
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2017

Fair deposits against double-spending for Bitcoin
transactions
Xingjie YU
Singapore Management University

Shiwen M. THANG
Singapore Management University, swthang.2015@smu.edu.sg

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1109/DESEC.2017.8073796

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Finance and Financial Management Commons, and the Information Security

Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YU, Xingjie; THANG, Shiwen M.; LI, Yingjiu; and DENG, Robert H.. Fair deposits against double-spending for Bitcoin transactions.
(2017). 2017 IEEE Conference on Dependable and Secure Computing: Taipei, Taiwan, August 7-10: Proceedings. 44-51. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3897

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/155249293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/DESEC.2017.8073796
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Fair Deposits against Double-Spending for Bitcoin
Transactions

Xingjie Yu, Michael Thang Shiwen, Yingjiu Li, Robert Deng Huijie
School of Information Systems

Singapore Management University
Email: stefanie yxj@hotmail.com, swthang.2015@mais.smu.edu.sg, yjli@smu.edu.sg, robertdeng@smu.edu.sg

Abstract—In Bitcoin network, the distributed storage of mul-
tiple copies of the blockchain opens up possibilities for double
spending, i.e., a payer issues two separate transactions to two
different payees transferring the same coins. To detect the double-
spending and penalize the malicious payer, decentralized non-
equivocation contracts have been proposed. The basic idea of
these contracts is that the payer locks some coins in a deposit
when he initiates a transaction with the payee. If the payer double
spends, a cryptographic primitive called accountable assertions
can be used to reveal his Bitcoin credentials for the deposit. Thus,
the malicious payer could be penalized by the loss of deposit
coins. However, such decentralized non-equivocation contracts
are subjected to collusion attacks where the payer colludes with
the beneficiary of the deposit and transfers the Bitcoin deposit
back to himself when he double spends, resulting in no penalties.
On the other hand, even if the beneficiary behaves honestly,
the victim payee cannot get any compensation directly from the
deposit in the original design. To prevent such collusion attacks,
we design fair deposits for Bitcoin transactions to defend against
double-spending. The fair deposits ensure that the payer will be
penalized by the loss of his deposit coins if he double spends
and the victim payee’s loss will be compensated. We start with
proposing protocols of making a deposit for Bitcoin transactions.
We then analyze the performance of deposits made for Bitcoin
transactions and show how the fair deposits work efficiently in
Bitcoin.

I. INTRODUCTION

As a decentralized crypto-currency system, to eliminate the
central bank, Bitcoin uses blockchain to take the role of a
distributed ledger reflecting all transactions and ownerships.
This enables every participant to keep a copy of transaction
records which would classically be stored at central banks in
traditional banking system. However, the distributed storage
of multiple copies of the blockchain increases possibilities
for double spending. A payer may perform two separate
transactions with two different receivers transferring the same
coins. Bitcoin addresses this problem by, in a sense, letting
the entire network verify the legitimacy of the transactions,
so that double spending can be detected by other participants.
However, it still cannot entirely eliminate double-spending.
Recent research by Rosenfeld et al. demonstrates that it
is not possible to reduce the success probability of double
spending to zero: an attacker with less than 50% of the total
computational power is able to perform a double spend by
brute force and a bit of luck [1].

Although double spending cannot be completely prevented,
we can detect it and penalize the double-spending payer.
Ruffing et.al [2] proposed a non-equivocation contract based
on accountable assertions which can penalize an equivocating
party by the loss of his money. As double-spending in Bitcoin
is a special case of equivocation, their non-equivocation con-
tracts can be applied to penalize the double-spending payer
by loss of bitcoins. Their scheme is based on the idea of a
time-locked Bitcoin deposit that can be opened by a predefined
beneficiary or any other miners in the case of an equivocation.
After the deposit is confirmed by Bitcoin network, the payer
sends an accountable assertion to the payee along with the
transaction information and to the beneficiary for storing. If
the payer double spends, the beneficiary can extract the payer’s
secret key with two conflicting assertions, i.e., the payer asserts
two different statements in the same context to two different
recipients. Then the beneficiary can use the payer’s secret
key to transfer the funds in the deposit to his own Bitcoin
address. If no equivocation occurs, the payer will regain full
control of the deposit after the time-lock expires and his secret
key remains uncompromised. Therefore, by setting aside a
high-enough deposit with a third party, it is expected that
the attacker would have no incentive to double spend his
transaction.

However, such non-equivocation contracts are subjected
to collusion attacks. In a collusion attack, an attacker, who
makes a transaction with the recipient, can collude with the
beneficiary to transfer the Bitcoin deposit back to the attacker
when he equivocates, resulting in no penalties. Moreover,
this deposit is unfair to the victim recipient. This is because
whether the attacker colludes with the beneficiary or not,
there is no compensation to the recipient since the deposit
is made for the beneficiary only. In a business perspective,
the recipient, who may be a service provider or a product
seller, may lose valuable time and effort, and may result
in a loss of profits. To defend against the collusion attack
and guarantee the compensation to the victim recipient when
double-spending happens, a new solution of making deposits
is in demand and the value of a deposit should be appropriately
determined.

The goal of this paper is to design new protocols for
making time-locked deposits to not only defend against double
spending in Bitcoin, but also prevent collusion attacks and
guarantee the compensation to the victim payee’s loss. We978-1-5090-5569-2/17/$31.00 c©2017 IEEE

first provide a solution to make a deposit for one transaction.
In our protocol, the payer needs to create a deposit for his
transaction with the payee, so that the payer could be penalized
by the loss of his deposit if he double spends. Our protocol
uses the assertion scheme as proposed by Ruffing et al. [2].
In particular, the beneficiary can recover the payer’s secret
key if the payer double spends. However, to ensure that the
payee’s loss can be compensated if the payer double spends, in
addition to a signature generated with the payer’s secret key,
a signature generated with the payee’s secret key is required
for the release of the compensation locked in the deposit.
Meanwhile, the incentive for the beneficiary is also guaranteed
in the deposit.

The rest of this paper is organized as follows. Section II
introduces the preliminaries. Section III presents our threat
model in Bitcoin network. Section IV presents the design
of a fair time-locked deposit for one Bitcoin transaction.
Section V implements the setup and usage of fair deposits
in Bitcoin network and evaluates its usability and efficiency.
Section VI describes the related work. Section VII discusses
extensions of our design to deposits for multiple Bitcoin
transactions, deposits without explicit beneficiaries, and non-
equivocation contracts applicable to various distributed sys-
tems. Section VIII concludes this paper.

II. PRELIMINARIES

In this section, we introduce preliminary facts of non-
equivocation contracts, time-locked deposit, and accountable
assertion scheme, which are used throughout this paper.

A. Non-equivocation Contracts

Ruffing et. al [2] proposed a non-equivocation (i.e., mak-
ing conflicting statements) contract for distributed system to
penalize the party who equivocates by losing Bitcoins. The
protocol is based on the idea of a time-locked Bitcoin deposit
that can be opened by a predefined beneficiary in the case
of an equivocation. By setting aside a high-enough deposit
with a beneficiary, it is expected that the attacker would have
no incentive to equivocate. In their protocol, to use a time-
locked deposit for a transaction, Party A creates a Bitcoin key
pair and sets up the accountable assertion scheme with the
same key pair. A then creates a deposit with a third party. The
recipient(s), Party B, waits till the deposit has been confirmed
by the Bitcoin network and then receives the statement and
the assertion from A. B then verifies the assertion and if
it is valid, forwards it to the beneficiary. If the beneficiary
detects an equivocation in two records specifying the context,
statements, and assertions, he can extract A’s secret key and
use it to transfer the funds in the deposit to his own Bitcoin
address. Else, A will regain full control of the deposit after
the time-lock expires.

This protocol, however, may be subjected to a collusion
attack since only the payer’s signature is required in the output
script of the deposit transaction. The malicious payer can
collude with the beneficiary to transfer the Bitcoin deposit
back to the attacker when he double spends, resulting in no

penalties. On the other hand, even if the attacker has double
spent the transaction and the beneficiary has behaved honestly,
there is no compensation to the victim recipient since the coins
locked in the deposit can only be redeemed by the beneficiary.

B. Time-locked Deposits

We create time-locked deposit based on a script command
denoted by CheckLockTimeVerify (CLTV) which has been
newly merged into Bitcoin Core. CLTV allows users to create
a bitcoin transaction of which the transaction outputs are
spendable only at some point in the future. As such, the
coins sent in that transaction are time-locked until either a
specified UNIX time, or until a certain number of blocks have
been mined. As discussed by Ruffing et. al [2], the payer
who creates the time-locked deposit cannot transfer the coins
in the deposit with his/her secret key before lock time T .
Moreover, for deposits with explicit beneficiary, the lock time
of the deposit should include a safe margin T explnet +T explconf . The
safe margin ensures that the closing transaction has already
been broadcast to the Bitcoin network and confirmed by it
before the deposit can be spent by the payer alone. For the
broadcast, T explnet = 10 min is more than sufficient [3]. For the
confirmations, as applied by Ruffing et. al [2], we expect the
network to find 24 blocks in T explconf = 240 min. Since their
arrival is Poisson-distributed, the probability that fewer than
six desired blocks have been found is Pr[X ≤ 5] < 2 − 18
for X ∼ Pois(24). Throughout the paper, the lock time of a
deposit is longer than the safe margin of 250 min.

C. Accountable Assertion Scheme

An accountable assertion is a cryptographic primitive in-
troduced by Ruffing et. al [2]. The idea of this primitive is
to bind statements to contexts in an accountable way: if the
attacker equivocates, i.e., asserts two contradicting statements
in the same context, then any observer can extract the attacker’s
Bitcoin secret key and, as a result, use it to force the loss
of the attacker’s funds. We use the accountable assertion
scheme to detect double-spending transactions, and extract the
secret key if double-spending happens. Accountable assertions
are constructed based on chameleon hash function which
is a collision-resistant hash function that allows a user to
compute collisions efficiently using a trapdoor. It supports the
extractability property where a deterministic polynomial time
algorithm exists which reveals the secret key when a collision
occurs. An accountable scheme includes four algorithms: key
generation, assertion, verification and extraction. An account-
able assertion scheme is defined as follows:
• (apk, ask, auxsk)← Gen(1λ): The key generation algo-

rithm outputs a key pair consisting of a public key apk
and a secret key ask, and auxiliary secret information
auxsk. It is required that for each public key, there is
exactly one secret key.

• τ/ ⊥← Assert(ask, auxsk, ct, st) : The assertion algo-
rithm takes as input a secret key ask, auxiliary secret
information auxsk, a context ct, and a statement st. It
returns either an assertion τ or ⊥ to indicate failure.

• b ← V erify(apk, ct, st, τ) : The verification algorithm
outputs 1 if and only if τ is a valid assertion of a statement
ct in the context st under the public key apk.

• ask ← Extract(apk, ct, st0, st1, τ0, τ1) : The extraction
algorithm takes as input a public key apk, a context
ct, two statements st0, st1, and two assertions τ0, τ1. It
outputs either the secret key ask or ⊥ to indicate failure.

III. THREAT MODEL

In our threat model, the payer can maliciously double-
spend an input of a Bitcoin transaction, but he cannot control
more than 50% of the network’s/miners’ computation power.
Rosenfeld [4] has demonstrated that an attacker with less
than 50% of the total computational power is able to per-
form a double-spending by brute force and a bit of luck. If
the payer can control more than 50% computational power,
he can double spend any transaction, including the deposit
transaction. Even worse, the attacker who is in control of over
50% of the computation power of all miners combined has a
chance of succeeding in rewriting the entire blockchain, which
would affect the whole Bitcoin network. Hence, the inability
to control more than 50% computation power is one of the
fundamental security of Bitcoin. Our assumption complies
with this fundamental security. As assumed by Ruffing et.
al in [2], we also assume that the payer cannot break other
fundamental security of Bitcoin, e.g., the payer cannot break
the payee’s private key.

Ruffing et. al have proven the security of accountable
assertion algorithm in [2], and proposed protocols to defend
against non-equivocations in distributed networks, such as
double spending in Bitcoin. However, in their threat model,
they did not consider the collusion attacks where the payer
colludes with the beneficiary. In our threat model, we allow
the payer to collude with the beneficiary. In particular, the
payer can share his secret key with the beneficiary, and collude
with the beneficiary when redeeming the deposit. Although we
assume that the beneficiary can collude with the payer, he does
not risk to lose his incentive defined in the deposit, which is
outlined in Section IV.

IV. FAIR TIME-LOCKED DEPOSITS

This section introduces and analyzes the design and usage
of the fair time-locked deposits that thwart double-spending
in Bitcoin transactions.

A. Deposit for Transactions with one Input and one Output

We first provide a solution to create a deposit for a transac-
tion that contains one input and one output. Let Party A denote
a user (the payer) who makes payment to Party B (the payee).
Once A makes a transaction to B spending d coins on B’s
services (or products), A creates a deposit for this transaction
with the beneficiary P . A should lock d + ∆ coins in this
deposit. In particular, d coins are used to compensate B’s loss
if A double spends and ∆ coins are the incentive for P to
detect A’s double-spending.

Fig. 1. Deposit setup for one transaction with single input and output.

This deposit is secured by A’s secret key skA, and the
corresponding public key is pkA. Furthermore, the deposit is
locked till some point T in the future. It means that even
though A owns the secret key skA, he cannot redeem the
deposit until time T . However, before time T , with the usage
of accountable assertion scheme, it is possible for P to learn
the secret key skA if A double spends. Therefore, if A double
spends, P can recover skA, and then P and B can use their
secret keys along with skA to redeem the deposit. Here, the
role of the beneficiary P can also be performed by the payee
B. Consequently, B should take all the responsibilities of the
beneficiary.

1) Deposit Setup: To create a deposit for the transaction
in which A transfers d coins to B, A should generate an ac-
countable assertion. In particular, when creating the assertion,
the context ct in this assertion is the transaction number of
the previous output which the current input of the closing
transaction is redeemed from. The statement st in the assertion
is a random number generated by B. The assertion will be
sent to B first for verification, and then sent to P who will
detect A’s double-spending. If P has received two different
assertions generated under the same ct, P can confirm that A
has double spent the input. Then, P can recover skA using
the two received assertions, and thus redeem the coins locked
in the deposit. Fig. 1 shows the message flow for setting up a
deposit.

To generate an assertion, B generates a random number
as st and sends it to A. After receiving st, A starts to
generate the assertion. A first creates a Bitcoin key pair (pkA,
skA) which can be used to redeem the deposit after the
expiry time T . Then, A sets up the accountable assertion
scheme with the same Bitcoin key pair (pkA, skA). That is,
A predefines the secret key of the chameleon hash tree askA
:= skA, creates the corresponding public key apkA, and the
auxiliary secret information auxskA as specified in the key
generation algorithm. Note that, apkA = (pkA, z), where z is
calculated based on chameleon hash values calculated in the
key generation process, and auxskA = k, where k is generated
by a pseudo-random function [2].

Next A uses the transaction number of the previous output

Fig. 2. Deposit script for one transaction with single input and output.

as ct and the random number received from B as st to
generate an assertion τ ← Assert(askA,auxskA,ct,st). When
the assertion is successfully constructed, A sends τ , apkA, ct
and st to B for verification.

After receiving τ , apkA, ct and st, B first verifies ct and st.
If ct and st are correct, B further verifies τ using apkA, ct and
st. If τ is valid, B generates a Bitcoin key pair (pkB , skB)
of his private address aB and sends pkB to A for defining
the release condition of the deposit. Meanwhile, B sends the
record (τ ,apkA,ct,st) to P for storing. After receiving the
record (τ ,apkA,ct,st) from B, P generates a key pair (pkB ,
skB) of his private address aP and sends pkB to A. Otherwise,
if the verification of st fails, B can either ask A to regenerate
an assertion or just cut off the transaction with A if he has
enough reason to believe that A is malicious.

The deposit scripts are illustrated in Fig. 2. To ensure
enough incentive for P as well as enough compensation to B,
this deposit has two outputs when A double spends: d coins
are transferred to address aB and ∆ coins are transferred to
address aP . The release condition ΠB defines the requirements
for transferring d coins to aB . ΠB should ensure that such
coins can only be redeemed with the authorization of B before
the expiry time T . Hence, σA and σB are both required in ΠB ,
where σA and σB are signatures on the transaction transferring
d coins from adep to aB with skA and skB , respectively. The
release condition ΠP defines the requirements for transferring
∆ coins to aP . ΠP should ensure that such coins can only
be transferred to aP with the authorization of both P and B.
Hence, σ′A, σ′B and σ′P are all required in ΠP . Here, σ′A,σ′B
and σ′P are signatures on the transaction transferring ∆ coins
from adep to ap with skA, skB and skP , respectively.

2) Deposit Usage: If P detects the same ct with different
statements in two different records (τ , apkA, ct, st) and (τ ′,
apkA, ct, st′), it means that A has double spent the input
that is redeemed from the previous output ct. Then P uses τ
and τ ′ to extract A’s secret key skA and collaborates with B
to transfer the coins locked in the deposit. Fig. 3 shows the
message flow of the deposit usage when A double spends.

1 P uses the corresponding assertions τ and τ ′ to extract A’s
secret key skA.

Fig. 3. Deposit usage for one transaction.

2 P generates a signature σA on the transaction (adep,aB)
using skA.

3 P sends σA(adep,aB) to B.
4 B verifies σA(adep,aB) using the corresponding public key
pkA.

5 If σA(adep,aB) is a valid signature, B creates a signature
σ′B(adep,aP) on the transaction (adep,aP) using the secret
key skB

6 B sends σ′B(adep,aP) to P .
7 In case that B may not generate σ′B(adep, aP) and send it

to P , B needs to publish (σ′B(adep,aP), pkB ,aP) (either on
his own bulletin board, on the blockchain or on some other
“alt-chain”) as a witness that enables everyone to check that
his action was correctly performed.

8 B generates a signature on σB(adep,aB) on the transaction
(adep,aB) using his secret key skB . Therefore, B can
transfer the d coins to his address aB using σP (adep,aB)
and σB(adep,aB).

9 After receiving σ′B(adep, aP) , P generates a signature
σ′P (adep, aP) on the transaction (adep, aP) using his se-
cret key skP and a signature σ′A(adep, aP) using skA.
Therefore, P can transfer the ∆ coins to address aP using
σ′P (adep, aP), σ′B(adep, aP) and σ′A(adep, aP) to satisfy the
release condition.

3) Security Analysis: Our design is resistent to collusion
attacks by requiring B’s private key to redeem the deposit
when A double spends. The collusion between A and P will
not work due to the lack of B’s secret key skB . In our design,
P can transfer ∆ coins to his private address only if B has
signed the transaction (adep, aP) with his secret key skB .
Therefore, if P wants to gets the d coins in the deposit, he
has to generate σA(adep,aB) and send it to B first. The safety
margins as discussed in Section 2.2 ensure that the transactions
created by P and B will have already been confirmed and thus
the deposit will have already been withdrawn when its expiry
time is reached.

Our design also ensures that B can get his compensation
of d coins and P can get ∆ coins as his benefits. This is
because if P signs a transaction transferring less than d coins
to B with skA, B will not sign the transaction (adep, aP) with
skB . Meanwhile, since P signs a transaction only transferring
d coins to B, B cannot transfer all the coins in the deposit to

his private address. Moreover, the requirement of publishing
a witness also forces B to sign a transaction transferring ∆
coins to P . If B refuses to sign the transaction (adep, aP), P
cannot get the incentive in this deposit. However, since B’s
misbehavior will be detected and broadcasted to the whole
Bitcoin network, it is hard for B to find a beneficiary for
his future transactions. The possible negative influence on his
future transactions can force B to behave honestly (i.e., sign
a transaction to transfer ∆ coins to P with skB).

Although B has published σ′B (adep, aP), we ensure that
only P can transfer ∆ coins that are locked in the deposit
to his private address aP by the additional requirement of σ′P
(adep, aP) in the release condition ΠP . If σ′P is not required in
the release condition ΠP , A may use his secret key to generate
the signature σ′A(adep, aP) to transfer the coins to his private
address along with σ′B which is published by B. On the other
hand, if σ′B is not required in the release condition ΠP , P may
transfer all d + ∆ coins to his private address if it recovers
A’s secret key skA or colludes with A, which could result in
that B get no compensation.

B. Deposit for Transactions with Multiple Inputs and Outputs

For a transaction with multiple inputs and outputs, deposits
should be created for each payee to ensure that any payee
who suffers due to double-spending can receive compensation.
Note that the multiple inputs of the transaction may be made
by several payers. In this case, the payers need to generate
a Bitcoin key pair for the deposits by negotiation, so that the
payers can be regarded as one payer who generates the Bitcoin
key pair. Hence, in this section, we consider multiple payers
as one payer.

1) Deposit Setup: Let Party A denote the payer who makes
a transaction with k payees, Party Bi, i ∈ {1, 2, ..., k}, denote
the i − th payee of the deposited transaction, and Party Pi
denote the beneficiary of the deposit made to Bi. A should
lock dmulti + ∆multi coins in the deposit made to Bi with
the expiry time T . Here, dmulti is the total value of coins
transferred to Bi in the deposited transaction, and ∆multi is
the incentive for Pi to detect the A’s misbehavior. In particular,
∆multi is decided based on the negotiation between A and Pi.

For a deposit made to Bi, the output script is similar to the
deposit made for a transaction with single input and output.
The release condition of dmulti coins requires signatures
generated respectively under Party A’s secret key skA and
Party Bi’s secret key skBi. The release condition of ∆multi

requires signatures generated respectively under skA, skBi and
the respective beneficiary’s secret key skPi.

Since the double-spending of any input could result in the
invalidation of all outputs, skA should be recoverable from
the double-spending of any input. This ensures that Bi can get
dmulti coins from the deposit. Therefore, A should generate an
assertion for each input and send all the assertions to Pi. All
the assertions should be generated under the same chameleon
tree where askA := skA.

To create deposits to all payees, A first generates n account-
able assertions τj , j ∈ {1, 2, ..., n} for n inputs respectively.

To generate τj , ctj is the transaction number of the previous
output which the j-th input is redeemed from. stj is a random
number decided by all the payees. For example, stj can be
generated by hashing the conjunction of all random numbers
generated by each payee with MD5 function.

To make a deposit to Bi, A sends the n records (apkA, ctj ,
stj , τj), j = (1, 2, ..., n), to Bi for verification. If all the
records are verified as valid, Bi sends all these records to
his respective beneficiary Pi.

2) Deposit Usage: After receiving the n records
(apkA, ctj , stj , τj), j = (1, 2, ..., n), if Pi detects a different
assertion under the same ctj , he can recover skA and generate
a signature σAi on the transaction that transfers dmulti coins
to Bi from the deposit using skA. If σAi is verified by Bi,
Bi generates a signature σ′Bi on the transaction that transfers
∆multi coins to Pi from the deposit using skBi and sends
σ′Bi to Pi. Then Bi also needs to publish a witness. After
that, Bi generates a signature σBi on the transaction that
transfers dmulti coins to Bi from the deposit using skBi.
Therefore, Bi can use σBi and σAi to satisfy the release
condition of the dmulti coins. Meanwhile, after receiving σ′Bi
from Bi, Pi create signatures σ′Pi and σ′A on the transaction
that transfers ∆multi coins to Pi from the deposit using skPi
and skA, respectively. Then Pi can use σ′Bi, σ

′
Pi and σ′Ai to

satisfy the release condition of the ∆multi coins locked in
the deposit.

Although the solution introduced above suggests that each
Bi has his own beneficiary Pi, the payer could create the
deposits for different payees with the same beneficiary. This
is because, the records sent to each Pi are the same and the
skA used in all deposits is the same. Hence, if a beneficiary
recovers the skA, he can generate σAi on the transaction
(adep, aBi

) using skA for all Bi, i = (1, 2, ..., k). Furthermore,
instead of respectively making k deposits, the payer can create
only one deposit to all k payees. In this case, the deposit
transaction should contain k + 1 outputs. If the payer double
spends, k outputs transfer the compensations to k payees,
respectively, and the other output transfers the incentive to
the beneficiary. The release conditions of the compensations
locked in this deposit require the signatures of the payer and
the respective payee, which is the same as in the deposit
separately made to the respective payee.

The deposits for transactions with multiple inputs and
multiple outputs provide the same security as the deposits
for transactions with single input and output. The security
analysis of the deposits for transactions with multiple inputs
and outputs is given in a full version of this paper [5], due to
the length limitation on the conference paper.

V. IMPLEMENTATION AND EVALUATION

In this section, we describe how our fair deposits for one
transaction can be implemented in Bitcoin network. We use a
deposit created for a transaction with single input and output as
an example. To make deposits for a transaction with multiple
inputs and outputs, the scripts for each deposit are basically

the same as a deposit made for a transaction with single input
and output.

A. Implementation

We implement the accountable assertion algorithm based on
the codes published online [6] by Ruffing et. al. In the deposit
setup phase, the accountable assertion is generated and verified
using the assertion algorithm Assert(ask, auxsk,
ct, st) and the verification algorithm V erify(apk, ct, st, τ)
respectively. In our implementation, most of the parameters
used by Ruffing et al. [2] are left intact. Particularly, we use
HMAC-SHA256 to instantiate the pseudorandom function F,
SHA256 to instantiate the collision-resistant hash function H,
and HMAC-SHA256 with fixed keys to instantiate the random
oracles L and S. The height of the tree l = 64 and the arity
n = 2 are the same as that were used by Ruffing et al. [2].

However, to generate an assertion, we customize the context
and the statement used in the accountable assertion algorithm.
In our implementation, the context ct is the Bitcoin address
of the input of the transaction that has been deposited. This
Bitcoin address can identify the respective input in Bitcoin
network. As we introduced in Section IV, in each Bitcoin
transaction, instead of Bitcoin address of the input, the trans-
action number of the previous output which the input of
the deposited transaction is redeemed from can also be used
to identify this input. The transaction number is constructed
by the value of prevTx (which is the hash identifying the
previous transaction) and the value of index (which is the
index of the respective output in that transaction). Considering
that the prevTX and index can all be found out by tracing
the Bitcoin address, we just use the input Bitcoin address of
the deposited transaction as the ct in our implementations.
Particularly, we use a 20-byte hexadecimal Bitcoin address as
ct. The statement st is 32-byte random number rst generated
by the payee and sent to the payer for generating the assertion.

In the deposit usage phase, the beneficiary extracts the
payer’s secret key skA using the key extraction algorithm
Extract(apk, ct, st, st′, τ, τ ′). After extracting skA, the bene-
ficiary calculates the address aB , aP and generates a signature
on the transaction (adep,aB) using skA. In our implementation
a Bitcoin address a is formed from the public key of an
ECDSA key pair in the formal way by hashing the public
key with SHA-256 first and RIPEMD-160 subsequently. Thus,
the address aB where the coins in the outputB will be
transferred to is derived from the payee’s public key pkB ,
and the address aP where the coins in the outputP will be
transferred to is derived from the beneficiary’s public key pkP .
After generating the signature on the transaction (adep,aB)
using skA, the beneficiary sends aB , aP and the signature to
the payee. If the payee verifies aB , aP and the signature on
the transaction (adep,aB) as valid, he generates a signature on
the transaction (adep,aP) using skB and sends it back to the
beneficiary.

The Bitcoin script language supports a CHECKSIG
operation that reads a public key and a signature from the
stack and then verifies the signature against the public key

on a message that is derived in a special way from the
current transaction. This (and its multi-sig version) is the only
operation that performs signature verification. In our deposit
transaction, the outputs require the verification of signatures
against specific public keys. In the output scripts, we make
use of a IF − ELSE structure, so that if the payer double
spends, the victim payee and the beneficiary access to the
deposit, locking out the payer. Otherwise, if the payer acts
honestly, he can get the deposit back. We design the pubkey
script (scriptPubKey) for the deposit transactions as follows,
where Output B denotes the output redeemed and controlled
by the payee and Output P denotes the output redeemed and
controlled by the beneficiary:
• Output B:

IF
DUP HASH160 <PKB hash> EQUALVERIFY
CHECKSIGVERIFY
ELSE
<Lock Time> CHECK LOCKTIMEVERIFY DROP
ENDIF
DUP HASH160 <PKA hash> EQUALVERIFY
CHECKSIG

• Output P:
HASH160 <redeemScript hash> EQUAL
where the redeemScript is:
IF 2 PKP , PKB 2 CHECKMULTISIGVERIFY
ELSE
<Lock Time> CHECKLOCKTIMEVERIFY DROP
ENDIF
<PKA> CHECKSIG

Correspondingly, once the beneficiary has detected the pay-
er’s double-spending, the required signature script
(scriptSig) would be as follows:

• For Output B
<σA> <PKA> <σB> <PKB> OP 1

• For Output P
<σA> OP 0 <σP> <σB> OP 1 <redeemScript>

where the payer’s signature is obtained from the beneficiary’s
extraction of the payer’s private key.

If the payer has not double spent, he can gain full access
to his deposit using the following scriptSig:

• For Output B
<σA> <PKA> OP 0

• For Output P
<σA> OP 0 <redeemScript>.

We write the scripts using Bitcoin script language. Hence,
the transactions that use our scripts can be supported by
Bitcoin network without any modifications on current Bitcoin
structures, since Bitcoin nodes which accept transactions using
the IF ELSE structure have already existed in Bitcoin net-
work. The transactions that use our scripts can be broadcasted
to such Bitcoin nodes, mined into blocks, and subsequently
confirmed by the Bitcoin network.

B. Validation and Evaluation

1) Scripts Validation: We show the validity of our scripts
by observing the evaluation of the respective scriptSig and
scriptPubKey in the stack. According to the Developer
Guide released by Bitcoin Project [7], if false is not at the

Fig. 4. Evaluation stack during the Output B script validation when the payer
double spends.

Fig. 5. Evaluation stack during the Output P script validation when the payer
double spends.

top of the stack after the scriptPubKey has been evaluated,
the transaction is valid (provided there are no other problems
with it). To test whether the transactions that transfer the coins
locked in the deposit are valid, scriptSig and scriptPubKey
operations are executed one item at a time in the evaluation
stack, starting with the payer’s scriptSig and continuing to
the end of the scriptPubKey provided by whom redeems the
deposit.

Figure 4 and Figure 5 show the evaluation stack during the
validation of scriptPubKey provided by the payee and the
beneficiary, respectively, if the payer double spends. We can
see that at the end of the computations, the return value at
the top of the stack is TRUE, affirming that our scripts can be
performed successfully and the transactions using these scripts
are valid. Detailed description of these validation processes are
given in the full version [5]. We also evaluate the stack during
the scripts validation in the event that the payer acts honestly
and the corresponding evaluation stacks over time can also be
reached in the full version [5]. The results demonstrate that
the transactions that redeem the deposit using our scripts are
also valid when the payer acts honestly.

2) Performance Evaluation: We evaluate the overhead
caused by the accountable assertion algorithm. For each round
of the experiment, we first generate a Bitcoin key pair as
the payer’s Bitcoin key pair and a Bitcoin address as the
context. The Bitcoin key pairs used in each round are all

TABLE I
ACCOUNTABLE ASSERTION PERFORMANCE EVALUATION.

Operation AVG Time (ms)
[2] Our Fair Deposits

Assertion generation 9 18
Assertion verification 4 8

Key extraction N/A 36

generated using OpenSSL 1.0.1h. The corresponding Bitcoin
addresses are calculated with the RIPEMD160() and SHA256()
commands in the OpenSSL C++ library. We then generate and
verify an accountable assertion using the generated Bitcoin
key pair and the context, and record the required time for
assertion generation and verification respectively. After that,
we generate another assertion using the same context and dif-
ferent statement, and then extract the Bitcoin private key from
these two conflicted assertions. In addition, we also record the
required time for the key extraction. We run the experiments
for 50 rounds and the average time for assertion generation,
assertion verification and key extraction are recoded in Table I.

The experiments are perfomed on a 2.4GHz (Intel Core
i5-4258U) machine with a DDR3-1600MHz RAM. Ruffing
et al. [2] also evaluate the overhead of their design caused
by assertion generation and assertion verification. Comparing
with [2], our design needs more time to generate and verify an
assertion. This is because in our design the size of the context
and the statement grow by a significant amount. We use a 20-
byte hexadecimal Bitcoin address as the context and a 32-byte
random number as the statement, while the context is 8-byte
and the statement is 3-byte in [2]. However, the computational
overhead of our design is still millisecond-level, hence it is still
manageable and acceptable.

VI. RELATED WORK

A. Non-equivocation Contracts

Non-equivocation contracts are a form of smart contrac-
t [8], [9], [10]. To ensure that a secret key obtained through
equivocation is indeed associated with funds, every party that
should be prevented from equivocating is required to put
aside a certain amount of funds in a deposit [10], [11], [12],
[13]. In the deposit schemes, the funds are time-locked in
the deposit, i.e., the depositor cannot withdraw them during a
predetermined time period. On the other hand, deposits with
explicit beneficiaries and payment channels are possible to be
made even without time-locked features [10], [14].

B. Incentivized Computation in Bitcoin

In Bitcoin network, the proof of work are undertaken by all
miners who are rewarded for validating blocks by incentive
coins. However, being the first to successfully verify a block
(i. e., being the first to finnd a valid nonce) happens only with
a very small probability. Miners therefore often group into
mining pools where multiple miners contribute to the block
generation conjointly. Multiple different payout functions are
used for sharing the profits in mining pools [4]. However, If

the controlled supply of coins continues as specified, approx-
imately in the year 2032 the reward will be less than 1 BTC,
and in the year 2140 it will be down to zero. According to [15],
this kind of deflation is a self-destruction mechanism. It puts
the security of crypto currencies at risk by driving of miners.
Whether the transaction fees will suffice to compensate the
decreasing reward and to provide the necessary incentive for
miners remains unclear and is controversially discussed [16].
It is obvious that our scheme provide a new way to reward
the miners with coins.

C. Reputation Systems

Credit systems where users are rewarded for good work
and fined for cheating (assuming a trusted arbiter/supervisor in
some settings) are proposed in [17], [18]. Fair secure computa-
tion with reputation systems was considered in [19]. Particular-
ly, in Bitcoin network, it is possible to trace transactions back
in history. Therefore, even if a double-spending transaction is
successful, the blockchain allows nodes to recognize double
spendings and to identify the tainted coins [20]. The victim
will likely keep an eye on these coins and track their flow.
Other traders might not be willing to accept tainted coins,
because they will always be associated with a fraud. This
leads to blacklisting and whitelisting considerations. Moser
et.al provided first thoughts on quantifying and predicting the
risks that are involved [21] .

VII. DISCUSSION

In Bitcoin network, double spending transactions happens
with a low probability. Given that, if we create a deposit for
every output of bitcoin transactions, it would result in locking
a large number of coins in deposits. Especially, for the users
who only have a relatively small number of coins, it would
significantly limit their activities on Bitcoins network and
obstruct their normal transactions. Moreover, much transaction
fees would arise from the transactions of making deposits even
for an honest user who has never double spent and has no
intention of equivocating in the future. Therefore, to reduce
the deposit value and transaction fees for a honest payer, we
design a protocol allowing a payer to make just one deposit
for multiple transactions. Our protocol ensures that the victim
payee of the double-spending transaction get a fair enough
compensation from the deposit. The details of this extension
can be reached in the full version of this paper [5].

In some cases, the beneficiary of the deposit is a randomly
selected miner rather than an explicit beneficiary. In such
cases, we provide an extension of the deposit protocol without
any explicit beneficiary. We also extend our deposit protocol
to non-equivocation contracts. These extensions are also given
in our full version [5]. Compared to the non-equivocation
contracts proposed in [2], our non-equivocation contracts not
only penalize the equivocating party but also compensate a
victim party’s loss. In addition, our non-equivocation contracts
are resistent to the collusion attacks between the equivocating
party and the beneficiary.

VIII. CONCLUSION

In this paper, we proposed fair deposits against double-
spending for Bitcoin transactions. The fair deposits can be
used to prevent the collusion attacks between the payer and
the beneficiary, and guarantee the compensation to the payee’s
loss. We first provided a solution to make a deposit for
one transaction, including both the transaction with single
input and output and the transaction with multiple inputs and
outputs. We also analysed the performance of our fair deposits
and showed that it has an acceptable overhead.

REFERENCES

[1] M. Rosenfeld, “Analysis of hashrate-based double spending,” arXiv
preprint arXiv:1402.2009, 2014.

[2] T. Ruffing, A. Kate, and D. Schröder, “Liar, liar, coins on fire!:
Penalizing equivocation by loss of bitcoins,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 219–230.

[3] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013 Proceedings. IEEE, 2013, pp. 1–10.

[4] M. Rosenfeld, “Analysis of bitcoin pooled mining reward systems,”
arXiv preprint arXiv:1112.4980, 2011.

[5] “Fair deposits against double-spending for bitcoin transactions (ful-
l version),” [EB/OL], https://www.dropbox.com/s/3aeaffef79l11jz/Fair
deposit Full%20Version.pdf?dl=0.

[6] T. Ruffing, A. Kate, and D. Schröder, “Implementation of accountable
assertion scheme.”

[7] “Bitcoin developer guide,” https://bitcoin.org/en/developer-guide#
stratum, bitcoin Project.

[8] V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform.” https://github.com/ethereum/wiki/wiki/White-Paper.

[9] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart con-
tracts,” Cryptology ePrint Archive, Report 2015/675, 2015. http://eprint.
iacr. org, Tech. Rep., 2015.

[10] “Providing a deposit.” https://en.bitcoin.it/w/index.php?title=
Contracts&oldid=50633#Example 1: Providing a deposit, bitcoin
Wiki.

[11] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 443–458.

[12] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Advances in Cryptology–CRYPTO 2014. Springer, 2014,
pp. 421–439.

[13] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct
computations,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, pp. 30–41.

[14] M. Andrychowicz, S. Dziembowski, D. Malinowski, and Ł. Mazurek,
“How to deal with malleability of bitcoin transactions,” arXiv preprint
arXiv:1312.3230, 2013.

[15] N. T. Courtois, “On the longest chain rule and programmed self-
destruction of crypto currencies,” arXiv preprint arXiv:1405.0534, 2014.

[16] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of bitcoin
mining, or bitcoin in the presence of adversaries,” in Proceedings of
WEIS, vol. 2013. Citeseer, 2013.

[17] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and
A. Lysyanskaya, “Incentivizing outsourced computation,” in Proceedings
of the 3rd international workshop on Economics of networked systems.
ACM, 2008, pp. 85–90.

[18] P. Golle and I. Mironov, “Uncheatable distributed computations,” in
Topics in CryptologyCT-RSA 2001. Springer, 2001, pp. 425–440.

[19] G. Asharov, Y. Lindell, and H. Zarosim, “Fair and efficient secure multi-
party computation with reputation systems,” in Advances in Cryptology-
ASIACRYPT 2013. Springer, 2013, pp. 201–220.

[20] A. Gervais, V. Capkun, S. Capkun, and G. O. Karame, “Is bitcoin a
decentralized currency?” 2014.

[21] M. Möser, R. Böhme, and D. Breuker, “Towards risk scoring of bitcoin
transactions,” in Financial Cryptography and Data Security. Springer,
2014, pp. 16–32.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2017

	Fair deposits against double-spending for Bitcoin transactions
	Xingjie YU
	Shiwen M. THANG
	Yingjiu LI
	Robert H. DENG
	Citation

	tmp.1515653846.pdf.l6vEH

