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Updated and standardized genome-scale
reconstruction of Mycobacterium
tuberculosis H37Rv, iEK1011, simulates flux
states indicative of physiological conditions
Erol S. Kavvas1, Yara Seif1, James T. Yurkovich1,2, Charles Norsigian1, Saugat Poudel1, William W. Greenwald2,
Sankha Ghatak1, Bernhard O. Palsson1,2,3,4* and Jonathan M. Monk1*

Abstract

Background: The efficacy of antibiotics against M. tuberculosis has been shown to be influenced by experimental
media conditions. Investigations of M. tuberculosis growth in physiological conditions have described an environment
that is different from common in vitro media. Thus, elucidating the interplay between available nutrient sources and
antibiotic efficacy has clear medical relevance. While genome-scale reconstructions of M. tuberculosis have enabled the
ability to interrogate media differences for the past 10 years, recent reconstructions have diverged from each other
without standardization. A unified reconstruction of M. tuberculosis H37Rv would elucidate the impact of different
nutrient conditions on antibiotic efficacy and provide new insights for therapeutic intervention.

Results: We present a new genome-scale model of M. tuberculosis H37Rv, named iEK1011, that unifies and updates
previous M. tuberculosis H37Rv genome-scale reconstructions. We functionally assess iEK1011 against previous models
and show that the model increases correct gene essentiality predictions on two different experimental datasets by 6%
(53% to 60%) and 18% (60% to 71%), respectively. We compared simulations between in vitro and approximated in
vivo media conditions to examine the predictive capabilities of iEK1011. The simulated differences recapitulated
literature defined characteristics in the rewiring of TCA metabolism including succinate secretion, gluconeogenesis, and
activation of both the glyoxylate shunt and the methylcitrate cycle. To assist efforts to elucidate mechanisms of
antibiotic resistance development, we curated 16 metabolic genes related to antimicrobial resistance and
approximated evolutionary drivers of resistance. Comparing simulations of these antibiotic resistance features between
in vivo and in vitro media highlighted condition-dependent differences that may influence the efficacy of antibiotics.

Conclusions: iEK1011 provides a computational knowledge base for exploring the impact of different environmental
conditions on the metabolic state of M. tuberculosis H37Rv. As more experimental data and knowledge of M.
tuberculosis H37Rv become available, a unified and standardized M. tuberculosis model will prove to be a valuable
resource to the research community studying the systems biology of M. tuberculosis.
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Background
The success of M. tuberculosis as a pathogen has been
partially attributed to its unique metabolic capabilities.
The metabolic network of M. tuberculosis has evolved to
withstand and navigate the harsh environment imposed
by the alveolar macrophage. Most bacteria cannot thrive
in this hypoxic, acidic and nutrient-limited condition,
yet it is in this harsh environment that M. tuberculosis
encounters and evolves resistance to antibiotics. Eluci-
dating the robust properties of metabolism that enable
M. tuberculosis pathogenicity and drug resistance evolu-
tion has become a key area of research.
Recent studies have demonstrated that the choice of

experimental media conditions plays an important role
in understanding physiologically-relevant phenotypes of
M. tuberculosis [1]. Commonly used experimental media
conditions such as Middlebrook 7H9 are known to be
much different from the physiological environment. For
example, despite extensive research describing fatty acids
as a key carbon source within the macrophage environ-
ment, most studies forgo the inclusion of fatty acids in
the media, opting instead for glucose or glycerol [2]. Per-
haps it is no surprise then that differences between the
in vitro and in vivo environments have been shown to
affect antibiotic screening results [3–11]. In particular, it
has been shown that hypoxic or nutrient limited condi-
tions alter the metabolism of M. tuberculosis to a nonre-
plicating, drug-resistant state [5–7]. Specific mechanism-
changing effects between in vitro and in vivo conditions
have been shown to occur for many antibiotics [9, 10].
While it is understood that differences in experimental

media conditions lead to phenotypic variations, dissect-
ing a mechanistic understanding of these different phe-
notypes remains challenging. Genome-scale models
(GEMs) of metabolisms have emerged as powerful tools
to computationally probe the effect of media compos-
ition on a cell’s phenotype [12]. For the past 10 years,
GEMs have provided a mechanistic basis for exploring
the metabolic capabilities of M. tuberculosis on the
systems-level. GEMs of M. tuberculosis have helped in-
terrogate a variety of biological phenomena, from under-
standing the transcriptional regulatory network [13] to
elucidating metabolic interactions between M. tubercu-
losis and the alveolar macrophage [14].
While new M. tuberculosis H37Rv GEMs have enabled

novel insights, they have been constructed from different
base models resulting in divergent representations of the
metabolic network. For example, gene-protein-reaction
rules (GPRs) (i.e., the Boolean relationship between a
gene, or set of genes, and the corresponding reaction(s))
differ within reactions shared amongst models (e.g., The
GPR of Rv0904c differs between iOSDD and iSM810).
In addition to variation in network topology, divergent
GEMs have a variety of identifiers used for metabolite

and reaction names, making them difficult to compare
and build from (e.g., “R#” reaction identifier nomencla-
ture used in most models built primarily off of GSMN-
TB). While such differences may seem insignificant, the
presence of multiple divergent M. tuberculosis H37Rv re-
constructions hinders progress and may result in future
wasted efforts [15].
Here, we present iEK1011, a new GEM of M. tuberculosis

H37Rv that unifies, standardizes, and updates previous
divergent GEMs of this model organism. We assess the
performance of iEK1011 to that of previous GEMs through
gene essentiality prediction on two different datasets.
iEK1011 is further characterized by performing simulations
that examine the model’s predictions in physiological con-
ditions and interrogate differences between in vitro and in
vivo media conditions. Finally, in order to provide a com-
prehensive platform for elucidating antibiotic resistance
(AMR), we integrate knowledge derived from experimental
literature into iEK1011.

Results
Workflow for updating, unifying, and standardizing
previous reconstructions of M. tuberculosis
In order to ensure a comprehensive unification, we first
gathered and compared available reconstructions of M.
tuberculosis H37Rv. Since the first two M. tuberculosis
H37Rv reconstructions released in 2007 [16, 17], a total
of 9 reconstructions have been built (Table 1). Most
models were largely based off of either iNJ661 [16] or
GSMN-TB [17]. Specifically, out of the most recent M.
tuberculosis reconstructions, sMtb [18], iSM810 [13] and
gal2015 [19] were primarily built from GSMN-TB while
iOSDD [20] was built from iNJ661.
Using a variety of both quantitative and qualitative cri-

teria (e.g., standardized identifiers, gene essentiality pre-
dictions, mass balanced reactions; see Methods), iOSDD
and sMtb were chosen as the base reconstructions for
the unification process (Fig. 1a). The recently developed
M. tuberculosis H37Rv BioCyc Database [21] provided
an additional reconstruction resource to supplement the
standardized draft model. The reconstruction process
was performed following a clear workflow (Fig. 1a): the
base models were mapped to standardized BiGG identi-
fiers [22], joined into a draft model of shared reactions
and unified by assessing model disagreements. The
resulting unified draft model was then expanded through
manual curation of new biochemical knowledge. Thus,
the reconstruction process was iterative and involved
constant re-evaluation of model content (see Methods).
The resulting unified and updated reconstruction of

M. tuberculosis H37Rv, named iEK1011, contains 1011
genes, 1228 reactions, and 998 metabolites. iEK1011
encapsulates the majority of genes in the previous
models based on either iNJ661 or GSMN-TB (Fig. 1b).
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iEK1011 accounts for 96% of sMtb genes (874 of 915
genes) and 91% of iOSDD genes (807 of 890). A total of
151 unique genes from iOSDD, iNJ661, gal2015,
iSM810, and sMtb were not accounted for in iEK1011
(see Additional file 1) either due to insufficient evidence
necessary to resolve major inconsistencies across models
or lack of confidence in gene annotation.
In addition to unifying previous reconstructions,

iEK1011 incorporated 39 new genes absent from previ-
ous models. In particular, sulfur metabolism was
updated by adding the cysO-dependent biosynthesis of
L-cysteine, which connects molybdenum metabolism
with sulfur metabolism through the use of moeZ in both
pathways [23]. New pathways and reactions include
heme uptake [24], tuberculosinol biosynthesis [25],
ergothioneine biosynthesis [26, 27], and mycobilin bio-
synthesis [28]. The resulting unified reconstruction of
M. tuberculosis, iEK1011, provides a biochemically-
derived knowledge-base that can be functionally assessed
computationally.

Functional assessment of iEK1011
iEK1011 was converted to a mathematical model to
examine the functional capabilities of the improved
reconstruction and to quantitatively compare it with
previous reconstructions. The primary tool for evaluat-
ing genome-scale reconstructions of M. tuberculosis
H37Rv has been in silico gene essentiality testing. There-
fore, we used gene essentiality as a metric for evaluating
and comparing the performance of iEK1011. Gene
essentiality predictions across previous M. tuberculosis
H37Rv reconstructions were determined using the same
data and quantitative score used in evaluating the

predictive ability of iSM810 [13]. In addition to the
commonly used gene essentiality dataset by Griffin et al.
[29], a recent gene essentiality dataset by DeJesus et al.
[30] was also utilized in our model comparisons. The
primary differentiating feature between the datasets was
the media condition used to generate them (see
Additional file 1). Using these gene-essentiality datasets,
we evaluated and compared the ability of five models
(iNJ661, iOSDD, sMtb, iSM810, and iEK1011) to predict
gene essentiality.
When using the Griffin dataset, we found that

iEK1011 increases the prediction of true positives (i.e.,
the model correctly predicts growth for the gene knock-
out when the gene is annotated as non-essential) by 23%
(579) (Fig. 2a) over sMtb (470), which had the largest
number of true positives amongst the previous models.
iEK1011 gene essentiality predictions decrease the num-
ber of false negatives (i.e., the model incorrectly predicts
no growth for the gene knockout when the gene is anno-
tated as non-essential) by 11.4% (31) (Fig. 2a) over
iSM810 (35), which had the least number of false nega-
tives amongst the previous models.
With respect to the more recent DeJesus essentiality

dataset, iEK1011 increases the number of true positives
by 24% (666) (Fig. 2a) over sMtb (538), and iEK1011
increases the number of true negatives by 11% (221)
(Fig. 2a) over sMtb (199). iEK1011 decreases the number
of false positives by 14% (73) over sMtb (83), and
increases the number of false negatives by one (45) over
iSM810 (44). The increase in one more false positive
over iSM810 is due to having 9 genes tested in the false
negative category that are not contained in iSM810.
Moreover, relating specific groups, such as false

Table 1 Summary of existing genome-scale models of M. tuberculosis. iAB-AMØ-1410-Mt-661 has over 2000 genes because it com-
bines an updated version of iNJ661 with a macrophage model

Model Year Genes Reactions Metabolites Reference

iNJ661 2007 661 1025 826 [16]

GSMN-TB 2007 726 856 645 [17]

MMF-RmwBo 2009 776 1108 ??? [56]

HQMTB 2009 686 607 734 [57]

iNJ661v 2010 663 1049 838 [58]

iAB-AMØ-1410-Mt-661 2010 2071 4489 3400 [14]

MergedTBmodel 2012 917 1400 1017 [59]

GSMN-TB1.1 2013 759 876 667 [60]

iOSDD890 2014 890 1152 961 [20]

sMtb 2014 915 1192 929 [18]

gal2015 2015 760 965 754 [19]

iSM810 2015 810 938 723 [13]

iNJ661mu 2016 672 1057 846 [61]

iEK1011 2017 1011 1228 998 This study

The model provided by Garay et al. was given the name of gal2015 because it is unnamed in the original publication
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negatives or true positives, against other models with a
different number of genes may not correctly represent
the changes due to significant differences in class sizes.
In order to account for the variations in class sizes

amongst models, we calculated the Matthews Correlation
Coefficient (MCC) for each model’s prediction on both
gene essentiality datasets (Fig. 2b). iEK1011 scores the
highest on both datasets with an MCC of 0.60 and 0.71 on
the Griffin and DeJesus dataset, respectively (Fig. 2b) (see
Additional file 1). These iEK1011 MCC values are a 6%
and 18% increase over the previous best model MCC’s of
sMtb and iSM810 on the Griffin and DeJesus dataset,
respectively.
Although the DeJesus essentiality dataset is more

recent than the Griffin dataset by 6 years, the media
condition used in determining essentiality on the
DeJesus dataset was not as well defined because it

utilized oleic-albumin-dextrose-catalase (OADC) in mid-
dlebrook 7H10/7H9 media supplemented with a variety
of carbon sources [30]. The contents of OADC are not
well defined primarily because of albumin, which may
supplement amino acids to M. tuberculosis. The extent
of OADC’s impact remains unknown, which ultimately
hinders the ability to rigorously define the inputs for
GEMs, which are crucial components of COBRA
methods [31]. Conversely, the media used in Griffin was
well defined as minimal media supplemented with
glycerol [29]. Therefore, the increase in MCC by 6% over
sMtb on the Griffin essentiality data should be evaluated
with more confidence than the significantly higher per-
cent increase in MCC over all models on the DeJesus
dataset. Thus, the gene essentiality results presented
above demonstrate improved predictive capability of
iEK1011 over previous M. tuberculosis GEMs.

a b

Fig. 1 a Workflow of reconstruction process. A draft GEM model was built from the TB BioCyc 20.0 database and mapped to BIGGs IDs along
with sMtb and iOSDD (see Additional file 2). The models were then unified by first joining the similarities between them, followed by manual
curation of model differences literature and database validation. b Overlap of genes across different model sets. The model that covers most of
the models within the particular set is enclosed by a box
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iEK1011 qualitatively recapitulates flux states indicative of
physiologically relevant media conditions
While the gene essentiality predictions are a useful
metric to evaluate model quality, we prioritized the
model’s ability to recapitulate M. tuberculosis behavior
described in the literature. Specifically, an emphasis was
placed on central carbon metabolism given its distinctive
usage in M. tuberculosis and recent emergence as an un-
expected research frontier [32]. In addition, we focused
on M. tuberculosis studies involving conditions relevant
to pathogenicity [1]. Therefore, we compared simula-
tions between two conditions relevant to the purpose of
this study: Lowenstein-Jensen media, representing in
vitro drug testing conditions; and an in vivo nutrient
condition approximated from the literature that at-
tempts to replicate the pathogenic state. We used Flux

Variability Analysis (FVA) [33] and randomized sampling
[34] to characterize and compare the fluxes between the
two media conditions.
Taking advantage of recent studies investigating nitro-

gen metabolism within the context of M. tuberculosis
pathogenicity [35–38], we set the in vivo nitrogen
sources to be composed of nitrate, aspartate, asparagine,
glutamate, urea, and glutamine (Fig. 3, see Additional
file 1). Under hypoxic in vivo conditions, iEK1011
predicts use of nitrate in a respiratory role as opposed to
a nitrogen source where it is taken in and reduced to
nitrite by narG, and then exported out of the cell, a find-
ing consistent with previous experiments [37]. The
chosen in vivo carbon sources include fatty acids (both
even and odd chain), cholesterol, CO2, and Alanine.
Fatty acids were chosen as the primary source of carbon

a

b

Fig. 2 Gene Essentiality Prediction Comparisons. a Model-predicted gene essentiality results compared to both the Griffin et al. and deJesus et al.
essentiality experimental datasets. b Gene essentiality performance using the Matthews Correlation Coefficient. iSM810 and sMtb, which were
both built off of GSMN-TB 1.1, significantly outperform iNJ661 and iOSDD. iEK1011 outperforms all models on both gene essentiality datasets
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in vivo due to the vast amount of literature evidence
supporting the claim that M. tuberculosis uses host-
derived fatty acids [2, 39, 40]. iEK1011 catabolizes fatty
acids through beta-oxidation, which generates acetate
(even chain fatty acid catabolism), propionyl-CoA (odd
chain fatty acid catabolism) and acetyl-CoA (Fig. 3).
Although CO2 was incorporated due to evidence showing
it being fixated by M. tuberculosis in an approximated in
vivo environment [38], iEK1011 was not predicted to fix-
ate CO2 due to a net gluconeogenic flux through phos-
phoenolpyruvate carboxykinase - a simulation result also

found in Beste et al. [38]. Alanine was included as a nutri-
ent due to evidence describing it to be in abundant quan-
tities within the alveolar macrophage and being imported
from the macrophage [38].
The differences in flux state simulations predicted by

iEK1011 between the two conditions recapitulate key
behavior described in the literature. Specifically, in the
approximated in vivo condition involving hypoxia and
growth on fatty acids, model-predicted flux decreases
through TCA with an accompanying increase in succin-
ate secretion (Fig. 3). iEK1011 predicts the secretion of

Fig. 3 Metabolic map of flux differences through central carbon metabolism in iEK1011 between approximate in vitro and in vivo conditions. The
media conditions are represented by nutrients outside of the dotted boundary line. Box plots graphically depict flux differences in the sampled
solution spaces between in vivo and in vitro media conditions
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succinate to allow optimal growth in these conditions
because it removes an intracellular proton, allowing for
membrane potential related reactions such as oxidative
phosphorylation to proceed. This mechanism has been
previously described to be specific and essential in M.
tuberculosis hypoxia adaptation [41]. Thus, iEK1011 can
recapitulate known physiological phenomena using stoi-
chiometry alone.
In addition to succinate secretion, iEK1011 simulates

the activation of both the glyoxylate shunt and the
methylcitrate cycle in response to both hypoxia and
growth on fatty acids [41, 42]. Although the median flux
values are low (Fig. 3) (based on markov chain monte
carlo sampling of the solution space [34]), FVA simula-
tions show maximum flux values through methylcitrate
cycle and glyoxylate shunt to have a threefold and two-
fold increase in in vivo media conditions relative to in
vitro conditions, respectively (see Additional file 1). Fur-
thermore, the metabolic model does not account for the
toxic effect of glyoxylate and propionate which has been
shown to necessitate flux through glyoxylate shunt and
methylcitrate cycle. While iEK1011 simulations do not
account for characteristics like toxicity, the examples
outlined above show that iEK1011 is capable of qualitatively
recapitulating key phenomena uncovered in recent years.

iEK1011 as a computational knowledge base for
interrogating features of antibiotic resistance
We have shown that iEK1011 is a valuable source of com-
putational inquiry through gene essentiality predictions
and its ability to recapitulate phenomena described in the
literature. In addition to providing a computational plat-
form, GEMs are fundamentally a knowledge-base that are
capable of contextualizing a variety of concepts that ex-
tend beyond the genome-scale metabolic network [31].
Taking advantage of this ability to incorporate abstrac-
tions, we translate knowledge derived from experimental
investigations of antibiotic resistance (AMR) evolution
into a format that can be integrated into GEMs.
Using the extensive literature on the mechanism of

AMR evolution in M. tuberculosis, we curated a rela-
tional table between antibiotics, genes, and metabolic
reactions for eight different antibiotics (Table 2). The
genes associated with a particular antibiotic are those
known to be central to AMR evolution (i.e., mutations
in the genes that code for the reactions often confer
resistance to specific drugs). Displaying AMR genes on a
metabolic map of iEK1011 portrays relationships that
would be difficult to comprehend without a GEM
(Fig. 4). Notably, we found that the close topological
relationships between para-aminosalicylic acid, etham-
butol, D-cycloserine, and pyrazinamide may hint at
pleiotropic effects (i.e., mutations that affect multiple

phenotypes) of resistance conferring mutations on the
efficacy of different antibiotics.
In order to incorporate specific antibiotic pressures

into iEK1011, we evaluated each antibiotic and associ-
ated a biochemical objective function that approximates
the evolutionary drivers of selection (Table 3). In the
case of ethambutol, it has been shown that flux-
increasing mutations in ubiA confer resistance by
increasing the production of decaprenylphosphoryl-b-D-
arabinose (DPA), which outcompetes ethambutol for
embB binding spots [43]. Therefore, in a GEM, the
evolutionary pressure imposed by ethambutol can be
approximated as a metabolic objective where the
production of DPA is maximized (Table 3). A total of
four antibiotics were associated with approximated
objective functions representing evolutionary forces (see
Methods for further reasoning of the choice of objective
function).
Taking advantage of the translation of antibiotic fea-

tures to formats amenable by iEK1011, we simulated the
evolutionary pressures induced by antibiotics and calcu-
lated the maximum and minimum fluxes for the
AMR-associated reactions in both in vivo and in vitro
conditions through FVA (see Additional file 1).
There were few differences in relative flux for a spe-

cific drug objective between these conditions. However,
those that were uncovered highlighted potential impacts
of environmental/media composition differences. In
particular, we see major differences in the fluxes that
correspond to optimizing the approximated ethambutol-
induced evolutionary pressure (see Fig. 5). Furthermore,

Table 2 Table of antibiotics and the associated genes whose
mutations confer antibiotic resistance

Drug Gene iEK1011 reaction Reference

Ethambutol embABC EMB [62]

ubiA DCPT [43]

aftA AFTA [43]

D-cycloserine alr ALAR [63]

ddl ALAALAR [64]

ald ALAD_L, GXRA [44]

Isoniazid katG CAT [65]

inhA FAS [66]

fabG1 MYCSacp56/58/50 [67]

Benzothiazinones dprE1 DCPE [68]

PAS thyA TMDS [51]

ribD FOLR2, ASPRAUR, DHPPDA2 [51]

folC DHFS, THFGLUS [51]

Pyrazinamide pncA NNAM [69]

Ethionamide mshC CIGAMS [52]

Rifampicin drrABC PDIMAT, PPDIMAT [70]
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this ethambutol flux is correlated with fluxes induced by
the approximated d-cycloserine objective. Closer inspec-
tion of the uptake differences driving these differential
flux states points to L-alanine as a key environmental
influence. In particular, the differential fluxes within the
cases of ethambutol resistance-conferring genes ubiA
(DCPT) and embB (EMB), as well as d-cycloserine
resistance-conferring genes of alr (ALAR), ald
(ALAD_L), and ddlA (ALAALAr), exemplify the differ-
ential effect of environmental L-alanine availability. Not-
ably, L-alanine has been shown to be an important
substrate in the macrophage environment (Beste 2013).
While L-alanine and other amino acids may be available
in LJ drug-testing media due to utilization of egg base or
bovine serum, our analysis only accounted for metabo-
lites that were explicitly stated in defined quantities
within the media conditions. With respect to the efficacy
of antibiotics, these results suggest that d-cycloserine
and ethambutol may be less effective in vivo due to
increased availability of L-alanine, which is a key precur-
sor reaction catalyzed by AMR genes targeted by

d-cycloserine and ethambutol, whereas in vitro condi-
tions may increase susceptibility to ethambutol. In both
cases, the significant decrease in model-predicted max-
imum ALAD_L (ald) flux is in line with studies describing
the deleterious mutations in ald that confer resistance to
D-cycloserine [44]. Altogether, iEK1011 provides a know-
ledge base for relating antibiotic resistance features
through genome-scale metabolic network analysis.

Discussion
The divergence of M. tuberculosis H37Rv reconstruc-
tions has created an unnecessary obstacle in contextual-
izing the increasing growth of biochemical data for this
troublesome pathogen. In order to address experimental
insights to pathogenic conditions and alleviate road-
blocks for future reconstruction efforts of M. tubercu-
losis H37Rv, we built a unified and updated GEM of M.
tuberculosis, iEK1011. We tested the predictive potential
of iEK1011 by comparing gene essentiality predictions
with previous models and showed that iEK1011 outper-
forms previous models. We further assessed the

Fig. 4 Escher map of arabinogalactan-peptidoglycan complex biosynthesis with known resistance-conferring genes mapped. The gene-antibiotic
relation is indicated by the number placed proximal to the gene. The mechanistic effect by the antibiotic is indicated by the blue line. No blue
line is shown for mutations in which the gene-antibiotic relation remains unclear (i.g., mshC, drrBC), Escher-usable maps were built for multiple
subsystems in iEK1011 (see Additional file 4)

Table 3 List of objective functions related to the evolutionary drivers of antibiotic resistance

Drug Objective Reaction in iEK1011 Reference

Ethambutol MAX DPA production decda__tb_c → □ [43]

PAS MAX Tetrahydrofolate production thf_c → □ [51]

D-cycloserine MAX L-Alanine Production ala__L_c → □ [44]

Ethionamide MIN mycothiol production msh_c → □ [52]

The abbreviations are as follows: PAS para-aminosalicylic acid, MAX maximize, MIN minimize

Kavvas et al. BMC Systems Biology  (2018) 12:25 Page 8 of 15



predictive capabilities of iEK1011 by comparing simu-
lated flux states between in vitro drug testing and
approximate in vivo media conditions. Comparisons re-
capitulate specific phenomena indicative of biochemical
flux states seen in physiological conditions. We incorpo-
rated antibiotic resistance knowledge in iEK1011, which
enabled a network-based perspective of multi-antibiotic
resistance evolution.
iEK1011 unified previous M. tuberculosis H37Rv

reconstructions and encompassed the majority of genes
within the two divergent groups of reconstructions.
Additionally, iEK1011 incorporates new pathways in-
cluding the incorporation of ergothioneine biosynthesis.
This addition will aid a quantitative elucidation of the
relationships between sulfur metabolism, bioenergetic
homeostasis, and redox balance [27]. As a unified, stan-
dardized, and updated model, iEK1011 provides a base
for future models of M. tuberculosis H37Rv.
Functional assessment of previous M. tuberculosis

H37Rv reconstructions through gene essentiality predic-
tions showed that iEK1011 achieves a higher MCC than
previous models on two different datasets. While the
two datasets were crucial in both assessing and driving
iEK1011 reconstruction, experimental gene essentiality
datasets derived from physiologically-relevant conditions
are warranted for understanding the human-restricted
lifestyle of M. tuberculosis.
Using iEK1011, we qualitatively determined differ-

ences in biochemical states between in vitro and
approximated in vivo conditions. We showed that
iEK1011 successfully recapitulates specific phenomena
described in physiologically-relevant studies of M.
tuberculosis. Future reconstruction efforts may target
iEK1011’s lack of predicted CO2 fixation [38] and
account for compartmentalized co-metabolism of
multiple substrates [45, 46]. iEK1011 may provide a
base for future host-pathogen integrated reconstruc-
tions that leverage valuable experimental data.
An integrated knowledge-base of genome-scale metab-

olism and antibiotic resistance components may enable

new perspectives for understanding and combating M.
tuberculosis H37Rv. We translated experimental know-
ledge of AMR genes and specific adaptation mechanisms
to formats amenable to iEK1011. Comparing simulations
of these AMR features between in vitro and in vivo
conditions emphasized the potential impact of hypoxia
and L-alanine availability on the pressures induced by
antibiotics. Future constraint-based analysis of M.
tuberculosis AMR may leverage new experimental
approaches, such as those that have analyzed changes in
essentiality under antibiotic exposure [47].
Taken together, iEK1011 is a new, comprehensive and

predictive constraint-based model of M. tuberculosis
H37Rv. In this study, we computationally demonstrate
that in vivo nutrient sources absent from in vitro media
significantly alter the flux state of central carbon metab-
olism. As experimental insights to M. tuberculosis patho-
genicity and antibiotic resistance continue to grow, this
GEM will provide a foundation to connect disparate data
types and knowledge.

Methods
Reconstruction of iEK1011
Choosing a base reconstruction
A variety of both quantitative and qualitative criteria was
considered in determining which model would provide the
base for the new model. The determining criterion included
the amount of curated data, extent of previous model unifi-
cation, gene essentiality predictions, standardized identifiers,
cross-references to databases, and quality of physical repre-
sentations, such as the use of an extracellular compartment
and mass balanced reactions. Based on this criterion, the re-
construction of iEK1011 was based on the unification of
iOSDD, sMtb, and portions of the M. tuberculosis H37Rv
BioCyc Database [21] (Fig. 1a).
With regards to the selection criterion, sMtb was chosen

as the primary base model. Notably, sMtb performed the
best amongst the previous models in gene essentiality pre-
dictions (Fig. 2b). In addition, sMtb included metabolite for-
mulas, an extracellular compartment, and cross-references

Fig. 5 Heatmaps of maximum FVA values for for a matrix representing FVA values for the curated AMR reactions across simulations of different drug-
specific objective functions (see Table 2 for curated list of AMR genes and their associated iEK1011 reactions, see Table 3 for drug-specific objectives)
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to databases. Both iSM810 and gal2015, which were both
built off of GSMN-TB 1.1, lacked standardized identifiers
(i.e., reactions identifiers were arbitrarily named R1, R2, etc.),
metabolite formulas, and an extracellular compartment (i.e.
inputs into the model could be utilized without being trans-
ported across the membrane). The lack of chemical formu-
las disables the assessment of mass conservation, which is a
defining feature of constraint-based modeling. Furthermore,
an extracellular compartment is key in distinguishing be-
tween what goes into the media and what is being trans-
ported across the membrane. While iOSDD performed well
in categories related to component descriptions, it was based
on iNJ661 and thus had a lower gene essentiality score, as
previously shown [13]. Despite the low gene essentiality
score, we utilized iOSDD as a representative for the models
based on iNJ661. In this study, we show through gene essen-
tiality predictions that the integration of iOSDD with sMtb
results in a 6% increase in gene essentiality predictions.
The reconstruction process was straightforward (Fig. 1a).

The base models were first algorithmically mapped to stan-
dardized BiGG identifiers (see Additional file 2) [22]. Identi-
fiers that could not be mapped by the algorithm were
manually assigned identifiers that follow the BiGGs format.
Importantly, BiGGs was chosen as the standardization plat-
form due to being a centralized repository for high-quality
models. Once a standardized basis for identifiers was estab-
lished, a draft reconstruction was built from the set of reac-
tions shared across the standardized models. The differences
between reactions across the models were manually assessed
through literature references and added to the draft recon-
struction. Once the models were unified into the draft re-
construction, manual curation of new biochemical
knowledge was incorporated in the reconstruction. The re-
construction process was iterative and involved constant re-
evaluation of model components. iEK1011 is provided at the
BiGG website [22] initialized with m7H10 media as well as
in JSON format with five different media initializations
media as well as in JSON format with five different media
initializations (see Additional file 3).

Updating the reconstruction
The model was updated with newly characterized metabolic
processes, standardized identifications, and mass balanced
reactions. In addition, detailed and designable metabolic
maps of M. tuberculosis metabolism were manually built
and provided in the supplement (see Additional file 4) in
order to help in silico simulation and reconstruction efforts
as well as provide access to systems biology research for
non-computational biologists. Specifics on using the escher
maps are described in the section titled “Escher Flux Maps”.
Before any updating took place, sMtb identifiers for

metabolites and reactions were mapped to standardized
identifiers in the BiGG Models database [22]. In addition
to sMtb, the BioCyc M. tuberculosis H37Rv version 20.0

database was approximately converted to a cobra model
- standardizing it first to BiGGs IDs, then MetaNetx,
and then BioCyc identifiers if no BiGGs or Metanetx ref-
erence mapping was available. When an sMtb compo-
nent had no equivalent BiGGs identification, a new
identifier was created that followed the BiGG’s nomen-
clature. The updated reconstruction utilizes data from
Tuberculist, 2016 TB BioCyc database, and manually
curated literature sources. New pathways and major
GPR updates include Tuberculosinol biosynthesis, oxi-
dized GTP and dGTP detoxification, Heme uptake and
degradation, GlgE pathway update, glucosylglycerate
biosynthesis I, included essential genes Rv3805c and
Rv2673 in MAP complex biosynthesis, and others (see
Additional file 1). In addition to incorporating updates
from the new BioCyc database, we re-curated pathways
that had inconsistencies across divergent models.

Description of GAM and NGAM parameters
Our model includes both growth-associated (GAM) and
non-growth (NGAM) associated ATP maintenance
parameters. NGAM quantifies the energy required by
Mtb to maintain itself in a given environment while
GAM quantifies growth energy requirements not
accounted for in the metabolic model. For iEK1011, the
GAM was chosen to be 60 mmol gDw− 1, which was the
same as the GAM used in previous M. tuberculosis H37Rv
reconstructions of iNJ661, iAB-AMØ-1410-Mt-661, and
iOSDD. For comparison, the GAM used for sMtb—a
model built from the GSMN-TB line of reconstruc-
tions—was 57 mmol gDw− 1. For the NGAM, iEK1011
uses a value of 3.15 mmol gDw− 1 h− 1, which was taken
from the E. coli model [48]. For comparison, the NGAM
used in sMtb was set to 0.1 mmol gDw− 1 h− 1, while the
NGAM used in iSM810 was 1 mmol gDw− 1 h− 1. We are
not aware of any datasets available for M. tuberculosis that
enables a rigorous evaluation of the NGAM parameter,
such as those used for E. coli [49] (i.e., quantitative
substrate uptake rates for different substrates).
In order to assess the sensitivity of our chosen NGAM,

we recomputed the gene essentiality using an NGAM
value of 1.0 and 0.01. With respect to our previous
NGAM of 3.15, the NGAMs of 1.0 and 0.1 result in very
similar values (see Additional file 5: Table S1). We hope
that future experimental efforts will enable a better
parameterization of GAM and NGAM in genome-scale
reconstructions of M. tuberculosis.

Future directions
Inconsistencies between fatty acid metabolic pathways
amongst models
There is a major difference in fatty acid metabolism
between the previous models. ACP metabolites, holo
enzymes, FAS metabolites, and other metabolites within
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the fatty acid metabolic pathways make relating and
joining these pathways very challenging. iEK1011 pri-
marily uses the form of the fatty acid pathways described
in iOSDD, which significantly departs from the GSMN-
TB based models and sMtb. We computationally
profiled switches between forms taken in iOSDD and
those in sMtb and found minor differences in simula-
tions. The key feature maintained across divergent
models was that the odd and even chain fatty acids
described in the media went into the methylcitrate cycle
and TCA, respectively.
In order to help future efforts in coming up with a

consensus fatty acid metabolic pathway for a M. tubercu-
losis reconstruction, we have additionally included
models named “sMtb_mapped_model.json” and “bio-
cyc_sMtb_joined.json” (see Additional file 4) that have
the fatty acid pathways of sMtb and BioCyc mapped to
BiGGs identifiers.

Lumped reactions that violate mass conservation
We have tabulated out the lumped reactions in iEK1011
that violate mass conservation (Additional file 5: Table
S2). These reactions were taken from previous models
and are lumped in order to join parallel pathways.
Although these reactions are kept in iEK1011, we hope
that future reconstructions of M. tuberculosis H37Rv will
work towards having all reactions mass balanced.
Despite these disadvantages, we believe that iEK1011 is
a step in the correct direction and allows for convergent
and additive knowledge.

Blocked reactions in iEK1011
Out of the 1228 reactions in iEK1011, 157 are blocked
(i.e., reactions that can’t carry flux even with all exchange
reactions open). We have provided a list of these 157
blocked reactions (see Additional file 1). The subsystem
with the highest frequency of blocked reactions is “Cofac-
tor and Prosthetic Group Biosynthesis” (34 reactions),
followed by “Exchange” (21 reactions) and “Transport” (10
reactions). Thus, future efforts should target the blocked
reactions in the subsystem of “Cofactor and Prosthetic
Group Biosynthesis” in order to optimize the reconstruc-
tion process.

Gene essentiality predictions
Gene essentiality predictions were determined using the
same data and quantitative score used in evaluating the
predictive ability of iSM810 [13]. The gene essentiality
dataset was acquired from Griffin et al. [29]. If the
Griffin essentiality confidence score was less than 0.1,
the gene was determined to be essential. A growth cutoff
of 20% of optimal growth was chosen to determine
whether the in silico knockout was essential or not (i.e.

if it was less than 20% of optimal growth, the gene was
determined to be essential).
In addition to the Griffin gene essentiality dataset, we

also evaluated the performance of the models in using a
recent gene essentiality dataset acquired from DeJesus et
al. [30]. A cutoff of 20% was used for the DeJesus dataset
for the gene annotations of GD (growth defect), ES (es-
sential), and ESD (essential domain). If growth was
above 20% of optimal growth, the gene was said to be
NE (non-essential) and GA (growth advantage). The
Matthews Correlation Coefficient was used to score the
quality of each model’s prediction, given by the following
equation:

MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

where TP (True Positive) represents the event where
the model correctly simulates growth when a gene is
nonessential. TN (True Negative) represents the event
where the model correctly simulates no-growth when a
gene is essential. FP (False Positive) represents the event
where the model simulates no growth with the gene
knockout when the gene is in fact non-essential. FN
(False Negative) represents the event where the model
simulates growth when the gene is in fact essential.
While the Griffin et al. essentiality dataset is older, we
utilized it due to having a more defined media condi-
tions and was previous used in previous M. tuberculosis
H37Rv reconstruction studies. The default objective
function (“biomass”) was used across all models. Differ-
ences in MCC values between this study and that in Ma
et al. [13] are due to differences in growth cutoff thresh-
olds and media conditions. Despite inconsistencies, the
values remained similar and did not change the resulting
6% increase in gene essentiality by iEK1011. Specifics
regarding which genes are falsely predicted in all models,
which pathways iEK1011 fails, which pathways iEK1011
performs correct predictions are provided (see
iEK1011_supplementary.xlsx sheets titled “All models
incorrect”, “iEK Wrong and sMtb Correct”, and “iEK
Correct and sMtb Wrong”).
We further verified that the increase in accuracy for

the iEK model is due to model curation as opposed to
the addition of new non-essential genes by comparing
only the gene essentiality predictions of the genes shared
across all models. In particular, only 472 genes are
shared across all the models. Using this set of genes for
all model gene essentiality predictions, we find that
iEK1011 still increases accuracy over other models (see
Additional file 5: Table S4). Specifically, iEK1011
achieves 57% MCC on the Griffin dataset while sMtb
achieves 50% MCC. On the de Jesus dataset, iEK1011
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achieves 66% MCC while iSM810 achieves 55%. In the
first case, iEK1011 has + 8 TP, + 9 TN, − 9 FP, and − 8
FN over sMtb. In the second case, iEK1011 has + 2 TP,
+ 25 TN, − 25 FP, and − 2 FN over iSM810. These results
show that the increase in accuracy is due to model cur-
ation. This analysis has been appended to the provided
ipython notebook “reproducible_modeling.ipynb”, and
the results are attached in the supplementary excel file
“iEK1011_supplementary.xlsx” under the sheets labeled
“Shared essentiality predictions the Griffin et al. dataset”
and “Shared essentiality predictions the deJesus dataset”,
under sheets 9 and 10, respectively.

Flux variability analysis and sampling of in vitro and in
vivo conditions
All constraint-based simulations of iEK1011 were done
using the python constraint-based modeling package,
COBRApy [50]. While the linear program is guaranteed
to find the global optimum, the flux state solution to this
optimization problem may not be unique, leading to the
alternate optimal flux states. To account for this, we ran
Flux Variability Analysis (FVA) in both the Lowenstein-
Jensen media and approximated in vivo conditions using
the “biomass” objective function (see Additional file 1).
FVA gives the maximum and minimum amount of flux
a reaction can take on. In addition to FVA, we sampled
the solution space of iEK1011 on both media conditions
using markov-chain monte-carlo sampling (MCMC)
package available in cobrapy.
Furthermore, for both FVA and MCMC sampling, we

allowed for solutions within 95% of the optimal value.
The growth rate for both simulations were approxi-
mately the same to allow for a meaningful quantitative
flux value comparisons.

Approximation of literature-derived evolutionary forces of
antibiotic-resistance evolution
A more in depth reasoning for the choice of objective
function is described below for each antibiotic.

Ethambutol It has been shown that flux-increasing
mutations in ubiA confer resistance to ethambutol by
increasing the production of decaprenylphosphoryl-b-D-
arabinose (DPA), which outcompetes ethambutol for
embB bindings spots [43]. Therefore, we approximate
the evolutionary force of adaptation as maximizing the
production of DPA.

D-cycloserine Analogous to the mechanism of etham-
butol, it has been shown that loss-of-function mutations
in ald confer resistance to the d-cycloserine by increas-
ing the pool of Alanine (i.e. ald no longer converts
Alanine to pyruvate), thereby competitively inhibiting
d-cycloserine [44].

Para-aminosalicylic acid (PAS) Mutations in folC,
ribD, and thyA have been shown to confer resistance to
PAS [51]. It was suggested that thyA mutations are
selected in order to decrease the utilization of folates. In
addition, it was suggested that the up-regulation of ribD
occurs as an alternative when dfrA is inhibited.

Ethionamide It has been shown that mycothiol biosyn-
thesis is essential for ethionamide susceptibility [52]. We
approximate ethionamide resistance is minimizing the pro-
duction of mycothiol. It is worth noting that the objective
defined for ethionamide is a much looser approximation
than the other objectives defined before.

Comparison of FVA across different drug objective
simulations
For both in vivo and in vitro media conditions, we simu-
lated each of the drug objectives and compared the max-
imum and minimum fluxes of the reactions catalyzed by
the curated antibiotic resistance genes (see Table 3 main
text). The maximum and minimum fluxes for each reac-
tion were determined by FVA (described above) allowing
for solutions within 95% of optimum. Furthermore,
iEK1011 was constrained to produce at least 20% of
biomass growth (i.e., the lower bound of the “biomass”
reaction was set to frac*max_biomass_growth, where
max_biomass_growth is the optimum value of iEK1011
when maximizing biomass on either in vivo or in vitro
conditions), and frac is the percentage of biomass to
maintain while optimizing the other objective functions.
All simulations can be performed using the provided
IPython notebook (see Additional file 6).

Escher flux maps
In order to help future in silico simulations and recon-
struction efforts of M. tuberculosis, we have provided
detailed, manually constructed escher maps of central
carbon metabolism, nitrogen metabolism, sulfur metab-
olism, and arabinogalactan-peptidoglycan complex bio-
synthesis [53] (see Additional file 4). Escher maps are
designable metabolic maps that allow for the integration
of different data types with a genome-scale metabolic
model. Furthermore, the provided Escher maps will
hopefully enable non-computational biologists to explore
the complex network of M. tuberculosis in an intuitive
manner; simply download the json map file(s), go to
http://escher.github.io/, and load in the json map. If the
model is loaded in as well, you will be able to modify
reactions on the map or build your own. In addition,
you can view the flux states generated by iEK1011 on
the Escher map.
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Additional file 1: Sheet 1: Reactions in iEK1011 and details of reactions.
Sheet 2: Metabolites in iEK1011 and details of metabolites. Sheet 3: Genes
present in previous models but not accounted for in iEK1011. Sheet 4:
Gene Essentiality Predictions with the Griffin et al. dataset. Sheet 5: Gene
Essentiality Predictions with the deJesus dataset. Sheet 6: Description of
media conditions used in study. Sheet 7: Maximum FVA values for AMR
genes across different objectives on in vivo media. Sheet 8: Maximum
FVA values for AMR genes across different objectives on in vitro media.
Sheet 9: “Shared” Essentiality Predictions with the Griffin
et al. dataset. Sheet 10: “Shared” Essentiality Predictions with the deJesus
et al. dataset. Sheet 11: List of blocked reactions in iEK1011. Sheet 12: “All
models incorrect” - List of genes that were incorrectly predicted across all
models and their corresponding iEK1011 subsystems. Sheet 13: “iEK
Wrong and sMtb Correct” - List of incorrect iEK1011 predictions that were
correctly predicted by sMtb. Sheet 13: “iEK Correct and sMtb Wrong” -
List of correct iEK1011 predictions that were incorrectly predicted by
sMtb. (XLSX 258 kb)

Additional file 2: A conversion of the sMtb model to BiGGs identifiers
(JSON 476 kb)

Additional file 3: iEK1011 models: Genome-scale models of iEK1011
in json format initialized with different media conditions. iEK1011_
griffinEssen_media.json - Used for essentiality testing on Griffin et al.
dataset. iEK1011_deJesusEssen_media.json - Used for essentiality test-
ing on deJesus et al. dataset. iEK1011_m7H10_media.json - iEK1011
initialized with Middlebrook 7H10 media. iEK1011_drugTesting_media.
json - Used for simulating on Lowenstein-Jensen media. iEK1011_inVi
vo_media.json - Used for simulating on approximated physiological
media. (ZIP 310 kb)

Additional file 4: Escher Maps: Contains four escher maps of M.
tuberculosis metabolic subsystems. Central_carbon.json.
Arabinogalactan_peptidoglycan_complex.json. Nitrogen.json.
Sulfur_and_folate.json (ZIP 236 kb)

Additional file 5: Table S1. Table describing changes in gene essentiality
predictions according to changes in GAM and NGAM values that were utilized
across different genome-scale reconstructions of M. tuberculosis .Table S2. List
of reactions in iEK1011 that violate the law of mass conservation. Table S3.
Examples of false negatives computed by iEK1011 on the DeJesus et al. gene
essentiality dataset that are not within the iSM810 model, and reasoning for
its inclusion [54, 55]. Table S4. Gene essentiality predictions using the shared
set of 472 genes. (DOCX 17 kb)

Additional file 6: An ipython notebook that runs the simulations
described in this study. (IPYNB 637 kb)
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