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Abstract A density-based topology optimization ap-

proach for thermoelectric (TE) energy conversion prob-

lems is proposed. The approach concerns the optimiza-

tion of thermoelectric generators (TEGs) and thermo-

electric coolers (TECs). The framework supports con-

vective heat transfer boundary conditions, temperature

dependent material parameters and relevant objective

functions. Comprehensive implementation details of the

methodology are provided, and seven different design

problems are solved and discussed to demonstrate that

the approach is well-suited for optimizing TEGs and

TECs. The study reveals new insight in TE energy

conversion, and the study provides guidance for future

research, which pursuits the development of high per-

forming and industrially profitable TEGs and TECs.

1 Introduction

This paper presents a density-based topology optimiza-

tion approach (Bendsøe and Sigmund, 2003, Bendsøe

and Kikuchi, 1988, Sigmund and Maute, 2013) for non-

linear strongly coupled thermoelectric (TE) energy con-
version problems. Thermoelectricity is a multi-physical

problem which concerns the interaction and coupling

between electric and thermal energy in semi conducting

materials (Goldsmid, 2009, Rowe, 2005). TE energy con-

version is an interesting and important engineering field

due to the globally increasing demand on non-polluting

and renewable energy resources. The increasing demand

is predicted by many researchers to be partly covered

by TE energy conversion in e.g. large scale commercial
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waste heat recovery and cooling applications (Champier,

2017). Improvements in efficiencies of thermoelectric

generators (TEGs) and thermoelectric coolers (TECs)

are required to make TE energy conversion economically

profitable and competitive with conventional waste heat

recovery and cooling technologies (Vining, 2009). As TE

energy conversion is predicted to have large-scale appli-

cation perspectives, a topology optimization approach as

presented in this study, may be used to reach important

performance improvements. The topology optimization

approach provides a road to systematically optimize an

arbitrary TE energy conversion problem with respect to

realistic boundary conditions, arbitrary dimensions and

length-scales, realistic non-linear material parameters

and relevant objective functions.

Thermoelectric energy conversion is described by two

separately identified effects: The Seebeck effect and the

Peltier effect. The Seebeck effect concerns the conversion

of thermal energy into electric energy and the Peltier

effect concerns the conversion of electric energy into

thermal energy (Goldsmid, 2009, Rowe, 2005).

A TE device (thermoelectric generator (TEG) or

thermoelectric cooler (TEC) is sketched in Fig. 1a, and

a TE module is sketched in Fig. 1b. With reference to

Fig. 1a, a TE device consists of three major parts: legs

consisting of TE active materials which drive the TE

energy conversion (components colored with blue and

yellow); electric conductors which connect the TE legs

electrically (components colored with gray) and sub-

strates which constitute the interface between the heat

source and cooling sink (components colored with dark

gray). With reference to Fig. 1b, a TE module consists

of two dissimilar types of semiconductors: n-types legs

which are charged negatively and p-types legs which are

charged positively. If p and n-type legs are subject to a
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temperature gradient in the same direction, the legs will

generate electric potential gradients in opposite direc-

tions. If a p and n-type legs are subjected to an electric

potential difference in different directions, the legs will

be subject to heat fluxes in the same direction. The TE

device in Fig. 1 is electrically in series and thermally

in parallel. This configuration is utilized to build up a

working electric potential over the device for TEGs and

direct the thermal energy transfer from one surface to

the other for TECs.

The efficiency of TE devices depends on the type of

TE active materials utilized. The efficiency of a TE mate-

rial is positively correlated with the Seebeck coefficient,

α, positively correlated with the electric conductivity, σ,

and negatively correlated with the thermal conductivity,

κ. A high α facilitates a large amount of Seebeck and

Peltier work for a given temperature gradient or electric

potential gradient. A high σ facilitates a low electric
energy loss due to Joule heating. A low κ facilitates a

large temperature gradient between the heat source and

the cooling sink. The TE figure-of-merit, ZT = α2σ/κT ,
where T is the temperature [K], is prone to much scien-

tific attention in the thermoelectric society (Tritt and

Subramanian, 2006, Yamashita et al., 2003, Yang et al.,

2012), as the magnitude of ZT of a TE material is posi-

tively correlated with the ability and efficiency of the

material to carry out thermoelectric energy conversion.
However, we believe that the end goal device application

is a better performance measure than ZT , for which

reason we in this study focus on objectives such as elec-

tric power output, fP , electric conversion efficiency, fη,

temperature, fT , thermal heat flux, fQ and coefficient

of performance fµ.

The topology optimization approach presented in

this study takes basis in the idea of distributing two

different TE active materials in a two dimensional design

space in order to optimize for a performance measure
such as fP , fη, fT , fQ or fµ.

Topology optimization for TE energy conversion

problems are related to the topology optimization of

piezoelectric actuators with respect to the governing

physics and the boundary conditions. Piezoelectric actu-

ators have been investigated in the e.g. Sigmund (1998).

A topology optimization approach for TEGs has

been proposed previously in the work by Takezawa and

Kitamura (2012). Takezawa and Kitamura proposed a

single material COMSOL-based topology optimization

framework which supported fP and fη objectives and

temperature dependent materials. The design solutions

were primarily governed by an active volume constraint,

a solid-void material phase formulation, an L-shaped

design domain and fixed temperature boundary condi-

tions between the boundaries of heat source and cooling

sink. The methodology proposed in this study facilitates

a completely different design problem, as two TE ma-

terial phases are distributed in the design space. The

configuration with two design phases and no void in the

design domain complies with realistic configurations of

TEGs and TECs.

Heghmanns and Beitelschmidt (2015) presented a

genetic approach to optimize the electric power output

and the thermo-mechanical-stress for TEGs. Heghmanns
and Beitelschmidt parameterized the height of the insu-

lators; and the number, the width and the height of the

TE legs. Such approaches are not applicable to topology

optimization as discussed in Sigmund (2011).

Analytically founded approaches for TEGs have been

presented in the works of Sakai et al. (2014), Ursell and

Snyder (2002), Yang et al. (2012, 2013). The approaches

took basis in two materials phase optimization for the

non-dimensional figure-of-merit, the electric power out-

put and the conversion efficiency for segmented and

off-diagonal problems. All these approaches were lim-

ited to fixed temperature boundary conditions, simple

topological design solutions and constant material pa-

rameters.

The topology optimization approach presented in

this study supports TEGs and TECs relevant application

objectives, physically realistic convective heat transfer

boundary conditions, temperature dependent material

parameters, and full control of length-scales and device

dimensions. The numerical framework provides a road

to systematic optimization of TEGs and TECs in indus-
trially relevant settings. The study demonstrates that

optimal geometric designs of TEGs and TECs depend

on many factors, such as material parameters, boundary

conditions, length-scales, model dimensions and objec-

tive functions. Furthermore, it is possible to achieve
design performance of two materials which exceed the

performance of the individual materials. The primary

aim of the study is to communicate the methodology

and test the approach on academic problems, however,

the approach can straightforwardly be applied to other

and/or industrially relevant designs problems.

The paper is organized as follows. The physical model

is introduced in Sec. 2, the finite element formulation is

introduced in Sec. 3, the topology optimization frame-

work is introduced in Sec. 4, the implementation details

are covered in Sec. 5, numerical examples are presented

in Sec. 6, and finally, Sec. 7 contains discussions and

conclusions.
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(a) TE device (b) TE module

Fig. 1: A schematic of a TE device and TE module

2 Physical model

The continuity of thermal energy and electric charge is

in an arbitrary domain, Ω, given by:

∇x ·Q = q̇ in Ω (1)

∇x · J = 0 in Ω (2)

where Q is the heat flow density [W/m2];∇x denotes the

spatial derivative with respect to Cartesian directions

x and y; q̇ = J · E is the Joule heating term [W/m3];

E = −∇V is the electric field [V/m] and J is the elec-

tric current density [A/m2]. In thermoelectric analysis,

the thermal and electric energies are coupled by the

constitutive equations (Rowe, 2005):

Q = Tα · J− κ · ∇xT (3)

J = σ · (E− α · ∇xT ) (4)

where T is the temperature [K]; V is the electric poten-

tial; α is the Seebeck coefficient [V/K]; κ is the thermal

conductivity [W/m·K] and σ is the electrical conductiv-

ity [S/m]. The material parameters are temperature de-
pendent for which reason α = α(T ), σ = σ(T ), κ = κ(T ).

The boundary conditions for Eqs. (1)-(4) are:

Fixed electric potential: V = c1 (5a)

Fixed temperature: T = c2 (5b)

Thermal insulation: n ·Q = 0 (5c)

Electric insulation: n · J = 0 (5d)

Electric current in outer load: n · J = c3 (5e)

Electrodes on boundary: r · J = c4 (5f)

Convective heat transfer: n ·Q = c5 (5g)

where n is a vector normal to the boundary, where the

boundary condition is imposed; r is a vector perpendic-

ular to the boundary where the boundary condition is

imposed; and c1, c2, c3, c4 and c5 are numbers larger

than 0. The electric current in the external resistive load

is given by:

n · J = zimp(V − Vfl) (6)

where zimp is the impedance of the resistive load [m/S]

and Vfl is a reference electric potential [V]. The electric

current in surfaces electrodes is given by:

r · J = σperV (7)

where σper is the conductivity of the surface electrode

[S/m]. The heat transfer due to convection is given by:

n ·Q = hconv(T − Tfl) (8)

where hconv is the convective heat transfer coefficient

[W/m2] and Tfl is the temperature of the ambient [K].

3 Finite element formulation

The topology optimization approach takes basis in the

idea of spatially distributing two different material phases,

ΩA and ΩB in a design space ΩD, in order to optimize

for some performance measure. With basis in Eqs. (1)-

(4), ΩA and ΩB are initially clearly separated by a

well-defined boundary Γ . The material phases represent

two different TE active materials, Material A and Mate-

rial B. The equations are rewritten in a unified domain

formulation, where no well-defined boundary between

the material phases is required, by introducing a design

variable field, 0 ≤ ρ ≤ 1, so that Eqs. (1)-(4) become

a functional of the design field, i.e. α(T ) = α(T, ρ),

σ(T ) = σ(T, ρ) and κ(T ) = κ(T, ρ). A schematic of

the concept of the unified domain, the design variable

field and the corresponding boundary conditions in Eq.

(5) have been sketched in Fig. 2. Elements with ρ = 0
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behave physically like Material A; elements with ρ = 1

behave physically like Material B; and elements with

0 < ρ < 1 are in an intermediate state between Material

A and Material B. The thermal and electrical contact

resistances in the transition between the materials are

neglected.

Fig. 2: A schematic of an arbitrary domain Ω relaxed by

the design variable field ρ and bounded by the boundary
conditions stated in Eq. (5)

The discretized finite element equations are obtained

by multiplying the strong forms of the equations in Eq.

(1)-(4) with a suitable test function; integrating over

the domain; performing integration by parts of higher
dimensions on relevant terms; and introducing the design

field dependent interpolation functions (Antonova and

Looman, 2000, Cook et al., 2007, Yushanov et al., 2011).

The unified version of Eqs. (1)-(4) are discretised

using bilinear quadrilateral finite elements with linear

shape functions. The discrete variational problem is

based on the Galerkin method where suitable finite

dimensional solution spaces are introduced. Without

further details, the discretized system of equations in

Eqs. (1)-(4) are given by (Antonova and Looman, 2000,

Cook et al., 2007):[
KTT (ρ,T) + HTT 0

KV T (ρ,T) KV V (ρ,T) + HV V
1 + HV V

2

]{
T

V

}
=

{
QP (T,V) + QE(T,V)

0

}
(9)

where KTT is the thermal stiffness matrix; HTT is the

heat transfer due to convection stiffness matrix; KV T is

the electric stiffness matrix; KV V is the Seebeck stiff-

ness matrix; HV V
1 is the electric resistance in outer load

stiffness matrix; HV V
2 is the electric conductivity of the

surface electrode stiffness matrix; QP is the Peltier heat

load vector; and QE is the Joule heating load vector.

Lower case letters denote generally element stiffness ma-

trices and vectors, and capital letters denotes generally

global stiffness matrices and vectors. The global system

matrices and load vectors in Eqs. 11a are assembled

from the local stiffness matrices with a standard finite

element assembly procedure:

KTT =

N∑
e=1

kTT , HTT =

N∑
e=1

kV T , ... (10)

The element system matrices are given by:

kTT =

∫
Ω

BTκB dV (11a)

hTT =

∫
Γ

hconvN
TN dS (11b)

kV V =

∫
Ω

BTσB dV (11c)

kV T =

∫
Ω

BTσαB dV (11d)

hV V1 =

∫
Γ

zimpN
TN dS (11e)

hV V2 =

∫
Γ

σperN
TN dS (11f)

qP =

∫
Ω

BTTeαJ dV (11g)

qE =

∫
Ω

NTBTVeJ dV (11h)

where α is the Seebeck coefficient matrix; σ is the elec-

tric conductivity matrix; κ is the thermal conductivity

matrix; N is the matrix of element shape functions; B

is the derivative of N, i.e. B = ∇xN. Te and Ve are

the element temperature and element electric potentials,

respectively, and are given by:

Ve = NTv (12)

Te = NT t (13)

where t and v are the nodal element temperatures and

electric potentials. The element electric current density

and the element heat flux can now be computed as:

J(T, V ) = −σBTVe − σαBTTe (14)

Q(T, V ) = TeαJ− κB (15)
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where the element material parameter matrices are given

by:

α(ρ, T ) =

[
αxx(ρ, T ) αxy(ρ, T )

αxy(ρ, T ) αyy(ρ, T )

]
(16a)

σ(ρ, T ) =

[
σxx(ρ, T ) σxy(ρ, T )

σxy(ρ, T ) σyy(ρ, T )

]
(16b)

κ(ρ, T ) =

[
κxx(ρ, T ) κxy(ρ, T )

κxy(ρ, T ) κyy(ρ, T )

]
(16c)

The material parameters are in this study assumed

isotropic, so αxy = σxy = κxy = 0. However, the frame-

work can easily support anisotropic materials, simply by

imposing non-zero values of the material parameters in
the off-diagonal in Eqs. (16). The Seebeck coefficient, the

electric conductivity and the thermal conductivity are

interpolated between Material A and B by the following

interpolation functions:

αij(ρ) =
κAij(1− ρ)αBij + κBijρα

A
ij

κAij(1− ρ) + κBijρ
(17a)

σij(ρ) =
σAijσ

B
ij

σAij(1− ρ) + σBijρ
(17b)

κij(ρ) =
κAijκ

B
ij

κAij(1− ρ) + κBijρ
(17c)

where the indices i and j can take the values x and y,

compare with Eq. (16). The interpolation functions in

Eqs. (17) describe the relationship between two materi-

als in a segmented configuration in a 1D unit cell, for

which reason the interpolation functions in Eq. (17) do
not provide a physical interpretation of the intermediate

designs in 2D and 3D. However, design designs take val-

ues in the extremes of Eq. (17) for which reason these

designs are physically meaningful.

The residual equation of the discretized finite element

equations in Eq. (9) is written as:

R = M(ρ,S)S− F(S) = 0 (18)

where R is the residual vector, M is the system matrix,

S = {T,V} is the state variable vector and F is the

load vector. The residual equation is solved by a com-

bination between the undamped Newton’s method (see

e.g. Deuflhard (2014)) and Picard iterations.

4 Topology optimization

4.1 Problem definition

The optimization problem is formulated in a min/max

form for k =
{

1, 2, ..., Nk
}

projected realizations of the

design variable field to ensure length-scale control and

robustness toward manufacturing variations (Sigmund,

2009, Wang et al., 2011). The so-called robust formula-

tion is given by:

min.
ρ

max
k

(
fk
)

s.t. Rk(¯̃ρk,Sk) = 0

0 ≤ ρ ≤ 1 ∀ρ ∈ ΩD

(19)

The optimization problem in Eq. (19) is solved for three
realizations Nr = 3, denoted the eroded, the nominal

and the dilated designs, respectively. The nominal design

variable field is plotted throughout in this paper.

4.2 Adjoint sensitivities

The gradients of the objective function with respect to

the design variable field are required in order to solve

the optimization problem in Eq. (19). The sensitivities
of the k’th design realization, dLk/ dρk, where L is

the general Lagrangian functional, are computed by the

discrete adjoint approach (see Bendsøe and Sigmund

(2003) and the references therein). The discrete adjoint

approach requires the solution of the nonlinear forward

problem in Eq. (18) and an additional linear adjoint

problem:

−
(
∇SkRk

)T
λk =

(
∇Skfk

)T
(20)

where λk is the vector of adjoint variables and �T de-

notes the matrix or vector transpose operation. The term

is Eq. (20) are evaluated for the solution of the forward

problem. With reference to Eq. (20), the sensitivities

can now be computed by the following expression:

dLk

dρ
=

dfk

dρ
= ∇ρfk − (λk)T∇ρRk (21)

where ρ denotes the design variable vector, d�
d� denotes

the total derivative and ∇� denotes the partial deriva-

tive. Dropping the design realization notation, the tan-

gent residual matrix, ∇SR, in Eq. (20) is given by:

∇SR = M +∇SM · S−∇SF (22)

where

∇SM · S =

[
∇TKTT ·T 0

∇TKTV ·T +∇TKV V ·V 0

]
(23)

and

∇SF =

[
∇TQP +∇TQE ∇V QP +∇V QE

0 0

]
(24)
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Here, ∇T� and ∇V� denote the derivative of � with

respect to T and V, respectively. The dot product no-

tation [·] between a matrix and a vector corresponds to

sum over the nearest indices in tensor notation: If A is

a matrix and b is a vector, then A · x is equivalent to

Aijbj in tensor notation. Notice that Eq. (22) is zero

if the material parameters are assumed temperature

independent. The tangent residual matrix with respect

to the design variable field is given by:

∇ρR =

[
∇ρKTT ·T−∇ρQP −∇ρQE

∇ρKV T ·T +∇ρKV V ·V

]
(25)

The adjoint load ∇Sf and the load in Eq. (21), ∇ρf ,

depend on the objective function and these terms will

be accounted for in relevant sections.

4.3 Filters and Projection Strategy

The physical design variables, ¯̃ρki , are used in the FE

analysis and are obtained by the projection:

¯̃ρki =
tanh(βηk) + tanh(β(ρ̃i − ηk))

tanh(βηk) + tanh(β(1− ηk))
(26)

where ηk is the projection filter threshold. The filtered

design variables ρ̃i are obtained from the mathematical
design variables, ρi, by the filter operation:

ρ̃i =

∑
j∈Ni w(xj)vjρj∑
j∈Ni w(xj)vj

(27)

where vj is the area of the j’th element, Ni is the index

set of the design variables which are within the radius R

of design variable i, w(x) is the filter weighting function

and xi and xj are the spatial location of elements i and

j. The filter weighting function is given by:

w(xj) =

{
R− |x| ∀|x| ≤ R ∧ x ∈ ΩD

0 otherwise
(28)

where R is the filter radius, |x| = xi − xj .
Finally, gradients with respect to design variables,

ρi, require a transformation of the sensitivities by the

chain rule:

∂Lk

∂ρi
=
∑
j∈ΩD

∂fk

∂ ¯̃ρkj

∂ ¯̃ρkj
∂ρ̃j

∂ρ̃j
∂ρi

(29)

5 Implementation

The finite element equations and sensitivities are de-

rived in Maple and implemented in Matlab. The electric

current density J and the thermal heat flux Q are eval-

uated in the centers of the elements. The finite element

implementation has been verified with the commercial fi-

nite element software COMSOL and analytic derivations

from Rowe (2005), Yang et al. (2012).

The optimization problems are solved using the

method of moving asymptotes (Svanberg, 1987) with the

standard settings and a move limit of 0.25. The Heavi-

side projection parameter is updated every 50th design

iteration after the scheme: β = {4, 8, 16, 32, 64, 128}.
The design process is stopped when β = 128 and the

design process is converged, i.e. when the max difference

between the design variables in iteration k and k − 1 is

less than 0.1%.

The projection filter threshold values for the eroded,

nominal and dilated designs are ηk = {0.3, 0.5, 0.7},
respectively. The density filter radius R is chosen to

provide a physical minimum length scale, relative to
the design domain height, Ly, of 0.05 (see Wang et al.

(2011) for more informations).

The robust topology optimization formulation en-

sures length-scale control and manufacturable designs,

and the choice of interpolation functions provide, to our

experience, well-posed and fast converging optimization

problems.

6 Numerical examples

To demonstrate the capability and versatility of the

density-based topology optimization approach presented

in Sec. 4, we have solved and discussed seven different

optimization problems for various boundary conditions,

objective functions and material parameters. The nu-

merical examples take basis in the schematic in Fig. 3

which illustrates an isolated leg of a TE module in Fig.

1b. The design domain, ΩD, is rectangular with length

Lx and height Ly. The northern, southern, eastern and

western surfaces of the design domain are denoted ΓN ,

ΓS , ΓE , ΓW , respectively. The thermal energy entering

ΩD through ΓN , ΓS , ΓE and ΓW is modeled by con-
vective heat transfer with convection coefficients hNconv,

hSconv, h
E
conv and hWconv and reference temperatures TNfl ,

TSfl, T
E
fl and TWfl , respectively. If convection coefficients

hEconv and hEconv are equal they may be denoted hEWconv
to simplify the notation. An outer resistive load (for

TEG problems) or an electric potential difference (for

TEC problems) is applied between ΓW and ΓE . The

optimization problems are solved for Lx = Ly = 0.01

and ΩD is discretized into 100x100 finite elements.



A density-based topology optimization methodology for thermoelectric energy conversion problems 7

Fig. 3: Schematic of the TEG and TEC design problems

The approach presented in Secs. 3-4 supports ar-
bitrary combinations of temperature dependent and

independent material parameters, model dimensions

and boundary conditions provided that the material

parameters are in a range where the Newton solver is

numerically stable. Three different sets of material pa-

rameters with different characteristics have been listed

in Tab. 1. The constant material parameters are named

after the authors of the papers in which the material

parameters have been found. The color map used to

present design solutions is chosen such that blue corre-

sponds to Material A and yellow corresponds to Material

B.

The relationships between α, σ, κ and T for the

temperature dependent material parameters have been

plotted in Fig. 4. The temperature dependent materials

are self-invented and do not refer to any physical mate-

rials. The blue curves are Material A and the yellow and

black curves are Material B. Please notice the similarity

between the colors of the curves and the colors of the

materials phases in Tab. 1 and the design solutions. The

relationships between α, σ, κ and T are chosen such that

complex interactions between the material parameters

occur in the temperature range between 0 and 1000 K.

The temperature dependent material parameter set is

purely academic and is primarily serving as a demon-

stration of the framework. However, physical realistic

materials can easily be implemented if the polynomial
relationships between the temperature and the material

parameters are known.
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(a) Seebeck coefficient
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(d) Figure-of-merit

Fig. 4: The relationship between the temperature and

the material parameters for the temperature dependent

materials in Tab. 1
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Table 1: Material parameter sets used in the numerical examples

Material parameter sets Color in plots α [V/K] σ [S/m] κ [W/(m·K)] Z [1/K]

Yang et al. (2012) MaterialA 200 · 10−6 110 · 103 1.6 2.75 · 10−3

Material B 270 · 10−6 22 · 103 0.77 ·10−3

Temperature Material A αA(T ) σA(T ) κA(T ) ZA(T )

dependent Material B αB(T ) σB(T ) κB(T ) ZB(T )

Angst (2016) Material A −200 · 10−6 100 · 103 2.0 2.0 · 10−3

Material B 200 · 10−6 100 · 103 2.0 2.0 · 10−3

The convection coefficients for various flow types and
flow conditions have been listed in Tab. 2. These values

are basis for the convection boundary conditions of the

design problems discussed in the following sections.

In the following sections we will consider seven dif-

ferent optimization problems: In Sec. 6.1.1-6.1.2 we op-

timize TEGs for electric power output and conversion

efficiency. We optimize TECs for temperature in Sec.

6.2.1, for heat flux in Sec. 6.2.2 and for coefficient of

performance in 6.2.3. In Sec. 6.3 we optimize TEGs

for electric power output and conversion efficiency for

asymmetric boundary conditions. Finally, in Sec. 6.4 we

investigates an electric power output design problem for

so-called p-n generators.

6.1 Thermoelectric generators

We aim at optimizing for two different objective func-

tions for TEGs: The electric power output, fP , and

the electric conversion efficiency, fη. The boundary con-

ditions for the fP problem are summarized in Tab. 3.

The problem setup is inspired by waste heat recovery

applications in e.g. power plants, where designers aim at

maximizing electric power production by utilizing the

thermal energy exchange between hot exhaust gas and

the cold ambient. hEconv and hWconv control the magni-

tude of the thermal input available in the hot and the

cold reservoirs. If hEWconv = 0 there is no thermal energy

available. If hEWconv = ∞ (equivalent to fixed boundary

conditions) there is an infinite amount of energy avail-

able. The convection coefficients depend on the flow

types on ΓE and ΓW , however physical convection co-

efficients are somewhere in between these (nonphysical)

extremes, compare with Tab. 2. A comprehensive review

of heat transfer mechanics in TE materials and devices

is discussed in Tian et al. (2014).

6.1.1 Electric power output

The first numerical example aims at optimizing the

electric power output, fP , by converting the thermal

heat inputs on ΓE and ΓW into electric energy. TEGs
are similar to batteries in electric circuits: To maximize

the electric power output, it is necessary to match the

internal and external resistance of the TEG. The electric

power output objective is in weak form given by:

fP =
1

Ly

∫
ΓE

V dS

∫
ΓE

Jx dS (30)

which can be rewritten in what we call finite element
form as:

fP =

(∑
i∈NE

1

Ly,i
Vi

) ∑
j∈ME

Jj (31)

where NE is the index sets of the nodes on ΓE and MEx

is the x-directional index sets of the x and y directions

of the centers of the elements on ΓE . By introduction

of the vectors LN
T and LM

T , Eq. (31) can be written

in the following form:

fP =
(
LN

TV
)(

LM
TJ
)

(32)

where LN
T is a vector consisting of zeroes except for the

positions i ∈ NE which have the value 1/NE where NE
is the number of nodes on ΓE . LM

T is a vector consisting

of zeroes except for the positions i ∈ME which have the

value 1/ly,i, where ly,i is the height of the i’th element.

Objective functions written in the form such as in Eq.

(31) are referred to as the implementation form for the

rest of the paper. To solve the adjoint problem in Eqs.

(20), we need the gradients of the objective function

with respect to the design field, ∇ρfP , which can be

computed as:

∇ρfP =
(
LN

TV
)(

LM
T∇ρJ

)
(33)

Computing the gradients of the objective function with

respect to the state field,∇SfP , provides at this instance

all terms in Eq. (21). ∇SfP is given by:



A density-based topology optimization methodology for thermoelectric energy conversion problems 9

Table 2: hconv for various flow types and flow conditions

Flow type Flow condition hconv

Forced convection Low speed flow of air over a surface 10
Moderate speed flow of air over a surface 100
Moderate speed flow of air over a cylinder 200
Moderate speed flow of water in a pipe 3000
Molten metals 2000-45000
Boiling water in a pipe 50000
Water and liquids 50-10000

Free convection Water and liquids 50-3000
Water in free convection 100-1200
Air 10-100
Various gasses 5-37
Vertical plate in air 5

Table 3: Boundary conditions for the fP and fη TEG

problem

Boundary

ΓN ΓS ΓE ΓW

Tfl – – 1000 0
hconv – – hEconv hWconv
V – – – 0
σper – – – 1010

zimp – – – zimp

∇SfP =


(
LN

TV
)(

LM
T∇TJ

)(
LN

TV
)(

LM
T∇V J

)
+ LN

T ◦
(
LM

TJ
)

(34)

where ◦ denotes the Hadamard product (element wise

multiplication).

The fP optimized designs for various hEWconv have been

plotted in Fig. 5. The design solutions are based on the

temperature dependent material parameters in Tab. 1

and Fig. 4. The design solutions are indeed dependent on

hEWconv: Low magnitudes of hEWconv result in “spike-shaped”

transitions between the two material phases. Large mag-

nitudes of hEWconv result in abrupt transitions between the

two material phases. The spike-shaped design features

enable the designs to perform in an intermediate state

between the two design phases. Design problems solved

for large hEWconv prefer a relatively larger amount of Ma-

terial B compared to design problems solved for low

hEWconv. The design optimized for hEWconv = 10000 has two

transitions between the two material phases. This design

feature is caused by Material B’s large magnitude of α

for large T , confer Fig. 4. To provide additional insight,

Fig. 6 plots the relationships between the y-directional

average of the temperature along the spatial direction,

x for the design solutions in Fig. 5. The figure shows

the relationships between hEWconv and the temperature

fields. The temperature difference between ΓE and ΓW

is controlled by the magnitude of hEWconv, where a large

hEWconv yield a large temperature difference and vice versa.

Increasing hEWconv causes the temperatures on ΓE and
ΓW to approach TEfl and TWfl , respectively.

The impedance in the resistive load, zimp, is matched

with the internal resistance of the designs to provide
the largest possible fP and fη. The design solutions

depend on zimp for which reason this design parameter

is critical to include in the optimization problems.

Finally, it is important to state that the designs are

physical realizable because the designs are optimized to

0/1 solutions.

6.1.2 Conversion efficiency

In the second numerical example we aim at optimizing

the TE conversion efficiency, fη. The boundary con-

ditions and material parameters for this problem are

similar to the boundary conditions and material pa-

rameters for the fP problem in Sec. 6.1.1. The electric

conversion efficiency is in implementation form given

by:

fη =

(
LN

TV
)(

LM
TJ
)

LM
TQ

(35)

Fraction symbols are in implementation notation inter-

preted as elementwise vector division. With reference

to Eqs. (20) and (21), ∇ρfη and ∇Sfη can now be com-

puted as:
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(a) hEWconv = 40 (b) hEWconv = 70 (c) hEWconv = 160 (d) hEWconv = 500 (e) hEWconv = 10000

Fig. 5: Design solutions for fP objectives with tempature dependent material parameters in Tab. 1

0 0.002 0.004 0.006 0.008 0.01
0

200
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1000

Fig. 6: The relationship between the average tempera-

ture along {x, y} = {x, y}

∇ρfη =

(
LN

TV
)(

LM
T∇ρJ

)
LM

TQ

−

(
LN

TV
)(

LM
TJ∇ρQ

)
LM

T (Q ◦Q)
(36a)

∇Sfη =



(
LN

TV
)(

LM
T∇TJ

)
LM

TQ

−

(
LN

TV
)(

LM
TJ∇TQ

)
LM

T (Q ◦Q)

LN
T ◦
(
LM

TJ
)

LM
TQ

+

(
LN

TV
)(

LM
T∇V J

)
LM

TQ

−

(
LN

TV
)(

LM
TJ∇V Q

)
LM

T (Q ◦Q)



(36b)

The design solution for the fη design problem have

been plotted in Fig. 7. Two design features are similar

to the fP design problem in Sec. 6.1.1: The spike-shaped

transitions between the material phases for low hEWconv
and the design solution dependency of hEWconv. The two

transitions between the two material phases for hEWconv =

10000 are not observed for this optimization problem,

which may be explained by the high magnitude of κB

for high magnitudes of T , confer Fig. 4. The high κB

for high T decreases the effective thermal conductivity

of the design which allow passage of more thermal heat
from ΓW to ΓE which makes the double material phase

for the fη objective cost inefficient.

The relationship between the normalized conversion

efficiency fη/(fη|k=1) and iteration number, k, for the

design solution in Fig. 7b has been plotted in Fig. 8.

Snapshots of the corresponding design evolution have

been plotted in Fig. 9. We notice that the convergence
of the design problem is smooth and stable despite the

non-linear coupled physics and the temperature depen-

dent material parameters. The “convex” behavior of

the design problem may be explained by well-tuned

optimization and model parameters, well-chosen inter-

polation functions and the diffusion-type nature of the

governing physics. By comparing the convergence plot

and the design evolution in Fig. 8-9, we notice that

the difference in objection functions between the spike-

shaped designs the abrupt transitions designs is small

for this particular example.

6.2 Thermoelectric coolers

In TEC problems, we consider three different objec-

tive functions: the temperature average, fT , the heat

flux, fQ, and the coefficient of performance (COP), fµ.

The problem setup is inspired by a household refrigera-

tor and takes basis in the design problem sketched in

Fig. 3. The boundary conditions are listed in Tab. 4. A

TEC is utilized to transfer energy from the thermal cold

reservoir on ΓE to the themal hot reservoir on ΓW by
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(a) hEWconv = 100 (b) hEWconv = 180 (c) hEWconv = 400 (d) hEWconv = 1000 (e) hEWconv = 10000

Fig. 7: Design solutions for fη objectives with tempature dependent material parameters in Tab. 1
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Fig. 8: Convergence plot for the design solution in Fig.

7b

Table 4: Boundary conditions for the fT , fQ, fµ opti-
mization problems

Boundary

ΓN ΓS ΓE ΓW

Tfl – – 300 270
hconv – – hEconv hWconv
V – – V 0
σper – – 1010 –
zimp – – – –

converting the electric energy imposed via an electric

potential difference between ΓE and ΓW into cooling

energy on ΓE . The available energy in the hot and cold

reservoirs is controlled by the magnitude of hEconv and

hWconv. With reference to Fig. 3, hEconv = 0 is equiva-

lent as cooling into a completely insulated boundary.

hEconv = ∞ is equivalent as cooling into an infinitely

large heat reservoir. A convection coefficient in both of

these extremes are nonphysical. Some physically realis-

tic convection coefficients have been listed in Tab. 2 for

comparison.

6.2.1 Temperature

The third optimization problem aims at optimizing fT
objective which in implementation form is given by:

fT = LN
TT (37)

With reference to Eqs. (20) and (21), ∇ρfT and ∇SfT
can now be computed as:

∇ρfT = 0 (38a)

∇SfT =

{
LN

T

0

}
(38b)

The design solutions for the fT optimization problem

optimized for the Yang et al. (2012) material parameters

and various magnitudes of hEWconv have been plotted in Fig.

10. The design features are generally similar to what

we observed in Secs. 6.1.1 and 6.1.2. However, there

are two details which defer slightly from the governing

design features of the fP and fη design solutions: The

spike-shaped transitions between the material phases

are extended over a larger part of the design domain,

and the transitions between the material phases occur

for different hconv.

To obtain the “optimal” fT for a given design problem,

the electric energy input needs to be matched such

that a compromise between the Peltier effect and the

Joule heating is found. A cost ineffective high amount of

internal Joule heating is generated for too high electric

power inputs. A cost ineffective low amount of Peltier

work is generated for too low electric power inputs. To

demonstrate this compromise, the relationship between

V and fT for the design optimized for hEWconv = 400 has

been plotted in Fig. 11.

To determine how much significance we can attribute

to the optimized designs, we have crosschecked the rela-

tionship between fT and hEWconv for the designs in Fig. 10.

All entries in the figure are evaluated for the optimal

choice of electric potential difference between ΓE and

ΓW . The figure shows that a design optimized for one



12 Christian Lundgaard

(a) k = 1 (b) k = 3 (c) k = 5 (d) k = 10 (e) k = 20

(f) k = 30 (g) k = 40 (h) k = 50 (i) k = 70 (j) k = 100

Fig. 9: Design evolution for the fη optimization problem with hEWconv = 180 and the temperature dependent material

parameters

(a) hEWconv = 200 (b) hEWconv = 300 (c) hEWconv = 400 (d) hEWconv = 500 (e) hEWconv = 1000

Fig. 10: Optimized designs for the fT optimization problem and Yang et al. (2012) material parameters

hEWconv indeed has superior performance compared to de-

signs optimized for an other hEWconv. Similar crosschecks

have been performed and confirmed for all optimization

problems presented in this study, however these studies

have been omitted for space reasons.

6.2.2 Heat flux

The fourth numerical problem concerns the optimization

of fQ which in implementation form is given by:

fQ = LM
TQ (39)

With reference to Eqs. (20) and (21), ∇ρfQ and ∇SfQ
can now be computed as:

∇ρfQ = LM
T∇ρQ (40)

∇SfT =

{
LM

T∇TQ

LM
T∇V Q

}
(41)

The design solutions for the fQ optimization problem

for various magnitudes of hconv have been plotted in Fig.

13. The spike-shaped transitions seem to be propagating

over a shorter distance and the transitions between the

material phases occur at different hconv compared to

the designs in Secs. 6.1.1 and 6.1.2.

In Fig. 13 we find bands in the small band of Ma-

terial A placed at ΓE for all magnitudes of hEWconv. The

design feature occurs because Q is related to ∇xT, and

Material A has a relatively large α compared to Material

B, which combined adds a contribution to Q and hereby

a cost effective contribution to fQ. The design feature

is from now on referred to as the band design feature.

6.2.3 Coefficient of performance

In the fifth numerical example we investigate fµ which

in implementation form is given by:

fµ =
LM

TQ(
LN

TV
)(

LM
TJ
) (42)

Eq. (42) is simply the inverse of fη in Eq. (35) for

which reason ∇ρfµ and ∇xfµ are easily obtainable from
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
264

266

268

270

272

274

276

278

280

Fig. 11: Relationship between the electric potential dif-

ferent between ΓE and ΓW and the temperature on ΓE

for the fT design optimized for hEWconv = 400
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Fig. 12: Cross check between fT and hEWconv for the designs

in Fig. 10

Eq. (36). The fµ design problem aims at extracting as

much thermal energy as possible from the cold reservoir

with the least amount of electric power usage. To avoid

trivial design solutions, i.e. designs optimized for V = 0,

we have decided that the electric potential difference

between ΓE and ΓW for fη problems is V = 0.0617.

This electric potential difference is equivalent to the

best performing fT design optimized for hEWconv = 400,

see Fig. 11.

The fµ design solutions for various hEWconv have been

plotted in Fig. 14. The band design feature is observed

for all hEWconv. A new design feature is observed for

hEWconv = {5000, 8000} where Material B is expanding

out from ΓE in a trapezoid shaped topology.

By visual comparison between Figs. 10, 13 and 14 we

notice that very different design solutions occur for these

Table 5: Boundary conditions for the asymmetric bound-

ary condition problems

Boundary

ΓN ΓS ΓE ΓW

Set 1 Tfl 1000 330 1000 0
hconv 104 4.5 · 104 4.5 · 104 104

V – – V 0
σper – – 1010 –
zimp – – – zimp

Set 2 Tfl 1000 0 1000 0
hconv 105 105 105 105

V – – V 0
σper – – 1010 –
zimp – – – zimp

three different – however related – objective functions.

It is therefore indeed critical to consider the end goal ap-

plications and the boundary conditions when designing

TECs. To explain and fully understand the appearance

of the trapezoid shaped design features in fµ design

problems and the spike shaped design features in fT
and fQ design problems is an important and potential

rewarding subject. However, that particular study goes

far beyond the scope of this work and we are currently

working on a dedicated TEC paper aiming to explain

these design features in details.

6.3 Asymmetric boundary conditions

1D boundary conditions problems refer in this paper

to problems where the temperature and electric poten-

tial boundary conditions are imposed only on parallel

boundaries, such as ΓE and ΓW . Asymmetric bound-

ary conditions problems refer to problems where the

boundary conditions are imposed on perpendicular and

parallel boundaries, such as ΓN , ΓS , ΓE and ΓW . The

designs presented so far in Secs. 6.1-6.2 have been lim-

ited to 1D boundary conditions. Asymmetric boundary

conditions may yield a deeper solutions space of the

design problems, which may constitute more topological

complex design solutions. Design solutions optimized

for asymmetric boundary conditions are not likely to

produce more efficient designs that the one dimensional

boundary conditions. However, for physical or manufac-

turing reasons such designs may be desirable despite

interior performance. The sixth numerical example con-

cerns asymmetric boundary conditions and the design

problem is primarily serving as an example of the ver-

satility and application of the approach. We use Yang

et al. (2012) material parameters, and consider the two

sets of boundary conditions listed in Tab. 5.
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(a) hEWconv = 100 (b) hEWconv = 225 (c) hEWconv = 325 (d) hEWconv = 400 (e) hEWconv = 103

Fig. 13: Design solutons for the fQ optimization problem

(a) hEWconv = 3000 (b) hEWconv = 5000 (c) hEWconv = 8000 (d) hEWconv = 20000

Fig. 14: Optimized designs for the fµ optimization problem

A design optimized for fP and a design optimized for

fη have been plotted in Figs. 15a-15b and Figs. 15c-15d,

respectively. The design solutions indeed show very dif-

ferent and complex topological designs, and the example

demonstrates that the framework actually is capable of

optimizing an arbitrary set of boundary conditions.

6.4 The p-n generator

The seventh and last numerical example concerns the

so-called p-n generator (PNG) problem. The problem

and the material parameters are inspired by the work of

Angst (2016). p-n generators (PNGs) have – compared

to conventional configurations of TEGs – an advantage

in high temperature applications, as the electrodes in

PNGs are disconnected from the heat input surfaces,

which may reduce the thermal stress and wear on the

electrodes. In conventional TEGs the electrodes are di-

rectly connected to the heat input surfaces, please confer

Fig. 3, where the electrodes on PNGs are connected to

thermally insulated surfaces, please confer Fig. 16. Due

to lower temperatures on the insulated surfaces this con-

figuration reduces the thermal stresses in the electrodes

during operation. PNGs are prone to relatively poor

theoretical performance compared conventional TEGs,

however with topology optimization and the framework

presented in this study we are able to reduce the per-

formance gap between PNGs and convectional TEGs.

The design problem takes basis in the schematic in Fig.

16. The material parameters used in the problem are

Table 6: Boundary conditions for the PNG problem

Boundary

ΓN ΓS ΓEE ΓWE

Tfl 1000 0 – –
hconv 104 104 – –
V – – – 0
σper – – 1010 –
zimp – – zimp –

academic, however, they are adequate for this specific

design problem as Material A and B are equal in magni-

tude for α, σ and κ, but with opposing operational sign

in α.

The boundary conditions of the optimization problem

has been listed in Tab. 6, and the corresponding de-

sign optimized for fP have been plotted in Fig. 17.

Several complicated topological design features occur

in the optimized design such as asymmetry around

{x, y} = {Lx/2, y}, spike-shaped transitions and iso-

lated islands of different material phases. The unintu-

itive and complex design features and comparisons with

design solutions in Angst (2016), en-light that the pro-

posed topology optimization approach is an effective

strategy to optimize such problems.
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(a) fP , set 1 (b) fη, set 1 (c) fP , set 2 (d) fη, set 2

Fig. 15: Design soluations for the asymmetric boundary conditions problem

Fig. 16: Schematic of the PNG design problem

Fig. 17: The design solution for the PNG problem

7 Discussion and conclusion

A density-based topology optimization approach for

thermoelectric energy conversion problems has been

proposed. The versatile framework supports physically

realistic convective boundary conditions, temperature

dependent material parameters and objective functions

relevant to thermoelectric generators and coolers.

The framework is based on a fully coupled non-linear

thermoelectric finite element model. The framework dis-

tributes two different thermoelectric active materials

in a two dimensional design space in order to optimize

for some performance measure. The study reveals new

insight in physical and topological effects and shows po-

tential performance improvements in the field of thermo-

electric energy conversion. The design solutions depend

on the boundary conditions, the material parameters

and the objective functions. To obtain high performing

thermoelectric generators and coolers, it is therefore

critical to take the device application into consideration

in the design phase.

The design solutions are physically realizable and

the framework can easily be applied on physical realistic
material parameters and model dimensions. Relevant

implementation details with respect to the framework

are stated.

The study demonstrates that the proposed approach

indeed is well-suited for thermoelectric energy conver-

sion problems. The study may provide guidance for

future research in the pursuit at achieving large-scale

commercial applications of thermoelectric generators

and coolers.
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