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1. Abstract 

 

The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-

CRISPR-associated proteins (Cas) continues to expand the toolkit available for genome 

editing, reprogramming gene regulation, genome visualization, and epigenetic studies of 

living organisms. In this review the emerging design principles on the use of nuclease-

deficient CRISPR-based reprogramming of gene expression will be presented. The review 

will focus on the designs implemented in yeast both at the level of CRISPR proteins and 

gRNA, but will lend due credits to the seminal studies performed in other species where 

relevant. In addition to design principles, this review also highlights applications benefitting 

from the use of CRISPR-mediated transcriptional regulation and discuss the future directions 

to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such this 

review should be of general interest for experimentalists to get familiarised with the 

parameters underlying the power of reprogramming genomic functions by use of nuclease-

deficient CRISPR technologies. 
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2. Introduction 

Living cells regulate gene expression through coordinated actions of DNA-binding 

transcriptional regulators, RNA polymerases and an arsenal of auxiliary co-activators (Hahn 

2004). The complex network of the transcriptional machinery controls essential functions, 

such as cell differentiation, cell division, responses to environmental conditions, and 

metabolism. Our mechanistic understanding of the genes and pathways corroborating the 

timely and adequate execution of these essential functions have largely relied on functional 

genomics studies, often accommodated by efficient methodologies for accurate control of 

gene expression perturbations (Khalil et al. 2012; Si et al. 2015). 

RNA interference, a post-transcriptional gene-silencing mechanism triggered by small 

interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) formed from RNase III 

endonuclease-mediated degradation of  double-stranded RNAs is one such methodology 

(Drinnenberg et al. 2009). By the use of iterative RNAi, knock-down of multiple genes 

related to chemical tolerance and production of heterologous metabolites have been 

optimized in microbes (Crook, Schmitz and Alper 2013; Si et al. 2015). Another method used 

to alter the expression of hundreds of genes, termed global transcription machinery 

engineering (gTME), relies on introducing mutant libraries of general transcription factors 

regulating promoter specificity and then screen for defined phenotypes followed by 

characterization and validation of the mutant context of the transcription factor and 

transcriptome analysis (Alper et al. 2006). Moreover, for targeted gene regulation, bottom-up 

engineering of synthetic transcription factors based upon hybrid zinc-finger (ZFs) proteins 

and promoters for orthogonal control of gene expression has elucidated the parameters of 

importance for coordinated, tuned, and spatial regulation of gene expression (Khalil et al. 

2012). Taken together, the development of techniques for conditional loss-of-function studies 

by expression perturbations of multiple genes have proven to be important for our 

understanding of gene function, especially when studying the function of essential genes, and 

polygenic traits (eg. chemical tolerance). However, though the above-mentioned methods 

support the simple targeting of multiple genes for knockdown and overexpression, drawbacks 

are evident. This includes lack of specificity and limited regulatory potential (RNAi), the 

need to introduce synthetic genomic material (ZFs), or the need for a screening system to 

select for global transcriptional changes not imagined a priori (gTME). 

Since 2013, the bacterial CRISPR–Cas system has inspired the rational development of 

orthogonal synthetic transcriptional reprogramming strategies founded upon RNA-mediated 

targeting of nuclease-deficient Cas proteins to predefined genomic loci (Larson et al. 2013; 

Qi et al. 2013). In brief, CRISPR-Cas systems are founded on an ancient bacterial adaptive 

immune system in which the CRISPR-associated protein (Cas) is guided to genomic loci by a 

guide RNA (gRNA) with 20 nt sequence-complementarity to the genomic target site (Jinek et 

al. 2012; Cong et al. 2013). From this platform, two basic systems have emerged for i) 

genome editing by the use of guide RNA (gRNA) directed endonuclease-mediated DNA 

double-strand breaks (DSB) to assist both gene knock-in and knock-out (Jinek et al. 2012; 

Cong et al. 2013), and ii) nuclease-deficient dCas-mediated transcriptional and post-

transcriptional regulation, elucidation of epigenetic landscapes, and DSB-deficient base 
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editing to name a few (Qi et al. 2013; Lenstra et al. 2015; Fu et al. 2016; Nishida et al. 2016; 

Cox et al. 2017). In terms of transcriptional regulation, the nuclease-deficient forms of the 

type II CRISPR-associated protein Cas9, termed dCas9, from Streptococcus pyogenes, has 

been acknowledged as a potent platform for reprogramming gene expression and genomic 

function. Basically, dCas9 is a Cas9 mutant which have had its nuclease activity ablated by 

mutations in the RuvC and HNH nuclease domains, while still maintaining DNA binding 

proficiency as programmed by gRNAs (Qi et al. 2013). Initially, it was demonstrated that 

dCas9 and a gRNA could mediate efficient gene repression in bacteria when dCas9 was 

guided to promoter proximal positions downstream the transcription start site, a mechanism 

coined CRISPR interference (CRISPRi)(Larson et al. 2013; Qi et al. 2013). 

In more recent years it has become evident that compared with the above-mentioned 

conventional approaches for reprogramming genome function through non-native 

transcriptional regulators, nuclease-deficient variants of Cas9, and Lachnospiraceae 

bacterium ND2006 Cpf1  are potent RNA-guided technologies for genome regulation in 

yeast. Specifically, the convenience, specificity, robustness, and scalability for endogenous 

gene activation and repression has been widely adopted (Gilbert et al. 2013; Farzadfard et al. 

2013; Zalatan et al. 2015; Lian et al. 2017). Additionally, CRISPR-mediated transcriptional 

regulation is a powerful approach for targeted, combinatorial and tunable transcriptional 

reprogramming interface, especially considering the ease of synthesizing and expressing 

gRNAs without time-intensive genetic modification of host genomes of species recalcitrant to 

transformation and targeted genome editing. 

In this review, the tremendous progress of CRISPR-mediated systems applied for 

reprogramming transcriptional regulation in yeast will be reviewed, including the expansive 

list of factors that influence gRNA efficacy, and the design principles for optimal 

reconfiguration of dCas9 and dCpf1. At the end of the review, future perspectives on the use 

of nuclease-deficient Cas proteins in combination with other complementary emerging 

technologies for reprogramming genome functions without the need for exogenous nuclease-

activity will be highlighted. While this review will focus mostly on dCas9-mediated 

reprogramming of gene expression in yeast, a more host-agnostic review on nuclease-

deficient CRISPR-dCas technologies has also recently been published (Mitsunobu et al. 

2017). 
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3. CRISPR-based transcriptional regulation 

 

3.1 Modulation of dCas9 activity 

 

3.1.1. Regulation of CRISPR protein activity by protein fusions 

Transcriptional regulators are by design globular. Most often regulators include two modular 

domains enabling i) DNA binding and ii) a regulatory domain supporting transcriptional 

activation or repression (Jensen et al. 2010; Khalil et al. 2012). Due to this modularity, 

domain-swapping experiments have proven successful for the generation of synthetic 

transcriptional regulators with defined DNA-binding specificities fused to various regulatory 

domains in order to potentiate transcriptional activation or repression of both native and 

synthetic promoters (Khalil et al. 2012; Folcher et al. 2013). The modularity of the regulatory 

domains has allowed the design of transcriptional regulators which can regulate gene 

expression to much higher levels compared to regulators only relying on the native design 

(Folcher et al. 2013). 

When nuclease-deficient dCas9 was initially used in bacteria, gene repression by up to 99.9% 

was reported (Qi et al. 2013). However, when using only dCas9 and a single gRNA in yeast 

to target gene expression regulation, only modest repressions ranging from no effect to 2-3 

fold repressions have been reported (Farzadfard, Perli and Lu 2013; Deaner, Mejia and Alper 

2017; Vanegas, Lehka and Mortensen 2017), although a single study has reported up to 18-

fold down-regulation of reporter gene activity (Gilbert et al. 2013). This level of regulation is 

comparable to studies in other eukaryotes, and suggest that the single gRNA complex with 

dCas9 is not sufficient for sterically hindering RNA progression and/or blocking of 

transcription initiation (Gilbert et al. 2013; Lawhorn, Ferreira and Wang 2014). Inspired by 

the modular design of other synthetic transcriptional regulators, and acknowledging that 

gRNA-bound CRISPR proteins are analogous to simple DNA-binding moieties, studies using 

dCas9- or dCpf1-mediated expression perturbations nowadays therefore include additional 

regulatory domains fused to dCas9 and/or dCpf1 in order to improve repression and 

activation potentials (Fig. 1a-b). 

In their seminal study on dCas9-mediated transcriptional regulation in eukaryotes, Gilbert et 

al. compared the effect of fusing the mammalian transcriptional repressor domain, Mxi1, 

reported to interact with the chromatin modifying histone deacetylase Sin3 homolog in yeast, 

to dCas9 (Schreiber-Agus et al. 1995; Gilbert et al. 2013)(Fig. 1a). Targeting the TEF1 

promoter, dCas9-Mxi1 repressed reporter gene activity by 53-fold compared to the above-

mentioned 18-fold using only dCas9. This finding is comparable to the effect recently 

reported in Yarrowia lipolytica (Schwartz et al. 2017). Here, Schwartz et al. reported up to 

10-fold repression of MIH1 transcript levels when using dCas9, yet when directly comparing 

the effects of using dCas9 versus dCas9-Mxi1 on the Ku70 and Ku80 genes, related to non-

homologous end joining, Schwartz et al. observed the highest level of repression (87%) for 
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Ku80 when the dCas9-Mxi1 fusion was compared to dCas9 (38%)(Schwartz et al. 2017). To 

further investigate dCas9 fusion designs for optimal repression, Schwartz et al. and Gander et 

al. (Gander et al. 2017) also tested fusions between dCas9 and the Krüppel-associated box (or 

KRAB domain) from tetrapod vertebrate genomes (Witzgall et al. 1994). Here Schwartz et 

al. found comparable levels of transcript abundances in the order of 2-3 fold repression for 

dCas9-KRAB as also observed for dCas9, while Gander et al. observed approx 2.5-fold 

repression for dCas9-KRAB compared to approx 12-fold when using dCas9-Mxi1 to control 

the expression of a synthetic CYC1-based promoter (Gander et al. 2017). These findings are 

also corroborated by mathematical models predicting that repression via dCas9 alone leaks 

more than repression via dCas9-Mxi1 (Gander et al. 2017). In addition to Mxi1 and KRAB, 

Gander et al. also tested repression domains GAL80, LUG, TPLRD1, TUP1, and XTC1 

(Flick and Johnston 1990; Pierre-Jerome et al. 2014; Wu et al. 2001; Traven et al. 2002; 

Edmondson et al. 1996), with LUG and TPLRD1 showing similar repressing potential as 

KRAB, while neither GAL80, TUP1 and XTC1 fusions showed any repression (Fig. 1a). 

Similarly, Lian et al. (2017) tested variants of repressor domains TUP1, MIG1, CRT1, XTC1 

and UME6 (Edmondson et al. 1996; Ostling et al. 1996; Zhang and Reese 2005; Traven et al. 

2002; Kadosh and Struhl 1997), and reported a tri-partite repression domain engineered from 

UME6, MIG1 and TUP1 to be the most successful design for dCas9-mediated repression (up 

to 5-fold stronger repression compared to dCas9-Mxi1), whereas fusions to dCpf1 was not 

effective for CRISPRi (Lian et al. 2017). 

In addition to fusion of repressor domains, several studies have worked on fusing CRISPR 

proteins with single and multiple transcriptional activation domains to allow for CRISPR-

mediated gene expression activation, termed CRISPRa (Gilbert et al. 2014). In yeast, 

Farzadfard et al. were the first to show that dCas9 could be used as a transcriptional activator 

when fused to an activation domain (Farzadfard, Perli and Lu 2013). Here they initially tested 

dCas9-VP64 guided to either sense or antisense strand of the minimal CYC1 promoter and 

found several positions of gRNAs enabling statistical significant upregulation of reporter 

fluorescence in the order of 1.5-3.0-fold (Farzadfard, Perli and Lu 2013). Similar fold-

changes have been observed for dCas9-VP64 targeting the GAL1 and ADE2 promoters 

(Farzadfard, Perli and Lu 2013; Vanegas, Lehka and Mortensen 2017), while Naranjo et al., 

reported >100- and >250-fold increases in transcript levels when using dCas9-VP64 and 

GAL4-dCas9-VP64, respectively, to target FRM2 (Naranjo et al. 2015) Contrastingly, dCas9 

did not increase reporter gene activity when guided by any of the tested gRNAs. In addition 

to testing dCas9-VP64 for CRISPRa, Farzadfard et al. also tested the potential of guiding 

multiple copies of dCas9-VP64 and thereby tune reporter promoter activity. From this, the 

authors observed that reporter gene activity increased by up to 70-fold when targeting dCas9-

VP64 to a maximum of 12 identical operator positions using a single gRNA (Farzadfard, 

Perli and Lu 2013). One interesting observation, acknowledged already at this early stage of 

CRISPR-mediated transcriptional reprogramming, was the strong influence exerted by the 

position of the gRNA relative to the impact dCas9-based regulation. Specifically, Farzadfard 

et al. found that although dCas9-VP64 could serve as a transcriptional activator when gRNAs 

were positioned upstream of the TATA box, significant repression of reporter gene activity in 

the order of 2-3-fold was observed when the fusion protein was guided to positions 
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overlapping or downstream of the TATA box (Farzadfard, Perli and Lu 2013). The gRNA 

positions-specific effects will be covered in more detail in section 3.2. 

In addition to single-domain VP64, CRISPR proteinshave also more recently been 

successfully fused to combinations of transcriptional activators, including the VPR, which is 

constructed from quadruple copies of the Herpes simplex viral protein (VP16), the 

transactivation domain of NF-kB p65 subunit (p65AD), and the Epstein-Barr virus R 

transactivator (Rta)(Chavez et al. 2016; Deaner and Alper 2017; Jensen et al. 2017). As 

evidenced by Chavez et al., comparing reporter gene expression levels using gRNAs 

targeting the yeast GAL7 and HED1 promoters, dCas9-VPR mediated approx 100- and 40-

fold upregulation, respectively, compared to the modest 14- and 8-fold increases observed 

when guiding dCas9-VP64 (Fig. 1b)(Chavez et al. 2015). Beyond the use of nuclease-

deficient Cas9 from S. pyogenes, Lian et al. systematically tested novel CRISPR-mediated 

transcriptional activators by fusing several nuclease-deficient CRISPR proteins to activation 

domains (Lian et al. 2017). Here the authors found that the optimal activation domain was 

dependent on the Cas protein tested with the best-performing S. pyogenes dCas9 variant 

showing up to 12-fold activation of reporter gene activity when fused to VPR, while the best-

performing dCpf1 variant induced up to 8-fold activation of gene activity when fused to 

VP64-p65AD (Lian et al. 2017). 

Acknowledging the findings from dCas9 fusion studies, several groups have since then 

successfully applied dCas9-VPR for CRISPRa in yeast (Deaner and Alper 2017; Deaner, 

Mejia and Alper 2017; Jensen et al. 2017). Even though most upregulations observed are in 

the 2-10-fold range, Deaner et al. observed more than 160-fold changes in NDE2 gene 

expression when comparing the best gRNA position for mediating CRISPRi using dCas9-

Mxi1 versus the most potent gRNA position for mediating CRISPRa using dCas9-VPR 

(Deaner and Alper 2017). In alignment with the findings from Farzadfard et al., Deaner and 

Alper also reported the position-specific potential of dCas9-VPR to modestly repress gene 

expression (Farzadfard, Perli and Lu 2013; Deaner and Alper 2017). 

Taken together, several studies have reported CRISPRi/a in yeast yielding changes in gene 

expression and activity in the order of >50-fold down-regulation and >100-fold upregulation, 

with dCas9-Mxi1 and dCas9-VPR currently being the most often adopted regulators. In 

general, dCas9 is a versatile fusion partner for both activation and repression domains, yet the 

optimal choice of regulatory domain(s) to be used for transcriptional reprogramming can 

depend on the CRISPR protein. This opens up opportunities for multi-functional CRISPR-

mediated reprogramming using orthogonal PAM sequences of different CRISPR proteins as 

analogues for upstream activating or repressing sequences (UAS and URS, respectively)(Lian 

et al. 2017). 
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3.1.2. Regulating expression of genes encoding CRISPR proteins 

When using nuclease-deficient CRISPR-based synthetic regulators, it is important to 

acknowledge that the regulatory potential of transcriptional regulators inherently depend on 

the expression level of the transcriptional regulator itself, with higher expression most often 

providing the highest repression and/or activation level of the target gene(s) in question 

(Skjoedt et al. 2016). In line with this, most studies in yeast make use of strong constitutive 

or glycolytic promoters to drive the expression of the gene encoding dCas9 and variants 

thereof (Gilbert et al. 2013; Lian et al. 2017). From S. cerevisiae this includes the TDH3 (or 

GDP1), TEF1 and PDC1 promoters for use in S. cerevisiae and Kluyveromyces marxianus 

(Gilbert et al. 2013; Chavez et al. 2015; Smith et al. 2016; Nambu-Nishida et al. 2017), 

whereas in Yarrowia lipolytica Schwartz et al. used a previously engineered strong 

constitutive promoter based on a truncated core TEF1 promoter fused to 8 copies of a 105-bp 

UAS element from the TRX2 promoter, named pUAS1B8-TEF(136), to drive the expression 

of dCas9 (Blazeck et al. 2011; Blanchin-Roland et al. 1994; Schwartz et al. 2016; Schwartz et 

al. 2017). 

In addition to constitutive expression of dCas9, the ability to program the onset of target gene 

regulation has prompted the use of inducible expression of dCas9 for conditional 

transcriptional reprogramming in yeast. By the use of a synthetic promoter originally 

developed by Ellis et al., galactose- and anhydrotetracycline-inducible (aTc) expression of 

dCas9-VP64 was achieved (Ellis, Wang and Collins 2009; Farzadfard, Perli and Lu 2013) 

allowing for 70-fold inducible expression of a minimal CYC1 promoter with outputs 

comparable to the activation potential of other commonly used endogenous GAL1 and CUP1 

promoters (Farzadfard, Perli and Lu 2013). Together with the complementary set of light- 

and allosterically regulated CRISPR/Cas9 systems reported in mammalian cells (Gao et al. 

2016; Oakes et al. 2016), such galactose- and aTc-inducible expression of dCas9 and its 

variants allows control over the onset of target gene expression. 

 

3.2. Modulation of gRNA activity 

 

3.2.1. Recruitment of effectors by aptamer-fused gRNAs 

The inherent one-to-one relationship between dCas9 and the gRNA constrains dCas9-

mediated programming of multi-gene transcription-based gene circuits to only one direction 

of regulation (ie. repression or activation) at the single-cell level. This is not levelling the 

complexity and sophistication underpinning native transcriptional networks. However, in 

analogy to the fusion of regulatory domains to dCas9, the engineering of the gRNA itself has 

proven a modular and tunable platform for diversifying not only the genomic target sites 

(seed sequence), but also the function of CRISPR-mediated transcriptional regulation. 

Taking advantage of the 3´-end of gRNAs, Zalatan et al. and Kiani et al. were the first to 

engineer gRNAs with protein-interacting RNA aptamers (Kiani et al. 2015; Zalatan et al. 
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2015). In yeast, this included gRNAs which indeed could control not only localization of 

dCas9 (and Cas9), but also function. In their seminal studies they showed that fusing RNA 

aptamers to the tracr-part of gRNAs enabled binding of RNA-binding proteins and thereby 

control of regulatory potential depending on the protein-interaction partner anchored to the 

RNA-binding protein (Fig. 2a)(Kiani et al. 2015; Zalatan et al. 2015). More specifically, in 

order to refactor both target sequence specificity and function into these scaffolding RNAs 

(scRNAs), Zalatan et al. tested i) different aptamers, ii) 5’- vs 3’-end fusions, iii) different 

numbers of aptamers, iv) linker length between gRNA 5’-end and aptamer, and v) 

orthogonality between aptamer and their cognate RNA binding interaction partners. The 

systematic characterization uncovered three potent RNA binding modules each consisting of 

the aptamer and its RNA-binding protein partner fused to either a VP64 activation domain or 

an Mxi1 repression domain (Fig. 2a). Moreover, the authors showed that several aptamers 

could be introduced into single scRNAs and no crosstalk was observed between the 

components of the RNA binding modules, ultimately enabling both dCas9-mediated 

activation and regulation in single cells only depending on the seed sequence and aptamer 

encoded in the scRNA(s) (Zalatan et al. 2015). Most importantly, when using the scRNA 

strategy together with VP64-based RNA-binding modules in yeast more than 50-fold 

activation of a synthetic reporter promoter was observed, compared to modest 2-3-fold 

activation observed for dCas9-VP64. Using two different scRNAs for targeted gene 

activation together with dCas9-mediated repression, Zalatan et al. enabled synthetic control 

over branchpoint fluxes in the violacein biosynthetic pathway (Fig. 2b), while Jensen et al., 

demonstrated combinatorial reprogramming of mevalonate and carotenoid pathway genes 

using the MCP:VPR activation and PCP:Mxi1 repression modules, ultimately enabling 

significant changes in carotenoid levels (Fig. 2c)(Zalatan et al. 2015; Jensen et al. 2017). 

In summary, the engineering of gRNAs into scRNAs offer CRISPR-based multi-directional 

reprogramming of gene expressions, and is of particular relevance for studying, and 

improving our understanding of, polygenic traits and combined effects of key metabolic 

pathway branch points. 

 

3.2.2. Regulating gRNA expression 

The expression levels of gRNAs have been shown to correlate with CRISPR/Cas9-mediated 

genome engineering efficiency in mammalian cells (Hsu et al. 2013). To match the 

stoichiometries of dCas9 or dCpf1 expressed from strong constitutive polymerase II 

promoters (see section 3.1.2.), optimizing the expression of gRNA and scRNAs have been 

investigated vigorously. In general, polymerase III promoters are used to drive expression of 

gRNAs because RNA polymerase II promoters add extra nucleotides to the 5′- and 3′-ends of 

gRNAs, and thereby are believed to interrupt gRNA function (Yoshioka et al. 2015). 

Originally, the polymerase III promoters SNR52 and RPR1 were adopted for constitutive 

delivery of gRNAs in yeast (Fig. 3)(DiCarlo et al. 2013; Farzadfard, Perli and Lu 2013; 

Gilbert et al. 2013). Especially, the use of SNR52 promoter has been used extensively 

because of its native transcript cleavage sites that result in the excision of gRNAs from the 
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primary transcripts (DiCarlo et al. 2013). Next, to enable larger flexibility to the design and 

expression strength of gRNAs, two studies immediately following the aforementioned studies 

on constitutive delivery of gRNAs, tested the fusion of self-cleaving hepatitis delta virus 

(HDV) and Hammerhead (HH) type ribozymes to the gRNA thereby enabling genome 

editing derived from polymerase II promoters (Gao and Zhao 2014; Ryan et al. 2014). Gao & 

Zhao were the first to highlight the use of ribozyme-flanked gRNAs to enable use of pol II 

promoters to drive expression of pre-gRNAs targeted for self-catalysed processing (Fig. 

3)(Gao and Zhao 2014; Zhang et al. 2017). In addition to that study using the ADH1 pol II 

promoter to drive the expression of gRNAs flanked by a 5’ minimal hammerhead (mHH) and 

a 3’ hepatitis delta virus (HDV) ribozymes at the 5’ and 3’ ends, respectively, Ryan et al., 

tested a total of eleven pol III promoters for delivery of functional gRNAs (Ryan et al. 2014). 

The study concluded that while tRNA promoters were compatible with the HDV ribozyme 

fusion yielding nearly 100% engineering efficiency, the snoRNA promoter SNR52 was the 

only non-tRNA promoter levelling such efficiencies when fused to the HDV ribozyme (Ryan 

et al. 2014). These findings add to the more recent benchmark of synthetic pol III fusion 

promoters, pol II promoters (driving expression of ribozyme-flanked gRNAs (RGRs), and 

non-tRNA pol III promoters driving expression of gRNAs in S. cerevisiae and Y. lipolytica 

(Fig. 3)(Schwartz et al. 2016; Deaner, Mejia and Alper 2017). Here, expression levels were 

found to largely correlate with the engineering efficiency of the various designs, with the 

synthetic fusion promoters between truncated pol III promoters and tRNA promoters yielding 

the highest scores (>90%) in Y. lipolytica, while the strong pol II TEF1-RGR approach 

produced almost 4-fold more gRNA compared to SNR52 correlating with a stronger 

regulatory potential as well (Schwartz et al. 2016; Deaner, Mejia and Alper 2017). Also, 

Gander et al., used the minimal CYC1 promoter to build a set of gRNA-responsive Pol II 

promoters (pGRR) driving the expression of RGRs (Gander et al. 2017). In their study a 

library of 400 dual-target site gRNA-responsive polymerase II promoter (pGRRs) were 

constructed together with 20 RGRs totalling 8000 NOR (either one or both) logic gates, 

including both constitutive and estradiol inducible pol II promoters to drive the expression of 

RGRs, ultimately yielding up to 12-fold regulation from single gRNA controlled reporter 

promoters (McIsaac et al. 2013; Gander et al. 2017). 

Apart from native pol III and inducible pol II promoters controlling the expression of gRNAs 

and RGRs, other groups have made use of an engineered native RPR1 pol III promoter to 

include a TetO binding site for aTc inducible depression of gRNA expression when co-

expressing the constitutively expressed TetR repressor thereby enabling expression 

perturbations in the order of 2-20-fold (Fig. 3)(Farzadfard et al. 2013; Smith et al. 2016; 

Jensen et al. 2017; Ferreira et al. 2018).  Interestingly, in the study by Ferreira et al., 3 gRNA 

cassettes were expressed from a single engineered RPR1 pol III promoter, and subsequently 

the Csy4 endoribonuclease was used to digest the transcript into subelements and boost 

dCas9-VPR-mediated expression of HMG1, OLE1 and ACS1 promoters approx 2-fold 

(Ferreira et al. 2018). This elegant approach easily circumvents the need for re-use of the 

same promoter, or the need for multiple different promoters, when aiming to reprogram 

transcription of multiple genes (Fig. 3). 
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In summary, though native pol III promoters were originally the design of choice, the simple 

engineering of pol II promoters driving the expression of self-cleaving RGRs allows for 

control of genome reprogramming founded on basically any pol II promoter has gained 

attention (Zhang et al. 2017). Also, the sterical hindrance offered by inducible repressors can 

be used to engineer pol III promoters for functional, timely and potent gRNA delivery. 

 

3.2.3. Multiple gRNAs for reprogramming of genomic functions 

Regulating native and synthetic promoters by the use of endogenous or engineered 

transcription factors is dependent on their ability to bind cognate TF binding sites in such 

promoters (Khalil et al. 2012). In analogy to this, and as mentioned earlier (section 3.1.2.), 

Farzadfard et al. showed that synergistic effects on transcriptional regulation can be observed 

when using multiple gRNAs directing dCas9-mediated control of target promoters. For 

instance two separate gRNAs conferred each 2-fold repression, whereas a combination of the 

two showed 7-fold repression. Moreover, Farzadfard et al. also tested the guiding of multiple 

copies of dCas9-VP64 and thereby tune reporter promoter activity, and hereby observed that 

reporter gene activity increased by up to 70-fold when targeting dCas9-VP64 to a maximum 

of 12 positions (Farzadfard, Perli and Lu 2013). Likewise, Gilbert et al. tested 7x gRNAs on 

TetO promoter showing the highest ever reported repression in reporter gene activity by the 

use of dCas9-Mxi1 (153x, Fig. 1), while Deaner et al. used dual-gRNAs expressed from both 

SNR52 and TEF1 derived promoters to boost the regulatory potential of dCas9-VPR (Gilbert 

et al. 2013; Deaner, Mejia and Alper 2017). Contrastingly, Schwartz et al., also used two 

gRNAs in the -120 bp transcription start site (TSS) region to test if this enhanced repression 

of Ku70 and Ku80, yet they found only marginal effects from using two gRNAs compared to 

the perturbations observed when only using one gRNA (Schwartz et al. 2017). 

Taken together, as in native and other synthetic transcription regulatory networks, the number 

of regulators tethered to the target regulon offer a modular valve to tune the impact of 

CRISPR-dCas9-mediated reprogramming. However, the use of multiple gRNAs should be 

carefully designed with particular focus on the position of existing regulatory elements and 

nucleosomes in order to tune regulatory potential by simple increases in gRNA numbers 

targeting such regions (see sections 3.2.5 and 3.2.6.). 

 

3.2.4. Strand-bias vs regulatory potential 

The mechanistic understanding of CRISPRi in relation to gRNA positioning has attracted a 

lot of attention. Initially, the underlying mechanism of dCas9-mediated transcriptional 

repression was elucidated using NET-seq in E. coli (Churchman and Weissman 2011; Qi et 

al. 2013). In E. coli, Qi et al. identified that gRNAs induced strong transcriptional pausing 

upstream of the gRNA target locus on the non-template strand, leading to the hypothesis that 

physical collision between the elongating RNA polymerase and the dCas9:gRNA complex 

conferred a transcriptional block (Qi et al. 2013). In yeast, however, Farzadfard et al. where 
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the first to show that placing gRNAs at similar positions downstream TSS, but on different 

strands of a promoter, had similar negative effects on gene expression. Moreover, placing the 

gRNAs on either strand upstream the TATA box and the TSS lead to similar dCas9-VP64 

mediated gene activation (Farzadfard, Perli and Lu 2013). Likewise, Gilbert et al. later 

reported that the targeted DNA strand and guanine-cytosine content of gRNA were not 

determining factors for successful CRISPRi in their study (Gilbert et al. 2014). Finally, in a 

more recent study, adopting a much larger gRNA library approach to deduce chemical-

genetic interaction, Smith et al., designed 383 gRNAs to the +500 bp to -500 bp of the TSS 

region  window of 5 genes (Smith et al. 2016). Here the authors found no strand-bias in 

relation to gRNA efficacy along the 1 kb window tested. 

In line with these findings, it has recently been further elucidated that, in contrast to the 

findings from CRISPRi in E. coli (Qi et al. 2013), dCas9 in yeast may not act as a simple 

transcriptional road-block mechanism for the RNA polymerase in a strand-specific manner, 

but rather that the gRNA:dCas9 complex supports the formation of a permissive transcript 

formations, including premature termination and formation of novel transcript, in both sense 

and antisense orientation (Howe et al. 2017). Taken together, this highlights that not only is 

yeast recalcitrant to potential CRISPRi strand-bias, but also that conclusions drawn from 

CRISPRi studies should consider the integrity of the transcripts targeted. 

 

3.2.5. Position effects of gRNAs 

In contrast to studies on potential strand-specific effects, there is much stronger evidence 

from bigger data sets on the position-specific effects of gRNAs in promoters. 

In general, gRNAs targeting the region upstream of the TATA box and TSS have largely 

correlated with both dCas9-VP64- and dCas9-VPR-mediated gene activation, while 

positioning dCas9 variants downstream of, or in close proximity to, TATA boxes negatively 

impacts gene expression (Farzadfard, Perli and Lu 2013; Deaner and Alper 2017). For 

instance, targeting of dCas9-VP64 to a position upstream the TATA box provided almost 5-

fold upregulation of a minimal GAL1 promoter, while targeting gRNAs to the TATA box or 

the kozak element downstream thereof led to CRISPRi, likely due to interference with the 

transcriptional initiation complex, as also observed by Deaner et al. when using dCas9-VPR 

for CRISPRi (Figure 1)(Farzadfard, Perli and Lu 2013; Deaner, Mejia and Alper 2017). 

Moreover, Deaner and Alper provided a detailed study on the systematic testing of enzyme 

perturbation sensitivities (STEPS) by positioning gRNAs in an approx 0-750 bp window 

upstream the TATA box of various native yeast promoters. By observing changes in gene 

expression as dCas9-Mxi1 is positioned further away fromthe TATA box and dCas9-VPR is 

positioned closer towards the TATA box, the authors were able to infer flux sensitivity maps 

by plotting changes in glycerol formation as a function of the 5 genes’ graded expression 

(Deaner and Alper 2017). Application-wise, the authors used STEPS to show that GPD1 and 

TPI1 gene expression levels positively and negatively correlate with glycerol titers, 

respectively. Ultimately, these interrogations lead to a simple over-expression strategy for 
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GPD1/GPP1 yielding more than 5-fold increase in glycerol titers (4.89-28.0 g/L). Likewise, 

using STEPS on 5 key pentose phosphate pathway genes to increase flux through the 

aromatic amino acid pathway yielded approx 8-fold increase in 3-DHS titers (to 126.4 g/L) in 

a zwf1 deletion background (Deaner and Alper 2017). 

The abovementioned studies on gRNA position effects are largely corroborated by another 

recent study. Here, Smith et al. used CRISPRi based on dCas9-Mxi1 to test approx. 1,000 

gRNAs directed against 20 genes whose expression levels are predicted to influence 

sensitivity to specific growth inhibitors (Smith et al. 2016). Here, the authors found that the 

median guide effect for dCas9-Mxi1 was maximal in the window of -200 bp to TSS, while 

gRNAs positioned outside the -200 bp to TSS window only in some cases could effectively 

repress transcription, but less effectively (Smith et al. 2016). These findings differ from the 

studies performed in mammalian cells in which the -50 to +300 region relative to TSS was 

found to be the most impactful for CRISPRi (Gilbert et al. 2014). Still, for yeast, Smith et al. 

developed a tool for gRNA design (http://lp2.github.io/yeast-crispri/) taking into 

considerations both genome position, chromatin accessibility (section 3.2.6.), nucleosome 

(section 3.2.6), gRNA length and sequence (3.2.7.), as well as transcription factor occupancy 

of the target site (3.2.8.)(Smith et al. 2016). Based on these findings and others, Schwartz et 

al. identified gRNAs for efficient repression of gene expression in Y. lipolytica (Schwartz et 

al. 2017). In the largest-to-date study, Smith et al. targeted dCas9-Mxi1-mediated repression 

of >1,500 genes essential for growth (Smith et al. 2017). By analysing >9,000 strains 

containing a unique sequence-verified gRNA, the authors refined their earlier findings (Smith 

et al. 2016), now highlighting gRNA positions in the region between TSS and approx. 125 bp 

upstream TSS to be particularly effective for CRISPR-mediated repression (Smith et al. 

2017). 

Having this said, , even though Jensen et al. targeted 88 gRNAs to the -200 bp to TSS 

window of 12 native yeast promoters,  the authors found several gRNAs to be non-functional 

when using dCas9-VPR and dCas9-Mxi1 for transcriptional reprogramming (Jensen et al. 

2017). 

Summarizing, the positioning of gRNAs relative to TATA and TSS offers a easy tunable and 

portable strategy to perturb gene expression activity for both CRISPRi and CRISPRa, 

thoughspecific positioning should also take into consideration other local sterical and 

regulatory features of eukaryotic promoters (see sections 3.2.6. and 3.2.7). 

 

3.2.6. Nucleosome positioning and chromatin accessibility 

Nucleosomes have been shown to effectively interfere with the action of DNA binding 

transcriptional regulators (Griesenbeck et al. 2003; Mao et al. 2011). CRISPRsystems, 

inherently relying on DNA binding, have been used widely in the eukaryotic kingdom, but 

unlike bacteria, DNA in eukaryotes is largely coiled around histones to form nucleosomes, 

making eukaryotic DNA more tightly packaged and less accessible to other DNA-binding 

proteins. As reviewed above, gRNAs targeting the same promoter can have differences in 
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their transcriptional impact (Smith et al. 2016), even gRNAs positioned closely can have 

different efficiencies not strictly correlating with their distance from TSS (Farzadfard, Perli 

and Lu 2013; Jensen et al. 2017; Vanegas, Lehka and Mortensen 2017). This led Smith et al. 

to investigate whether chromatin accessibility and nucleosome positioning could also impact 

a guide’s efficiency for dCas9-mediated transcriptional regulation. In analogy with 

transcription factors canonically binding nucleosome-free DNA within promoters crucial to 

the regulation of gene expression, Smith et al. took advantage of the study Schep et al. 

recently performed in which they identified a highly structured pattern of DNA fragment 

lengths and positions around nucleosomes in yeast using an assay of transposase accessible 

chromatin (ATAC-seq). Using the ATAC-seq data together with other genome-wide 

nucleosome position datasets (Lee et al. 2007), Smith et al. found a positive correlation 

between guide efficiency and chromatin accessibility scores in the TSS -400 bp to TSS +400 

bp window. Even though studies have shown that gRNA positioning downstream TSS can be 

effective for transcriptional reprogramming (Farzadfard, Perli and Lu 2013; Deaner and 

Alper 2017), Smith et al. observed from testing hundreds of gRNAs that the relationship 

between guide efficiency and ATAC-seq read density extended into the typically 

nucleosome-occupied region downstream TSS (Yuan et al. 2005; Lee et al. 2007; Zaugg and 

Luscombe 2012), underpinning the notion that gRNA efficacy is not sensu stricto determined 

by it’s TSS proximity. These observations are in line with biochemical studies showing that 

Cas9 and dCas9 cannot stably interact with a PAM when located in the nucleosome core, 

indicating PAM accessibility to be the critical determining factor for nuclease-deficient 

CRISPR protein  activity (Hinz, Laughery and Wyrick 2015; Isaac et al. 2016), which again 

underpins the observation that guides which target regions of low nucleosome occupancy and 

high chromatin accessibility are likely to be more effective (Smith et al. 2016; Smith et al. 

2017). Moreover, in human cells, several reports have highlighted that locations for 

efficacious gRNAs for dCas9-mediated transcriptional repression correlate with chromatin 

marks associated with active transcription and open chromatin (H3K27ac, H3K9ac, 

H3K4me3, H3K4me2 and H3K79me2)(Horlbeck et al. 2016; Radzisheuskaya et al. 2016). 

Taken together, biochemical and in vivo evidence suggest that gRNA design strategies should 

avoid targeting gRNAs near the nucleosome core. Moreover, since several data sets exist on 

large scale nucleosome positioning and DNA accessibility maps (Jiang and Pugh 2009; Schep 

et al. 2015), development of future computer-aided design tools for design of specific and 

highly efficient gRNAs should evaluate the inclusion of such data sets when inferring gRNA 

selections. 

 

3.2.7. gRNA specificity and length 

The length of the gRNA is a crucial factor for target-specificity of nuclease-proficient Cas9, 

with 17 nt gRNAs observed to be the minimum length for targeted nuclease activity (Fu et al. 

2014b). For CRISPRi and CRISPRa, several studies have assessed the impact of truncated 

gRNAs compared to full-length 20 nt spacer regions of gRNAs. Initially, Qi et al. found that 

for CRISPRi the strongest repression was observed when using full-length gRNAs, which is 
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corroborated by Kiani et al. who found that dCas-VPR-mediate activation increase from 2- to 

100-fold activation when seed length is shifted from 8 nt to 20 nt (Kiani et al. 2015). 

Likewise, in yeast Smith et al., have found that mismatches located in the seed region 

positioned 1-10 relative to the PAM were poorly tolerated by both full-length and truncated 

gRNAs (Smith et al. 2016), which is also in agreement with findings from Cas9-targeting in 

vitro and in mammalian cells (Hsu et al. 2013; Fu et al. 2014a; Wu et al. 2014), and the 

observation that as little as a single base-pair mismatch is sufficient to redirect dCas9 

targeting in yeast (Farzadfard, Perli and Lu 2013). 

In general, the conclusions drawn from these studies suggests that truncating gRNAs reduce 

the efficacy of CRISPR-dCas9-mediated transcriptional regulation towards both perfectly 

matched and imperfectly matched target sequences compared to 20 nt full-length gRNAs 

(Kiani et al. 2015; Smith et al. 2016), though there is some degree of flexibility in the design 

of the seed-distal positions of gRNAs which may be considered when designing gRNAs 

targeting promoter regions dense in nucleosomes and upstream-activating sequences. 

 

3.2.8. Other features of relevance - basal promoter activity, TF binding interference, 

and RNA secondary structure 

In the previous sections, some design principles stand out as being of particular importance 

for efficient CRISPR-mediated transcriptional reprogramming. For gRNAs, this includes i) 

the positive correlation between gRNA expression level and engineering efficiency (Deaner 

et al. 2017; Schwartz et al. 2016), ii) targeting of gRNAs to the window between -125 bp 

upstream TSS and TSS for CRISPRi, and iii) positioning of gRNAs in nucleosome-depleted 

regions of target promoters (Smith et al. 2016; Smith et al. 2017). In addition to these design 

criteria, a few additional studies deserves to be mentioned for designing optimal CRISPR-

mediated probing of genome function. 

First, when selecting genes of interest it is worth considering the observed inverse 

relationship between basal expression levels of the genes of interest and the relative 

expression perturbations which can be gained by dCas9-mediated reprogramming (ie. high 

basal expression can often only be marginally activated and vice versa)(Chavez et al. 2015; 

Jensen et al. 2017). In line with this, another factor of interest is related to the regulatory 

organization of the targeted promoter(s). On the use of dCas9 to block the DNA-binding of 

the synthetic transcriptional regulator rTA on the synthetic TetON-Venus reporter promoter, 

Gilbert et al. found that a 115-fold repression of rtTA-induced activation can be obtained 

when co-expressing dCas9 and gRNA, suggesting that dCas9 can sterically compete with 

transcription factors otherwise controlling the regulation of the target promoter, indicating 

that CRISPRi and CRISPRa can be used to identify regulatory functions of upstream-

activating and upstream-repressive sequences (Gilbert et al. 2013). However, from their 

large-scale library approach, Smith et al. (2016) only found a small number of cases where 

overlap with a transcriptional activator binding site correlated with increased CRISPRi 

efficacy, indicating that this design parameter may be subject to the native regulatory context 
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of the targeted promoters. In relation to this, Jensen et al. showed CRISPR-mediated up- and 

down-regulation of gene activity of OLE1 over the course of 48 hrs, correlating with time-

resolved quantitative analysis demonstrating that OLE1 is highly expressed during early-

phase to mid-exponential phase and downregulated from late exponential phase (Jensen et al. 

2017). Finally, another important gRNA design principle to mention comes from the before-

mentioned large-scale CRISPRi study performed by Smith et al. (2017). Here the authors 

identified a significant correlation between the folding energy in kCal/mol for the predicted 

RNA structure (leader, 20nt gRNA targeting sequence, and structural part) of the gRNA and 

the gRNA efficacy (ie. more folding, less efficacy)(Smith et al. 2017). 

Taken together, numerous design parameters have been elucidated for optimal CRISPR-

mediated transcriptional regulation. Several of the parameters are defined from large-scale 

studies and considered to be gene-inspecific. Likewise, as evident from several studies, 

CRISPR-mediated regulatory potential of target promoters can be sustained over long time-

spans (Jensen et al. 2017; Deaner and Alper 2017), highlighting the robustness and 

orthogonality of the technology. 

 

4. Outlook 

As is evident from the previous sections, there are many design considerations to be taken 

into account when using CRISPR to probe genome functions through CRISPRi and CRISPRa 

(Textbox 1). Still, for transcription perturbations, compared to other methods such as RNAi, 

gTEM and targeted overexpression, CRISPRi/a offer easy design, programmable RNA-

mediated targeting, and regulatory direction of both individual and multiple genes at the 

single cell level. This is powerful and leverages the nature of multi-factored native 

transcriptional regulation for transcription perturbations. Indeed, for transcriptional 

reprogramming, dCas9-based approaches have been used to quickly assay metabolic pathway 

dynamics and elucidate rate-limiting enzymatic steps without the need for genome editing 

(Zalatan et al. 2015; Deaner and Alper 2017; Jensen et al. 2017). Also, single sets of 

transformation experiments (multiplex) can be easily implemented, and the one-time 

synthesis of gRNA sets allows rapid progression through iterative engineering cycles, namely 

by quickly assessing the combinatorial effects of expression perturbations in order to identify 

primary and secondary targets which could not be known a priori from single gene 

expression perturbations. 

However, though several CRISPR proteins and gRNA versions have been tested in large-

scale studies in yeast, the relative expression changes observed when using dCas9-mediated 

transcriptional regulation are still often observed to be at least an order of magnitude less than 

those observed for bacterial and mammalian re-programming efforts, often in the 100-20000-

fold (Qi et al. 2013; Chavez et al. 2015), whereas highest transcript changes reported in yeast 

are approx. 100-250-fold .(Chavez et al. 2015; Gilbert et al. 2013; Naranjo et al. 2015) In 

order to improve the regulatory potential of CRISPR-dCas9 in yeast and to further potentiate 
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the toolkit available for probing genome functions, there is still a need for further 

development of reprogramming technologies. 

One new-in-class CRISPR technology of relevance for functional genomic studies, was 

recently reported using orthologs of nuclease-proficient and -deficient RNase Cas13 from 

Type VI CRISPR-Cas systems, which can be guided by single-effector gRNAs to target more 

than 70% post-transcriptional knock-down of gene expression in mammalian and plant cells 

with high target specificity (Abudayyeh et al. 2017; Cox et al. 2017). Also, the Zhang 

laboratory showed that dCas13 could be fused to enzymes of the adenosine deaminase acting 

on RNA (ADAR) family and thereby enable RNA editing (Cox et al. 2017). As such, RNA-

targeted dCas13 is believed to advance functional genomics at the post-transcriptional level 

supporting functional studies, e.g. mRNA splice variants, base editing at the RNA level, and 

elucidating mRNA processing by way of dCas13 variants fused to regulatory domains, akin 

the design principles of dCas9 variants. 

Also, though distinct from CRISPR, it should be mentioned that Barbieri et al. recently 

reported that silencing of yeast DNA repair machinery and slowing of replication enhances 

multiplex genome editing by 90-nt single-stranded oligodeoxynucleotides (ssODNs) in yeast, 

thereby enabling simultaneous integration of more than 10 ssODNs with up to 60 mutations 

pr transformation (Barbieri et al. 2017). Most importantly, this strategy is both independent 

of DNA double strand breaks and homologous recombination, and it should be possible in the 

near future to combine the multi-loci and single-base pair resolution of this approach with 

CRISPR-dCas9-mediated transcriptional reprogramming for fast-track identification of 

genome and expression imprints related to desired traits. 

Finally, native transcriptional regulation rely on integrate multi-gene spatio-temporal 

expression perturbations. To further enable synthetic and on-demand transcriptional control 

of polygenic traits, especially those dependent on essential genes, research within 

controllable CRISPR systems should take advantage of, and further develop, reprogramming 

strategies compatible with optogenetics, thereby circumventing the limited reversibility of the 

chemical-induced (eg. aTc) systems (Xiaofeng et al. 2017). Likewise, allosteric regulation of 

CRISPR protein activity should be considered for conditional switching of cellular decision-

making, e.g. growth and metabolic states (Oakes et al. 2016). Ultimately, such techniques are 

envisioned to dramatically support our understanding and orthogonal control of 

transcriptional and post-transcriptional regulations for desired cellular and metabolic outputs. 
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Figure 1. Modulation of nuclease-deficient Cas9 and Cpf1 activities in yeast by fusion of 

transcription regulatory domains. a) Schematic illustration of the transcriptional repression 

domains which have been successfully fused to nuclease-deficient dCas9 CRISPR activation 

in yeast. b) Schematic illustration of the transcriptional activation domains which have been 

successfully fused to nuclease-deficient dCas9 and dCpf1 for CRISPR activation in yeast. 
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Figure 2. Design and application of scaffold RNAs controlling both genomic target 

sequence and regulatory function. a) Five examples of scaffold RNAs (scRNAs) used in 

yeast. ScRNAs are engineered gRNAs with protein-interacting RNA aptamers. The protein 

and aptamer is collectively referred to RNA binding modules. The aptamer-binding protein 

MCP, PCP, and COM interact in an orthogonal manner with the aptamers MS2, PP7 and 

com, respectively. MCP, PCP, and COM can be fused to activation or repression domains, 

thereby enabling scRNAs to specify genome target locus and regulatory function. b) An 

example illustrating single-cell reprogramming of the expression of three genes encoding part 

of the violacein biosynthetic pathway. c) An example illustrating single-cell reprogramming 

of the expression of three genes encoding proteins regulating metabolic flux through the 

mevalonate and carotenoid pathways. 
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Figure 3. Expression of guide RNAs, scaffold RNAs, and ribozyme-flanked guide RNAs. 

Examples of native, hybrid and engineered promoters reported to drive the expression of 

guide RNAs, scaffold RNAs, and ribozyme-flanked guide RNAs in yeasts. 
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