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Abstract

Motivated by the nature of asset pricing models, we investigate the cross-sectional
relation between the market’s ex-ante view of a stock’s risk and the stock’s ex-ante
expected return. We demonstrate that an ex-ante measure of expected returns based
on analyst price targets is highly related to the market’s required rate of return. Us-
ing this measure, we show that ex-ante measures of volatility, skewness, and kurtosis
derived from option prices are positively related to ex-ante expected returns. We then
decompose the risk measures into systematic and unsystematic components and find
that while expected returns are related to both systematic and unsystematic variance
risk, only the unsystematic components of skewness and kurtosis are important for
explaining the cross-section of expected stock returns. The results are consistent using
two different approaches to measuring ex-ante risk and robust to controls for other
variables related to stock returns and analyst bias.
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1 Introduction

Asset pricing models, by their nature, describe relations between the ex-ante (future) risk

of a security and the ex-ante expectation of the security’s future returns. Most empirical

research, however, focuses on analyses of historical risk and future realized returns. Our

objective in this paper is to develop an ex-ante measure of stocks’ expected returns and use

this measure to examine cross-sectional relations between risk and expected returns using

ex-ante measures of both.

We begin by creating a simple measure of ex-ante expected return derived from analyst

price targets. While there is a large literature that uses analyst earnings and growth forecasts

to generate measures of the cost of equity capital (Gebhardt, Lee, and Swaminathan (2001)

and Hughes, Liu, and Liu (2009), for example), research using price targets for this purpose

is scarce. This is surprising given that price targets have been shown to reflect analyst valu-

ations (Bradshaw (2002)) and to subsume the information in earnings and growth forecasts

(Asquith, Mikhail, and Au (2005)), while measures based on earnings and growth forecasts

fail to reflect analysts’ valuations (Bradshaw (2004)) or the market’s required rate of return

(Hughes et al. (2009)). Despite these findings, only Brav, Lehavy, and Michaely (2005) have

previously used price targets to examine relations between risk and the required rate of re-

turn on equity.1,2 Our measure represents an improvement over previously used measures in

that, by using the market price taken after the analyst reports are released, we capture the

required rate of return as determined by the market, not by the analysts. Additionally, the

price target measure is flexible enough to account for term structure variation in the risk and

expected return profile of the stock, and free from the assumptions inherent in measures that

use earnings and growth forecasts. Our analyses demonstrate that our price target-based

1Brav et al. (2005) find a positive relation between the cost of equity capital and beta and a negative
relation between the cost of equity capital and market capitalization.

2Bradshaw, Brown, and Huang (2013), Brav and Lehavy (2003), and Bradshaw (2002) use similar mea-
sures in different contexts.
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expected return is strongly cross-sectionally related to the rates of return required by the

market calculated from historical data. Furthermore, we show that our measure is superior

to the implied cost of capital for detecting relations between risk and expected stock returns.

We proceed to examine the relations between ex-ante expected returns, calculated us-

ing our price target measure, and ex-ante measures of risk calculated from option prices.

Specifically, we examine the relations between expected returns and the volatility, skew-

ness, and kurtosis of the distribution of future returns. Our results indicate that all three

measures of risk are strongly positively related to price target-based expected returns. We

then decompose the measures into systematic and unsystematic components and examine

which components drive these relations. The results indicate that systematic volatility is

the most important driver of the cost of equity capital, followed by unsystematic volatility,

unsystematic skewness, and unsystematic kurtosis. Neither systematic skewness nor system-

atic kurtosis is related to expected returns. All of our results are robust when controlling

for several other variables that have been shown to be determinants of the cross-section of

expected stock returns as well as controls for bias in analyst forecasts.3

The positive relation between systematic volatility and cost of capital supports the main

prediction of the Capital Asset Pricing Model (CAPM, Sharpe (1964), Lintner (1965), and

Mossin (1966)). While the CAPM is one of the foundational asset pricing theories, previ-

ous empirical studies show that measures of systematic volatility (beta) based on historical

data have little ability to predict future stock returns.4 Furthermore, theoretical models

in which unsystematic risk is priced indicate a positive relation between expected returns

and unsystematic volatility (Levy (1978) and Merton (1987)), yet previous empirical work

3See Bradshaw et al. (2013), Bonini, Zanetti, Bianchini, and Salvi (2010), Asquith et al. (2005), Brav et al.
(2005), Abarbanell and Lehavy (2003), Brav and Lehavy (2003), Bradshaw (2002), Michaely and Womack
(1999), Rajan and Servaes (1997), and Womack (1996) for discussions of the biases in analyst forecasts.

4See Blume and Friend (1973) and Fama and French (1992, 1993). Fama and French (2004) give a
summary of CAPM research. Tinic and West (1986) document difficulties in empirical tests of the CAPM.
Kothari, Shanken, and Sloan (1995) provide evidence supporting the CAPM by calculating portfolio level
market betas.

2



(Ang, Hodrick, Xing, and Zhang (2006)) has found a negative relation. Unlike these pre-

vious works, our results demonstrate that both systematic and unsystematic volatility risk

are important determinants of a security’s expected rate of return, with the direction of the

relations consistent with theoretical predictions.

Our results for skewness are consistent with the demand-based option pricing models

of Bollen and Whaley (2004) and Garleanu, Pedersen, and Poteshman (2009). Demand-

based option pricing predicts that, when investors anticipate positive returns for a stock,

they act on this anticipation by buying calls and/or selling puts. This order flow exerts

inventory demand on option market makers causing increases in call prices and decreases

in put prices. As a result, when measuring the distribution implied from option prices,

implied right-tail probabilities are high (high call prices) and left-tail probabilities are low

(low put prices), resulting in high values of implied skewness for stocks with high expected

returns. While several previous papers provide empirical evidence consistent with demand-

based option pricing (An, Ang, Bali, and Cakici (2014), Rehman and Vilkov (2012), Xing,

Zhang, and Zhao (2010), Bali and Hovakimian (2009), and DeMiguel, Plyakha, Uppal, and

Vilkov (2013)), our results augment this line of research by demonstrating that this option

demand is driven by firm-specific information, since only the unsystematic component of

skewness is robustly related to expected stock returns.5

Finally, our results for kurtosis support predictions that investors are kurtosis-averse

(Dittmar (2002), Kimball (1993)) and prefer stocks with lower probability mass in the tails

of the return distribution, causing investors to require higher expected returns from assets

with leptokurtic return distributions. As with skewness, our results indicate that this result

is driven by firm-specific kurtosis, not systematic kurtosis.

Our work provides several novel contributions. Our first contribution is to demonstrate

5In a perfect market equilibrium, theory predicts a negative relation between systematic skewness and the
cost of capital (Kraus and Litzenberger (1976), Harvey and Siddique (2000)), with some empirical evidence
supporting this prediction (Conrad, Dittmar, and Ghysels (2013) and Bali and Murray (2013)).
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that a simple price target-based measure does a good job at capturing cross-sectional vari-

ation in the market’s required rate of return. This measure is valuable for many reasons.

First, the ex-ante nature of our measure is consistent with the true nature of asset pricing

models, since such models are designed to describe the relation between ex-ante required

rates of return and the market’s ex-ante assessment of the security’s risk. Second, our mea-

sure provides an alternative to the use of ex-post realized returns as a proxy for ex-ante

expected returns, which have been shown to be noisy (Elton (1999)) and therefore may

require long sample periods to detect relations between risk and rates of return. As our re-

sults demonstrate, our measure is capable of discerning such relations using relatively short

sample period (1999-2012, the period for which price target data are available).

Second, we contribute the first study to examine relations between ex-ante required rates

of return and ex-ante measures of risk. While several previous studies have used ex-ante

measures of risk and a few studies have used ex-ante measures of expected returns, no

previous study has used ex-ante measures of both. Similar to the use of ex-post realized

returns, previous research has demonstrated that measures of risk based on historical data

are noisy and inaccurate (Boyer, Mitton, and Vorkink (2010)). Thus, accurate assessment

of the determinants of the cost of equity capital requires ex-ante measures of both risk and

required rate of return.

Third, we find strong evidence consistent with several theoretically predicted relations

between risk and required rate of return that have been evasive or undocumented in previous

empirical studies. Specifically, our results demonstate that both systematic volatility and

unsystematic volatility are positively related to expected returns. Our finding that unsys-

tematic skewness, but not systematic skewness, drives the relation between skewness and

required rate of return indicates that the demand underlying demand-based option pricing

is driven by firm-specific information. Finally, we find that while systematic kurtosis is not

important in determining required rates of return, unsystematic kurtosis (i.e. fat tails driven

4



by firm-specific information) carries a positive risk premium.

The remainder of this paper proceeds as follows. Section 2 compares the price target-

based measure of expected returns to the implied cost of capital measure. Section 3 describes

the calculation of the risk variables used in our empirical examinations. Section 4 discusses

the construction of our samples and presents summary statistics. Section 5 investigates

the relations between total risk-neutral moments and expected returns. Section 6 analyzes

the relations between expected returns and the systematic and unsystematic components of

risk-neutral moments. Section 7 concludes the paper.

2 Ex-Ante Expected Returns

In this section, we present our rationale for choosing the price target-based expected return

as our ex-ante expected return measure. Our choice is informed by conceptual analysis, a

review of previous research, and an empirical investigation comparing the price target-based

measure to an alternative ex-ante measure of expected return, the implied cost of capital.

2.1 Price Target Expected Returns

The price target-based measure of expected returns is calculated by dividing analyst price

targets by the stock’s market price. Analyst price target data come from the Institutional

Brokers Estimate System (I/B/E/S) unadjusted Detail History database.6 We take all price

targets for U.S. firms with a target horizon of 12 months where both the firm’s base currency

and the currency of the estimate are USD. The price target data cover the period from March

1999 through December 2012.

For each analyst price target, we calculate the return implied by the price target (PrcTgtER)

6We use the unadjusted database because the price targets in this database are not adjusted for corporate
actions. Therefore, when we merge the I/B/E/S data with databases that contain stock and stock-option
data (CRSP and OptionMetrics), the price target can be appropriately compared to the market price.
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to be the price target (PrcTgt) divided by the market price at the end of the month during

which the price target was announced (MonthEndPrc), minus 1.7 To ensure data quality,

we remove observations where either the announcement date or month-end stock price is

missing or non-positive.8 To calculate the expected future return for stock i at the end of

month t, we take the average of all price target implied expected returns from price targets

announced during the given month. Therefore, the expected future return for stock i in

month t is calculated as:

ERi,t =

∑ni,t

j=1 PrcTgtERj

ni,t
(1)

where ni,t is the number of analyst price targets for stock i announced during month t and

PrcTgtERj =
PrcTgtj

MonthEndPrc
− 1. (2)

There are several benefits of the price target-based expected return measure. First, it

has the intuitive appeal of being consistent with the definition of the expected return as

the expected future security value divided by the current price. While the current market

price of a stock is easily observable, the expectation of the future value is not. An analyst

price target represents an explicit assessment of the expected future value generated by an

informed market observer.

Second, the price target-based expected return has a time horizon of one year. As such,

7The end-of-month stock price is taken from CRSP. The CRSP data are matched to I/B/E/S using
CUSIPs. Specifically, we merge the CRSP data to the I/B/E/S data by matching the NCUSIP field in the
CRSP daily stock names file to the CUSIP field in I/B/E/S.

8Non-positive prices in CRSP result from days where there are no trades, in which case the price is
reported as the negative of the average of the bid and offer. If neither bid nor offer is available, CRSP
reports the price as 0. To ensure that the price target is appropriately compared to the month-end market
price, we remove observations where there is a distribution between the announcement date and the last
day of the announcement month. A stock is considered to have a distribution between the announcement
and month-end dates if there are any distributions listed in CRSP with ex-dividend dates between the
announcement date (exclusive) and the month-end date (inclusive). As additional checks, for an observation
to be retained, the cumulative factor to adjust price (CFACPR) field in the CRSP database must be the
same on the announcement date and the last trading day of the month.
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it is flexible enough to account for term structure variation in the risk and expected return

profile of a stock. This contrasts substantially with the implied cost of capital measure,

which requires that the expected rate of return on a stock be constant for all future periods.

Third, the price target measure is simple, easily calculated, and largely free from as-

sumptions that afflict alternative measures such as the implied cost of capital. While both

measures rely on analyst forecasts, calculating the price target-based expected return re-

quires no assumptions as to the future growth rate of the firm’s earnings or the firm’s future

return on equity, whereas the implied cost of capital is heavily reliant on such assumptions.

Finally, while several previous papers have used the ratio of the price target to the

market price in analyses of price targets (Bradshaw et al. (2013), Brav et al. (2005), Asquith

et al. (2005), Brav and Lehavy (2003), Bradshaw (2002)), our measure differs from these

works in one important way. Our calculation of price target-based expected return (ER)

uses the month-end price of the stock, which comes after the announcement of the price

target, whereas previous research has used the market price on or prior to the date of the

announcement. This difference is important because our measure can be interpreted as

indicative of a rate set by the market, as all information presented in the analyst report is

publicly available prior to the determination of the month-end market price, which forms the

basis of our calculation. Thus, the sequence of events in our setting is: 1) the price target is

announced, 2) the market digests the information in the analyst report (including the price

target), 3) based on the information in the report and all other available information, the

market determines the required rate of return on the stock, and 4) based on the required

rate of return and the price the stock is expected to obtain one year from now (the price

target), the market prices the stock. Given this chronology, our results cannot be interpreted

as evidence that analysts use information related to risk-neutral moments to determine the

target price of the stock. If in fact the analyst does use such information in determining the

price target, then our results indicate that the market agrees with the use of this information
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in valuing a stock. Either way, our price target-based expected return (ER) captures the

expected rate of return on the stock demanded by the market, not determined by the analyst.

Furthermore, as our ex-ante measures of risk are calculated at the end of the month, the

analyst will not have access to this information at the time of the price target announcement.

In addition to the conceptual appeal of our measure, there is substantial previous research

indicating that price targets are the most informative component of analyst reports. Asquith

et al. (2005) conclude that the information in price targets subsumes the information in earn-

ings forecasts and recommendations (the other quantifiable components of analyst reports).

Bradshaw (2002) finds that that price targets reflect analysts’ valuations of securities, and

Bradshaw (2004) shows that valuations calculated using residual income models based on

analysts’ earnings and growth forecasts, such as the implied cost of capital, fail to accurately

reflect analysts’ assessments of stock value. In addition, Bradshaw (2002) finds that analysts

are less likely to issue price targets when they lack confidence in their forecasts, meaning

our price target-based measure is likely to be more accurate than measures based on other

components of analyst reports. Taken together, these results favor the use of price targets

over earnings and growth forecasts.

2.2 Implied Cost of Capital

We calculate the implied cost of capital following Gebhardt et al. (2001). Conceptually, the

implied cost of capital (ICC) is found by solving for the discount rate (r) that equates the

current book value of equity plus the present value of expected future earnings to the current

stock price. Formulaically, the implied cost of capital is the value r that solves:

P = By +
11∑
i=1

FROEy+i − r
(1 + r)i

By+i−1 +
FROEy+12 − r
r(1 + r)11

By+11 (3)
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where By is the book value of equity in fiscal year y and FROEy+i is the forecast return on

equity in year y+i. The last term in equation (3) is the infinite summation of forecast earnings

for years y+12 and after. The assumption in this term is that return on equity is constant for

years y + 12 and after. For each stock/month observation, ICC is calculated by finding the

value of r that equates the stock price (P ) on the date that I/B/E/S releases their earnings

forecast summary data (the third Thursday of each month) to the right side of equation (3).

As the calculation is fairly complicated, we summarize the important conceptual aspects

here, and provide details in Appendix A.

The main inputs to the calculation of ICC are analyst forecasts of earnings and growth.

In years y+1 and y+2, earnings are taken from explicit analyst forecasts. Forecast earnings

for year y+ 3 and beyond are found using analysts’ forecast growth rate and the assumption

that the firm’s return on equity reverts linearly to the long-term industry median return on

equity by year y + 12, with constant return on equity occurring thereafter.

There are several assumptions used in calculating the implied cost of capital (ICC) that

limit its applicability in the context of the present research. First, ICC gives the single rate

of return that equates the price of the stock to the present value of forecast future cash flows.

As the objective of this paper is to analyze relations between relatively short horizon ex-ante

risk and ex-ante expected returns, use of ICC would explicitly assume that the required rate

of return on a given firm is constant, an assumption that is likely to be incorrect.

Second, as expressed by Botosan and Plumlee (2005), “Since the majority of the ex-

pected cash flows reside in the terminal value, successful deduction of cost of equity capital

depends largely on the ability to discern the market’s terminal value forecast.”9 Easton and

Monahan (2005) concur, stating in their abstract that “for the entire cross-section of stocks,

[accounting-based measures of expected returns] are unreliable.”10 The price target-based

9The terminal value refers to the value of the stock derived from earnings in years t+ 3 and beyond.
10The actual quote is “for the entire cross-section of stocks, these proxies are unreliable” where “these

proxies” refers to accounting-based measures of expected returns.
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expected return, on the other hand, uses an explicit forecast of the terminal value, namely

the price target, thereby alleviating the necessity to deduce the terminal value from forecast

cash flows.

While the above discussion is generally favorable to the price target-based measure of ex-

ante expected returns, an empirical analysis comparing these measures is certainly warranted.

2.3 Empirical Analysis of ER and ICC

We take two approaches to empirically evaluating the effectiveness of ER and ICC. First,

we compare the ex-ante expected return measures to a benchmark generated from regressions

of historical realized returns. Second, we examine the relations between historical risk and

firm characteristics and each of ER and ICC.

2.3.1 Regression-Based Expected Returns

Our benchmark measure of expected returns is based on historical relations between stock

returns and market beta, log of market capitalization, and book-to-market ratio. To estimate

this relation, we employ the Fama and MacBeth (1973) regression technique. Each month, we

run a cross-sectional regression of one-month ahead future stock returns on these variables.

The regression specification is:

Ri,t+1 = δ0,t + δ1,tβi,t + δ2,tSIZEi,t + δ3,tBMi,t + εi,t, (4)

where Ri,t+1 is the month t + 1 return of stock i. βi,t is the stock’s market beta, calculated

as the slope coefficient from a regression of the stock’s excess return on the market’s excess

return using one year’s worth of daily data.11 SIZEi,t is log of the stock’s market capitaliza-

11The market’s excess return is taken to be the value-weighted average excess return of all stocks that
trade on the New York Stock Exchange, the American Stock Exchange, and the Nasdaq. Daily market
excess returns are gathered from the Fama-French database on Wharton Research Data Systems (WRDS).
We require a minimum of 225 daily return observations to calculate β.
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tion (MktCap), defined as the number of shares outstanding times the end of month stock

price, recorded in $millions. BM for June of year y through May of year y + 1 is calculated

following Fama and French (1992, 1993) as the book value of equity at the end of the fiscal

year ending in year y−1 divided by the market capitalization at the end of that same year.12

We run this regression each month from July 1963 through December of 2012. The

time-series averages of the monthly cross-sectional regression coefficients are δ0 = 1.807583,

δ1 = 0.037838, δ2 = −0.177901, and δ3 = 0.253790. We then use these coefficients to

calculate our regression-based measure of expected returns (RegER), giving:13

RegERi,t = 12 (1.807583 + 0.037838βi,t − 0.177901SIZEi,t + 0.253790BMi,t) . (5)

2.3.2 Portfolio Analysis

We begin our comparison of the price target expected return (ER) and the implied cost of

capital (ICC) with a portfolio analysis examining the relations between the regression-based

expected return (RegER) and each of the ex-ante measures. Each month from March of

1999 through June of 2012, we sort all stocks for which valid values of RegER, ER, and

ICC are available into quintile portfolios based on an ascending ordering of RegER.

The time series averages of the monthly equal-weighted portfolio expected returns, using

each of the expected return measures, are presented in Panel A of Table 1. By design, the

average regression-based expected return (RegER) for the quintile portfolios increases from

an average of 2.26% for quintile portfolio one to 13.47% for quintile portfolio five, giving

an expected return difference of 11.20% between the quintile five and quintile one portfo-

lios. The results for the price target-based expected returns (ER) are remarkably similar,

12Stock return, shares outstanding, and price data are gathered from the CRSP. The book value of equity
is calculated using balance sheet data from Compustat. More details on the calculation of these variables
are presented in Appendix B.

13The multiplication by 12 in equation (5) annualizes RegER, facilitating comparison with the price
target-based measure (ER) and the implied cost of capital (ICC).
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as the average ER increases monotonically from 16.76% in quintile portfolio one to 27.86%

in quintile portfolio five. The difference in average ER between the fifth and first quintile

portfolio of 11.10% is not only highly statistically significant, with a Newey and West (1987)

t-statistic of 18.32, but is also nearly identical to the corresponding value obtained from the

regression-based expected returns. This result indicates that, up to a constant, the price

target-based expected return is highly similar in the cross-section to the regression-based

measure.14 Furthermore, it is worth noting that the differences between the average RegER

and ER of 14.50% (16.76%-2.26%), 12.01% (18.11%-6.10%), 11.83% (20.01%-8.18%), 12.82%

(22.89%-10.07%), and 14.39% (27.86%-13.47%) for quintile portfolios 1, 2, 3, 4, and 5, respec-

tively, are quite similar, indicating that any potential bias inherent in our price target-based

measure (ER) is largely unrelated to the variables used to calculate RegER, namely beta,

market capitalization, and book-to-market ratio.

Using the implied cost of capital (ICC) as the measure of expected returns, once again

we observe a monotonically increasing pattern across the quintile portfolio, from 7.65% for

the quintile one portfolio to 9.84% for quintile five, giving a 5-1 difference of 2.19% (t-statistic

= 6.78). While this result is still highly significant, it is substantially less significant, both

economically and statistically, than the results for the price target measure.

To assess the relations between each of the ex-ante expected return measures (ER and

ICC) and measures of risk and firm characteristics, we repeat the portfolio analyses, sort-

ing on each of market beta (β), log of market capitalization (Size), book-to-market ratio

(BM), idiosyncratic volatility (IdioV ol), and co-skewness (CoSkew). IdioV ol is the annu-

alized residual standard error from a regression of the stock’s excess return on the market

excess return, and the size (SMB) and book-to-market (HML) factors of Fama and French

(1993).15 CoSkew is calculated following Harvey and Siddique (2000) as the slope coefficient

14The level effect observed in the price target-based expected return measure is consistent with previous
studies that have used similar measures, and will be discussed in more detail in Section 3.3.

15Daily SMB and HML factor returns are taken from the Fama-French database on WRDS.
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on the squared excess market return term from a regression of the stock’s excess return on

the excess return of the market and the market excess return squared. Both IdioV ol and

CoSkew are calculated using one year’s worth of daily return data.16

Panel B of Table 1 shows that the price target-based expected return (ER) has strong

relations with each of market beta (β, positive relation), log of market capitalization (Size,

negative relation), and idiosyncratic volatility (IdioV ol, positive relation), as the average

difference in ER between the quintile five and quintile one portfolio (column 5-1) is econom-

ically large (8.36% for β, -12.55% for Size, and 14.85% for IdioV ol) and highly statistically

significant, with Newey and West (1987) t-statistics all in excess of 5.82. In each of these

cases, the portfolio expected returns exhibit a monotonic pattern across the quintile portfo-

lios. The analysis also detects a negative cross-sectional relation between co-skewness and

price target expected returns, as the average difference between the quintile five and quintile

one expected return of -2.02% is statistically significant. Finally, the results for portfolios

sorted on book-to-market ratio indicate an economically small but marginally statistically

significant negative difference in average price target expected return between the quintile

five and quintile one portfolios.

We repeat the portfolio analyses using implied cost of capital (ICC) as the measure

of ex-ante expected return. The results, shown in Panel C of Table 1, detect no relations

between any of the risk variables (β, IdioV ol, and CoSkew) and average ICC. On the

other hand, consistent with previous empirical work on realized returns, the results indicate

a negative relation between Size and ICC, and a positive relation between BM and ICC.

2.4 Regression Analysis

We continue our comparison of the ex-ante measures of expected returns with Fama and

MacBeth (1973) regression analyses. Panel A of Table 2 presents the results for regressions

16We require a minimum of 225 daily return observations when calculating both IdioV ol and CoSkew.
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using the price target-based measure of ex-ante expected returns (ER) as the dependent

variable. The results are highly consistent with the portfolio analyses. Specifications (1)

through (4) detect positive relations between ER and each of β and IdioV ol, and negative

relations between ER and Size, BM , and CoSkew. When ICC is added to the specification

(models (5) through (8)), the results demonstrate that while ICC is highly related to ER,

the common component between ER and ICC is not driven by risk or firm characteristics,

as the coefficients on these variables are similar to those from specifications without ICC.

The results of regressions using implied cost of capital (ICC) as the dependent variable

are presented in Panel B of Table 2. Consistent with the portfolio results, the regressions fail

to detect relations between implied cost of capital and any of the risk variables (β, IdioV ol,

CoSkew).17 Also consistent with the portfolio analyses, the regressions detect a negative

relation between Size and ICC, and a positive relation between BM and ICC, although in

some specifications the former is only marginally statistically significant.

In addition to the results presented in Table 2, we run a univariate Fama and MacBeth

(1973) regression analysis of price target expected return (ER) on the regression-based ex-

pected return (RegER). Consistent with the portfolio analysis, the average slope coefficient

from this regression is 1.11 (t-statistic = 24.00), indicating that up to a constant, ER and

RegER are highly cross-sectionally similar. The fact that the average coefficient is close to

1.00 shows that the price target-based measure is highly cross-sectionally similar to long-term

realized returns measured from a large panel of stocks covering an extended period. This is

quite useful because it indicates that the price target-based expected return can be effectively

used to estimate the economic magnitude of the impact of risk on ex-ante expected returns.

Repeating the analysis using implied cost of capital (ICC) as the dependent variable gener-

ates an average slope coefficient of 0.22 (t-statistic = 4.69), once again consistent with the

17The one exception is that regression model (8) detects a statistically significant relation between IdioV ol
and ICC. The economic significance of the coefficient, -0.01, however, is economically negligible.
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portfolio analysis. While the relation between ICC and RegER is statistically significant,

the results demonstrate that price target-based expected returns (ER) are cross-sectionally

much more similar to long-term realized returns than ICC.

In unreported analyses, we examine the ability of our ex-ante expected return measures to

predict future stock returns and find no evidence of such predictability. This is not surprising

because the sample period for which the price target-based expected returns are available

(1999-2012) is quite short and even the most robust asset pricing phenomena such as the

size and value effects of Fama and French (1992) and the momentum effect of Jegadeesh and

Titman (1993) do not generate statistically significant results over this period. In fact, even

the average excess return on the market portfolio is not statistically distinguishable from

zero during this period.18 Furthermore, if we did find a relation between price target-based

expected returns and ex-post realized returns, this would obviate the need for an ex-ante

measure as it would indicate that ex-post realized returns are not too noisy to detect asset

pricing relations over a short period of time. The noise in ex-post realized returns and

associated lack of statistical power are the reasons that an ex-ante measure is needed.

In summary, our comparison of the price target (ER) and implied cost of capital (ICC)

measures of ex-ante expected returns lead to two conclusions. First, the price target-based

measure is highly similar in the cross-section to the benchmark regression-based measure

based on historical data. Second, the price target measure is strongly related to risk, whereas

implied cost of capital appears related to firm characteristics, but fails to exhibit any relations

with risk. In addition to the empirical evidence, conceptual arguments based on the definition

of expected return and the assumptions used in calculating the implied cost of capital also

favor the use of the price target-based measure. Finally, the results of previous research

18The average returns of the market (MKTRF, 0.21% per month), size (SMB, 0.46% per month), value
(HML, 0.32% per month), and momentum (UMD, 0.30% per month) factor mimicking portfolios for the
period from 1999 through 2012 are all statistically insignificant. Monthly factor return data are taken from
Kenneth French’s data library.
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indicate that price targets contain more information relevant to the market and produce

more accurate measures of valuation than the earnings and growth forecasts used in the

calculation of ICC. For these reasons, we assess that the price target-based expected return

measure is the better measure for our purposes. The remainder of the analyses in this paper

use the price target expected return (ER) as the measure of ex-ante expected return.

We proceed now to the main focus of this paper, analysis of the relations between ex-ante

risk and ex-ante expected return. We begin by describing our measures of ex-ante risk and

other variables used in the study.

3 Ex-Ante Risk and Control Variables

We calculate risk-neutral moments (volatility, skewness, kurtosis) using two different method-

ologies, one based on Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003,

BKM hereafter), and the other a nonparametric approach based on taking differences in the

implied volatilities of options with different moneynesses.

3.1 BKM Risk-Neutral Moments

BKM demonstrate that the annualized variance (V arBKM), skewness (SkewBKM), and ex-

cess kurtosis (KurtBKM) of the risk-neutral distribution of a stock’s log return from present

(t) until a time τ years in the future can be calculated as:

V arBKM =
erτVi,t − µ2

τ
(6)

SkewBKM =
erτW − 3µerτV + 2µ3

[erτV − µ2]3/2
(7)

KurtBKM =
erτX − 4µerτW + 6erτµ2V − 3µ4

[erτV − µ2]2
− 3 (8)
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where

µ = erτ − 1− erτ

2
V − erτ

6
W − erτ

24
X, (9)

r represents the continuously compounded risk-free rate for the period from time t to time

t + τ , and V , W , and X represent the risk-neutral expectation of the squared, cubed, and

fourth power, respectively, of the log of the stock return during the same period.19 V , W ,

and X can theoretically be calculated by weighted integrals (equations (25)-(27) of Appendix

C) of time t prices of out-of-the-money (OTM) call and put options with continuous strikes

expiring at time t+ τ . We follow Dennis and Mayhew (2002), Duan and Wei (2009), Conrad

et al. (2013), and Bali and Murray (2013) and use a trapezoidal method to estimate V , W ,

and X from real option prices with discrete strikes. The exact implementation is described

in detail in Appendix C. Finally, we define the BKM-based risk-neutral volatility (V olBKM)

to be the annualized standard deviation of the distribution of the log return:

V olBKM =
√
V arBKM . (10)

The risk-neutral moments for a stock for month m are calculated using data from the last

trading day during the month m for options that expire in the month m+2 (the options have

approximately 1.5 months until expiration).20 The data are thus contemporaneous to the

price used as the denominator in the calculation of the price target-based expected return

(ER).

3.2 Nonparametric Risk Neutral Moments

We calculate alternative measures of risk-neutral moments by taking differences in the im-

plied volatility of options at different strikes. We define the at-the-money (ATM) call and

19The calculation of the risk-free rate r is described in Section I of the online appendix.
20Robustness checks demonstrate that the results are not sensitive to the expiration of the options used

to calculate the risk-neutral moments.
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put implied volatilities as the implied volatilities of the 0.50 delta call (CIV50) and the -0.50

delta put (PIV50) respectively, taken from OptionMetrics’ 30 day fitted implied volatility

surface on the last trading day of the month. Out-of-the-money (OTM) call and put implied

volatilities are defined as the implied volatility of the 0.25 delta call (CIV25) and the -0.25

delta put (PIV25) respectively.

The nonparametric risk-neutral volatility (V olNonPar) is defined as the average of the

ATM call and put implied volatilities. We measure risk-neutral skewness (SkewNonPar) as

the difference between the OTM call and OTM put implied volatilities. Finally, risk-neutral

kurtosis (KurtNonPar) is calculated as the sum of the OTM call and OTM put implied

volatilities minus the sum of the ATM call and ATM put implied volatilities.21

V olNonPar =
CIV50 + PIV50

2
(11)

SkewNonPar = CIV25 − PIV25 (12)

KurtNonPar = CIV25 + PIV25 − CIV50 − PIV50 (13)

3.3 Control Variables

To ensure that the main findings of this paper, namely strong relations between expected

returns and risk-neutral moments, are not driven by other confounding factors, we control

for several variables that have previously been shown to be related to returns. As several

previous papers have found that analyst forecasts are biased (Abarbanell and Lehavy (2003),

Michaely and Womack (1999), Rajan and Servaes (1997), Womack (1996)), with bias being

21Our nonparametric measures of skewness and kurtosis are not directly comparable to the skewness and
kurtosis of the distribution, but are simple measures very positively related to skewness and kurtosis. Bakshi
et al. (2003) show that implied volatility differences are good proxies for implied skewness. Xing et al. (2010)
use a skewness measure similar to (the negative of) ours. Cremers and Weinbaum (2010) use a call minus put
implied volatility spread based on deviations from put-call parity. Our definitions of skewness and kurtosis
also follow a standard quoting convention used in over-the-counter options trading.
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related to both general overoptimism (Bradshaw et al. (2013), Asquith et al. (2005), Brav

et al. (2005), Brav and Lehavy (2003), Bradshaw (2002), Bonini et al. (2010)) as well as

other firm level variables such as the market capitalization, amount of analyst coverage, ratio

of book-value of equity to market-value of equity, predicted growth, and forecast earnings

(Brav and Lehavy (2003), Bradshaw (2002), Bonini et al. (2010)), we employ controls for

these effects as well.

In addition to the variables discussed here, our measures of beta (β), idiosyncratic volatil-

ity (IdioV ol), co-skewness (CoSkew), market capitalization (MktCap), size (Size), and

book-to-market ratio (BM) were described in Section 2. A more detailed discussion of the

calculation of all control variables is presented in Appendix B.

We define co-kurtosis (CoKurt) as the slope coefficient on the cubed excess market return

term in a regression of the stock’s excess return on the market excess return, the market

excess return squared, and the market excess return cubed. Illiquidity is defined following

Amihud (2002) as the average of the absolute value of the stock’s return divided by the

total dollar volume of stock traded (in $thousands). Both CoKurt and Illiq are calculated

using one year’s worth of daily data.22 The short-term reversal effect (Jegadeesh (1990),

Lehmann (1990)) and medium-term momentum effect (Jegadeesh and Titman (1993)) are

controlled for using the one month return during month t (Rev) and the 11-month return

covering months t − 11 through t − 1 (Mom), respectively. To control for potential bias in

price targets, we include a few additional variables that have been shown to be related to

this bias (Bonini et al. (2010)). We define the forecast earnings (Earn) to be the median

analyst forecast earnings for the next fiscal year end divided by the month-end price of the

stock. Analyst coverage (AnlystCov) is defined as the natural log of one plus the number

of analysts who have issued fiscal year earnings forecasts, and long-term growth (LTG) is

22We require a minimum of 225 valid daily observations to calculate CoKurt and Illiq. Observations not
satisfying this requirement are discarded.
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taken to be the median long-term growth forecast.

A few words about how we handle analyst forecast bias are warranted. The constant

(general analyst optimism) portion of the bias, evidenced by unrealistically large price target-

based expected returns (our sample has an average expected return of more than 20% per

annum, in line with previous research) is captured by the intercept term in our regression

analyses. As the focus of our study is the cross-sectional relations between risk and expected

return, this has no impact on our conclusions. As for cross-sectional variation in analyst

bias, including variables related to bias in the regression model is econometrically identical

to adjusting the the expected returns for bias prior to executing the regressions. Regression

coefficients on risk-neutral moments therefore measure the cross-sectional relation between

expected returns and risk-neutral moments after controlling for variation in price target-

based expected returns driven by bias in analyst price targets.

4 Samples

We use two main samples for the analyses in this paper. The BKM sample contains observa-

tions for which valid values for the BKM-based risk-neutral moments (V olBKM , SkewBKM ,

and KurtBKM) are available. The NonPar sample contains observations for which valid

values of the nonparametric risk variables (V olNonPar, SkewNonPar and KurtNonPar) are

available. To create each sample, we begin with all stock-month observations for stocks

denoted by CRSP as U.S.-based common stocks and months from March 1999 through De-

cember 2012 (the period for which price targets are available).23 We then remove all entries

for which a valid price target-based expected return (ER) is not available. The BKM

(NonPar) sample is then created by further removing data points for which valid values of

the BKM-based (nonparametric) risk-neutral moments are not available.

23U.S.-based common stocks are those with share code (SHRCD) 10 or 11 in the CRSP database.
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Table 3 presents summary statistics for the BKM (Panel A) and NonPar (Panel B)

samples. For the BKM sample, price target-based expected returns (ER) have a mean and

median of 20.75% and 18.28%, respectively. While these numbers are quite high, they are

consistent with previous research (Bradshaw et al. (2013), Asquith et al. (2005), Brav and

Lehavy (2003), Bradshaw (2002)).

BKM-based risk-neutral volatility (V olBKM) is on average (in median) 47.71% (43.40%).

The risk-neutral distributions of stock returns tend to be negatively skewed, with mean

(median) value of SkewBKM equal to -0.67 (-0.60), and exhibit higher kurtosis than a normal

distribution, as the mean (median) value ofKurtBKM , which measures excess kurtosis, is 1.82

(0.73). Stocks in the BKM sample have a mean (median) market capitalization (MktCap)

of $9.9 billion ($2.8 billion), but some small stocks do enter the sample. Finally, there are

on average 279 stocks in the BKM sample each month.

Summary statistics for the NonPar sample are presented in Table 3, Panel B. The

distribution of expected returns (ER) for the NonPar sample is similar to that of the

BKM sample, as is that of volatility (V olNonPar). Also similar to the BKM measure,

values of nonparametric risk-neutral skewness (SkewNonPar) are predominantly negative.

Risk-neutral kurtosis (KurtNonPar) is positive on average, indicating that out-of-the-money

implied volatilities tend to be higher than at-the-money implied volatilities, consistent with

a positive excess kurtosis of the risk-neutral distribution. Finally, the mean and median

market capitalization of stocks in the NonPar sample are smaller than those of the BKM

sample. This is due to the fact that the NonPar sample has substantially more stocks (988

compared to 279 in the average month) than the BKM sample. This result is because the

volatility surface data, upon which the nonparametric measures of risk-neutral moments are

based, provides interpolated option data for options not actually traded, whereas the BKM

based measures require actual option prices.
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5 Risk-Neutral Moments and Expected Returns

Having summarized the data, we now turn our attention to analyses of the relations between

the risk-neutral moments and expected returns.

5.1 Tri-Variate Dependent Sort Portfolio Analysis

We begin our investigation with tri-variate dependent sort portfolio analyses. Each month,

all stocks in the sample (BKM or NonPar) are grouped into portfolios based on ascending

sorts of the risk-neutral moments. To test the relation between risk-neutral volatility and

expected returns, we group all stocks into 27 portfolios using a tri-variate dependent sort on

skewness, kurtosis, and then volatility, with the breakpoints for each sort determined by the

30th and 70th percentile of the sort variable. We then calculate the equal-weighted average

price target-based expected return (ER) for each of the 27 portfolios, as well as the difference

in expected return between the high and low (3-1) volatility portfolio, for each skewness and

kurtosis group. To examine the relation between skewness (kurtosis) and expected returns,

we repeat the analysis, sorting first on kurtosis (skewness), then volatility (volatility), and

then skewness (kurtosis).24

Table 4 presents the time-series averages of the portfolios’ price target-based expected re-

turns (ER). The results in Panels A1 and B1 indicate a strong positive relation between risk-

neutral volatility (V olBKM and V olNonPar) and price target-based expected returns (ER).

For the BKM (NonPar) sample, the 3-1 differences in expected returns across the nine

skewness and kurtosis sorted portfolios range from 9.29% per annum to 15.80% per annum

(11.20% to 18.55%), and the average 3-1 portfolio expected returns range from 11.33% to

13.26% (13.08% to 16.98%). All of these differences are highly statistically significant, with

24In all analyses, the sorts are designed to examine the relation between the last sort variable and expected
returns after controlling for the effects of each of the first two sort variables. Results of the portfolio analyses
with the order of the first two sort variables reversed are presented in Section III and Table A1 of the online
appendix. The results are qualitatively the same.
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the smallest t-statistic in any of these analyses being 7.68. Furthermore, for both the BKM

and NonPar samples, the results indicate a monotonically positive relation between risk-

neutral volatility and price target-based expected returns for each of the nine skewness and

kurtosis portfolios.

Panel A2 of Table 4 demonstrates that BKM-based risk-neutral skewness (SkewBKM)

exhibits a strong positive relation with price target-based expected returns (ER). The nine

3-1 expected return differences range from 3.16% to 11.00% per annum with a minimum

Newey and West (1987) t-statistic of 2.15. Furthermore, the skewness-based sorts within

each of the nine kurtosis and volatility-based portfolios all show a monotonically increasing

relation with expected returns. The average 3-1 differences range from 4.56% to 7.75% per

annum, with t-statistics ranging from 4.32 to 9.23. The results for nonparametric risk-neutral

skewness, presented in Panel B2, are highly similar, albeit not quite as strong. These results

provide empirical support for the predictions of the demand-based option pricing models of

Bollen and Whaley (2004) and Garleanu et al. (2009).

Finally, the results of the analysis of the relation between risk-neutral kurtosis (KurtBKM

and KurtNonPar) and price target-based expected returns (ER) are presented in Panel A3

(BKM sample) and B3 (NonPar sample) of Table 4. As predicted by preference for assets

with lower kurtosis (Dittmar (2002), Kimball (1993)), the results in both panels indicate

generally positive relations between risk-neutral kurtosis and expected returns, with some

small deviations from the general pattern for stocks with low levels of volatility and skewness.

In the BKM (NonPar) sample, eight (seven) of the nine 3-1 portfolios exhibit positive

expected return differences with six of the 3-1 portfolios producing t-statistics greater than

2.00. In both samples, the average 3-1 difference is positive and highly statistically significant

for all three skewness portfolios.
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5.2 Regression Analysis

To control for additional factors that have been shown to be related to either returns or

forecast bias, we employ the Fama and MacBeth (1973) (FM) regression methodology. Table

5 presents the results of the FM regressions of firm-level price target expected returns (ER)

on the risk variables with and without controls. Specifications BKM1 andNonPar1 indicate

that each of risk-neutral volatility, skewness, and kurtosis is positively related to expected

returns, as the average coefficient on each of the risk-neutral moments is positive and highly

significant, with Newey and West (1987) t-statistics ranging from 3.56 to 20.32. The models

labeled BKM2 and NonPar2 demonstrate that these positive relations are not driven by

other factors known to be related to returns or analyst bias. Most importantly, risk-neutral

moments contain information relevant to expected returns that cannot be ascertained from

historical measures of systematic risk (co-variance (β), co-skewness (CoSkew), co-kurtosis

(CoKurt)) or idiosyncratic volatility (IdioV ol). Controlling for these risks and other firm

characteristics, the slope coefficients on all risk-neutral moments remain positive and highly

statistically significant, with t-statistics ranging from 2.18 to 13.33.

To assess the economic significance of the results from Table 5, we calculate the effect of a

one standard deviation change in a given risk-neutral moment on expected returns, holding

all other risk-neutral moments constant by multiplying the average regression coefficient

by the average cross-sectional standard deviation of the risk-neutral moment from Table 3.

Focussing on regression model BKM1, the results indicate that a one standard deviation

difference in BKM-based risk-neutral volatility (V olBKM) corresponds to a difference of

6.27% (0.31× 20.22) per annum in expected returns. The effect of a one standard deviation

difference in BKM-based risk-neutral skewness (SkewBKM) is 5.72% (6.98×0.82) per annum,

and that of kurtosis is 4.80% (0.86× 5.58) per annum.

As for the control variables, the average coefficients on beta (β), idiosyncratic volatil-

ity (IdioV ol), co-skewness (CoSkew), co-kurtosis (CoKurt), illiquidity (Illiq), and reversal
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(Rev) all have the predicted signs, and all (with the exception of co-kurtosis) are statisti-

cally significant at the 5% level. The coefficient on log of market capitalization (Size) is

positive. This result is due to the inclusion of the controls for bias in price targets (Earn,

AnlystCov, LTG) in the model. In unreported results, when these controls are removed, we

find a negative sign on log of market capitalization, consistent with most empirical studies.

The regression analysis finds that price target-based expected returns (ER) have a positive

and statistically insignificant relation with book-to-market ratio (BM) and a negative and

highly statistically significant relation with momentum (Mom), both of which are consistent

with previous research on price target-based expected returns (Brav et al. (2005)). Finally,

the regressions detect statistically significant relations between price target-based expected

returns and the controls for price target bias (forecast earnings - Earn, analyst coverage -

AnlystCov, and forecast long term growth - LTG).

As a robustness check, we examine whether the results persist using a different option

maturity by repeating the portfolio and regression analyses using BKM-based measures

calculated from options with approximately 2.5 months until expiration, and nonparametric

measures using implied volatilities for 60 day options. The results of the portfolio and

regression analyses, presented in Section IV and Tables A2 and A3 of the online appendix,

are highly consistent with the results in Tables 4 and 5.

In summary, the portfolio and regression analyses demonstrate strong, positive relations

between expected returns and each of risk-neutral volatility, skewness, and kurtosis. The

relations are found using both the BKM-based and nonparametric measures of risk-neutral

moments, are highly economically and statistically significant, and are robust to the inclusion

of controls for variables related to returns and analyst bias.
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6 Systematic and Unsystematic Moments

In this section, we decompose the BKM-based total risk-neutral moments into systematic

and unsystematic components and examine the relations between each component of the

risk-neutral moments and price target-based expected returns.25

6.1 Calculation of Systematic and Unsystematic Moments

To calculate the systematic and unsystematic risk-neutral moments, we follow BKM in

assuming that the risk-neutral stock return process follows a one-factor market model:

ri,t = ai + βRN,irm,t + εi,t (14)

where ri,t and rm,t are the returns of the stock and the market portfolio, respectively, βRN,i

is the risk-neutral beta of stock i, and εi,t is the unsystematic portion of the return, assumed

to be independent of rm,t. The risk-neutral variance can then be written as:

σ2
RN,i = β2

RN,iσ
2
m + σ2

ε,i (15)

where σ2
i (σ2

m) is the risk-neutral variance of stock i’s (the market’s) return and σ2
ε,i is the

variance of εi,t. We therefore define the systematic variance of stock i as:26

V arBKMS = β2
RNV ar

BKM
m (16)

where V arBKMm is the BKM measure of the market return’s risk-neutral variance, found by

applying the BKM procedure to S&P 500 index options. The unsystematic stock return

25As the nonparametric measures of the risk-neutral distribution do not represent values of the moments,
decomposition of the nonparametric moments is not possible.

26The stock subscripts i in equations (16), (17), (19), (20), (22), and (23) have been removed for ease of
reading. The subscript S is used to indicate that this is the systematic portion of the variance.
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variance is defined as the difference between the total variance and the systematic variance:

V arBKMU = V arBKM − V arBKMS (17)

BKM demonstrate that risk-neutral skewness can be decomposed into systematic and

unsystematic components as follows:27

Skewi =
β3
RN,iσ

3
m

σ3
i

Skewm +
σ3
ε,i

σ3
i

Skewε,i (18)

where Skewi (Skewm) is the total risk-neutral skewness of stock i’s (the market’s) return

and Skewε,i is the risk-neutral skewness of εi,t. Based on this decomposition, we define the

systematic skewness of stock i to be:

SkewBKMS =
β3
RN

(
V arBKMm

)3/2
(V arBKM)3/2

SkewBKMm , (19)

and define unsystematic risk-neutral skewness as the difference between the total and sys-

tematic skewness:

SkewBKMU = SkewBKM − SkewBKMS . (20)

Using the same approach as BKM, a similar decomposition of total risk-neutral excess

kurtosis into systematic and unsystematic portions yields:

Kurti =
β4
RN,iσ

4
m

σ4
i

Kurtm +
σ4
ε,i

σ4
i

Kurtε,i (21)

where Kurti (Kurtm) is the risk-neutral excess kurtosis of stock i’s (the market’s) return

and Kurtε,i is the risk-neutral excess kurtosis of εi,t. We define systematic (KurtBKMS ) and

27The skewness decomposition is identical to that presented in equations (21)-(23) of BKM. Our presenta-
tion of decomposed skewness, however, is slightly different, and designed to be intuitive for our application.
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unsystematic (KurtBKMU ) risk-neutral excess kurtosis to be:

KurtBKMS =
β4
RN

(
V arBKMm

)2
(V arBKM)2

KurtBKMm (22)

and

KurtBKMU = KurtBKM −KurtBKMS . (23)

The equations that describe the decomposition of the total risk-neutral moments into

systematic and unsystematic components (equations (16), (17), (19), (20), (22), (23)) require

an estimate of the risk-neutral beta of the stock (βRN). While several approaches to solving

for risk-neutral stock beta have been proposed (French, Groth, and Kolari (1983), Duan and

Wei (2009), Chang, Christoffersen, Jacobs, and Vainberg (2012), Buss and Vilkov (2012)),

for different reasons, none of these approaches are applicable in the present context.28 We

therefore use our measure of physical beta (β) as a proxy for the risk-neutral beta when

decomposing the risk-neutral moments.29

6.2 Summary Statistics for Decomposed Moments

Table 6 presents summary statistics for the systematic and unsystematic risk-neutral mo-

ments. The table shows that unsystematic variance (V arBKMU ) has a mean and median of

0.19 and 0.12, respectively. These values are much larger than the corresponding values for

systematic variance (V arBKMS , mean is 0.09 and median is 0.07), indicating that unsystem-

28Duan and Wei (2009) and Chang et al. (2012) make the assumption that the unsystematic component of
the stock’s return is normally distributed. Under this assumption, unsystematic skewness and excess kurtosis
are equal to zero by definition. The measures developed by French et al. (1983) and Buss and Vilkov (2012)
are not ex-ante measures because they calculate correlations from historical data.

29In Section V of the online appendix we develop an alternative measure of risk-neutral beta. Using
this measure to decompose the risk-neutral moments and repeating our analyses using this decomposition
generates similar results. The results, presented in Table A4 of the online appendix, are actually somewhat
stronger when the risk-neutral beta-based decomposition is used. We therefore view the results in the main
paper as conservative assessments of the roles of the systematic and unsystematic components of risk in
determining the cross-section of expected stock returns.
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atic variance is the dominant component of total variance. Systematic skewness (SkewBKMS )

is almost always negative, with an average monthly mean (median) of -0.47 (-0.38). The

negativity of systematic skewness is driven by the fact that risk-neutral market skewness is

always negative and beta is almost always positive (see equation (19)). Unsystematic skew-

ness (SkewBKMU ) is also negative in mean and median (mean is -0.21 and median is -0.15),

but takes on a positive value for a substantial number of stocks, since the 75th percentile

of unsystematic skewness is 0.32. Finally, while systematic excess kurtosis (KurtBKMS ) is

always positive, a result driven by the positivity of risk-neutral market excess kurtosis, un-

systematic excess kurtosis (KurtBKMU ) is negative for more than half of the stocks in the

sample, as the median value is -0.30. On average, however, unsystematic kurtosis is positive,

with a mean of 0.57.

6.3 Regressions with Systematic and Unsystematic Components

To analyze the relations between the systematic and unsystematic portions of the risk-

neutral moments, we perform Fama and MacBeth (1973) regressions of price target-based

expected returns (ER) on combinations of the systematic and unsystematic moments. The

regression results are presented in Table 7. Regression specification (1) indicates positive

and statistically significant relations between expected returns and each of systematic vari-

ance (V arBKMS ) and skewness (SkewBKMS ), while no relation between systematic kurtosis

(KurtBKMS ) and expected returns is detected. When controls are added to the regression

specification (specification (2)), only the relation between systematic variance and expected

returns remains statistically significant, indicating that the positive relation between sys-

tematic skewness and expected returns detected in specification (1) is explained by the

control variables.30, Regression models (3) and (4) show that the unsystematic portions of

30We do not include beta (β) as a control variable because cross-sectional variation in systematic variance
is driven entirely by beta. Thus, including beta as a control would introduce a high level of collinearity
between beta and systematic variance.
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each of the risk-neutral moments exhibit positive and statistically significant relations with

expected returns regardless of whether controls are excluded (specification (3)) or included

(specification (4)). When both the systematic and unsystematic portions of the risk-neutral

moments are included in the regression specification (specification (5)), the results indicate

that both the systematic and unsystematic components of each of the risk-neutral moments

have positive and statistically significant (with the exception of systematic kurtosis) rela-

tions with expected returns. The results generated by augmenting this specification with the

control variables (specification (6)) demonstrate that the unsystematic components of the

risk-neutral moments are all positively related to expected returns. As for the systematic

components, only systematic variance exhibits a positive and statistically significant relation

with expected returns. No relations between systematic skewness and kurtosis found.31

We assess the economic significance of the coefficients by multiplying the average coeffi-

cient from regression model (6) in Table 7 by the standard deviation of the corresponding

variable from Table 6. The results indicate that a one standard deviation difference in sys-

tematic variance (V arBKMS ) corresponds to a 3.84% per annum (54.90 × 0.07) difference in

price target-based expected return (ER), while a one standard deviation difference in un-

systematic variance (V arBKMU ) is associated with a 2.84% (10.15 × 0.28) expected return

difference. A one standard deviation difference in unsystematic skewness (SkewBKMU ) gen-

erates a 2.68% difference in expected return (2.76 × 0.97), and the corresponding value for

unsystematic kurtosis is 1.71% (6.13×0.28). These results indicate that systematic variance

plays the largest role in determining the cross-section of expected returns, followed by un-

systematic variance. The premia associated with unsystematic skewness and kurtosis, while

smaller, are also economically important.

31We test an alternative specification in which idiosyncratic volatility (IdioV ol), co-skewness (CoSkew),
and co-kurtosis (CoKurt) are not included as control variables. The results are qualitatively the same.
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7 Conclusion

In this paper, we examine the relations between measures of risk and expected stock returns

using ex-ante measures of each. We begin by comparing the ability of two different measures

of ex-ante expected returns, one based on analyst price targets and the other the implied

cost of capital based on analyst earnings and growth forecasts, to serve as proxies for the

required rate of return demanded by the market on individual stocks. We find that both

measures have a strong cross-sectional relation with the market’s required rate of return, but

the relation is stronger for the price target-based measure. Furthermore, we demonstrate

that the ability of the price target-based measure to capture the market’s expected return

is driven by relations between the price target expected return and risk, while the implied

cost of capital captures the effect of other firm characteristics such as size and book-to-

market ratio on expected returns. We therefore take the price target-based measure to be

our primary measure of ex-ante expected stock returns.

Using two different measures of risk-neutral volatility, skewness, and kurtosis to measure

ex-ante risk, one based on Bakshi et al. (2003) and the other a nonparametric approach

based on taking differences in implied volatilities of options with different strike prices,

we find highly robust evidence that each of the risk-neutral moments is positively related

to price target-based expected stock returns. Regression analyses demonstrate that these

relations remain robust after controlling for measures of risk based on historical data and

other variables known to be related to expected stock returns, indicating that risk-neutral

moments carry information relevant to expected returns that is not contained in measures

of historical risk. The results for risk-neutral volatility and kurtosis are consistent with

equilibrium asset pricing models, while the result for skewness is predicted by the demand-

based option pricing models of Bollen and Whaley (2004) and Garleanu et al. (2009).

We then decompose risk-neutral variance, skewness, and kurtosis into systematic and
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unsystematic components. We demonstrate that both the systematic and unsystematic

components of risk-neutral variance are positively related to ex-ante expected returns. The

positive relation between expected returns and systematic variance supports the main predic-

tion of the Capital Asset Pricing Model (Sharpe (1964), Lintner (1965), Mossin (1966)). The

positive effect of unsystematic variance on expected returns is consistent with the predictions

of models in which unsystematic risk is priced (Levy (1978), Merton (1987)).

Our analyses also demonstrate a positive relation between systematic skewness and ex-

ante expected returns, but inclusion of controls in the regression specification explains this

relation. Unsystematic skewness, however, remains positively related to expected returns

even after controlling for other variables related to expected returns. This result indicates

that the positive relation between expected returns and risk-neutral skewness, detected both

in our study and in previous empirical work using ex-post realized returns (Xing et al. (2010)

and Rehman and Vilkov (2012)), is driven by firm-specific information that investors use to

place bets in the option markets. As predicted by demand-based option pricing models

(Bollen and Whaley (2004) and Garleanu et al. (2009)), the pressure exerted on option

prices by investors looking to capitalize on this firm-specific information results in a high

(low) levels of unsystematic skewness for stocks for with high (low) levels of expected returns.

Finally, we find that the positive relation between risk-neutral kurtosis and expected returns

is completely driven by firm-specific kurtosis, as systematic kurtosis exhibits no discernable

relation with expected returns while unsystematic kurtosis remains positively related to

expected returns in all specifications.
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Appendix A Implied Cost of Capital

We calculate the implied cost of capital following Gebhardt et al. (2001). Conceptually, the

implied cost of capital (ICC) is found by solving for the discount rate (r) that equates the

current book value of equity plus the present value of expected future earnings to the current

stock price. Explicitly, the implied cost of capital is the value r that solves:

Pt = Bt +
11∑
i=1

FROEt+i − r
(1 + r)i

Bt+i−1 +
FROEt+12 − r
r(1 + r)11

Bt+11 (24)

where Bt is the book value of equity in fiscal year t and FROEt+i is the forecast return on

equity in year t+ i. Equation 3 presents forecast earnings as the product of forecast return

on equity and book value. The last term in equation 3 is the infinite summation of forecast

earnings for years t + 12 and after. The assumption in this term is that return on equity is

constant for years t+ 12 and after.

For each stock/month observation, ICC is calculated by finding the value of r that

equates the stock price (Pt) on the date that I/B/E/S releases their earnings forecast sum-

mary data (the third Thursday of each month) to the right side of equation 3. FROEt+1

is the median analyst earnings forecast for the next fiscal year for which earnings have not

been announced (FEPSt+1), divided by Bt. Bt is the book value of equity for the last fiscal

year for which earnings have been announced, taken from CompuStat.32 FROEt+2 is the

median analyst earnings forecast for the second fiscal year for which earnings have not been

announced (FEPSt+2), divided by Bt+1. As it is not possible to know the value of Bt+1,

it is estimated as Bt + FEPSt+1(1 − k), where k is the proportion of earnings paid out

32As earnings are usually announced prior to the release of the annual report, it is possible that the value
Bt is not known. Following Gebhardt et al. (2001), to account for this potential look-ahead bias, we assume
that annual report data is available in the fourth month following the end of the fiscal year. In the months
where earnings for the previous fiscal year have been announced, but the book value for that same year is
not yet available, we estimate the book value to be the book value at the end of the previous fiscal year plus
the announced earnings per share minus the dividends paid to common shareholders.

33



as dividends, calculated as the ratio of dividends to earnings during the last fiscal year for

which earnings have been announced.33 Bt+i is calculated similarly for years t + 2 through

t+ 11 (Bt+i = Bt+i−1(1 + FROEt+i(1− k))). The payout ratio k is held constant. Forecast

earnings for year t+ 3 (FEPSt+3) are taken to be the forecast earnings for year t+ 2 times

the long term earnings growth forecast provided by I/B/E/S. Forecast return on equity for

year t + 3 (FROEt+3) is then calculated as the forecast earnings (FEPSt+3) divided by

the previous book value (Bt+2). For years t + 4 through t + 12, forecast return on equity

is assumed to linearly approach the long term industry median return on equity. Thus,

FROEt+i = FROEt+3 + i−3
9

(ROEMedian − FROEt+3) for i ∈ {4, ..., 12}. Industry median

return on equity (ROEMedian) is taken to be the median return on equity for all firms in the

same industry.34

Appendix B Control Variables

Beta: We define beta (β) to be the estimated slope coefficient from a regression of the stock’s

excess return on the excess return of the market using one year worth of daily return data

up to and including month t. The market excess return is taken to be the value-weighted

average excess return of all CRSP common stocks taken from the Fama-French database

available through Wharton Research Data Services (WRDS).

Idiosyncratic Volatility: Idiosyncratic volatility (IdioV ol) is defined following Ang et al.

(2006) as
√

252 times the standard deviation of the residuals from a Fama and French (1992,

1993) three-factor regression of the stock’s excess return on the market, size (SMB), and

33Following Gebhardt et al. (2001), for firms with negative earnings, the payout ratio k is taken to be the
dividends paid divided by 6% of total assets. Calculated values of k less than zero are assigned the value
zero. Calculated values of k greater than one are assigned the value one. If dividend information is missing
from Compustat, k is taken to be zero.

34Industry classifications follow Fama and French (1997). We begin by calculating, for each firm, the
average return on equity, defined as fiscal year earnings divided by book value of equity at the end of the
previous fiscal year, over the ten most recent fiscal years. The industry median return on equity is taken to
be the median of these ten year return on equity averages across all firms in the chosen industry.
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book-to-market ratio (HML) factors using one year worth of daily data up to and including

month t. Daily factor returns are taken from the Fama-French database on WRDS.

Co-Skewness: Following Harvey and Siddique (2000), we define co-skewness (CoSkew) to

be the estimated slope coefficient on the squared market excess return from a regression of

the stock’s excess return on market’s excess return and the squared market excess return

using one year of daily data up to and including month t.

Co-Kurtosis: Following Dittmar (2002), we define co-kurtosis (CoKurt) to be the esti-

mated slope coefficient on the cubed market excess return in a regression of the stock’s

excess return on the market’s excess return, the squared market excess return, and the

cubed market excess return, using one year of daily data up to and including month t.

Market Capitalization: Market capitalization (MktCap) is defined as the month-end

stock price times the number of shares outstanding, measured in millions of dollars. As the

distribution of MktCap is highly skewed, we will use Size, defined as the natural log of

MktCap, in most statistical analyses.

Book-to-Market Ratio: Following Fama and French (1992, 1993), we define the book-

to-market ratio (BM) for the months from June of year y through May of year y + 1 to

be the book value of equity of the stock, calculated from balance sheet data for the fiscal

year ending in calendar year y − 1, divided by the market capitalization of the stock at the

end of calendar year y − 1. The book value of equity is defined as stockholders’ equity plus

balance sheet deferred taxes plus investment tax credit minus the book value of preferred

stock. The book value of preferred stock is taken to be either the redemption value, the

liquidating value, or the convertible value, taken as available in that order. For observations

where the book value is negative, we deem the book-to-market ratio to be missing

Illiquidity: We define illiquidity (Illiq) following Amihud (2002) as the average of the

absolute value of the stock’s return divided by the dollar volume traded in the stock (in

$thousands), calculated using one year’s worth of daily data up to and including month t.
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Short Term Reversal: We control for the short-term reversal effect of Jegadeesh (1990)

and Lehmann (1990) with our reversal variable (Rev), defined as the stock return in month

t.

Momentum: To control for the medium-term momentum effect of Jegadeesh and Titman

(1993), we define our momentum variable (Mom) to be the stock return during the 11-month

period including months t− 11 through t− 1 (skipping the short-term reversal month).

Earnings Forecast: Bonini et al. (2010) demonstrate that consensus earnings forecasts are

related to price target accuracy. To control for this effect, we define our earnings forecast

variable (Earn) to be the median earnings forecast for the next unannounced fiscal year,

divided by the month end price of the stock. The earnings forecast used in the calculation

comes from the I/B/E/S EPS summary file and the month end stock price comes from the

CRSP monthly stock file.

Analyst Coverage: Bonini et al. (2010) show that price target bias is related to the amount

of analyst coverage. We therefore define analyst coverage (AnlystCov) to be the log of one

plus the number of analysts that make forecasts of the next unannounced fiscal year earnings,

taken from the I/B/E/S EPS summary file.

Growth Forecast: Bradshaw (2004) and Bonini et al. (2010) find evidence that bias in

analyst price targets is related to forecasts of long-term growth. We define the forecast long-

term growth of a firm (LTG) to be the median analyst long-term growth forecast, taken

from the I/B/E/S EPS summary file.

Appendix C Estimation of BKMRisk-Neutral Moments

This appendix describes in detail our implementation of the Bakshi et al. (2003) approach

to calculating moments of the risk neutral distribution of a stock’s future return from the

prices of out-of-the-money (OTM) call and put options. The procedure is applied to a given
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stock i on a given date t using OTM options with a fixed expiration date t + τ . The data

required for performing the calculations are the price of stock i on date t, the date t prices

of options on stock i with expiration date t + τ , and the continuously compounded rate of

return on a risk-free investment purchased on date t to be withdrawn on date t + τ . We

denote the stock price as S, the risk-free rate as r, and the time until option expiration as τ .

All of the necessary data come from the OptionMetrics database provided through Wharton

Research Data Services. We take the price of all options to be the average of the bid price

and the offer price. The calculation of the risk-free rate is discussed in Section I of the online

appendix.

C.1 Adjusting the Spot Price

We adjust the spot price of the stock to account for dividends with ex-dates between dates t

(exclusive) and t + τ (inclusive). Doing so ensures that our risk-neutral moments represent

moments of distribution of the total return, not the price return, of the stock. To account

for the effect of dividends, we take the adjusted spot price of the stock, denoted S∗, to be

the current spot price (S) minus the present value of all dividends paid on the stock with

ex-dates between date t and t+ τ (S∗ = S−PV Divs). The calculation of the present value

of dividends (PV Divs) is discussed in Section II of the online appendix.

C.2 Screening the Data

We implement several screens on the option data to ensure that the option price data used

in the estimation of the Bakshi et al. (2003) integrals are both valid and do not violate any

arbitrage conditions. We begin by removing all entries for which the bid or offer price is

missing, the bid is equal to zero, the offer is less than or equal to the bid, as well as duplicate

entries. As the BKM formulae require only OTM option prices, we retain only calls (puts)
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with strikes that are greater (less) than or equal to the adjusted spot price (S∗).

Next, we sort the calls (puts) in ascending (descending) order by strike prices. Letting

nC (nP ) denote the number of call (put) options that pass the data screens, we denote the

prices of the call (put) options as Ci (Pi) and the strike prices of the call (put) options as KC
i ,

i ∈ {1, ..., nC} (KP
i , i ∈ {1, ..., nP}), where KC

i+1 > KC
i for i ∈ {1, ..., nC − 1} (KP

i+1 < KP
i

for i ∈ {1, ..., nP − 1}).

No-arbitrage conditions require that option prices strictly decrease as the option strike

goes further out-of-the-money. Thus, if Ci ≤ Ci+1 for any i ∈ {1, ..., nC − 1} or Pi ≤ Pi+1

for any i ∈ {1, ..., nP − 1}, we deem the values of the risk-neutral moments for the given

date/stock/expiration combination to be incalculable.

C.3 Calculation of Risk-Neutral Moments

BKM demonstrate that the values V , W , and X, necessary for calculating the risk-neutral

variance, skewness, and excess kurtosis, given by equations (6), (7), (8) respectively, can be

calculated as:

V =

∫ ∞
K=S

2
(
1− ln

[
K
S

])
K2

C(K)dK

+

∫ S

K=0

2
(
1 + ln

[
S
K

])
K2

P (K)dK (25)

W =

∫ ∞
K=S

6ln
[
K
S

]
− 3

(
ln
[
K
S

])2
K2

C(K)dK

−
∫ S

K=0

6ln
[
S
K

]
+ 3

(
ln
[
S
K

])2
K2

P (K)dK, (26)
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and

X =

∫ ∞
K=S

12
(
ln
[
K
S

])2
+ 4

(
ln
[
K
S

])3
K2

C(K)dK

+

∫ S

K=0

12
(
ln
[
S
K

])2
+ 4

(
ln
[
S
K

])3
K2

P (K)dK (27)

where C(K) (P (K)) is the price of a call (put) option with strike K.

We implement a trapezoidal approach to estimating the integrals in equations (25), (26),

and (27) from prices of options with discrete strikes. To do so, we define the strike differences

for calls (puts) as ∆KC
i = KC

i − KC
i−1 for i ∈ {2, ..., nC} and ∆KC

1 = KC
1 − S∗ (∆KP

i =

KP
i−1 − KP

i for i ∈ {2, ..., nP} and ∆KP
1 = S∗ − KP

1 ). We then approximate the BKM

integrals for V , X, and W as:

V =vC(KC
1 )C1∆K

C
1 +

nC∑
i=2

1

2

[
vC(KC

i )Ci + vC(KC
i−1)Ci−1

]
∆KC

i

+ vP (KP
1 )P1∆K

P
1 +

nP∑
i=2

1

2

[
vP (KP

i )Pi + vP (KP
i−1)Pi−1

]
∆KP

i , (28)

W =wC(KC
1 )C1∆K

C
1 +

nC∑
i=2

1

2

[
wC(KC

i )Ci + wC(KC
i−1)Ci−1

]
∆KC

i

− wP (KP
1 )P1∆K

P
1 +

nP∑
i=2

1

2

[
wP (KP

i )Pi + wP (KP
i−1)Pi−1

]
∆KP

i , (29)

and

X =xC(KC
1 )C1∆K

C
1 +

nC∑
i=2

1

2

[
xC(KC

i )Ci + xC(KC
i−1)Ci−1

]
∆KC

i

+ xP (KP
1 )P1∆K

P
1 +

nP∑
i=2

1

2

[
xP (KP

i )Pi + xP (KP
i−1)Pi−1

]
∆KP

i (30)
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where:

vC(K) =
2
(
1− ln

[
K
S∗

])
K2

, (31)

vP (K) =
2
(
1 + ln

[
S∗

K

])
K2

, (32)

wC(K) =
6ln
[
K
S∗

]
− 3

(
ln
[
K
S∗

])2
K2

, (33)

wP (K) =
6ln
[
S∗

K

]
+ 3

(
ln
[
S∗

K

])2
K2

, (34)

xC(K) =
12
(
ln
[
K
S∗

])2
+ 4

(
ln
[
K
S∗

])3
K2

, (35)

and

xP (K) =
12
(
ln
[
S∗

K

])2
+ 4

(
ln
[
S∗

K

])3
K2

. (36)

Plugging the values from equations (28), (29), and (30) into equations (6), (7), and (8)

yields discrete strike price-based estimates of the variance, skewness, and kurtosis of the

risk-neutral distribution of the stock’s return for the period from t to t+ τ .
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Table 1: Portfolio Analysis of Ex-Ante Expected Returns
The table below presents the results of univariate portfolio analyses of the relations between
the measures of expected returns as well as the relations between expected returns and
measures of risk and firm characteristics. Each month, all stocks with valid values of all
three expected return measures (RegER, ER, and ICC) are sorted into quintile portfolios
based on the sort variable. The average expected return for each of the quintile portfolios, as
well as the difference between the fifth and first quintile portfolios, is then calculated. The
table presents the time-series averages of the monthly average portfolio expected returns.
The column labeled 5-1 t-stat presents the Newey and West (1987) t-statistic, adjusted using
six lags, testing the null hypothesis that the average expected return difference between the
fifth and first quintile portfolios is equal to zero. Panel A presents the results for portfolios
formed by sorting on regression-based expected return (RegER). Average expected returns
are calculated using each of the measures of expected return, as indicated in the column
labeled Dependent Variable. Panels B and C present the results for portfolios formed by
sorting on measures of risk and firm characteristics (β, Size, BM , IdioV ol, and CoSkew, as
indicated in the Sort Variable column) with price target-based expected return (ER, Panel
B) and implied cost of capital (ICC, Panel C) as the measure of expected return.

Panel A: Portfolios Sorted on Regression-Based Expected Return (RegER)

Dependent Variable 1 2 3 4 5 5-1 5-1 t-stat
RegER 2.26 6.10 8.18 10.07 13.47 11.20 44.77

ER 16.76 18.11 20.01 22.89 27.86 11.10 18.32
ICC 7.65 8.16 8.54 8.86 9.84 2.19 6.78

Panel B: Average Price Target Expected Return (ER)

Sort Variable 1 2 3 4 5 5-1 5-1 t-stat
β 18.03 18.89 20.25 22.07 26.39 8.36 5.82

Size 29.22 22.34 19.47 17.93 16.67 -12.55 -18.69
BM 21.85 21.57 21.26 20.84 20.13 -1.73 -1.89

IdioV ol 13.79 17.81 21.01 24.39 28.64 14.85 13.39
CoSkew 24.21 20.22 19.13 19.88 22.19 -2.02 -2.40

Panel C: Average Implied Cost of Capital (ICC)

Sort Variable 1 2 3 4 5 5-1 5-1 t-stat
β 8.60 8.60 8.69 8.69 8.46 -0.14 -0.21

Size 9.45 8.69 8.60 8.36 7.94 -1.51 -4.63
BM 6.91 7.97 8.63 9.33 10.21 3.30 14.80

IdioV ol 8.21 8.70 8.86 8.75 8.53 0.32 1.34
CoSkew 8.76 8.60 8.55 8.64 8.50 -0.26 -1.74
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Table 2: Fama and MacBeth (1973) Regressions of Ex-Ante Expected Returns
The table below presents the results of Fama and MacBeth (1973) regressions of price target-
based expected returns (ER, Panel A) and implied cost of capital (ICC, Panel B) on combi-
nations of market beta (β), log of market capitalization (Size), book-to-market ratio (BM),
idiosyncratic volatility (IdioV ol), co-skewness (CoSkew), implied cost of capital (ICC), and
price target-based expected return (ER). Each month, a cross-sectional regression is per-
formed on all data points for which values of the variables used in the given specification
are available. All independent variables are winsorized at the 0.5% level on a monthly ba-
sis. The table presents the time-series average of the cross-sectional regression coefficients.
Newey and West (1987) t-statistics, adjusted for six lags, testing the null hypothesis that the
average coefficient is equal to zero are in parentheses. The last two rows present the average
adjusted R-squared values and the average number of cross-sectional observations.

Panel A: Dependent Variable is ER

(1) (2) (3) (4) (5) (6) (7) (8)
β 4.80 4.49 2.65 5.78 5.00 2.82

(4.69) (5.19) (3.17) (6.03) (5.90) (3.55)

Size -3.35 -3.23 -2.03 -2.51 -2.30 -1.21
(-32.18) (-29.31) (-11.45) (-21.98) (-20.61) (-8.91)

BM -4.34 -3.34 -2.74 -6.03 -4.86 -4.32
(-7.03) (-6.45) (-7.44) (-8.18) (-7.88) (-8.88)

IdioV ol 0.19 0.19
(10.51) (11.25)

CoSkew -0.09 -0.07
(-1.91) (-1.84)

ICC 0.86 1.01 1.08 1.13
(9.41) (8.68) (11.42) (13.35)

Intercept 16.48 48.74 42.52 27.97 6.79 33.77 25.81 11.98
(9.58) (25.54) (24.36) (10.25) (5.59) (14.99) (14.87) (5.87)

Adj. R2 0.03 0.08 0.10 0.13 0.06 0.08 0.11 0.13
n 1409 1210 1205 1205 1139 996 992 992

Panel B: Dependent Variable is ICC

(1) (2) (3) (4) (5) (6) (7) (8)
β -0.31 0.06 0.05 -0.18 0.08 0.23

(-0.31) (0.12) (0.18) (-0.34) (0.23) (1.02)

Size -0.29 -0.27 -0.25 -0.15 -0.13 -0.19
(-2.93) (-2.83) (-1.80) (-2.31) (-2.04) (-1.76)

BM 2.13 2.08 2.07 2.41 2.33 2.29
(7.43) (6.55) (6.52) (11.05) (9.87) (9.78)

IdioV ol 0.00 -0.01
(0.72) (-2.02)

CoSkew -0.00 -0.00
(-0.01) (-0.05)

ER 0.02 0.02 0.02 0.02
(9.16) (6.99) (9.51) (10.87)

Intercept 9.21 9.60 9.34 9.14 8.37 8.08 7.74 8.47
(8.34) (11.19) (7.73) (4.64) (24.04) (15.33) (9.13) (6.02)

Adj. R2 0.02 0.12 0.14 0.14 0.04 0.15 0.16 0.17
n 2274 1980 1972 1972 1139 996 992 992



Table 3: Summary Statistics
The table below presents summary statistics for the BKM and NonPar samples. Both
samples contain stock/month observations covering U.S. based common stocks from March
1999 through December 2012 for which price target-based expected returns are available.
The BKM (NonPar) sample consists of only those observations for which BKM-based
(nonparametric) measures of risk-neutral moments are available. ER is the price target-
based expected return. V olBKM , SkewBKM , and KurtBKM are BKM-based measures of
risk-neutral volatility, skewness, and kurtosis. V olNonPar, SkewNonPar, and KurtNonPar are
nonparametric measures of the risk-neutral moments. MktCap is the market capitalization
of the firm, measured in $millions. All statistics presented in the table are the time-series
averages of monthly cross-sectional values, and thus represent the average month.

Panel A: BKM Sample

Mean SD Min 5% 25% Median 75% 95% Max n
ER 20.75 18.44 -31.19 -4.34 9.17 18.28 29.99 54.73 88.79 279

V olBKM 47.71 20.22 17.78 24.91 34.30 43.40 55.83 84.83 156.83 279
SkewBKM -0.67 0.82 -4.11 -1.94 -1.00 -0.60 -0.24 0.32 2.69 279
KurtBKM 1.82 5.58 -1.96 -1.23 -0.32 0.73 2.41 7.72 56.92 279
MktCap 9891 22441 139 354 1020 2829 8804 39745 220628 279

Panel B: NonPar Sample

Mean SD Min 5% 25% Median 75% 95% Max n
ER 20.67 19.21 -41.33 -5.16 8.48 17.87 30.12 56.86 96.67 988

V olNonPar 46.14 18.40 9.28 23.32 33.14 42.85 55.72 79.07 168.24 988
SkewNonPar -4.59 8.52 -85.22 -14.97 -7.37 -4.57 -1.92 6.15 69.29 988
KurtNonPar 4.23 10.29 -67.50 -4.40 0.22 2.29 5.80 19.55 109.08 988

MktCap 9158 27097 70 271 805 2040 6313 36699 392409 988
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Table 4: Tri-Variate Dependent Sort Portfolios
Each month, all stocks in the sample (BKM sample in Panel A, NonPar sample in Panel
B) are grouped into 27 portfolios based on tri-variate dependent sorts of the risk-neutral
moments. All stocks in the sample are first sorted into three portfolios based on the first
sort variable. Each of the three portfolios is then sorted into three portfolios based on the
second variable. Finally, each of the nine resulting portfolios is sorted into three portfolios
based on the third sort variable. For each sort, the 30% of stocks with the lowest values
of the sort variable are put in portfolio one, the next 40% are put in portfolio two, and
the stocks with the highest values are put in portfolio three. The table below presents the
time-series average of the monthly equal-weighted average expected returns (ER) for each of
the 27 portfolios. The first sort variable, along with the corresponding portfolio number, is
presented in the upper left of each table. Portfolios of the second sort variable are represented
by columns. Portfolios of the third sort variable are represented by rows. The portfolio row
labeled “3-1” presents the time series average of monthly differences between portfolio three
and portfolio one of the third sort variable, for the given sort variable one and sort variable
two portfolios. The t-statistic testing the null hypothesis that the average difference between
portfolio three and portfolio one of the third sort variable is equal to zero, adjusted following
Newey and West (1987) using six lags, is presented in parentheses. The columns labeled
“Avg.” present the average expected return of the three sort variable two portfolios for the
given sort variable one and sort variable three portfolio. Panels A1 and B1 present results of
portfolio analyses designed to examine the relation between volatility and expected returns
after controlling for skewness and kurtosis, by sorting first on skewness, then on kurtosis,
and finally on volatility. Panels A2 and B2 sort on kurtosis, volatility, then skewness, and
therefore examine the relation between skewness and expected returns. Panels A3 and B3
examine the relation between kurtosis and expected returns by sorting first on skewness,
then on volatility, and finally on kurtosis.
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Table 4: Tri-Variate Dependent Sort Portfolios - continued

Panel A: BKM Sample
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Table 4: Tri-Variate Dependent Sort Portfolios - continued

Panel B: NonPar Sample
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Table 5: Fama-MacBeth Cross-Sectional Regressions
The table below presents the results of Fama and MacBeth (1973) regressions of price target-
based expected returns (ER) on combinations of the risk-neutral moments and controls. The
columns whose names begin with BKM (NonPar) contain results for the BKM (NonPar)
sample. Each month, a cross-sectional regression of expected returns is performed on all data
points in the sample. All independent variables are winsorized at the 0.5% level on a monthly
basis. The table presents the time-series averages of the cross-sectional regression coefficients.
Newey and West (1987) t-statistics, adjusted for six lags, testing the null hypothesis that the
average coefficient is equal to zero are in parentheses. The last two rows present the average
adjusted R-squared values and the average number of cross-sectional observations. Beta (β)
is the slope coefficient from a regression of excess stock returns on the market excess return.
Idiosyncratic volatility is the annualized residual standard error from the Fama and French
(1993) three factor model. Co-skewness (CoSkew) is the slope coefficient on the squared
market excess return from a regression of excess stock returns on the market excess return
and the squared market excess return. Co-kurtosis (CoKurt) is the slope coefficient on the
cubed market excess return from a regression of excess stock returns on the market excess
return, the market excess return squared, and the cubed market excess return. β, IdioV ol,
CoSkew and CoKurt are calculated using one year of daily return data. Log of market
capitalization (Size) is the natural log of month-end market capitalization. Book-to-market
ratio (BM) is calculated following Fama and French (1992). Illiquidity (Illiq) is calculated
following Amihud (2002). Short-term reversal (Rev) is taken to be the one-month return
during month t. Momentum (Mom) is taken to be the 11-month return covering months
t − 11 through t − 1. Earn is the median analyst forecast earnings, divided by the stock
price. AnlystCov is the natural log of one plus the number of analysts covering the stock.
LTG is the median analyst forecast of long-term earnings growth.
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Table 5: Fama-MacBeth Cross-Sectional Regressions - continued

B
K
M

1

N
on
P
a
r1

B
K
M

2

N
on
P
a
r2

V olBKM 0.31 0.18
(16.43) (10.13)

SkewBKM 6.98 3.11
(10.09) (7.57)

KurtBKM 0.86 0.34
(7.70) (4.38)

V olNonPar 0.38 0.23
(20.32) (13.33)

SkewNonPar 0.18 0.07
(7.56) (5.03)

KurtNonPar 0.08 0.03
(3.56) (2.18)

β 2.62 2.48
(3.62) (3.67)

IdioV ol 0.05 0.04
(2.82) (2.97)

CoSkew -0.14 -0.11
(-1.87) (-2.23)

CoKurt 0.01 0.01
(1.09) (0.67)

Size 0.34 0.61
(1.61) (3.54)

BM 0.67 0.24
(1.33) (0.75)

Illiq 195.19 209.32
(3.09) (5.28)

Rev -0.46 -0.49
(-28.17) (-36.35)

Mom -0.04 -0.04
(-8.48) (-9.63)

Earn 29.79 27.39
(6.34) (6.84)

AnlystCov -1.74 -1.35
(-6.49) (-9.25)

LTG 0.23 0.26
(11.62) (11.72)

Intercept 8.97 3.94 4.32 -1.33
(12.32) (4.79) (1.66) (-0.61)

Adj. R2 0.13 0.13 0.26 0.26
n 279 988 222 778



Table 6: Summary Statistics - Systematic and Unsystematic Components
The table below presents summary statistics for the decomposed BKM-based risk-neutral
moments. Each of the risk-neutral moments (variance, skewness, and kurtosis) is decom-
posed into systematic and unsystematic components. The systematic portions of volatility
(V olBKM), variance (V arBKM), skewness (SkewBKM), and excess kurtosis (KurtBKM) are
denoted with a subscript S. The unsystematic components of the risk-neutral moments are
denoted with a subscript U . All statistics presented in the table are the time-series averages
of monthly cross-sectional values, and thus represent the average month.

Mean SD Min 5% 25% Median 75% 95% Max n
ER 20.68 18.42 -30.21 -4.36 9.16 18.17 29.88 54.53 88.26 255
β 1.19 0.50 0.09 0.51 0.83 1.12 1.49 2.12 2.81 255

V olBKM
S,P 25.95 10.97 1.73 10.96 18.02 24.42 32.53 46.23 62.04 255

V arBKM
S,P 0.09 0.07 0.00 0.02 0.04 0.07 0.12 0.24 0.44 255

SkewBKM
S,P -0.47 0.37 -1.62 -1.19 -0.69 -0.38 -0.18 -0.05 0.01 255

KurtBKM
S,P 1.33 1.29 0.00 0.06 0.35 0.92 1.94 4.00 5.91 255

V olBKM
U,P 37.78 20.60 6.37 15.04 24.60 33.38 45.31 75.52 151.02 255

V arBKM
U,P 0.19 0.28 0.01 0.03 0.06 0.12 0.22 0.60 2.57 255

SkewBKM
U,P -0.21 0.97 -3.92 -1.74 -0.65 -0.15 0.32 1.03 3.52 255

KurtBKM
U,P 0.57 6.13 -6.50 -4.03 -1.74 -0.30 1.52 7.31 55.52 255

MktCap 9853 22286 140 348 1005 2800 8707 39901 209658 255
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Table 7: Regressions - Systematic and Unsystematic Components
The table below presents the results of Fama and MacBeth (1973) regressions of price target-
based expected returns (ER) on combinations of the decomposed components of BKM-based
risk-neutral moments and controls. Each month, a cross-sectional regression of expected re-
turns is performed on all data points in the sample. All independent variables are winsorized
at the 0.5% level on a monthly basis. The table presents the time-series average of the cross-
sectional regression coefficients. Newey and West (1987) t-statistics, adjusted for six lags,
testing the null hypothesis that the average coefficient is equal to zero are in parentheses.
The last two rows present the average adjusted R-squared values and the average number of
cross-sectional observations.

(1) (2) (3) (4) (5) (6)
V arBKMS,P 94.17 58.22 61.54 54.90

(7.82) (6.45) (6.22) (5.90)

V arBKMU,P 28.45 12.40 18.99 10.15
(10.75) (7.11) (7.62) (5.04)

SkewBKMS,P 36.47 2.58 16.08 -1.57
(7.49) (0.41) (2.73) (-0.23)

SkewBKMU,P 6.09 2.59 6.67 2.76
(8.57) (6.51) (10.23) (7.12)

KurtBKMS,P 5.87 -8.53 0.52 -9.23
(1.55) (-1.16) (0.15) (-1.41)

KurtBKMU,P 0.68 0.22 0.74 0.28
(5.79) (3.16) (7.31) (3.79)

IdioV ol 0.13 0.15 0.08
(6.27) (7.69) (4.39)

CoSkew -0.13 -0.10 -0.13
(-1.75) (-1.35) (-1.86)

CoKurt 0.01 0.01 0.01
(1.11) (1.04) (1.22)

Size 0.17 0.11 0.27
(0.81) (0.57) (1.24)

BM 0.85 1.04 0.79
(1.65) (2.22) (1.59)

Illiq 239.49 166.29 212.15
(3.55) (2.78) (3.30)

Rev -0.50 -0.47 -0.46
(-26.96) (-25.82) (-26.39)

Mom -0.04 -0.04 -0.04
(-9.31) (-7.04) (-8.56)

Earn 28.46 30.06 31.01
(5.79) (6.09) (6.65)

AnlystCov -1.63 -1.66 -1.68
(-5.75) (-5.82) (-5.89)

LTG 0.24 0.25 0.24
(13.28) (13.02) (13.06)

Intercept 20.93 10.27 16.64 10.19 18.96 10.67
(17.49) (4.27) (18.58) (4.38) (14.81) (4.50)

Adj. R2 0.08 0.25 0.10 0.25 0.14 0.26
n 255 207 255 207 255 207



Analyst Price Target Expected Returns and Option
Implied Risk

Online Appendix

Section I describes the calculation of risk-free rates. Section II describes the cal-
culation of the present value of dividends. In Section III we show that the results of
portfolio analyses of the relations between expected returns and risk-neutral moments
are robust to alternative orderings of the sort variables. Section IV demonstrates that
the main results of the paper persist when risk-neutral moments are calculated us-
ing two-month options. Section V presents the results of analyses using the systematic
and unsystematic components of the risk-neutral moments calculated using risk-neutral
beta.



I Calculation of Risk-Free Rates

This section describes the calculation of the risk-free rates used in the Bakshi et al. (2003)-

based estimation of the moments of the risk-neutral distribution. For each date t, we estimate

the continuously compounded rate of return r earned on a risk-free investment purchased on

date t and to be withdrawn on any date t+τ where τ > 0. The data used to calculate risk-free

rates come from the OptionMetrics database. Each trading day t, OptionMetrics provides

the continuously compounded risk-free rate for the period starting on date t and ending at

several different dates in the future. The future dates are indicated by the difference, in

days, between the future date and date t. To determine the risk-free rate for the periods

from t to any future date, we apply a cubic spline to the risk-free rate data provided by

OptionMetrics. On days when the U.S. equity and option markets are open but banks

are closed, OptionMetrics does not provide risk-free rate data. On these days, we use the

risk-free rate data in OptionMetrics from the previous trading day.

II Calculation of Present Value of Dividends

This section describes the calculation of the present value of future dividends used to adjust

the price of a stock before estimating the Bakshi et al. (2003) (BKM) integrals. The calcula-

tion is applied to any stock i on any day t and for any future ending date t+ τ where τ > 0.

The date t can be thought of as the date on which the BKM-based risk-neutral moments

are calculated, and the date t + τ can be thought of as the expiration date of the options

being used to estimate the BKM integrals. The resulting value is the present value of all

dividends on the stock i with ex-dividend dates between date t (exclusive) and t + τ (in-

clusive). The data for the present value of dividends calculations come from OptionMetrics.

OptionMetrics provides distribution data for several different types of distributions. We take

only distributions of types 1 (regular dividend) and 5 (special dividend) as indicated by the
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“Distribution Type” field in the OptionMetrics distribution file.

For any given stock i and dates t and t+τ , we calculate the present value of dividends by

taking all dividends on stock i with ex-dividend dates after date t and on or before date t+τ .

We denote these dividends dj, j ∈ {1, 2, ..., nd}, where nd denotes the number of dividends

for the given stock in the given date range. All dividends are appropriately adjusted for splits

so that the dividend amount reflects the amount received by an investor who purchased one

share of the stock on date t. Furthermore, we let τj be the amount of time, in years, between

date t and the payment date of the jth dividend. In cases where the payment date is not

available, the ex-dividend date is used in its place. It is important to note that while we

include all dividends with ex-dividend dates between t (exclusive) and t + τ (inclusive), we

discount the dividends from their payment date, as this is when the actual cash dividend

is received by the investor. The present value of each of the nd dividends is calculated by

discounting the dividend back to date t at the appropriate risk-free rate. The present value of

all of the dividends is then found by summing the present values of the individual dividends.

The present value of dividends calculation is therefore given by:

PV Divs =

nd∑
j=1

dje
−rjτj (A1)

where rj is the risk-free rate for the period from t to t+ τj. The calculation of the risk-free

rates is described in I of this online appendix.

III Alternative Sort Order Portfolios

In this section, we repeat the tri-variate dependent sort portfolio analyses of Section 5.1 and

Table 4 of the main paper with the order of the first two sort variables reversed. Thus,

when testing the relation between price target-based expected returns (ER) and risk-neutral

2



volatility, we sort first on risk-neutral kurtosis, then on risk-neutral skewness, and then on

risk-neutral volatility. To test the relation between expected returns and skewness, we sort

first on volatility and then on kurtosis. Finally, to test the relation between expected returns

and kurtosis, we sort first on volatility and then on skewness.

The results of the alternative sort order portfolios are presented in Table A1 of this online

appendix. The results for both the BKM sample (Panel A) and the NonPar sample (Panel

B) are qualitatively the same as those in the main paper (Table 4). The portfolio analyses

indicate strong positive relations between each of the risk-neutral moments and expected

returns.

IV Two-Month Samples

In this section, we analyze the relations between price target-based expected returns (ER)

and moments of the risk-neutral distribution calculated using options with longer times until

expiration than our main samples. Specifically, here we measure the Bakshi et al. (2003)-

based moments of the risk-neutral distribution using options that expire in month t + 3

(approximately 2.5 months after the end of month t), and we calculate the nonparametric

moments using the fitted volatility surface for 60 day fitted option values provided by Op-

tionMetrics. We refer to these measures as the two-month measures, and denote them in a

similar fashion to the one-month measures used in the main sample, with a 2M subscript.

The results of tri-variate dependent sort portfolio analyses are presented in Table A2

of this online appendix. As the two-month BKM sample has a reduced number of data

points, for the analysis of the BKM sample, we form only two portfolios based on the third

sort variable. The results indicate generally positive relations between price target-based

expected returns and the two-month risk-neutral moments, consistent with the main results

of the paper.
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The results of Fama and MacBeth (1973) regressions of price target-based expected re-

turns (ER) and the two-month risk-neutral moments are presented in Table A3. Regardless

of regression specification or method of calculating the risk-neutral moments, the average

coefficient on each of the moments is positive and significantly greater than zero.

Consistent with the results for the one-month samples in the main paper, both portfolio

and Fama and MacBeth (1973) regression analysis using the two-month risk-neutral moments

indicate positive relations between expected returns and each of risk-neutral volatility, skew-

ness, and kurtosis.

V Moment Decomposition Using Risk-Neutral Beta

In this section, we generate a measure of risk-neutral beta based on the relation between the

implied volatilities of the given stock and the market portfolio. We then use this measure of

risk-neutral beta to decompose risk-neutral variance, skewness, and kurtosis into systematic

and unsystematic components. Finally, we examine the relation between ex-ante expected

returns and the systematic and unsystematic components of the risk-neutral moments.

V.A Calculating Risk-Neutral Beta

Calculation of the systematic and unsystematic risk-neutral moments requires an estimate of

risk-neutral beta (βRN,i). We calculate risk-neutral beta from regressions of the risk-neutral

variance of the stock on the risk-neutral variance of the market. The assumption behind our

calculation is that the risk-neutral stock return process follows a one-factor market model

given by equation (14) of the main paper. If this assumption holds, the risk-neutral variance

of stock i, σ2
RN,i, can be expressed as in equation (15) of the main paper. To generate an

4



estimate of the value of β2
RN,i, therefore, we use the regression specification:

IV 2
i,d = δ0 + δ1IV

2
m,d + νi,d (A2)

where IVi,d (IVm,d) is the implied volatility of stock i (the market, taken to be the S&P 500

index) on day d. Regressions are performed for each stock at the end of each month using

one year’s worth of implied volatility data taken from the OptionMetrics implied volatility

surface.1 Specifically, IV is taken to be the average of the 30-day 0.50 delta call and -0.50

delta put implied volatilities. The positive square root of the estimated slope coefficient (δ1)

is taken to be the risk-neutral beta. Thus, we define risk-neutral beta as βRN =
√
δ̂1 where

δ̂1 is the estimated value of δ1 generated by the regression.

V.B Relations with Expected Returns

In Table A4, we present the results of Fama and MacBeth (1973) regressions of price target-

based expected returns on the systematic and unsystematic components of the risk-neutral

moments and controls. The results are qualitatively similar to those that use the decom-

posed components calculated using physical beta, presented in Table 7 of the main paper.

We therefore discuss only the differences. The main difference is that in the present analysis,

which uses risk-neutral beta to perform the decomposition of the risk-neutral moments (Table

A4 of this online appendix), systematic kurtosis exhibits a positive and statistically signifi-

cant relation with expected returns. Additionally, the systematic component of risk-neutral

skewness retains its positive and statistically significant relation with expected returns even

in specifications in which controls are included in the model.2 A potential explanation for

the difference between the results presented here and the results found in the main paper is

1We use implied volatilities from the volatility surface instead of using the BKM-based measure because
using the volatility surface allows us to hold the maturity and the delta (moneyness) constant.

2We rerun specifications (2), (4), and (6) in Table A4 with physical beta (β) included as an additional
control variable. The results (unreported) are qualitatively unchanged.
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that the estimation of risk-neutral beta is likely to be very noisy, making the decomposition

of the risk-neutral moments into systematic and unsystematic components inaccurate. As a

result, it is possible that for a substantial fraction of the stocks in the sample, a portion of

unsystematic component of the moment is still captured in the variable intended to capture

only the systematic component. Given that the total risk-neutral moments are positively

related to expected returns, this would result in overestimating the relation between the

systematic components and expected returns.
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Table A1: Tri-Variate Dependent Sort Portfolios - Alternative Sort Order
Each month, all stocks in the sample (BKM sample in Panel A, NonPar sample in Panel
B) are grouped into 27 portfolios based on tri-variate dependent sorts of the risk-neutral
moments. All stocks in the sample are first sorted into three portfolios based on the first
sort variable. Each of the three portfolios is then sorted into three portfolios based on the
second variable. Finally, each of the nine resulting portfolios is sorted into three portfolios
based on the third sort variable. For each sort, the 30% of stocks with the lowest values
of the sort variable are put in portfolio one, the next 40% are put in portfolio two, and
the stocks with the highest values are put in portfolio three. The table below presents the
time-series average of the monthly equal-weighted average expected returns (ER) for each of
the 27 portfolios. The first sort variable, along with the corresponding portfolio number, is
presented in the upper left of each table. Portfolios of the second sort variable are represented
by columns. Portfolios of the third sort variable are represented by rows. The portfolio row
labeled “3-1” presents the time series average of monthly differences between portfolio three
and portfolio one of the third sort variable, for the given sort variable one and sort variable
two portfolios. The t-statistic testing the null hypothesis that the average difference between
portfolio three and portfolio one of the third sort variable is equal to zero, adjusted following
Newey and West (1987) using six lags, is presented in parentheses. The columns labeled
“Avg.” present the average expected return of the three sort variable two portfolios for the
given sort variable one and sort variable three portfolio. Panels A1 and B1 present results of
portfolio analyses designed to examine the relation between volatility and expected returns
after controlling for skewness and kurtosis, by sorting first on kurtosis, then on skewness,
and finally on volatility. Panels A2 and B2 sort on volatility, kurtosis, then skewness, and
therefore examine the relation between skewness and expected returns. Panels A3 and B3
examine the relation between kurtosis and expected returns by sorting first on volatility,
then on skewness, and finally on kurtosis.
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Table A1: Tri-Variate Dependent Sort Portfolios - Alternative Sort Order -
continued

Panel A: BKM Sample

A1: V olBKM

K
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1
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3
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B
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V olBKM 1 13.58 15.88 19.42 16.29
V olBKM 2 17.62 22.10 25.73 21.82
V olBKM 3 22.78 28.28 33.20 28.09

V olBKM 3-1 9.20 12.41 13.78 11.80
(7.01) (10.41) (9.97) (9.94)
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12.39 14.62 17.15 14.72
16.84 20.53 24.57 20.64
21.90 25.13 31.98 26.34
9.51 10.52 14.84 11.62

(9.36) (10.13) (12.59) (12.02)
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13.20 13.28 14.85 13.78
20.07 16.94 20.30 19.10
27.36 25.85 27.80 27.00
14.15 12.57 12.96 13.23

(13.02) (13.30) (13.20) (19.32)

A2: SkewBKM
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SkewBKM 1 12.58 12.62 11.53 12.24
SkewBKM 2 14.88 14.41 13.83 14.37
SkewBKM 3 16.93 16.73 16.49 16.72

SkewBKM 3-1 4.35 4.11 4.96 4.48
(5.19) (4.63) (5.23) (5.41)
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17.56 17.23 16.49 17.09
20.79 20.36 18.84 20.00
23.92 25.55 23.57 24.35
6.37 8.32 7.09 7.26

(7.17) (8.05) (5.84) (7.82)
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22.40 22.20 26.39 23.66
27.83 25.65 27.12 26.87
33.98 32.29 29.76 32.01
11.58 10.08 3.37 8.34
(9.54) (7.60) (2.33) (7.64)

A3: KurtBKM
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KurtBKM 1 12.33 13.45 16.28 14.02
KurtBKM 2 12.86 13.94 17.16 14.65
KurtBKM 3 12.07 14.52 17.77 14.79

KurtBKM 3-1 -0.26 1.07 1.49 0.77
(-0.50) (2.14) (1.93) (1.69)
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16.50 18.89 23.15 19.51
16.67 19.94 24.82 20.48
17.78 20.87 26.50 21.72
1.28 1.99 3.36 2.21

(1.95) (3.11) (3.41) (3.83)
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23.13 24.38 31.02 26.18
26.07 24.74 31.78 27.53
26.41 27.79 32.77 28.99
3.28 3.42 1.75 2.81

(3.68) (4.60) (1.80) (5.72)
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Table A1: Tri-Variate Dependent Sort Portfolios - Alternative Sort Order -
continued

Panel B: NonPar Sample

B1: V olNonPar
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V olNonPar 1 14.72 13.02 14.04 13.92
V olNonPar 2 21.54 18.22 21.55 20.44
V olNonPar 3 29.11 26.61 30.87 28.86

V olNonPar 3-1 14.39 13.59 16.83 14.94
(11.47) (9.36) (16.12) (12.40)
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14.55 13.25 13.57 13.79
19.68 17.55 19.47 18.90
26.83 24.74 28.87 26.81
12.28 11.50 15.29 13.02
(8.83) (9.23) (13.96) (10.83)
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12.89 13.79 13.46 13.38
22.34 20.44 22.86 21.88
31.20 28.98 32.35 30.84
18.31 15.19 18.89 17.46

(13.33) (12.71) (22.62) (16.77)

B2: SkewNonPar
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SkewNonPar 1 12.93 13.81 12.01 12.92
SkewNonPar 2 13.53 14.06 13.93 13.84
SkewNonPar 3 13.85 14.03 13.67 13.85

SkewNonPar 3-1 0.92 0.23 1.66 0.93
(1.60) (0.38) (2.41) (1.50)
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18.18 18.10 19.78 18.69
19.14 19.37 20.83 19.78
20.75 20.86 22.69 21.43
2.57 2.76 2.91 2.74

(4.63) (4.80) (5.01) (5.48)
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27.42 26.07 29.52 27.67
27.99 26.91 29.65 28.18
30.60 30.02 32.49 31.04
3.18 3.96 2.97 3.37

(4.77) (6.68) (3.54) (5.90)

B3: KurtNonPar
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KurtNonPar 1 13.05 13.42 13.84 13.43
KurtNonPar 2 13.58 14.00 14.23 13.94
KurtNonPar 3 12.24 13.90 13.66 13.27

KurtNonPar 3-1 -0.81 0.48 -0.17 -0.17
(-2.14) (1.34) (-0.43) (-0.53)
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17.94 19.19 20.75 19.29
18.21 19.21 21.22 19.55
19.84 20.66 22.68 21.06
1.90 1.46 1.93 1.76

(4.10) (3.16) (5.17) (4.92)
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27.22 28.05 30.42 28.57
26.66 26.53 30.48 27.89
29.71 29.49 32.07 30.42
2.48 1.43 1.65 1.86

(3.80) (2.97) (3.05) (5.76)
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Table A2: Tri-Variate Dependent Sort Portfolios - Two Month Samples
Each month, all stocks in the sample (BKM sample in Panel A, NonPar sample in Panel B)
are grouped into portfolios based on tri-variate dependent sorts of the risk-neutral moments
(BKM-based in Panel A, nonparametric in Panel B) calculated using two-month options.
All stocks in the samples are first sorted into three portfolios based on the first sort variable.
Each of these portfolios is then sorted into three portfolios based on the second variable.
Finally, each of the resulting portfolios is sorted into two (for the BKM sample) or three
(for the NonPar sample) portfolios based on the third sort variable. For the first two sorts,
the 30% of stocks with the lowest values of the sort variable are put in portfolio one, the
next 40% are put in portfolio two, and the stocks with the highest values are put in portfolio
three. For the BKM sample, for the third sort, the 50% of stocks with the lowest values
of the sort variable are put into portfolio one and the remaining 50% are put into portfolio
two. For the NonPar sample, for the third sort, the 30% of stocks with the lowest values
of the sort variable are put in portfolio one, the next 40% are put in portfolio two, and
the stocks with the highest values are put in portfolio three. The table below presents the
time-series average of the monthly equal-weighted average expected returns (ER) for each
of the portfolios. The first sort variable, along with the corresponding portfolio number, is
presented in the upper left of each table. Portfolios of the second sort variable are represented
by columns. Portfolios of the third sort variable are represented by rows. The portfolio row
labeled “2-1” for the BKM (“3-1” for theNonPar sample) presents the time series average of
monthly differences between portfolio two (three) and portfolio one of the third sort variable,
for the given sort variable one and sort variable two portfolios. The t-statistic testing the
null hypothesis that the average difference between portfolio two (three) and portfolio one of
the third sort variable is equal to zero, adjusted following Newey and West (1987) using six
lags, is presented in parentheses. The columns labeled “Avg.” present the average expected
return of the three sort variable two portfolios for the given sort variable one and sort variable
three portfolio. Panels A1 and B1 present results of portfolio analyses designed to examine
the relation between volatility (BKM-based measure in Panel A1, nonparametric measure in
Panel B1) and expected returns after controlling for skewness and kurtosis, by sorting first
on skewness, then on kurtosis, and finally on volatility. Panels A2 and B2 sort on kurtosis,
volatility, then skewness, and therefore examine the relation between skewness and expected
returns. Panels A3 and B3 examine the relation between kurtosis and expected returns by
sorting first on skewness, then on volatility, and finally on kurtosis.
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Table A2: Tri-Variate Dependent Sort Portfolios - Two Month Samples -
continued

Panel A: Two Month BKM Sample

A1: V olBKM2M
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M
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V olBKM2M 1 14.11 13.16 12.28 13.19
V olBKM2M 2 18.87 19.68 21.14 19.90

V olBKM2M 2-1 4.75 6.52 8.87 6.71
(3.73) (6.27) (7.04) (8.04)
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17.24 16.24 15.15 16.21
23.88 23.53 23.29 23.57
6.64 7.29 8.14 7.36

(8.40) (9.63) (7.52) (11.46)
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22.23 21.33 19.07 20.88
30.07 30.60 30.21 30.29
7.84 9.27 11.14 9.42

(6.61) (8.79) (9.82) (11.35)

A2: SkewBKM2M
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SkewBKM2M 1 15.70 20.69 25.45 20.61
SkewBKM2M 2 19.74 27.36 32.66 26.59

SkewBKM2M 2-1 4.04 6.67 7.21 5.97
(5.86) (7.77) (4.55) (8.38)
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13.84 16.46 23.39 17.90
16.55 22.99 29.18 22.91
2.71 6.53 5.79 5.01

(4.37) (6.19) (4.31) (6.95)
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11.14 14.70 23.51 16.45
13.82 18.30 26.69 19.60
2.68 3.59 3.17 3.15

(5.23) (3.18) (2.27) (3.82)

A3: KurtBKM2M
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KurtBKM2M 1 11.62 16.10 21.82 16.51
KurtBKM2M 2 10.91 15.49 23.84 16.75

KurtBKM2M 3-1 -0.71 -0.61 2.02 0.23
(-1.26) (-0.66) (1.29) (0.33)
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14.78 19.09 26.31 20.06
-0.12 -0.55 1.60 0.31

(-0.19) (-0.65) (1.83) (0.66)
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18.52 24.87 30.97 24.78
18.68 26.12 34.57 26.46
0.16 1.26 3.61 1.67

(0.25) (1.13) (2.80) (2.56)
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Table A2: Tri-Variate Dependent Sort Portfolios - Two Month Samples -
continued

Panel B: Two Month NonPar Sample

B1: V olNonPar2M
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V olNonPar2M 1 15.06 15.10 13.49 14.55
V olNonPar2M 2 22.26 20.94 23.28 22.16
V olNonPar2M 3 30.54 28.10 31.36 30.00

V olNonPar2M 3-1 15.48 13.00 17.87 15.45
(11.62) (10.35) (16.40) (13.23)
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13.71 12.87 13.24 13.27
18.92 17.21 19.07 18.40
27.43 23.84 27.36 26.21
13.72 10.97 14.12 12.94
(9.63) (10.71) (11.59) (10.62)
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18.22 15.54 20.93 18.23

(14.20) (13.56) (21.61) (17.03)
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14.31 24.70 35.28 24.76
1.89 3.92 5.84 3.88

(3.06) (5.17) (6.06) (6.13)

B3: KurtNonPar2M
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KurtNonPar2M 1 14.35 21.23 30.28 21.96
KurtNonPar2M 2 15.33 21.50 29.08 21.97
KurtNonPar2M 3 13.73 22.92 31.29 22.64

KurtNonPar2M 3-1 -0.62 1.68 1.00 0.69
(-1.73) (3.57) (1.58) (2.56)
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13.64 20.66 32.05 22.11
13.76 20.53 30.56 21.61
13.33 22.82 34.36 23.50
-0.30 2.16 2.31 1.39

(-0.93) (5.44) (3.96) (5.09)
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Table A3: Fama-MacBeth Cross-Sectional Regressions - Two Month Samples
The table below presents the results of Fama and MacBeth (1973) regressions of price target-
based expected returns (ER) on combinations of the two-month risk-neutral moments and
controls. The columns whose names begin with BKM (NonPar) contain results for the
BKM (NonPar) sample. Each month, a cross-sectional regression of expected returns is
performed on all data points in the sample. All independent variables are winsorized at
the 0.5% level on a monthly basis. The table presents the time-series average of the cross-
sectional regression coefficients. Newey and West (1987) t-statistics, adjusted for six lags,
testing the null hypothesis that the average coefficient is equal to zero are in parentheses.
The last two rows present the average adjusted R-squared values and the average number of
cross-sectional observations.

B
K
M

1

N
on
P
a
r1

B
K
M

2

N
on
P
a
r2

V olBKM2M 0.31 0.19
(14.47) (6.89)

SkewBKM2M 7.74 3.84
(9.76) (5.76)

KurtBKM2M 0.84 0.38
(5.16) (2.74)

V olNonPar2M 0.39 0.27
(21.53) (14.87)

SkewNonPar2M 0.25 0.11
(8.65) (5.42)

KurtNonPar2M 0.11 0.05
(4.87) (3.26)

β 2.41 2.28
(2.76) (3.47)

IdioV ol 0.06 0.01
(2.36) (1.01)

CoSkew -0.11 -0.10
(-2.65) (-2.25)

CoKurt 0.01 0.01
(1.32) (0.66)

Size 0.82 0.55
(3.02) (3.10)

BM 1.04 0.20
(1.45) (0.62)

Illiq 393.98 184.67
(4.73) (5.30)

Rev -0.39 -0.48
(-18.62) (-34.38)

Mom -0.04 -0.04
(-4.95) (-9.45)

Earn 52.77 26.80
(5.48) (7.32)

AnlystCov -1.48 -1.37
(-3.58) (-9.24)

LTG 0.31 0.25
(7.36) (11.94)

Intercept 10.28 3.87 -3.48 -0.69
(10.89) (4.48) (-1.17) (-0.30)

Adj. R2 0.14 0.14 0.28 0.26
n 109 1014 88 794



Table A4: Regressions - Systematic and Unsystematic Components - Risk-
Neutral Beta
The table below presents the results of Fama and MacBeth (1973) regressions of price target-
based expected returns (ER) on combinations of the decomposed components of BKM-based
risk-neutral moments and controls. Decomposition of the risk-neutral moments is done using
risk-neutral beta. Risk-neutral beta is taken to be the squared root of the slope coefficient
from a regression of the implied variance of the stock on the implied variance of the market.
Each month, a cross-sectional regression of expected returns is performed on all data points
in the sample. All independent variables are winsorized at the 0.5% level on a monthly ba-
sis. The table presents the time-series average of the cross-sectional regression coefficients.
Newey and West (1987) t-statistics, adjusted for six lags, testing the null hypothesis that the
average coefficient is equal to zero are in parentheses. The last two rows present the average
adjusted R-squared values and the average number of cross-sectional observations.

(1) (2) (3) (4) (5) (6)
V arBKMS 60.85 40.57 47.29 41.38

(8.97) (5.86) (8.02) (5.90)

V arBKMU 35.36 11.99 18.83 10.16
(12.40) (5.24) (7.91) (3.77)

SkewBKMS 26.41 13.49 19.02 12.02
(8.74) (4.76) (6.48) (4.09)

SkewBKMU 6.63 2.65 6.62 2.69
(9.64) (6.47) (10.15) (6.33)

KurtBKMS 9.70 6.09 5.13 4.83
(3.31) (3.24) (3.20) (3.51)

KurtBKMU 0.62 0.19 0.74 0.22
(6.86) (3.07) (7.06) (3.65)

IdioV ol 0.11 0.16 0.05
(6.40) (8.76) (2.51)

CoSkew -0.10 -0.09 -0.11
(-1.61) (-1.37) (-1.68)

CoKurt 0.00 0.00 0.00
(1.07) (1.09) (1.25)

Size 0.29 0.34 0.34
(1.36) (1.79) (1.67)

BM 1.23 1.62 1.37
(2.23) (2.72) (2.32)

Illiq 304.98 306.83 290.54
(3.54) (3.62) (3.50)

Rev -0.52 -0.49 -0.48
(-24.54) (-24.79) (-24.17)

Mom -0.04 -0.04 -0.04
(-6.41) (-6.22) (-6.53)

Earn 30.86 29.06 30.99
(5.73) (5.22) (6.27)

AnlystCov -1.64 -1.54 -1.60
(-5.11) (-5.29) (-5.24)

LTG 0.26 0.26 0.26
(10.23) (10.18) (10.56)

Intercept 20.73 10.78 15.69 7.07 19.14 11.31
(16.74) (4.14) (19.65) (3.18) (15.38) (4.31)

Adj. R2 0.08 0.25 0.09 0.24 0.13 0.25
n 195 162 195 162 195 162
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