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Estimating a transformation and its effect on
Box-Cox T-ratio

Zhenlin Yang*
Department of Statistics and Applied Probability,
Nattonal Untversity of Singapore, Singapore.

Abstract

This article concerns ¢) the stochastic behavior of the Box-Cox transformation
estimator and 4¢) the effect of estimating a transformation on the Box-Cox T-ratio
used for the post-transformation analysis. It is shown that the transformation
estimator depends on three factors: the model structure, the mean-spread and the
error standard deviation og. In general, a structured model is able to estimate the
transformation very well; an unstructured model can do well also unless the mean-
spread and &g are both small; and a one-mean mode can give a poor estimate if aq
is small. When the sample is not large, it is shown that the unconditional offect
of estimating a transformation on the Box-Cox T'-ratio is generally small, and the
“conditional” cffect is also negligible in most of the situations cxcept the case of
one-way ANOVA with small g9. Extensive Monte Carlo simulations are performed
to support the theoretical findings.

Key Words: Asymptotic expansion, Box-Cox transformation, A-fixed, sensitivity,

T-ratio.
AMS subject classification: 62F25

1 Introduction

In many applications of statistical modeling, a transformation of the de-
pendent variable is required to achieve a normal theory linear model with a
simple mean structure and homoscedastic errors. When such a transforma-
tion is known, the usual norimal-theory linear model inference methods can
be directly applied to the transformed responses. When the transformation
is unknown, the common practice, as suggested by Box and Cox (1964),
is to estimate the unknown transformation parameter and then select a
nearest simple number corresponding to a log or square, root, etc., trans-
formation, and then carry out usual inferences for the parameters defined
and interpreted on the selected scale.

“Correspondence to: Zhenlin Yang, Department of Economics, National University
of Singapore, 10 Kent Ridge Crescent, Singapore 119260.



Let ¥ = (y1,-..,%s) be the vector of responses, and Ay, A) = [h(y1, A),
ooy h(Yyn, A)] the vector of transformed responses, where A(-, M) is a strictly
increasing transformation function, known except the transformation pa-
rameter A, taking values on real line. Assume that there exists a true
value g of A such that the vector A(y, Ag) of the transformed observations
satisfies

Ry, do) = X5 + ae, (L.1)

where &y is a p % 1 vector of regression parameters, oy is the standard
deviation of the error term, X is a known n x p matrix of full rank, and
ope is an n x 1 vector of independent errors of same distribution.

Denote the parameter vector (8§, Ag,00)" by & and its estimator
(s Ay 50)' by En. The restricted estimator of (9, o9) when Ap is known
is denoted by (3,0, dn0). Thus, when Xg is known, the post-transformation
inference concerns g and is carried out based on the Ag-known T-ratio

Vi(Bro — o)

Tn0

Ty =

which, after a suitable normalization, has a multivariate T-distribution
when errors are exactly normal.

When A is unknown and is estimated by An, Box-Cox’s analysis can
be viewed as A,-fixed inference for 3,()y), defined and interpreted on the
selected scale A,, based on the Box-Cox T-ratio

TBC-'(S\-n) — \/T_L[ﬁn T ﬁu()\n” :

Tn

with the \,-fixed distribution of TB(;(S\”) approximated by the distribution
of Th. For example, for a particular data set if the resulted estimate of the
transformation parameter is )A\n = 0.5, then Box and Cox fit the model
hiy,0.5) = X 3,(0.5) + a(0.5)e(0.5), and make inference about 3, (0.5) by
approximating the distribution of T5~{0.5) by that of 7;. Hinkley and
Runger (1984, Sec. 2.1) and Carroll and Ruppert (1988, Sec. 4.3.4) gave
a similar interpretation. Notice that A, can be equivalently replaced by a
rounded value provided that rounding i3 done with reference to the confi-
dence interval.

~

Questions arise as how much the Box-Cox T-ratio Tre(A,,) differs from
the Ag-known T-ratio Tj, and to what extent the A,-fixed distribution of



~

Tgrc{A,) can be approximated by the distribution of 7. These are the cru-
cial questions to the validity of Box-Cox transformation methodology and
are termed in this paper as the effect of estimating a transformation on the
Box-Cox T-ratio. The former corresponds to the unconditional effect and
the latter the conditional effect with A, regarded as fixed. Yang (1996) has
studied these questions for large n, which lead to the asymptotic validity
of the Box-Cox transformation methodology. In this article, we investigate
these questions for small n case via a second-order asymptotic expansion
of TBC()A\H). As this second-order expansion has a leading term 7} and a
smaller order “affecting” term that involves 5\.,1, it is necessary to investi-
gate first the stochastic behavior of A,, which is done by Yang (1997) and
reexamined in this article with improved and extended results.

The above two problems (in short, behavior of 5\.n and effect of 5\n on

Tge(An)) that will be studied in this article are closely related (directly or
indirectly) to the two problems raised in Box and Cox (1982):

A, There arc numerous aspects of transformations that merit further
study. These include in particular the further development of simple
ways of asscssing fransformation potential that is, of providing some
formal measure of the ability of particular data to provide useful in-
formation about a class of transformations.

B. Suppose that the parameter of interest (difference, regression co-
cfficient, cte.) is defined on the data-dependent scale 5\11; in what
circumstances do confidence intervals for these parameters calculated
in the “usual” way, as if j\n were preassigned, provide an adequate
approximation?

Section 2 presents general asymptotic expansions based on an M-esti-
mation framework, followed by a specialization to the Box and Cox (1964)
maximuim likelihood estimation framework, which will be used throughout
the article. Section 3 concerns the stochastic behavior of )A\.n. Section 4
studies the unconditional behavior of T (A,). Section 5 investigates the
A,-fixed behavior of TBC()A\H). Each of the Sections 3 to 5 is accompanied

by Monte Carlo results to back up the theoretical conclusions.

Putting n» = X3y, we now summarize the major conclusions and dis-
cuss their relations and implications to probleims A and B. Most of the
conclusions about A, were already reported in Yang (1997).



First, the stochastic behavior of j\.n depends on three factors: the model
structure, the spread in means (1;'s) and the error standard deviation oy.
In general, structured models such as regression models or ANOVA models
with at least two factors, are able to estimate Ay very well; the unstructured
models, such as single factor ANOVA model, are able to estimate Ag well
unless the spread in ;s and ¢ are both small; and a one-mean model can
also do well unless oy is simall.

The practical implications of above conclusions as related to problem A
are as follows. A data set that came from an experiment using structured
model is generally of high potential in determining the transformation. A
data set that came from an experiment using unstructured or one-mean
model still possesses a good potential in determining the transformasion if
the data stretch to a wide range relatively, otherwise it will be difficult to
estimate the transformation.

Ag for the effect of estimation transformation on Box-Cox Ttratio, we
find that, when n is small, the difference between TBC(S\n) and T} is small
in general, and hence the distribution of T (j\n) can be well approximated
by that of 1. We also find that the An-fixed distribution of TBCv(jxn) can
be well approximated by the distribution of 7} for all models when oy is
not small. When oy is small, the approximation is still good in one-mean
models and also reasonable in structured models if the ﬁxed—jxn is within two
standard deviations of Ap; in unstructured models, the )A\n—ﬁxed variance of
ith element of TBCv(jxn) can be deflated or inflated depending on the signs
of n; — 1 and An — Ag, with the magnitude depending on 7; — 7, but the
sum of S\H-ﬁxed variances of the elements of TB(;(S\H) is stable.

The implication of these conclusions for problem 1 is quite clear: when-
ever the S\.n—ﬁxed distribution of TBCv(jxn) can be well approximated by the
distribution of Ty, then the usual confidence intervals for the A,-dependent
parameters will perform well. In this sense, all the An-fixed confidence in-
tervals will perform well or reasonably well except the t-interval for the
individual mean of a one-way ANOVA model with oy small relative to the
mean-spread.

Hooper and Yang (1997) studied problem B where they interpreted the
Box-Cox method of post-transforination inferences as conditional inferences
for 3,;(As) based on Tge(Ay,) with the conditional distribution of Tre (X, )

given A, approximated by that of 7). Yang {1996) showed under mild

conditions that Tec(Ay) is asymptotically equivalent to T and independent



of j\.n. Hence the two interpretations about the Box-Cox transformation
methodology are asymptotically equivalent.

Bickel and Doksum (1981) argued that the inference should be uncon-
ditional about ;. They showed that the usual normal-theory inference
methods can fail because of the variance inflation due to transformation
estimation. Box and Cox (1982) commented that this variance inflation
is obvious but irrelevant for any sensible scientific question. Hinkley and
Runger (1984) and Cox and Reid (1987) further supported the Box and
Cox’'s approach by claiming that the slope parameters are stable in the so
called z-scale that stabilizes or orthogonalizes the parameters. Duan (1993)
showed that this claim is true under certain symmetric conditions on the
regressors, but might fail when the symmetric conditions are not satisfied.
Since the Box-Cox T-ratio is typically invariant under the z-transformation,
the z-scale is not considered here. A review of the Box-Cox transformation
technique is given by Sakia (1992).

2 Asymptotic expansions

To facilitate the expansions, we introduce formally the definition of the pa-
rameter of interest after transformation selection. We employ the definition
given by Cohen and Sackrowitz (1987), namely,

B.(An) = Expectation of 3, treating A, as fixed. (2.1)

This definition is consistent with our A,-fixed interpretation of the Box-
Cox's post-transformation analysis. There are other definitions, e.g.,
Be(An)=E [ﬁnﬁn} (Hinkley and Runger, 1984), which is asvmptotically equi-
valent to (2.1) (Bickel, 1984). See also Yang (1992, Chapter 2) for a general
discussion of the definition and interpretation of the parameter of interest
following a transformation selection.

Consider first the general M-estimation framework, i.e., &, is an M-
estimator of £&; which solves

not Z T (y;; én) = 0(p+2)><13 (2.2)
i=1

where ¥; is a p + 2 dimensional vector-valued function having three comn-
ponents ¥y, ¥, and ¥y, that correspond to 3y, Ay and oy respectively.



Thus ¥,; is dropped when Ay is known. Let

T = Wy, &) =n D0 (v, &)
T = Wy &) = (3/0¢)F(y, &)
o= F(y &) = (0/06) (&)
A = E¥

B = EV,

where ¥ is a (p+ 2) x 1 vector, ¥ and A are (p +2) x (p + 2) matrices,
¥ and B are (p+ 2)% x (p+ 2) matrices or (p+2) X (p+2) x (p + 2)
arrays. They are all partitioned according to (5y, Ao, @n). The subvectors
of ¥ are denoted by ¥, ¥, and ¥3, the submatrices of ¥ and A by ‘I’U
and Ay, 4,7 = 1,2,3, and the subarrays of ¥ and B by \I'”L and By,
i, f, k =1,2,3. For example,

T =Wy, &) = n D0 Tailyi, o)
is a p x 1 vector,
@y = Ty (y, &) = (8/08))T1(y, o)
is a p Xp matrix, and
Wyyy = U1y (y, §o) = (0%/050085) ®1(y, &)

is a p? xp matrix, or a p Xxp Xp array.

Note that all the quantities introduced above depend on n implicitly.
Assume

Cl. én is root-n consistent.

C2. ¥ =0,n ), and E ¥ = 0.

C3. &= A4 O0,(n 1?2,

C4. ¥ =B+0,(n"'?).

C5. A and A !are O(1), with A3 = A}, = O(n 1/2).

Assume further that the remainder term in the second-order Taylor
expansions of the elements of ¥; has the order of (én — &)*, and that a
random quantity bounded in probability has a finite expectation. Now we
present some general results. The proofs are tedious and sketches are given
in the Appendix.



Theorem 2.1. Under ithe assumptions C1—C5, if Bu(Xo) = Bo+O(n3/2),
then as n — o0, we have a second-order asymptotic expansion for Tpo(Ay)
and a first-order cxpansion for A,

TBC(S\‘H) — TU + Ul(j\n - >\D) + U2(5\-n - AU)Q + Op(n_l)v (23)
A —ag — Ty — Ags A7 T — Ay AL
" An Al AL — Ags + A Al Ase

+0y(n7Y), (2.4)

where Uy and Uz in (2.3) are both Op(1) with the detailed expressions given
af the end of Appendiz.

It is unorthodox to keep a term UQ(S\H — Xg)? that is of the same order
as the error term Op(n_l) in the expression. However, for a fixed n, certain
approximations (see Sections 4 and 3) show that, for a structured model, as
ag — 0, Ug(j\.n —Xo)? = Op(1) whereas U, (j\n —Xo) = Oplag), showing that
the magnitude of Ug(jxn — 0)? will exceed that of Ul(jxn — Ag) as ap goes
to small. Hence this term is important for studying the small-oy behavior

~

of Tec (A, ). This term vanishes for unstructured models.

The expansion (2.3) indicates that ¢ (A,) and Tp differ only on second
order, hence they are asymptotically equivalent and the Box-Cox An-fixed
inference is asymptotic valid. Yang (1996) reached the same conclusion
using the first-order expansion of TBC(j\n). He also gave a first-order ex-
pansion for the Bickel-Doksum T-ratio, obtained by replacing £, (jxn) in
TBCv(jxn) by 5p. which indicates that the Bickel-Doksum T-ratio differs
from Ty even on the first order, hence the unconditional inference for
by approximating the distribution of Bickel-Doksum T-ratio by that of Tj
is not valid. This agrees with the observations made by Bickel and Dok-
sum (1981).

Although the Box-Cox's A,-fixed inference is asymptotically valid, its
performance for moderate sample sizes is still unclear to us. Theorem
2.1 provides a tool for tackling this problem. Notice that in developing
Theorem 2.1, we have assumed that A3 = O(n~/2). This is not restrictive
gince A3 corresponds to 5; and o which are, respectively, the location and
scale parameters of the transformed model hence are orthogonal in the sense
of Cox and Reid (1987). In the cases that errors are exactly normal and
maximum likelihood estimation method is used we have A3 = 0. There
is no difficulty theoreticallv in deriving the asymptotic expansions if this
assumption is dropped, but the derivation will be more tedious.



Theorem 2.1 corresponds to the general M-estimation framework hence
¥, and A functions need not be specified, as long as the assumptions C1-C5
are satisfied. To study the stochastic behavior of Ay, and TBC(E\H) in detail,
it is necessary to specify the functions ¥; and 4. Clearly, the Box-Cox
power transformagtion and the score function under norimal errors are the
popular candidates. In this case, we have h(f,\) = (#* — 1)/A, if A £ 0;
and log¢, if A = 0, and

iy o) = og “milh(y:, do) — =i _
Filyi fo) = ¢ Tauly o) = logy — g *[hlys M) — 2iFolh(yi; do)
‘IISi(yi\ 60) - 063[h('gia )\0) - I:)BOF - Jala
(2.5)
where fi(ys, Ao) = (8/3Ma)h(yi, M).

The estimators from (2.5) are usually called the Boz-Cozx cstimators.
In this article, we will concentrate on these. The estimators corresponding
to other ¥; and A functions can be studied in a similar way. Now, let
I,, dencte an n x n identity matrix and @ = 7, — X (X'X) 71X, and let
b= {ib(yi,)\g)}nxl and I, = (0?2 /OX8)h{yi, Ao) Ynux1- Theorem 2.1 can be
easily reduced to the following.

Corollary 2.1. Assume that the ¥; function in (2.5) satisfies the assump-
tions C1 — C5. Then,

Trc(An) = To + Ui(An — M) + Ua(An — 2a)* + Oy(n 1), (2.6)

A — No _ %0 i logy + (?f(PE(iL) - h) —{1- e’e/n)E(c"h) 0 (’nfl)
70 E(h'R) — BE(RYPER) + coE(e'R) — 2n-Y[E(e )2 * ’
(2.7)

where Uy = \/ﬁqu_l(_X’X’)_IX’[.F.L—Eia—eE(e’ia)/n] and Uy = —(202/n)~!
(X'X)LX 1B Q).

Proof. For (2.6), evaluate all the quantities involved in {/;y and Us; of
(2.3) using (2.5) and the expressions of the Box-Cox estimators o2 —=
n R (y, A\ ) Qh(y, A)] and 62, = n W (4, A0)Qh(y, Ao)]. Then eliminate
the terms that are either O,(n 1) or negligible when oy is small. For (2.7),
evaluate all the quantities involved in (2.4) and simplify. Clearly, the third
term in (2.6) is O,(n™!), negligible with respect to n but may not be neg-

ligible with respect to og when it is small since o % is involved in U, O



With the simplified results of Corollary 2.1, it is possible to study in
detail the stochastic behavior of A, (Section 3) and its effect on the Box-
Cox T-ratio (Sections 4 and 5). When Ay = 0, it is possible to express (2.6)
and (2.7) explicitly in terms of X, oy and e. However, when Ag # 0 it is
necessary to introduce a further approximation to log y.

3 Estimation of Box-Cox transformation

This section presents detailed results regarding the stochastic behavior of
the Box-Cox estimator ), in various situations by further evaluating or ap-
proximating (2.7). Yang (1997) also obtained the expansion (2.7) that was
then approximated by the small o5 method. His results are improved and
extended by considering separately the log-transformation {(A; = 0) where
no further approximation is necessary and other transformations (Ag # 0)
where a better approximation method is used. We first present some the-
oretical results and then some Monte Carlo simulations. Throughout this
article, we use # to denote the elementwise vector multiplication. Coimn-
mon Tunctions such as log applied to a vector are operated elementwise, A
vector subtracted by a scalar imeans elementwise subtraction.

3.1 Theoretical results

Theorem 3.1. Assuming the first sit moments of e; are the same as those
of a standard normal random variable, when Ay — 0, we have for large n,

j‘n - )‘D _ _%(an)re B JU(U B ﬁ)IEQ + %031;1(36 — 63) +0 (n—l) (3 1)
0o Q212 + 20|l — 9l|2 + gnoy !

2
T
11Q2I17 + 203 |In — 71ll* + $no]

Var(,) = + 0,7 (3.2)

when Ay £ 0, letting 0; = Mop(1 + M) L i = 1,...,n, we have for small
&y and large n,
Mi=do  —(0" o+ 30)'Qe—(¢— §)'e’ +30'(3e—e?)

-1 q
TS e (e e vy s P e 7 PR AR A

(3.3)




(3 ) = A -1 3
Yo e TEe s T 2le g g T ”Op((g”)’)
3.4

where 6o = max 8], 8 = {Bi}ux1, ¢ = log(l + domi), ¢ = {di}nxt
¢=n"t3" ¢ and 1, is a vector of 1s.

Proof. When A = 0, it is easy to show that f.a(yz-, 0) = limy, o h (yiy Ao) =
slogy:)? and Ay, 0) = limy o h(yi, do) = F(logy)®.  Substituting
Xfo + oge into (2.7) for logy gives (3.1) and (3.2). When Ag # 0, we
have A(yi, Ao) = Ag ' [1 + Aoh(yi, do) log i — Ag Th(yis Ao) and h(ys, Ag) =
(A3 2a) — Ag 2] log s + Ag 2h{ys, Ao) — Ag (i, Ao). Thus, it is only neces-
sary to further approximate log g; to make (2.7) explicit. From the relation
logy; = A+ log[1 + Aoh(yi, Ao)], we have by a Taylor expansion

Xology; = log(1 + Xoms) + Bie; — 282c + O,(82). (3.5)

Now using (3.5), some tedious algebraic work leads to (3.3) and (3.4). O

The proof of the first part of the theorem can also be reached from the
second part by letting Ay — 0. The approximation (3.5) should be sufficient
for most of the practical purposes as it is necessary that the #;’s are small
to guarantee positive y;’s. The small #;’s can be achieved when at least one
of the following conditions is satisfied: i) og is small; &) 7y = min 7| is
large; and 44t) Ap is small. When only a first-order approximation is used, it
is called the small-8 method by Draper and Cox (1969). The approximation
(3.5) is more accurate than the small-8 method and more general than the
small-og approximations widely applied (Bickel and Doksum, 1981; Hooper
and Yang, 1997; and Yang, 1997). Note that having i) or i) is equivalent
to having a large signal-to-noise ratio or a small coefficient of variation.

Theorem 3.1 improves and extends the results of Yang (1997). For
Ao = 0, Bickel and Doksum (1981) reported explicit formulas for the cases
of one-mean model, one-way layout and two-way layout with additive ef-
fects, which turn out to be the special cases of our formula (3.2). Other
works regarding A, and Var({\,) include Draper and Cox (1969), Hinkley
(1975), Atkinson (1985), Lawrance (1987) and Cox and Reid (1987, Sec. 5).
Yang (1998) derived (3.4) in a non-rigorous manner.

Theorem 3.1 explicitly reveals the three factors governing the behavior
of A, namely the model structure, the mean-spread and the error stan-
dard deviation, being respectively the first, second and third term in the



denominator of (3.4). Following conclusions can easily be drawn: in gen-
eral, structured models such as regression models or ANOVA models with
at least two factors are able to estimate Ag very well; the unstructured
models such as single factor ANOVA models are able to estimate Ay well
unless the spread in 7;'s and gy are both small; and a one-mean model can
also do well unless o 18 small.

When gy is large, all the models perform in a similar way and estimation
of transformation can be very easy. This point becomes clearer by observing
that Var(\,) in (3.2) goes to 0 as og — o0, n fixed.

Finally, Theorem 3.1 also allows us to see the distributional property
of At Ay is governed by three uncorrelated terms, the first is normal,
and the second and third have zero means and are asymptotically normal
under standard conditions. Hence when n is large, j\.n should possess a
distribution quite close to normal. This point can not be clearly seen from
the results of Yang (1997).

In summary, ¢} our results can be used to measure the transformation
potential of a particular set of data (Box and Cox, 1982), i.e., the extent to
which it is feasible to determine a suitable transformation from a particular
type of data; ii) the results can be used for statistical inferences about A,
such as developing a new test of Xg; and iif) the results make it mmuch
easier the study of a more important problem of this article: the effect of
estimating transformation on the Box-Cox T-ratio.

Cox and Reid (1989) derived an expression for Var(},) based on an
orthogonal parameter setting, which has a very similar structure as ours.
It also involves three factors, namely the squared coefficient of variation
from the regression component, the coefficient of variation of the error
component, and a kind of signal to noise ratio. However, our expression is
explicit in terms of the parameters Ay, 3y, and o, and the design X, so
that the effect of each of the factors on Var(\,) can be seen clearly.

3.2 Monte Carlo simulations

All the conclusions drawn from Theorem 3.1 rely on the assumption of large
sample size n. It is necessary to check the applicability of these conclusions
(i.e., the accuracy of the formulas) when n is not large. For various pa-
rameter configurations, the standard deviation (sd) of A, is simulated and



compared with that calculated from (3.2) or (3.4). We consider the param-
eter configurations such that the probability P([1 + Ag(n; + ooe;)] < 0) is
negligible for all 4 = 1,...,n. When Ag = 0, there is no restrictions theo-
retically, but mumerically it is restrictive to have a very large mean. Fach
simulated number is based on 10,000 random samples. We consider three
completely different models for illustration:

Model 1. A one-mean model with parameter settings: n = 50; Ag =
0.0, 0.05, 0.2 and 0.5; 5y = 0.1, 1.0, 5.0, 10.0, and 20.0, 5 = 0.1, 1.0, 2.0,
and 10.0.

Model 2. A three-means model. The parameter settings are: n = 36
(12 for each mean); Ag = 0.0 and 0.1; 3 = (31,21,11), (21,11,1), and
(12,11,10); g = 0.01, 0.1, 1.0, 2.0, and 5.0.

Model 3. A 3% factorial design with linear effects where n = 27,
Bl = (5.2523,0.569, —0.4312, —0.2682), the fitted value of the textile exam-
ple of Box and Cox (1964); Xy = 0.0, 0.1 and —0.05; and oy = 0.01, 0.1,
1.0, 2.0, and 5.0.

The selected results are summarized in Table 1. Detailed results are
available from the author upon request. The results generally show that the
formulas (3.2) and (3.4) are very accurate. Thus, the analytical conclusions
are applicable when n is not large. It is interesting to note that in the one-
mean model the sd of 5\.,1 decreases almost linearly with the increase of .
In the three-means model, the sd of A, decreases significantly as the means
move further apart and when the mean-spread is large the sd of j\.n depends
very little on op; when oy is large relative to the mean-spread, the sd of j\.n
is small. Furthermore, the magnitude of 5y plays no role in the behavior of
when )\g = 0, but plays some role when Ay # 0. In the 3* factorial design,
the sd of A, reaches to its maximum at a certain value of ag.

4 The unconditional effect

We now start to investigate the effect of estimating a transformation on
the Box-Cox T-ratio. We first study the simpler unconditional effect, and
then the harder conditional effect with A, regarded as fixed in next section.
Again the theoretical results are followed by the Monte Carlo simulations.
Simulation serves the purpose of confirmation of using second-order expan-
gion to approximate the small sample effect of transformation estimation,



Model 1
Ap — 0.0

o0 B | 01 1.0 50 | 20.0
0.1 | 1.2341 | 1.2402 | 1.2143 | -
1.1547 | 1.1547 | 1.1547 | 1.1547
1.0 | 0.1232 | 0.1227 | 0.1243 | 0.1237
0.0115 | 0.0115 | 0.0115 | 0.0115
10.0 | 0.0124 | 0.0124 | 0.0122 | 0.0123
0.0115 | 0.0115 | 0.0115 | 0.0115

Model 2
Agp = 0.1

Bg vog | 0.01 0.1 1.0 2.0
31,2111 [ 0.0471 | 0.0468 | 0.0446 | 0.0459
0.0430 | 0.0430 | 0.0427 | 0.0419
21,11,1 | 0.0299 | 0.0298 | 0.0197 | 0.0294
0.0276 | 0.0276 | 0.0274 | 0.0267
12,11,10 | 0.4586 | 0.4839 [ 0.3392 | 0.2096
0.4472 | 0.4448 | 0.3067 | 0.1906
Model 3
Mg = 0.0
ag = 0.1 0.1 1.0 2.0 5.0
0.0083 | 0.0817 | 0.1472 | 0.0856 | 0.0359
0.0085 | 0.0792 | 0.1262 | 0.0739 | 0.0311

Model 3
Ag = —0.05
ag = .01 0.1 1.0 2.0 5.0

0.0064 | 0.0601 | 0.1083 | 0.0618
0.0063 | 0.0585 | 0.0928 | 0.0543 | 0.0229

Table 1: Sclected results for the simulated and calculated (lower entry) sd’s of A,



and thus checks the reliability of the theoretical conclusions.

4.1 Theoretical results

Theorem 4.1. Assuming: i} the first six moments of e; are the same as
those of a standard normal random wariable; i) X'X = O(n); and i) the
conditions of Corollary 2.1 are true, we have

Trc(hn) = To + Ur(An — M) + Ua(Ay — 20)% + Opln 1) + 0,(65), (4.1)

Var[Tse(A)] = Var(Th) + Op(n 1) + 0,(63), (1.2)

where U1 = /Ay (X' X) T X [(p— p) e+ 504 (e — 1)), and Uz = —inl/?
AXTX) X e Qo)

Proof. For (4.1), evaluating U1 of (2.6) using (3.5) gives U;. The tran-
sition from Uy to Uy is based on the following arguments. For fixed o,
Us(An — 2o)2 = Op(n~1), which should be absorbed into the error term.
However, for structured models with n fixed, it can be seen using (3.5) and
the results of Theorem 3.1 that, as o9 — 0, Uz(h, — Ao)? = O,(1) while
Ur(An — o) = O, (00}, suggesting that the leading term of Uy, that is Us,
should be kept for the purpose of small gy study. This term becomes more
important when studyving the Ap-fixed behavior of TB(;(S\H) in Section 5.

For (4.2), based on the general assumption of Section 2 that a quantity
bounded in probability has a finite expectation it suffices to show that
Cov[Ty, Us( Ay — A)?] is of order Op(n~1) that is easy by Theorem 3.1 and
that C'OU[TO,ﬁg(j\.n — Ao)?] is negligible when op is small. Some algebra
leads to Cov[Th, Us(A, — Mo)?] & —2(X'X) ! when oy is small, showing
that it is negligible. ad

Note that for the case of log transformation, the 0,(63) term in Theo-
rem 4.1 vanishes and the exact expressions of {/; and Us can be obtained
1

by either the relation il(y,O) = 510;;_{23; directly or letting Ap — 0 in the

expressions of U7 and U5, which gives

U = VAX'X)T X0 - ) e + boule® — 1)]
Uy = —(Bo3yi) (XX) X e|Qn|l”



The results in Theorem 4.1, especially {4.2), is certainly encouraging. It
says that when n is small, estimating the transformation has very little
effect on the variance of TBCf(j\.n) in any situations. Tn contrast, A, depends
very much on the model type, mean spread and magnitude of error variance.
Our results also show that TBCv(j\.n) does not depend on the symmetry of
design. In contrast, the stability (with respect to A,) of the estimated slope
coefficients on the z scale depends on the symmetry of design (Duan, 1993).
The small 7 effect (unconditional) of estimating transformation on higher
moments of Tge(A,) can be studied in detail by examining the “affecting”
term [/y ()A\n — o) + Ug(j\n — Xp)? at various situations, which can be done
in connection with Theorem 3.1. The investigations can be made easier by
first concentrating on the log transformation (Ag = 0) and then generalizing

to other transformations.

i) When @n* # 0, which happens when model for the means have struc-
ture, such as regression models or factorial models with two or more
factors, the effect is small if &g is small since Ulj\.n is small in the
sense of gy and Ugj\% is small in the sense of . This point becomes
more evident from the limits:

limg, o (U1 A,) =0, and
ligy 0 (U232) = — 3= Qu |2/ X) L Xele! Qi ,

where the second one is clearly of the same order as the error term
-1
Op(n™).

i) When Qn? = 0, which occurs when model for the means does not
have structure, such as one factor ANOVA model, U5 vanishes and
U1 A, is a quantity of order Op(n~/2). When oq is small U1 A, is quite
stable with respect to the changes in parameter values as seen from
the limis,

lim (U1 A) = —3v/nlly — 7l 720 X) T X Ty — ) el (n — 7)'e’.

op—0
i41) When || — 7| = 0, which happens when all means are equal, we have
Uiy, = %71_3/21;1(36 —e*) 10 (e? = 1),

a quantity independent of og and g, of order O, (n~"/?) and expected
to be small. This is in contrast to the behavior of ), in one-mean
models where Var(,,) can be very large when oy is small.



iv) Finally when oy is large, all models behave like a one-mean model as
evidenced by the limit

lim (U1A,) = 20721 (3e — )11, (e? — 1),

TFo—r00

hence the effect in this case is expected to be siall in general.

The discussions 7)—#i1) above extend directly to Ag # 0 cases. The last
discussion extends to Ay # 0 cases where oy is large but 6y is still small.

4.2 Monte Carlo simulations

We now present some simulation results to confirm our theoretical conclu-
sions. We consider again the three models used in Section 3 with similar
parameter configurations. The selected results are put in Table 2. When
the errors are exactly normal, Var(Tp) = [n?/(n—p—3)](X'X)~! with the
degrees of freedom (df) of Ty reduced by one, ie., df = n —p — 1. The
reduction in df is to account for the estimation of Xg. Simulation results
exhibit a general excellent agreement between Var[Tac(Ay)] and Var(Tp).
This illustrates the accuracy of second-order expansion (4.2) when n is not
large.

To demonstrate the effect of design, we also consider an asymmetric
23 factorial design obtained by modifying the design matrix in the above
symmetric 3° factorial design by changing the level “-1” to “0”, while leay-
ing the others unchanged (Duan, 1993). The results in Table 2 show that

~

symmetry of design is not important to the behavior of Tec ().

5 The effect of transformation misspecification

We now study the effect of transformation misspecification on the Box-Cox
T-ratio, i.e., the A,-fixed behavior of TBC()A\n). That is the key issue to
the validity of the Box-Cox transformation methodology. This is done by
comparing the \,-fixed mean and variance of TBC()A\.R) with the mean and
variance of T;. The study of the jxn—ﬁxed behavior can be interpreted as
sensitivity analysis of TBCv(j\.n) when A, is different from Aq (Duan, 1993).
By A,-fixed we mean ignoring the randommess of A, but not the effect
of changing parameter values and sample size. This is handled by writing



Model 1
Ao = 0.0, sd(Tp) = 1.0426

o0 e | 0.1 1.0 50 | 200
0.1 1.0633 | 1.0565 | 1.0605
1.0 1.0570 | 1.0579 | 1.0608 | 1.0585
10.0 1.0593 | 1.0617 | 1.0529 | 1.0563

Model 2
)\0 - 005, Sd(TOi) = 18974
o ag i1 12 f3

(21,11, 1)" | 0.01 | 1.9481 | 1.9318 [ 1.9608
0.1 1.9575 [ 1.9295 | 1.9334
1.0 1.9543 | 1.8920 | 1.9403
5.0 1.9631 | 1.8981 | 1.9393

Model 3
Ao = 0.0, first row is sd(Tp)
ap t1 to i3 ty

1.1619 | 0.4230 | 1.4230 | 1.4230
0.01 1.1655 | 1.4501 | 1.4259 | 1.4365

1.0 1.1604 | 1.4262 | 1.4285 | 1.4249
1.0 1,1927 | 1.4304 | 1.4234 | 1.4116
5.0 1.1975 | 1.4136 | 1.4172 | 1.4156

2% factorial design

Ao = 0.0, first row is sd(Tp)
ap t1 to i3 ty
1.8371 | 2.4646 | 2.4054 | 2.4054
0.01 1.9054 | 2.5975 | 2.5657 | 2.5849

0.1 1.8636 | 2.4878 | 2.4771 | 2.4568
1.0 1.8683 | 2.4624 | 2,4357 | 2.4341
5.0 1.8448 | 2.4252 | 2.4290 | 2.4740

Table 2: Simulated sd’s of the ith element (t;) of the Box-Cox T-ratio



A= Ao +A7‘(3\.n), where A is the standardized )\, and T(j\.n) is the standard
deviation of A,. Fixing A, means fixing A but not T(j\.n) with respect to
1, og and n. This is practically meaningful as, for example, when n = 25
one obtains 5\.,1 = 0.9, which can be used to transform the current data set
or future data set of the saime size and from the same situations. However,
when data set is doubled in size or the experimental setting is changed,
one definitely would not use the same “0.5” to transform the data, instead

would reestimate the transformation value.

5.1 Theoretical results

Theorem 5.1. Assume that the conditions of Corollary 2.1 are satisfied,
then

E[Tsc(M)|A fixed] = E(Ty) + Oy(n~"),
Var[Tpe(A)|A fixed] = Var(Ty) 4+ 2I(A) + Op(n %), (5.1)

where T(A) = A (M) E(ThUL) — A2r2(0) E(T,US).
Proof. This is straightforward following Corollary 2.1. O

When 8 is small, UU; and U5 in Corollary 2.1 can be approximated by
Uy and Uz of Theorem 4.1. Thus, E(ToU]) and E(TyU)) can be easily
approximated, which gives,

T(A) mndy 'AT(A) (X X) " X' DX (X' X) "N oy A% 4(0) | Qal 2 (X1 X)),
) (5.2)
where D = Diag{d; — @}nxn, and a = A2 (1 + Xgn) log(1 + Agn).

Letting Ag — 0 in (5.2) gives an expression for corresponding to a
log-transformation. Using (5.2) in connection with Theorem 3.1, we can
summarize the behavior of T'(A) for A fixed as follows:

¢) For structured models with small o, I'(A) becomes negative, suggest-
ing that the X,-fixed variance of Tgo(Ay) is smaller than Var(1j).
That is, a misspecified transformation deflates the variance of Box-
Cox T-ratio. This can be seen more clearly from the limit
lim N(A) = —1A*(X'X)"L.

og—0



However, as it is very likely that A takes values in the interval
(—2,2), that is, Ay is within two standard deviations of Aj, this de-
flation factor will be small, especially when r is large.

1) For unstructured models, the second term in (5.2) vanishes, and when
ag is small, the ¢th diagonal element of I'(A) is positive if A(¢; — ¢) >
0 and negative if A(¢; — @) < 0, suggesting that \,-fixed variance of
ith element of TBC(S\H) is accordingly larger or smaller than the ith
diagonal element of Var(Ag). This point becomes more evident from
the following limit,

lim T'({A) = %nAqu — oL, HX'X) X' DX(X'Xx) !

An—=0

Hence when n is small the \,-fixed effect may not be negligible for
an unstructured model with ¢y small relative to the spread in means.
Further, it is easy to see that ¢rI'(A) = 0 or close to 0, suggesting
that the total variance irVear[Tsc(Aq)] does not depend much on the
value of A,.

it¢) For a one-mean model, I'(A) = 0, indicating that when n is small
the A, -fixed effect of a estimating transformation will be very small
in this case.

iv) Finally when ap is large, all models behave like a one-mean model
and the effect of transform-ation misspecification is very small as
evidenced by limg,—n, I'(A) = 0 for Ag = 0. This limit suggests that
for other transformations I'(A) is small when o is large but f; is
small.

Combining the results of Section 3 and 5, we conclude that in the cases
that A, behaves poorly such as one-mean models with small oy, TBC’()\ ) is
very robust to the changes of Ap, while in the cases that TBC()\ ) is sensitive
to the changes in )\n such as unstructured models with o small relative to
the mean-spread, A\n behaves very well. This is an important conclusion; it
sheds light on the validity of Box-Cox methodology. The practical implica-
tion of these results is profound: the Box-Cox transformation methodology
performs well in most of the statistical inferential situations.



5.2 Monte Carlo simulations

The three models in Section 3 are used again with similar parameter set-
tings. The simulation results reported in Tables 3 are the simulated Ap-fixed
standard deviations of TBC(S\H) or the element of TBC()A\H) indicated by 1;
in the table when A, = Ay +A7(A,) with A = 42, +3. The value of 7(A,)
is calculated using (3.2) or (3.4). More extensive simulation results are
available from the author.

The results for a one-mean model show that sd[Tsc (A, )| A, fixed] can
be well approximate by sd(Ty) for any situations, irrespective to the size of
the difference A, — Ag. This means that for the one-mean model Tgo ()\ )
is very robust against transformation misspecification. The results for the
three-means model show that the )A\n—ﬁxed effect on the individual variance
can be significant but not on the total variance, which is consistent with
the theory. In model 3, our theory suggests that the Ap-fixed sd of TBCf(j\.n)
be smaller than sd(Th) when g is small. Simulations show that it is indeed
smaller, but only slightly if |[A| < 2. The effect is small when oy is moderate
to large. The A,-fixed sd of Tge(),) can also be easily approximated by
(5.1). Calculations (not reported) show that it is very accurate.
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Appendix: Proof of Theorem 2.1

A second-order Taylor expansion of & (y, fn) around (Fp, Ao, 00) gives

0= ¥ + ‘1’11(3 , o) + \j;'lQ(j\ — Ao) + \j;'__lS(a'-nA_ oo)+
+2U & (’3 — o)’ ]‘I'lll(ﬁ — o) + 1‘1’122()\n - )+
+3 ‘1'133(Un — 0)? + F112(Bn *ﬁo)( — o)+
+'I'113(ﬁ — Bo)(Gn — d0) + Tras (A — X0)(Gy — a0) + Op(n™3?).
(A1)
First-order Taylor expansions of ¥ (i, £,) and W3{y, &) around {3y, Ag, o)
yield

Bn—Bo = AT+ A(dn — o) + Op(n ), (A.2)



Model 1

Ao = 0.0, sd(Ty) = 1.0342

A oo | o — 0.1 | pig — 1.0 | pig — 10
3 0.1 1.0585 1.0598 1.0416
-3 1.0580 1.0657 1.0494
3 1 1.0492 1.0493 1.0493
-3 1.0632 1.0461 1.0612
3 10 1.0485 1.0520 1.0627
-3 1.0460 1.0463 1.0396
Model 2
Mo = 0.01, By = (12,11, 10)
A an tl tg fg
3 0.01 2.5872 1.6783 1.0891
-3 1.0967 1.6608 2.5874
3 0.1 2.5739 1.6925 1.0837
-3 1.1153 1.6704 | 2.6194
3 2 2.2163 1.8336 1.5580
-3 1.5304 1.8360 2.2273
Model 3

Ao =0.0,A = +2
sd(Tp) = (1.1619,1.4230, 1.4230, 1.4230)

ap tl tg t3 i’4
0.001 | 1.0719 | 1.2924 1.2823 1.3016
1.0637 | 1.2983 1.2849 1.3096
0.1 |1.0498 | 1.2934 1.2969 1.2819
1.0685 | 1.2878 1.2899 1.2940
1.0 | 1.1635 | 1.4044 1.3778 1.4059
1.1460 | 1.3921 1.3871 1.3759
10.0 | 1.1447 | 1.3846 1.3846 1.3883
1.1630 | 1.3919 1.3992 1.3704

Table 3: Simulated A, -fixed sd of TBC()A\H)




O, —aop — —Agsl [‘i’g + Agg(j\n — )\0” + Op(nil). (A.3)

Substituting A.2 and A.3 into A.1 for the terms of order Op(n~1) and
replacing ¥;;;, by Biji give

Br—Bo=—AFH{E — (T — Ap)ATE, — T AL Tyt
+310 © (A ) B Ay T + 1Buaa(Ayy Ts)*+
+B1 AT A TP - ATy — (B - A)AG A
— WAL A+, @ (AL )] Bii AT Ao+ Bigs ARl Az Wy —
~Bi12A7 N + Bz ATAL (B Az + ApTg) -
B3 Az T3, — do) — A LIBim+
+5[, @ (A A1) Bii A Az + iB1s3 (A Ag)?—
~Bi12AT A1 + Bis AT AL A Agy
—Bias Ay Aga} (A — Mo)% + Op(n%2).
(A.4)
Now, taking expectation of A.élﬁ treating An as fixed gives expansions of
[ju()\n) and On — Bu(Ag). Letting A, = Ag in the expansion of 7, (Ay) and
Brn — Bu(Ay) results in an expansion for 3,0 — 3,(Ag). Thus,

B.n — fiu(j\.n) = Bno — Bu{A0) + the second-order term + Op(nfs/ 2). (A.5)

L as a function of &2, a first-order Taylor expansion

Now, considering &,
gives

a1l a1 1 _—3722 22 —1

Tn = Tno — 39 (C‘rn - U-n[]) + Op(ﬂ )‘ (AG)
and considering &2 as a function of },, we have by a second-order Taylor
expansion around Ag

62 =520+ 7 (20) (An — M) + 7 (M0 (An — A0)?, (A7)

where 7(Ag) and #(Ag) are the first and second derivatives of 2 with respect
to A, evaluated at Ag. Substituting {A.7) into (A.6) and multiplying the
resulted expression by (A.5) side by side and then by /n gives the first
part of Theorem 2.1. The second part is obtained by substituting (A.2)
and (A.3) into

0="T5(y, &) =Tt Wy (B, — Bo)+Tas (N — da) + T3 (80 — a0)+0,(n ).



The final expressions of I7; and U3 are given as follows

U= g\/_% 3A11 Wy (Ag)— \/_Jo A {‘I’lz—Alz—(‘I’ll A11)A11 A
WAL A32+[ (An ‘1’1)] Bi11Al A+ Bg3AL2 A32‘1’3*
~B112A ¥ + BiisA AL (T Az + A T3) — BissAgy B3],

U= I\/EJO All \1'17’()\0).
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