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Estimating a transformation and its effect on 

Box-Cox T-ratio 
Zhenlin "gang* 

Department of Statistics and Applied Probability, 
National University of Singapore, Singapore. 

Abstract 

This article concerns i) the stochastic behavior of the Box Cox transformation 
estimator and ii) the effect of estimating a transformation on the Box-Cox T-ratio 
used for the post-transformation analysis. It is shown that the transformation 
estimator depends on three factors: the model structure, the mean-spread and the 
error standard deviation a0. In general, a structured model is able to estimate the 
transformation very well; an unstructured model can do well also unless the mean 
spread and a0 are both small; and a one-mean mode can give a poor estimate if a0 
is small. When the sample is not large, it is shown that the unconditional effect 
of estimating a transformation on the Box-Cox T-ratio is generally small, and the 
"conditional" effect is also negligible in most of the situations except the case of 
one-way AXOVA with small ao. Extensive Monte Carlo simulations are performed 
to support the theoretical findings. 

K e y  W o r d s :  Asymptotic expansion, Box-Cox transformation, A-fixed, sensitivity, 
T-ratio. 
A M S  s u b j e c t  c l a s s i f i c a t i o n :  62F25 

1 I n t r o d u c t i o n  

In  m a n y  a p p l i c a t i o n s  of  s t a t i s t i c a l  mode l ing ,  a t r a n s f o r m a t i o n  of  t h e  de- 

p e n d e n t  va r i ab l e  is r equ i r ed  to  achieve a n o r m a l  t h e o r y  l inea r  m o d e l  w i t h  a 

s imp le  m e a n  s t r u c t u r e  a n d  h o m o s c e d a s t i c  e r rors .  W h e n  such a t r a n s f o r m a -  

t i on  is known,  the  u sua l  n o r m a l - t h e o r y  l inea r  m o d e l  in ference  m e t h o d s  can  

b e  d i r e c t l y  a p p l i e d  to  t h e  t r a n s f o r m e d  responses .  W h e n  the  t r a n s f o r m a t i o n  

is u n k n o w n ,  the  c o m m o n  p rac t i ce ,  as sugges t ed  by  Box a n d  Cox (1964), 

is to  e s t i m a t e  the  u n k n o w n  t r a n s f o r m a t i o n  p a r a m e t e r  a n d  t h e n  select  a 

n e a r e s t  s imple  n u m b e r  c o r r e s p o n d i n g  to  a tog or square, root, etc. ,  t r a n s -  

f o r m a t i o n ,  a n d  t h e n  c a r r y  ou t  u sua l  inferences  for t h e  p a r a m e t e r s  def ined  

a n d  i n t e r p r e t e d  on  the  se lec ted  scale.  
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Let y = (Yl , . . - ,  Yn) t be tile vector of responses, and h(y, A) = [h(yl,/~), 
. . . ,  h(y~, A)]' the vector of t ransformed responses, where h(., ),) is a strictly 
increasing transformation function, known except the t ransformation pa- 
rameter  A, taking values on real line. Assmne that  there exists a t rue 
value )~0 of ,~ such that  tile vector h(y, ),0) of tile t ransformed observations 
satisfies 

h(y, )~o) - X/Jo + croe, (1.1) 

where fl0 is a p • 1 vector of regression parameters,  or0 is tile s tandard 
deviation of tile error term, X is a known n • p matr ix  of full rank, and 
c~0c is an n • 1 vector of independent  errors of same distribution. 

Denote the parameter  vector (/~D,k,0,cr0) + by ~0 and its est imator 
+3i 

(9~,)'.~, &~)' by ~ .  The restricted estimator of (//0, or0) when A0 is known 
is denoted by (/.~0, &~0). Thus, when A0 is known, tile post- transformation 
inference concerns fl0 and is carried out based on tile ),0-known T-ratio 

- 

To- 
Ono 

which, after a suitable normalization, has a nmlt ivar iate T-d is t r ibut ion 
when errors are exactly normal. 

When A0 is unknown and is est imated by ~.~, Box-Cox's analysis can 
be viewed as A~,-fixed inference for/3~(A.,~), defined and interpreted on the 
selected scale ),,~, based on tile Box-Cox T-ratio 

with tile ATe-fixed distribution of TBc(~,~) approximated by tile distribution 
of To. For example, for a part icular da ta  set if the resulted estimate of the 
transformation parameter  is AT, 0.5, then Box and Cox fit the model 
h(y, 0.5) - X/~(0.5)  + c~(0.5)c(0.5), and make inference about /~(0.5) by 
approximating tile distribution of TBc(0.5) by that  of To. Hinkley and 
Runger (1984, Sec. 2.1) and Carroll and Ruppert  (1988, Sec. 4.3.4) gave 
a similar interpretation. Notice that  ),~, can be equivalently replaced by a 
ronnded value provided that  rounding is done with reference to the confi- 
dence interval. 

Questions arise as how much the Box-Cox T-ratio TBc(A~) differs from 
tile ),0-known T-ratio To, and to what extent tile A.n-fixed distribution of 
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TBC((~,) can be approximated by the distr ibution of To. These are the cru- 
cial questions to the validity of Box-Cox transformation methodology and 
are termed in this paper as the effect of est imating a t ransformation on the 
Box-Cox T-ratio. The former corresponds to the unconditional effect and 
the lat ter  the conditional effect with A.~ regarded as fixed. Yang (1996) has 
studied these questions for large n, which lead to the asymptot ic  validity 
of the Box-Cox transformation methodology. In this article, we investigate 
these questions for small n case via a second-order asymptot ic  expansion 
of TBc(A~). As this second-order expansion has a leading term To and a 
smaller order "affecting" term that  involves ~.n, it is necessary to investi- 
gate first the stochastic behavior of )~.,~, which is done by Yang (1997) and 
reexamined in this article with improved and extended results. 

The above two problems (in short, behavior of ~.~ and effect of A.~ on 
TBc(A~)) that  will be studied in this article are closely related (directly or 
indirectly) to the two problenls raised in Box and Cox (1982): 

A. There are numerous aspects of transforrr, ations ~ha~ merit further 
study. These include in particular ~tle further development of simple 
ways of assessing transformation potential; that is, of providing some 
formal measure of the ability of particular data to provide useful in- 
formation about a class of transformations. 

B. Suppose tt~at the parameter of interest (difference, regression co 
efficient, etc.) is defir, ed on the data-deper.der.t scale ;~,~; in what 
circumstances do confidence intervals for these parameters calculated 
in the "usual" way, as if A~ were preassigned, provide an adequate 
approximation? 

Section 2 presents general asymptot ic  expansions based on an M-esti- 
mation framework, followed by a specialization to the Box and Cox (1964) 
nlaximunl likelihood est imation framework, which will be used throughout  
the article. Section 3 concerns the stochastic behavior of ),.,~. Section 4 
studies the unconditional behavior of TBc(~.~). Section 5 investigates the 
5, - xed behavior of TBc(A~). Each of the Sections 3 to 5 is accompanied 
by Monte Carlo results to back up the theoretical conclusions. 

Put t ing  ~] Xfl0, we now summarize the major conclusions and dis- 
cuss their relations and implications to problems A and B. Most of the 
conclusions about  ~ were already reported in Yang (1997). 
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First, the stochastic behavior of J,.~ depends on three factors: the model 
structure,  the spread in means (~/i's) and the error s tandard deviation a0. 
In general, s t ructured models such as regression models or ANOVA models 
with at least two factors, are able to est imate 2,0 very well; the unstructured 
models, such as single factor ANOVA model, are able to est imate A0 well 
unless tile spread in ~]i's and cr 0 are both  small; and a one-mean model can 
also do well unless a0 is small. 

The practical implications of above conclusions as related to problem A 
are as follows. A data  set that  came from an experiment using s t ructured 
nlodel is generally of high potential  in determining the transformation. A 
da ta  set that  came from an experiment using unst ructured or one-mean 
model  still possesses a good potential  in determining the t ransformation if 
the data  stretch to a wide range relatively, otherwise it will be difficult to 
est imate the transformation. 

As for the effect of est imation transformation on Box-Cox T-ratio, we 
find that,  when n is small, the difference between TBC'(~,~) and To is small 
in general, and hence the distr ibution of Tuc' (J,.n) can be well approximated 
by that  of To. We also find that  tile ~.~-fixed distr ibution of T B c ( ~ )  can 
be  well approximated by tile distr ibution of To for all models when ~r0 is 
not small. When  ~r0 is small, the approximation is still good in one-mean 
models and also reasonable in s t ructured models if the fixed-~,~ is within two 
s tandard deviations of A0; in unstructured models~ tile ),n-fixed variance of 
/ th  element of T B c ( ~ )  can be deflated or inflated depending on the signs 
of ~/i ~ and ~ A0, with the magnitude depending on ~/i ~/, but  the 
sum of A~-fixed variances of the elements of TuC(~r~) is stable. 

The implication of these conclusions for p r o b l e m / / i s  quite clear: when- 
ever the J,.n-fixed distr ibution of TBC(),n) can be well approximated by the 
distr ibution of To, then the usual confidence intervals for the ~ - d e p e n d e n t  
parameters  will perform well. In this sense, all the ~.~-fixed confidence in- 
tervals will perform well or reasonably well except the t-interval for the 
individual mean of a one-way ANOVA model with or0 small relative to the 
mean-spread. 

Hooper  and Yang (1997) studied problem B where they interpreted the 
Box-Cox method of post- t ransformation inferences as conditional inferences 
for/3u(Xr~) based on TBc(Xn) with the conditional distr ibution of TBC(Xn) 
given ~.~ approximated by that  of To. Yang (1996) showed under nfild 
conditions that  TBC'(~n) is asymptot ical ly equivalent to To and independent 
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of ),~. Hence the two interpretations about the Box-Cox transformation 
methodology are asymptotically equivalent. 

Bickel and Doksum (1981) argued that  the inference should be uncon- 
ditional about /Ju. They showed that  the usual normal-theory inference 
nlethods can fail because of the variance inflation due to transformation 
estimation. Box and Cox (1982) commented that  this variance inflation 
is obvious but irrelevant for any sensible scientific question. Hinkley and 
Runger (1984) and Cox and Reid (1987) further supported tile Box and 
Cox's approach by claiming that tile slope parameters are stable in the so 
called z-scale that  stabilizes or orthogonalizes the parameters. Duan (1993) 
showed that  this claim is true under certain symmetric conditions on the 
regressors, but might fail when the synnnetric conditions are not satisfied. 
Since the Box-Cox T-ratio is typically invariant under the z-transformation, 
the z-scale is not considered here. A review of the Box-Cox transformation 
technique is given by Sakia (1992). 

2 Asymptotic expansions 

To facilitate the expansions, we introduce formally the definition of tile pa- 
rameter of interest after transformation selection. We employ tile definition 
given by Cohen and Sackrowitz (1987), namely, 

/4~(),,~) Expectation of/~,~ treating )~,~ as fixed. (2.1) 

This definition is consistent with our ),n-fixed interpretation of the Box- 
Cox's post-transformation analysis. There are other definitions, e.g., 
/3~(),~)=E[~ [2,~] (Hinkley and Runger, 1984), which is asymptotically equi- 
valent to (2.1) (Biekel, 1984). See also Yang (1992, Chapter 2) for a general 
discussion of the definition and interpretation of the parameter of interest 
following a transformation selection. 

Consider first the general M-estimation framework, i.e., ~ is an M- 
estimator of [0 which solves 

'1% 

i 1 

where ~ i  is a p + 2 dinlensional vector-valued function having three eonl- 
portents ~Itli, ~It2i and ~I]3i that correspond to /40, Z0 and cr 0 respectively. 
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Thns ~2i is dropped when A0 is known. Let 

~ Ei=l~i(Yi,~O) 
r r  (a/a(o)(~(v,~o) 
;~ ;~(v, ~o) (a/O~o)~(v, ~o) 
A - E,~ 
B --  E ~ ,  

where @ is a (p + 2) x 1 vector, ~ and A are (p + 2) • (p + 2) matrices, 
and B are ( p + 2 )  2 x ( p + 2 )  matrices or ( p + 2 )  x ( p + 2 )  x ( p + 2 )  

arrays. They  are all part i t ioned according to (/3o,),0, ~r0). The subvectors 
of ~ are denoted by ~1,  ~2 and ~3,  the submatrices of ~ and A by ~ij 
and Aij ,  i , j  1,2,3, and the subarrays of ~ and B by i~ij} and Bijk, , 
i, j, k 1, 2, 3. For example, 

is a p x 1 vector, 

~'11 ~'11(Y, ~0) (O/O/~IO)~I(Y,~O) 

is a p xp  matrix, and 

II't 111 II't 111 (Y, (0) (02/O/;tO 0/'~0)~It I (Y, (0) 

is a p2 •  matrix,  or a p xp  • array. 

that  all the quantities introduced above depend on n implicitly. Note 

A s s u m e  

C1. 
C2. 
C3. 
C4. 

C5. 

~ is root-n consistent. 
Op(n i/2), and E ~ 0. 

,i, - A + Op(~ 1/2). 
= B + Op(~t-1/2). 

A and A i are O(1), with Ai3 A~I O(n 1/2). 

Assmne further that  the remainder  te rm in the second-order Taylor 
expansions of the elements of ~ i  tins the order of (~,~ - ~0) 3, and that  a 
random quanti ty bounded in probability has a finite expectation. Now we 
present some general results. The proofs are tedious and sketches are given 
in the Appendix. 
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T h e o r e m  2.1. Under the assumptions C 1 - C 5 ,  if fl~(Ao) flo+O(n 3/2), 
then as n -+ 0% we have a second-order asymptotic expansion for TBc(~n) 
and a first-order expansion for A~, 

:rBc(s To + UI(A~, -- 2,o) + U,e(A,~ - 2,o) 2 + Op(n-1), (2.3) 

~'2 - A 2 a A a ~ ' a  - A 2 1 A l ( ~ ' l  -4- Op (~-1), (2.4) 
A21Al~A12 - A22 + A23A3~A32 

where U~ and U2 in (2.3) are both Op(1) with the detailed expressions given 
at the end of Appendix. 

It is unorthodox to keep a term U,e(),~ 2,0) 2 that  is of the same order 
as the error te rm Op(n -1) in the expression. However, for a fixed n, certain 
approximations (see Sections 4 and 5) show that ,  for a s t ructured model, as 
~0 --+ 0, U2() ,~-  ),0) 2 Op(1) whereas U1 (J,r~- A0) Op(O'0) , showing that  

the magnitude of U.~(AT~ - 2,o) 2 will exceed that  of U~(AT~ - 2,o) as or0 goes 
to small. Hence this term is important  for studying the small-or0 behavior 
of TBC'(),~). This te rm vanishes for uns t ructured models. 

The expansion (2.3) indicates that  TBc (A~) and To differ only on second 
order, hence they are asymptotically equivalent and the Box-Cox ),.-fixed 
inference is asymptotic  valid. Yang (1996) reached the same conclusion 
using the first-order expansion of TBc(),~). He also gave a first-order ex- 
pansion for the Bickel-Doksmn T-ratio, obtained by replacing fl,~(A~) in 
TBc(A~) by /30, which indicates that  the Bickel-Doksum T-ratio differs 
from To even on the first order, hence the unconditional inference for /30 
by approximating the distribution of Bickel-Doksum T-ratio by that  of To 
is not valid. This agrees with the observations made by Bickel and Dok- 
sum (1981). 

Although the Box-Cox's ~ - f i x e d  inference is asymptotically valid, its 
performance for moderate  sample sizes is still unclear to us. Theorem 
2.1 provides a tool for tackling this problem. Notice that  in developing 
Theorem 2.1, we have assumed that  Al3 O(n l/Z). This is not restrictive 
since Ala corresponds to fl0 and cr 0 which are, respectively, the location and 
scale parameters of the t ransformed model hence are orthogonal in the sense 
of Cox and Reid (1987). In the cases that  errors are exactly normal and 
maximum likelihood estimation method is used we have A13 = 0. There 
is no difficulty theoretically in deriving the asymptotic  expansions if this 
assumption is dropped, but the derivation will be more tedions. 
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Theorem 2.1 corresponds to the general M-estimation framework hence 
@i and h functions need not be specified, as long as the assumptions C1 C5 
are satisfied. To s tudy the stochastic behavior of ~.~ and T~c(i~)  in detail, 
it is necessary to specify the functions ~ i  and h. Clearly, the Box-Cox 
power transformation and the score function under normal errors are the 
popular candidates. In this case, we have h(t, A) (t ~ - 1)/),, if A r 0; 
and log t, if A = 0, and 

~2i(Yi,(0) = logyi ~o2[h(yi, A0) x~/3o]h(yi, Ao) 
~ 3 i ( y i , ~ o )  ~ 0 3 [ h ( U i , ~ o )  , 2 = - xi;3o] - ~o l ,  

( 2 . s )  

(o/O~o)/4w, ~o). where ]t(Yi, )'o) 
The estimators from (2.5) are usually called the Box-Cox estimators. 

In this article, we will concentrate on these. The estimators corresponding 
to other @i and h fimctions can be studied in a similar way. Now, let 
[,~ denote an n x n identity matr ix and Q [~, - X ( X ' X )  1X', and let 
]+ {]+(yi, A0)}n• and h {(a+/a:~)t+(w,Ao)}n• Theorem 2.1 can be 
easily reduced to tire following. 

C o r o l l a r y  2 . 1 .  Assume that the ~i flmction in (2.5) satisfies the assump- 
tions C1 - C5. Then, 

TBC(LJ To + U~(i.~ - ~o) + U2(i,~ - ~o) ~ + O~(~ ~), (2.6) 

A~ ),0 _ or0 ~i '~llOgYi + e'(PE(]O - i )  - ( 1  - e'e/n)E(e']O cop(  n 1), 
cro E(h'/O - E(h')PE(iO + croE(c')~,) - 2n- l iE(d]0]  2 

(2.7) 
where U1 = v ~ . { I ( x ' x ' ) - I X ' [ ] t  El~ eE(e'iO/n] andae  = ( 2 a ~ v r h - )  - ~  

( X '  X ) -  t~C' ~E( h' Qh ). 

Proof, For (2.6), evaluate all tile quantities involved in U1 and U~ of 
(2.3) using (2.5) and the expressions of the Box-Cox estimators -,2 O ' r ~  - -  

n l[h'(y, A~)Qh(y, A~)] and ~2 n l[h'(y, Ao)Qh(y, A0)]. Then  eliminate �9 O n 0  

tire terms that  are either Op(n 1) or negligible when cr 0 is small. For" (2.7), 
evaluate all the quantities involved in (2.4) and simplify. Clearly, the third 
te rm in (2.6) is Op(n-~), negligible with respect to n but  may not be neg- 
ligible with respect to ~r0 when it is small since ~r~ -2 is involved in U.~. [] 



Box- Cox T-ratio 175 

With  the simplified results of Corollary 2.1, it is possible to study in 
detail the stochastic behavior of At, (Section 3) and its effect on the Box- 
Cox T-ratio (Sections 4 and 5). When A0 0, it is possible to express (2.6) 
and (2.7) explicitly in terms of X, ~r 0 and e. However, when ),0 r 0 it is 
necessary to introduce a further  approximation to log y. 

3 E s t i m a t i o n  o f  B o x - C o x  t r a n s f o r m a t i o n  

This section presents detailed results regarding the stochastic behavior of 
the Box-Cox est imator )m in various situations by further evaluating or ap- 
proximating (2.7). Yang (1997) also obtained the expansion (2.7) that  was 
then approximated by the small cr 0 method.  His results are improved and 
extended by considering separately the log-transformation (A0 - 0) where 
no further approximation is necessary and other transformations (A0 # 0) 
where a bet ter  approximation method is used. We first present SOUle the- 
oretical results and then some Monte Carlo simulations. Throughout  this 
article, we use # to denote the elementwise vector multiplication. Com- 
mon functions such as log applied to a vector are operated elementwise. A 
vector subtracted by a scalar means elementwise subtraction. 

3.1 T h e o r e t i c a l  r e s u l t s  

T h e o r e m  3.1. A s s u m i n g  the first  six m o m e n t s  of el are the same as those 

of  a s tandard normal  random variable, when Ao - O. wc have for large n. 

An -- AO 
(7 0 

- �89 - ~o(~1 - ~)'e 2 + 1-~21'2 o ,~,"~ _ ~3) 

}110~2112 + 2GII~ ~112 + }~z~4 
+ op(,,-1), (3.1) 

o-~ + 0~(,~-~) �9 (3.2) 
v~( i ,~ )  ~IIQ~2112 + 2o-~11~- ~112 + }~o -4 

when )'o ~ 0, letting Oi A0~o(1 +),orli) z i 1 , . . . , n ,  we have for small  

Oo and large n.  

An -- AO 

Ao I l Q ( O - l # r  - l o )11~+211r  ~11 = + ~11Oll = 
~-o~(,,-')+o~(o~) 

(3 .3 )  
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),?, 
v~,,(s I IQ(0-~#~ + �89 = + 211r ~11 ~ + }11011 ~ + o~(~- : )  + o~(e~), 

(3.4) 
~t~ere Oo max Io~l, o {od~• ~ log(1 + ~o,~), r {+d~• 

E i  1 r artd lr, i8 a vector" of 1 's. 

Proof. When  Ao - 0, it is easy to show that  J~(yi, 0) - limbo_+0 ],(yi, ),0) - 
�89 2 and i~(y/,0) lim;~0~0)~(y/,),0 ) }(logyi)  a. Subs t i tu t ing  
Xfl0 + a0e into (2.7) for logy gives (3.1) and (3.2). When ~0 r 0, we 
have i~(yi, ),o) - ),o1[ 1 + ),oh(yi, )`0)] logyi - ) ,oZh(yi,  ),0) and l~(Yi, )`o) - 
[]~(Yi, ~0) ~o 2] log Yi + Ao2h(yi ,  A0) Aol]z(yi, A0). Thus,  it is only neces- 
sary to further approximate  log Yi to make (2.7) explicit. From the relation 
log yi - / ~ o  1 log[1 + ),oh(yi, ),0)], we have by a Taylor expansion 

1,~2 2 Op(O~) (3.5) ),o logyi = log(1 + ),or/i) + Oiei - : tq e i + 

Now using (3.5), some tedious algebraic work leads to (3.3) and (3.4). [] 

Tile proof  of tile first part  of tile theorem can also be reached from tile 
second par t  by lett ing A0 --+ 0. Tile approximat ion (3.5) should be sufficient 
for most  of the practical purposes as it is necessary tha t  the Oi's are small 
to guarantee positive yi's. The  small Oi's can be achieved when at least one 
of the following condit ions is satisfied: i) o0 is small; ii) r1(1) = min IVil is 
large; and iii) A0 is small. When  only a first-order approximat ion  is used, it 
is called the  small-0 m e t h o d  by Draper  and Cox (1969). The  approximat ion 
(3.5) is more accurate t han  the small-0 me thod  and more general than  the 
small-~r 0 approximat ions  widely applied (Bickel and Doksmn,  1981; Hooper 
and Yang, 1997; and Yang, 1997). Note that  having i) or ii) is equivalent 
to having a large signal-to-noise ratio or a small coefficient of variation. 

Theorem 3.1 in:proves and extends the results of Yang (1997). For 
A0 0, Bickel and Doksum (1981) repor ted  explicit formulas for the cases 
of one-mean model,  one -ww 1wout and two-way 1wout  with addit ive ef- 
fects, which tu rn  out to be the special cases of our  fornmla (3.2). Other  
works regarding A~ and Var(A~) include Draper  and Cox (1969), Hinkley 
(1975), Atkinson (1985), Lawrance (1987) and Cox and Reid (1987, Sec. 5). 
Yang (1998) derived (3.4) it: a non-rigorous manner .  

Theorem 3.1 explicitly reveals the three factors governing the behavior 
of ),.n, namely the model  s tructure,  the mean-spread and the error stan- 
dard  deviation, being respectively the first, second and th i rd  t e rm in the 
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denominator  of (3.4). Following conclusions can easily be drawn: in gen- 
eral, s t ruc tmed models such as regression models or ANOVA models with 
at least two factors are able to estimate A0 very well; the unstructm'ed 
models such as single factor ANOVA models are able to estimate A0 well 
unless the spread in rh's and o0 are both small; and a one-mean model can 
also do well unless <r0 is small. 

When or0 is large, all the models perform in a sinfilar way and estimation 
of t ransformation can be very easy. This point becomes clearer by observing 
tha t  Var(~n) in (3.2) goes to 0 as cr 0 --+ c)c, n fixed. 

Finally, Theorem 3.1 also allows us to see the distributional property 
of )'r~: )'r~ is governed by three uncorrelated terms, the first is normal, 
and the second and third have zero means and are aswnptotically normal 
under s tandard conditions. Hence when n is large, k r~ shonld possess a 
distr ibution quite close to normal. This point can not be clearly seen fl'om 
the results of Yang (1997). 

In summary, i) our results can be used to measure the transfo~'mation 
potential of a particular set of da ta  (Box and Cox, 1982), i.e., the extent to 
which it is feasible to determine a suitable t ransformation from a particular 
type of data; ii) the results can be used for statistical inferences about k0, 
such as developing a new test of ~0; and iii) the results make it much 
easier the s tudy of a more important  problem of this article: the effect of 
estimating t ransformation on the Box-Cox T-ratio. 

Cox and Reid (1989) derived an expression for Var(),,~) based on an 
orthogonal parameter  setting, which has a very similar structure as ours. 
It also involves three factors, namely the squared coefficient of variation 
from the regression component, the coefficient of variation of the error 
component,  and a kind of signal to noise ratio. However, our expression is 
explicit in terms of the parameters ),0, /~0, and ~r0, and the design X, so 
tha t  the effect of each of the factors on Var(),n) can be seen clearly. 

3.2  M o n t e  C a r l o  s i m u l a t i o n s  

All the conclusions drawn from Theorem 3.1 rely on the assumption of large 
sample size n. It is necessary to check the applicability of these conclusions 
(i.e., the accuracy of the fornmlas) when n is not large. For various pa- 
rameter configurations, the s tandard deviation (sd) of )~ is simulated and 
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compared with that  calculated from (3.2) or (3.4). We consider the param- 
eter configurations such that  the probabil i ty P([1 + ),0(71/+ (roe/)] < 0) is 
negligible for all i 1 , . . . ,  n. When A0 0, there is no restrictions theo- 
retically, but  numerically it is restrictive to have a very large mean. Each 
simulated number is based on 10,000 random samples. We consider three 
completely different models for illustration: 

M o d e l  1. A one-mean model  with parameter  settings: n 50; A0 
0.0, 0.05, 0.2 and 0.5; fl0 0.1, 1.0, 5.0, 10.0, and 20.0, or0 0.1, 1.0, 2.0, 
and 10.0. 

M o d e l  2. A three-means model. The parameter  settings are: n = 36 
(12 for each nlea,) ;  ~0 - 0.0 and 0.1; /J6 - (31,21,11), (21,11,1), and 
(12, 11, 10); ~0 0.01, 0.1, 1.0, 2.0, and 5.0. 

M o d e l  3. A 33 factorial design with linear effects where n - 27, 
/3~ = (5.2523, 0.569, 0.4312, 0.2682), the fitted value of the textile exam- 
ple of Box and Cox (1964);)~0 = 0.0, 0.1 and 0.05; and or0 = 0.01, 0.1, 
1.0, 2.0, and 5.0. 

The selected results are summarized in Table 1. Detailed results are 
available from the author  upon request. The results generally show that  the 
formulas (3.2) and (3.4) are very accurate. Thus, the analytical conclusions 
are applicable wizen n is not large. It is interesting to note that  in the one- 
mean nlodel the sd of ),n decreases almost linearly with the increase of (r0. 
In the three-means model, the sd of A~ decreases significantly as the means 
nlove further apart  and when the mean-spread is large the sd of ),~ depends 
very little on ~0; when ~0 is large relative to the mean-spread, the sd of ),n 
is small. Furthermore, the magnitude of/3o plays no role in the behavior of 
wizen ),0 - 0, but  plays sonle role when A0 # 0. In the 33 factorial design, 
the s'd of A~ reaches to its maximum at a certain value of or0. 

4 T h e  u n c o n d i t i o n a l  effect  

We now start  to investigate the effect of estimating a t ransformation on 
the Box-Cox T-ratio. We first s tudy the simpler unconditional effect, and 
then the harder conditional effect with )~ regarded as fixed in next section. 
Again the theoretical results are followed by the Monte Carlo simulations. 
Simulation serves the purpose of confirmation of using second-order expan- 
sion to approximate the small sample effect of transformation estimation, 
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GO "'" flO 
0.1 

1.0 

10.0 

flO " ' '  GO 
31,21,11 

21,11,1 

12,11,10 

Go = 0.1 

0.0083 
0.0085 

Go .01 

0.0064 

0.0063 

Model 1 

Ao - 0.0 

0.1 1.0 5.0 20.0 

1.2341 1.2402 1.2143 - 
1.1547 1.1547 1.1547 1.1547 

0.1232 0.1227 0.1243 0.1237 

0.0115 0.0115 0.0115 0.0115 

0.0124 0.0124 0.0122 0.0123 

0.0115 0.0115 0.0115 0.0115 

M o d e l 2  

Ao = 0.1 

0.01 0.1 1.0 2.0 

0.0471 0.0468 0.0446 0.0459 

0.0430 0.0430 0.0427 0.0419 

0.0299 0.0298 0.0197 0.0294 

0.0276 0.0276 0.0274 0.0267 

0.4586 0.4839 0.3392 0.2096 

0.4472 0.4448 0.3067 0.1906 

Model 3 

Ao - 0.0 

0.1 1.0 2.0 5.0 

0.0817 0.1472 0.0856 0.0359 

0.0792 0.1262 0.0739 0.0311 

Model 3 

Ao - -0 .05  

0.1 1.0 

0.0601 0.1083 

0.0585 0.0928 

2.0 5.0 

0.0618 

0.0543 0.0229 

Table t: Selected results for the simulated a.nd ca.tcutated (lower ent[o0 sd's of A. 
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and thus checks the reliability of the theoretical conclusions. 

4.1 T h e o r e t i c a l  re su l t s  

T h e o r e m  4.1. Assuming: i) the first six moments of el are the saute as 
those of a standard normal random variable; ii) X ' X  O(n); and iii) the 
conditions of Corollary 2.1 are true, we have 

TBc(L,)  To + U,(L~ - ~0) + U2(L~ - ~0) ~ + O~(,~ 1) + O~(e]), (4.1) 

Wr[T~c( i~)]  = W,'(T0) + 0~(,~ ~) + O,(e~), (~.2) 

~here (71 v ~ ' ~ ( X ' X ) - ~ X ' E ( ~  - r  �89 ~ -  1)1, and ~,~ - �89 
:~r lx'~llO(e *#r ~. 

Proof. For (4.1), evaluating U1 of (2.6) using (3.5) gives U-1. The tran- 
sition fi'om U2 to U-2 is based on the following arguments.  For fixed g0, 
U2(),,~ - A0) 2 Op(n *), which should be absorbed into the error term. 
However, for s t ructured models with n fixed, it can be seen using (3.5) and 
the results of Theorem 3.1 that,  as o0 --+ 0, U2(An ~o) 2 = Op(1) while 

UI(),,~ - A0) Op(~r0), suggesting that  the leading tern,  of U2, that  is/-~2, 
should be kept for the purpose of small o0 study. This te rm becomes more 
important  when studying the A~-fixed behavior of T B C ( ~ )  in Section 5. 

For (4.2), based on the general assumption of Section 2 that  a quanti ty 
bounded in probability has a finite expectation it suffices to show that  
Cov[To, (72(),n - A) 2] is of order Op(n *) that  is easy by Theorem 3.1 and 

that  Coy[To, (72(A~ - A0) 2] is negligible when or0 is small. Some algebra 
leads to Cov[To, &(5,~, - ~0) 2] ~ - 2 ( X ' X )  * when ~0 is s,nall, showing 
that  it is negligible. [] 

Note that  for the case of log transformation, the Op(O a) te rm in Theo- 
rem 4.1 vanishes and the exact expressions of U1 and U2 can be obtained 

= 1 log2 directly letting A0 --+ 0 in the by either the relation ]z(y, O) ~ y or 

expressions of ~rl and ~r2, which gives 

u~ v ~ ( X ' x ) - l x ' E ( ,  - f ) # r  + �89162162 ~ - 1)] 

u2 - ( 8 ~ v ~ ) - l C x ' x ) - ~ x ' e l l O , ~  II ~ �9 
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The results in Theorem 4.1, especially (4.2), is certainly encouraging. It 
says that  when n is snmll, est imating the transformation has very little 
effect on the variance of T e e  (),.~) in any situations. In contrast, >,~, depends 
very nmch on the model type, mean spread and magnitude of error variance. 
Our results also show that  TBc( i~ )  does not depend on the synnnetry of 
design. In contrast, the stabili ty (with respect to ),.~) of the est imated slope 
coefficients on the z scale depends on the synnnetry of design (Duan, 1993). 
The small n effect (unconditional) of est imating transformation on higher 
moments  of TBC(),~,) can be studied in detail by examining the "affecting" 
term Ul(J,n -- ),o) + U2(J,n - ),0) 2 at various situations, which can be done 
in connection with Theorem 3.1. The investigations can be made easier by 
first concentrating on the log transformation (),0 = 0) and then generalizing 
to other transformations.  

i) When QV 2 # 0, which happens when model  for tile means have struc- 
ture, such as regression models or factorial models with two or more 
factors, the effect is small if cr0 is small since UI~.++ is small in the 
sense of or0 and U2A~ is small in tile sense of n. This point becomes 
more evident from tile limits: 

lim~o_+o(U1)(r j - O, and 

lim~0_+0 (U,~i2n) -�89 
where the second one is clearly of the same order as the error term 
o~(~-1). 

ii) When Qrl 2 = O, which occurs when model for the means does not 
have structure, such as one factor ANOVA model, U~ vanishes and 
U1].,~ is a quant i ty  of order Ov(n z/2). When  or0 is small U1),~ is quite 
stable with respect to the changes in parameter  values as seen from 
the limit, 

l ira (gli+) - � 8 9  - Oll-~(x'x)-~x'u(~1 - ~)#~](~I - ~)'~. 
,~o..--~ O 

iii) W h e n  II~-  ~II - O, which happens when all means are equal, we have 

~++-+/31~+(33 - ++)i~(+ + - s), Uli.+ + 

a quantity independent of ~ro and fg0, of order Op(n -U2) and expected 
to be small. This is in contrast to tile behavior of An in one-mean 

models where Var(in) can be very large when ~r 0 is small. 



182 Z. Yang 

iv) Finally when ~r 0 is large, all models behave like a one-mean model as 
evidenced by the limit 

lira (Ul ,~n)= I?Z 3/211 ,'~, 
6r0 ---~ COC~ 

hence the effect in this case is expected to be small in general. 

The discussions i)-iii) above extend directly to ),0 ~ 0 cases. The last 
discussion extends to A0 ~ 0 cases where ~r 0 is large but 0o is still small. 

4.2 M o n t e  Carlo s imulat ions  

We now present some simulation results to confirm our theoretical conclu- 
sions. We consider again the three models used in Section 3 with similar 
parameter  configurations. The selected results are put  in Table 2. When 
the errors are exactly normal, Vat(To) -- [n2/(n - p  - 3)](X'X) 1 with the 
degrees of fl'eedom (elf) of T0 reduced by one, i.e., df = n p 1. The 
reduction in df is to account for the estimation of ),0. Simulation results 
exhibit a general excellent agreement between Va~'[TBC(Ar,)] and Va~'(To). 
This illustrates the accuracy of second-order expansion (4.2) when n is not 
large. 

To demonstra te  the effect of design, we also consider an asymmetr ic  
2 a factorial design obtained by modifying the design matr ix  in the above 
symmetric a a factorial design by changing the level "-1" to "0", while leav- 
ing the others unchanged (Duan, 1993). The results in Table 2 show that  
symmet ry  of design is not important  to the behavior of TBC(),.~). 

5 T h e  e f fec t  o f  t r a n s f o r m a t i o n  m i s s p e c i f i c a t i o n  

We now study tile effect of t ransformation misspecification on tile Box-Cox 
T-ratio, i .e ,  the ),~-fixed behavior of TBc(A~). That  is the key issue to 
the validity of the Box-Cox transformation methodology. This is done by 
comparing the ),~-fixed mean and variance of TBc(),~) with the mean and 
variance of To. The study of the ),n-fixed behavior can be interpreted as 
sensitivity analysis of TBC(),n) when s is different from ),0 (Duan, 1993). 
By ~ - f i x e d  we mean ignoring the randomness of A~ but not the effect 
of changing parameter  values and sample size. This is handled by writing 
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Model 1 
A0 = 0.0, sd(To) = 1.0426 

a o " . # o  0.1 1.0 
0.1 1.0633 1.0565 
1.0 1.0570 1.0579 

10.0 1.0593 1.0617 

5.0 
1.0605 
1.0608 
1.0529 

20.0 

1.0585 
1.0563 

Model 2 
Ao 0.05, sd(Toi) 1.8974 

fl0 oo tl 
(21, 11, 1) t 0.01 

0.1 
1.0 
5.0 

~2 
1.9481 1.9318 
1.9575 1.9293 

1.9543 1.8920 
1.9631 1.8981 

1.9608 
1.9334 
1.9403 
1.9393 

~0 
~0 

1.1619 
0.01 
1.0 
1.0 
5.0 

Ao 

Model 3 
0.0, first row is s'd(To) 

tl t2 t3 
0.4230 1.4230 

1.1655 
1.1604 
1.1927 
1.1975 

~4 
1.4230 

1.4501 1.4259 1.4365 
1.4262 1.4285 1.4249 
1.4304 1.4234 1.4116 
1.4136 1.4172 1.4156 

2 ~ factorial design 
0.0, first row is s'd(To) 

,90 tl 
1.8371 
1.9054 
1.8636 
1.8683 
1.8448 

t2 t3 t4 
2.4646 2.4054 2.4054 
2.5975 2.5657 2.5849 
2.4878 2.4771 2.4568 
2.4624 2.4357 2.4341 
2.4252 2.4290 2.4740 

0.01 

0.i 

1.0 

5.0 

Table 2: Sinmla.ted sd's of the ith element (ti) of the Box-Cox T-ra.tio 
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),~, A0+Ar()m),  where A is the standardized )v, and r()m) is the s tandard 
deviation of i.n. Fixing 5,n means fixing A but  not r(i.n) with respect to 
V, ~0 and n. This is practically meaningflfl as, for example, when n = 25 
one obtains ),.n - 0.5, which can be used to transform the current data  set 
or future da ta  set of the same size and from the same situations. However, 
when da ta  set is doubled in size or tile experimental  setting is changed, 
one definitely would not use tile same "0.5" to transform the data, instead 
would reestimate the t ransformation value. 

5.1 T h e o r e t i c a l  r e s u l t s  

T h e o r e m  5.1. Assume that the conditions of Corollary 2.1 are satisfied, 
then 

E[TBc(X.~,)IA fixed] E(To) q- Op(~'~--l), 
W<[TBc(X.~)IA fixed] = V~'(To) + 2P(A) + Op(~ ~), (5.1) 

~;,r162 r (A)  = A;( i~)E(ToU{)  - A2 ;2 ( i~ )E(ToG) .  

Pro@ This is straightforward following Corollary 2.1. [] 

When  00 is small, U1 and U2 in Corollary 2.1 can be approximated by 
/)1 and /)2 of Theorem 4.1. Thus, E(ToU{) and E(ToU~) can be easily 
approximated,  which gives, 

r (A) ~ nAo 1AT ( ~ ) ( X ; X ) -  ~u (X;X) -1-�89 T 2 (s  Q~ II ~ (x'x)-1 
(5.2) 

where D - Diag{r - r215 and a - ,~o2(1 + ~0~)log(1 + ,%~). 

Lett ing A0 --+ 0 in (5.2) gives an expression for corresponding to a 
log-transformation. Using (5.2) in connection with Theorem 3.1, we can 
summarize tile behavior of F(A) for A fixed as follows: 

i) For s t ructured models with small c~0, F(A) becomes negative, suggest- 
ing that  the i;~-fixed variance of T . c ( i , J  is smaller than Vat(To). 
That  is, a misspecified t ransformation deflates tile variance of Box- 
Cox T-ratio. Tiffs can be seen more clearly fiom the limit 

lira F(A) _ 1  2 , 
o-0---, 0 
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ii) 

iii) 

However, as it is very likely that  A takes values in the interval 
( -2 ,  2), that  is, )'.n is within two standard deviations of A0, this de- 
flation factor will be small, especially when n is large. 

For uns t ructured models, the second term in (5.2) vanishes~ and when 
~r0 is small, the i th  diagonal element of F(A) is positive if A(qb~ r > 
0 and negative if A(r ~) < 0, suggesting that  ),.~-fixed variance of 
/th elenlent of TBC(]~r,) is accordingly larger or smaller than the i th  
diagonal element of Vat(A0). This point becomes more evident fl'om 
the following limit, 

r(a) *(X'X) *X'DX(X'X) 1. 
k0--+O 

Hence when n is small the ),~z-fixed effect may not be negligible for 
an unst ructured model with g0 small relative to the spread in means. 
Further,  it is easy to see that  t rP (A)  0 or close to 0, suggesting 
that  the total variance trVar[Tsc,(k.n)] does not depend nmch on the 
value of A.~. 

For a one-mean model, F(A) 0, indicating that  when n is small 
the A~-fixed effect of a estimating t ransformation will be very small 
in this case. 

Finally when ~r 0 is large, all models behave like a one-mean model 
and the effect of t ransform-ation misspecification is very small as 
evidenced by lim~0_++ F(A) = 0 for A0 = 0. This limit suggests that  
for other transformations F(A) is small when ~r0 is large but  O0 is 
small. 

Combining tile results of Section 3 and 5, we conclude that  in tile cases 
that  ),.~ behaves poorly such as one-mean models with small ~r0, TBC'(),.~) is 
very robust to the changes of )'.n, while in the cases that  TBC(]~.n) is sensitive 
to tile changes in A.~ such as uns t ructured models with ~r0 small relative to 
the mean-spread, ),.~ behaves very well. This is an important  conclusion; it 
sheds light on the validity of Box-Cox methodology. The practical implica- 
tion of these results is profound: the Box-Cox transformation methodology 
performs well in most of the statistical inferential situations. 



186 Z. ]rang 

5.2 Monte  Carlo s imulat ions  

The  three models in Section 3 are used again with similar parameter  set- 
tings. The  sinlulation results reported in Tables 3 are the s imulated An-fixed 
s tandard  deviations of TBC(),n) or the element of TBC(),n) indicated by ti 
in the table when >,n -- A0 + Ar(>,.n) with  A -- -k2, -k3. The  value of r(A.n) 
is calculated using (3.2) or (3.4). More extensive simulat ion results are 
available from the author.  

The  results for a one-mean model  show tha t  ,d[TBc(),r~)[An fixed] can 
be well approximate  by sd(To) for any situations,  irrespective to the size of 
the difference J,.n - k 0 .  This  means that  for the one-mean model  TBC(J,.n) 
is very robust  against t ransformat ion misspecification. The  results for the 
three-means model  show tha t  the A~-fixed effect on the  individual  variance 
can be significant but  not on the total  variance, which is consistent with  
the theory. In model  3, our theory suggests tha t  the A,~-fixed , d  of T s c  (),~) 
be smaller than  s'd(To) when ~r 0 is small. Simulations show that  it is indeed 
smaller, but  only slightly if ILl < 2. The  effect is small when ~r 0 is modera te  
to large. The  A~-fixed ad of TBC(),~) can also be easily approximated  by 
(5.1). Calculations (not reported) show that  it is very accurate. 
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A p p e n d i x :  P r o o f  o f  T h e o r e m  2.1 

A second-order Taylor expansion of ~l(Y,  ~ )  a round (rio, A0, go) gives 

0 @1 + "i'11 (;~,,,/s0) + 'i'~2 ( s  - ~,0) + 'i'~a (e*,~ - g0)+  
+�89 o ( /~  -;J0)']~q11(/~,~ - /J0)  + } } ~ ( i , ~  - ~o)~+ 
+~,1~(a go) ~ + ~'11~(~ /30)(i~ ~0)+ 
+~'l~(A /3o)(a~ g0)+~,l~(i. ~0)(e,~ g0)+o~(~-a/~). 

(A.1) 
First-order  Taylor expansions of ~ , ( y ,  ~n) and ~3(Y, ~.n) a round (/30, A0, ~0) 
yield 

~ /30 = A1) I~ ' I  + A12(A~ )'0)1 + Op(n 1), (A.2) 
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Model 1 

)~o --  0.0,  s d ( T o )  --  1.0342 

A Go #o 0.1 #o 1.0 #o 10 
3 0.1 1.0585 1.0598 1.0416 
-3 1.0580 1.0657 1.0494 

3 1 1.0492 1.0493 1.0493 
-3 1.0632 1.0461 1.0612 

3 10 1.0485 1.0520 1.0627 
-3 1.0460 1.0463 1.0396 

Model 2 
Ao = OOl,/ o = (12,11,  lO)' 

ad(To i )  = 1.8974 

A G 0 tl t2 t3 
3 0.01 2.5872 1.6783 1.0891 
-3 1.0967 1.6608 2.5874 

3 0.1 2.5739 1.6925 1.0837 
-3 1.1153 1.6704 2.6194 
3 2 2.2163 1.8336 1.5580 
-3 1.5304 1.8360 2.2273 

Model 3 

)~o = 0.0, A = -.-2 
a'd(To) - (1.1619, 1.4230, 1.4230, 1.4230) 

GO ~,1 ;/;'2 ;/;'3 t4 
0.001 1.0719 1.2924 1.2823 1.3016 

1.0637 1.2983 1.2849 1.3096 

0.1 1.0498 1.2934 1.2969 1.2819 
1.0685 1.2878 1.2899 1.2940 

1.0 1.1635 1.4044 1.3778 1.4059 
1.1460 1.3921 1.3871 1.3759 

10.0 1.1447 1.3846 1.3846 1.3883 
1.1630 1.3919 1.3992 1.3704 

Table  3: Sire,Oared i ,~-~e0 sd  o f  TBc(5,,~) 
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d-~, - :o -Aa3~[~3 + A32(A~, - Ao)] + Ov(n 2). (A.3) 

Substi tuting A.2 and A.3 into A.1 for the terms of order Op(n 1) and 
replacing ~'ijk by B~jk give 

-fl.n riO = A111{ti*1 (tI/ll All)Al-11@l ~ 1 3 A ~ 1 ~ a +  
1B *A l~,  x 2 -  +�89 o (A~1*~'1)]'B1~1A1)+~ + ~ 1~; ~ ~; ~- 

+BI~AI~A~J~' I '~}  A l l { ~ ' ~  (+~1 AI~)AI~AI~ 
-ltI/13A~1A32 q- [/Tp @ (n111~Ill)]tS111A2-11A22q-S133A3:n321I/3 - 

Bl12A11~I*1 -4- Bl laA111Aal  (~I'1A32 -4- A12~I*a) 

-S l2aAa)~a} ( ) , r ,  - ),o) - A1){  lgB122+ 
1B - 1  2 +�89 | (Ai-~A12)]'B12iA~-~Ai2 + ~ la3(Aaa Aa2) - 

B112A11A12 + B113Al-1A;~A12A32 
-B12aAadAa2} (J,.n - A0) 2 + Op(n 3/2). 

(A.4) 

Now, taking expectation of A.4 treating ),~ as fixed gives expansions of 
fiu(/~n) and ~0n - flu(An). Letting J,n - A0 in the expansion of fiu(J,n) and 
fl~ fl~(A~) results in an expansion for fl~0 fl~(),o). Tiros, 

fl~ fl~(A~) = fl,~o fl~(),o) + the second-order term + @ ( n  8/2). (A.5) 

Now, considering O"n 1 aS 3 function of f 2, a first-order Taylor expansion 
gives 

&~-I &nO 1 __ 1 - 3 , ~ 2  ~2 gcr o ~{7.~ - {r.~o ) + Op(n-1) ,  (A.6) 

and considering ~2 (r.~ as a function of ),n, we have by a second-order Taylor 
expansion around A0 

~2 -,2 r ~ o  + +(~o)(h~, - ~o) + +(~o)(~ ,  - ~o) 2, (A.r) 

where i'(k0) and i:(k0) are the first and second derivatives of &.~ with respect 
to ),1~ evaluated at k0. Substi tuting (A.7) into (A.6) and nmltiplying the 
resulted expression by (A.5) side by side and then by ~ gives the first 
part of Theorem 2.1. The second part is obtained by substi tut ing (A.2) 
and (A.a) into 

O=ItTJd2(y,~n)=~2-t-~21(fl.n /7~0 ) -1- tI/22 ( i  n /X0) -1- ~23 (a. n O'0) -1- Op (ft-1). 
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The  final expressions of U1 and  U2 are given as follows 

U1 �89 Al l l  r - v/-~Oo1Al11{r - A12 - (r - A l l )Al l1A12  - 

'i213Aa~ A32+II  p | ( A l ~ r 1 6 2  
-Bl12All~'l + BllaAllAal(~'lA32 + A12~'a)- Bl%A31~'3}, 
1 3 A 1 -  .. u2 yV-ffO-o ,Iqr( 0). 
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