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Combining Predictors to Achieve Optimal Trade-Offs Between Selection
Quality and Adverse Impact

Wilfried De Corte and Filip Lievens
Ghent University

Paul R. Sackett
University of Minnesota, Twin Cities Campus

The authors propose a procedure to determine (a) predictor composites that result in a Pareto-optimal
trade-off between the often competing goals in personnel selection of quality and adverse impact and (b)
the relative importance of the quality and impact objectives that correspond to each of these trade-offs.
They also investigated whether the obtained Pareto-optimal composites continue to perform well under
variability of the selection parameters that characterize the intended selection decision. The results of this
investigation indicate that this is indeed the case. The authors suggest that the procedure be used as one
of a number of potential strategies for addressing the quality–adverse impact problem in settings where
estimates of the selection parameters (e.g., validity estimates, predictor intercorrelations, subgroup mean
differences on the predictors and criteria) are available from either a local validation study or meta-
analytic research.

Keywords: personnel selection, adverse impact, optimal trade-off, selection quality, predictor composites

In a recent article, Campion et al. (2001) observed that the
quandary posed by the often competing goals of valid selection
and a diverse workforce “may constitute the most perplexing
problem facing the practice of personnel selection today” (p. 158).
This quandary, henceforth referred to as the selection quality–
adverse impact problem, emerges because many valid preemploy-
ment tests (e.g., cognitive ability tests) show substantial effect
sizes (i.e, standardized mean differences) by race or ethnicity,
resulting in selection rates that vary substantially for applicant
groups that differ in terms of these characteristics (e.g., Sackett,
Schmitt, Ellingson, & Kabin, 2001).

To address this quandary, researchers have considered a number
of alternatives, including banding, adaptation of the presentation
format or the content of tests, modification of the test taker’s
attitudes, and within-group norming (cf. Sackett et al., 2001;
Sackett & Wilk, 1994). Another option is to use a composite of
selection predictors that have different effect sizes to obtain a
better trade-off between the goals of selection quality and adverse
impact than would otherwise be the case. This strategy addresses
the common scenario in which an employer plans to use a com-
posite of a set of predictors (e.g., cognitive tests, personality tests,
interviews, work samples). In this scenario, selection practitioners
know how to maximize the mean criterion score of selected
applicants, namely, by inputting all predictors into a regression
equation and using the resulting weights. But often the employer
asks, “Is there an alternative way of using the predictors that comes
close to this optimal solution in terms of the level of criterion

performance achieved but does so with less adverse impact?” At
this point, selection practitioners do not know how to respond to
such a request other than by trial and error with various predictor
weights (Hattrup, Rock, & Scalia, 1997; Pulakos & Schmitt, 1996;
Sackett & Ellingson, 1997; Schmitt, Rogers, Chan, Sheppard, &
Jennings, 1997). In fact, this is what one also commonly sees in
technical reports: an examination of a series of alternative models
that use varying combinations of available predictors, weighted in
differing ways. The current article provides an elegant solution to
this problem. Note that in the United States, the legal system calls
for an investigation of whether there are alternatives with substan-
tially equal validity but less adverse impact. We view combining
available predictors in differing ways as an example of such
“alternatives.” Note that the question of “substantially equal” is a
value judgment: Some may say this means “no more than a 1%
reduction from the utility gain from the performance maximizing
weights,” others might accept a 5% reduction, and still others a
10% reduction. The method described in this article permits one to
directly answer the question of how much of an improvement in
minority hiring can be achieved within whatever constraint (1%,
5%, 10%, and so forth, reduction in the criterion) the researcher
finds acceptable.

Prior Research on Predictor Composite Alternatives

Over the last 10 years, supplementing valid, cognitive predictors
with noncognitive predictors has emerged as a potentially useful
strategy for addressing the selection quality–adverse impact trade-
off. If noncognitive predictors are relevant to the job of interest,
these predictors might increase the validity coefficients obtained.
In addition, if subgroup differences for these noncognitive tests are
smaller, a composite of a traditional cognitive test with these
noncognitive tests will often lead to smaller subgroup differences
than use of the traditional cognitive test alone (Sackett et al.,
2001).
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Various studies have examined the effectiveness of using com-
posite alternatives. For instance, Pulakos and Schmitt (1996) com-
pared a traditional verbal ability measure with three alternative
predictors: biodata, a situational judgment test, and a structured
interview. Use of the verbal ability test alone resulted in a stan-
dardized effect size, d, of 1.03, whereas use of a composite of the
four measures produced an effect size of 0.63, and a composite of
the three alternative predictors produced an effect size of 0.23 (see
also Ryan, Ployhart, & Friedel, 1998). Other studies have explored
more generally the effects of multiple selection parameters on
adverse impact. For example, Schmitt et al. (1997) examined the
effect of the number of predictors, predictor intercorrelations,
validities, and level of predictor subgroup differences on adverse
impact associated with the predictor composite (see also Dover-
spike, Winter, Healy, & Barrett, 1996). Sackett and Ellingson
(1997) developed a set of helpful implications associated with
estimating the effect of predictor composites on adverse impact.
Hattrup et al. (1997) investigated the effect of varying the impor-
tance of different criterion dimensions of job performance on
adverse impact.

These previous studies share several limitations. First, prior
research has used a trial-and-error strategy for determining various
predictor weights to find a composite alternative that comes closest
to meeting the two objectives. Second, in most studies, including
the recent study by Potosky, Bobko, and Roth (2005), the weights
of the predictors have been determined by regressing the compos-
ite performance criterion on the predictors. Although this
regression-based approach maximizes validity, it does not answer
the question of whether there is an alternative way of using the
predictors that comes close to the regression-based weighting in
terms of predictive efficiency but does so with less adverse impact.
Only De Corte (1999) showed how nonlinear programming can be
used to combine job performance predictors into a predictor com-
posite such that the average quality of the composite-selected
employees is maximized and the adverse impact ratio remains
within acceptable bounds. However, an important limitation of De
Corte (1999) was that only one of the goals (i.e., selection quality)
was optimized, whereas the other objective (adverse impact) was
dealt with as a constraint. In other words, De Corte (1999) did not
address how available predictors should best be combined (i.e.,
weighed) to achieve certain desired levels of both quality and
adverse impact. Yet, in cases in which both these goals are valued,
this seems to be the primary issue that selection practitioners are
confronted with when they consider the alternative of using pre-
dictor composites to address the selection quality–adverse impact
problem in a particular application (Outtz, 2002).

To overcome the limitations of previous research, we developed
a general procedure for determining values for the predictor
weights such that the resulting predictor composites provide an
optimal balance or trade-off between the quality and adverse
impact objectives. The procedure applies optimization methods
from the field of operations research and results in the determina-
tion of so-called Pareto-optimal predictor composites. The next
section presents the procedure. First, we provide a basic introduc-
tion to single- and multi-objective optimization and indicate the
relevance of the approach for the purpose at hand. Next, we clarify
the notion of Pareto-optimal predictor composites and describe the
application context and the details of the optimization method used
to obtain these composites.

Procedure for Obtaining Pareto-Optimal Predictor
Composites

Single- and Multi-Objective Optimization

Optimization is one of the primary tools used in operations
research, which is the interdisciplinary science of the usage of
quantitative methods to assist decision makers in designing, ana-
lyzing, and improving the performance of scientific, financial,
organizational, or engineering systems. Basically, optimization
focuses on the minimization or maximization, subject to certain
constraints, of an objective. The objective as well as the constraints
are typically functions of certain variables that are usually referred
to as decision variables.

As an example, suppose that a farmer has a piece of land, 210
acres (849,843.33 m2) large, to be planted by either Crop 1 or Crop
2 or some combination of both. The farmer has limited permissible
amounts of fertilizer (i.e., 20,000 lb; 9,071.9 kg) and pesticide (i.e.,
550 lb; 249.5 kg) that can be used, each of which is required in
different amounts per unit area for Crop 1 and Crop 2. Crop 1
requires 125 lb (56.7 kg) of fertilizer and 2 lb (0.9 kg) of pesticide
per acre, whereas Crop 2 requires 70 lb (31.8 kg) of fertilizer and
3 lb (1.4 kg) of pesticide per acre. Let the selling price for Crop 1
and Crop 2 be $625 per acre and $495 per acre, respectively, and
if the area planted with Crop 1 and Crop 2 is denoted as x1 and x2,
respectively, the objective of the optimization can be expressed as

maximize 625x1 � 495x2 �i.e., maximize the revenue�.

The decision variables are the areas x1 and x2 to be planted with
Crops 1 and 2, whereas the constraints of the optimization problem
are

x1 � x2 � 210 �limit on the total area to be planted�

125x1 � 70x2 � 20,000 �limit on the fertilizer�

2x1 � 3x2 � 550 �limit on the pesticide�

x1 � 0 and x2 � 0 �no negative areas�.

The example illustrates a so-called linear programming (or opti-
mization) problem because the objective and the contraints are all
linear functions of the decision variables. The solution of the
program shows values of 96.4 and 113.6 for x1 and x2, respec-
tively, meaning that the farmer should plant 96.4 acres (390,118.6
m2) with Crop 1 and 113.6 acres (459,724.8 m2) with Crop 2.
Next, looking at the values of the constraints for the solution, it can
be observed that the first two restrictions are met exactly (i.e., the
value of the constraint is equal to the upper limit value at the
solution), whereas the final constraint is not. Thus, 96.4 � 113.6 �
210 and 125 � 96.4 � 70 � 113.6 � 20,000 (within rounding
precision), whereas 2 � 96.4 � 3 � 113.6 � 533.6 � 550.
Constraints that are met exactly (which will always be the case for
equality constraints) are usually referred to as binding constraints.

When either the objective of an optimization problem or any one
of its constraints is nonlinear in the decision variables, the problem
is called a nonlinear programming problem. Another distinction is
between constrained (i.e., at least one constraint is present) and
unconstrained programs. Still further distinctions are made, and we
refer the reader to, for example, Nash and Sofer (1996) for a more
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detailed description of these problem types and the different tech-
niques used to solve them.

Because only one objective must be optimized in the example
just given, the problem is a single-objective programming prob-
lem. Such problems are usually characterized by a single optimum
solution (i.e., a single optimum value for the decision variables).
This is no longer the case when more than one objective is of
interest, however. The presence of multiple objectives implies that
in such problems there is rarely a single solution that is optimal
according to every objective. Rather, of the possible solutions that
produce a given level of one objective (e.g., a given level of mean
performance achieved via selection), there is one that produces a
higher value on a second objective (e.g., rate of minority selection)
than any other. That solution is referred to as Pareto optimal; other
terms used in the literature for this are efficient, nondominated, and
noninferior. There is a Pareto-optimal solution for every attainable
level of each outcome. For example, for any attainable level of
mean performance, there is a Pareto-optimal solution, namely, the
one weighting of the predictors out of many possible that would
produce the highest rate of minority selection for that level of
mean performance.

Relevance of the Optimization Approach

The principal issue addressed in this article corresponds to a
multi-objective programming (MOP) problem with two objectives.
The first objective is to maximize the selection quality, and the
second is to minimize the adverse impact. Also, both objectives are
typically in conflict, as many valid selection predictors show
substantial effect sizes. Furthermore, with a given set of predictor
variables, both objectives are a function of the same decision
variables. More specifically, both objectives depend on (a) the
weights with which the predictors are combined in the predictor
composite and (b) the cutoff value used for the composite.

Methods to solve MOP problems are usually classified in terms
of when they elicit preference information from the decision maker
in order to choose between the Pareto-optimal solutions (Marler &
Arora, 2004). Preferences may be elicited before the method is
applied (a priori articulation methods), during the application
(interactive methods), or after the method has been applied (a
posteriori articulation methods), or no preference information may
be used at all. The most popular a priori articulation method is the
weighted sum method in which the different objectives are as-
signed weights and then summed to a single objective. Goal
programming, where goals (i.e., specific values for each objective)
are specified for each objective, is another a priori approach.

None of the a priori approaches is well suited to address the
selection quality–adverse impact MOP problem, however. The
main reason for this (and a reason that also applies to the interac-
tive and the no-preference methods, which are essentially basic
variants of the a priori methods) is that their application requires a
number of difficult ad hoc decisions, such as, for example, the
choice of the relative weight or the goal value to be assigned to the
objectives. For one to make these decisions effectively, it is helpful
to first have a clear picture of the palette of possible Pareto-optimal
solutions that can be achieved for a given set of selection predic-
tors. A posteriori methods focus explicitly on such a picture and
are therefore considered hereafter to study the selection quality–
adverse impact MOP problem. Before discussing the actual im-

plementation of the chosen a posteriori method, we first elaborate
the notion of Pareto-optimal predictor composites.

Definition of Pareto-Optimal Composites and Trade-Offs

A predictor composite is called Pareto optimal when it results in
a Pareto-optimal trade-off between the goals of quality and adverse
impact, given the details of the intended selection scenario (e.g.,
selection ratio) and the available selection predictors. There is a
Pareto-optimal trade-off for any given level of selection quality.
For example, there may be multiple combinations of predictors and
predictor weights that would produce a mean standardized perfor-
mance level of 1.0 among those selected. However, of those
multiple solutions, the Pareto-optimal one would be the one that
maximizes the rate of minority selection (i.e., maximizes the
adverse impact ratio). Similarly, there may be many combinations
of predictors and predictor weights that would result in a given
level of the adverse impact ratio (e.g., .80). The Pareto-optimal one
would be the one that maximizes selection quality. More generally,
a trade-off between selection quality and adverse impact is called
Pareto optimal when any weighing scheme for the predictors that
differs from the one that is associated with the optimal trade-off
results in either a decrease in the selection quality or an increase in
the level of adverse impact. The entire set of Pareto-optimal
trade-offs is referred to as the Pareto-optimal trade-off function or
the Pareto surface (Keeney & Raiffa, 1993). The present method
is aimed at a representative collection of Pareto points (i.e., of
Pareto-optimal trade-offs) where each point corresponds to a spe-
cific weighing of the predictors and is characterized by an optimal
pair of values for the selection quality and the adverse impact
objective.

Application Context

The new procedure for determining Pareto-optimal predictor
composites is indicated whenever the goals of selection quality and
diversity are in conflict. This is hardly limiting, however, because
these goals are in conflict whenever they cannot both be optimized
by exactly the same weighting of the available selection predictors.
Thus, even in the case in which the most valid predictors would
have the smallest effect sizes, the goals of quality and diversity
will most likely still be in conflict because the predictor weights
that maximize, for example, the composite validity (i.e., the re-
gression weights) will almost surely differ from the weights that
minimize the composite effect size.

There is also little or no restriction on the variety of planned,
“fixed applicant pool” (cf. Standards for Educational and Psycho-
logical Testing, American Educational Research Association,
American Psychological Association, National Council on Mea-
surement in Education, 1999, p. 152) selection scenarios that can
be handled by the method. Both probationary and nonprobationary
selections, as well as situations in which the applicants come from
several different minority populations, can be addressed. Thus, the
method can cope, for example, with decisions in which the appli-
cant pool comprises White, Black, and Hispanic candidates and the
latter two applicant groups are treated as separate minority groups.
The method can also deal with selection scenarios where candi-
dates who are successful on an initial screen are admitted to a job
training program and where it is later decided on the basis of the

1382 DE CORTE, LIEVENS, AND SACKETT



training performance which of these initially selected candidates
will be retained.

For reasons of simplicity, the following description of the pro-
cedure focuses on nonprobationary scenarios involving only one
minority group. Also, we assume that representative estimates are
available for the selection parameters (i.e., the selection rate and
the proportional representation of the minority and the majority
candidates in the applicant pool, as well as for the effect size,
validity, and intercorrelations of the available predictors) that
characterize the selection scenario and the available predictors.
These estimates may be derived either from a local past or current
validation study or from the findings reported in the constantly
growing number of meta-analytic studies on the characteristics of
selection predictors and their relationship to the most important
performance dimensions (e.g., Bobko, Roth, & Potosky, 1999;
Hough, Oswald, & Ployhart, 2001; McKay & McDaniel, 2006;
Potosky, Bobko, & Roth, 2005; Salgado, Anderson, Moscoso,
Bertua, & De Fruyt, 2003; Schmidt & Hunter, 1998; Schmitt,
Clause, & Pulakos, 1996). In a later section we address the issue
of uncertainty in estimation of selection parameters.

In addition to representative estimates for the selection param-
eters, the present procedure also requires an assumption about the
distribution of the predictor scores in the majority and the minority
population. In particular, it is assumed that the predictors and the
criterion dimension(s) have a joint multivariate normal distribution
with the same variance–covariance matrix but differing means in
the majority and the minority applicant populations. The assump-
tion is also invoked by De Corte (1999), and it is essentially
equivalent to the one that underlies previous study results on the
effect of different predictor combinations on minority hiring and
adverse impact (e.g., Hattrup et al., 1997; Schmitt et al., 1997). As
shown in Appendix A, this assumption permits expressing the
selection outcomes of adverse impact (as indicated by the adverse
impact ratio) and quality (see later discussion) in terms of the
selection parameter data, on the one hand, and the values of the
decision variables, on the other hand. As noted earlier, these
decision variables correspond for the present selection scenarios to
the weights assigned to the predictors in forming the predictor
composite and to the cutoff score that must be applied to the
predictor composite to ensure that the intended selection rate is
achieved.

With the aforementioned specifications, the problem addressed
by the present method can be summarized as follows: Given the
selection parameter data that characterize the selection scenario,
find values for the decision variables such that the resulting values
of the quality and impact objectives represent a Pareto-optimal
trade-off.

Method

As noted above, the problem addressed by our procedure is a
typical example of a multi-objective optimization problem. There
it was also argued that our problem is best handled by an a
posteriori method that has the aim of represent the entire set of
Pareto-optimal trade-offs. Among these methods (see, e.g., Marler
& Arora, 2004, for an overview), we propose to use the technique
of normal-boundary intersection, developed by Das and Dennis
(1998), because it enjoys a number of advantages that are partic-
ularly relevant in the present context. First, the technique generates

Pareto-optimal trade-offs between adverse impact and selection
quality that are uniformly spread over the entire Pareto surface. As
a consequence, a representative subset of all Pareto-optimal com-
posite predictors is obtained as well. Second, for each Pareto-
optimal trade-off, it is possible to determine the associated relative
importance attached to the two selection objectives when the
trade-off function is convex as is usually the case. Finally, the
generated set of Pareto points is independent of the scaling of the
individual selection objectives. This feature is of particular rele-
vance when the selection quality objective is defined in terms of
the utility of the selection because this utility can be expressed in
different monetary or nonmonetary units.

The implementation of the normal-boundary intersection tech-
nique consists of two stages. In the first stage, two constrained
nonlinear programming problems (cf. Appendix B) are solved to
obtain the predictor weighing schemes, bq and ba, that result in the
maximum possible value for the selection quality objective (de-
noted as qmax) and the maximum possible value of the adverse
impact objective (denoted as amax), respectively. These weighing
schemes characterize two optimal trade-off points, henceforth re-
ferred to as tq and ta, respectively. The first optimal trade-off, tq �
(qmax, aq)� (with aq the value of the adverse impact objective
associated with the weighing bq of the predictors), corresponds to
the situation in which only the quality objective is judged to be of
importance. In turn, the second optimal trade-off, ta � (qa, amax)�
(with qa the value of the selection quality objective associated with
the weighing ba of the predictors), represents the situation in which
only the adverse impact objective is of concern.

As detailed in Appendix B, the optimal trade-offs tq and ta

permit the determination of a payoff matrix � that is subsequently
used in the formulation of the nonlinear programs that are solved
in the second stage of the normal-boundary intersection method.
These second-stage nonlinear programs result in new optimal
trade-offs, each of which corresponds to a particular valuation
(expressed in terms of relative importance, see later discussion) of
the two selection objectives. Together with the earlier obtained
trade-offs tq and ta, these new trade-off points provide an evenly
spaced and, therefore, representative characterization of the entire
Pareto-optimal trade-off curve.

Several approaches may be adopted to solve the nonlinear
programming problems in the two stages of the normal-boundary
intersection method. Bazaraa, Sherali, and Shetty (2006) provided
a detailed discussion of these approaches, observing that all suc-
cessful approaches require that the values of the objective function
(i.e., the quantity that is to be optimized) and of the eventual
constraints of the nonlinear program can be computed analytically
(instead of through simulation) from the values of the decision
variables. As noted earlier and further detailed in Appendix A, this
requirement is met in the present context. Thus, the solution of the
different nonlinear programs poses no particular problems.

Implementation

We wrote a computer program to implement the normal-
boundary intersection method. The program runs on a personal
computer under the Windows 95/98, NT, XP, and 2000 Profes-
sional operating systems. To execute the program, the user must
prepare only a single input file that details the nature of the studied
selection decision and summarizes the characteristics of the pre-
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dictor and the criterion variables. The executable code and a
manual that describes the preparation of the input file and the
actual usage of the program can be downloaded from the Internet
at http://users.ugent.be/�wdecorte/software.html. The documenta-
tion also contains an example application and provides further
details on the output generated and the way in which this output
can be further processed by means of freely available graphical
software (e.g., the graphical procedures of the R programming
environment available at http://lib.stat.cmu.edu/R/CRAN).

To enhance the applicability of the program and to ensure its
relevance, we added several control options. A first option permits
the user to choose the way in which the selection quality objective
is operationalized. Whereas the adverse impact ratio (i.e., the ratio
between the selection rate in the minority applicant group and that
in the majority group) always represents the adverse impact ob-
jective, the selection quality objective can be expressed in terms of
either the validity of the predictor composite, the average criterion
score of the selected applicants, or the utility of the selection (see
Appendix A).

Still other program options can be used (a) to determine the
number of computed trade-off points; (b) to specify whether a
nonprobationary or a probationary selection decision is intended,
in which case the composite criterion cutoff can eventually be
fixed at a given value that expresses the current standard of
acceptable job performance; (d) to constrain the predictor weights;
and (e) to bound from below and above, or to fix the proportion of
initially hired employees for probationary selections. The option to
constrain the predictor weights provides the means to prevent
some of the solution weights from being too small (large) or even
having negative values. Such negative weights are usually unac-
ceptable because they lead to a composite predictor in which
valued job-related attributes are counted against the applicants.

Example Application

The example application relates to a situation in which four
predictors are available to select a given proportion of selectees
from a heterogeneous applicant group where 75% of the candi-
dates are members of the majority population (i.e., Whites) and the
remaining 25% belong to the Black minority population (cf. Hat-
trup et al., 1997). The four predictors are cognitive ability (CA),
structured interview (SI), conscientiousness (CO), and biodata
(BI). The overall performance criterion is a weighted sum of the
two dimensions, with weights 3 and 1 for the task performance
(TP) and the contextual performance (CP) dimensions, respec-
tively. The latter weight values were chosen to conform to those
used in other related studies (cf. Hattrup et al., 1997). In general,
the specification of the weights of the criterion dimensions is
essentially a matter of organizational policy (cf. Murphy &
Shiarella, 1997).

Table 1 summarizes the values used for the different character-
istics of both the predictors and the criterion dimensions. The
predictor effect size (i.e., Black–White mean difference), validity
(with respect to TP), and intercorrelation data were borrowed from
the meta-analytic study of Bobko et al. (1999), and the validity
values for the CP dimension correspond to results presented by
Hattrup et al. (1997) and McManus and Kelly (1999). The Hattrup
et al. study provided also the value of the correlation between the
two criterion dimensions, whereas the criterion effect size values

were copied from McKay and McDaniel (2006). All used values
correspond to uncorrected estimates to “consider the operational
use of potential sets of predictors” (Bobko et al., 1999, p. 563).

Although the example first and foremost focuses on the merits
of the method described earlier, we preferred to use predictor and
criteria data that reflect the results of previous summary studies to
ensure a representative application of the procedure. We empha-
size, though, that this is simply an example of how the methods
developed here can be used. That a reader may question a partic-
ular chosen value (e.g., the correlation between two specific pre-
dictors) is not an impediment to the article’s fundamental goal of
developing and illustrating the use of these decision-making tech-
niques in the personnel selection context.

Results

Given the aforementioned values for the selection parameters,
the present procedure was used to analyze the selection quality–
adverse impact trade-off surface for an intended nonprobationary
selection system with a selection rate of 15%. In this illustration,
selection quality is indexed by the mean criterion score obtained by
those selected. Table 2 and Figure 1 summarize the obtained results.

The solid line in the left part of Figure 1 displays the entire set
of Pareto-optimal trade-offs for the quality and adverse impact
objectives, whereas the four lines in the right part of the figure
detail the predictor weighing schemes that correspond to the dif-
ferent optimal trade-offs. Alternatively, Table 2 provides details on
a selected number of these optimal trade-offs. The selected trade-
offs are indicated by a bullet symbol in Figure 1, and for each of
these trade-offs Table 2 indicates the value of the selection quality
(i.e., expected criterion score of a selected applicant) and the
adverse impact ratio objective, as well as the value of the four
predictor weights (scaled to have unit sum) that correspond to the
optimal trade-off. Thus, using Figure 1 and Table 2 it can be
verified that, for example, Optimal Trade-Off Point 5 shows values
0.48 and 0.74 for the adverse impact and the expected criterion
score objective, respectively, and that the optimal trade-off is
attained when using weights 0.09, 0.45, 0.15, and 0.31 for the CA,
the SI, the CO, and the BI predictor, respectively. Also, because
the point represents an optimal trade-off, no predictor composite
can do at least as well on either one of the objectives and, at the
same time, do better on the other objective. Thus, for this selection
decision, it is not possible to combine the four predictors into a

Table 1
Effect Sizes and Intercorrelations Between the Performance
Predictors and the Performance Criteria

Variable d

Intercorrelation matrix

1 2 3 4 5 6

Predictors
1. Cognitive ability 1.00 —
2. Structured interview 0.23 .24 —
3. Conscientiousness 0.09 .00 .12 —
4. Biodata 0.33 .19 .16 .51 —

Criterion dimensions
5. Task (job) performance 0.21 .30 .30 .18 .28 —
6. Contextual performance 0.13 .16 .26 .20 .25 .17 —
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composite such that, for example, the expected criterion score of
the selected applicants is at least equal to 0.74 while the adverse
impact ratio exceeds .48.

Apart from the quality and adverse impact ratio values that
characterize each optimal trade-off point, Figure 2 also portrays
two additional features of these optimal trade-offs. First, the
dashed line on the graph provides the details of the worst possible
trade-off that corresponds to each of the optimal trade-offs. Sec-
ond, the dot-dashed curve of the graph represents the relative
importance of the adverse impact objective (as compared with the
relative importance of the quality objective) that corresponds to the
different optimal trade-off points. In fact, each Pareto-optimal
trade-off between selection quality and adverse impact is charac-
terized by a different weighting of these two objectives. Thus,
attaching a weight of, for example, 3 and 1 to the quality and
adverse impact objectives will lead to a different optimal trade-off
than attaching equal weights to both objectives. For each optimal
trade-off, these weights can be scaled to have unit sum in order to
express the relative importance attached to the two objectives.

To illustrate these worst possible and importance curves, recon-
sider Pareto-Optimal Trade-Off Point 5. For a value of 0.48 for the
adverse impact ratio objective, this optimal trade-off shows a best
possible quality value of 0.74. The corresponding symbol on the
dashed curve of worst possible trade-offs indicates that for the
same adverse impact ratio value the worst possible weighting of
the selection predictors will lead to a value of only 0.52 for the
selection quality objective. Next, from the position of the matching
bullet symbol on the dot-dashed line with respect to the right
vertical axis (labeled “Relative importance AI [adverse impact]

objective”), it can be verified that the optimal trade-off with values
0.48 and 0.74 for the adverse impact and the quality objectives
corresponds to the situation in which the relative importance
attached to the objectives equals 0.24 and 0.76, respectively.

To compare the results of the present procedure with those
obtained by De Corte (1999), as well as to further illustrate the
interpretation of the optimal and worst possible trade-off curves
and the importance curve, we look more closely at the trade-offs,
numbered 1, 17, and 21 in Figure 2. As indicated by the impor-
tance curve, Point 1 represents the optimal trade-off in the case in
which the importance attached to the adverse impact objective is
equal to zero (no importance), whereas Point 21 corresponds to the
optimal trade-off when the adverse impact objective receives ex-
clusive importance. From the graph and Table 2 it can further be
seen that Trade-Off 1 is characterized by a mean criterion score of
the successfully selected applicants of 0.78 and an associated
adverse impact ratio of 0.30; whereas Trade-Off 21 has corre-
sponding values of 0.35 and 0.87, respectively. As expected,
Optimal Trade-Off Point 21, which attaches maximum importance
to the adverse impact objective, is associated with a predictor
weighing scheme in which all but the predictor with the smallest
effect size (i.e., predictor CO) receive a zero weight in the composite
selection predictor (cf. the last row of Table 2). Alternatively, as all
predictors showed an effect size in favor of the majority group, the
optimal trade-off when maximum importance is attached to the qual-
ity objective (i.e., Trade-Off 1) corresponds to a regression-based
weighting of the predictors (cf. the first row of Table 2).

Next, consider Point 17 of the optimal trade-off surface curve.
This trade-off is characterized by an average criterion score of 0.47
and a value of 0.80 for the adverse impact ratio. Observe that this
trade-off point is in fact identical to the solution of the selection
quality–adverse impact problem as proposed by De Corte (1999)
because the latter solution corresponds to the maximum possible
selection quality under the binding constraint that the adverse
impact ratio be equal to 0.80 (i.e., meet the 80% rule). Thus,
compared with the method proposed by De Corte (1999), the
present procedure does not merely result in one particular point of
the quality–adverse impact optimal trade-off surface but instead
approximates the entire set of such optimal trade-off points. In
addition, for each generated optimal trade-off, it is possible to
determine the corresponding importance attached to the objectives
as well as the associated predictor weights. Thus, from the relative
importance curve on the graph it can be verified that the present
optimal trade-off with a value of .80 for the adverse impact
objective corresponds to the assignment of relative importance
values of .62 and .38 to the adverse impact and the quality
objective, respectively.

Finally, we illustrate how this technique can be used to answer
the question posed at the beginning of this article, namely, “Is
there a different weighting of predictors that will come close (i.e.,
within a specified distance) to the maximum mean quality attain-
able but with less adverse impact?” To address this question, one
must specify one’s definition of close; once a given decision maker
defines it (e.g., “anything within 95% of the maximum mean
quality attainable”), then Figure 1 permits this question to be
answered. As noted earlier, the maximum mean quality attainable
with these predictors at this selection ratio is 0.78. Thus, we can
move down the optimal trade-off curve to the point where mean
quality is 0.74 (i.e., 95% of 0.78); we find that the Pareto-optimal

Table 2
Selected Pareto-Optimal Selection Quality–Adverse Impact
Trade-Offs for a Selection From a Black and White Applicant
Group

Optimal
trade-off

Adverse
impact

Expected
criterion score

Predictor weight

CA SI CO BI

1 .30 .78 .28 .34 .12 .26
2 .35 .77 .21 .38 .13 .28
3 .39 .76 .16 .41 .14 .29
4 .43 .75 .12 .43 .15 .30
5 .48 .74 .09 .45 .15 .31
6 .52 .73 .05 .47 .16 .32
7 .55 .71 .02 .49 .16 .32
8 .59 .70 .00 .51 .20 .29
9 .62 .68 .00 .53 .28 .19

10 .65 .66 .00 .54 .35 .12
11 .68 .63 .00 .55 .40 .05
12 .70 .61 .00 .54 .46 .00
13 .72 .58 .00 .44 .56 .00
14 .74 .56 .00 .38 .62 .00
15 .76 .53 .00 .32 .68 .00
16 .78 .50 .00 .26 .74 .00
17 .80 .47 .00 .21 .79 .00
18 .82 .44 .00 .16 .84 .00
19 .83 .41 .00 .11 .89 .00
20 .85 .38 .00 .06 .94 .00
21 .87 .35 .00 .00 1.00 .00

Note. CA � cognitive ability; SI � structured interview; CO � consci-
entiousness; BI � biodata.
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weighting of predictors at this point produces an adverse impact
ratio of 0.48, compared with the value of 0.30 for the weighting
that maximizes quality. And we can turn to the right side of the
figure and see the predictor weights that would be used to obtain
this result. Also, using the next-to-last equation of Appendix A, the
gain in terms of the adverse impact objective can be expressed in
terms of the percentage of increase in minority hiring as compared
with the minority hiring under the maximum quality condition. It
is then obtained that the gain in adverse impact from 0.30 to 0.48
corresponds to a 51.4% improvement in minority hiring. Thus, the
results reveal that accepting a 5% reduction in the selection quality
can increase the minority hiring rate by more than 50%.

Discussion

From the optimal and the worst possible trade-off curves de-
picted in Figure 2, it can be verified that the conflict between the
goals of attaining a high selection quality and a high adverse
impact ratio is not a simple one. In all but one case (i.e., Trade-Off
Point 21), a given target value for one of the objectives corre-
sponds to a broad range of possible values for the other objective.
Yet, only one of the latter values is Pareto optimal, whereas the

others correspond to predictor weighing schemes that can be
bettered. As an example, consider Optimal Trade-Off Point 5 and
the corresponding worst possible trade-off marked with the bullet
symbol on the worst possible trade-off line. As indicated by the
dotted vertical line that connects these two trade-offs, there are
many other nonoptimal trade-offs, all with the same value for the
adverse impact objective but with a smaller value for the selection
quality than that associated with the corresponding optimal trade-
off. In the language of decision theory, these alternatives are
“dominated” by the Pareto-optimal trade-off. Also, the quality
difference between the optimal trade-off and the corresponding
worst possible trade-off is no less than 0.74 – 0.52 � 0.22 standard
units. This substantial difference (as compared with the maximum
possible quality difference of 0.78 – 0.35 � 0.43 between any two
predictor weighing systems) clearly emphasizes the importance of
choosing appropriate predictor weights if the selection practitioner
wants to achieve a trade-off with a given adverse impact value.

From the horizontal dotted line on the same plot (i.e., the dotted
line that ends at Optimal Trade-Off Point 10), a similar conclusion
can be drawn in the case in which the practitioner desires a given
value for the quality objective: To achieve an average criterion score

Figure 1. Left panel: Pareto-optimal trade-off curve, with the selected Pareto-optimal trade-offs detailed in
Table 2, for a nonprobationary selection with a .15 selection rate. Right panel: Predictor weighing systems that
correspond to the Pareto-optimal trade-offs (cf. Table 2; right). Short-dashed line � Predictor 1 weight function;
solid line � Predictor 2 weight function; long-dashed line � Predictor 3 weight function; dot-dashed line �
Predictor 4 weight function. AI � adverse impact.
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of .66, again many weighing schemes are possible, with the worst
weighing resulting in an adverse impact value of 0.30, whereas the
best weighing corresponds to a value of .65 for this objective. Thus,
although the adverse impact and the quality objectives are typically in
conflict, this does not at all mean that they cannot be balanced.

As a final observation, note that the present method does not tell
the decision maker which combination of predictor weights should
be used. Rather, it presents the decision maker with the entire set
of Pareto-optimal trade-offs. This feature should not be regarded as
a drawback, however, because it simply reflects the reality that the
resolution of competing goals typically requires a decision as to

the relative importance of these objectives. Although the latter
decision cannot be resolved analytically, it is no doubt helpful that
the method allows the decision maker to visualize the relationship
between the relative importance attached to the two objectives and
the resulting optimal trade-off.

Robustness of Pareto-Optimal Predictor Weighing
Schemes

As is true for any proposal to study the consequences of a
selection decision, the present method derives results that depend

Figure 2. Pareto-optimal trade-off curve (solid line), worst possible trade-off curve (dashed line), and relative
importance of the adverse impact (AI) objective (dot-dashed line) for a nonprobationary selection with a .15
selection rate.
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on the particular values used for the selection rate, the selection
predictor effect sizes, validities, and so on. Although this depen-
dency is of no consequence when analyzing hypothetical selection
scenarios, it becomes a major concern when the method is used as
a decision tool when planning a future selection system because in
that case the values of the selection parameters will typically not
be known with certainty. It is therefore important to assess whether
Pareto-optimal predictor weighing schemes, as computed from a
given set of parameter values, are robust in the sense that they also
perform well when the selection parameters have somewhat dif-
ferent values.

Monte Carlo Method

To settle the robustness issue, we perform sensitivity analysis
using Monte Carlo simulation methods. These methods are often
used for analyzing uncertainty (sensitivity), where the goal is to
determine how variation, lack of knowledge, or error in certain
input parameters affects the performance or adequacy of the out-
come quantities that are of concern (Saltelli, Chan, & Scott, 2001).
The basic Monte Carlo scheme consists of two phases. In the first
phase, appropriate distributions are chosen to represent the uncer-
tainty or variability for each of the problem input parameters (here
represented by the predictor validities, effect sizes, etc.), whereas
in the second phase, the relevant output quantities (here the selec-
tion quality and adverse impact values) are repeatedly calculated.
More specifically, in each repetition, a value for each input pa-
rameter is randomly sampled from the distribution of that param-
eter, and the combination of the thus-obtained input parameter
values is used to compute the outcome quantities. These outcome
values are stored and subsequently analyzed to study the effects of
the uncertainty.

In a first, preliminary step, the available selection parameter
data are used as input to our method to determine a sample of
optimal trade-off points, and the predictor weighing schemes that
correspond to these optimal trade-offs are stored. These predictor
weighing schemes are henceforth referred to as the optimal weigh-
ing schemes. For each selected optimal trade-off, we also sample
a number of trade-offs that are dominated by the optimal trade-off
(i.e., produce lower values of the quality and adverse impact
objectives) and determine the predictor weighing systems that lead
to these dominated trade-offs. The resulting weighing systems are
henceforth called the set of dominated weighing systems associated
with the corresponding optimal weighing system. In the case in
which an optimal predictor weighing scheme is fairly robust, we
expect to find that its associated trade-off for the selection quality
and the adverse impact objectives, as computed from somewhat
different values for the selection parameters, will usually maintain
dominance over the similarly computed trade-offs associated with
the weighing systems that belong to its set of dominated weighing
systems.

Next, the Monte Carlo scheme is implemented. At each repli-
cation, a value is sampled from the chosen distribution of each
selection parameter. Using these values, we apply both the optimal
weighing system and its associated set of dominated weighing
systems to calculate the selection quality and the adverse impact
ratio of the selection. Finally, we count within each Monte Carlo
replication and for each optimal weighing system the number of
times that both objectives have a more favorable (i.e., larger) value

as compared with the corresponding values associated with the
weighing systems that it dominates and aggregate these counts
over the total number of replications. Although a further aggrega-
tion over the different optimal weighing systems is possible as
well, such an aggregation is not preferred because it eliminates the
possibility of verifying whether the different optimal weighing
systems perform homogeneously.

In addition to our documenting the frequency with which the
optimal predictor weighing schemes perform better than the cor-
responding dominated weighing system on both selection objec-
tives, two further counts are registered. The first is the total
number of times that dominated weight systems outperform the
corresponding optimal scheme on both quality and adverse impact,
whereas the second is the frequency with which the optimal
weights, compared with their respective dominated weight sys-
tems, lead to a better performance on an appropriately weighted
combination of the two selection objectives. In particular, the
weights assigned to the selection objectives are for each optimal
weighing system chosen identical to the importance of these ob-
jectives as implied by the optimal trade-off that is associated with
the optimal weighing scheme.

By expressing these frequencies as a proportion of the maxi-
mum possible frequency, we obtain three sensitivity indices for
each sampled optimal predictor weighing scheme. The first and the
third index summarize the extent to which the optimal weighing
scheme outperforms its associated dominated weighing systems
over the studied variability of the predictor parameter values,
whereas the second index indicates the proportion with which the
dominated weighing schemes are better than the optimal weighing
on both quality and adverse impact. Thus, if a particular optimal
weighing scheme would be completely robust for variability in the
predictor parameter values, this scheme would be characterized by
values of one for the first and the third index, and a value of zero
for the second index.

Application

To illustrate, we applied the uncertainty analysis to the earlier
discussed selection problem. Because the analysis focuses on the
robustness of the optimal predictor weighing schemes for variabil-
ity in the predictor parameter values, fairly broad uniform distri-
butions were chosen to represent the gamut of possible sample
values for the predictor parameters. The distribution chosen for
each parameter was centered on the effect size, validity, and
intercorrelation values reported in Table 1 with range equal to the
value of the estimate. Thus, the distribution used for, for example,
the majority–minority difference for the cognitive ability predictor
was rectangular with endpoints of 0.5 and 1.5, respectively. The
analysis focused on the performance of the predictor composites
associated with the earlier selected Optimal Trade-Off Points 2 to
20. Optimal Trade-Offs 1 and 21 are not considered because they
do not have dominated trade-offs. As shown in Figure 3, the 19
selected trade-offs are equally spaced over the entire trade-off
surface, which ensures that the results are representative for the
entire set of optimal predictor weighing schemes. Also, for one of
the selected optimal trade-offs (i.e., Trade-Off 10), the figure
depicts the set of all trade-offs that are dominated by this optimal
trade-off and indicates which of the dominated trade-offs within
the set were actually sampled to assess the performance under
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uncertainty of this optimal predictor composite. The results of the
assessment for this as well as for the other 18 selected optimal
predictor weighing schemes are summarized in Table 3.

The rows of the table correspond to the 19 studied optimal
composites, whereas the proportions in the columns indicate the
obtained values for the sensitivity indices. Thus, the numbers in
the second column show the proportion in instances in which the
optimal composite continues to dominate the sampled nonoptimal
composites over the studied variability in the selection parameter

data, whereas the proportions in the third column pertain to the
reverse. Finally, the proportions in the fourth column show the rate
with which the optimal composite outperforms the nonoptimal
composites on the weighted combination of the selection quality
and the adverse impact objectives, using the importance weights
corresponding to the optimal trade-off.

By and large, the obtained results show that optimal predictor
composites that are based on representative estimates of the selec-
tion parameters continue to perform well under the studied vari-

Figure 3. Pareto-optimal trade-offs used in the Monte Carlo simulation to study the robustness of the
corresponding optimal predictor weighing schemes. The dots represent the set of dominated trade-offs used to
evaluate the robustness of the Pareto-optimal predictor weighing scheme associated with Pareto-Optimal
Trade-Off 10. AI � adverse impact.
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ability of the selection parameters. The proportions reported in
column 2, and especially those of column 4, are well above the
values that can be expected if the optimal composites would not be
robust for uncertainty in the selection parameters, whereas the
rates in column 3 show that optimal composites become only very
rarely dominated by the corresponding nonoptimal composites.
Also, similar value patterns were found when studying several
other selection scenarios (both probationary and nonprobationary)
that involved different collections of predictors. The results of the
uncertainty analyses therefore offer substantial support to the prop-
osition that a decision-making approach to the formation of pre-
dictor composites is indeed feasible.

Discussion

This article has presented a procedure for determining the set of
Pareto-optimal trade-offs between selection quality and adverse
impact that can be achieved through differential weighting of the
available predictors. The procedure addresses a wide variety of
selection scenarios, including both probationary and nonprobation-
ary decisions as well as situations in which the applicants come
from several different minority populations. As compared with
previous related proposals (e.g., De Corte, 1999; Hattrup et al.,
1997; Schmitt et al., 1997), the procedure provides a more general
as well as a more detailed analysis of the selection quality–adverse
impact problem because it offers an attractive tool to visualize the
entire set of trade-off alternatives. In addition, the optimal predic-
tor weighing schemes that correspond to the different possible
optimal trade-offs are obtained as well.

It was also noted that each optimal trade-off corresponds to a
particular relative importance of the selection objectives. This
means that each optimal trade-off can be obtained by solving an
optimization problem in which the objective is a particular
weighted sum (i.e., a sum with weights identical to the relative
importance of the objectives) of the expected quality and adverse

impact of the selection. Thus, each optimal trade-off corresponds
to the maximization of an expected utility that combines the
quality and diversity goals with a specific relative importance, and
the individual optimal trade-offs differ in the actual expected
utility (i.e., in the actual relative importance with which the two
goals are combined) that is maximized. All this shows that the
present procedure and its results are consistent with the decision-
theoretic framework advocated by Petersen and Novick (1976) in
their discussion of models of test fairness. Moreover, the proce-
dure reflects top-down selection using the same composite cutoff
score for the different applicant populations (cf. Appendix A) and
in no way assumes subgroup-based adjustment of the predictor
scores. It therefore meets one of the key provisions in the 1991
Civil Rights Act, which states that “it shall be an unlawful em-
ployment practice for a respondent, in connection with the selec-
tion or referral of applicants or candidates for employment or
promotion, to adjust the scores of, use different cutoff scores for,
or otherwise alter the results of, employment related tests on the
basis of race, color, religion, sex, or national origin.” For the same
reasons, it is clear that the procedure does not involve using race,
religion, and so on as a determinant of the decision to accept or
reject candidates. Instead of such a practice, the procedure simply
admits the inclusion of workforce diversity as an additional ob-
jective to be met by the selection system.

Similar to earlier methods (e.g., Hattrup et al., 1997; Schmitt et
al., 1997), the present procedure can be applied as a research tool
to study the effects of, for example, the validity, effect size, and
intercorrelations of the selection predictors on both selection qual-
ity and adverse impact. The article did not focus on this type of
effect study, however, but investigated the potential of the proce-
dure as a decision tool to assist industrial–organizational psychol-
ogists in choosing between alternative predictor composites when
planning a selection in a context in which both the goals of
workforce quality and diversity are of importance. We believe that
the latter approach, as compared with the first type of study, is of
more immediate relevance to industrial–organizational psycholo-
gists, especially in these frequent situations where they have no
other option than to use readily available predictors to implement
a selection system without local evidence.

Even given representative estimates of the selection parameter
values, it is still possible that the present method leads to predictor
composites that behave rather poorly under somewhat different
conditions. Although this possibility is equally present for com-
posites derived in other ways, such as regression-based compos-
ites, it cannot be neglected. Thus, we also investigated the impact
of uncertainty in the selection parameter values. The results indi-
cated that the optimal predictor composites, derived from repre-
sentative estimates of the selection parameters, continue to per-
form well under considerable variability of these parameters. It is
therefore suggested that selection practitioners should consider
using this procedure to determine optimal predictor weighing
schemes, especially when no other alternative to address the
quality–adverse impact problem can be applied and representative
estimates of the selection parameters are indeed available.

Although the present proposal can address a broad range of
situations, hurdle-based decisions still remain out of scope. The
extension to multistage selections will not be easy, however,
because for these situations an analytical method to link adverse
impact and selection quality to the relevant selection parameters is

Table 3
Performance Under Uncertainty of Optimal Predictor
Composites

Optimal
trade-off Dominates

Is
dominated Outperforms

2 .62 .03 .87
3 .65 .02 .87
4 .70 .02 .88
5 .70 .01 .89
6 .69 .02 .87
7 .67 .01 .88
8 .68 .01 .91
9 .66 .02 .92

10 .65 .01 .93
11 .66 .01 .96
12 .61 .02 .93
13 .62 .01 .96
14 .63 .01 .97
15 .65 .01 .97
16 .63 .01 .97
17 .64 .01 .98
18 .65 .01 .98
19 .66 .01 .97
20 .63 .01 .98
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not yet available. One could eventually resolve this issue by
adapting the approach outlined by De Corte (1998) to the case in
which the total applicant group is a mixture of majority and
minority candidates.

The extension to multistage scenarios could also help to address
the eventuality that some of the selected candidates refuse the job
offer. Following a suggestion by Murphy (1986), a two-stage
approach could then be used in which the likelihood of accepting
a job offer is considered as the second-stage predictor. However,
this approach requires fairly detailed information about the under-
lying process of refusal, and it is doubtful that this information will
usually be available (Murphy, 1986; Ryan, Sacco, McFarland, &
Kriska, 2000; Schmit & Ryan, 1997). Alternatively, in case of
random job refusal, the present procedure can be applied without
any modification because then only the selection rate must be
adjusted to account for the estimated probability of job refusal.

The results also depend on an assumption about the distribution
of the predictors in the different applicant populations. As noted
earlier, this assumption is essentially identical to the one invoked
in all other studies on the effects of predictor composites on the
level of adverse impact and the average criterion score of the
selected applicants. Also, the assumption is consistent with the
limited information that is presently available on the distribution of
predictor scores in applicant populations (e.g., Schmidt, Hunter,
McKenzie, & Muldrow, 1979). The assumption is not always
required, however. In particular, the assumption can be dropped in
the case in which one chooses the effect size and the validity of the
predictor composite to represent the goals of diversity and quality,
respectively. This choice also reduces the data requirements of the
present procedure because then data on the composition of the
applicant pool as well as on the selection rate are no longer needed.

In conclusion, this article focused on using predictor composites
to address the adverse impact–selection quality problem, but we
emphasize that other routes to workforce diversity, such as band-
ing and the development of new, low-impact predictors, have
important merits as well and that it is often preferable to use a
combination of these alternatives. Also, such combinations, with
optimal predictor weighing as one of the alternatives, will usually
be possible. Thus, either by itself or in combination with other
alternatives, the present method to determine Pareto-optimal pre-
dictor composites may offer a substantial contribution to the ad-
verse impact–selection quality conflict. Compared with earlier
procedures, the method provides valuable trade-off information
that is otherwise unavailable, and it presents this information in a
simple and understandable fashion. Because of these unique fea-
tures, we hope that the proposal will find routine application in the
design of selection systems.
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Appendix A

Computation of the Selection Utility and the Adverse Impact Ratio

This appendix details the computation of the selection utility,
	U, and the adverse impact ratio (or ratios in the case of more than
one minority group) as a function of the decision variables b � (b1

. . . bP )�, xc, and yc (with xc and yc the composite predictor and the
criterion cutoff values, respectively) and the selection parameter
data. Because nonprobationary selection is the special case of
probationary selection for which yc � 
�, only the latter variant
is discussed. Also, as 	U is equal to Up – U0, with Up and U0 the
payoffs of the predictor-based and the corresponding random
selection, respectively, and U0 can be obtained in a similar way as
Up, the discussion focuses on the derivation of the payoff Up.
According to Boudreau (1991), this payoff can be expressed as the
benefits of the selection minus the testing, the separation, and the
training costs. Thus,

Up � �
g

�TNgSg
�s�V� g

�s� � Ngct � Ng�Sg � Sg
�s��cs � NgSgcf

where T corresponds to the number of time periods that a success-
fully selected applicant remains on the job; Ng indicates the num-
ber of applicants from group g; Sg and Sg

�s� refer to the proportion
of applicants from group g that are selected and successfully
selected, respectively; V� g

�s� denotes the average money valued
criterion performance of a successfully selected applicant from
group g; and cs, cf, and ct are the costs per individual of separation,
training, and testing, respectively.

Given the earlier introduced assumptions, the averages V� g
�s�

(with g � 1, . . ., G) can be determined as follows:

V� g
�s� � V� � �VrYVY� sg

�s�

with V� and �V the average and the standard deviation of the money
valued criterion performance in the total applicant population,
respectively, rYV the correlation between the rated and the money
valued job performance (cf. Raju, Burke, & Normand, 1990), and

Y� sg
�s� the globally standardized (i.e., with respect to the total appli-

cant population) average criterion score of the successfully se-
lected applicants from group g.

To determine the quantities Y� sg
�s� as well as the probabilities of

(successful) selection, we invoke the earlier introduced assumption
that the predictors u � (U1 . . . UP)� and the criterion dimensions
w � (W1 . . . WC)� follow a joint P � C-variate normal distribution
with the same variance–covariance matrix but a different mean
vector in the applicant populations. Assuming further, without loss
of generality, that the predictors and the criterion dimensions have
unit variance in the different populations, it then follows that the
raw composite predictor Xr � b�u and the raw global criterion
score Yr � a�w (with a � (a1 . . . aC )�, the vector of preassigned
weights to the separate criterion dimensions) have a joint bivariate
normal distribution with the same covariance matrix but a different
mean vector in the applicant populations. Because Xr and Yr have
the same covariance matrix in the different populations, a common
rescaling can be applied to the raw scores Xr and Yr such that the
rescaled composite predictor scores, X, and the rescaled global
criterion scores, Y, have unit variance in each applicant population.
The correlation between X and Y, rXY, will be equal to the follow-
ing:

rXY �
�b�,0�)R(0�,a�)�

�b�Rub�a�Rwa

where 0 is a zero vector of appropriate order, R is the joint
correlation matrix of u and w, and Ru and Rw are the correlation
matrices of u and w, respectively. Also, adopting the convention to
equate the predictor averages and the criterion averages in one of
the minority groups (by convention, the first) to zero, it follows
that the average scores in this minority population on both the
composite predictor and the global criterion, X� 1 and Y� 1, also equal
zero, whereas the corresponding averages in the other populations,
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X� g and Y� g (with g � 2, . . ., G), are equal to b�dug/�b�Rub and
a�dwg/�a�Rwa, respectively, where dug and dwg correspond to the
vector of effect sizes of the predictors u and the criterion dimen-
sions w in population g.

The preceding results completely specify the joint distribution of X
and Y in the subpopulations such that the formulas on the value and
the mean vector of truncated binormal distributions (cf. Tallis, 1961)
can subsequently be used to evaluate the proportions Sg and Sg

�s�, as
well as the average global criterion scores of the successfully selected
employees from the different applicant groups. From these averages,
denoted as Y�g

�s�, the corresponding globally standardized criterion
averages, Y� sg

�s�, are then obtained as follows:

Y� sg
�s� �

Y� g
�s� � Y�

�Y

where Y� � �
g
pgY� g, �Y � 1 � �

g
pg�Y� g � Y� �2, and pg denotes the

proportion of applicants from group g in the total candidate pop-
ulation.

Finally, letting the subscript g � G indicate the majority appli-
cant population, the value of the adverse impact ratio for the
minority groups (i.e., the groups g � 1, . . ., G – 1), ag, can be
computed as follows:

ag �
Sg

SG
.

In the case of probationary selection, the ratio can be computed as
follows:

ag �
Sg

�s�

SG
�s�.

Appendix B

Solution of Nonlinear Programming Problems

This appendix details the nonlinear programming problems that
are solved in the two stages of the normal-boundary intersection
method. Using the earlier introduced notation, we obtain the op-
timal predictor weighing scheme that maximizes the selection
quality objective by solving the following nonlinear program.

Maximize selection quality over z � (b�, xc, yc)� subject to the
following constraints:

1. �
g
pgSg

�s� � s.

2. b�Rub � 1.

3. Application-specific constraints.

In the preceding formulation, the selection quality objective is
equal to either the selection utility, the average quality of the
selected applicants, or the validity of the composite predictor.
Constraint 1 expresses the requirement to obtain the intended
(successful) selection rate s. Also, Constraint 2, which fixes the
variance of the composite predictor to the arbitrarily chosen value
of 1, is added to ensure a unique solution of the nonlinear program.

The second nonlinear program of the first stage is identical to
the preceding program, except that this time the adverse impact
ratio is maximized. When the total applicant population comprises
members from several different minority groups, the second non-
linear program is solved separately for each minority group.

In the second stage of the normal-boundary intersection method,
the nonlinear programs have, in case of a single minority group,
the following format.

Maximize r over z and r subject to the aforementioned detailed
constraints (Constraints 1, 2, and 3) and

4. �� � r�1 � vz.

In the last constraint, 1 is the column vector of all ones,
��(�,1
�)�, and vz � tz – to, with to � (qmax, amax)� and tz � (qz,
az)�, where qz and az are the values of the selection quality and the
adverse impact objectives associated with the values z of the
predictor weights and the composite predictor and criterion cut-
offs. Also, the trade-off matrix � is as follows:

� � � 0 qa � qmax

aq � amax 0 �
where aq, qa, qmax, and amax are as defined in the text. The above
nonlinear program is solved repeatedly for different but equally
spaced values of � between 0 and 1.
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