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• This paper focused on solving the problems in existing cloud storage systems with secure provenance.
• The proposed storage system with secure provenance in this paper protects data privacy, allows fine-grained access control, enables dynamic user

management, supports data provider anonymity and traceability, and provides secure data provenance.
• This paper defined the formal security model and analysed the security for the proposed storage system.
• This paper conducted experiments on the proposed storage system to evaluate its performance.
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a b s t r a c t

To securely and conveniently enjoy the benefits of cloud storage, it is desirable to design a cloud data
storage systemwhich protects data privacy from storage servers through encryption, allows fine-grained
access control such that data providers can expressively specify who are eligible to access the encrypted
data, enables dynamic user management such that the total number of data users is unbounded and
user revocation can be carried out conveniently, supports data provider anonymity and traceability
such that a data provider’s identity is not disclosed to data users in normal circumstances but can be
traced by a trusted authority if necessary, and equally important, provides secure data provenance by
presenting irrefutable evidence on who has created and modified the data in the cloud. However, most
of the existing cloud storage systems with secure provenance either lack the expressiveness in access
control or incur too much performance overhead or do not support dynamic user management. In this
paper, we solve these problems by presenting an attribute-based cloud storage system with secure
provenance. We first give a simple construction without achieving user revocation, and then extend it
with an efficient revocationmechanism toprevent revokeddata users fromaccessing thenewly encrypted
data. Thereafter, we implement the algorithms in the proposed two constructions to evaluate their
performance. Our experimental results show that the proposed systems are acceptable to be applied in
practice.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Due to the exponential growth of data, outsourcing data to the
cloud is becoming increasingly attractive to both individuals and
enterprises. However, the public cloud infrastructure introduces
significant security and privacy risks since the cloud is outside
the trust domain of data providers. A promising solution for the
protection of data security and privacy in cloud storage systems is
to ask data providers to encrypt their data and upload the resulting
ciphertexts to the cloud. One challenge in the design of such a
cloud storage system is how to enable fine-grained access control

* Corresponding author at: School of Science, RMIT University, Melbourne, Aus-
tralia.

E-mail address: hui.cui@rmit.edu.au (H. Cui).

of encrypted data over data users. Consider a scenario where a
company stores its encrypted data to the cloud and entitles its
employees different attributes (or credentials) to decrypt data
from the cloud or upload encrypted data to the cloud. Since there
may be a group of employees in the company that are authorized
to access the same data, in addition to fine-grained access control,
it is also important to track who executes which type of operations
to the encrypted data in the cloud. In general, to securely and
conveniently enjoy the benefits of cloud storage, it is desirable to
build a cloud storage system which has the following properties.

1. Data privacy to protect the confidentiality of the outsourced
data such that the cloud cannot learn any information about
the real data stored in the cloud;

https://doi.org/10.1016/j.future.2017.10.010
0167-739X/© 2017 Elsevier B.V. All rights reserved.
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2. Fine-grained access control such that data providers can spec-
ify who are able to access the encrypted data in an expres-
sive manner;

3. Scalability to make the storage space independent of the
number of data users, i.e., the size of each ciphertext does
not grow linearly to the number of its privileged data users;

4. Dynamic user management to enable unbounded number of
data users in the system and revocation of data users;

5. Data provider anonymity and traceability such that it pre-
serves data provider anonymity in normal circumstances
while keeping his/her identity traceable by a trusted author-
ity in case that the data provider misbehaves;

6. Secure data provenance to provide irrefutable evidence on
who creates and modifies data in the cloud storage system.

To our knowledge, several cloud storage systems with secure
provenance (e.g., [1–3]) have been proposed, but they all have
certain drawbacks. The system in [1] is built from the composite-
order groups, which is too inefficient [4] to be applied in practice.
The systems in [1,2] can only support a simple access policy with
one attribute, and the maximum number of data users allowed in
the instantiation of [2] must be predefined, which is not favorable
for the scalable environment of cloud computing. The system in [3]
assumes that the cloud is honest such that it does not collude
with data users and there is a secure channel between the cloud
and data providers/data users, which is a too strong assumption to
be practical. In this paper, we overcome the disadvantages of the
existing solutions by presenting an attribute-based cloud storage
system with secure provenance.

1.1. Challenges and our contributions

In a traditional public-key encryption (PKE) scheme, each ci-
phertext is targeted for decryption by a single data user, and thus
it lacks the expressiveness and scalability needed for the data
sharing. To address this problem, Sahai and Waters [5] introduced
attribute-based encryption (ABE), where each data user is issued
a private attribute key associated with a set of attributes belong-
ing to him/her by a trusted attribute authority (AA), and a data
provider can specify an access policy (or access structure) over a
set of attributes when encrypting data. Any data user whose set of
attributes satisfies the access policy associated with a ciphertext is
able to decrypt this ciphertext using his/her private attribute key.
Therefore, ABE provides a one-to-many encryption scheme with
ability to perform data encryption and decryption defined over
certain descriptive attributes, and the required space for storing
ciphertexts is independent of the number of data users.

In the proposed attribute-based cloud storage system with se-
cure provenance, we will use the large universe ciphertext-policy
ABE (CP-ABE) scheme [6] which puts no limit on the number of
attributes as well as the number of data users and is built in the
prime-order groups. Due to the one-to-many encryption property
of the underlying CP-ABE scheme, the size of each ciphertext in the
proposed storage system depends on the access policy rather than
the number of data users.We then equip this large universe CP-ABE
scheme in [6] with an efficient revocation mechanism following
the revocation technique proposed in [7] such that the revoked
data users are not able to access the newly encrypted data stored
in the cloud storage system.

It remains to overcome the challenge of secure data provenance,
which requires to provide irrefutable and unforgeable evidence on
who creates and modifies the data in the cloud storage system.
With the goal of equipping the proposed storage system with
such a capability, each data provider/user who creates, modifies
or writes to the data, in addition to encrypting the data, also
generates a ‘‘tricky’’ signature on the ciphertext which does not

reveal his/her identity. The cloud accepts an uploaded ciphertext
only if the signature on the ciphertext is a valid one. Also, the
system administrator (SA) in the proposed system who de facto
plays the role of the AA in a CP-ABE scheme keeps a ‘‘trapdoor’’
on each data provider/user when issuing the private attribute key.
The trapdoor in essence links the identity of a data provider/user
to his/her private attribute key and plays the rule that one stone
kills two birds. First, the signature on a ciphertext is generated by a
data provider using his/her private attribute key, and the trapdoor
can be used by the SA to trace who have uploaded a ciphertext
by tracking the identity of the signer from the appended signature
to the ciphertext. Second, private attribute keys in a standard CP-
ABE scheme are anonymous since they are defined over attributes
shared by multiple data users, so the keys might be abused by
malicious data users who can share their private attribute keys
with others without having the risk of being caught, but a data
user’s trapdoor links his/her identitywith the private attribute key,
making the data user reluctant to share his/her private key with
others.

The main contributions of this paper can be summarized as
follows.

• We present a framework of an attributed-based cloud stor-
age system with secure provenance, and formally define its
security;
• We propose a concrete construction on attribute-based

cloud storage with secure provenance, which is built from
bilinear pairings in the prime-order groups, and provides
data privacy, fine-grained access control, scalability, dy-
namic user management, and data provider anonymity and
traceability;
• We implement the proposed storage system and conduct

experiments to evaluate its performance.

1.2. Related work

Attribute-Based Encryption. Sahai and Waters [5] introduced
the notion of ABE, and Goyal et al. [8] formulated key-policy ABE
(KP-ABE) and CP-ABE as two complimentary forms of ABE. In CP-
ABE, a private attribute key is associatedwith a set of attributes and
a ciphertext is associated with an access policy, while the situation
is reversed in KP-ABE. Nevertheless, we believe that KP-ABE is less
flexible than CP-ABE because the access policy is determined once
a user’s private attribute key is issued.1 Bethencourt, Sahai and
Waters [9] proposed the first CP-ABE construction, but it is secure
under the generic group model. Cheung and Newport [10] pre-
sented a CP-ABE scheme secure under the standard model, but it
only supports the AND access structures. A CP-ABE systemwith ex-
pressive access structures was proposed by Goyal et al. [11] based
on the number theoretic assumption. Rouselakis and Waters [6]
built a large universe CP-ABE system in the prime-order groups to
improve the efficiency of ABE in the composite-order groups while
overcoming the limitation of bounded attribute space.

Secure Provenance. With the goal of guaranteeing data au-
thenticity, cloud storage systems with secure provenance were
proposed in [1–3,12]. Hasan, Sion and Winslett [12] first con-
sidered the security and privacy issues of a provenance system,
but they did not present any detail on how to build a secure
provenance system. Lu et al. [1] proposed a provenance system
which efficiently achieves user privacy and data confidentiality
using group signature, but it is built in the inefficient composite-
order groups, and it does not support expressive access control. On
the basis of the work in [1], Chow et al. [2] built an efficient and

1 In this paper, unless otherwise specified, what we talk about is CP-ABE.
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secure cloud storage system which supports dynamic users and
data provenance, but it only supports simple one-attribute access
policies, and the number of data users allowed for the system
is bounded. Li et al. [3] proposed a provenance system based
on techniques of group signature, attribute-based signature and
broadcast encryption, which supports fine-grained access control
policies, but it assumes that the cloud is honest in the sense that
it does not collude with data users and it has secure channels with
data providers/users.

1.3. Organization

The remainder of this paper is organized as follows. In Section 2,
we briefly review the notions and definitions relevant to this paper.
In Section 3, after depicting the architecture of an attribute-based
cloud storage systemwith secure provenance, we present its secu-
rity model. In Section 4, we give a concrete attribute-based storage
schemewith secure provenance, and analyze its security, and then
compare it with related systems in the literature qualitatively as
well as quantitatively through computer simulations.We conclude
the paper in Section 5.

2. Preliminaries

In this section, we review some basic cryptographic notions and
definitions to be used in this paper.

2.1. Bilinear pairings and complexity assumptions

Let G be a group of a prime order p with a generator g . We
define ê: G× G→ G1 to be a bilinear map if it is bilinear such that
for all g ∈ G, and a, b ∈ Zp, we have ê(ga, gb) = ê(g, g)ab, and
non-degenerate such that ê(g, g) ̸= 1 [13,14]. We say that G is a
bilinear group if the group operation in G is efficiently computable
and there exists a group G1 and an efficiently computable bilinear
map ê: G× G→ G1 as above.

Decisional (q−1) Assumption [6]. The decisional (q−1) prob-
lem is that for any probabilistic polynomial-time (PPT) algorithm,
given−→y =

g, g s,

gai , gbj , g s·bj , gaibj , gai/b2j ∀ (i, j) ∈ [q, q],
gai/bj ∀ (i, j) ∈ [2q, q]with i ̸= q+ 1,

gaibj/b2j′ ∀ (i, j, j′) ∈ [2q, q, q]with j ̸= j′,

g saibj/bj′ , g saibj/b2j′ ∀ (i, j, j′) ∈ [q, q, q]with j ̸= j′,

it is difficult to distinguish (−→y , ê(g, g)a
q+1s) from (−→y , Z), where

g ∈ G, Z ∈ G1, a, s, b1, . . ., bq ∈ Zp are randomly chosen.

2.2. Access structures and linear secret sharing schemes

Definition 1 (Access Structures [15,16]). Let {P1, . . ., Pn} be a set of
parties. A collection A ⊆ 2{P1,...,Pn} is monotone if ∀B, C: if B ∈ A
and B ⊆ C , then C ⊆ A. An (monotone) access structure is a
(monotone) collectionA of non-empty subsets of {P1, . . ., Pn}, i.e.,A
⊆ 2{P1,...,Pn} \ {∅}. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret Sharing Schemes (LSSSs) [15,16]). Let P
be a set of parties. Let M be a matrix of size l × n. Let ρ: {1, . . ., l}
→ P be a function that maps a row to a party for labeling. A secret
sharing scheme Π over a set of parties P is a linear secret-sharing
scheme over Zp if

1. The shares for each party form a vector over Zp.

2. There exists a matrix M which has l rows and n columns
called the share-generating matrix for Π . For i = 1, . . ., l,
the xth row of matrix M is labeled by a party ρ(i), where ρ:
{1, . . ., l}→ P is a function that maps a row to a party for
labeling. Considering that the column vector v = (µ, r2, . . .,
rn), whereµ ∈ Zp is the secret to be shared and r2, . . ., rn ∈ Zp
are randomly chosen, thenMv is the vector of l shares of the
secret µ according to Π . The share (Mv)i belongs to a party
ρ(i).

Every LSSS also enjoys the linear reconstruction property [15].
Suppose that Π is an LSSS for access structure A. Let A be an
authorized set, and define I ⊆ {1, . . ., l} as I = {i|ρ(i) ∈ A}. Then
the vector (1, 0, . . ., 0) is in the span of rows of matrix M indexed
by I , and there exist constants {wi ∈ Zp}i∈I such that, for any valid
shares {vi} of a secret µ according to Π , we have

∑
i∈Iwivi = µ.

These constants {wi} can be found in polynomial timewith respect
to the size of the share-generating matrixM [17].

Boolean Formulas [15]. Access policies can also be described in
terms of monotonic boolean formulas. LSSS access structures are
more general, and can be derived from representations as boolean
formulas. There are standard techniques to convert anymonotonic
boolean formula into a corresponding LSSS matrix. The boolean
formula can be represented as an access tree, where the interior
nodes are AND and OR gates, and the leaf nodes correspond to
attributes. The number of rows in the corresponding LSSS matrix
will be the same as the number of leaf nodes in the access tree.

2.3. Signature-of-knowledge

In a zero-knowledge proof protocol [18], the verifier is con-
vinced that the prover knows a certain quantity w satisfying some
kinds of relation Rwith respect to a commonly known string x. That
is, the prover convinces the verifier that he knows some w such
that (w, x) ∈ R. If a proof-of-knowledge protocol can be done in
such a way that the verifier learns nothing other that the validity
of the statement, this protocol is called a zero-knowledge Proof of
Knowledge (PoK) protocol [18].

A PoK protocol for a binary relation R is a 3-round ZKPoK
protocol between two parties, namely, a prover P and a verifier V.
For every input (w, x) ∈ R to P and x to V, the first round of the
protocol consists of P sending a commitment t to V. V then replies
with a challenge c in the second round and P concludes by sending
a response z in the last round. At the end of the protocol, V outputs
1 meaning ‘‘accept’’ or 0 meaning ‘‘reject’’. We say that a protocol
transcript (t , c , z) is valid if the output of an honest verifier V is
accept, which is also know as the completeness property. A PoK
protocol has to satisfy the following two properties.

• Soundness. A cheating prover can at most answer one of
the many possible challenges. Specifically, there exists an
efficient algorithm KE, called knowledge extractor, that on
input x, a pair of valid transcripts (t , c , z) and (t , c ′, z ′) with
c ̸= c ′, outputs w such that (w, x) ∈ R.
• Zero-Knowledge. There exists an efficient algorithm KS,

called zero-knowledge simulator, that on input x and a
challenge c , outputs a pair (t , z) such that (t , c , z) is a valid
transcript having the same distribution as a real protocol
transcript resulted from the interaction between a prover P
with input (w, x) ∈ R and an honest verifier V.

Any PoK protocol can be turned into non-interactive form,
which is called Signature of Knowledge (SoK) [19], by setting the
challenge to the hash value of the commitment together with the
message to be signed [20].
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Fig. 1. Architecture of attribute-based cloud storage with secure provenance.

3. System architecture and security model

In this section, we describe the system architecture and formal
security definition of an attribute-based cloud storage systemwith
secure provenance.

3.1. System architecture

As shown in Fig. 1, the architecture of the proposed attribute-
based cloud storage system with secure provenance involves four
types of entities: data providers, system administrator (SA), cloud
and data users. The SA, who generates a master private key and
publishes the corresponding public parameter, issues every data
provider/user a private attribute key which is associated with
his/her attributes and identification information, and keeps a list
of identities and trapdoors of all registered data providers/users. A
data provider/user may be authorized to read, write to or modify
the data. When sending a storage request, a data provider/user
encrypts the document under an access policy over a set of at-
tributes, and subtly signs the encrypted document using his/her
private attribute key without leaking his/her identity information.
To read the encrypted data, a data provider/user decrypts the
ciphertext using his/her private attribute key if his/her attributes
satisfy the access policy associated with the ciphertext. If the
data provider/user intends to write to or modify the data, after
processing the data, he/she creates a ciphertext and attaches a
signature to the ciphertext. The cloud checks the validity of the
signature without learning the signer’s identity, and accepts the
storage request if the signature is a valid one. In the event that a
ciphertext stored in the cloud is involved in a dispute, the SA can
trace who creates the ciphertext based on the signature associated
with the ciphertext and the list of identities and trapdoors the SA
keeps.

Concerning the adversarial model, we assume that the cloud is
‘‘curious-but-honest’’ in the sense that it may attempt to obtain
the underlying plaintexts of the encrypted data but it honestly
follows the specified system operations such as store and check.
We assume that data users may try to access data beyond their
authorized privileges.

3.2. Framework

An attribute-based cloud storage system with secure prove-
nance consists of the following algorithms.

• Setup(1λ) → (pars, msk). Taking the security parameter λ

as the input, this algorithm, run by the SA, outputs the
public parameter pars and the master private key msk for
the system.

• KeyGen(pars, msk, ID, A)→ skIDA . Taking the public param-
eter pars, the master private key msk, an identity ID and an
attribute set A as the input, this algorithm, run by the SA,
outputs a private attribute key skIDA over the attribute set
A for user ID, and adds ID and its tracing trapdoor2 to an
initially empty user list ul.
• Encrypt(pars,M , (M, ρ))→ CT. Taking the public parameter

pars, a message M and an access structure (M, ρ) (here ρ is
a function that associates the rows of M) over the universe
of attributes as the input, this algorithm, run by the data
provider or the user who has access to the encrypted data,
outputs a ciphertext CT.
• Sign(pars, ID, skIDA , CT) → σ . Taking the public parameter

pars, an identity ID, a private key skIDA and a ciphertext CT
as the input, this algorithm, run by the data provider/user
who has access to the encrypted data, outputs a signature
σ .
• Decrypt(pars, CT, skIDA )→M/⊥. Taking the public parameter

pars, a ciphertext CT and an private attribute key skIDA asso-
ciated to an attribute set A and an identity ID as the input,
this algorithm, run by the user, outputs either the message
M when the private key skAID satisfies the access structure,
or a symbol⊥ indicating the failure of the decryption.
• Verify(pars, CT, σ )→ 1/0. Taking the public parameter pars,

a ciphertext CT and a signatureσ as the input, this algorithm,
run by the cloud, outputs 1 if σ is a valid signature for CT or
0 otherwise.
• SignTrace(pars, σ , ul)→ ID/⊥. Taking the public parameter

pars, a signature σ and a user list ul as input, this algorithm,
run by the SA, outputs an identity ID of the signer or ⊥
otherwise.

We require that an attribute-based cloud storage system with
secure provenance is correct, meaning that for all messages M
and all access structures (M, ρ) with authorized attribute sets
A, if (pars, msk) ← Setup(1λ), skIDA ← KeyGen(pars, msk, ID, A),
CT ← Encrypt(pars, M , (M, ρ)), σ ← Sign(pars, ID, skIDA , CT),
then Decrypt(pars, CT, A, skIDA ) = M , and Verify(pars, CT, σ )→ 1,
SignTrace(pars, σ , ul)→ ID.

3.3. Security definitions

An attribute-based cloud storage system with secure prove-
nance should ensure confidentiality, anonymity, unforgeability
and traceability, of which the latter two are combined into one
game.

Confidentiality. Assuming that the adversary makes the key
generation queries adaptively, we define the confidentiality for
attribute-based cloud storage with secure provenance by the fol-
lowing game between a challenger algorithm C and an adversary
algorithm A, based on the security model of indistinguishability
under chosen-plaintext attacks (IND-CPA) for ciphertext-policy
attribute-based encryption (CP-ABE) [16].

• Setup. Algorithm C runs the setup algorithm. Algorithm C
gives the public parameter pars to algorithm A, and keeps
the master private keymsk.
• Phase 1. Algorithm A issues key generation queries to al-

gorithm C. Algorithm A sends pairs (Ai, IDi) to algorithm C,
where Ai is an attribute set of user IDi. Algorithm C responds
by returning the corresponding private attribute key skIDi

Ai
to

algorithm A.

2 Note that the generation of skIDA involves a tracing trapdoor for user ID.
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• Challenge. Algorithm A chooses two messages M∗0 and M∗1
and an access structure (M∗, ρ∗) with the constraint that the
key generation queries {skIDi

Ai
} in Phase 1 do not satisfy the

access structure (M∗, ρ∗). Algorithm C chooses a random bit
β ∈ {0, 1}, and sends algorithmA a challenge ciphertext CT∗
which is an encryption of M∗β under the access matrix (M∗,
ρ∗).
• Phase 2. Algorithm A continues issuing the key generation

queries with the constraint that the key generation queries
{skIDi

Ai
} do not satisfy the access structure (M∗, ρ∗) in the

challenge phase.
• Guess. Algorithm A makes a guess β ′ for β , and it wins the

game if β ′ = β .

Algorithm A’s advantage in this game is defined as Pr[β =
β ′] − 1/2. We say that an attribute-based cloud storage system
with secure provenance is secure under IND-CPA model if all PPT
adversaries have at most a negligible advantage in the security
parameter λ. In addition, an attribute-based cloud storage system
with secure provenance is said to be selectively secure under the
IND-CPA model if an Init stage is added before the Setup phase
where algorithmA commits to the challenge access structure (M∗,
ρ∗).

Anonymity. Anonymity prevents an adversary from distin-
guishing the signer’s identity of a signature. In the anonymity
game, the adversary is given the public parameters, as well as the
access to the key generation and signing oracles, and its goal is
to guess which of two identities generates the signature in the
challenge phase, without being given either of the private keys.We
define the anonymity game between a challenger algorithm C and
an adversary algorithm A as follows.

• Setup. Algorithm C runs the setup algorithm, gives the public
parameter pars to algorithmA and keeps themaster private
keymsk.
• Phase 1. Algorithm A makes the following queries to algo-

rithm C.

– The key generation query. Algorithm A sends pairs
(Ai, IDi) to algorithm C, where Ai is an attribute set
of user IDi. Algorithm C responds by returning the
corresponding private key skIDi

Ai
to algorithm A.

– The signing query. Algorithm A sends (IDi, CTi) to
algorithm C. Algorithm C responds by returning the
corresponding signature to algorithm A.

• Challenge. Algorithm A chooses a ciphertext CT∗ and two
identities ID∗0, ID

∗

1 with the constraint that there are no key
generation queries {skIDi

Ai
} in Phase 1 on ID∗i for i ∈ {0, 1}.

The challenger chooses a random bit β ∈ {0, 1}, and sends
algorithm A a challenge signature σ ∗, a signature on CT∗
under ID∗β .
• Phase 2. Algorithm A continues issuing the key generation

and signing queries as follows.

1. The key generation query. The same as in Phase 1
except that the key generation queries {skIDi

Ai
} on ID∗0

and ID∗1 are disallowed.
2. The signing query. The same as in Phase 1.

• Guess. Algorithm A makes a guess β ′ for β , and it wins the
game if β ′ = β .

Algorithm A’s advantage in this game is defined as Pr[β =
β ′] − 1/2. We say that an attribute-based cloud storage system
with secure provenance is anonymous if all PPT adversaries have
at most a negligible advantage in the security parameter λ.

Unforgeability and Traceability. Unforgeability requires that
nobody can forge a valid signature on behalf of a legal data user

except the data user himself/herself. Traceability means that the
identity of a data user who creates a signature can be traced, which
prevents any malicious data user from misbehavior. As the defini-
tions of unforgeability and traceability are similar to each other, we
define them into one game. In the unforgeability and traceability
game, given access to the key generation and signing queries, the
adversary aims to output a signature that cannot trace to any data
user on which a key generation query has been issued via the
signature tracing algorithm. Below we define the unforgeability
and traceability game between a challenger algorithm C and an
adversary algorithm A.

• Setup. Algorithm C runs the setup algorithm, gives the public
parameter pars to algorithmA and keeps themaster private
keymsk.
• Phase 1. Algorithm A makes the following queries to algo-

rithm C.

– The key generation query. Algorithm A sends pairs
(Ai, IDi) to algorithm C, where Ai is an attribute set
of user IDi. Algorithm C responds by returning the
corresponding key skIDi

Ai
to algorithmA, and stores (ID,

skIDi
Ai

) to a user list ul.
– The signing query. Algorithm A sends (IDi, CTi) to

algorithm C. If there is no key generation query on IDi
that has been issued, algorithm C generates a private
key skIDi

Ai
, and creates a signature using skIDi

Ai
for CTi.

Otherwise, algorithm C responds by returning the cor-
responding signature σi to algorithm A.

• Output. AlgorithmA outputs a ciphertext and signature pair
(CT∗,σ ∗), andwins the game if 1←Verify(pars, CT∗,σ ∗), and
σ ∗ cannot trace to any IDi on which a key generation query
has been issued, CT∗ has never been issued to the signing
query.

Algorithm A’s advantage in this game is defined as Pr[A wins].
We say that an attribute-based cloud storage system with secure
provenance is unforgeable and traceable if all PPT adversaries have
at most a negligible advantage in the security parameter λ.

4. Attribute-based cloud storage supporting secure provenance

In this section, we give two concrete constructions on attribute-
based cloud storage supporting secure provenance, one disallows
user revocation while the other enables, and analyze their security
and performance.

4.1. Construction

On the basis of the large universe CP-ABE scheme proposed
in [6], we present a concrete construction on attribute-based cloud
storage with secure provenance, using techniques including em-
bedding identification information in the private attribute key,
and generating signatures via signature of knowledge to subtly
achieve user traceability without losing the advantages of ABE
and simultaneously preserving user anonymity and provenance
unforgeability. Let G be a bilinear group of a prime order p with
a generator g , and ê: G× G→ G1 denote the bilinear map.

• Setup. This algorithm takes the security parameter 1λ as the
input. It randomly chooses u, h, v, w ∈ G, α ∈ Zp, and two
collision resistant hash functions H: Gm

× G1
2
→ Zp, H0:

Gm
× G1 → G for m being the number of elements from G,

and sets an initially empty user list ul. The public parameter
is pars = (H , H0, g , u, h, w, v, z) where Z = ê(g, g)α , and the
master private key is msk = gα . This algorithm is similar to
that in [6] except with two additional hash functions.
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• KeyGen. This algorithm takes the public parameter pars, the
master private keymsk, an identity ID and an attribute set A
as the input. Denote k by the size of A, and A1, . . ., Ak ∈ Zp be
the elements of A. It randomly chooses βid, r , r1, . . ., rk ∈ Zp,
and computes

sk1 = (gα)βidwr , sk2 = g r ,

∀i ∈ [1, k] ski,1 = (uAih)riv−r , ski,2 = g ri .

It adds (ID, βid) to the user list ul, and outputs the private at-
tribute key skIDA = (βid, sk1, sk2, {ski,1, ski,2}i∈[1,k]) associated
with a set of attributes A for user ID. This algorithm mostly
follows that in [6] except the computation of sk1.
• Encrypt. This algorithm takes the public parameter pars, a

message M ∈ G1 and an LSSS access structure (M, ρ) where
the function ρ associates the rows of M to attributes as the
input. LetM be an l×nmatrix. It randomly chooses a vector
−→v = (µ, y2, . . ., yn) ∈ Zn

p . These values will be used to share
the encryption exponent µ. For i = 1 to l, it calculates vi =
−→v ·Mi, whereMi is the vector corresponding to the ith row
ofM. Also, it randomly chooses z1, . . ., zl ∈ Zp, and computes

C = M · Zµ, D = gµ,

∀i ∈ [1, l] Ci = wvivzi , Di = gzi , Ei = (uρ(i)h)−zi .

It outputs the ciphertext CT= ((M, ρ), C ,D, {(Ci,Di, Ei)}i∈[1,l]).
Note that to meet the encryption requirement for messages
of large sizes, the Encrypt algorithm can be changed by
using a symmetric key K to replace M , and then running a
symmetric encryption algorithm to encryptM using K . This
algorithm is the same as that in [6].
• Sign. This algorithm takes the public parameter pars, a pri-

vate key skIDA and a ciphertext CT as the input. It computes
the signature of knowledge (SoK)

SoK
{(

βid, sk1,
sk2

)
:
ê(sk1, g) = Zβid · ê(w, sk2)
∧ B = H0(CT)βid

}
(CT)

as follows, which proves the ownership of a valid private
attribute key without leaking any secret key and identity
information. Firstly, it randomly chooses s ∈ Zp, g1, g2,
g3 ∈ G, and computes

R0 = g s, R1 = sk1 · g1s, R2 = sk2 · g2s.

Then, it randomly chooses d0, d1 ∈ Zp, and computes

K1 = ê(w, g2)−d0 ê(g1, g)d0Zd1 , K2 = H0(CT)d1 ,
K0 = gd0 , c = H(B, R0, R1, R2, K0, K1, K2, CT),
θ0 = d0 − c · s, θ1 = d1 − c · βid.

Finally, it outputs the signature σ = (g1, g2, B, R0, R1, R2, θ0,
θ1, c).
• Decrypt. This algorithm takes the public parameter pars, a

ciphertext ((M, ρ), C , D, E, {(Ci, Di, Ei)}) and a private key skIDA
for an identity ID and an attribute setA as the input. Suppose
that A satisfies (M, ρ). Define I as I = {i : ρ(i) ∈ A}. Denote
by {wi ∈ Zp}i∈I a set of constants such that if {vi} are valid
shares of any secret µ according toM, then

∑
i∈Iwivi =µ. It

computes

B =
ê(D, sk1)∏

i∈I (ê(Ci, sk2)ê(Di, ski,1)ê(Ei, ski,2))wi
= ê(g, g)αµβid ,

and cancels out B1/βid from C to obtain the plaintextM . This
algorithm follows that in [6] but with a different intermedi-
ate value B.

• Verify. This algorithm takes the public parameter pars, a
ciphertext CT, a signature (g1, g2, g3, B, R0, R1, R2, R3, θ0, θ1,
θ2, c) as the input. It computes

K ′0 = gθ0R0
c, R′ =

ê(R1, g)
ê(w, R2)

,

K ′1 = ê(w, g2)−θ0 ê(g1, g)θ0Zθ1R′c, K ′2 = H0(CT)θ1Bc .

If c=H(B, R0, R1, R2, K ′0, K
′

1, K
′

2, CT), it accepts the signature.
Otherwise, it rejects.
• SignTrace. This algorithm takes the public parameter pars, a

signature σ and a user list ul as the input. If there exists a
pair (ID, βid) such that B= H(CT)βid , it outputs ID.

Theorem 1. Assuming that the (q − 1) assumption holds in G, and
SoK is a secure signature of knowledge, the above scheme is secure.

Proof. We elaborate the proof in Appendix A. The Rouselakis–
Waters scheme [6] is known to be selectively IND-CPA secure
assuming that the decisional (q − 1) assumption holds in G. Since
the encryption part of the proposed construction is similar to that
in [6] the proof for indistinguishability mostly follows that in [6].

Due to the property of SoK, the signatures will only tell the fact
that the user has a valid private key but nothing else and cannot
be forged by anyone without a valid private key. Thus, it remains
to prove the security of SoK to show that the proposed scheme is
anonymous and unforgeable.

In addition, it is clear that the signature is traceable via the
signature tracing algorithm.

4.2. Extension to user revocation

In the previous construction, new data users can decrypt previ-
ously generated ciphertexts by requesting the private attribute key
associated with their credentials, but it fails to deter the revoked
data users from accessing the encrypted data. Since a data user’s
access to a cloud storage systemcould be terminated at somepoint,
it is desirable to assure that the encrypted data will immediately
become unavailable to those revoked data users. To date, there are
several approaches introduced to address this issue (e.g., [7,13,21–
23]). An efficient revocation method using the binary tree data
structure [24] was presented in [7,21] to reduce the size of key
updates and remove secure channels from the key update phase
(note that this methodology is then further improved in [23] to
reduce the workloads of data users in revocation and decryption),
where the SA issues a long term private key to each data user
and publicly broadcasts key updates at the beginning of each time
period, and only non-revoked data users can generate decryption
keys to decrypt newly created ciphertexts for the current time
period from their long term private keys and the key updates.
Another feasible solution to this cruxwas introduced in [22],where
the cloud updates the ciphertexts stored in the system using only
publicly available information such that when the access right of
a user is revoked, all stored files immediately become unavailable
to this user after the update process. Either the technique in [7]
or that in [23] or that in [22] can be applied to the previously
proposed attribute-based cloud storage system supporting secure
provenance to achieve user revocation. Below we simply show
how to combine the previous construction with binary tree data
structure [24] to accomplish user revocation (See Fig. 2), where
the SA issues a long term private attribute key to each data user
and publicly broadcasts key updates at the beginning of each time
period, but only non-revoked data users can generate decryp-
tion/signing keys from their long term private attribute keys and
the key updates to decrypt ciphertexts or create signatures under
the current time period.
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Fig. 2. Revocation in attribute-based cloud storage with secure provenance.

Recall the definition about binary tree described in [7]. Denote
BT as a binary treewithN leaves corresponding toN users. Let root
be the root node of the tree BT. If θ is a leaf node, then Path(θ )
denotes the set of nodes on the path from θ to root, which includes
both θ and root. If θ is a non-leaf node, then θl, θr denote left and
right child of θ . Assume that nodes in the tree are uniquely encoded
as strings, and the tree is defined by all of its node descriptions. An
algorithm called KUNodes is used to compute the minimal set of
nodes for which key update needs to be published so that only the
non-revoked data users at a time period t are able to decrypt the
ciphertexts, which takes a binary tree BT, a revocation list rl and a
time period t as the input, and outputs a set of nodes which is the
minimal set of nodes in BT such that none of the nodes in rl with
corresponding time period before or at t (data users revoked at or
before t) have any ancestor (or, themselves) in the set, and all other
leaf nodes (corresponding to non-revoked data users) have exactly
one ancestor (or, themselves) in the set.

• Setup. The same as that in the above construction except
with additional elements u0, h0 ∈ G, BT, rl and st , where
rl is an empty list storing revoked users, BT is a binary tree
with at least N leaf nodes, and st is a state which is set to be
BT.
• KeyGen. This algorithm firstly chooses an undefined leaf

node θ from the binary tree BT, and stores ID in this node.
Then, for each node x ∈ Path(θ ), it runs as follows.

1. It fetches gx from the node x. If x has not been defined,
it randomly chooses βid, gx ∈ G, computes g ′x =
(gα)βid/gx, and stores gx in the node x.

2. It randomly chooses rx, rx,1, . . ., rx,k ∈ Zp, and computes

skx,1 = g ′xw
rx , skx,2 = g rx ,

∀i ∈ [1, k] sk(i)x,1 = (uAih)rx,iv−rx , sk(i)x,2 = g rx,i .

3. It outputs the private attribute key skIDA = (βid,
{x, skx,1, skx,2, {sk

(i)
x,1, sk

(i)
x,2}i∈[1,k]}x∈Path(θ )) associated

with a set of attributes A for user ID and an updated
state st .

4. The SA adds (ID, βid) to the user list ul.

• KeyUp. This algorithm takes the public parameter pars, the
master private key msk, a time period t , a revocation list
rl and a state st as the input. For all x ∈ KUNodes(BT, rl,
t), it fetches gx from the node x. Then, it randomly chooses
sx ∈ Zp, and computes

kux,1 = gx · (u0
th0)sx , kux,2 = g sx .

It outputs kut = {x, kux,1, kux,2}x∈KUNodes(BT, rl, t) as the key
update information.

• DecKG. This algorithm takes the public parameter pars,
an identity ID with a private attribute key skIDA and the
transformation key update information kut as the input.
Denote I as Path(θ ), J as KUNodes (BT, rl, t). It parses
skIDA as (βid, {x, skx,1, skx,2, skx,3, {sk

(i)
x,1, sk

(i)
x,2}i∈[1,k]}x∈I ), kut as

{x, kux,1, kux,2, kux,3}x∈J for some set of nodes I , J . If I ∩ J =∅,
it returns ⊥. Otherwise, for any node x ∈ I ∩ J , it randomly
chooses r ′x, s

′
x ∈ Zp, and computes

dk1 = skx,1 · kux,1 · w
r ′x · (u0

th0)s
′
x

= (gα)βid · wrx+r ′x · (u0
th0)sx+s

′
x ,

dk2 = skx,2 · g r ′x = g rx+r ′x , dk3 = kux,2 · g s′x = g sx+s′x ,

dki,1 = sk(i)x,i · v
−r ′x = (uAih)rx,iv−(rx+r

′
x), dki,2 = sk(i)x,2.

It outputs the decryption/signing key dkIDA,t = (βid, dk1, dk2,
{dki,1, dki,2}i∈[1,k], dk3).
• Encrypt. The same as that in the above construction except

that the ciphertext CT= ((M, ρ), t , C , D, E, {(Ci, Di, Ei)}i∈[1,l]),
where t is a time period, E = (u0

th0)µ.
• Sign. This algorithm computes the signature of knowledge

(SoK)

SoK

⎧⎨⎩
(

βid, dk1,
dk2, dk3

)
:

ê(dk1, g) = Zβid · ê(w, dk2)
ê(u0

th0, dk3)
∧ B = H0(CT)βid

⎫⎬⎭ (CT)

as follows. Firstly, it randomly chooses s ∈ Zp, g1, g2, g3 ∈ G,
and computes

R0 = g s, R1 = dk1 · g1s, R2 = dk2 · g2s, R3 = dk3 · g3s.

Then, it randomly chooses d0, d1 ∈ Zp, and computes

K1 = Zd1 ê(w, g2)−d0 ê(g1, g)d0 ê(u0
th0, g3)−d0 ,

K0 = gd0 , K2 = H0(CT)d1 ,
c = H(B, R0, R1, R2, R3, K0, K1, K2, CT),

θ0 = d0 − c · s, θ1 = d1 − c · βid.

Finally, it outputs the signature σ = (g1, g2, g3, B, R0, R1, R2,
R3, θ0, θ1, c).
• Decrypt. This algorithm computes the messageM as

B =
ê(D, dk1)∏

i∈I (ê(Ci, dk2)ê(Di, dki,i)ê(Ei, dki,2))wi ê(E, dk3)
= ê(g, g)αβidµ,

and then cancels out B1/βid from C to obtain the plaintextM .
• Verify. This algorithm computes

K ′0 = gθ0R0
c, R′ =

ê(R1, g)
ê(w, R2)ê(u0

th0, R3)
,

K ′2 = H0(CT)θ1Bc,

K ′1 = Zθ1 ê(w, g2)−θ0 ê(g1, g)θ0 ê(u0
th0, g3)−θ0R

′c .

If c =H(B, R0, R1, R2, R3, K ′0, K
′

1, K
′

2, CT), it accepts the signa-
ture. Otherwise, it rejects.
• SignTrace. The same as that in the construction in Section 4.

Note that the security games for this construction are similar to
those defined in Section 3 except that the adversary is allowed to
issue additional queries on the key updates and decryption/signing
keys. The security proof for this scheme is similar to that in Section
4, where the simulation for the key update and decryption/signing
key can be done by using the technique in [23], and we omit the
details about the proof.

Remarks. Notice that the efficiency of the above construction
can be further improved by using the technique introduced in [23],
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Table 1
Comparison of properties between previous schemes and our system, where ‘‘Exp’’ denotes expressive, ‘‘Unb’’ denote
unbounded, ‘‘Sca’’ denotes scalable, ‘‘Con’’ denotes confidential, ‘‘Ano’’ denotes anonymous, ‘‘Tra’’ denotes traceable,
‘‘Unf’’ denotes unforgeable, ‘‘Col’’ denotes collusion resistant, and ‘‘Rev’’ denotes user revocation.

Exp Unb Sca Con Ano Tra Unf Coll Rev

[1] ×
√ √ √ √ √ √ √

×

[2] × ×
√ √ √ √ √ √ √

[3]
√ √ √ √ √ √ √

×
√

Construction
√ √ √ √ √ √ √ √

×

Extension
√ √ √ √ √ √ √ √ √

where an untrusted server (the server does not keep any secret,
and thus the server’s role can be played by the cloud) is introduced
to mitigate the workloads to data users involved in revocation and
decryption, thereby making each data user only need to perform
several exponentiations to accomplish key update and decryption.

4.3. Property analysis

To our knowledge, besides our work, concrete constructions
in [1–3] can also be used for data forensics in the setting of
cloud storage. The provenance system in [1] efficiently achieves
user anonymity andmessage confidentiality using group signature,
but it was built in the inefficiency composite-order group, and
it did not support expressive data access control. On the basis
of the work in [1], an efficient and secure cloud storage system
supporting data provenance was given in [2], but it only worked
for a simple one-attribute access policy, and the number of data
users allowed for the systemwas bounded. The provenance system
supporting fine-grained access control policies in [3] was built
under the assumption that the cloud is honest by using tech-
niques of group signature, attribute-based signature and broadcast
encryption, but it required secure channels between the cloud
and data providers/users, i.e., the cloud and data providers/users
cannot collude.

We compare the features of the proposed storage systems and
others in Table 1. It is clear that the proposed system is comparable
to existing schemes, since it supports expressiveness such that the
data provider can specify who can access the encrypted files by at-
tributes and scalability such that the storage space is independent
to the number of privileged data users, allows dynamic data users
such that the total number of data users is unbounded and any new
data user can decrypt previously encryptedmessages (and revoked
data user is not able to access the newly encrypted data) and
collusion attacks such that the cloud and malicious data users can
collude together, and achieves confidentiality such that the content
of the message is unaccessible to those non-privileged data users,
anonymity such that the cloud could not tell who processes which
file, unforgeability and traceability such that no data provider/user
is able to forge a valid signature that could not be traced to identity.

4.4. Performance evaluation

Denote l as the number of attributes in an access structure, k as
the size of an attribute set associatedwith the private attribute key.
Since the scheme in [1] is built from the composite-order group and
thus is incomparable to those built in the prime-order group [6],
and the system in [3] is presentedwithout detailing the specific en-
cryption algorithm, we compare the computational costs incurred
for encryption, signing, decryption and verification between the
encryption system in [2] and our storage system(s) supporting data
forensics in Table 2. It is not difficult to see that the proposed
schemes are less efficient than the one in [2], but it supports
additional properties such as expressiveness andunboundedusers.
We will show that even though the proposed storage schemes are
less efficient, but they are still acceptable for the applications in
practice by simulation.

Table 2
Computational costs of the proposed storage systems and the one in [2].

Encrypt Sign Decrypt Verify

System in [2] 3 · E 8 · E 2 · E 8 · E
+ 3 · P + 2 · P + 5 · P

Construction (5l+ 2) · E 9 · E ≤ k · E 8 · E
+ 2 · P + (3k+ 1) · P + 4 · P

Extension (5l+ 4) · E 18 · E ≤ k · E 10 · E
+ 9 · P + (3k+ 2) · P + 6 · P

We implement our proposed storage systems3 in Charm [25],
which is a framework developed to facilitate rapid prototyping
of cryptographic schemes and protocols. Since all Charm routines
are designed under the asymmetric groups, our constructions are
transformed to the asymmetric setting before the implementation.
That is, three groups G, Ĝ and G1 are used and the pairing ê is a
function from G× Ĝ to G1. Notice that it has been stated in [6] that
the assumptions and the security proofs can be converted to the
asymmetric setting in a generic way.

The Charm-0.43 and Python 3.4 are used in the implementation.
The experiments are run on a laptop with Intel Core i5-4210U CPU
@ 1.70 GHz and 8.00 GB RAM running 64-bit Ubuntu 14.04.

All of the experiments are conducted over four elliptic curves:
SS512, MNT159, MNT201 and MNT224, of which SS512 is a su-
persingular elliptic curve with the bilinear pairing on it being
symmetric Type 1 pairing, and the pairings on the other three
curves are asymmetric Type 3 pairings. These four curves provides
security levels of 80-bit, 80-bit, 100-bit and 112-bit, respectively.
Table 3 lists the average computation time for the exponentiation
and pairing calculations over the four curves.

In the proposed two schemes, the computation time of the
Setup, Sign or Verify algorithm will not change with the number
of attributes (which are summarized in Table 3), and we focus on
the computational costs of the KeyGen (or DecKG), Encrypt and
Decrypt algorithms. In our experiments, all private attribute keys
and ciphertexts are randomly generated over randomly chosen
attribute sets and access structures.

To begin with, we implement the scheme presented in Section
4.1 which does not support user revocation. We test the average
computation time of generating private attribute keys over 10 to
50 attributes (see Fig. 3(a)), and the average computation time of
creating ciphertexts over access structures composed of 2 to 10
attributes (see Fig. 3(b)). Also, we test the average computation
time of decrypting ciphertexts over access structures composed
of 2 to 10 attributes using private attribute keys over 10 to 50
attributes (see Fig. 3(c)). For the four curves tested in the ex-
periments, the average computation time of generating private
attribute keys for 10 to 50 attributes ranges from 0.08 s to 1.5 s,
the average computation time of creating ciphertexts for access
structures with 2 to 10 attributes ranges from 0.03 s to 0.4 s, and
the average computation time of decrypting ciphertexts for access

3 We will not implement the scheme in [2], as it is easy to see from Table 2 that
it is more efficient than ours.
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Table 3
The average computation time (in ms) for the operations on group, pairing and Setup, Sign, Verify algorithms in the
proposed construction (first line) and extension (second line) over different elliptic curves.

ECs Exp. G Exp. Ĝ Exp. G1 Pairing Setup Sign Verify

SS512 0.262 0.263 0.185 1.333 26.339 18.251 12.895
26.686 31.974 22.249

MNT159 0.073 0.799 1.219 4.273 42.727 40.266 38.373
45.972 72.224 68.838

MNT201 0.103 0.943 1.569 5.551 56.622 53.128 51.794
59.479 94.961 92.851

MNT224 0.164 1.261 1.981 6.836 69.608 64.898 65.506
73.522 117.561 113.953

(a) KeyGen. (b) Encrypt. (c) Decrypt.

Fig. 3. Computation cost of the KeyGen algorithm (left), Encrypt algorithm (middle) and Decrypt algorithm (right) in the scheme without user revocation.

(a) DecKG. (b) Encrypt. (c) Decrypt.

Fig. 4. Computation cost of the DecKG algorithm (left), Encrypt algorithm (middle) and Decrypt algorithm (right) in the extension to support user revocation.

structures with 2 to 10 attributes using private attribute keys of 10
to 50 attributes ranges from 1.3 ms to 110 ms.

Next, we implement the scheme given in Section 4.2 which
enables user revocation. We test the average computation time of
generating decryption/signing keys over 10 to 50 attributes (see
Fig. 4(a)), and the average computation time of creating ciphertexts
over access structures composed of 2 to 10 attributes (see Fig. 4(b)).
In addition, we test the average computation time of decrypting
ciphertexts over access structures composed of 2 to 10 attributes
using private attribute keys over 10 to 50 attributes (see Fig.
4(c)). For the four curves tested in the experiments, the average
computation time of generating private attribute keys for 10 to
50 attributes ranges from 0.07 s to 1.3 s, the average computation
time of outputting ciphertexts for access structures with 2 to 10
attributes ranges from 0.03 s to 0.4 s, and the average computation
time of decrypting ciphertexts for access structures with 2 to 10
attributes using private attribute keys of 10 to 50 attributes ranges
from 1.2 ms to 120 ms. The experimental results clearly show that
the proposed schemewith user revocation does not addmuch cost
to the original scheme and are acceptable to be applied in practice.

5. Conclusions

Several cloud storage systems with secure provenance have
been proposed in the literature (e.g., [1–3,12]) but they either lack
the expressiveness in access control or incur too much perfor-
mance overhead or do not support dynamic user management. In
this paper, we attempted to solve these problems by presenting an
attribute-based cloud storage system which protects data privacy
from storage servers, enables fine-grained access control, allows
dynamic usermanagement, supports data provider anonymity and
traceability by an authority, and provides secure data provenance.
We started with providing a concrete construction that does not
support user revocation, and then extended it with the revocation
functionality. We also implemented the proposed two systems to
study their performance.
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(a) SS512-Encrypt. (b) MNT159-Encrypt. (c) SS512-Decrypt.

(d) MNT159-Decrypt.

Fig. 5. Computation cost of the Encrypt and Decrypt algorithms in the scheme [2] and our proposed two schemes.

Appendix A. Security reduction

Lemma 1. Assuming that the (q−1) assumption holds in G, then the
proposed scheme is selectively indistinguishable.

Proof. The Rouselakis–Waters scheme [6] is known to be selec-
tively indistinguishable under the decisional (q − 1) assumption.
Since the encryption part of our construction is similar to that
in [6], our proof for Theorem 1 mostly follows that in [6]. Assume
that there exists an adversary algorithm A that can break the
selective security of our scheme. Then we can build a challenger
algorithm B that solves the (q− 1) assumption.

• Init. AlgorithmA gives algorithm B a challenge access struc-
ture (M∗, ρ∗), whereM∗ is an l× nmatrix.
• Setup. Algorithm B randomly chooses hash functions H and

H0. For other elements in the public parameter, algorithm B
generates as in [6].
• Phase 1 and Phase 2. In both Phase 1 and Phase 2, algorithm

B has to output the private keys for the pairs of identity ID
and set of attributes A= {A1, . . ., A|A|} issued by algorithmA.
Since A does not satisfy (M∗, ρ∗), there exists a vector −→w =
(w1, . . ., wn)⊥ ∈ Zn

p such that w1 =−βid, (M∗i ,
−→w )= 0 for all

i ∈ I = {i|i ∈ [l]∧ρ(i)∗ ∈ A}. Algorithm B computes−→w using
linear algebra. In addition, it randomly chooses r̃ ∈ Zp, and
implicitly sets

r = r̃ + w1aq + w2aq−1 + · · · + wnaq+1−n = r̃ +
∑
i∈[n]

wiaq+1−i,

and then computes

sk1 = gαβidwr
= (gaq+1g α̃)βidgar̃

∏
i∈[n]

gwiaq+2−i ,

sk2 = g r
= g r̃

∏
i∈[n]

(gaq+1−i )wi ,

sk3 = gar
= (g r̃

∏
i∈[n]

(gaq+1−i )wi )a.

On the other hand, for all i ∈ [|A|], it randomly chooses
r̃i ∈ Zp, and implicitly sets

ri = r̃i + βid
−1
· r ·

∑
j∈[l]

ρ∗(j)̸∈A

bj
Ai − ρ∗(j)

= r̃i + βid
−1
· (r̃ ·

∑
j∈[l]

ρ∗(j)̸∈A

bj
Ai − ρ∗(j)

+

∑
j′,j∈[n,l]
ρ∗(j)̸∈A

wj′bjaq+1−j
′

Ai − ρ∗(j)
),

and then computes ski,1 = (uAih)riv−r , ski,2 = g ri as required,
of which the details about the calculation are similar to that
in [6] and we omit them there.
• Challenge. AlgorithmA sends algorithm B two messagesM∗0

and M∗1 . Algorithm B randomly chooses a bit β ∈ {0, 1}, and
computes the challenge ciphertext as that in [6].
• Guess. Algorithm A output a guess β ′ for β .

If Z = ê(g, g)sα
aq+1

, then the view of algorithm A about this
simulation is identical to the original game, because C∗ =M∗β · Z ·
ê(g, g s)α̃ =M∗β · ê(g, g)αs. On the other hand, if Z is a random term
of G1, then all the information about the message M∗β is hidden in
the challenge ciphertext. Therefore the advantage of algorithm A
is 0. As a result, if algorithm A breaks the selective security with
a non-negligible advantage, then algorithm B has a non-negligible
advantage in breaking the (q− 1) assumption.

Lemma 2. The SoK protocol above is a secure signature of knowledge
of a witness (βid, sk1, sk2, sk3) in the random oracle model.

Proof. Since the completeness of SoK is straightforward, we focus
on its soundness and zero-knowledge.

Soundness. Assume there are two transcripts with the same (B,
R0, R1, R2) but different challenges c ′, c and different responses (θ ′0,
θ ′1) and (θ0, θ1).

Then (βid, sk1, sk2) can be extracted from

R0 = g s
= g

θ ′0−θ0
c−c′ , B = H0(CT)βid = H0(CT)

θ ′1−θ1
c−c′ ,

R = ê(w, g2)−sê(g1, g)sZβid = ê(w, g2)
−

θ ′0−θ0
c−c′ ê(g, g1)

θ ′0−θ0
c−c′ Z

θ ′1−θ1
c−c′
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Zero-knowledge. The simulator randomly chooses R0, R1, R2 ∈ G,
θ0, θ1 ∈ Zp, c ∈ Zp, and computes

K0 = R0
cgθ0 , R =

ê(R1, g)
ê(w, R2)

, K2 = BcH0(CT)θ1 ,

K1 = Rc ê(w, g2)−θ0 ê(g, g1)θ0Zθ1 .

Then it sets c = H(B, R0, R1, R2, K0, K1, K2, CT).

Appendix B. Performance evaluation of an existing scheme

Also, we implement the scheme given in [2], where expressive
access policies are not supported and the number of data users
allowed is predefined and bounded. From the analysis in Table
2, despite of the limitations in real applications, it is straightfor-
ward to conclude that the scheme in [2] is more efficient than
our proposed schemes. To confirm such a conclusion, we test the
average time of running the Encrypt and Decrypt algorithms in the
scheme in [2] and our two proposed schemes in terms of the curves
SS512 andMNT159, respectively (see Fig. 5). It is not difficult to see
that the experimental results are consistent with the theoretical
results where the average computation time of both encryption
and decryption in [2] (which does not support expressiveness in
access control) is independent to the complexity of the access
structures (and the number of attributes involved), while that in
the proposed two schemes is linear to the complexity of the access
structures (and the number of attributes involved).
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