
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2017

Cyber foraging: Fifteen years later
Rajesh Krishna BALAN
Singapore Management University, rajesh@smu.edu.sg

Jason FLINN

DOI: https://doi.org/10.1109/MPRV.2017.2940972

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Engineering Commons, and the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BALAN, Rajesh Krishna and FLINN, Jason. Cyber foraging: Fifteen years later. (2017). IEEE Pervasive Computing. 16, (3), 24-30.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3929

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/155249484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MPRV.2017.2940972
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3929&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

24 PERVASIVE computing Published by the IEEE CS n 1536-1268/17/$33.00 © 2017 IEEE

Cyber Foraging:
Fifteen Years Later

T he term cyber foraging was
first coined by Mahadev Satya-
narayanan (Satya) in his 2001
IEEE Pervasive Communica-
tions article, “Pervasive Comput-

ing: Visions and Challenges.”1 The term cap-
tures the vision of computers that can “live off
the land” by acquiring, from their immediate
environment, the resources needed to perform
various tasks. In Satya’s vision, mobile devices
offload computation to servers called surro-
gates, which are located in close proximity to

the mobile device. Surrogates
are located in “public spaces
such as airport lounges and
coffee shops... much as table
lamps are today.”1 To facilitate
this vision, Satya stated that it
was necessary to develop sys-
tems to partition applications

between local and remote resources and to man-
age and secure the surrogates, data, and devices
needed for offloading computation.

Satya further described cyber foraging with
the following scenario:

When a mobile computer enters a
neighborhood, it first detects the
presence of potential surrogates and
negotiates their use. Communication
with a surrogate is via short-range
wireless peer-to-peer technology, with
the surrogate serving as the mobile
computer’s networking gateway to the

Internet. When an intensive computation
accessing a large volume of data has to
be performed, the mobile computer ships
the computation to the surrogate; the
latter may cache data from the Internet
on its local disk in performing the
computation. Alternatively, the surrogate
may have staged data ahead of time in
anticipation of the user’s arrival in the
neighborhood. In that case, the surrogate
may perform computations on behalf of
the mobile computer or merely service
its cache misses with low latency by
avoiding Internet delays. When the mobile
computer leaves the neighborhood, its
surrogate bindings are broken, and any
data staged or cached on its behalf are
discarded.

At the heart of this vision are the surrogates
providing resources that mobile devices can
leverage to perform computational tasks. This
leveraging, using various offloading techniques,
can be performed to reduce application latency,
improve application performance or quality,
and reduce the energy consumed by the mobile
device. This vision has inspired a tremendous
amount of research in the mobile computing
community, leading to the development of nu-
merous cyber foraging prototypes. As of yet,
however, academic research has not spilled
over into industry; there is currently a noticeable
lack of commercial deployments that use cyber-
foraging technology.

Revisiting Mahadev Satyanarayanan’s original vision of cyber foraging,
the authors reflect on the last 15 years of research progress and
discuss accomplishments and remaining challenges. They also consider
compelling application scenarios required to make cyber foraging a
widely deployed technology.

Rajesh Krishna Balan
Singapore Management University

Jason Flinn
University of Michigan

P E R V A S I V E C O M P U T I N G R E V I S I T E D

Published in IEEE Pervasive Computing, 2017 July, Volume 16, Issue 3, Pages 24-20
https://doi.org/10.1109/MPRV.2017.2940972

JULY–SEPTEMBER 2017 PERVASIVE computing 25

In this retrospective article, we look
back at the last 15 years of research in
cyber foraging and ask the following
questions:

• Have we overcome the technical
challenges required to achieve seam-
less cyber foraging?

• What challenges still remain, and
how do they hamper the adoption of
cyber foraging?

• What does the future look like for
cyber foraging research and the de-
ployment of cyber-foraging systems?

To answer these questions, we sum-
marize relevant research and techni-
cal accomplishments in partitioning
and surrogate management and dis-
cuss the difficulties of finding the killer
app for cyber foraging and tackling the
challenges of surrogate deployment.
We also identify a new class of video
processing applications, driven by the
emergence of portable augmented and
virtual reality (VR) displays.

Accomplishments
The major accomplishments on the
path to achieving cyber foraging fall
into two broad categories: learning
how to partition applications between
local and remote resources, and under-
standing how to better manage and se-
cure offloaded computation.

Partitioning
Simply stated, the partitioning decision
answers the following question: Given a
specific application state and a specific
computational environment, which
portions of the application should run
on the mobile computer, and which
should run on remote infrastructure?2

In addressing this issue, there are
many possible answers. However, the
consensus that has emerged in the
field is that the two most important
objectives of the partitioning deci-
sion are maximizing application per-
formance and minimizing energy
usage on the mobile computer (thereby
preserving precious battery lifetime).

Performance can be expressed in vari-
ous metrics, depending on the applica-
tion requirements. For example, early
cyber-foraging systems (such as Spec-
tra3) that execute discrete tasks seek to
minimize task completion time. Later
systems (such as Odessa4) that target
stream-based computation try to im-
prove makespan and throughput. Some
systems let applications alter the com-
putation to produce results of varying

fidelity; in such systems, maximizing
fidelity is also important.3,5

Balancing multiple objectives is non-
trivial, because each goal is expressed in
different units (as time for performance,
in Joules for energy, and as an applica-
tion-specific measure of quality for
fidelity). Two approaches have emerged
for dealing with this issue. Some sys-
tems explicitly balance competing goals
by first defining a static or dynamic util-
ity function that converts different met-
rics into a single cost function and then
minimizing that cost function.3,5 Oth-
ers seek to optimize a single goal subject
to constraints on the other goals.6

Researchers have explored many
different granularities for partition-
ing applications and executing some
functionality remotely. Early cyber-
foraging systems relied on developers
to explicitly specify large components
in their code, which could be executed
on remote computers.3,5 More recent
systems (such as CloneCloud7) have
leveraged reflection in managed lan-
guage runtimes to automatically par-
tition applications at method bound-
aries. Some systems (such as MAUI6)
take a hybrid approach; developers an-
notate methods that can be executed
remotely, and MAUI uses reflection to
determine at runtime which, if any, of
these should execute remotely. Comet

uses thread-level partitioning by mi-
grating threads between the mobile
computer and a remote server such as
a surrogate.8

Despite this variation in granularity,
researchers have tended to agree on the
properties that make a code compo-
nent well-suited for remote execution.
First of all, the component should not
produce external output, because that
output can’t be reliably reproduced on

the mobile computer if the surrogate
fails. Consider an offloaded computa-
tion that generates a random key, en-
crypts network communication with a
cloud server using that key, and then
fails. The mobile computer can’t seam-
lessly continue communicating with
the cloud server, because it lacks the
random key needed to encrypt and de-
crypt communication.

Second, the ratio of computation to
communication should generally be
high. Offloading substantial compu-
tation to a surrogate improves perfor-
mance and reduces mobile computer
energy usage. However, the mobile
computer must send the computation’s
inputs to the surrogate and must re-
ceive the results of the computation;
both require network communication
that comes at a performance and en-
ergy cost. Therefore, to be suitable for
offloading, a code component should
have a substantial amount of computa-
tion yet small inputs and outputs.

Finally, the component should have
few or no dependencies on external
input and system services on the mo-
bile computer, because resolving such
dependencies would require additional
network communication. One chal-
lenge for systems such as CloneCloud
and Comet, which automatically iden-
tify components to offload, is that there

To be suitable for offloading, a code

component should have a substantial amount of

computation yet small inputs and outputs.

26 PERVASIVE computing www.computer.org/pervasive

PERVASIVE COMPUTING REVISITED

might be only a few large components
that meet these criteria in typical mo-
bile applications. If developers must
modify their applications to create
such components, then the additional
overhead of annotating the components
they create could be relatively low.

To decide whether to offload a com-
ponent to a surrogate, cyber-foraging
systems typically rely on observations of

historical behavior. This helps the sys-
tems determine the component’s com-
putational demand and the communi-
cation overhead required to offload the
component. Many systems also observe
the environment to determine the re-
source supply, such as network latency
and bandwidth, CPU load on the mobile
computer and surrogate, and remain-
ing battery energy. The combination
of these two factors—supply and de-
mand—yields predictions for how well
local or remote execution would satisfy
the goals of the cyber-foraging system;
predicting, for example, how offloading
might impact application performance
and mobile computer energy usage.

More recent work in cyber foraging
has recognized that such predictions
can often be unreliable and lead to
nonideal behavior. For example, appli-
cations might exhibit considerable var-
iance in CPU demand or data size as
a result of variation in program input
or user behavior. Mobile networks can
also exhibit substantial changes in la-
tency, bandwidth, and reliability due to
movement, radio interference, and load
variation. If the cyber-foraging system
mispredicts either supply or demand,
its decision about whether to execute
a component locally or remotely might
be incorrect. Even worse, a mobile

network or surrogate might fail, lead-
ing to the inability to complete a remote
computation or receive its results.

One strategy to address such behav-
ior, used in systems such as MAUI,6
is to time out if a remote computa-
tion takes too long to complete and
fail over to local execution. Chroma5
and Slingshot9 mitigate uncertainty in
server execution and network commu-

nication time by potentially executing
a component on more than one remote
server and using the fastest response to
continue the application’s execution.
Such an approach reduces both average
execution time and tail latency when re-
sponse times are both uncertain and in-
dependent of one another. Similarly, the
cyber-foraging system can simultane-
ously execute a component on both the
mobile computer and a surrogate10,11 to
improve performance.

Management
The cyber-foraging research commu-
nity has also made considerable pro-
gress in surrogate management. In
the original “Vision and Challenges”
paper,1 Satya defined surrogates to be
remote computers that might temporar-
ily help a mobile computer (by hosting
offloaded computation, for example).
Progress in surrogate management has
been made along the dimensions of iso-
lation of remotely hosted computation,
state management and provisioning,
and surrogate location.

Isolation. A surrogate can host of-
floaded computation from several mo-
bile computers, so it is important to
isolate each hosted computation from
other computations and from variation

in the execution environment between
the surrogate and mobile computer. For
correct behavior, surrogates must up-
hold the result equivalence property:

The observable results of an
operation that executes remotely
on a surrogate should be
indistinguishable from results
that could have been produced
by the same operation if it had
executed on a mobile computer.2

Upholding the result equivalence prop-
erty allows transparent offloading of
computation from the mobile device to
the surrogate. It is typically provided
by executing the offloaded computa-
tion within an isolated sandbox such
that the external inputs (results of sys-
tem calls, invocations of middleware
services, or input from devices and
the user) to the sandbox on the remote
surrogate are the same as those that
would have been received on the mo-
bile computer.

Cyber-foraging researchers have
explored three techniques to provide
isolation. Early cyber-foraging systems
used process-level isolation provided
by the operating system.3,12 Such iso-
lation is lightweight, leading to excel-
lent performance. However, processes
have many external dependencies—
including the operating system, the
dynamic libraries, and services run-
ning on the host computer. If a hosted
computation interacts with any of these
dependencies, then the cyber-foraging
system must ensure that the operating
systems, libraries, and external ser-
vices on the surrogate are compatible
with those on the mobile computer in
order to uphold the result equivalence
property. In practice, this proved to be
quite difficult due to the heterogeneity
of mobile computers.

Subsequent cyber-foraging systems
used hardware virtual machines (VMs)
for isolation.9,13 Hardware virtualiza-
tion provides strong isolation because
each VM contains its own version of
the operating system, libraries, and

Progress in surrogate management has been

made along the dimensions of isolation of

remotely hosted computation, state management

and provisioning, and surrogate location.

JULY–SEPTEMBER 2017 PERVASIVE computing 27

middleware services. However, the
performance cost of this isolation can
be steep because of the large amount of
state needed to encapsulate all of those
entities; the state must be saved, trans-
mitted over the network, and restored
to execute a computation remotely.

Application virtualization in man-
aged runtimes, such as C#6 or Dalvik,7
represent a middle ground. Theoret-
ically, the language-level virtualiza-
tion can provide strong isolation with
a much lower cost due to reducing the
state size within each VM. However,
modern applications running on mobile
computers execute a great deal of na-
tive code and often invoke middleware
or system services during execution.
MAUI handled these external depend-
encies by having developers annotate
which methods could be executed re-
motely and which could not (because
they rely on dependencies that might
not exist or that might have different
states on the surrogate, for example).
Tango found that handling such de-
pendencies was a considerable source
of complexity when supporting cyber
foraging for Android platforms.10

Thus, although cyber-foraging re-
searchers have explored many different
options for isolation, no choice clearly
dominates across all dimensions. Meth-
ods such as hardware virtualization
that provide strong isolation also incur
considerable performance overhead;
methods such as process-level isolation
that provide low overhead also have
weak isolation. Resolving this tradeoff
has proven difficult.

State management and provisioning.
Surrogates encapsulate the applica-
tion-specific state needed to perform
an offloaded computation within one
of the isolation mechanisms just de-
scribed. At a minimum, this state
consists of the inputs needed for the
computation and the executable code
required to perform the computation.
Depending on the isolation mechanism,
the state might also comprise libraries
and services used by the computation—

or even an entire operating system in
the case of hardware virtualization.

Researchers have developed a vari-
ety of methods to synchronize the state
between mobile computers and sur-
rogates. One method used by MAUI6
and CloneCloud7 directly transfers
the inputs required by a computation
to the surrogate before beginning the
offloaded computation. These systems
rely on reflection within the language
runtime to discover which objects
might be accessed by the computation;
however, the set of objects actually
accessed might be potentially smaller
than the set that could be accessed,
leading to lower performance and in-
creased network usage.

Comet uses distributed shared mem-
ory to only transfer the state that is
actually accessed by both the mobile
computer and remote surrogate.8 This
potentially reduces the bytes trans-
ferred, but such state must be trans-
ferred on demand, which can incur
performance overhead due to network
latency. Tango deterministically repro-
duces the same state on the mobile com-
puter and surrogate by running identi-
cal executions on the two platforms.10
This leads to a further reduction in
bytes transferred, but incurs the over-
head of replicating computation.

Systems such as Spectra supplement
direct transfer using an external distrib-
uted storage system to transfer a large

state such as dynamic libraries and data
files.3 Because many such systems pro-
vide weak data consistency, research-
ers have often found it necessary to pro-
vide them with explicit synchronization
hints to ensure that needed inputs are
transferred before computation begins.

When the state is very large—for ex-
ample, with hardware virtualization—
researchers have exploited commonality
in state across offloaded computations
to decrease the amount of state that is
transferred for each individual compu-
tation. Early work on cloudlets used
VM overlays14 to transfer only the
difference between a customized
state and a more generic reference state.
Kiryong Ha and his colleagues showed
that transferring a VM overlay and in-
stantiating it over the image of a base
VM image could provision a custom
VM in as little as 10 seconds.15 Alterna-
tively, systems such as Slingshot13 have
used content-addressable storage to find
common chunks among multiple VM
states, transferring only those chunks
that are unknown to the receiver. Ha
and his colleagues combine these two
techniques by deduplicating chunks
within each VM overlay.

Surrogate location. The emergence of
cloud computing has led to the central-
ization of compute services within the
datacenter. Most mobile applications
that rely on remote computation cur-
rently execute that computation in a
cloud datacenter. It is therefore worth
considering whether the original vision
of surrogates located near mobile com-
puters is still valuable.

The developers of MAUI investi-
gated how network latency impacted

the performance of applications with
offloaded computation.6 For some ap-
plications, such as face recognition or
a video game, the difference between
local network latencies and mobile-to-
cloud latencies resulted in changes in
application performance of up to 50

Although cyber-foraging researchers

have explored many different

options for isolation, no choice clearly

dominates across all dimensions.

28 PERVASIVE computing www.computer.org/pervasive

PERVASIVE COMPUTING REVISITED

percent. Furthermore, mobile computer
energy usage was often greater than if
the computation had not been offloaded
at all. Using the MAUI approach, other
applications, such as real-time processing

of captured video, might require sub-
stantial amounts of data to be sent from
the mobile computer to the surrogate.
The bandwidth available over a local
Wi-Fi network might greatly exceed
that available over the backhaul link;
bandwidth to surrogates within cel-
lular infrastructure might be greater
than the bandwidth available to a da-
tacenter. Thus, when offloading com-
putation from user-facing, interactive
applications, there can be considera-
ble benefit to using a nearby surrogate
rather than one in the cloud.

The cloudlet vision14 builds on this
observation. While cloudlets have
many aspects, an essential feature for
cyber foraging is that they provide
low-latency, high-bandwidth, one-
hop wireless network connectivity to
mobile computers. Cloudlets can be
deployed with Wi-Fi base stations or
within cellular network infrastructure.
Thus, they represent an updated vision
for surrogates that are located nearby
mobile computers.

Industry Solutions
Some parts of the cyber-foraging vision
have already become standard industry
practices. For example, many services
are offered through a client-server
model in which the client sends inputs
to a server that processes the request on
behalf of the client and returns the out-
put. For example, speech recognition,
language translation, and real-time

navigation all work very well using a
client-server model, because they only
require soft real-time guarantees (a
few hundred milliseconds, because a
human is processing the answers) and

have reasonably small inputs and out-
puts. However, the client-server model
does not work well for services that re-
quire hard real-time guarantees, such
as real-time multiplayer gaming and
real-time vision analytics, or where the
application inputs and outputs are large
relative to the available bandwidth (for
example, real-time high resolution
video processing).

Cloud computing has addressed
many important issues pertaining to
isolation and management. Research-
ers have found cloud solutions, such as
VMs and containers, translate well to
cyber foraging. However, surrogates
present additional challenges compared
to servers in cloud datacenters. The lack
of physical security makes securing
computation and data more challeng-
ing on surrogates, and the lack of easy
access makes maintenance more diffi-
cult to perform. Surrogates have less co-
located resources than datacenter serv-
ers, so handling large datasets requires
careful data partitioning and caching.

There has also been a large effort to
provide content distribution networks
(CDNs) that are located in close prox-
imity to as many clients as possible.
These CDNs are provided by compa-
nies such as Netflix, Amazon, Google,
Akamai, and Microsoft, with the goal
of making the download of stored con-
tent (such as webpages and video data)
as fast as possible. These CDNs, how-
ever, usually allow only fast down-

loading of stored content and do not let
clients upload and share content with
other clients. CDNs are not currently a
solution for clients that want to offload
client-specific computation.

Remaining Challenges
Despite the accomplishments described
earlier, there are at least two major rea-
sons why cyber foraging has not yet
proven to be commercially viable: a
compelling killer application has not
emerged, and deploying and maintain-
ing surrogates is challenging.

Missing a Compelling Application
Many applications for cyber foraging
have been proposed over the years, such
as language translation and speech rec-
ognition,5,16,17 face recognition,5,6,16
and graphics processing.5,6,16,18
Researchers hypothesized that the
latency to run these applications on a
remote server would be higher than a
user could tolerate and that running
these applications on a mobile phone
would be computationally infeasible—
creating “perfect” conditions for cyber
foraging.

However, two developments have
challenged this hypothesis. First, for
many of these applications—such as
those for language translation, face de-
tection, and speech recognition—the
required dataset needed for them to run
is large and proprietary. In addition,
newer algorithms, such as deep-learn-
ing-based approaches, have greatly
increased the accuracy of these solu-
tions when using a large dataset. These
factors naturally make these services
amenable as web services, where the
full dataset is used for every request (to
improve accuracy) while caching, pipe-
lining, and other techniques are used to
reduce latency to acceptable levels.

Second, the exponential improve-
ment in mobile processing capabilities
has allowed smaller versions of these
applications, which use small local
datasets to run in real time on mod-
ern phones. For example, modern cell
phones have local speech recognizers

The client-server model does not work well for

services that require hard real-time guarantees,

such as real-time multiplayer gaming and

real-time vision analytics.

JULY–SEPTEMBER 2017 PERVASIVE computing 29

that can accurately detect a subset
of words in real time (such as “OK
Google”). The GPUs of modern phones
are also powerful enough to process
many graphics tasks locally with ac-
ceptable performance and latency.

To date, there have been no com-
pelling mass-market applications that
require low latencies that cannot be
achieved as a web service and that also
are too computationally or energy in-
tensive for modern smart phones to
run locally. This might be a “chicken
or the egg” problem: the lack of cyber
foraging infrastructure could poten-
tially be hindering the development
of such applications. Later, we discuss
one emerging class of applications that
could prove to be the compelling appli-
cation that cyber foraging needs.

The Challenge of Server
Setup and Maintenance
The second hurdle for cyber-foraging
adoption is the challenge of server setup
and maintenance. For example, mov-
ing one of the services offered as a web
service, such as language translation,
to a cyber-foraging deployment would
require

• ensuring adequately provisioned sur-
rogates are located near a majority of
mobile users,

• offering user credentials and security
primitives to easily authenticate mo-
bile users to surrogates and vice versa,

• transferring all datasets required for
application use to the surrogates,

• protecting proprietary datasets from
leaking information to mobile users
or other applications running on po-
tentially shared surrogates,

• running the applications requested
by the mobile users, and

• migrating the user state (if required)
between surrogates or the cloud to
maintain network proximity as us-
ers themselves move.

Looking at the requirements a little
deeper, we see that the initial step of
providing local surrogates for mobile

usage is already a substantial barrier.
In particular, who should provide
these surrogates? If the application
provider must contribute surrogates,
the cost of providing local computa-
tion will be prohibitively high. If sur-
rogates are provided by users or by
third-party infrastructure providers
(such as cellular companies and ISPs),
the challenge becomes providing ade-
quate security and privacy so that ap-
plication providers feel comfortable
moving their proprietary code and da-
tasets onto surrogates that they don’t
themselves control. Finally, convincing
users to use third-party surrogates that
are not the “authoritative” web service
might require new authentication, se-
curity, and privacy mechanisms to be
developed, maintained, and explained
(to the users).

All of these challenges could be
addressed if there were sufficiently
compelling use cases that require cyber
foraging. However, the lack of such use
cases, coupled with high setup costs,
creates substantial barriers for com-
mercial cyber-foraging deployment.

Looking Forward
Recently, a new class of applications
requiring real-time video processing is
emerging as a potential candidate for
cyber foraging. This class of applica-
tion comes in two main forms. The first

form is applications that provide video
analytics of scenes in real time. This
form of the application class is driven
by the emergence of augmented reality
(AR) displays such as HoloLens (www.
microsoft.com/microsoft-hololens)
and Google Glass (https://developers.
google.com/glass), where the mobile
device must continuously process video
feeds in real time to identify interesting
objects in the scene and then perform
some action, such as overlaying infor-
mation on those objects. The second
form is applications that migrate desk-
top gaming to mobile devices, where
the mobile device must generate nu-
merous high-resolution video frames
in real time.

In both of these cases, the mobile de-
vice must either process video frames
(for the AR use case) or generate nu-
merous video frames (for the gaming
use case) in real time. Neither use case
requires a large dataset (because the
knowledge required to process or gen-
erate the video feeds is relatively small),
but both require a very large amount
of computational power that might not
be available on a mobile device. Indeed,
even on desktop machines, processing
and generating the high-resolution
video feeds (such as at 4K resolutions)
might require high-end CPU and GPU
hardware (or even multiple machines
working together in parallel). Even if

the AUTHORS

Rajesh Krishna Balan is a professor of information systems at the Singapore
Management University, where he is also a director of the LiveLabs Urban Life-
style Innovation Platform. His research interests include mobile systems, power
management, and usability. Balan received his PhD in computer science from
Carnegie Mellon University. Contact him at rajesh@smu.edu.sg.

Jason Flinn is a professor of computer science and engineering at the Univer-
sity of Michigan, Ann Arbor, where he is also the director of the Software Sys-
tems Laboratory. His research interests include operating systems, distributed
systems, and mobile computing. Flinn received his PhD in computer science
from Carnegie Mellon University. Flinn is a fellow of the ACM, and his research
has been recognized with an NSF Career award. Contact him at jflinn@umich.
edu.

30 PERVASIVE computing www.computer.org/pervasive

PERVASIVE COMPUTING REVISITED

the computation is performed locally
on the mobile device, the energy cost
to run the mobile CPU and GPU at
continuous full capacity will quickly
exhaust the mobile device’s battery ca-
pacity and generate a large amount of
heat.

However, the lack of local compu-
tation power and battery capacity,
coupled with the need for real-time re-
sponses (and the lack of a large dataset),
makes these types of applications quite
suitable for a cyber-foraging-style solu-
tion. Indeed, research prototypes such
as Outatime19 and Kahawai20 have
already shown how cloud rendering
on local or remote servers can greatly
improve the ability of mobile devices
to play desktop-quality games. Other
research solutions, such as the one Ha
and his colleagues proposed,21 have
also shown how local clouds that epit-
omize the concept of cloudlets14 can
greatly improve the performance of
AR-type applications.

Looking forward, the use of mobile
AR and VR displays has the potential to
be a compelling use case for cyber for-
aging. In particular, the heat output of
these displays needs to be low, because
they are worn on a user’s head. Offload-
ing computation to nearby servers just
to reduce heat generation might be nec-
essary for practical long-term use. In ad-
dition, the running of both AR-driven
computer vision applications and high-
resolution desktop-quality games on
cell phones might require cyber for-
aging to achieve both the quality and
real-time latencies required for such
applications.

F ifteen years after the original
vision, considerable progress
has been made on partition-
ing, isolation, and other in-

frastructure issues needed to make cy-
ber foraging a reality. What is needed
now is progress along two dimensions:
developing the killer apps that this

infrastructure enables and lowering cost
and other practical barriers that hinder
widespread surrogate deployment.

REFERENCES
 1. M. Satyanarayanan, “Pervasive Comput-

ing: Vision and Challenges,” IEEE Personal
Comm., vol. 8, no. 4, 2001, pp. 10–17.

 2. J. Flinn, Cyber Foraging: Bridging Mobile
and Cloud Computing, Morgan and
Claypool, 2012.

 3. J. Flinn, S.Y. Park, and M. Satya-
narayanan, “Balancing Performance,
Energy, and Quality in Pervasive Comput-
ing,” Proc. 22nd Int’l Conf. Distributed
Computing Systems, 2002; doi: 10.1109/
ICDCS.2002.1022259.

 4. M.-R. Ra et al., “Odessa: Enabling
Interactive Perception Applications
on Mobile Devices,” Proc. 9th Int’l
Conf. Mobile Systems, Applications
and Services, 2011, pp. 43–56; doi:
10.1145/1999995.2000000.

 5. R.K. Balan et al., “Tactics-Based Remote
Execution for Mobile Computing,” Proc.
1st Int’l Conf. Mobile Systems, Applica-
tions and Services, 2003, pp. 273–286.

 6. E. Cuervo et al., “MAUI: Making Smart-
phones Last Longer with Code Offload,”
Proc. 8th Int’l Conf. Mobile Systems, Appli-
cations and Services, 2010, pp. 49–62.

 7. B.-G. Chun et al., “CloneCloud: Elastic
Execution between Mobile Device and
Cloud,” Proc. 6th ACM European Conf.
Computer Systems, 2011, pp. 301–314.

 8. M.S. Gordon et al., “COMET: Code
Offload by Migrating Execution Trans-
parently,” Proc. 10th Symp. Operating
Systems Design and Implementation,
2012, pp. 93–106.

 9. Y.-Y. Su and J. Flinn, “Slingshot:
Deploying Stateful Services in Wireless
Hotspots,” Proc. 3rd Int’l Conf. Mobile
Systems, Applications and Services,
2005, pp. 79–92.

 10. M. Gordon et al., “Accelerating Mobile
Applications through Flip-Flop Replica-
tion,” Proc. 13th Int’l Conf. Mobile Sys-
tems, Applications and Services, 2015,
pp. 137–150.

 11. B.D. Higgins et al., “The Future Is

Cloudy: Reflecting Prediction Error in

Mobile Applications,” Proc. 6th Int’l

Conf. Mobile Computing, Applications,

and Services (MobiCASE), 2014; doi:

10.4108/icst.mobicase.2014.257722.

 12. A. Rudenko et al., “Saving Portable Com-
puter Battery Power through Remote
Process Execution,” Mobile Computing
and Comm. Rev., vol. 2, no. 1, 1998,
pp. 19–26.

 13. S. Goyal and J. Carter, “A Lightweight
Secure Cyber Foraging Infrastructure for
Resource-Constrained Devices,” Proc.
6th Int’l Workshop Mobile Computing
Systems and Applications (HotMobile),
2004; doi: 10.1109/MCSA.2004.2.

 14. M. Satyanarayanan et al., “The Case
for VM-Based Cloudlets in Mobile
Computing,” IEEE Pervasive Comput-
ing, vol. 8, no. 4, 2009, pp. 14–23.

 15. K. Ha et al., “Just-in-Time Provisioning
for Cyber Foraging,” Proc. 11th Int’l
Conf. Mobile Systems, Applications and
Services, 2013, pp. 153–166.

 16. R. Krishna Balan et al., “Simplifying
Cyber Foraging for Mobile Devices,”
Proc. 5th Int’l Conf. Mobile Systems,
Applications and Services, 2007,
pp. 272–285.

 17. J. Flinn and M. Satyanarayanan, “Ener-
gy-Aware Adaptation for Mobile Applica-
tions,” Proc. 17th ACM Symp. Operating
Systems Principles, 1999, pp. 48–63.

 18. D. Narayanan and M. Satyanarayanan,
“Predictive Resource Management for
Wearable Computing,” Proc. 1st Int’l
Conf. Mobile Systems, Applications, and
Services, 2003.

 19. K. Lee et al., “Outatime: Using Spec-
ulation to Enable Low-Latency Con-
tinuous Interaction for Mobile Cloud
Gaming,” Proc. 13th Int’l Conf. Mobile
Systems, Applications and Services, 2015,
pp. 151–165.

 20. E. Cuervo et al., “Kahawai: High-Qual-
ity Mobile Gaming Using GPU Offload,”
Proc. 13th Int’l Conf. Mobile Systems,
Applications and Services, 2015; doi:
10.1145/2594368.2601482.

 21. K. Ha et al., “Towards Wearable Cogni-
tive Assistance,” Proc. 12th Int’l Conf.
Mobile Systems, Applications and Ser-
vices, 2014, pp. 68–81.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2017

	Cyber foraging: Fifteen years later
	Rajesh Krishna BALAN
	Jason FLINN
	Citation

	tmp.1516857564.pdf.TfUBE

