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Abstract 

A unidirectional (UD) glass fibre reinforced polymer (GFRP) composite was scanned at varying 

resolutions in the micro-scale with several imaging modalities. All six scans capture the same 

region of the sample, containing well-aligned fibres inside a UD load-carrying bundle. Two scans 

of the cross-sectional surface of the bundle were acquired at a high resolution, by means of 

scanning electron microscopy (SEM) and optical microscopy (OM), and four volumetric scans 

were acquired through X-ray computed tomography (CT) at different resolutions. Individual 

fibres can be resolved from these scans to investigate the micro-structure of the UD bundle. 

The data is hosted at https://doi.org/10.5281/zenodo.1195879 and it was used in [1] to 

demonstrate that precise and representative characterisations of fibre geometry are possible 

with relatively low X-ray CT resolutions if the analysis method is robust to image quality. 

 

Keywords: Geometrical characterisation, Polymer-matrix composites (PMCs), Volumetric fibre 

segmentation, Automated fibre tracking, X-ray imaging, Microscopy, Non-destructive testing. 

 

Specifications Table  

Subject area Physics 

More specific subject area Fibre composites, micro-structure characterisation, geometry of 
individual fibres 

Type of data Image (X-ray and microscopy) 

How data was acquired - Optical microscopy (OM): Leica DMI5000 M. 
- Scanning Electron Microscopy (SEM): Carl Zeiss AG SUPRA 35.  
- Laboratory X-ray CT (XCT): ZEISS Xradia 520 Versa. 
- Synchrotron X-ray CT (SRCT): ID19 beamline from the 

European Synchrotron Radiation Facility (ESRF). 

Data format Raw (microscopy), reconstructed (X-ray CT) 

mailto:monj@dtu.dk
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https://doi.org/10.5281/zenodo.1195879


Experimental factors - The surface of the sample was polished before acquiring the 
OM scan. 

- To acquire the SEM scan the surface of the sample was made 
conductive by adding a coating of gold. 

Experimental features Two surface and four volumetric scans capturing the same region of 

the specimen with pixel sizes ranging from 0.18 m to 2.81 m.  

Data source location Roskilde, Denmark and Grenoble, France. 

Data accessibility The data can be downloaded from: 
https://doi.org/10.5281/zenodo.1195879 

Related research article The data-sets presented in this paper have been used in [1] to 
demonstrate the precision of X-ray CT for characterising fibre 
geometry in unidirectional composites at the micro-scale. In [1] we 
also demonstrate that high-precision measurements can be obtained 
from low-resolution X-ray CT scans if coupled with analysis methods 
that are robust to image resolution, such as the individual fibre 
segmentation in [2].  
Obtaining precise measurements from low-resolution X-ray CT scans 
will facilitate the analysis of larger volumes, enabling quantifications 
that are more representative than what has been obtained in other 
studies. As shown in [1], the geometry of individual fibres can be 
characterised with high precision in a fast and reliable manner using 
laboratory micro-CT scanners. 

 

Value of the Data 

 This data can be employed to test methods for individual segmentation of fibres. By 

analysing the area of great overlap across scans, it is possible to assess the imaging 

modalities to which a segmentation method is applicable. Additionally, it is possible to 

investigate the robustness of the segmentation method to image pixellation and 

determine whether precise measurements can be obtained from low-resolution scans 

that capture fields of view containing a representative number of fibres.  

 

 This data can be used to quantify aspects of the fibre geometry, such as individual fibre 

diameters [1] and orientations [2], local fibre volume fraction or fibre contact points. 

The quantification of fibre geometry obtained from precise measurements can provide 

insights into the fibre and composite’s manufacturing processes. Real samples differ 

from the design criteria and it is of interest to study the variability of the fibre geometry 

in 3D, as it strongly affects the mechanical performance of the composite. 

 

 The fibre geometry measurements obtained from these data-sets can also be employed 

for generating two- and three-dimensional micro-mechanical models with the purpose 

of simulating the behaviour of the real sample under load [3].  



 

 

 

Data 

The data presented in this article consists of six scans. Two surface scans acquired with optical 

microscopy and scanning electron microscopy (see Fig. 1) and four volumetric scans acquired by 

means of X-ray computed tomography (CT) at a laboratory (three different resolutions, see Fig. 

2) and a synchrotron source (see Fig. 3). 

 

As can be seen in Fig. 1-3, the resolutions and fields of view (FoV) vary for all six data-sets. The 

pixel sizes and FoV are reported later on in this article.  There is an area of the sample captured 

approximately by all six scans. This area of great overlap is marked in green in Fig. 1-3.  

 

The optical microscopy scan is given under the folder “OM” as one “.tif” image whereas the 

scanning electron microscopy scan is given under the folder “SEM” as a set of 49 “.tif” images. 

These 49 images were fused using ImageJ to obtain the image in Fig. 1b, which is provided as a 

“.jpg” image inside the folder “SEM”. 

 

As to the three-dimensional X-ray scans, the reconstructed CT volumes are given as a series of 

“.tif” cross-sectional slices. We are sharing the full volumes for the scans acquired at the 

laboratory scanner, along with the relevant scan settings (labelled “info1” and “info2”). The 

three volumes are under the folders named “XCT_L”, “XCT_M” and “XCT_H” corresponding to 

the three spatial resolutions: low, mid and high. Fig. 2 shows the cross-sectional slice closest to 

the top surface of the sample for the low-resolution data-set, where the FoV for the higher 

resolution scans has been indicated over the cross-sectional image. 

 

 

 

 



 
(a) Optical microscopy 

 

 

(b) Scanning electron microscopy 
 

Fig. 1. Surface scans with the sample area of great overlap across scans marked in green. 



 

  

 
Fig. 2. X-ray CT cross-sectional slice for the low-resolution scan, illustrating the decrease in field of view for scans 
with increased spatial resolution. The sample area of great overlap across scans has been marked in green and the 
fields of view for the low- (XCTL), mid- (XCTM) and high- (XCTH) resolution scans have been marked in red, yellow 
and white respectively. 

 
 

The fourth X-ray CT scan was acquired at ID19, beamline of the European Synchrotron 

Radiation Facility (ESRF). This scan is higher in resolution than the laboratory scans and also 

covers a larger region of the sample, see Fig. 3 for the cross-sectional slice that is closest to the 

imaged surface. While the scans acquired at the laboratory scanner occupied under 1.3 GB, the 



full high-resolution synchrotron scan is over 100 GB. Thus, we have decided to share only 61 

full-resolution cross-sectional slices, covering a depth of 0.6 mm from the surface of the 

sample. 

 

 
Fig. 3. X-ray CT cross-sectional slice for the synchrotron scan with the sample area of great overlap between 
all six scans indicated in green. 

 

 

Experimental Design, Materials, and Methods 

The scanned unidirectional (UD) glass fibre composite is a non-crimp fabric commonly used in 

the load-carrying parts of wind turbine blades, for details on this type of composite see [4]. The 

imaged sample of cross-sectional size 2 mm x 2 mm consists of UD fibre bundles stitched on 

backing bundles angled 45°, -45° and 90° with respect to the UD (0°) bundles. For more details 

and illustrations see [1,4]. 

 



The sample was scanned under no load. The surface of the UD bundle was imaged through 

optical and scanning electron microscopy and the internal micro-structure was imaged using X-

ray CT. Three scans were acquired at a laboratory source at three different resolutions and a 

fourth scan was acquired at a synchrotron facility at a higher resolution. The pixel sizes for the 

six scans are reported in Table 1 and details for the four different imaging sources are given in 

the following. 

 
Table 1. Pixel sizes (as reported by the instruments) and fields of view for the six scans. For the 3D scans the depth 
is also provided. NR where not relevant. 

Data-set Pixel size [    Fields of View (FoV) Depth 

SEM 0.19 0.56 mm x 1.17 mm*  NR 
OM 0.29 0.61 mm x 0.82 mm NR 
SRCT 0.65 2.82 mm x 2.82 mm 0.63 mm (just 61 slices) 
XCTH 1.04 1.05 mm x 1.05 mm 0.65 mm 
XCTM 1.69 1.71 mm x 1.71 mm 0.96 mm 
XCTL 2.81 2.84 mm x 2.84 mm 1.53 mm 
* after stitching 49 scans 

 

The optical microscopy scan was acquired using the objective x20 of the Inverted Research 

Microscope for Materials Testing Leica DMI5000 M. Before taking the OM image, the sample 

was polished using a Tegramin machine from Struers. 

 

The scanning electron microscopy image was acquired using the Carl Zeiss AG - SUPRA 35 with 

an in-lens SE2 secondary electron detector, an acceleration voltage of 15 kV, a working distance 

of 9.1 mm and a magnification of x2160. Before acquiring the scan, the surface of the sample 

was coated with gold using a BALTEC SCD 005 sputter coater. A sputtering current of 30 mA and 

a sputtering time of 76 s were set in order to obtain a 10 nm thick layer of gold. 

 

Three X-ray CT scans were acquired with the laboratory micro-focus X-ray CT system Zeiss 

Xradia 520 Versa. The settings for the three scans are reported in Table 2.  

 
Table 2. X-ray CT scanner settings. 

Data-set XCTL XCTM XCTH 

Optical magnification 4.01(4x) 4.01(4x) 4.01(4x) 
Source to sample distance 10 mm 10 mm 10 mm 
Detector to sample distance 14 mm 30 mm 55 mm 
Exposure time (per projection) 0.5 s 1 s 4.5 s 
Accelerating voltage 80 keV 80 keV 80 keV 
Power 6.99 W 6.99 W 6.99 W 
Number of projections 4201 3201 4201 



 

The synchrotron X-ray CT scan was acquired at the ID19 beamline of the European Synchrotron 

Radiation Facilty (ESRF) during the 16-bunch top-up mode. The synchrotron radiation was 

produced with the undulator U13, which creates a spectrum with a narrow peak in the energy 

of 26.3 keV. The detector consisted of a PCO.edge 5.5 camera with an optical magnification of 

10x and a GGG10 scintillator. The detector was placed at a distance of 13 mm from the sample, 

which resulted in a voxel size of 0.65 mm. The sample was rotated 360° with the centre of 

rotation placed on the side of the projection, so as to double the horizontal field of view. The 

number of projections acquired was 4608 and the exposure time 0.1 s. 
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