
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2017

Cyber foraging: Fifteen years later
Rajesh Krishna BALAN
Singapore Management University, rajesh@smu.edu.sg

Jason FLINN

DOI: https://doi.org/10.1109/MPRV.2017.2940972

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Engineering Commons, and the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BALAN, Rajesh Krishna and FLINN, Jason. Cyber foraging: Fifteen years later. (2017). IEEE Pervasive Computing. 16, (3), 24-30.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3929

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/155249484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MPRV.2017.2940972
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


24 PERVASIVE computing Published by the IEEE CS   n   1536-1268/17/$33.00 © 2017 IEEE

Cyber Foraging:  
Fifteen Years Later

T he term cyber foraging was 
first coined by Mahadev Satya-
narayanan (Satya) in his 2001 
IEEE Pervasive Communica-
tions article, “Pervasive Comput-

ing: Visions and Challenges.”1 The term cap-
tures the vision of computers that can “live off 
the land” by acquiring, from their immediate 
environment, the resources needed to perform 
various tasks. In Satya’s vision, mobile devices 
offload computation to servers called surro-
gates, which are located in close proximity to 

the mobile device. Surrogates 
are located in “public spaces 
such as airport lounges and 
coffee shops... much as table 
lamps are today.”1 To facilitate 
this vision, Satya stated that it 
was necessary to develop sys-
tems to partition applications 

between local and remote resources and to man-
age and secure the surrogates, data, and devices 
needed for offloading computation.

Satya further described cyber foraging with 
the following scenario:

When a mobile computer enters a 
neighborhood, it first detects the 
presence of potential surrogates and 
negotiates their use. Communication 
with a surrogate is via short-range 
wireless peer-to-peer technology, with 
the surrogate serving as the mobile 
computer’s networking gateway to the 

Internet. When an intensive computation 
accessing a large volume of data has to 
be performed, the mobile computer ships 
the computation to the surrogate; the 
latter may cache data from the Internet 
on its local disk in performing the 
computation. Alternatively, the surrogate 
may have staged data ahead of time in 
anticipation of the user’s arrival in the 
neighborhood. In that case, the surrogate 
may perform computations on behalf of 
the mobile computer or merely service 
its cache misses with low latency by 
avoiding Internet delays. When the mobile 
computer leaves the neighborhood, its 
surrogate bindings are broken, and any 
data staged or cached on its behalf are 
discarded.

At the heart of this vision are the surrogates 
providing resources that mobile devices can 
leverage to perform computational tasks. This 
leveraging, using various offloading techniques, 
can be performed to reduce application latency, 
improve application performance or quality, 
and reduce the energy consumed by the mobile 
device. This vision has inspired a tremendous 
amount of research in the mobile computing 
community, leading to the development of nu-
merous cyber foraging prototypes. As of yet, 
however, academic research has not spilled 
over into industry; there is currently a noticeable 
lack of commercial deployments that use cyber- 
foraging technology.

Revisiting Mahadev Satyanarayanan’s original vision of cyber foraging, 
the authors reflect on the last 15 years of research progress and 
discuss accomplishments and remaining challenges. They also consider 
compelling application scenarios required to make cyber foraging a 
widely deployed technology.
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In this retrospective article, we look 
back at the last 15 years of research in 
cyber foraging and ask the following 
questions:

• Have we overcome the technical 
challenges required to achieve seam-
less cyber foraging?

• What challenges still remain, and 
how do they hamper the adoption of 
cyber foraging?

• What does the future look like for 
cyber foraging research and the de-
ployment of cyber-foraging systems?

To answer these questions, we sum-
marize relevant research and techni-
cal accomplishments in partitioning 
and surrogate management and dis-
cuss the difficulties of finding the killer 
app for cyber foraging and tackling the 
challenges of surrogate deployment. 
We also identify a new class of video 
processing applications, driven by the 
emergence of portable augmented and 
virtual reality (VR) displays.

Accomplishments
The major accomplishments on the 
path to achieving cyber foraging fall 
into two broad categories: learning 
how to partition applications between 
local and remote resources, and under-
standing how to better manage and se-
cure offloaded computation.

Partitioning
Simply stated, the partitioning decision 
answers the following question: Given a 
specific application state and a specific 
computational environment, which 
portions of the application should run 
on the mobile computer, and which 
should run on remote infrastructure?2

In addressing this issue, there are 
many possible answers. However, the 
consensus that has emerged in the  
field is that the two most important 
objectives of the partitioning deci-
sion are maximizing application per-
formance and minimizing energy  
usage on the mobile computer (thereby 
preserving precious battery lifetime). 

Performance can be expressed in vari-
ous metrics, depending on the applica-
tion requirements. For example, early 
cyber-foraging systems (such as Spec-
tra3) that execute discrete tasks seek to 
minimize task completion time. Later 
systems (such as Odessa4) that target 
stream-based computation try to im-
prove makespan and throughput. Some 
systems let applications alter the com-
putation to produce results of varying 

fidelity; in such systems, maximizing 
fidelity is also important.3,5

Balancing multiple objectives is non-
trivial, because each goal is expressed in 
different units (as time for performance, 
in Joules for energy, and as an applica-
tion-specific measure of quality for  
fidelity). Two approaches have emerged 
for dealing with this issue. Some sys-
tems explicitly balance competing goals 
by first defining a static or dynamic util-
ity function that converts different met-
rics into a single cost function and then 
minimizing that cost function.3,5 Oth-
ers seek to optimize a single goal subject 
to constraints on the other goals.6

Researchers have explored many 
different granularities for partition-
ing applications and executing some 
functionality remotely. Early cyber- 
foraging systems relied on developers 
to explicitly specify large components 
in their code, which could be executed 
on remote computers.3,5 More recent 
systems (such as CloneCloud7) have 
leveraged reflection in managed lan-
guage runtimes to automatically par-
tition applications at method bound-
aries. Some systems (such as MAUI6) 
take a hybrid approach; developers an-
notate methods that can be executed 
remotely, and MAUI uses reflection to 
determine at runtime which, if any, of 
these should execute remotely. Comet 

uses thread-level partitioning by mi-
grating threads between the mobile 
computer and a remote server such as 
a surrogate.8

Despite this variation in granularity, 
researchers have tended to agree on the 
properties that make a code compo-
nent well-suited for remote execution. 
First of all, the component should not 
produce external output, because that 
output can’t be reliably reproduced on 

the mobile computer if the surrogate 
fails. Consider an offloaded computa-
tion that generates a random key, en-
crypts network communication with a 
cloud server using that key, and then 
fails. The mobile computer can’t seam-
lessly continue communicating with 
the cloud server, because it lacks the 
random key needed to encrypt and de-
crypt communication.

Second, the ratio of computation to 
communication should generally be 
high. Offloading substantial compu-
tation to a surrogate improves perfor-
mance and reduces mobile computer 
energy usage. However, the mobile 
computer must send the computation’s 
inputs to the surrogate and must re-
ceive the results of the computation; 
both require network communication 
that comes at a performance and en-
ergy cost. Therefore, to be suitable for 
offloading, a code component should 
have a substantial amount of computa-
tion yet small inputs and outputs.

Finally, the component should have 
few or no dependencies on external 
input and system services on the mo-
bile computer, because resolving such 
dependencies would require additional 
network communication. One chal-
lenge for systems such as CloneCloud 
and Comet, which automatically iden-
tify components to offload, is that there 

To be suitable for offloading, a code 

component should have a substantial amount of 

computation yet small inputs and outputs.
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might be only a few large components 
that meet these criteria in typical mo-
bile applications. If developers must 
modify their applications to create 
such components, then the additional 
overhead of annotating the components 
they create could be relatively low.

To decide whether to offload a com-
ponent to a surrogate, cyber-foraging 
systems typically rely on observations of 

historical behavior. This helps the sys-
tems determine the component’s com-
putational demand and the communi-
cation overhead required to offload the 
component. Many systems also observe 
the environment to determine the re-
source supply, such as network latency 
and bandwidth, CPU load on the mobile 
computer and surrogate, and remain-
ing battery energy. The combination 
of these two factors—supply and de-
mand—yields predictions for how well 
local or remote execution would satisfy 
the goals of the cyber-foraging system; 
predicting, for example, how offloading 
might impact application performance 
and mobile computer energy usage.

More recent work in cyber foraging 
has recognized that such predictions 
can often be unreliable and lead to 
nonideal behavior. For example, appli-
cations might exhibit considerable var-
iance in CPU demand or data size as 
a result of variation in program input 
or user behavior. Mobile networks can 
also exhibit substantial changes in la-
tency, bandwidth, and reliability due to 
movement, radio interference, and load 
variation. If the cyber-foraging system 
mispredicts either supply or demand, 
its decision about whether to execute 
a component locally or remotely might 
be incorrect. Even worse, a mobile  

network or surrogate might fail, lead-
ing to the inability to complete a remote 
computation or receive its results.

One strategy to address such behav-
ior, used in systems such as MAUI,6 
is to time out if a remote computa-
tion takes too long to complete and 
fail over to local execution. Chroma5 
and Slingshot9 mitigate uncertainty in 
server execution and network commu-

nication time by potentially executing 
a component on more than one remote 
server and using the fastest response to 
continue the application’s execution. 
Such an approach reduces both average  
execution time and tail latency when re-
sponse times are both uncertain and in-
dependent of one another. Similarly, the 
cyber-foraging system can simultane-
ously execute a component on both the 
mobile computer and a surrogate10,11 to 
improve performance.

Management
The cyber-foraging research commu-
nity has also made considerable pro-
gress in surrogate management. In 
the original “Vision and Challenges” 
paper,1 Satya defined surrogates to be 
remote computers that might temporar-
ily help a mobile computer (by hosting 
offloaded computation, for example). 
Progress in surrogate management has 
been made along the dimensions of iso-
lation of remotely hosted computation, 
state management and provisioning, 
and surrogate location.

Isolation. A surrogate can host of-
floaded computation from several mo-
bile computers, so it is important to 
isolate each hosted computation from 
other computations and from variation 

in the execution environment between 
the surrogate and mobile computer. For 
correct behavior, surrogates must up-
hold the result equivalence property:

The observable results of an 
operation that executes remotely 
on a surrogate should be 
indistinguishable from results 
that could have been produced 
by the same operation if it had 
executed on a mobile computer.2

Upholding the result equivalence prop-
erty allows transparent offloading of 
computation from the mobile device to 
the surrogate. It is typically provided 
by executing the offloaded computa-
tion within an isolated sandbox such 
that the external inputs (results of sys-
tem calls, invocations of middleware 
services, or input from devices and 
the user) to the sandbox on the remote 
surrogate are the same as those that 
would have been received on the mo-
bile computer.

Cyber-foraging researchers have  
explored three techniques to provide 
isolation. Early cyber-foraging systems 
used process-level isolation provided 
by the operating system.3,12 Such iso-
lation is lightweight, leading to excel-
lent performance. However, processes  
have many external dependencies— 
including the operating system, the  
dynamic libraries, and services run-
ning on the host computer. If a hosted 
computation interacts with any of these 
dependencies, then the cyber-foraging 
system must ensure that the operating 
systems, libraries, and external ser-
vices on the surrogate are compatible 
with those on the mobile computer in 
order to uphold the result equivalence 
property. In practice, this proved to be 
quite difficult due to the heterogeneity 
of mobile computers.

Subsequent cyber-foraging systems 
used hardware virtual machines (VMs) 
for isolation.9,13 Hardware virtualiza-
tion provides strong isolation because 
each VM contains its own version of 
the operating system, libraries, and 

Progress in surrogate management has been 

made along the dimensions of isolation of 

remotely hosted computation, state management 

and provisioning, and surrogate location.
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middleware services. However, the 
performance cost of this isolation can 
be steep because of the large amount of 
state needed to encapsulate all of those 
entities; the state must be saved, trans-
mitted over the network, and restored 
to execute a computation remotely.

Application virtualization in man-
aged runtimes, such as C#6 or Dalvik,7 
represent a middle ground. Theoret-
ically, the language-level virtualiza-
tion can provide strong isolation with 
a much lower cost due to reducing the 
state size within each VM. However, 
modern applications running on mobile 
computers execute a great deal of na-
tive code and often invoke middleware 
or system services during execution. 
MAUI handled these external depend-
encies by having developers annotate 
which methods could be executed re-
motely and which could not (because 
they rely on dependencies that might 
not exist or that might have different 
states on the surrogate, for example). 
Tango found that handling such de-
pendencies was a considerable source 
of complexity when supporting cyber 
foraging for Android platforms.10

Thus, although cyber-foraging re-
searchers have explored many different 
options for isolation, no choice clearly 
dominates across all dimensions. Meth-
ods such as hardware virtualization 
that provide strong isolation also incur 
considerable performance overhead; 
methods such as process-level isolation 
that provide low overhead also have 
weak isolation. Resolving this tradeoff 
has proven difficult.

State management and provisioning. 
Surrogates encapsulate the applica-
tion-specific state needed to perform 
an offloaded computation within one 
of the isolation mechanisms just de-
scribed. At a minimum, this state 
consists of the inputs needed for the 
computation and the executable code 
required to perform the computation. 
Depending on the isolation mechanism, 
the state might also comprise libraries 
and services used by the computation—

or even an entire operating system in 
the case of hardware virtualization.

Researchers have developed a vari-
ety of methods to synchronize the state 
between mobile computers and sur-
rogates. One method used by MAUI6 
and CloneCloud7 directly transfers 
the inputs required by a computation 
to the surrogate before beginning the 
offloaded computation. These systems 
rely on reflection within the language 
runtime to discover which objects 
might be accessed by the computation; 
however, the set of objects actually 
accessed might be potentially smaller 
than the set that could be accessed, 
leading to lower performance and in-
creased network usage.

Comet uses distributed shared mem-
ory to only transfer the state that is 
actually accessed by both the mobile 
computer and remote surrogate.8 This 
potentially reduces the bytes trans-
ferred, but such state must be trans-
ferred on demand, which can incur 
performance overhead due to network 
latency. Tango deterministically repro-
duces the same state on the mobile com-
puter and surrogate by running identi-
cal executions on the two platforms.10 
This leads to a further reduction in 
bytes transferred, but incurs the over-
head of replicating computation.

Systems such as Spectra supplement 
direct transfer using an external distrib-
uted storage system to transfer a large 

state such as dynamic libraries and data 
files.3 Because many such systems pro-
vide weak data consistency, research-
ers have often found it necessary to pro-
vide them with explicit synchronization 
hints to ensure that needed inputs are 
transferred before computation begins.

When the state is very large—for ex-
ample, with hardware virtualization—
researchers have exploited commonality 
in state across offloaded computations 
to decrease the amount of state that is 
transferred for each individual compu-
tation. Early work on cloudlets used 
VM overlays14 to transfer only the  
difference between a customized  
state and a more generic reference state. 
Kiryong Ha and his colleagues showed 
that transferring a VM overlay and in-
stantiating it over the image of a base 
VM image could provision a custom 
VM in as little as 10 seconds.15 Alterna-
tively, systems such as Slingshot13 have 
used content-addressable storage to find 
common chunks among multiple VM 
states, transferring only those chunks 
that are unknown to the receiver. Ha 
and his colleagues combine these two 
techniques by deduplicating chunks 
within each VM overlay.

Surrogate location. The emergence of 
cloud computing has led to the central-
ization of compute services within the 
datacenter. Most mobile applications 
that rely on remote computation cur-
rently execute that computation in a 
cloud datacenter. It is therefore worth 
considering whether the original vision 
of surrogates located near mobile com-
puters is still valuable.

The developers of MAUI investi-
gated how network latency impacted 

the performance of applications with 
offloaded computation.6 For some ap-
plications, such as face recognition or 
a video game, the difference between 
local network latencies and mobile-to-
cloud latencies resulted in changes in 
application performance of up to 50 

Although cyber-foraging researchers

have explored many different

options for isolation, no choice clearly

dominates across all dimensions.
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percent. Furthermore, mobile computer 
energy usage was often greater than if 
the computation had not been offloaded 
at all. Using the MAUI approach, other 
applications, such as real-time processing  

of captured video, might require sub-
stantial amounts of data to be sent from 
the mobile computer to the surrogate. 
The bandwidth available over a local 
Wi-Fi network might greatly exceed 
that available over the backhaul link; 
bandwidth to surrogates within cel-
lular infrastructure might be greater 
than the bandwidth available to a da-
tacenter. Thus, when offloading com-
putation from user-facing, interactive 
applications, there can be considera-
ble benefit to using a nearby surrogate 
rather than one in the cloud.

The cloudlet vision14 builds on this 
observation. While cloudlets have 
many aspects, an essential feature for 
cyber foraging is that they provide 
low-latency, high-bandwidth, one-
hop wireless network connectivity to 
mobile computers. Cloudlets can be 
deployed with Wi-Fi base stations or 
within cellular network infrastructure. 
Thus, they represent an updated vision 
for surrogates that are located nearby 
mobile computers.

Industry Solutions
Some parts of the cyber-foraging vision 
have already become standard industry 
practices. For example, many services 
are offered through a client-server 
model in which the client sends inputs 
to a server that processes the request on 
behalf of the client and returns the out-
put. For example, speech recognition, 
language translation, and real-time 

navigation all work very well using a 
client-server model, because they only 
require soft real-time guarantees (a 
few hundred milliseconds, because a 
human is processing the answers) and 

have reasonably small inputs and out-
puts. However, the client-server model 
does not work well for services that re-
quire hard real-time guarantees, such 
as real-time multiplayer gaming and 
real-time vision analytics, or where the 
application inputs and outputs are large 
relative to the available bandwidth (for 
example, real-time high resolution 
video processing).

Cloud computing has addressed 
many important issues pertaining to 
isolation and management. Research-
ers have found cloud solutions, such as 
VMs and containers, translate well to 
cyber foraging. However, surrogates 
present additional challenges compared 
to servers in cloud datacenters. The lack 
of physical security makes securing 
computation and data more challeng-
ing on surrogates, and the lack of easy 
access makes maintenance more diffi-
cult to perform. Surrogates have less co- 
located resources than datacenter serv-
ers, so handling large datasets requires 
careful data partitioning and caching.

There has also been a large effort to 
provide content distribution networks 
(CDNs) that are located in close prox-
imity to as many clients as possible. 
These CDNs are provided by compa-
nies such as Netflix, Amazon, Google, 
Akamai, and Microsoft, with the goal 
of making the download of stored con-
tent (such as webpages and video data) 
as fast as possible. These CDNs, how-
ever, usually allow only fast down-

loading of stored content and do not let 
clients upload and share content with 
other clients. CDNs are not currently a 
solution for clients that want to offload 
client-specific computation.

Remaining Challenges
Despite the accomplishments described 
earlier, there are at least two major rea-
sons why cyber foraging has not yet 
proven to be commercially viable: a 
compelling killer application has not 
emerged, and deploying and maintain-
ing surrogates is challenging.

Missing a Compelling Application
Many applications for cyber foraging 
have been proposed over the years, such 
as language translation and speech rec-
ognition,5,16,17 face recognition,5,6,16 
and graphics processing.5,6,16,18  
Researchers hypothesized that the  
latency to run these applications on a 
remote server would be higher than a 
user could tolerate and that running 
these applications on a mobile phone 
would be computationally infeasible— 
creating “perfect” conditions for cyber 
foraging.

However, two developments have 
challenged this hypothesis. First, for 
many of these applications—such as 
those for language translation, face de-
tection, and speech recognition—the  
required dataset needed for them to run 
is large and proprietary. In addition, 
newer algorithms, such as deep-learn-
ing-based approaches, have greatly 
increased the accuracy of these solu-
tions when using a large dataset. These 
factors naturally make these services 
amenable as web services, where the 
full dataset is used for every request (to 
improve accuracy) while caching, pipe-
lining, and other techniques are used to 
reduce latency to acceptable levels.

Second, the exponential improve-
ment in mobile processing capabilities 
has allowed smaller versions of these 
applications, which use small local 
datasets to run in real time on mod-
ern phones. For example, modern cell 
phones have local speech recognizers 

The client-server model does not work well for

services that require hard real-time guarantees,

such as real-time multiplayer gaming and

real-time vision analytics.
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that can accurately detect a subset 
of words in real time (such as “OK 
Google”). The GPUs of modern phones 
are also powerful enough to process 
many graphics tasks locally with ac-
ceptable performance and latency.

To date, there have been no com-
pelling mass-market applications that 
require low latencies that cannot be 
achieved as a web service and that also 
are too computationally or energy in-
tensive for modern smart phones to 
run locally. This might be a “chicken 
or the egg” problem: the lack of cyber 
foraging infrastructure could poten-
tially be hindering the development 
of such applications. Later, we discuss 
one emerging class of applications that 
could prove to be the compelling appli-
cation that cyber foraging needs.

The Challenge of Server  
Setup and Maintenance
The second hurdle for cyber-foraging 
adoption is the challenge of server setup 
and maintenance. For example, mov-
ing one of the services offered as a web 
service, such as language translation, 
to a cyber-foraging deployment would 
require

• ensuring adequately provisioned sur-
rogates are located near a majority of 
mobile users,

• offering user credentials and security 
primitives to easily authenticate mo-
bile users to surrogates and vice versa,

• transferring all datasets required for 
application use to the surrogates,

• protecting proprietary datasets from 
leaking information to mobile users 
or other applications running on po-
tentially shared surrogates,

• running the applications requested 
by the mobile users, and

• migrating the user state (if required) 
between surrogates or the cloud to 
maintain network proximity as us-
ers themselves move.

Looking at the requirements a little 
deeper, we see that the initial step of 
providing local surrogates for mobile 

usage is already a substantial barrier. 
In particular, who should provide 
these surrogates? If the application 
provider must contribute surrogates, 
the cost of providing local computa-
tion will be prohibitively high. If sur-
rogates are provided by users or by 
third-party infrastructure providers 
(such as cellular companies and ISPs), 
the challenge becomes providing ade-
quate security and privacy so that ap-
plication providers feel comfortable 
moving their proprietary code and da-
tasets onto surrogates that they don’t 
themselves control. Finally, convincing 
users to use third-party surrogates that 
are not the “authoritative” web service 
might require new authentication, se-
curity, and privacy mechanisms to be 
developed, maintained, and explained 
(to the users).

All of these challenges could be  
addressed if there were sufficiently 
compelling use cases that require cyber 
foraging. However, the lack of such use 
cases, coupled with high setup costs, 
creates substantial barriers for com-
mercial cyber-foraging deployment.

Looking Forward
Recently, a new class of applications 
requiring real-time video processing is 
emerging as a potential candidate for 
cyber foraging. This class of applica-
tion comes in two main forms. The first 

form is applications that provide video 
analytics of scenes in real time. This 
form of the application class is driven 
by the emergence of augmented reality 
(AR) displays such as HoloLens (www.
microsoft.com/microsoft-hololens) 
and Google Glass (https://developers.
google.com/glass), where the mobile 
device must continuously process video 
feeds in real time to identify interesting 
objects in the scene and then perform 
some action, such as overlaying infor-
mation on those objects. The second 
form is applications that migrate desk-
top gaming to mobile devices, where 
the mobile device must generate nu-
merous high-resolution video frames 
in real time.

In both of these cases, the mobile de-
vice must either process video frames 
(for the AR use case) or generate nu-
merous video frames (for the gaming 
use case) in real time. Neither use case 
requires a large dataset (because the 
knowledge required to process or gen-
erate the video feeds is relatively small), 
but both require a very large amount 
of computational power that might not 
be available on a mobile device. Indeed, 
even on desktop machines, processing 
and generating the high-resolution 
video feeds (such as at 4K resolutions) 
might require high-end CPU and GPU 
hardware (or even multiple machines 
working together in parallel). Even if 
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the computation is performed locally 
on the mobile device, the energy cost  
to run the mobile CPU and GPU at 
continuous full capacity will quickly 
exhaust the mobile device’s battery ca-
pacity and generate a large amount of 
heat.

However, the lack of local compu-
tation power and battery capacity, 
coupled with the need for real-time re-
sponses (and the lack of a large dataset), 
makes these types of applications quite 
suitable for a cyber-foraging-style solu-
tion. Indeed, research prototypes such 
as Outatime19 and Kahawai20 have 
already shown how cloud rendering 
on local or remote servers can greatly 
improve the ability of mobile devices 
to play desktop-quality games. Other 
research solutions, such as the one Ha 
and his colleagues proposed,21 have 
also shown how local clouds that epit-
omize the concept of cloudlets14 can 
greatly improve the performance of 
AR-type applications.

Looking forward, the use of mobile 
AR and VR displays has the potential to 
be a compelling use case for cyber for-
aging. In particular, the heat output of 
these displays needs to be low, because 
they are worn on a user’s head. Offload-
ing computation to nearby servers just 
to reduce heat generation might be nec-
essary for practical long-term use. In ad-
dition, the running of both AR-driven 
computer vision applications and high- 
resolution desktop-quality games on 
cell phones might require cyber for-
aging to achieve both the quality and 
real-time latencies required for such 
applications.

F ifteen years after the original 
vision, considerable progress 
has been made on partition-
ing, isolation, and other in-

frastructure issues needed to make cy-
ber foraging a reality. What is needed 
now is progress along two dimensions: 
developing the killer apps that this  

infrastructure enables and lowering cost 
and other practical barriers that hinder 
widespread surrogate deployment. 
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