecified
by omitting relevant variance components. In the present context,
this would be the case in which Exercise factor loadings are
nonzero (a very common occurrence) as are Exercise factor cor-
relations (also a common occurrence as we show later). If Exercise
factor loadings and Exercise factor correlations are nonzero, there
are sources of covariance in the MTHM and HTHM correlations
that are not accounted for in Equations 2a and 2b. As a result, and
as Conway, Lievens, Scullen, and Lance (2002) showed empiri-
cally, the omission of these effects in the CTCU model results in
upwardly biased estimates of the �Tijs (leading to inflated esti-
mates of convergent validity) and the �TiTi’s (leading to underes-
timates of discriminant validity), and when the omitted �Mij and
�MjMj’ effects are large, the bias incurred in the estimation of the
�Tijs and �TiTi’s is substantial. This is a direct consequence of the
type of model misspecification known as the unmeasured vari-
ables problem (James, 1980) introduced by the CTCU model
(Lance et al., 2002).

Reanalysis of the Lievens and Conway (2001) Database

Studies Included

We included all studies analyzed previously by Lievens and
Conway (2001), plus five others that met their criteria for inclusion
that were not available to them previously (matrices reported by
Lance et al. 2000, Lance, Foster, Gentry, & Thorensen, 2004).

Models Tested

We used CFA to estimate three correlated exercise models: (a)
a CDCE model, which includes both correlated Dimension and
correlated Exercise factors; (b) a 1DCE model, which posits con-
vergent validity in the assessment of a general performance factor
across exercises, plus Exercise factors; and (c) a 0DCE model,
which posits only Exercise factors, that is, a model that specifies
only cross-situationally (i.e., cross-exercise) specific performance
factors. As noted earlier, the 1DCE and 0DCE models have re-
ceived the majority of empirical support among AC construct
validity studies using CFA of PEDRs. We also estimated two
models in which exercise effects were modeled as covariances
among uniquenesses for PEDRs measured in the same Exercise:
(a) a CDCU model, which corresponds to the CDCE model, and
(b) a 1DCU model, which corresponds to the 1DCE model.

Model Selection

We required that models retained for the analysis of dimension
and exercise variance components yield proper solutions. Obtain-

ing a proper solution is one key requirement in evaluating model
fit—improper solutions usually indicate that the model being fit is
inconsistent with the data (Marsh, 1994). Improper solutions were
those that contained estimated factor correlations or standardized
factor loadings greater than 1.0 in absolute value or negative
unique variances. We also considered model fit in selecting models
for further analysis, but large differences in sample size (Ns ranged
from 59 to 1170), matrix size (from 3D2E to 10D8E matrices), and
model parsimony (e.g., 1DCE model df ranged from 11 to 690)
complicated matters. Basically, we considered those models that
returned admissible solutions as defining the set of plausible
models for each study and relied on (a) the difference in chi-square
(��2) and (b) the difference in comparative fit index (�CFI, based
on Bentler’s [1990] CFI; Cheung & Rensvold, 2001) tests to
determine the model that best fit the data. Statistically significant
��2 values and �CFIs greater than .01 were taken as indicating
significant differences in model fit.

Table 1 summarizes results relevant for model selection. For
example, the row for the Bobrow and Leonards (1997) data set
indicates that improper estimates were obtained in the �, �, and
�� matrices for the CDCE model and in the � matrix for the
CDCU model. Other entries in the Bobrow and Leaonards (1997)
row present model degrees of freedom, chi-square, and CFI values
for models that returned proper solutions (e.g., �2[225, N � 196]
� 540.72; CFI � .91 for the 1DCE model). For data sets in which
more than one CE model returned admissible solutions, we con-
ducted ��2 and �CFI tests to determine which model best fit the
data because the 0DCE model is nested within the 1DCE model,
which is in turn nested within the CDCE model. For example,
because the 1DCE model fit the data better than did the 0DCE
model for the Arthur (2000) data set, ��2(12, N � 149) � 230.31,
p 	 .001; �CFI � .25, and because the CDCE model fit even
better than did the 1DCE model, ��2(6) � 90.61, p 	 .001;
�CFI � .07, we selected the CDCE model and its corresponding
CDCU model for subsequent analysis of Dimension and Exercise
variance components.

As Table 1 shows, the CDCE model fared poorly, returning
inadmissible solutions for all but two data sets (Arthur (2000) and
Veldman-1 (1994); the 1 indicates that this was the first of more
than one data set reported by Veldman). These results are common
among tests of AC construct validity and are consistent with some
literature that indicates that the CTCM model for MTMM data can
suffer empirical identification problems (Brannick & Spector,
1990; Kenny & Kashy, 1992; Marsh & Bailey, 1991). However,
these findings are also consistent with previous reviews of AC
construct validity studies that indicate that PEDRs generally do not
demonstrate significant convergent and discriminant validity in
assessing distinct dimensions. Consistent with previous reviews,
Table 1 indicates that, among the CE models, either a 1DCE or a
0DCE model most often resulted in an admissible solution. For
data sets in which both 1DCE and 0DCE models returned admis-
sible solutions, the 1DCE model always provided a better fit to the
data, both in terms of the ��2 and �CFI tests. Eighty-five percent
of the admissible 1DCE models met traditional standards for a
well-fitting model according to the CFI index (CFI 
 .90) and
60% met Hu and Bentler’s (1999) more stringent criterion (CFI 

.95), indicating that, generally speaking, the 1DCE model fit the
data sets analyzed well.

Data sets for which only the 0DCE model returned an admissi-
ble solution were not selected for further analysis of dimension and
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exercise variance components because the 0DCE model specifies
no Dimension factors. Those data sets for which the 1DCE model
returned an admissible solution were retained along with the
corresponding 1DCU models because these models do specify a
general Dimension factor along with multiple Exercise factors.
Models selected for further analysis are shown in boldface in Table 1.

Estimation of Variance Components

Dimension variance components were calculated, for both the
CE and CU models and each data set separately, by squaring
Dimension factor loadings (so as to index the absolute effect size
and to avoid the problem of having some negative factor loadings

Table 1
Model Convergence, Admissibility, and Goodness-of-Fit for Models Tested

Study CDCE 1DCE 0DCE CDCU 1DCU

Arthur et al. (2000) 33/13.51/1.00 39/104.12/.93 51/334.43/.68 30/16.08/1.00 36/273.19/.73
Becker (1990)

1 �, �, �� �, �� 113/154.58/.95 �, �� �, ��

2 � 96/114.49/.96 113/156.40/.90 � 91/116.90/.94
Bobrow & Leonards (1997) �, �, �� 225/540.72/.91 249/769.64/.86 � 168/210.56/.99
Bycio et al. (1987) � 690/2270.54/.97 730/2788.44/.96 � 600/1194.92/.99
Chorvat (1994) �� 397/968.80/.65 428/1160.26/.55 226/315.12/.97 321/855.19/.67
Donahue et al. (1997) � 487/736.55/.95 521/843.83/.93 � 399/513.69/.98
Fleenor (1996) �, �, �� �, �� 168/330.30/.74 � 148/420.86.65
Fredricks (1989) �, �� 72/141.35/.93 87/232.52/.85 �, �� 60/106.67/.95
Harris et al. (1993) � 218/796.74/.91 242/1265.41/.85 182/343.49/.98 203/841.53/.91
Joyce et al. (1994)

1 �, �, �� �, �, �� �, �, �� �, �, �� 69/116.43/.85
2 �, �, �� �, �, �� 62/81.69/.82 � 42/46.57/.96

Kleinmann et al. (1994)
1 �, �, �� � � 15/10.04/1.00 18/20.34.99
2 �, �, �� � � �, �, �� �, ��

Kleinmann et al. (1996) �, �, �� �, �� 24/46.61/.91 15/12.41/1.00 18/27.84/.96
Kleinmann (1997)

4 �, �, �� 15/11.28/1.00 24/63.71/.89 15/11.64/1.00 18/18.46/1.00
5 �df �� 8/12.17/.99 0/.16/1.00 3/5.88/.99
6 �df �, �� 8/9.55/.99 0/.83/1.00 3/4.39/.99

Kolk et al. (2000)
1 �df �, �� �, �� 0/0 3/8.39/.96
2 �df �, �� �, �� � 3/3.61/1.00

Kudisch et al. (1997) �, �, �� 127/273.78/.85 146/395.04/.74 �, �, �� 115/284.27/.82
Lance, Newbolt, et al. (2000)

1 � 140/281.82/.95 160/356.24/.93 � 135/260.06/.96
2 � 158/312.12/.90 179/473.07/.81 � 152/323.91/.98
3 � 72/132.52/.95 87/208.26/.91 � 57/80.95/.98

Lance et al. (2004)
4 � 72/291.71/.95 87/510.61/.91 � 57/95.54/.99
5 � 72/151.62/.98 87/372.00/.92 � 57/101.66/.99

Lievens & Van Keer (1999) �, �, �� 65/96.45/.98 80/154.38/.95 � 73/143.51/.95
Parker (1992) �, �, �� �, �, �� 402/1141.36/.70 �, �, �� �, ��

Robie (2000) �, �, �� 11/13.64/.99 19/37.46/.96 � 8/15.56/.98
Sagie & Magnezy (1997)

1 �, �, �� 72/122.63/.97 87/169.85/.96 � 60/89.06/.99
2 � 72/155.88/.93 87/269.18/.90 50/77.39/.98 60/134.78/.96

Schleicher et al. (1999)
1 �, �, �� 15/6.91/1.00 24/19.43/.98 15/7.91/1.00 18/16.93/1.00
2 �, �� �, �� 24/36.05/.96 15/21.40/.98 18/33.59/94

Schneider & Schmit (1992) � �, �� 48/65.92/.97 39/40.85/1.00 42/57.02/.98
Sweeney (1976)

1 �df �, �� 8/8.27/1.00 0/.34/1.00 3/2.21/1.00
2 �df �, �� 8/40.40/.95 � 3/0.98/1.00

Van der Velde et al. (1994) � �, �� 101/198.98/.93 �, �, �� 69/91.82/.98
Veldman (1994)

1 26/41.95/.98 41/123.74/.90 53/238.90/.78 9/17.96/.99 24/91.49/.92
2 �, �, �� 41/95.41/.87 53/191.99/.67 9/9.14/1.00 24/69.02/.89

Note. CDCE � correlated Dimension-correlated Exercise model; 1DCE � one-dimension-correlated Exercise model; 0DCE � zero-dimension-correlated
exercise model; CDCU � correlated Dimension-correlated uniqueness model; 1DCU � one-dimension-correlated uniqueness model; � � the LISREL
matrix of factor loadings; � � the LISREL matrix of factor correlations; �� � the LISREL matrix of unique variances (and covariances). Presentation
of these matrices in the table identifies the matrices in which improper estimates were located (�ij, �ij, and �� elements 
 �1.00�, diag(��) � 0.0) in the
event that a solution was inadmissible. Tabled numbers refer to the model dfs, the �2 statistic, and comparative fit index (CFI) values (i.e., df/�2/CFI) for
admissible solutions. Numbers in boldface indicate models that were selected for further comparative analysis of Dimension and Exercise variance
components. Numbers associated with citations throughout the table indicate that multiple data sets were obtained for reanalysis from some cited articles.
The numbers indicate Dataset 1, Dataset 2, and so forth.
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cancel out other positive loadings), converting the squared factor
loadings to z scores (because averaging raw correlational effect
sizes yields biased estimates of the means, but averaging z score
equivalents yields unbiased estimates; see James, Demaree, &
Mulaik, 1986), averaging the z scores, and back-transforming the
average z to the estimated mean squared factor loading. Exercise
variance components were computed similarly for the CE models
from the Exercise factor loadings. Mean squared Dimension and
Exercise factor correlations were also computed similarly by
squaring the rs, converting the r2s to zs, averaging the zs and
converting the mean z back to an r2. Exercise variance components
for the CU models were calculated using Scullen’s (1999) method
in which (a) the �� matrix is saved from the CTCU or 1DCU
model, (b) separate unidimensional CFAs are conducted on co-
variances among uniquenesses for PEDRs measured in the same
Exercise, and (c) variance components are calculated as the
squared unstandarized factor loadings.

Results

Table 2 shows results for the analysis of variance components
from the CDCE models. Results for the Arthur et al. (2000) data
set show the expected upward bias in estimated dimension vari-
ance components (mean dimension �2 � .62 and .51 for the CDCU
model and the CDCE model, respectively). The amount of bias
here is not trivial, but it is also not substantial (the mean dimension
variance component estimate was 21.6% higher under the CDCU
model compared with the CDCE model) due to the fact that (a)
exercise variance components are not large (mean Exercise �2 �
.21) and (b) the mean Exercise factor correlation is moderate
(mean Exercise factor �2 � .21, so that the mean estimated � �
.46). Bias in dimension variance components is negligible for the
Veldman (1994) data set, owing to the fact that the mean Exercise
factor correlation was � � .09. As such, results in Table 2 are
inconclusive because there were only two data sets for which the
CDCE model (and its corresponding CDCU model) was selected
for analysis of variance components. Nevertheless, and consistent
with Lance et al.’s (2002) algebraic developments and Conway et
al.’s (2002) Monte Carlo findings, upward bias in trait (i.e., di-
mension) factor loadings incurred only when Exercise factor load-
ings and Exercise factor correlations were nonzero (the Arthur
(2000) data set).

Table 3 shows results for the analysis of variance components
from the 1DCE models, models that have been supported empir-

ically in AC literature. Findings here are clear. Bias in dimension
variance components for the 1DCU model (mean dimension �2 �
.27) is evident as compared with the 1DCE model (mean Dimen-
sion �2 � .14)—the 1DCU model indicates that nearly twice as
much variance in PEDRs is attributable to dimensions, as com-
pared with estimates from the 1DCE model, and this difference is
statistically significant (paired samples t[19] � 4.176, p 	 .001).
This bias arises from the omission of significant exercise variance
components (mean Exercise �2 � .52) and from nontrivial Exer-
cise factor correlations (mean Exercise factor �2 � .18; mean � �
.42) in the estimation of Dimension factor loadings under the
1DCU model. Interestingly, the 1DCU model appeared to substan-
tially underestimate exercise variance components (mean Exercise
�2 � .36, which is comparable with Lievens & Conway’s [2001]
estimated value of .34) as compared with the 1DCE model (mean
Exercise �2 � .52, paired samples t[19] � 4.348, p 	 .001),
although we had not predicted this result. As such, results in Table
3 further verify algebraic developments presented by Lance et al.
(2002) and Monte Carlo findings presented by Conway et al.
(2002) indicating that the CU model yields upward-biased esti-
mates of Trait (in the present case, Dimension) factor variance
components. Compared with the 1DCE model, the 1DCU model
overestimated dimension variance components by 93% and under-
estimated exercise variance components by 31% on the average.
These biases are substantial.1

Discussion

Results from Lievens and Conway’s (2001) quantitative review
of MTMM studies on the construct validity of PEDRs seemed

1 Of course, this assumes that findings from the 1DCE model are unbiased,
that is, that the 1DCE is the correct model and the 1DCU model is not.
However, because the data that we reanalyzed were from operational ACs, we
could not know which model, the 1DCE, 1DCU, or one of many other
conceivable models, was the true population model. Consequently, although
there is evidence that the CU model tends to provide biased model parameter
estimates (Conway et al., 2002), we have no way of assessing the relative
accuracy of the 1DCE and 1DCU models’ variance components estimates
here. Nevertheless, our interpretations of results reported here are consistent
with (a) Lance et al.’s (2002) algebraic developments, (b) Conway et al’s
(2002) Monte Carlo findings that the CU model does return biased estimates
for trait factor loadings, and (c) previous findings in the literature on construct
validity of ACs (e.g., Sackett & Tuzinski, 2001).

Table 2
Summary of Variance Components Analysis for Studies That Returned Admissible CDCE and
CDCU Model Solutions

Study

Mean squared
Dimension factor

loadings

Mean squared
Dimension factor

correlations

Mean squared
Exercise

factor
correlations

Mean squared
Exercise factor

loadings

CDCE CDCU CDCE CDCU CDCE CDCE CDCU

Arthur et al. (2000) .51 .62 .48 .35 .24 .21 .08
Veldman-1 (1994) .43 .37 .29 .35 .01 .28 .26
M .48 .50 .38 .35 .16 .25 .17

Note. CDCE � correlated Dimension-correlated Exercise model; CDCU � correlated Dimension-correlated
uniqueness model. The hyphen and number associated with Veldman indicates Dataset 1.
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counter to conventional wisdom as represented in previous reviews
of the AC literature in suggesting that PEDRs reflect equal pro-
portions of dimension and exercise variance. Lievens and Con-
way’s study was cleverly conceived and meticulously executed,
but some of their major findings were based on an analytic ap-
proach to MTMM data, the CU model, that is now known to
provide biased estimates of Trait factor variance, and in some
cases this bias can be substantial (Conway et al., 2002). Lievens
and Conway acknowledged this as a potential limitation to their
study and suggested that “future research should . . . examine more
thoroughly the possible upward bias of the correlated uniqueness
model” (p. 1212). This was the primary aim of this study. We
reanalyzed Lievens and Conway’s database using a CFA model
that (a) has been supported empirically in the AC literature and (b)
may be less prone than the CU model to biased parameter esti-
mates (i.e., the 1DCE model). Results of these reanalyses indicate
that, consistent with previous narrative reviews of the AC litera-
ture, exercise variance components (mean Exercise �2 � .52)
dominated over dimension variance components (mean Dimension
�2 � .14). This is good news and bad news. On the one hand, the
present study’s results help explain the discrepancy between con-
clusions from narrative reviews of AC construct validity and those
offered by Lievens and Conway—it seems that biased estimates of
Trait variance components obtained from the CU model provided
a more optimistic picture of the proportion of dimension variance

in PEDRs than was actually warranted. This reconciliation is the
good news.

The bad news, at least from a traditional perspective on AC
construct validity, is that the present reanalyses indicate that AC
construct validity cannot be salvaged from reanalysis of previously
reported data. That is, Lievens and Conway’s (2001) reassuring
findings may have resulted as an artifact of adopting the CU model
as the analytic model of choice. However, an emerging literature
suggests that the ways researchers have asked questions about the
construct validity of ACs may also not have been appropriate to
begin with (e.g., Kolk, Born, & van der Flier, 2001; Lance,
Newbolt, et al., 2000, Lance et al., 2004; Lievens, 2001). For
example, initial expectations that candidate performance should
typically be cross-situationally consistent and differentiated across
dimensions may be inconsistent with actual candidate behaviors
that are typically cross-situationally (i.e., cross-exercise) specific
and undifferentiated (i.e., generally good or poor) across dimen-
sions (Lance, Newbolt, et al., 2000). This interpretation is consis-
tent with recent experimental findings indicating that when candi-
date performance is manipulated to be consistent with AC
researchers’ initial expectations (i.e., cross-situationally consistent
and differentiated across dimensions), assessors rate candidate
performance accordingly, but when candidate performance is ma-
nipulated to be cross-situationally specific and not differentiated
across dimensions (the pattern that is consistent with findings

Table 3
Summary of Variance Components Analysis for Studies That Returned Admissible 1DCE and
1DCU Model Solutions

Study

Mean squared
Dimension factor

loadings

Mean squared
Exercise factor

correlations

Mean squared
Exercise factor

loadings

1DCE 1DCU 1DCE 1DCE 1DCU

Becker-2 (1990) .11 .21 .14 .43 .33
Bobrow & Leonards (1997) .14 .18 .08 .57 .45
Bycio et al. (1987) .03 .33 .21 .74 .40
Chorvat (1994) .17 .18 .17 .09 .11
Donahue et al. (1997) .06 .35 .23 .55 .33
Fredericks (1989) .08 .07 .16 .63 .63
Harris et al. (1993) .14 .22 .11 .35 .26
Kleinman-4 (1997) .26 .43 .18 .52 .30
Kudisch et al. (1997) .09 .20 .17 .45 .33
Lance, Newbolt, et al. (2000)

1 .24 .22 .06 .40 .35
2 .08 .12 .05 .33 .27
3 .07 .11 .05 .71 .64

Lance et al. (2004)
4 .35 .38 .10 .54 .55
5 .08 .47 .10 .75 .35

Lievens & Van Keer (1999) .32 .30 .08 .39 .33
Robie (2000) .04 .37 .37 .65 .27
Sagie & Magnezy (1997)

1 .11 .22 .13 .41 .30
2 .11 .21 .13 .41 .30

Schleicher-1 et al. (1999) .05 .49 .38 .76 .29
Veldman-2 (1994) .18 .31 .52 .43 .28
M .14 .27 .18 .52 .36
SD .09 .12 .12 .17 .16

Note. 1DCE � one-dimension-correlated Exercise model; 1DCU � one-dimension-correlated uniqueness
model. Numbers associated with citations throughout table indicate that multiple data sets were obtained for
reanalysis from some cited articles. The numbers indicate Dataset 1, Dataset 2, and so forth.
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reported here), assessors also rate this pattern accordingly
(Lievens, 2002). In other words, assessors’ judgments in experi-
mental settings tend to be quite veridical. We speculate that as-
sessors’ judgments in operational ACs are also quite veridical,
owing to their experience with positions to which AC candidates
aspire and the extensive training that is usually afforded assessors
of candidate performance that is, in fact, cross-situationally spe-
cific (varies across Exercises) and is not well differentiated across
dimensions.

Along with other recent research (Lance, Newbolt, et al., 2000,
Lance, et al., 2004), the present findings are troubling to traditional
AC theory and practice. The original design of the AC architecture
was based on the theory that the dimensions assessed in ACs
represent cross-situationally stable traits that can be assessed in
various exercises (International Task Force on Assessment Center
Guidelines, 2002). That is, exercises were implicitly viewed as
representing different opportunities for candidates to display be-
haviors reflecting cross-situationally (i.e., cross-exercise) stable
traits. However, empirical findings accumulated over the last 20
years do not support this theoretical architecture—correlations
between different dimensions within the same exercise tend to be
much larger than the correlations between dimension across dif-
ferent exercises (Woehr & Arthur, 1999). In other words, exercise
effects dominate over dimension effects on PEDRs and, as has
been documented by several reviews (e.g., Lievens, 1998; Lievens
& Conway, 2001; Sackett & Tuzinski, 2001; Woehr & Arthur,
1999), various AC design modifications have had little or no effect
on this basic pattern of findings. Rather, and contrary to the
original design of the AC architecture, candidate performance
seems to be relatively undifferentiated across the various dimen-
sions defined for each exercise and cross-situationally specific as
exercises define different performance situations.

This raises the question of what constructs are reflected by AC
PEDRs. One way of interpreting the last 20 years of research on
AC construct validity is that ACs lack construct validity, a position
that seems to have driven various attempts at modifying AC
technology toward making ACs more construct valid. Sackett and
Tuzinski (2001) took an alternative view, stating that “assessment
centers do not ‘lack construct validity,’ but rather lack clear
consensus as to the constructs they do assess . . . at issue is whether
the traditional explanation of what constructs assessment centers
measure is the correct one.” (p. 118). We speculate that AC
performance is best characterized as consisting of two broad
components: (a) general, but situation-specific, performance fac-
tors corresponding to overall performance in each exercise qua
work sample task (Lance, Johnson, Douthitt, Bennett, & Harville,
2000; Smith, 1991; Teachout & Pellum, 1991), and (b) a cross-
situationally stable overall performance factor that is driven by
stable traits such as cognitive ability, conscientiousness, and
experience.

We see at least two implications of the present findings for AC
practice. On the one hand, findings of a lack of AC construct
validity (in a traditional sense) do not threaten, and are not incon-
sistent with, accumulated findings that ACs demonstrate predictive
validity (Sackett & Tuzinski, 2001; Schmidt & Hunter, 1998). ACs
are valid predictors of performance criteria, just not for the reasons
originally thought. On the other hand, the present findings suggest
that the AC practice of providing performance feedback to candi-
dates according to AC dimensions may not be justified because
AC PEDRs substantially reflect exercise effects and not dimension

effects. Instead, developmental feedback might be more profitably
focused on specific aspects of exercise performance that are
closely tied to job performance requirements.

So what are we to do? We think that investigating additional AC
design modifications intended to make PEDRs’ covariance struc-
ture conform to expectations based on the original design of ACs
is pointless because efforts so far have made little difference.
Rather, researchers might focus on job analysis techniques that
yield information on critical behaviors required on the job that may
consist of important tasks and dimensions. Even another approach
could be based on the ideas that (a) candidate AC performance is
generally not differentiated across dimensions within exercises and
is largely cross-situationally specific, (b) exercises should more
properly be viewed as work samples rather than mere opportunities
for candidates to display dimension-relevant behavior, (c) exer-
cises qua work samples can be carefully designed to capture
important aspects of jobs for which assessment is conducted, and
(d) developmental feedback can be provided with reference to key
work sample elements or task steps.

Lowry (1995, 1997) provided examples of this approach. Lowry
(1997) distinguished between traditional “dimension-specific” (p.
53) ACs that are designed to assess traits, such as organizing and
planning, leadership, and communication, and “task-specific”
ACs, which are designed to evaluate “how well the subject per-
forms important tasks encountered on the job” (p. 54). Both types
of ACs are developed on the basis of job analysis, but whereas
dimension-specific ACs are founded on identification of important
job dimensions, task-specific ACs are founded on identifying
critical job tasks, based on analyses of “the importance, frequency,
and need to perform on entry to the position” (p. 55). The goal in
the task-specific AC is to construct work samples such as tactical
simulations, role plays, and in-baskets that simulate these critical
job tasks. Lowry (1997) also presented an example of how check-
lists of actions required to successfully accomplish tasks for each
exercise can be developed. These can be used to structure assessor
observation, scale the effectiveness of possible actions toward task
accomplishment, facilitate overall assessment of task accomplish-
ment, and structure detailed feedback to candidates as to actions
taken that were particularly effective and ineffective. Although
Lowry (1995) presented some preliminary and favorable psycho-
metric evidence for task-specific ACs, there is otherwise little or
no additional evidence on their reliability and validity. We see this
as one key need for future research.

Conclusion

Two decades of research on the construct validity of AC PEDRs
suggests that they substantially reflect exercise effects and not the
dimensions that they were designed to measure, and our reanalyses
of Lievens and Conway’s (2001) database confirms this. Clearly,
ACs exhibit criterion-related validity but do not seem to reflect the
constructs that were intended. We think the time has come to
recognize this and redirect research on ACs toward a more thor-
ough understanding of what constructs are being tapped by asses-
sor ratings and how the effectiveness of these ratings might be
enhanced.
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