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WebAPIRec: Recommending Web APIs to Software
Projects via Personalized Ranking

Ferdian Thung, Richard J. Oentaryo, David Lo, and Yuan Tian

Abstract—Application programming interfaces (APIs) offer a
plethora of functionalities for developers to reuse without rein-
venting the wheel. Identifying the appropriate APIs given a project
requirement is critical for the success of a project, as many func-
tionalities can be reused to achieve faster development. However,
the massive number of APIs would often hinder the developers’
ability to quickly find the right APIs. In this light, we propose a
new, automated approach called WebAPIRec that takes as input
a project profile and outputs a ranked list of web APIs that can be
used to implement the project. At its heart, WebAPIRec employs a
personalized ranking model that ranks web APIs specific (person-
alized) to a project. Based on the historical data of web API usages,
WebAPIRec learns a model that minimizes the incorrect ordering
of web APIs, i.e., when a used web API is ranked lower than an un-
used (or a not-yet-used) web API. We have evaluated our approach
on a dataset comprising 9883 web APIs and 4315 web applica-
tion projects from ProgrammableWeb with promising results. For
84.0% of the projects, WebAPIRec is able to successfully return
correct APIs that are used to implement the projects in the top-five
positions. This is substantially better than the recommendations
provided by ProgrammableWeb’s native search functionality. We-
bAPIRec also outperforms McMillan et al.’s application search
engine and popularity-based recommendation.

Index Terms—Personalized ranking, recommendation system,
Web API.

I. INTRODUCTION

D EVELOPING a software project is not an easy task, as
customers usually demand many features to be imple-

mented. To aid their jobs, developers often use third party li-
braries that provide relevant functionalities through application
programming interfaces (APIs) [20]. APIs provide function-
alities for certain tasks that can be (re)used by developers to
expedite project developments. Using APIs prevents develop-
ers from reinventing the wheel, thus allowing them to focus on
more important tasks at hand. Hence, it is usually a good idea
to find suitable APIs and use them in a project. Moreover, by
building upon existing APIs, features can be completed faster
as many APIs are well designed and their functionalities have
been tested by many client applications.
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Finding the right APIs, however, is not as straightforward as
it may seem. Thousands of APIs have been developed to cater
for various purposes, and developers are often unaware of the
existence of APIs suitable for a particular feature of the project
that they are developing. Of course, some APIs are well known,
but the majority of APIs do not enjoy such luxury [41]. More-
over, although some API choices are obvious (e.g., if we want
to add Facebook support, we do not have much choice except
using Facebook API), the number of such obvious API choices
is not many. In general, finding APIs for various needs, e.g., mu-
sic management, typically involves many possible alternatives
and the choice will largely depend on the project requirement.
Some examples of music management APIs are MusicBrainz,
Soundiiz, and Toma.hk. MusicBrainz can be used to extract
music metadata, Soundiiz can be used to create music playlist,
and Toma.hk can be used to play music from different sources.
The choice of which API to use would depend on the need and
requirement of a target application. These facts necessitate the
development of an automated recommendation system that can
help developers find APIs that they need for their projects.

In this paper, we propose a new approach dubbed We-
bAPIRec to recommend web APIs based on project profiles.
In WebAPIRec, we define a project profile as the textual de-
scription and keywords of the project. It is worth noting that
our approach does not require the web API source code to be
available. This requirement is important as many proprietary yet
useful web APIs do not come with source code. Examples of web
APIs include Google Maps, Bing Maps, YouTube, and Last.fm,
which are often used as key components in many projects. These
web APIs offer essential functionalities and usually come with
data that can be used to complete various features in a more
efficient way.

Given a new project profile, our approach recommends web
APIs by analyzing past projects and the web APIs that they
use. WebAPIRec consists of two phases: training and deploy-
ment phase. In the training phase, WebAPIRec analyzes past
projects and their used web APIs to build a personalized rank-
ing model that aims to minimize ranking errors in the training
data. Personalized ranking means that the ranking of web APIs
is specific to each project, and thus different projects have dif-
ferent web API rankings. A ranking error occurs if a web API
used by some project is ranked lower than an unused web API.
In the deployment phase, WebAPIRec analyzes the profile of a
new project using the trained model. It then assigns a relevancy
score to each web API. A higher relevancy score implies that
the API is deemed more relevant. Finally, WebAPIRec ranks
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the web APIs in a descending order of their relevancy and re-
turns a list of recommended web APIs. This list is intended to
help developers to pick web APIs more efficiently. It does not
explicitly return a composition of web APIs for the project.

To illustrate the usefulness of our approach, consider the
following scenario. A developer has no idea what web API to
use for developing his application. Normally, he will surf the
web to find a suitable web API. However, not all web pages are
related to web APIs and, even if they are, he still needs to read
the web API descriptions and decide whether each of them is
usable or not. If he thinks a web API is usable, he will try the
web API. Still, after trying it, the web API may not meet his
expectations. There may be numerous trials and errors before he
finds the web API that best matches his needs. We thus develop
WebAPIRec to provide an automated recommender system
that can help reduce the effort needed by a developer to find the
right web API.

To validate our WebAPIRec approach, we use the web
application projects and web APIs extracted from the Pro-
grammableWeb website.1 This dataset has a total of 9,883 web
APIs and 4,315 projects. We evaluate the effectiveness of our
approach in terms of Hit@N, MAP@N, MAP, and MRR, which
are popular metrics for evaluating recommender systems [22],
[25], [26], [29], [33], [36], [42]. Our experiment shows that
our approach achieves Hit@5, Hit@10, MAP@5, MAP@10,
MAP, and MRR scores of 0.840, 0.880, 0.697, 0.687, 0.626, and
0.750, respectively. The Hit@5 score implies that for 84.0% of
the projects, WebAPIRec can successfully return correct web
APIs, which are used to implement the projects at the top-5
positions.

We have compared the effectiveness of our approach against
the native search functionality of ProgrammableWeb. We input
the profile of a project (in full or in part) and evaluate the list
of libraries that the search functionality returns. However, we
find that the search functionality is limited and it achieves only
Hit@5, Hit@10, MAP@5, MAP@10, MAP, and MRR scores
of at most 0.046, 0.047, 0.041, 0.042, 0.042, and 0.038 re-
spectively. We have also compared our approach against several
other baselines based on McMillan et al.’s application search en-
gine [17] and popularity-based recommendation. We find that
our approach outperforms all of them. The best performing
baseline achieves significantly lower Hit@5, Hit@10, MAP@5,
MAP@10, MAP, and MRR scores of 0.591, 0.675, 0.414, 0.417,
0.363, and 0.476 respectively. Comparing the Hit@5 scores of
WebAPIRec with those of the baselines, WebAPIRec outper-
forms the best performing baseline by a substantial margin of
42.1%.

We summarize our main contributions as follows:
1) We propose a new approach named WebAPIRec that

recommends web APIs by analyzing past similar projects
and web APIs that they use, and model the recommenda-
tion task as a ranking problem. To our best knowledge,
WebAPIRec is the first approach that employs a person-
alized ranking model to learn the correct ordering of web
APIs for a specific project. Our approach recommends

1http://www.programmableweb.com/

TABLE I
A SAMPLE API PROFILE

Last.fm API

Short Description Online audio service
Long Description The Last.fm API gives users the ability to build programs

using Last.fm data, whether on the web, the desktop or
mobile devices. The RESTful API allows for read and write
access to the full slate of last.fm music data resources -
albums, artists, playlists, events, users, and more. It allows
users to call methods that respond in either XML or JSON.

Keywords music

TABLE II
A SAMPLE WEB APPLICATION PROJECT PROFILE

Ivy FM - Discover new music every day

Long Description Discover new music every day with Ivy FM. It plays great
songs continuously in each genre from the best artists in the
world. Select your channel, listen great music, share it and
enjoy.

Keywords music, streaming
APIs Last.fm, Youtube

top-k web APIs that can most likely be used to implement
the project.

2) We have comprehensively evaluated our approach on a
dataset extracted from ProgrammableWeb. Our experi-
ment shows that WebAPIRec is able to achieve satisfac-
tory Hit@N , MAP, MAP@N and MRR scores. These
results are substantially better than the results for the Pro-
grammableWeb’s native search functionality, McMillan
et al.’s application search, and popularity-based recom-
mendation.

II. PRELIMINARIES

A. ProgrammableWeb Dataset

ProgrammableWeb is a website that collects information
about APIs released as web services and web application
projects that use them. It contains a collection of thousands
of APIs implementing various functionalities. Table I shows the
profile of an API in our dataset. The profile of an API contains
several pieces of information such as its name, short description
(i.e., summary), long description, and keywords (i.e., tags). In
this paper, we refer to a merged text that contains the name,
short description, and long description of an API as the textual
description of the API. We represent each API by its textual
descriptions and keywords.

ProgrammableWeb contains thousands of web application
projects. Table II shows the profile of a project in our dataset.
The profile contains several pieces of information including: a
long description of the project and the relevant keywords (i.e.,
tags). A web application project does not have a short description
in ProgrammableWeb. We refer to the long description of a
web application project as its textual description. Similar to an
API, we represent each web application project by its textual
descriptions and keywords.
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B. IR & NLP Techniques

WebAPIRec make use of information retrieval (IR) and
natural language processing (NLP) techniques. They include
parts-of-speech (POS) tagging technique from NLP and text
preprocessing, vector space model (VSM), and cosine similar-
ity techniques from IR. We describe each of them below.

1) Parts-of-Speech Tagging: POS tagging is a natural lan-
guage processing technique that assigns a part of speech label
to every word in a textual document (in our case: a textual
description of an API or a project). Common parts of speech
include: noun, verb, adjective, adverb, etc. Various algorithms
have been proposed to perform POS tagging. One of the most
advanced family of POS tagging algorithms is stochastic POS
taggers, which consider the context of a word to decide its POS
tag [5], [27], [35]. In this work, we use the popular Stanford
(stochastic) POS tagger [35], which has also been used in many
software engineering studies, e.g., [4].

2) Text Preprocessing: In this phase, we break a text data
into a more suitable representation that can later be converted
into an IR model. Also, since text data are often noisy (i.e., it
contains many unimportant words, closely related words that
are in different tenses, etc.), additional preprocessing steps are
needed. In this work, the preprocessing steps are:

1) Tokenization: It is a process of breaking a text document
into its constituent word tokens. Delimiters, such as punc-
tuation marks and white spaces, are used as boundaries
between one word token and another. At the end of this
process, each text document is represented by a bag (or
multi-set) of word tokens.

2) Stop Word Removal: This involves removing words that
appear very frequently and thus help very little in discrimi-
nating one document from another. Examples of these stop
words include: “I”, “you”, “are”, etc. In this work, we use
the list of English stop words from http://jmlr.org/papers/
volume5/lewis04a/a11-smart-stop-list/english.stop.

3) Stemming: It is a process of converting a word to its base
form, typically by removing a suffix from the word. For
example, using stemming, words “reads” and “reading”
would all be converted to “read”. Without stemming, these
words will be considered as different words altogether. We
use the Porter stemming method [19] to reduce each word
to its stemmed form.

3) Vector Space Model: Text preprocessing will convert a
textual document—i.e., a project or API description—into a bag
of words. In the bag of words representation, important words
are not distinguished from unimportant ones. To consider the
relative importance of words, IR researchers proposed the vec-
tor space model (VSM), which represents a textual document
as a vector of weights [16]. Each weight corresponds to a word
and indicates the relative importance of that word. VSM is con-
structed by analyzing many bags of words representing a set
of documents in a corpus (i.e., a collection of project or API
descriptions).

Many weighting schemes can be used to infer the importance
of a word. In this work, we use the popular term frequency-
inverse document frequency (tf-idf) scheme [21]. This scheme
is based on two intuitions. Firstly, words (terms) that appear

frequently in a document are more important than words that
appear rarely in it. For example, a document that has many oc-
currences of the word “Texas” is likely to be related to “Texas”.
Secondly, words that appear in many documents are less able to
distinguish one document from another, and should be given a
smaller weight. For example, if all documents in a corpus con-
tains the word “Software”, then this word is unimportant, as it
cannot distinguish one document from another.

Given a document D in a corpus C, we can compute the
weight of every word that appears in D. To compute the term
frequency (tf) of a word d in a document D, we simply count
how many times the word appear in D. To compute the inverse
document frequency (idf) of a word d in corpus C, we first
compute the document frequency (df) of d, which is the number
of documents in C that contains d. We then normalize this
number by dividing it by the number of documents in C. The
idf is simply the logarithm of the reciprocal of this normalized
number. In turn, the tf-idf weight of a word d is the product of
its term frequency and inverse document frequency. Formally,
the tf-idf weight of a word d in a document D of a corpus C
(denoted as w(d,D ,C )) is:

w(d,D ,C ) = TF (d,D ) × IDF (d,C )

= TF (d,D ) × log
(

NC

DF (d,C )

)
(1)

where TF (d,D ) refers to the term frequency of word d, NC

refers to the number of documents in corpus C, and DF (d,C )
refers to the document frequency of word d.

We denote the VSM representation of a document D consid-
ering a corpus C as V SMC (D). In our implementation, we use a
sparse matrix representation for the API and project documents
(i.e., we only store the non-zero entries).

4) Cosine Similarity: To compute the similarity of two doc-
uments, we can take their VSM representations and compare
the two vectors of weights by computing their cosine similar-
ity [16]. Consider two vectors a and b of size N ; their cosine
similarity is:

Sim(a, b) =
∑N

i=1 wi,a × wi,b√∑N
i=1 w2

i,a

√∑N
i=1 w2

i,b

(2)

where wi,a refers to the ith weight in vector a.

III. API RECOMMENDATION SYSTEM

The architecture of WebAPIRec is outlined in Fig. 1. It takes
as input: a new project profile, a set of API profiles, and a set of
past projects. From the new project profile and each API profile,
WebAPIRec takes its textual descriptions and keywords. From
each past project, WebAPIRec takes its textual descriptions,
keywords, and APIs that was used. WebAPIRec analyzes these
inputs and finally produces a ranked list of APIs to be recom-
mended to the target project.
WebAPIRec has two operating phases: training phase and

deployment phase. In the former phase, WebAPIRec takes as
input a set of API profiles and a set of past projects along with the
APIs that they use. It then learns a personalized ranking model
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Fig. 1. Architecture of WebAPIRec.

(see Section IV). In the deployment phase, it takes as input
the new project profile, a set of API profiles, and the trained
personalized API ranking model. It then applies the model to
the new project profile and outputs a ranked list of recommended
APIs.

To train the personalized ranking model in the training phase,
WebAPIRec needs to represent the profile of each past project
(i.e., training data) as a feature vector. WebAPIRec first identi-
fies nouns from the textual descriptions using the Stanford POS
tagger. These nouns carry more meaning than other kinds of
words, as advocated in [6], [28]. WebAPIRec then combines
the extracted nouns with the keywords, remove stop words, stem
each of the remaining words, and construct a VSM feature vec-
tor. The same process can be done to convert an API profile into
a feature vector. These project and API feature vectors are then
used to construct a set of training triples (p, a, a′), which serves
as input to the personalized ranking model. In a triple (p, a, a′),
p is the feature vector of a project in the training data, a is the
feature vector of an API that is used by project p, and a′ is the
feature vector of an API not used by project p. At the end of
the training phase, the ranking model will have learned how to
rank a list of APIs based on their feature vectors and the feature
vector of the target project.

In the deployment phase, similar to the training phase, We-
bAPIRec first constructs feature vectors from a new project
profile and API profiles. Using the learned personalized API
ranking model, WebAPIRec computes the relevancy of each
API and sort the APIs (in descending order) based on these
scores. The sorted APIs are output as a list of recommended
APIs.

IV. PERSONALIZED RANKING

WebAPIRec casts the API recommendation problem as a
personalized ranking task. Under this formulation, our goal is
to provide a ranked list of APIs that are specific (i.e., personal-
ized) to each project. Specifically, we consider the setting where
WebAPIRec takes as input a set of training triples (p, a, a′)
where p is a feature vector of a project, a is a feature vector of

an API library used in p, and a′ is a feature vector of an API not
used in p. Based on these training triples, a personalized ranking
model learns how to rank APIs for a target project by jointly
utilizing their feature vectors.

A. Notation and Desiderata

We first define our notations here. Let P be the set of all
software projects and A the set of all web APIs. Accordingly,
the recommendation task is to provide a specific project p ∈ P
with a total ordering >p of all APIs a ∈ A. Essentially, a sound
ranking >p requires several criteria to be fulfilled:

∀a, a′ ∈ A : a �= a′ ⇒ a >p a′ ∨ a′ >p a (3)

∀a, a′ ∈ A : a >p a′ ∧ a′ >p a ⇒ a = a′ (4)

∀a, a′, a′′ ∈ A : a >p a′ ∧ a′ >p a′′ ⇒ a >p a′′ (5)

The formulae (3)–(5) correspond to the so-called totality (i.e., a
and a′ should be comparable), anti-symmetry (i.e., unless a = a′,
a and a′ should have different ranks), and transitivity properties
(i.e., if a ranks higher than (or equal to) a′ and a′ ranks higher
than (or equal to) a′′, then a ranks higher than (or equal to) a′′),
respectively [8].

The personalized ranking model will in turn learn to rank
APIs based on a set of training triples D:

D = {(p, a, a′)|a ∈ Ap ∧ a′ ∈ A\Ap} (6)

where Ap refers to the set of APIs used by a project p, and each
element/triple (p, a, a′) ∈ D implies that project p prefers API
a over API a′.

B. Ranking Model

Our personalized ranking model computes a compatibility
score between a project p and an API a. Specifically, for any
(p, a) pair, our model defines the compatibility score f(p, a) as
a weighted sum of J interaction features:

f(p, a) =
J∑

j=1

θjxj (p, a) (7)

where each feature xj (p, a) quantifies a specific type of inter-
action between the project p and API a, and θj is the weight
parameter to be identified by the training procedure. Further de-
tails on which features xj (p, a) we use in the recommendation
task will be given later in Section V.

After training is completed, we can compute for a new project
p′ the score f(p′, a) using the identified weight parameters θj

and feature θj (p′, a). We may then sort the scores f(p′, a) com-
puted for all APIs a ∈ A, and in turn produce the ranked list of
APIs to be recommended for p′.

C. Loss Function Formulation

To solve the API recommendation task, we need to formu-
late the loss function that guides the training process of our
ranking model. We define a loss function L(.) to evaluate the
goodness of the compatibility score f(p, a), and then find the
optimal weight parameters that minimize L(.). As mentioned,
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feature vectors x(p, a) = [x1(p, a), . . . , xj (p, a), . . . , xJ (p, a)]
are ranked according to f(p, a). Thus, if the feature vectors with
higher scores f(p, a) are actually relevant (i.e., API a is actually
used by project p), the loss should be small; otherwise, the loss
should be large.

In this work, we focus on a ranking loss function of the
form L(y(a >p a′), f(a >p a′)), where f(a >p a′) quantifies
how likely API a is more relevant to project p than API a′, and
y(a >p a′) indicates whether a is actually more relevant to p
than a′ (i.e., y(a >p a′) = 1 if a >p a′, and y(a >p a′) = −1
otherwise). Accordingly, we can define the expected loss E over
all possible project-API combinations as:

E =
1

|P ||A|2
∑
p∈P

∑
a∈A

∑
a ′∈A

L(y(a >p a′), f(a >p a′))

By noticing that the training data D defined in (6) contains
only the API pairs (a, a′) such that y(a >p a′) = 1, and owing
to the totality and anti-symmetry properties of a sound ranking,
we can simplify the above formula as:

E =
1
|D|

∑
(p,a,a ′)∈D

L(1, f(a >p a′)) (8)

The above formulation by itself does not warrant a person-
alized total ordering. To achieve this, all three properties (i.e.,
totality, anti-symmetry, and transitivity) must be fulfilled. To
this end, we can define f(a >p a′) as:

f(a >p a′) = f(p, a) − f(p, a′) (9)

which leads to the following loss:

E =
1
|D|

∑
(p,a,a ′)∈D

L(1, f(p, a) − f(p, a′)) (10)

What then is a suitable choice for the loss function L(.)? In
this work, we choose to use the squared hinge loss L(y, x) =
max(0, y(1 − x))2 , yielding the following expected loss:

E = frac1|D|
∑

(p,a,a ′)∈D

max (0, 1 − (f(p, a) − f(p, a′)))2

(11)
Intuitively, the above loss means that no penalty will be given
to correct orderings (i.e., f(p, a) > f(p, a′)), and a quadratic
penalty to incorrect orderings (i.e., f(p, a) < f(p, a′)), depend-
ing on how far f(p, a) is apart from f(p, a′).

Quadratic penalty means that an incorrect ordering of APIs
will get penalized higher (as compared to linear penalty). In
other words, we are more stringent with incorrect ranking, which
in principle would lead to a more robust model. Computation-
ally, another merit of quadratic penalty is that we can compute
the second derivative (also called curvature) of the loss func-
tion. As such, we can use second-order optimization methods
(such as the Newton algorithm [14]) to train the model faster.
We further explain this in Section IV-D.

To mitigate overfitting to the training data, we also add an L2
regularization term to the loss E, which leads to the regularized
expected loss R:

R = E +
λ

2

J∑
j=1

θ2
j (12)

where λ > 0 is the (user-defined) regularization parameter. In-
tuitively, adding the L2 regularization term serves to penalize
large values of weight parameters θj , which will have the effect
of simplifying the ranking model and thus reducing the likeli-
hood of overfitting. As such, performing the minimization of E
with the regularization term will provide us the simplest model
that can fit the training data well.

It is also worth mentioning that the formulation of (12) can
be viewed as a variant of the ranking support vector machine
(RankSVM) [11]. The conventional RankSVM, however, uses
a linear hinge loss, which gives a less stringent linear penalty
to incorrect orderings. Taking the analogy to classification task,
it has been previously studied [13] that using the squared hinge
loss in SVM would yield better accuracy when λ is large. In this
case, underfitting would be less severe for the squared hinge loss,
as it gives higher penalty than the hinge loss. The same argument
applies to the ranking task, since RankSVM is ultimately equal
to performing a binary classification on the pairwise feature
differences Δxj = xj (p, a) − xj (p, a′) [11].

Finally, we note that the regularized loss R is sound from
the optimization viewpoint, as R is a strictly convex function.
This means that there is a unique optimal solution for θj , i.e.,
any local optimum found for θj will be the global optimum.
The reason is that the second derivative of R is always positive,
that is, the Hessian matrix is positive definite [1]. Thus, any
gradient-based training method can be applied to arrive at a
unique global optima. This constitutes another benefit of our
approach over the regularized (linear) hinge loss used by the
conventional RankSVM, which is not strictly convex.

D. Efficient Training

While the regularized loss R is strictly convex, the presence
of a large number of API pairs (a, a′) would impose a high
computational overhead. In particular, a naı̈ve computation of
R (as well as its derivatives) would have the time complexity
of O(ñ|D|2) per iteration, which is quadratic with respect to
the number of training triples (p, a, a′) in D. Here ñ refers to
the average number of nonzero features (i.e., xj (p, a) �= 0) per
training triple. To mitigate this, we adopt an efficient truncated
Newton method as described in [14]. The key idea is to first
rewrite the Hessian (i.e, second derivatives) of the loss function
in terms of matrix-vector product, and then exploit a special
structure in the Hessian matrix for which some elements can be
computed efficiently via an order-statistic tree [2]. With this, we
can bring the complexity down to O(ñ|D| + |D| log k), where
k is the number of relevance levels (k = 2 in our case, as we
deal with binary relevance, i.e., whether or not an API is used by
a project). Full details can be found in [14], and are not included
in this paper for brevity.

E. Ranking vs. Classification

Why should we use a ranking approach instead of classifi-
cation to address the recommendation problem? Indeed, one
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can use a classification method (e.g., binary SVM classifier)
to distinguish whether an API is relevant to a project or not.
However, such approach poses two main issues. First, the clas-
sification approach is built upon the premise that APIs that are
not used by a project constitutes the negative instances (i.e.,
will not be used by a project). Such assumption is inappropri-
ate for the API recommendation task. In contrast, our ranking
method assumes that such cases can either imply negative, or
unobserved (i.e., not yet explored in a project), instances. In this
case, the ranking approach models the preferability of APIs, i.e.,
if an API has been used by a project (i.e., positive instance), we
assume that the project prefers this API over all other negative
and/or unobserved APIs.

Second, from a computational standpoint, the classification
approach would suffer from the highly skewed distribution of
positive and negative instances. This is because only a handful
of APIs are actually used by a project (i.e., very few posi-
tive instances). In contrast, the ranking approach focuses on
the preferability of APIs which exhibits the reversal property
(i.e., if a >p a′, then a′ <p a). As mentioned, RankSVM is
equivalent to (binary) classification on a transformed feature
space Δxj = xj (p, a) − xj (p, a′). This leads to a transformed
dataset whereby the class distribution is (automatically) bal-
anced, which is easier to deal with.

V. FEATURE ENGINEERING

In this section, we define features xj (p, a) that we use to
train our personalized ranking model. We explore two groups
of features: project features and API features.

A. Project Features

To derive the project features, we first find the top-k projects
whose profiles are the most similar to the new project profile.
APIs used in these top-k projects are then used to calculate the
API scores given the new project. We describe these two steps
in the following subsections.

1) Finding Top-k Projects: In order to find the top-k
projects, we need to measure the similarities between many
projects. For two project profiles p1 and p2 , we measure either
the similarity of their textual descriptions or the similarity of
their keywords. The detailed steps are as follows:

i. Similarity of Textual Descriptions. To compute the simi-
larity between two textual descriptions, as mentioned in
Section III, we first convert each textual description to
a VSM feature vector and then compute the similarity
using cosine similarity between the two resultant feature
vectors. The cosine similarity score corresponding to p1
and p2 is denoted as SimT ext(p1 , p2).

ii. Similarity of Keywords. To compute the similarity be-
tween the keywords of p1 and p2 , which we denote as
SimKey(p1 , p2), we use the following formula:

SimKey(p1 , p2) =
|pKey

1 ∩ pKey
2 |√

|pKey
1 | × |pKey

2 |
(13)

TABLE III
FEATURE DEFINITION

Category Feature Definition

Project x1 C F T e x t (p ′, a, k) with k = 5.
x2 C F T e x t (p ′, a, k) with k = 10.
x3 C F T e x t (p ′, a, k) with k = 15.
x4 C F T e x t (p ′, a, k) with k = 20.
x5 C F T e x t (p ′, a, k) with k = 25.
x6 C F Key (p ′, a, k) with k = 5.
x7 C F Key (p ′, a, k) with k = 10.
x8 C F Key (p ′, a, k) with k = 15.
x9 C F Key (p ′, a, k) with k = 20.
x1 0 C F Key (p ′, a, k) with k = 25.

API x1 1 SimT e x t (p ′, a)
x1 2 SimKey (p ′, a)

where pKey
1 and pKey

2 corresponds to the set of keywords
of p1 and p2 respectively. Also, |pKey | denotes the number
of elements in the set pKey . The numerator of the equation
corresponds to the number of keywords that p1 and p2
have in common, while the denominator of the equation
normalizes the similarity so that its score ranges from zero
to one.

Notice that we separate descriptions and keywords so that
we can distinguish their importance. It may be the case that the
similarity of keywords is more important than the similarity of
descriptions (and vice versa).

2) Assigning Scores to APIs: After a list of the top-k projects
is obtained (based on the similarity of textual descriptions or
keywords), we analyze the set of APIs used in these projects.
If an API is used by many of these top-k projects, the API
is likely more suitable for the new project. Considering a new
project description p′ and project similarity measured in terms
of textual descriptions, we assign a textual description based
score to an API a as:

CFT ext(p′, a, k) =
|{p|p ∈ Nk (p′) ∧ y(p, a) = 1}|

k
(14)

where Nk (p′) denotes the top-k projects of p′, and y(p, a) indi-
cates whether API a is used by project p. The score CF (p′, a, k)
ranges from 0 to 1. The higher the score is, the more likely API
a is suitable for the new project description p′. Similarly, we can
measure project similarity in terms of keywords and compute
CFKey(p′, a, k).

We define our project features in terms of CF (p′, a, k). We
consider different numbers of nearest neighbors k and similarity
definitions (i.e., description or keyword). We list these features
in Table III. The intuition behind this set of project features
comes from the collaborative filtering concept, i.e., we are likely
to find suitable APIs for a project by looking at other projects
that are similar to it. The idea is that similar projects are likely
to share common APIs because they share similar functional-
ities. Compare the descriptions of web application projects in
Tables II and IV. Both project descriptions contain words such
as “music” and “world” and have a common keyword, i.e., “mu-
sic”. Note that the two projects share a common API namely
“Last.fm”.
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TABLE IV
ANOTHER SAMPLE WEB APPLICATION PROJECT PROFILE

Sound Shelter - An electronic music discovery engine

Long Description Sound Shelter is an electronic music discovery engine. We
listen to the opinions of the top taste makers from across the
planet to bring you the world’s best House, Techno, Disco,
Dubstep and Soul Jazz releases. Our powerful web
technology collects recommendations from music lovers all
over the world to give you the best new releases across all
electronic and soul jazz.

Keywords music, search, recommendations
APIs Last.fm, Discogs, Echo Nest, Spotify Metadata, Juno

Download

B. API Features

We compare profiles of different APIs with a new project
profile. For each API, we compute scores corresponding to the
similarity between the API profile and the new project pro-
file. For an API a and a new project p′, we either measure the
similarity of their textual descriptions or the similarity of their
keywords. We consider these two similarity measures as our
API features and list them in Table III. The detailed steps to
compute the similarity measures are as follows:

i. Similarity of Textual Descriptions. To compute a similar-
ity score between an API’s and a new project’s textual
descriptions, we convert these textual descriptions into
vectors of weights following similar steps when comput-
ing similarity of textual descriptions between two projects
in Section V-A1. We then compute the cosine similarity
between the API and the new project feature vectors. We
denote the cosine similarity between an API a and a new
project p′ as SimT ext(p′, a).

ii. Similarity of Keywords. To compute a similarity score
between the set of keywords for API a and the set of
keywords for the new project description p′, we follow
Equation 13. We denote the keywords similarity of an
API a and a new project p′ as SimKey (p′, a).

The rationale behind using similarity between a project and
an API as features is that a project profile should explain the
project functionality while an API profile should explain the
API functionality. Thus, an API that is more similar to a project
is likely to be more suitable for the project since they are likely
to share similar functionality. Consider the project profile in
Table II and the API profile in Table I, both the project and API
descriptions contain words such as “fm”, “music” and “artists”,
and share a common keyword, i.e., “music”. In this case, we can
say that the API is likely to be usable for the project.

VI. EXPERIMENTS

A. Dataset, Metrics, and Settings

Dataset: ProgrammableWeb’s site contains the profiles of
more than 17,000 APIs and more than 7,000 web application
projects. However, ProgrammableWeb specifies that a number
of APIs and projects are no longer offered by the providers.
ProgrammableWeb explicitly labels such APIs and projects as
deprecated. This allow us to delete corresponding APIs and

projects automatically. We delete these phased out APIs and
projects and focus on those that are available for use. After we
delete these phased out APIs, we are left with 9,883 APIs and
4,315 projects which we use for this study. The goal of our
experiment is to investigate whether WebAPIRec can return
correct APIs given the profile of a project. The ground truth
APIs of a project are the APIs that are specified in the project’s
page on the ProgrammableWeb’s site. Note that these APIs are
used by the project and thus prove to be useful APIs.

In our preliminary investigation on some projects in Pro-
grammableWeb, we notice that their textual descriptions some-
times explicitly mention the API names that are used by the
projects. We remove all mentions of these API names from the
project description. This is necessary to ensure that the descrip-
tion contains no mention about the correct APIs. The removal
process is fully automatic since the mentions of API names in
project textual descriptions are exact and thus removing them
simply requires us to perform a simple textual search and replace
procedure.

One may ask whether the ground truth obtained from Pro-
grammableWeb is reliable. Due to the large size of the dataset,
it is impossible for us to know whether all the ground truth
is valid. To mitigate this threat to the validity of our findings,
one of the authors have manually checked the correctness of
the ground truth for a random subset of 353 projects to achieve
statistically significant result at a confidence level of 95% and
margin of error of 5. We found that the ground truth is correct.
We consider a ground truth to be correct if used APIs func-
tionalities do not conflict with a projects description. Conflict
happens when we cannot find reasons on why an API would be
used by a project given its description. On the random subset,
we find that no such conflict occurs.

Evaluation Metrics: To evaluate our approach, we consider
several popular evaluation metrics Hit@N, Mean Average Pre-
cision (MAP), MAP@N, and Mean Reciprocal Rank (MRR).
These metrics have been used before in many previous stud-
ies [16], [22], [25], [26], [29], [33], [36], [42]. We elaborate
these metrics below:

1) Hit@N : This metric counts the percentage of ranked lists
produced when recommending APIs to projects, where at
least one correct API exists at the top N results. In this
work, we use N = 5 and 10.

2) Mean Average Precision (MAP): MAP is a popularly used
IR metric to evaluate the ranking results. It exhibits a
top-heaviness trait, putting higher penalties for incorrect
ordering at the top ranked APIs [16]. To compute MAP,
for each ranked list returned for a project, we first compute
the average precision (AP):

AP =
∑M

i=1 P (i) × rel(i)∑M
i=1 rel(i)

(15)

where M is the number of retrieved APIs, rel(i) is a
binary value that represents whether the ith retrieved API
is correct or not, and P (i) is the precision at position i of
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the ranked list. P (i) is defined as:

P (i) =
#Correct APIs at top i positions

i
(16)

In turn, MAP is the mean of the APs over all projects.
3) MAP@N : This is the same as MAP, except that we replace

M in equation (15) to N , where N 
 M . We use this
metric to account for limited attention bandwidth, i.e., a
developer can look only at a limited number (N ) of APIs.
In this work, we use N = 5 and 10.

4) Mean Reciprocal Rank (MRR): The reciprocal rank of a
ranked list is the inverse of the rank of the first correct
API in the ranked list. The mean reciprocal rank takes the
average of the reciprocal ranks of all ranked lists produced
when recommending APIs to projects. For a set of projects
P, MRR is defined as:

MRR =
1
|P |

P∑
i=1

1
ranki

(17)

where ranki is the rank of the first correct API.
Experiment Setting: We use 10-fold cross validation to eval-

uate our approach. That is, we first divide the projects into 10
mutually exclusive parts (i.e., folds), We then use 9 parts to train
the weight parameters of our personalized ranking model (i.e.,
training set), and use the remaining part to evaluate the perfor-
mance of our model (i.e., testing set). We repeat the process 10
times using 10 mutually exclusive testing sets. We aggregate the
performance across the 10 folds and report the average scores.
All experiments were conducted on an Intel(R) Xeon CPU E5-
2667 @2.90 GHz PC with Linux CentOS operating system. For
all experiments, we set the regularization parameter λ of our
ranking method to 1.

B. Baseline Methods

We use the following baselines to gauge our WebAPIRec
approach:

1) ProgrammableWeb Search Functionality. For this base-
line, we type the query in ProgrammableWeb search box
and check whether the recommended APIs match the APIs
that were actually used by the project. We consider three
variants of this baseline approach: the first variant only
uses the project description (PWT ext ), only uses the project
keywords (i.e., tags) (PWKey ), and both (PWText+Key ).
Note that we do not perform any preprocessing for Pro-
grammableWeb input since developers would also not do
so. Moreover, ProgrammableWeb might perform it inter-
nally.

2) ExemplarAPI : This is an adapted version of McMillan
et al.’s work [17]. They proposed Exemplar, a search en-
gine for relevant applications. In our work, we treat an API
as an application and search “relevant applications” using
project profile. To use Exemplar in our setting, we need
to remove its source code analysis component, since our
scenario only involves text as input. We note that many
APIs, including the web APIs considered in this work, do
not come with source code. After this treatment, Exemplar

TABLE V
TOP-50 APIS IN PROGRAMMABLEWEB

API Names

Google Maps, Twitter, YouTube, Twilio, Facebook, Amazon Product Advertising, Twilio
SMS, eBay, Last.fm, Microsoft Bing Maps, DocuSign Enterprise, Google App Engine,
foursquare, Google Homepage, Box, GeoNames, del.icio.us, Amazon S3, Shopping.com,
Amazon EC2, Concur, indeed, Instagram, Google AdSense, LinkedIn, Salesforce.com,
Freebase, Facebook Graph, Yelp, Spotify Metadata, Wikipedia, Google Earth, Bing,
Bit.ly, Yahoo BOSS, Google AJAX Libraries, Google Analytics, Google Geocoding,
Lyricsfly, Google Ajax Feeds, Google Translate, MusicBrainz, Panoramio, Bing Maps,
Oodle, SoundCloud, PayPal, Zillow, Google Calendar, Facebook Social Plugins

approach is equivalent to an approach that computes VSM
text similarity between project and API descriptions, and
uses the resultant similarity scores to rank APIs. Since
Exemplar code is not made publicly available, we reim-
plemented it based on the authors description in the paper.

3) PopRec: This is a popularity-based recommendation
baseline. We define popularity of an API as the num-
ber of times the API has been used on the list of projects
in the training data. Therefore, a more popular API will
have a higher rank in the recommendation list output by
PopRec. In this approach, the same list of APIs will
be recommended to each project in the evaluation data.
In other words, the recommendation is not personalized.
The top-50 popular APIs are shown in Table V.

For all baselines, we simulate how developers search APIs
as observed from the ProgrammableWeb interface. This makes
our baselines meaningful since it reflects real world scenario.
For all approach (including ours), if two APIs have the exact
ranking score, we randomly break the tie.

C. Key Results and Analysis

RQ1: How Effective is Our Approach in Recommending APIs
to Projects? We evaluate the extent our approach WebAPIRec
is effective to recommend APIs to projects. We compare our
approach with the baselines in Section VI-B. Evaluation is done
via a 10-fold cross validation procedure, and for each project, we
use WebAPIRec and the baselines to recommend APIs based
on the project profile.

Table VII illustrates the effectiveness of our approach in
comparison with the baselines. Our approach achieves Hit@5,
Hit@10, MAP@5, MAP@10, MAP, and MRR scores of
0.840, 0.880, 0.697, 0.687, 0.626, and 0.750, respectively.
Both MAP@5 and MAP@10 scores are lower than Hit@5 and
Hit@10 scores. This indicates that in the top-N, for most cases,
not all APIs are relevant, but at least one of them are. Based
on Hit@5 results, we find that for 84.0% of the projects, a cor-
rect API used to implement a project is among the top-5 APIs
returned by WebAPIRec. Clearly, WebAPIRec outperforms
the baselines that use ProgrammableWeb native search func-
tionality. Measured either by Hit@5, Hit@10, MAP or MRR,
WebAPIRec performs better than PWKey , which is the best per-
forming baseline from ProgrammableWeb. PWT ext+K ey , which
has the largest number of words among the ProgrammableWeb
baselines, performs the worst. In fact, we observe a consistent
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TABLE VI
EXAMPLE RECOMMENDATION

Yamusica

Long Description Yamusica brings you the latest information on live music
events, concerts and venues around the world. Find out
when your favorite artist is coming to a town near you!

Keywords Mapping, Events, Music, Tickets
APIs Google Maps, Last.fm, GeoNames, Spotify Echo Nest,

Bandsintown
Recommendations Bandsintown, Last.fm, Eventbrite, SeatGeek, Google Maps,

IP Location, StubHub, Facebook, Active.com, Seatwave,
OpenWeatherMap

TABLE VII
EFFECTIVENESS OF OUR APPROACH

Approach Hit@5 Hit@10 MAP@5 MAP@10 MAP MRR

PWText 0.005 0.005 0.004 0.004 0.004 0.004
PWKey 0.046 0.047 0.041 0.042 0.042 0.038
PWText+ Key 0.001 0.001 0.001 0.001 0.001 0.001
ExemplarAPI 0.184 0.236 0.113 0.114 0.096 0.147
PopRec 0.591 0.675 0.414 0.417 0.363 0.476
WebAPIRec 0.840 0.880 0.697 0.687 0.626 0.750

reduction in performance as number of words increases. We hy-
pothesize that ProgrammableWeb uses boolean and operation
in its search engine, thereby returning only APIs whose pro-
files contain all words in the query. Our manual investigation
suggests it is likely the case.
WebAPIRec also outperforms ExemplarAPI and

PopRec. The strongest baseline is PopRec, which achieves
Hit@5, Hit@10, MAP@5, MAP@10, MAP, and MRR scores
of 0.591, 0.675, 0.414, 0.417, and 0.476, respectively. We-
bAPIRec clearly improves significantly upon this baseline by
42.1% in terms of Hit@5.

We show an example recommendation from our approach in
Table VI. Here, we recommend APIs for Yamusica. Three of
our recommendations are correct: Bandsintown, Last.fm, and
Google Maps. The baselines can only recommend less than
3 correct APIs: ProgrammableWeb does not return any APIs;
PopRec can identify Google Maps because it is in the set of
top-10 APIs as shown in Table V. ExemplarAPI can correctly
recommends one API, i.e. Bandsintown, since its description
and keywords are the most similar with Yamusica.WebAPIRec
recommends the three APIs largely because they are used by
similar projects.

RQ2: What is the Contribution of Each Feature in Our Rank-
ing Model? We evaluate the contribution of each feature in our
approach. The goal is to know which features are more impor-
tant. To this end, we use the weight parameters θj in our model.
Features with higher weight values are considered to have higher
contributions and are thus more important. As we perform 10-
fold cross validation, we average the feature weights across 10
folds. This gives us the average contribution of each feature. We
then report these average weights to indicate which features are
the most important.

Table VIII shows the contribution of each feature to the ef-
fectiveness WebAPIRec. The most important feature based on

TABLE VIII
CONTRIBUTIONS OF INDIVIDUAL FEATURES

Feature Definition Weight

x1 C F Text (p ′, a, 5) 0.397
x2 C F Text (p ′, a, 10) 0.329
x3 C F Text (p ′, a, 15) 2.403
x4 C F Text (p ′, a, 20) 1.135
x5 C F Text (p ′, a, 25) 0.785
x6 C F Key (p ′, a, 5) −0.058
x7 C F Key (p ′, a, 10) 0.425
x8 C F Key (p ′, a, 15) 0.963
x9 C F Key (p ′, a, 20) 0.677
x1 0 C F Key (p ′, a, 25) 0.459
x1 1 SimText (p ′, a) 0.600
x1 2 SimKey (p ′, a) 0.497

TABLE IX
VARYING TRAINING SIZE

Size Hit@5 Hit@10 MAP@5 MAP@10 MAP MRR

10% 0.756 0.818 0.618 0.610 0.540 0.673
20% 0.782 0.821 0.646 0.638 0.574 0.696
30% 0.802 0.842 0.662 0.653 0.588 0.713
40% 0.820 0.855 0.672 0.662 0.600 0.725
50% 0.831 0.865 0.680 0.671 0.608 0.734
60% 0.834 0.872 0.685 0.676 0.614 0.739
70% 0.835 0.876 0.688 0.679 0.617 0.741
80% 0.836 0.879 0.694 0.684 0.623 0.746
90% 0.840 0.880 0.697 0.687 0.626 0.750

our model weights is feature x3 , which is our project feature
that considers top-15 most similar projects in terms of their de-
scriptions. It suggests that 15 nearest neighbors is the optimal
number of neighbors. Using too few neighbors may hurt recom-
mendation accuracy as pertinent information from other useful
neighbors may be missed. On the other hand, using too many
neighbors may increase noise since irrelevant neighbors may be
included. Our model gives less weights for features extracted
from too few neighbors (e.g., x2) or too many neighbors (e.g.,
x4). Similar observation is reflected from the weights of fea-
tures x6-x10 , which measure keyword similarities. We observe
that the highest weight is also given to the feature represent-
ing top-15 most similar projects (i.e., x8) and less weights are
given to features that are extracted from either too few neigh-
bors (e.g., x7) or too many neighbors (e.g., x9). Meanwhile, we
observe that the API features give moderate contribution to the
performance of WebAPIRec.

RQ3: What is the Impact of Training Size to the Effectiveness
of Our Approach? We investigate the effect of training size to
the effectiveness of our approach. To this end, we keep the same
10% of data as our testing set, but use different percentages
of data as training set: 10%, 20%, 30%, . . ., 80%. By keeping
the same set of evaluation data, we ensure that the impact of
training size is comparable. For each percentage of training
data, we report the average performance.

Table IX shows the effectiveness of WebAPIRec when we
vary the training size. We notice that the performance of our ap-
proach increases as the size of the training data increases. More-
over, the improvement direction is always consistent among
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TABLE X
COMPUTATIONAL TIME OF WebAPIRec

Phase Average Time

Training 179.7 seconds
Deployment 0.0013 seconds

different evaluation measures, meaning that the performance
never drops as we increase the training size. Moreover, even
when the size of the training data is only 10%, we can still
successfully recommend correct APIs in the top-5 positions for
75.6% of the projects.

RQ4: How Efficient is Our Approach During Its Training and
Deployment Phases? The efficiency of WebAPIRec affects its
practical use. Thus, we investigate the time it takes for We-
bAPIRec to learn its weights from training data and the time
it takes to recommend APIs to a project. Firstly, to measure
training efficiency, we log the training time for each CV fold
and report the averaged (training) time over 10 folds. Secondly,
we measure recommendation efficiency by computing the total
time required to predict on the 10 testing sets, and dividing it
with 10 times the total number of projects.

Table X shows the consolidated results. On average, We-
bAPIRec only needs about three minutes to train a model, and
0.0013 seconds to recommend a list of APIs to a project. In
practice, training only needs to be performed once or occasion-
ally (when the training data changes significantly). The results
show that WebAPIRec is efficient.

D. Threats to Validity

Threats to Internal Validity: It relates to experimental er-
rors and biases. We have double-checked the correctness of our
codes. Still, there could be bugs that we miss. Also, some APIs
and projects in ProgrammableWeb are no longer in service. As
mentioned in Section VI-A, we have cleaned our dataset by re-
moving these APIs and projects. We have also removed explicit
mentions of API names from project descriptions. Another po-
tential threat is related to project descriptions itself. The descrip-
tions are likely written post-implementation and thus may not
reflect pre-implementation descriptions. Unfortunately, there is
no public dataset containing pre-implementation descriptions
and used APIs. However, ProgrammableWeb descriptions are
typically brief whereas requirement documents (i.e., examples
of pre-implementation descriptions) are much more detailed and
thus are expected to lead to better performance (i.e., due to richer
information).

Threats to External Validity: It relates to the generalizabil-
ity of our results. We have evaluated our method on a dataset
comprising 9,883 APIs and 4,315 projects. We believe these are
sufficiently large numbers of APIs and projects. Still, all APIs
and projects come from ProgrammableWeb. In the future, we
plan to mitigate the threats to external validity further by investi-
gating additional APIs and projects. Note that our approach can
potentially be used for non-web APIs, provided that the same
set of information exists. We plan to explore how our approach
works for non-web APIs in the future.

Threats to Construct Validity: It relates to the suitability of our
evaluation metrics. In this work, we have used Hit@N, MAP (as
well as MAP@N ), and MRR, which have been well-established
in IR community and many past software engineering stud-
ies [22], [25], [26], [29], [33], [36], [42]. Thus we believe there
is little threat to construct validity.

VII. RELATED WORK

Studies on Method Recommendation: Thummalapenta and
Xie [31] proposed an approach to recommend code snippet.
Their approach queries a code search engine (i.e., Google Code)
to return code examples. These examples are then used to infer
a sequence of method invocations for converting an object from
one type to another. Robbes and Lanza [23] proposed a tech-
nique that improves code auto-completion by using recorded
program history. Hindle et al. [10] investigated the “natural-
ness” of software, and proposed a code auto-completion feature
by building a statistical language model. Kawaguchi et al. [12]
and Lee et al. [15] developed tools that are able to detect code
clone in real time. These tools can also potentially be used for
code auto-completion.

Chan et al. [7] proposed an approach to recommend API
methods given textual phrases. Their approach was extended
by Thung et al. [33], who recommend API methods given a
feature request. Chan et al.’s approach requires precise textual
queries, whereas Thung et al.’s approach is more robust to noisy
textual queries. Robillard et al. [24] developed Suade, which
takes as input a set of program elements and outputs another
set of program elements that would likely be interesting to the
developers. Different from the above studies, in this work we
do not recommend API methods; rather, we recommend the
APIs. Our work is thus complementary with the above studies.
Developers can first use our approach to infer the web APIs
relevant to a project, and then adapt some of the tools in the
above studies to recommend relevant methods from the APIs.

Studies on API Recommendation: Teyton et al. [30] proposed
an approach that creates a library migration graph by analyzing
library migrations performed by a large number of projects. This
graph can be used to help developers decide appropriate libraries
to migrate to. Teyton et al.’s work and our work have different
yet complementary goals: recommending libraries to migrate
old libraries of existing projects vs. recommending libraries to
new projects. Thung et al. [32] devised an approach that takes
as input APIs that a project uses and recommends additional
relevant APIs. Different from the current work, this approach
does not take as input the profile of a new project. Instead, it
requires developers to input APIs that are used by an existing
project. It does not employ any text mining solution, since no
text data is involved. In contrast, WebAPIRec employs text
mining and does not require information about APIs that are
or will be used in a project. WebAPIRec can thus be used in
the initial development stage, when only the requirement of a
project is known. Also, our work complements the work in [32],
as developers can pick suitable APIs from our recommendation
and put these APIs as input to the method in [32] to get additional
recommendations.
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Studies on ProgrammableWeb Dataset: There exist a num-
ber of studies on the ProgrammableWeb dataset [9], [37], [41].
These studies tried to characterize the structure and evolution
of various networks created from the APIs and projects that are
listed on ProgrammableWeb. Various network properties such
as power-law, long-tail, small-world, etc. were investigated in
these studies. For example, a recent work by Han et al. [9]
analyzed whether or not networks created from APIs, projects
and their tags in ProgrammableWeb have power-law properties.
Different from the above studies, we are interested in recom-
mending APIs on ProgrammableWeb.

Studies on Text Mining for Recommending Developer Ac-
tions: Almhana et al. propose to use multi objective optimization
algorithm for bug localization [3]. They define two optimization
objectives for bug localization. The first one is maximizing both
lexical and historical similarities and the second one is minimiz-
ing the number of recommended classes. Ye et al. have defined
6 similarity functions between bug reports and source codes that
encode project domain knowledge [40]. These similarities are
input to their learning to rank approach. Given a new bug report,
their approach ranks source code files in order of likelihood of
them being the source of bug. Tian et al. use learning to rank
approach to recommend developers for fixing issues described
in bug reports [34]. Yang et al. combine word embedding and
traditional information retrieval approach to recommend similar
bug reports [39]. Xia et al. combine bug report and developer
based analysis to recommend developers that should be assigned
to a bug report [38].

VIII. CONCLUSION AND FUTURE WORK

We have proposed WebAPIRec, a recommendation system
that takes as input a new project profile and recommends web
APIs that are potentially relevant to the project. We have eval-
uated our approach on 9,883 web APIs and 4,315 projects
in ProgrammableWeb. WebAPIRec achieves Hit@5, Hit@10,
MAP@5, MAP@10, MAP, and MRR of 0.840, 0.880, 0.697,
0.687, 0.626, and 0.750, respectively. WebAPIRec can thus
successfully recommend correct web APIs in top-5 positions
for 84.0% of the projects. We have compared WebAPIRec Pro-
grammableWeb’s native search functionality, McMillan et al.’s
application search engine [17], and popularity-based recom-
mendation. WebAPIRec always produce superior results.

As future work, we plan to analyze more APIs and
more projects from additional data sources beyond Pro-
grammableWeb. We also plan to consider context information
to improve our approach (e.g., a word “developer” could mean
either a real estate developer or a software developer). The con-
text of a word can often be inferred from words appearing before
or after the target word. To consider context information, we
plan to employ deep learning (e.g., Word2Vec [18] ). Moreover,
textual information from project profile in ProgrammableWeb
may not contain all technical details and this may be a factor
contributing to some inaccurate recommendations in our
experiments. We plan to address this limitation by enriching
descriptions of web APIs with information from other sources,
e.g., online forums and Twitter feeds where users of web APIs
share their experience and queries, and developers provide

additional technical information to respond to user queries. We
also wish to extend our study to not only recommend APIs, but
also suitable resources to help developers get started with the
APIs. Last but not least, we wish to develop an approach that
can provide rationales for recommended APIs (e.g., explaining
why an API can be used for a given project).
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