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Abstract
Diatoms and copepods are main actors in marine food webs. The prey–predator interactions between them affect bloom
dynamics, shape marine ecosystems and impact the energy transfer to higher trophic levels. Recently it has been
demonstrated that the presence of grazers may affect the diatom prey beyond the direct effect of grazing. Here, we
investigated the response of the chain-forming centric diatom Skeletonema marinoi to grazer cues, including changes in
morphology, gene expression and metabolic profile. S. marinoi cells were incubated with Calanus finmarchicus or with
Centropages typicus and in both cases responded by reducing the chain length, whereas changes in gene expression
indicated an activation of stress response, changes in the lipid and nitrogen metabolism, in cell cycle regulation and in
frustule formation. Transcripts linked to G protein-coupled receptors and to nitric oxide synthesis were differentially
expressed suggesting involvement of these signalling transduction pathways in the response. Downregulation of a
lipoxygenase in the transcriptomic data and of its products in the metabolomic data also indicate an involvement of
oxylipins. Our data contribute to a better understanding of the gene function in diatoms, providing information on the nature
of genes implicated in the interaction with grazers, a crucial process in marine ecosystems.

Introduction

Predation is the largest source of mortality for marine
phytoplankton with >90% of the pelagic primary production
consumed by zooplankton [1, 2]. The pelagic lifestyle offers
a limited repertoire of anti-predator strategies compared

with more complex benthic and terrestrial habitats. Yet,
pelagic organisms can modulate key traits to reduce pre-
dation risk. For example, some species of phytoplankton
may modify chain length, swimming speed or toxin pro-
duction in response to the presence of predators, which
reduce predator encounter rates or palatability and, hence,
predation mortality [3–8]. Behavioural responses to the
presence of predators may cascade through food webs and
may have larger impact on food web structure than preda-
tion rates themselves [9]. Adaptive responses to the threat
from consumers are present in organisms from bacteria to
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large vertebrates [10] and are known to cause cascading
effects in food webs [11].

Diffusible cues from zooplankton predators trigger
changes in key traits serving to evade consumers with
potential impact on food web structure [12]. These pro-
cesses have received little attention in phytoplankton ecol-
ogy, and the molecular mechanism through which
microphytoplankton sense and respond to consumers has
been examined in very few studies. Alexandrium minutum,
a harmful dinoflagellate, increases the production of
paralytic shellfish toxins in the presence of copepods
through the regulation of relatively few genes [13]. Most of
the regulated genes have unknown function, making it
difficult to reconstruct a mechanism for the response.
Transcriptomics allowed the exploration of the differences
in gene expression between two Alexandrium fundyense
strains exposed to a protist grazer [14]. Signal transduction
via G protein-coupled receptors (GPCRs) was hypothesised
in A. fundyense when exposed to the heterotrophic dino-
flagellate, but DNA methylation and thus epigenetic reg-
ulation was also indicated.

Here, we consider the predator–prey interaction between
copepods and diatoms. Copepods are among the most
successful and abundant multicellular organisms in the sea
and among the main grazers of diatoms and other micro-
phytoplankton in the ocean. Diatoms are unicellular pho-
tosynthetic protists that have colonised almost all humid
environments, and represent one of the major groups of
marine primary producers.

Several diatom species produce polyunsaturated alde-
hydes and other fatty acid (FA) derivatives that lead to
reduced fecundity and induce larval malformations in
copepods that fed on them [15]. Among these, the ubiqui-
tous marine colonial, bloom-forming diatom Skeletonema
marinoi [16], known to produce several oxygenated FA
derivatives, including different classes of oxylipins [17].
These compounds have been proposed to play a role in
allelopathy and cell-to-cell signalling [18–20].

We have previously shown that S. marinoi modifies its
colony size in response to chemical cues from copepods [7].
Here, we aim at identifying the molecular mechanism of
diatom response to the presence of copepod grazers by
comparing metabolic and gene expression responses. We
apply a multiomics approach, targeting small molecules, FA
composition and transcriptional changes simultaneously. By
using this approach we identify the genes involved in threat
detection and the onset of a smaller colony size phenotype.
We observe the induction of a stress response, changes in
the lipid and nitrogen metabolisms, and a response in genes
possibly associated with division and chain dynamics. We
also highlight changes in signal transduction pathways,
such as signalling mediated by GPCRs, one of the largest
classes of cell-surface receptors involved in a wide range of

processes [21]. The metabolomics data extend the gene
expression data and indicate complex changes occurring
downstream of the transcriptomic level of gene regulation.

Materials and methods

Organisms and experimental design

Females of the copepods Centropages typicus and Calanus
finmarchicus (Fig. 1a) were picked from plankton samples
collected near Tjärnö Island in the North Sea (Sweden; 58°
N51’–11°E7’) and maintained in filtered sea water until the
next morning when experiments started. S. marinoi strain
V32, isolated from a germinated resting stage originating
from surface sediment near the Vinga island in the Ska-
gerrak, was cultivated in F2 medium [22] in 2 l-Pyrex®
sterile bottles and kept in exponential growth by daily
dilutions until use. Photoperiod and irradiance were 16L:8D
and ~80 µmol photos m−2s−1.

Two experiments were run, one with Centropages typicus
(Exp.1) and one with Calanus finmarchicus (Exp.2). At time
0, copepods (7 C. typicus or 10 C. finmarchicus) were added
to each of 10 2-litre bottles, leaving another 10 bottles as un-
grazed controls. Five grazed and un-grazed bottles were
harvested after 65 h and the remaining five after 89 h from

Fig. 1 a The calanoid grazers Calanus finmarchicus and Centropages
typicus were used in bottle incubations with Skeletonema marinoi, the
chain-forming diatom depicted in the top right light micrograph. The
inset electron micrograph details the connection between daughter
cells, which is split up in response to copepod grazers. The white scale
bar applies to the electron micrograph. b Chain length of Skeletonema
marinoi after 65 and 89 h (T1 and T2) of exposure to Calanus fin-
marchicus or Centropages typicus. Grazer-free controls are shown in
black, and grazer-exposed cultures in white. Both grazers induced a
similar and significant shortening of chains. Bars show average values
of three replicates, error bars denote standard error of mean
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introducing animals into the bottles (T1 and T2, respectively)
(Supplementary Figure 1). Sampling points were chosen
based on the effects seen in Bergkvist et al. [7]. At each time
point, 15 ml were fixed for microscopic cell counts; 50ml
were analysed by microscopy to obtain chain length spectra;
5 ml were used for the Coulter Counter (Beckman); 1 litre
was filtered to isolate RNA and 500ml to isolate metabolites.
Copepods were excluded from the last two samples by
prefiltering through a sieve (64 µm mesh size, this allows
even the longest diatom chains to pass through). For RNA-
seq, three controls and three treated samples for each time
point in Exp.2 were used. RNA extraction and sequencing
are described in Supplementary File 1.

qPCR validations

For quantitative PCR (qPCR) validations, 12 RNA samples
(three controls and three copepod-treated for each time
point) from Exp.1 and 8 samples (two controls and two
copepod-treated for each time point) from Exp.2 were
reverse transcribed using Qiagen QuantiTect Reverse
Transcription Kit (Qiagen). qPCR was conducted as
described in Basu et al. [23] using an Applied Biosystems
ViiA™ 7 Real-Time PCR System (Life Technologies).

Reference transcriptome generation and annotation

The raw reads (accession E-MTAB-6076) were adapter
filtered and quality trimmed using Trimmomatic [24] then
assembled using Trinity [25] and annotated using Annocript
pipeline [26] (Supplementary File 1). The expression levels
were quantified using Bowtie [27]. Transcripts <200
nucleotides or with an expression <1 count per million
(CPM) were removed.

Phylogenetic analyses

All the sequence data sets (Supplementary File 1) were
automatically aligned using ClustalW implemented in
MEGA6 software [28] and the alignment was then manu-
ally curated. Bestfit [29] defined the best evolution model
(the best model is reported in the figure legends). For
maximum likelihood (ML) analyses, 10,000 bootstrap
replicates were performed.

Liquid cromatography-mass spectrometry (LC-MS)
analysis, processing and multivariate analysis

Samples were analysed on an Agilent 1100 HPLC coupled
to an Agilent Q-TOF 6540 mass spectrometer. The samples
were separated on a Licrosphere 2.1×150 mm, 3 µm
C18 silica column (Poroshell, Agilent) using an eluent
gradient. The resulted raw data were processed and aligned

to generate a list of features (hereafter referred to as
“metabolites”) consisting of retention time and molecular
masses. A detailed description of the analyses and proces-
sing is given in Supplementary File 1. Calculations of ele-
mental compositions were only performed on metabolites
with a neutral mass lower than 500 Da. Data were nor-
malised by biovolume from electronic cell counts before
multivariate analysis to avoid confounding effects of graz-
ing. The metabolic response of Skeletonema to copepod
grazing was analysed with multivariate data analysis, using
the software SIMCA (version 13.0.0.0, Umetrics, Sweden).
Principal component analysis was used to generate an
overview and to analyse for systematic differences in
metabolite content between treatments. The metabolite data
were modelled and interpreted using orthogonal partial least
squares with discriminant analysis [30, 31]. Data have been
deposited to MetaboLights (MTBLS571) [32].

Total FA analysis

Total FAs were extracted and methanolised as described in
Supplementary File 1, then resuspended in heptane and ana-
lysed using an Agilent 7820 GC coupled to an Agilent 5975
mass selective detector. The FA methyl esters were separated
on a 30m, 0.25mm DB-23 capillary column (Agilent) using
helium as carrier gas at a constant flow of 0.6mlmin−1. Methyl
esters were identified by mass spectrum and compared with
authentic standards (Me 100, Me81 and individual FA methyl
esters, Larodan, Solna, Sweden and Marine PUFA no.3,
Sigma-Aldrich). The FA methyl esters were quantified from the
total ion chromatogram against the 19:0 internal standard.

Results

Diatom chain length reduction in presence of
copepods

S. marinoi cells grown in the presence or absence of the
copepods Centropages typicus or Calanus finmarchicus
differed in cell chain length: cell concentrations were lower
and chain lengths were shorter in the copepod-exposed
cultures compared with the controls (Table 1, Fig. 1, Sup-
plementary Figure 2).

General gene expression profile and metabolite
changes in diatoms exposed to copepods

RNA-seq profiling of transcriptomic changes induced by
grazing

A total of 4185 genes were differentially expressed in
copepod-treated cells compared with control cells (Exp.2).

Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom



The expression of 7% and 16.5% of the total S. marinoi
transcripts were regulated at T1 and T2, respectively, indi-
cating a stronger response at the second time point (Sup-
plementary Tables S5-S6, Fig. 2a-b). Almost 2/3 of the
differentially expressed genes could be associated with a
known function (a SwissProt, Conserved Domain or UniRef
description).

A total of 509 genes were downregulated and 598 genes
were upregulated at both time points, whereas only 6 genes
were downregulated at T1 and upregulated at T2 (Fig. 2c): two
unknown, a putative oxidoreductase, a High-affinity nitrate
transporter 2.2, Fibrocystin-L and Glutamine synthetase.

We looked for functions that appeared in the differen-
tially expressed genes with a higher frequency than in the
entire transcriptome (gene ontology (GO) and pathway
enrichments, Fig. 2d, Supplementary Tables S7-S8). Cells
appeared to be mainly rewiring transcriptional regulation at
T1, whereas at T2 there seemed to be an established

transcriptional programme mainly involving translation and
energy metabolism.

Notably, we observed 9 and 36 long non-coding RNAs
to be differentially regulated in copepod-exposed samples at
T1 and T2, respectively, indicating their participation in
regulating cellular response in the presence of grazers.

Validation of the transcriptional response using qPCR

To validate the RNA-seq results, we selected 10 differen-
tially expressed genes representing different pathways and
performed qPCR analyses on independent grazed and
control cultures from Exp.2 (Table 2). The Pearson’s cor-
relation between RNA-seq and qPCR results for Exp.2
indicated high consistency (R2= 0.95, p= 2.3e-05 for T1
and R2= 0.89, p= 0.0006 for T2). The same set of genes
was tested on RNA samples produced from Exp.1 and the
results were similar (Table 2) (R2= 0.80, p= 0.0048 at T1

Table 1 S. marinoi cell concentration (cell ml−1) in control and copepod-containing cultures

Start T1—after 65 h T2—after 89 h

Exp.1 control 5000 27,510 ± 2748* 44,920 ± 4953

Exp.1 Centropages typicus treated 5000 15,563 ± 4006* 24,050 ± 3143

Exp.2 control 10,000 46,822 ± 3799 114,373 ± 31,244

Exp.2 Calanus finmarchicus treated 10,000 36,167 ± 5999 62,104 ± 17,829

Average ± standard deviation is reported (n = 5)

*n= 4

Fig. 2 a, b Plots showing the genes differentially expressed at T1 and
T2, respectively. Fold changes in log scale are reported on the y axis,
each dot represents a transcript, the dot size is proportional to the
levels of expression measured as CPM (counts per million). Tran-
scripts are arranged on the x axis according to their logCPM. c Venn
diagram showing the number of shared and unique differentially
expressed transcripts at the two time points. d Representation of GO
terms significantly enriched among differentially expressed transcripts.

The charts show the proportion of transcripts associated with the
significant classes among differentially expressed transcripts at T1
(yellow) and T2 (green) and their respective proportion in the
assembled reference transcriptome (red). On x axis, percentage is
reported. On y axis, GO terms. The green shade indicates GO terms
associated with cellular component, the purple to molecular function
and the blue to biological processes

A. Amato et al.



and R2= 0.74, p= 0.0145 at T2). Thus, S. marinoi cells
exhibit analogous responses to the presence of two different
copepod species.

Metabolomics

In total, we detected 769 metabolites that were present in at
least three replicates within a single treatment group. Out of
these, 242 metabolites were present at different concentra-
tions in grazed and control cultures (Fig. 3, Supplementary
Figures 3–4, Supplementary Table S9). In contrast to the
transcriptomics data, the difference between grazed and
control cultures was larger at T1. There were more down-
regulated than upregulated metabolites in grazed cultures at
T1 and the majority of downregulated metabolites at T2
were also downregulated at T1 (Fig. 3a, Supplementary
Table S9). Upregulated metabolites were less consistent
between time points, with the proportion of shared upre-
gulated metabolites constituting 30% and 40% at T1 and
T2, respectively. The treatment effect at T1 was mainly due
to upregulation of larger molecular weight metabolites in
grazed treatments, indicative of anabolism. The targeted
analysis of FA showed a relative increase of longer chain
polyunsaturated FA in grazed treatments at the expense of
shorter chain FA (Supplementary Figure 5). At T2, no clear
distinction in molecular size between upregulated and
downregulated metabolites was recorded.

Signal transduction

The perception of external cues must trigger a signal
transduction cascade and this prompted a search for

transcripts related to this process. S. marinoi cells appear to
transduce signals from the copepods through the GPCR
signalling pathway. Transcript c19949_g1_i1 was 1.6-fold
higher in copepod-treated samples and finds its best diatom
homologue in the Phaeodactylum tricornutum GPCR3
(XP_002186461 [33]). In addition, different transcripts
encoding proteins belonging to GPCRs signal transduction
routes were regulated: at T2, a putative adenylate cyclase
(c6665_g1_i1) and cyclic nucleotide-gated cation channels
were upregulated, as was a putative phosphatidylinositol 3-
kinase (c16565_g1_i1). GPCR signalling can also proceed
via Rho GTPases. As the GTPase family is complex, we
constructed a phylogenetic tree for small GTPases in S.
marinoi (Supplementary Figure 6), and found that some of
the family members were regulated in our data set. Upre-
gulation of a tubby-like protein (transcript c11030_g1_i1),
and of mitogen-activated protein kinase (MAPK) and
mitogen-activated protein kinase kinase (MAPKK), down-
stream of GPCRs and associated with cell proliferation,
were also found.

Nitric oxide (NO) signalling may also be implicated in
the response to grazers, as a gene encoding a NO synthase
was upregulated (c9307_g1_i1, corresponding to
MMETSP1040-20121108|15944 [34]).

Stress response

Transcripts annotated as heat shock factor proteins or heat
stress transcription factors, belonging to the enriched term
sequence-specific DNA binding (Fig. 2d), were among those
showing the highest changes (Supplementary Tables S5-
S6). Other signatures of stress were the upregulation of

Table 2 Validation of the transcriptional response with qPCR

Transcript ID Gene function LogFC

RNA-seq Exp2 qPCR Exp1
Centropages

qPCR Exp2
Calanus

T1 T2 T1 T2 T1 T2

c13275_g2_i2 Heat stress transcription factor A-4b 1.8 1.7 3.1 3.3 5 4.6

c7746_g1_i1 cAMP-dependent protein kinase type 1 −3.8 −4.1 −1.7 −2.7 −3.7 −3.2

c6906_g1_i1 Peroxiredoxin Q −2.5 −2.6 −1 −2.6 −2.9 −2.2

c9427_g2_i1 no annotation 5.8 8.2 3.4 2.2 5.9 5.2

c20406_g1_i1 no annotation −2.6 −2.9 −1.6 −1.2 −2.8 −2.4

c16128_g1_i1 Phospholipase A1-Igamma2 −2 −1.4 −2.2 −1.7 −2.8 0.1

c8316_g1_i1 Chitinase A1 −2.7 −2.5 1.6 −1.5 −3.7 −2.5

c5256_g1_i1 Phosphatidylinositol 3-kinase TOR2 — 1.1 0.5 0.5 −0.1 3.8

c9108_g1_i1 Phosphoacetylglucosamine mutase −1.2 −1.5 −0.8 0.5 −2.1 −1.9

c12337_g1_i1 Glutamine-fructose-6-phosphate
aminotransferase

−2.3 −2.8 −1.6 0.3 −3.2 −2.6

LogFC (fold change) is reported for each transcript on sampling occasions T1 and T2 for RNA-seq from Exp2 and qPCR analyses for Experiment
1 (Centropages typicus) and Experiment 2 (Calanus finmarchicus). The qPCR values, which are in accordance with the RNA-seq values, are in
boldface
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Cytochrome P450, and of a Retrovirus-related Pol poly-
protein, suggesting activation of transposable elements in
response to grazing. A few fucoxanthin and chlorophyll
binding proteins were downregulated at both time points,
indicating a possible reduction of the photosynthetic activity
in cells exposed to copepods.

Lipid and nitrogen metabolism

Lipid and nitrogen metabolisms appeared to be impacted by
the presence of copepods, with a general tendency to
degrade complex lipids and to increase nitrate uptake.
Pathway enrichment analyses showed Lipid metabolism and
FA β-oxidation to be significantly enriched in the differ-
entially expressed genes data sets (Supplementary
Table S8).

Genes encoding enzymes involved in subsequent steps of
FA oxidation were all upregulated at both time points
(Supplementary Figure 7). We also found upregulation of
an acyl-CoA carboxylase (c13306_g1_i1) that converts
acetyl-CoA into malonyl-CoA in the first committed step of
FA biosynthesis. Acyl-CoA carboxylases can have different
subcellular localisation, using a signal peptide prediction
software [35] we found a predicted chloroplastic localisa-
tion for the c13306_g1_i1 protein product. At T1, two
putative FA desaturases (−1.8 and −1.9-fold), a phospho-
lipase A (−2.0) and a lipoxygenase (−2.4) were down-
regulated, suggesting that lipid secondary metabolism is
affected as well (Supplementary Table S5).

Lipoxygenases catalyse the production of lipid deriva-
tives called oxylipins. Several downregulated compounds in
the grazed treatment at T1 had retention times and predicted
elemental compositions consistent with oxylipins, in line
with the gene expression changes indicating a down-
regulation of this pathway.

As the pathway analysis implicated the FA metabolism
in the response to copepods (Supplementary Table S8), we

complemented the metabolic profiling with total FA pro-
filing (Supplementary Figure 5). Eicosapentaenoic acid
(EPA, 20:5) consistently had higher relative abundance in
grazed cultures, at the expense of shorter chain FA such as
14:0, 16:2, 16:3, 16:4 and 18:4.

At T2, we observed an upregulation of genes involved
in nitrogen metabolism [36], generally induced during
nitrogen starvation (Supplementary Table S10), possibly
due to the presence of nitrogen forms excreted by cope-
pods [37].

Cell cycle and frustule dynamics

Because grazer cues induce shorter cell chains and as chain
formation and splitting is linked to cell division, we sear-
ched for transcripts related to cell division. GO enrichments
included a number of terms related to cytoskeleton rear-
rangements and mitosis (Fig. 2d).

Nine cyclin genes, fundamental in the control of the cell
cycle, were regulated in response to copepods. One cyclin
gene is the homologue of CYCB1 [38]. The other eight
regulated S. marinoi cyclins were part of the diatom-specific
group (dsCYC, diatom-specific cyclins) [39]. Correspon-
dence of the cyclins regulated in this study to those of the
model diatoms P. tricornutum and Thalassiosira pseudo-
nana is shown in Supplementary Table S11. Putative
dsCYC5, dsCYC7 and dsCYC9 were downregulated,
whereas putative dsCYC6 and dsCYC3 were upregulated.

Interestingly, the early steps of chitin biosynthesis were
downregulated (Supplementary Figures 8–9). Of three
transcripts containing the glutamine:fructose-6-phosphate
aminotransferase (GFA1) domain (c10266, GFA1a,
c12337, GFA1b and c11460g2i1, GFA2, Supplementary
Figure 8), GFA1a and GFA1b were downregulated at both
time points, as were phosphoacetylglucosamine mutase
(PAGM), a one-nucleotide sugar transporter and chitinase
transcripts (c8316_g1_i1, c6786_g1_i2, c12572_g1_i1).

Fig. 3 a The Venn diagram shows the number of metabolites that are
commonly regulated (up or down) at both occasions, as well as
metabolites upregulated, or downregulated on a single occasion. No
metabolites showed opposite regulation between T1 and T2. b, c

Mirror plots showing the abundance of the individual compounds with
copepod samples projected upwards in red and control samples mir-
rored downward in blue. The increased proportion of larger metabo-
lites in copepod-treated cells is clear in b, but less so in c

A. Amato et al.



Discussion

The concept that species interactions via chemical signals
are a major driving force in shaping the structure of
plankton communities has recently found experimental
support [14, 40]. However, data explaining the molecular
mechanisms underlying these processes are still scarce.

Bergkvist et al. [7] investigated diatom responses to
different copepod species and demonstrated that, in the
presence of copepod grazers, S. marinoi reduces chain
length in order to escape grazing pressure. Bergkvist
et al. [7] carried out both caged and free copepod experi-
ments and observed the reduction in chain length in both
cases. The trigger for diatoms to reduce their chain length is
the presence of an active grazer. Indeed, caged copepods
feeding on a different phytoplankton species, the flagellate
Rhodomonas salina produced the same response. Con-
versely, incubating S. marinoi together with the hetero-
trophic dinoflagellate Gyrodinium dominans or with caged
copepods without any prey, did not produce any chain
length variation. In the present study, we incubated the
same diatom species with two different calanoid copepods.
As cages cause a strong signal dampening effect [41], we
conducted experiments with free copepods to maximise the
stimulus. Although here we cannot clearly separate the
effect of grazing, we observed a change in chain length as in
previous studies, and analysed the gene expression profile
and metabolite composition of cells in the presence of
grazers and their cues. The multiomics approach allowed us
to start exploring the mechanism mediating the formation of
a defence morphotype in Skeletonema.

Temporal changes in gene expression and metabolic
profiles suggest substantial metabolic rearrangements. Dif-
ferences in the transcriptomics and metabolic profiles from
grazed and control cultures may partly be affected by a
misalignment of the cell cycle transitions between control
and grazed cultures. Batch cultures in light–dark cycles tend
to divide more or less synchronously. If the grazers trig-
gered a cost that caused delayed or accelerated division in
the grazed cultures, it is possible that their cell cycle was
displaced relative to controls, which may have contributed
to the large metabolic shift seen after 65 h. Different che-
mical profiles during the different growth phases of S.
marinoi have been reported, indicating complex changes
[42, 43]. The stronger transcriptomic response observed at
T2 could reflect not only the response to copepod cues but
also a reaction to a less crowded culture. Studies in Tha-
lassiosira pseudonana identified a set of functions asso-
ciated with the exponential state [44], this partially overlaps
with the set of functions associated with the grazer-
containing (less dense) cultures in our study (Fig. 4).
Nevertheless, other functions change in opposite direction
(light harvesting photosynthesis for instance), and many

regulated transcripts are distinctive of the grazer treatment,
as discussed below.

G protein-coupled receptors

The copepod-produced chemical cues, released in the
medium throughout the experiment, must be perceived by
the diatoms in order for them to respond. Our results sug-
gest that one possible mechanism responsible for this per-
ception involves GPCRs. GPCRs are components of a large
family composed of hundreds of protein subdivided into
different classes [45]. All GPCRs sense an extracellular
signal and transduce it into a cascade of molecular events
[46]. One of the diatom GPCRs and other putative com-
ponents of the pathway were upregulated in our study
(Fig. 4). GPCR signalling can proceed through adenylate
cyclase, upregulated in our analyses, with consequent
increase in cyclic AMP (cAMP), a second messenger,
which activates downstream effectors, such as the cAMP-
dependent protein kinase and gated channels. GPCR sig-
nalling can also proceed via Rho GTPases activation, which
can lead to dramatic rearrangements of the cytoskeleton.
Signalling through Rho GTPase, which we also observed,
might be responsible for the upregulation of transcripts
coding for cytoskeletal proteins. Another indication of
GPCRs involvement in diatom response to copepods is the
upregulation of Tubby-like proteins (TULPs), proteins
bound to the membrane phosphoinositol di-phosphate
(PIP2) that can promote vesicular trafficking upon changes
in PIP2 mediated by GPCR activation; this triggers TULP
dislodgment from the membrane and translocation to the
nucleus [47]. In diatoms, vesicular trafficking is involved in
frustule deposition through the silica deposition vesicles
[48] and this mechanism may thus be associated with chain
remodelling in response to copepod predators. Upregulation
of MAPK and MAPKK, downstream of GPCRs, is often
associated with cell proliferation.

Stress response and NO

Changes in genes involved in retrotransposition, such as the
Retrovirus-related Pol polyprotein found in this study, often
mediate retrotransposon mobilisation, a phenomenon asso-
ciated with the perception of stress cues in diatoms [49].

Major transcriptional changes common to both time
points involved a reaction to stressful stimuli, with upre-
gulation of heat shock protein and other stress-responsive
genes, including a NO synthase (NOS) gene. NO has been
identified as a mediator in a stress surveillance system in
diatoms [50]: in P. tricornutum and Thalassiosira weiss-
flogii NO generation was caused by exposure to toxic
aldehydes, which in turn were released by damaged cells. S.
marinoi cells are known to release toxic aldehydes as a

Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom



consequence of copepod grazing [51] and these may act as
infochemicals to which neighbouring cells react by trig-
gering NO generation. Alternatively, NOS induction could
be triggered directly by copepod cues.

Lipid metabolism

A prominent change occurring in S. marinoi cells in the
presence of grazers was a general activation of the lipid
metabolism, indicated by an increase in the amount of
transcripts encoding for enzymes involved in lipid degra-
dation, synthesis and modification, as well as by the pre-
sence of several putative lipids changing in the metabolome.

Degradation of FA may be needed to fuel cells to pro-
liferation, and/or to increase availability of reduced Nicoti-
namide Adenine Dinucleotide (NADH) and reduced Flavin
Adenine Dinucleotide (FADH2) for oxidative stress pro-
tection. We observed an upregulation of a chloroplastic
acetyl-CoA carboxylase (ACC). In the first step of FA
biosynthesis, ACC catalyses the production of malonyl-
CoA, known to inhibit FA β-oxidation. The apparent con-
tradiction of an upregulation of ACC concomitant with an
upregulation of FA β-oxidation has been reported in the
oleaginous diatom Fistulifera solaris: in this species upre-
gulation is observed for the chloroplastic ACC and not for

the cytoplasmic ACC. Because of organelle compartmen-
talisation, malonyl-CoA should remain confined in the
chloroplast and should not be mediating any inhibition of
the mitochondrial β-oxidation [52].

FA methyl ester profile indicated that the relative abun-
dance of C14, C16 and C18 was lower in the grazed
treatment, whereas there was an increase of EPA (20:5). In
diatoms, triacylglycerols (TAGs) are rich in short chain FA
and are almost exclusively stored in lipid droplets [53],
whereas EPA is characteristic of the chloroplast lipids like
monogalactosyldiacylglycerol and digalactosyldiacylgly-
cerol [54]. The targets of β-oxidation would be mainly
TAGs, so the diminution of short chain FA would mean that
lipid droplets are being degraded by the cells for, for
example, energy production potentially representing a cost
of defence. Desaturases are slow enzymes, hence poly-
unsaturated FAs accumulate after a certain time in control
cultures. If in grazed cultures, cells divide more actively to
sustain predation, then a lower amount of 16:4 and 18:4
would be coherent.

Oxylipins

Oxylipins are FA derivatives with a signalling role in plants
and animals, involved in plant defence reactions such as

Fig. 4 A schematic representation of a Skeletonema marinoi cell in the
presence of copepods at T1 a and T2 b. Green arrows represent
upregulation and red arrows downregulation. N nucleus, M mito-
chondrion, C chloroplast, GPCR G protein-coupled receptors, AC
adenylate cyclase, TE transposable element, LOX lipoxygenase,

NTR2 nitrate transporter, AMT ammonium transporter, NR nitrate
reductase, NiR nitrite reductase, GSIII type-3 glutamine synthetase,
HSPs heat shock proteins, NOS nitric oxide synthase, ACC acetyl-
CoA carboxylase, FCPB fucoxanthin-chlorophyll a-c binding protein
B
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pathogen infection or wounding [55]. The oxylipin pathway
was downregulated at T1 in the transcriptomics, as well as
in the metabolomics data, with a LOX transcript and
probable oxylipins downregulated. Cell damage induced by
crunching should induce oxylipin production rather than
reduction [51]. However, this would occur only in the
fraction of cells that is predated and this signal might be
diluted. Downregulation of oxylipin production in the entire
population might have a different meaning.

Cell division and chain splitting

Distinctive cyclin genes displayed a change in their
expression in grazed cultures. CYCB1, dsCYC6 and
dsCYC3, increased in these cells, are predominantly
expressed during the S (dsCYC6) and the G2/M (CYCB1
and dsCYC3) phases of the cell cycle in P. tricornutum [38,
39]. The downregulated genes dsCYC5, dsCYC7 and
dsCYC9 on the other hand have been shown to respond to
increases in phosphate and silica concentrations and are
supposed to integrate external signals in the cell cycle [38].
These data suggest that cells were responding to a signal
and were engaged in active division.

Division and chain formation/splitting involve the
assembly and rearrangement of frustules, a process that is
still little described in terms of molecular changes. Chain
splitting is linked to cell division, which seems to be
enhanced in the presence of copepods (cycling and MAPK
genes changing and a metabolic profile indicative of ana-
bolic processes). Coherently, signals for cytoskeleton rear-
rangements were present and, interestingly, changes in
genes linked to chitin were also observed. In diatoms, chitin
has been hypothesised to be involved in cell wall processes
[56] and was found to be associated with the silica cell wall
in T. pseudonana [57]. In S. marinoi chains, cells are joined
by siliceous connections of the external projections of ful-
toportulae visible in the scanning electron micrograph in
Fig. 1a [58]. Fultoportulae are usually associated with chitin
secretion [59] and this biopolymer could be involved in
chain formation, possibly by producing an organic template
for silica deposition. The downregulation of the chitin
synthase pathway can lead to weaker links between adjacent
cells when grazers are perceived, with resulting shorter
chains formed. Chitin–silica interaction is demonstrated
both in vitro and in vivo [60, 61] and a possible involve-
ment of chitin in frustule deposition is highly likely.

Conclusions

Phytoplankton–grazer interactions are key factors in shap-
ing pelagic food web structure, but indirect effects and
defence responses mediated by grazer signals, such as the

response dissected in our study, may at times be more
important than grazing mortality itself in defining ecosys-
tem function [62].

The importance of signalling molecules and of secondary
metabolites with infochemical roles in cell-to-cell and
trophic interactions has been put forward many times. Here
we provide evidence that GPCRs, oxylipins and NO might
be an important part of the response of diatoms to copepod
cues. Based on previous assumptions, downregulation of
oxylipins in the grazed cell population was unexpected,
suggesting a complex role for these compounds, which
needs to be further clarified. Other changes in the lipid
metabolism and in the cell cycle dynamics might indicate
that cells modified their division rate in the presence of
copepods, most likely increasing divisions, and this might
also have impacts on cell distribution and abundance at sea.

Similar results were obtained performing the experiments
with two different species of copepods, suggesting a broad
significance of our findings.
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