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ABSTRACT Evolution by natural selection under complex and dynamic environmen-
tal conditions occurs through intricate and often counterintuitive trajectories affect-
ing many genes and metabolic solutions. To study short- and long-term evolution of
bacteria in vivo, we used the natural model system of cystic fibrosis (CF) infection. In
this work, we investigated how and through which trajectories evolution of Pseu-
domonas aeruginosa occurs when migrating from the environment to the airways of
CF patients, and specifically, we determined reduction of growth rate and metabolic
specialization as signatures of adaptive evolution. We show that central metabolic
pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the
same environment become restructured at the cost of versatility during long-term
colonization. Cell physiology changes from naive to adapted phenotypes resulted in
(i) alteration of growth potential that particularly converged to a slow-growth phe-
notype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored
preference for carbon source assimilation from CF sputum, (iv) reduced arginine and
pyruvate fermentation processes, and (v) increased oxygen requirements. Interest-
ingly, although convergence was evidenced at the phenotypic level of metabolic
specialization, comparative genomics disclosed diverse mutational patterns underly-
ing the different evolutionary trajectories. Therefore, distinct combinations of genetic
and regulatory changes converge to common metabolic adaptive trajectories
leading to within-host metabolic specialization. This study gives new insight into
bacterial metabolic evolution during long-term colonization of a new environ-
mental niche.

IMPORTANCE Only a few examples of real-time evolutionary investigations in envi-
ronments outside the laboratory are described in the scientific literature. Remember-
ing that biological evolution, as it has progressed in nature, has not taken place in
test tubes, it is not surprising that conclusions from our investigations of bacterial
evolution in the CF model system are different from what has been concluded from
laboratory experiments. The analysis presented here of the metabolic and regulatory
driving forces leading to successful adaptation to a new environment provides an
important insight into the role of metabolism and its regulatory mechanisms for suc-
cessful adaptation of microorganisms in dynamic and complex environments. Under-
standing the trajectories of adaptation, as well as the mechanisms behind slow
growth and rewiring of regulatory and metabolic networks, is a key element to un-
derstand the adaptive robustness and evolvability of bacteria in the process of in-
creasing their in vivo fitness when conquering new territories.
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Bacterial survival and replication during colonization of a new environment depend
on sensing and responding to available nutrients and on activation of specific

metabolic pathways which maximize growth efficiency (1). Accordingly, migration from
one ecosystem to another initially challenges bacteria to respond with gene regulatory
network plasticity and thereafter to develop metabolic specialization that can occur
through loss of nonessential metabolic functions, through acquisition of metabolic
genes, or by tailoring the expression and activity of metabolic pathways, which further
increase the within-host fitness, maintenance of homeostasis, and support for coping
with waste products and stresses (2, 3).

Pseudomonas aeruginosa is an environmental bacterium with broad metabolic
versatility and a dynamic metabolic regulatory network that can support growth from
a variety of nutritional resources. As an opportunistic pathogen, it frequently colonizes
the airways of cystic fibrosis (CF) patients, where the nutrient composition and envi-
ronmental conditions differ significantly from its normal natural habitat (4, 5). The CF
airway environment is a multiniche structured environment with gradients of nutrients
and oxygen, a complex multispecies microbiota, and numerous stress factors such as
immune responses, antibiotics, and oxidative and osmotic stresses (6–8). Thus, the CF
airways, in many respects, are similar to other natural environments confronting the
invading bacteria with extraordinary challenges.

Migration of P. aeruginosa from the environment to the airways of CF patients
implies reprogramming of the regulatory and metabolic networks according to the
available nutrients and physicochemical conditions of the airways (1). Consequently,
survival and adaptation depend on an equilibrium between robustness and evolvability
(3, 9–13). Interestingly, it has been found that while environmental isolates of P. aerugi-
nosa show high growth rates and diversified metabolism, airway-adapted isolates, in
contrast, show reduced growth rates and a more specialized metabolism (14–17). While
in the environment, macromolecule biosynthesis and growth rely on metabolite uptake
or synthesis from the available nutrients; in contrast, during the infection, bacteria are
restricted to the nutrient-rich environment of the CF sputum (5). Therefore, it has been
hypothesized that long-term adaptation drives alterations of the metabolic repertoire
to maximize growth at the cost of versatility. In many microorganisms such as Esche-
richia coli and Mycobacterium tuberculosis, reduced growth rates have previously been
described to confer selective advantages under adverse environmental conditions and
to facilitate tolerance to stresses such as the immune system and antibiotics (18).

However, in contrast to most in vitro adaptive laboratory evolution (ALE), how in vivo
long-term evolution shapes the physiology of a bacterial organism and how it influ-
ences the balance between bacterial robustness and evolvability are still mostly unex-
plained. Discerning these biological questions is key to the understanding of how
bacteria increase their fitness and how they become successful in conquering new
environmental niches, where strong and continuous selective pressures drive evolution
through complex fitness landscapes, which may affect many genes and metabolic
solutions (6, 8, 19, 20).

Here, we describe how growth rate reduction and metabolic specialization develop
over time in a case of three different P. aeruginosa lineages colonizing the lungs of a
single CF patient. We have analyzed 26 clinical isolates of P. aeruginosa belonging to
three different clone types, presenting naive, intermediate, and adapted phenotypes,
sampled from a single CF patient over a period of 8 years of infection. Based on their
genome sequences and metabolic abilities, we performed in-depth analyses of one
early and one late isolate from each of the three clone types using time-resolved
exometabolomics and correlation analysis of genomic and metabolic adaptive changes.
This enabled us to characterize the trajectory of metabolic adaptation and to charac-
terize the metabolic solution necessary for survival in the complex host environment of
the CF lung. In contrast to previous studies that used indirect methodologies such as
phenotypic microarrays (16, 21, 22), single-time-point metabolomics (23–25), or gene
essentiality analysis (11) to evaluate the metabolic evolution of P. aeruginosa, our
approach allowed us not only to obtain a direct readout of the cellular consumption
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and production rates of pathogenic isolates adapted to the complex environment but
also to compare it to their mutational pattern. Finally, oxygen assimilation was assessed
for the selected isolates, showing that within-host evolution changes the cellular
oxygen requirements. Our integration of metabolomic and genomic data illustrates
that within-patient evolution involved convergent metabolic specialization character-
ized by loss of nonessential metabolic functions and metabolic adaptation irrespective
of the clone type, genomic composition, and mutation pattern.

RESULTS
Coexistence of Pseudomonas aeruginosa clone types in the airways of a CF

patient. Despite extensive treatment with different antibiotic classes during 8 years of
persistent infection, three distinct clone types (DK15, DK53, and DK01, assigned by
sequence analysis as described in the work of Marvig et al. [19]) were repeatedly
isolated from CF patient P36F2 attending the Copenhagen Cystic Fibrosis Center at the
University Hospital, Rigshospitalet, Copenhagen, Denmark (Fig. 1A). The DK01 clone
type is highly adapted and transmissible, being isolated from more than 40 CF patients
after more than 40 years of within-patient evolution (26). The DK15 (naive) and DK53
(intermediate) clone types have a more recent evolutionary history, being isolated from
only a few patients (19). MIC tests showed that many isolates from DK01 and a few from
DK53 were resistant to antibiotics (see Fig. S1 in the supplemental material). The
continued persistence of the susceptible bacteria may indicate collective resistance
events, high tolerance to antibiotics, or treatment inefficiency during polyclonal infec-
tions.

Single nucleotide polymorphisms (SNPs), as well as deletions and insertions (indels)
relative to the reference strain PAO1, were previously identified in these isolates (19),
ranging from tens (DK15 and early isolates of DK53) to hundreds (late isolates of DK53
and DK01) of mutations (Fig. 1B). During the infection, all late DK53 and 3 out of 5 late
DK01 isolates evolved a hypermutator phenotype, due to nonsynonymous SNP muta-
tions in the DNA mismatch repair genes mutL and mutS, respectively (Fig. 1A and B;
Table S1) (21, 27). Maximum parsimony phylogenetic analysis on missense and non-

hypermutator metabolomics analysis

A

Year of sampling

DK15 427 423

DK53
428 426

early isolates late isolates

2005 2006 2007 2008 2009 2010 2011 2012 2013

DK01
427.1 425

B

425

10 100 1000

DK01

DK53

DK15

Number of SNPs and indels (log
10

 scale)

427.1

426

423
427

428

C

100
79

99100

92

99

99

98

68

67
99

84

99

99
89

100

427

423

425

427.1

426

428

DK15

DK01

DK53

FIG 1 Genomic characterization of the longitudinal P. aeruginosa strain collection. (A) Year of isolation of the DK15 (green
triangles), DK53 (purple circles), and DK01 (red squares) isolates sampled from patient P36F2. Light and dark shades for each
clone type indicate early and late isolates, respectively. Jagged-edge symbols indicate hypermutator isolates. Metabolomics
analysis was performed for the circled isolates, and their names are given. Detailed genomic features of all isolates are given
in Table S1. (B) Total numbers of SNP and indel mutations detected in the clinical isolates. If multiple types of mutations were
present in the same gene, the one with the highest functional impact was counted. The impact was ranked as low,
intermediate, and high for silent, missense, or nonsense mutations, respectively. (C) Maximum parsimony reconstruction of the
clinical isolates. The tree is based on 2,105 missense and nonsense SNP mutations that accumulated during within-patient
evolution. Branches corresponding to partitions reproduced in less than 50% of bootstrap replicates are collapsed. The
percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown
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sense SNP mutations clustered the clinical isolates into three distinct branches accord-
ingly to their clone type (Fig. 1C), underlining the genetic distance within and between
clone types.

Reduction of metabolic abilities and growth rates during within-patient adap-
tation. Long-term adaptation in a confined environment may occur by specialization
involving changes in the bacterial physiology (9). We therefore tested the degree of
adaptation of the clinical isolates by evaluating their metabolic versatility and growth
potential.

Growth of DK01 and most DK53 late isolates was impaired in minimal medium with
either glycolytic or gluconeogenic carbon sources, presumably owing to auxotrophy
(Fig. 2A) (14–16). In contrast, all isolates were able to grow in LB medium, artificial
sputum medium (ASM), and synthetic CF sputum medium (SCFM) containing amino
acids, organic acids, and sugars (Fig. 2A). Importantly, all DK01 and DK53 isolates
showed reduced growth rates in all three rich media compared to both PAO1 and PA14
reference strains and to the DK15 isolates (one-way analysis of variance [ANOVA]
followed by Tukey’s post hoc test; P � 0.0001) (Fig. 2A and S2A). The DK15 isolates
showed, on average, 2.8-fold-higher growth rates than the DK01 isolates (Fig. 2B and C
and S2A). In addition, the DK53 isolates showed a growth rate reduction across
evolutionary time with early isolates growing faster than late ones (two-tailed unpaired
t test, n � 15 to 21; P � 0.0001) (Fig. 2B and C and S2B). For each isolate, the cumulative
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FIG 2 Reduced growth abilities of the P. aeruginosa clinical isolates. (A) Heat map of the specific growth
rate (�) in six different environments, including minimal medium supplemented with glucose (Glu),
succinate (Scc), or lactate (Lac) and the rich medium LB, ASM (artificial sputum medium), or SCFM
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are similar for all isolates within a clone type (Fig. S2A and C). (C) Growth profiles of DK15, DK53, and
DK01 isolates in LB in batch cultures. Error bars represent the standard deviations (n � 3) and indicate
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analysis. The growth rate values are given. The PAO1 growth profile is omitted due to overlap with DK15
isolates.
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growth rate values in the three rich media were similar (Fig. 2A and B and S2C), despite
different compositions of LB medium, ASM, and SCFM.

Interestingly, during within-patient evolution only the DK53 isolates changed their
physiology. While the DK01 clone type embodied the characteristics of an adapted
chronic pathogen (reduced metabolic abilities and growth rate), the DK15 clone type
retained the characteristics of a naive colonizer (broad metabolic abilities and high
growth rate). Therefore, although all isolates evolved within the same environment and
were subject to the same stresses, evolution occurred dissimilarly.

Metabolic specialization during within-patient adaptation. It is known that the
CF sputum is an amino-acid-rich substrate optimal for P. aeruginosa growth (5, 17) and
that nutrient assimilation occurs in a sequential and tightly regulated manner with
regard to both order and rate of assimilation (24). Therefore, we performed a dynamic
exometabolome analysis of bacterial within-patient adaptation (i) to test whether it led
to metabolic specialization and (ii) to deconvolute the metabolic trajectories. Based on
our physiological data, we analyzed seven strains: two isolates (one early and one late)
from each of the three DK15, DK53, and DK01 clone types covering 5 of the 8 years of
within-patient adaptation and one from the reference strain PAO1 (Fig. 1A). Superna-
tants were collected during growth of each isolate in LB batch cultures (Fig. 2C) and
subjected to targeted metabolomic analysis to identify amino acids, organic acids, and
sugars. Metabolite measurements were performed on a total of 260 supernatant
samples (Table S2).

To evaluate changes in the composition of the dynamic exometabolomes due to
dissimilar assimilation and secretion of metabolites, we performed principal-
component analysis (PCA) which shows the time-dependent trajectory of the metabo-
lomes explaining 58.4% and 14.6% of the variance in PC1 and PC2, respectively (Fig. 3A
and S3A). Even if similar trajectories of the metabolomes were displayed by all isolates,
presentation of the isolates as categorical classifiers revealed a contrasting projection
of the loadings of the two DK01 and the DK53 late isolates compared to the two DK15
isolates, PAO1, and the DK53 early isolate (Fig. 3A). Therefore, this strongly indicates
that the identified compounds were differently metabolized by the isolates, supporting
the hypothesis that within-host evolution resulted in metabolic specialization. PC1,
therefore, represents metabolic patterns that explained evolution from the naive to an
evolved stage, while PC2 explains the heterogeneity within the specific evolution
stages. Similarly, when the PCA was scored after discarding the time variable from the

-15

5

P
rin

ci
pa

l C
om

po
ne

nt
 2

  (
14

.6
 %

)

-25 -15 -5 5 15

Principal Component 1  (58.4 %)

-5

10

0

-10

-20

-20 -10 0 10

OD
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

DK15
DK53
DK01
Ref

Clone Type

427.1

425

426

428

PAO1

423 427

A B

427.1

425

426

428

PAO1

423

427

-4

-2

0

2

4

FIG 3 Relatedness of the exometabolomes of the P. aeruginosa clinical isolates. (A) Principal-component analysis (PCA) of the dynamic exometabolome profile
of P. aeruginosa clinical isolates and the PAO1 reference strain. Each dot represents the metabolic status at a given OD. The isolates are projected as
supplementary categorical classifiers to evaluate differences between the dynamic exometabolome profiles. Each biological replicate is plotted (n � 3).
Together, PC1 and PC2 explained 73% of the variance in metabolite concentrations. (B) Hierarchical clustering of the dynamic exometabolome profiles of
P. aeruginosa clinical isolates and the PAO1 reference strain. The profiles are clustered according to the Euclidean distance using the Ward clustering algorithm.
Each biological replicate is plotted (n � 3).

Metabolic Evolution of Pseudomonas aeruginosa ®

March/April 2018 Volume 9 Issue 2 e00269-18 mbio.asm.org 5

 
m

bio.asm
.org

 on A
pril 10, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


analysis, the isolates grouped according to their clone type, with the DK15 isolates and
PAO1 clustering together (Fig. S3). Hierarchical cluster analysis on metabolite concen-
tration confirmed the previous results showing the relatedness between the DK15
isolates and PAO1 and between the DK01 and DK53 isolates, respectively (Fig. 3B).

We next mapped the metabolic behavior of the isolates modeling the hierarchy
and rate of assimilation or secretion of metabolites by computing both their
half-lives (t50 or OD50 values) and the assimilation times using a four-parameter
nonlinear (sigmoid) model (28). A detailed representation of the assimilation map
of the clinical isolates and the reference strain PAO1 is shown in Fig. 4E and F and
S4. Analysis of the assimilation and secretion profiles revealed four categories of
compounds, which characterized the metabolic trajectory of specialization from
naive to adapted phenotype: (i) those assimilated with similar growth phase profiles
in all isolates (asparagine, glycerol, serine, alloisoleucine, and leucine), representing
conserved metabolic pathways independent of the evolutionary trajectory (Fig. 4A
and E); (ii) those assimilated selectively by the naive isolates but not by the adapted
ones (succinate, glucose, ornithine, and phenylalanine), indicating loss of nones-
sential metabolic function (Fig. 4B and E); (iii) those assimilated with changes in the
growth phase profiles in the naive relative to the adapted isolates (lactate, pyruvate,
acetate, and glutamate), indicating nutritional adaptation to the resources available
in the CF sputum (Fig. 4C and E); and (iv) those secreted differently (acetate,
ornithine, pyruvate, lactate, and glycine), indicating different distribution of the
fluxes within the metabolic networks (Fig. 4D and G).

Comparing the metabolic behaviors of the strains, we found that the number of
compounds with a different assimilation order in the clinical isolates from that in PAO1
increased with the progression of adaptation of the isolates. We considered OD50

differences compared to PAO1 of �0.3 and �0.6 of OD as biologically relevant for
compounds assimilated during exponential and stationary phases, respectively. Differ-
ences ranged from four (DK15 isolate 423) to 11 (DK01 isolate 425) compounds
(Fig. 5A). Interestingly, within the DK53 clone type, the number of the differentially
assimilated compounds increased from seven to 11 for the early and late isolates during
adaptation of this clone type (Fig. 5A). Moreover, the DK01 isolates showed the largest
differences relative to DK15 and PAO1 in organic acid and sugar assimilation and
secretion (Fig. 4 and S4). Pearson correlation analysis of the OD50 values showed
consistency with the previous results (Fig. 3 and 5A), thereby confirming that there is
no correlation between the DK15 and DK01 isolates (Pearson’s r � �0.02 to 0.03,
respectively; 427.1 and 425, P [two-tailed] � 0.05) (Fig. 5B). The early DK53 isolate 428
strongly correlated with the DK15 isolates (Pearson’s r � 0.90 to 0.89, P [two-tailed] �

0.0001), while the late isolate 426 only moderately correlated with the DK15 and DK01
isolates (426 versus DK15 isolates, Pearson’s r � 0.43, P [two-tailed] � 0.0586 to 0.0607;
426 versus DK01 isolates, Pearson’s r � 0.53 to 0.65, P [two-tailed] � 0.0172 to 0.0020)
(Fig. 5B). Changes in the assimilation or secretion pattern of one or more compounds
in those categories, therefore, indicated that a transition from naive to adapted
metabolism was occurring.

Altogether, these results confirm that metabolic specialization to the CF sputum
occurred stepwise, through specific trajectories of metabolic evolution that converged
to a distinctive metabolic behavior. During the infection, the DK53 isolates diverged in
their metabolism from a pattern similar to the DK15 isolates (naive metabolism) toward
one representative for the fully evolved DK01 isolates (adapted metabolism). Although
we do not have access to early naive isolates of the DK01 clone type, the similarity
between PAO1 and DK15 suggests that the phenotypic traits of DK01 were also initially
similar to these other early isolates before eventually evolving to the present fully
adapted stage.

Metabolic adaptation to the CF sputum. Since the metabolic changes that we
observed may affect the nutritional preferences of P. aeruginosa in the lung environ-
ment, we analyzed the dynamic exometabolome data in the context of the CF sputum
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chemistry (5). As previously reported, compound utilization and secretion are influ-
enced by the composition of the growth medium, most likely due to the different levels
of carbon catabolite repression (29). However, comparison of the hierarchies of assim-
ilation (t50 values) of P. aeruginosa PA14 grown in CF sputum and SCFM, as previously
examined by Palmer and colleagues (5), and the reference strain PAO1 in LB medium
showed positive correlation (Pearson’s r � 0.78 to 0.62, CF sputum and SCFM, respec-
tively; P [two-tailed] � 0.05), even though the experimental setups and the method-

G

0.1 10.05 5
0

5

10

15

20

25

30

35

Growth (OD
600

)

C
on

ce
nt

ra
tio

n 
(μ

M
) 

Lactate secretion

0.10.05
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Growth (OD
600

)

C
on

ce
nt

ra
tio

n 
(m

M
)

Acetate secretion

0.1 10.05 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Growth (OD
600

)

C
on

ce
nt

ra
tio

n 
(m

M
)

Pyruvate secretion

0.1 10.05 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Growth (OD
600

)

C
on

ce
nt

ra
tio

n 
(m

M
)

Glycine secretion

0.1 10.05 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Growth (OD
600

)

C
on

ce
nt

ra
tio

n 
(m

M
)

Ornithine secretion

A - Alanine
N - Asparagine
D - Aspartate

E - Glutamate
P - Proline

Ace - Acetate
Glu - Glucose
Gly - Glycerol

Lac - Lactate
Pyr - Pyruvate
Scc - Succinate

aI  - Alloisoleucine
F - Phenylalanine
G - Glycine
H - Histidine
L - Leucine

K - Lysine
S - Serine
T - Threonine
V - Valine

E

427
early

423
late

PAO1

0
Time (h)

14 16 18 20 22 241 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 23

A

G

aI L T

S

PN
D

E K

H

Glu
Scc

LacGly

Ace

Pyr

A
G

VaIL TS

PN D E
H

Glu
SccLac

Gly
Pyr

Ace

A

G
aIL T

S

P
N D

E

K

GluScc
Lac

Gly

Ace

Pyr

G

V

A G aIL
T

S

PN D
E

KGluScc

Lac
Gly

Ace
Pyr

V

A
G

V

aI L
T

S

PN D E

H
Glu

Pyr

Scc

Lac
Gly

Ace

EPE

A G aI LS

P
N

DE
F KH

Gly

Ace PyrLac

A GaILS

P
N

DE
F KH

Gly

Ace
Pyr

Lac Glu

426
late

428
early

427.1
early

425
late

Ace

0 4 8 12 16 20 24

S
aI HLG

V T

N

D
E

P

A

0.1

1

0.05

5

G
ro

w
th

 (A
60

0)

Time (h)

PAO1

Lac
Gly
Pyr

SccGlu

F

DK53
428 early
426 late

DK01
427.1 early
425 late

DK15

423 late
427 early PAO1

Ref

Growth

N S aI LGly AceOrnPyrLa
c
GLa

c
AceEPyr

Growth

A DCB

Naïve
Adapted

SccGluV OrnF

FIG 4 Dynamic assimilation and secretion of metabolites during growth of P. aeruginosa clinical isolates. (A to D) Categories of metabolites assimilated and
secreted differently by the naive (DK15, DK53 early isolate, and PAO1 reference strain; green dots) and adapted (DK53 late isolate and DK01; red dots) isolates.
Parallel plot of metabolites: assimilated with similar growth phase profiles in all isolates (A), not assimilated by all isolates (B), assimilated with changes in the
growth phase profiles (C), and secreted differently (D). (E and F) Hierarchy of assimilation of the identified compounds of the clinical isolates and the PAO1
reference strain. (E) Parallel plot of the hierarchy of assimilation of the PAO1 reference strain and the clinical isolates. (F) Assimilation hierarchy of the PAO1
reference strain plotted onto the growth curve to facilitate the visualization of metabolic behaviors. The dots represent the t50 values (time at which the
concentration of the metabolite decreased to 50% of the initial value) of the assimilated compounds. The circles (green for the amino acids assimilated during
exponential phase and yellow for the organic acids and sugars) and ellipses (blue for the amino acids assimilated during stationary phase) represent the uptake
windows (time needed to detect a reduction in the compound concentration from 75% to 25% of the initial value) of the assimilated compounds. (G) Organic
acids acetate, pyruvate, and lactate and amino acids ornithine and glycine secreted transiently during growth. The curves represent the metabolite
concentration (millimolar, except for lactate, which is micromolar) � standard deviation (n � 3) relative to bacterial growth (OD600). DK15, DK53, and DK01
clinical isolates are represented by green, purple, and red circles, respectively. Light and dark shades for each clone type indicate early and late isolates,
respectively.

Metabolic Evolution of Pseudomonas aeruginosa ®

March/April 2018 Volume 9 Issue 2 e00269-18 mbio.asm.org 7

 
m

bio.asm
.org

 on A
pril 10, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


ological approaches were somewhat different. This strengthens the idea that our
findings are relevant for growth in CF sputum.

The preferred compounds assimilated during early exponential phase by all the
clinical isolates compared to PAO1 were asparagine and glycerol (Fig. 4A and E).
However, these compounds have not been identified in CF sputum (5), emphasizing
the need for a more comprehensive metabolomic analysis of the CF sputum to better
understand the physiology and evolution of P. aeruginosa.

The growth phase profiles for the assimilation of compounds like serine, alloisoleu-
cine, and leucine were similar irrespective of the isolate, thereby indicating conserva-
tion independent of the evolutionary trajectory in the host (Fig. 4A and E).

Succinate and glucose were assimilated during the transition phase and ornithine
was assimilated during the stationary phase by all isolates except the DK01 ones (Fig.
4E and 5A). Since succinate is not present in the CF sputum and glucose is not a
preferred compound in P. aeruginosa (30), these traits together with the reduced ability
of adapted isolates to grow in the presence of gluconeogenic and glycolytic carbon
sources (Fig. 2A) suggest that adaptation occurred through loss of nonessential met-
abolic functions similarly to what was described previously (31).

Phenylalanine, lysine, and valine are abundant amino acids in CF sputum (5), but
their assimilation occurred with clone-type-specific differences, at a low rate, and only
during late stationary phase (Fig. 4E and 5A). These carbon sources are therefore less
preferred and may be important only when other carbon sources become limited or
exhausted.

In the lungs of CF patients, oxygen availability fluctuates substantially, thereby
contributing to both niche colonization and metabolic specialization (32, 33). Moreover,
abundant nitrate (NO3

�) and nitrite (NO2
�) have been found in CF secretions (34, 35).

In the absence of both O2 and nitrogen oxides, P. aeruginosa can ferment pyruvate and
arginine, producing acetate and producing lactate and ornithine (36), respectively, for
long-term survival and redox balance rather than growth. During stationary phase, we
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detected large amounts of secreted acetate (~2.5 mM) for PAO1 and the two DK15 and
the early DK53 isolates and secreted ornithine (~0.5 mM) for both DK15 and DK53
isolates and PAO1. In contrast, the late DK53 and the two DK01 isolates assimilated
acetate during both exponential and stationary phases (Fig. 4G). During growth, DK53
and DK01 isolates first secreted pyruvate, which was then assimilated (Fig. 4G). During
late exponential phase, the DK01 isolates also secreted small amounts of lactate and
glycine (Fig. 4G). These results are in agreement with previous studies showing that
acetate production negatively correlates with the length of infection (24) and confirm
that within-host adaptation is associated with different distributions of metabolic fluxes
and loss of nonessential metabolic function, leading to reduced fermentation pro-
cesses. This result is also supported by the fact that in sputum samples only 15% of the
cells are in the stationary phase of growth (17).

Interestingly, the compounds that were assimilated during exponential growth of all
clone types mainly fed the tricarboxylic acid (TCA) cycle, with DK01 assimilating 30 to
40% fewer carbon sources than PAO1 (Fig. S5). This may explain, at least partially, why
DK01 isolates showed reduced growth rates. Since our analysis focused on amino acids,
organic acids, and sugars, we cannot exclude that the DK01 isolates assimilated di- and
tripeptides or fatty acids that can be present in LB or CF sputum.

Increase in oxygen consumption during within-patient adaptation. Since fer-
mentation was favored in the DK15 and early DK53 isolates (Fig. 4G), we hypothesized
that O2 was differentially consumed in the three clone types. P. aeruginosa can grow
aerobically or anaerobically by performing either respiration, by using a broad set of
high- and low-affinity O2 terminal oxidases as terminal electron acceptors and nitrogen
oxides for denitrification, or fermentation (36, 37). Therefore, differential O2 consump-
tion may have important implications for the adaptive state of the isolates.

When assessing O2 consumption in batch cultures, we found that dissolved oxygen
was exhausted at OD values from 0.2 for DK15 isolates to 0.5 for DK01 isolates (Fig. 6A).
During exponential phase, the rate of O2 consumption was significantly higher in DK15
cultures than in DK53 and DK01 cultures (Fig. 6B and S6A). Although the Pearson
correlation showed that oxygen consumption and growth rates were strongly related
(r � 0.95, P [two-tailed] � 0.0008) (Fig. 6C), oxygen consumption per generation was
1.5- to 2-fold higher in DK01 than in DK15 isolates, with DK53 isolates showing
intermediate values (Fig. 6D). Growth of the isolates in rich medium with defined
oxygen levels as the limiting factor showed that the DK01 isolate and the late DK53
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isolate reached a final OD about half of that of the DK15 isolates (Fig. S6B), therefore
confirming higher oxygen consumption for the adapted isolates.

These results confirm that oxygen metabolism was a target of adaptive evolution
and suggest that in an environment with reduced oxygen availability, a high oxygen
requirement may result in limiting biomass accumulation. Moreover, as shown previ-
ously, the DK53 isolates diverged from a naive metabolic stage similar to that of the
DK15 clone type to converge to the adapted one of the DK01 clone type.

Relationship between metabolic and genomic changes. Although 1,667 muta-

tions were identified in metabolic genes in the clinical isolates (Fig. S7; Table S1), it was
not obvious from scrutinizing the genome sequences how they influenced the meta-
bolic behavior. Functional grouping of the genes with missense and nonsense
mutations revealed statistical enrichment, although at very low significance, of those
involved in metabolic processes, including amino acid transport and metabolism
(1.3-fold), defense mechanisms (1.4-fold), signal transduction mechanisms (1.4-fold),
and translation (0.6-fold) (Fig. S7A; Table S1). Moreover, only a few genes altered by
mutations were shared within and between clone types (Fig. S7B), indicating limited
parallel evolution. Interestingly, the number of missense and nonsense SNPs and indels
during the evolution of DK01 clone type increased from 90 (isolate 427.1) to 298 (isolate
425) (Fig. 1B; Table S1), of which only 34 were shared, without any detectable metabolic
changes.

Therefore, to both estimate the genotype-to-phenotype correspondence and as-
cribe the observed metabolic changes to specific genomic changes, we investigated
the presence of missense and nonsense mutations affecting metabolic pathways,
transporters, and regulatory networks involved in the assimilation and secretion of
some of the identified metabolites. Surprisingly, correspondence could be identified in
only one case, i.e., the hypothesized auxotrophic traits observed in DK01 and in five
DK53 isolates during growth in the presence of succinate, glucose, or lactate as sole
carbon source (Fig. 2A). Indeed, at least one nonsynonymous mutation in amino acid
biosynthetic genes was identified in 9 of 10 and 7 of 12 isolates of the DK01 and DK53
clone types, respectively (Fig. 2A; Table S1). Of the 33 identified amino acid biosynthetic
genes containing nonsynonymous mutations, an overrepresentation test showed that
methionine, leucine, tryptophan, arginine, histidine, and lysine biosynthetic pathways
were more often altered by mutations (Table S1).

No mutation was found in the known genetic determinants for the glucose and
succinate catabolic pathways, suggesting that the inability of the adapted isolates to
assimilate them might be related to regulatory changes (Fig. 4B and E; Table S1). The
lack of valine assimilation that occurred in the DK01 isolates might be explained by a
nonsense mutation in the branched-chain amino acid transporter gene braF (Fig. 4B
and E; Table S1) (38). The DK01 isolates assimilated lactate only during stationary phase
due to its transient secretion during late exponential phase (Fig. 4G). However, we
found a nonsynonymous mutation in the lactate permease lldP gene in isolate 425 (39)
(Table S1), which suggests that lactate may have been assimilated through other
unspecific transporters or that the mutation does not affect the function.

Under anaerobic conditions, arginine fermentation into ornithine involves the
arcDABC operon (40, 41). The DK01 and DK53 isolates did not secrete ornithine, and we
found no mutations in the genes of the corresponding pathway (Fig. 4G; Table S1).
Instead, we found a missense mutation in the early DK01 isolate 427.1 in oruR, a
regulator-encoding gene whose deletion was shown to cause the loss of ornithine
assimilation (42). Anaerobic fermentation of pyruvate to acetyl coenzyme A (acetyl-
CoA) and further to lactate and acetate involves the aceEF, ldhA, and ackA-pta genes,
respectively (43). While no mutations were found in these genes in the DK01 isolate, a
nonsynonymous and a synonymous mutation were found in the late DK53 isolate 428
in ackA and pta, respectively, that may explain reduced acetate production (Fig. 4G;
Table S1). These results indicate that reduced fermentation mostly occurred owing to
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differential distribution of fluxes and/or regulatory changes rather than to mutations in
specific metabolic pathways.

In P. aeruginosa, carbon catabolite repression (CCR) regulates the preference and
hierarchy of carbon source assimilation through the activity of the CbrA/CbrB two-
component system and the Crc-Hfq-CrZ regulatory system that involves an intricate
repression network of transcriptional regulators, transporters, and metabolic enzymes
(28, 30). Since we found very few mutations that could explain the observed changes
(Fig. 4E and 5A), the metabolic specialization of the adapted DK01 and late DK53
isolates might depend on the tailored activity of the CCR system, which during
evolution narrows the preference and hierarchy of assimilation to the nutritional
resource present in the CF sputum, or on regulatory network changes that modify the
expression and activity of metabolic pathways and enzymes.

Lower oxygen consumption rates and higher nitrogen oxide utilization have been
previously described in lasR mutant clinical isolates (44). Here, we detected no muta-
tions in lasR (Table S1). However, the DK01 isolates carried mutations in cyoB and cioA
encoding terminal oxidases that may explain decreased O2 consumption rates (Fig. 6).

In summary, we show that adaptive processes converged to similar phenotypes in
the DK01 and DK53 lineages through metabolic rewiring. Furthermore, diverse changes
in both regulatory and metabolic networks enabled genetically distinct colonizing
strains to follow the same adaptive phenotypic trajectory and achieve persistence in
the lungs.

DISCUSSION

Characterizing the adaptive trajectories during within-patient evolution is pivotal to
understanding host-pathogen interactions and to understanding the adaptive evolu-
tion mechanisms occurring in vivo. P. aeruginosa metabolism is very diverse, and a
detailed knowledge of how the evolution of metabolism supports infection factors such
as mucoidity, biofilm formation, motility, virulence, and pathogenicity is still lacking.

Here, we present a high-resolution metabolic footprinting of clinical isolates of the
opportunistic pathogen P. aeruginosa over 8 years of adaptive evolution in a complex
dynamic niche, which we correlated with the genome sequences and mutational
patterns from a prior genomic study (19). Our study involved a dynamic survey of a
longitudinal collection of isolates of three distinct clone types (DK01, DK15, and DK53)
at various stages of evolution during adaptation to the lungs of a CF patient. We
compared evolutionary trajectories within the same environment and selective pres-
sures and showed that, even if evolution in the host converged, it occurred dissimilarly.
While the DK15 and DK01 isolates maintained their initial phenotypes, within-patient
evolution of the DK53 isolates was characterized by ongoing metabolic specialization.
Altogether, our results show that evolution converged toward the loss of nonessential
metabolic functions, metabolic simplification, and metabolic specialization. These ma-
jor physiological changes, summarized in Fig. 7, were acquired through distinct
genomic evolutionary trajectories and mutational patterns converging to similar phe-
notypes. The evolved isolates, adapting to the nutritional resources present in the CF
sputum (5) and the environmental conditions, displayed (i) reduced growth rates; (ii)
preferential assimilation of amino acids with a specific nutritional hierarchy designed
for the CF lung resources, thereby limiting their biosynthesis; (iii) reduced fermentation
processes; and (iv) an increased oxygen requirement.

The CF sputum is a complex and viscous substrate rich in amino acids, DNA, lipids,
and mucin, and the composition can vary from patient to patient (4). A synthetic
formulation (SCFM) resembling its natural composition was designed after analyzing
the CF sputum from 12 patients (5). However, even though the SCFM has been useful
to simulate the in vivo CF nutrient composition and it is used by many researchers, it
is still challenging to mimic the CF sputum and the lung environment in vitro. Indeed,
although clinical isolates grow in SCFM in sealed microtiter plates, neither DK53 nor
DK01 isolates could grow in Erlenmeyer flasks, which were required for the metabo-
lomics analysis. This difference in growth ability might be caused by limitation of
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oxygen (45), which may develop during within-patient evolution, but further investi-
gations are necessary to confirm this hypothesis. Therefore, to overcome this limitation,
and taking into account that our study intended to compare the metabolic behaviors
of the clinical isolates beyond the in vivo CF environment, we decided to use the LB
medium, which also contains amino acids and sugars although at different concentra-
tions than in SCFM.

One of the major environmental selective forces in the CF lung is the continuous
presence of antibiotics. Our results are in agreement with the metabolic evolution of
antibiotic resistance observed in an in vitro adaptive laboratory evolution (ALE) exper-
iment in Escherichia coli where replicate population lineages evolving under antibiotic
selective pressures converged to highly similar metabolic steady states, which con-
strained the bacterial evolutionary trajectories (46). However, while ALE experiments
typically select for fast-growing cells (47, 48), the long-term in vivo evolution setting
within CF patients revealed enrichment for slow-growing isolates (17). This indicates
that slow-growth selection is not directly coupled to antibiotic presence. Reduced
growth rates have been described for E. coli, Streptococcus pneumoniae, Staphylococcus
aureus, and M. tuberculosis to favor tolerance to antibiotics (18). Whether slow-growing
isolates of P. aeruginosa also exhibit higher levels of tolerance to antibiotics remains to
be shown.

In most in vitro ALE experiments, including the longest-running one (49), it is often
difficult to draw precise genotype-to-phenotype correlations and causality maps,
mostly due to beneficial mutations in genes with complex pleiotropic effects (50–54).
In the much more complex and continuously changing environment of infected CF
patients, it is even more difficult to correlate mutations with phenotypic traits. Only in
the cases of auxotrophic traits did we identify causal mutations. P. aeruginosa has a
large genome (55) characterized by redundancy, duplications of metabolic enzyme-
encoding genes, the presence of paralogous metabolic pathways, many transcriptional
regulators, and many genes of unknown function. Moreover, distinct clone types
usually acquire different combinations of pathoadaptive mutations (19, 56, 57), which
in turn produce genetically heterogeneous bacterial communities in coinfecting sce-
narios. Although this study includes isolates from only one case (CF patient), several
phenotypes associated with each of the three lineages, such as change of growth rate,
auxotrophy, development of antibiotic resistance, and hypermutability, have previously
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been ascribed to different P. aeruginosa isolates from random patients (7, 14, 17, 27, 58).
The finding that similar characteristics are observed over time of infection in the
studied environment (patient) strengthens our conclusions concerning the metabolic
specialization occurring in the host. The adaptive processes described for DK01, DK53,
and DK15 clone types are, therefore, representative, even though the actual trajectories
may vary from strain to strain and from patient to patient. Despite this heterogeneity,
our study suggests that convergent metabolic specialization can be a signature of
adaptive evolution after conquering a new niche through a combination of mecha-
nisms, including mutations, transcriptional and translational regulation, and epistasis.

MATERIALS AND METHODS
Bacterial strains and media. P. aeruginosa clinical isolates are listed in Table S1 in the supplemental

material and were sampled and identified from sputum samples as previously described elsewhere (19).
Analyses of the bacterial isolates from patient P36F2 attending the Copenhagen Cystic Fibrosis Center at
the University Hospital, Rigshospitalet, Copenhagen, Denmark, were approved by the local ethics
committee of the Capital Region of Denmark (Region Hovedstaden; registration number H-1-2013-032).
Growth was assessed in LB medium and M9 minimal medium with glucose, succinate, or lactate.

Time-resolved exometabolome analysis and quantification of amino acids, organic acids, and
sugars. Supernatant samples were collected for isolates 427, 423, 428, 426, 427.1, and 425 and for the
reference strain PAO1 over 24 h of growth. Quantification of amino acids was performed using the
EZ:faast amino acid analysis kit (Phenomenex, USA) according to the provided protocol. Organic acids
and sugars were quantified with a high-pressure liquid chromatography system coupled to a variable
wavelength and refractive index detector (HPLC-UV-RI; Ultimate 3000; Dionex, USA).

Measurement of oxygen consumption. Decrease in oxygen saturation was measured during
growth using a Unisense (Aarhus, Denmark) Clark-type oxygen sensor according to the manufacturer’s
instructions.

Comparative genomics and statistical analyses. Genomic data consisting of SNPs and indels are
available for the different isolates (19). Maximum parsimony (MP) analysis was conducted in MEGA7
version 7.0.26. Principal-component analysis (PCA) and hierarchical cluster analysis were performed using
the software JMP version 13.0. Growth rates, Pearson correlations, and functional enrichments were
scored using the software GraphPad Prism version 7.0a.

Additional information. Additional details regarding our experimental procedures and materials are
provided in Text S1 in the supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00269-18.
TEXT S1, PDF file, 0.1 MB.
FIG S1, TIF file, 0.3 MB.
FIG S2, TIF file, 0.3 MB.
FIG S3, TIF file, 0.3 MB.
FIG S4, TIF file, 1 MB.
FIG S5, TIF file, 0.7 MB.
FIG S6, TIF file, 0.4 MB.
FIG S7, TIF file, 0.5 MB.
TABLE S1, XLSX file, 0.5 MB.
TABLE S2, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
We thank Dominique Schneider, Fernando Rojo, Peter Greenberg, and Alfred Spor-

mann for valuable discussion and comments on the paper. Metabolomic analyses were
provided by Otto Savolainen at Chalmers University of Technology (Gothenburg,
Sweden). Biotech-IgG A/S is thanked for providing the Etest.

We acknowledge support from the Danish National Research Foundation and from
the Novo Nordisk Foundation to S.M. H.K.J. was supported by a clinical research stipend
from the Novo Nordisk Foundation (NNF12OC1015920) and by a research grant from
Lundbeck Fonden (R167-2013-15229), a “Rammebevilling” from Rigshospitalet (R88-
A3537), a “Rammebevilling” from Region H (R144-A5287), and the Danish National
Research Foundation, FSS (DFF-4183-00051).

R.L.R., H.K.J., and S.M. conceived the project; R.L.R. performed the experiments,

Metabolic Evolution of Pseudomonas aeruginosa ®

March/April 2018 Volume 9 Issue 2 e00269-18 mbio.asm.org 13

 
m

bio.asm
.org

 on A
pril 10, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

https://doi.org/10.1128/mBio.00269-18
https://doi.org/10.1128/mBio.00269-18
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


analyzed the data, and prepared the figures; R.L.R., H.K.J., and S.M. wrote the paper. All
authors approved the submitted version.

REFERENCES
1. Brown SA, Palmer KL, Whiteley M. 2008. Revisiting the host as a

growth medium. Nat Rev Microbiol 6:657– 666. https://doi.org/10
.1038/nrmicro1955.

2. Rohmer L, Hocquet D, Miller SI. 2011. Are pathogenic bacteria just
looking for food? Metabolism and microbial pathogenesis. Trends Mi-
crobiol 19:341–348. https://doi.org/10.1016/j.tim.2011.04.003.

3. Eisenreich W, Heesemann J, Rudel T, Goebel W. 2015. Metabolic adap-
tations of intracellular bacterial pathogens and their mammalian host
cells during infection (“pathometabolism”). Microbiol Spectr 3:27–58.
https://doi.org/10.1128/microbiolspec.MBP-0002-2014.

4. Quinn RA, Lim YW, Mak TD, Whiteson K, Furlan M, Conrad D, Rohwer F,
Dorrestein P. 2016. Metabolomics of pulmonary exacerbations reveals
the personalized nature of cystic fibrosis disease. PeerJ 4:e2174. https://
doi.org/10.7717/peerj.2174.

5. Palmer KL, Aye LM, Whiteley M. 2007. Nutritional cues control Pseu-
domonas aeruginosa multicellular behavior in cystic fibrosis sputum. J
Bacteriol 189:8079 – 8087. https://doi.org/10.1128/JB.01138-07.

6. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, Molin S.
2012. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis
airway: an evolutionary perspective. Nat Rev Microbiol 10:841– 851.
https://doi.org/10.1038/nrmicro2907.

7. Moradali MF, Ghods S, Rehm BHA. 2017. Pseudomonas aeruginosa
lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell
Infect Microbiol 7:39. https://doi.org/10.3389/fcimb.2017.00039.

8. Yang L, Jelsbak L, Molin S. 2011. Microbial ecology and adaptation in
cystic fibrosis airways. Environ Microbiol 13:1682–1689. https://doi.org/
10.1111/j.1462-2920.2011.02459.x.

9. Olive AJ, Sassetti CM. 2016. Metabolic crosstalk between host and
pathogen: sensing, adapting and competing. Nat Rev Microbiol 14:
221–234. https://doi.org/10.1038/nrmicro.2016.12.

10. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M. 2014. Re-
quirements for Pseudomonas aeruginosa acute burn and chronic surgi-
cal wound infection. PLoS Genet 10:e1004518. https://doi.org/10.1371/
journal.pgen.1004518.

11. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. 2015. Essential
genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl
Acad Sci U S A 112:4110 – 4115. https://doi.org/10.1073/pnas.14196
77112.

12. D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. 2014. Less is
more: selective advantages can explain the prevalent loss of biosyn-
thetic genes in bacteria. Evolution 68:2559 –2570. https://doi.org/10
.1111/evo.12468.

13. Taylor TB, Mulley G, Dills AH, Alsohim AS, McGuffin LJ, Studholme DJ,
Silby MW, Brockhurst MA, Johnson LJ, Jackson RW. 2015. Evolutionary
resurrection of flagellar motility via rewiring of the nitrogen regulation
system. Science 347:1014 –1017. https://doi.org/10.1126/science.125
9145.

14. Thomas SR, Ray A, Hodson ME, Pitt TL. 2000. Increased sputum amino
acid concentrations and auxotrophy of Pseudomonas aeruginosa in
severe cystic fibrosis lung disease. Thorax 55:795–797. https://doi.org/
10.1136/thorax.55.9.795.

15. Barth AL, Pitt TL. 1996. The high amino-acid content of sputum from cystic
fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa.
J Med Microbiol 45:110–119. https://doi.org/10.1099/00222615-45-2-110.

16. Jørgensen KM, Wassermann T, Johansen HK, Christiansen LE, Molin S,
Høiby N, Ciofu O. 2015. Diversity of metabolic profiles of cystic fibrosis
Pseudomonas aeruginosa during the early stages of lung infection.
Microbiology 161:1447–1462. https://doi.org/10.1099/mic.0.000093.

17. Yang L, Haagensen JAJ, Jelsbak L, Johansen HK, Sternberg C, Høiby N,
Molin S. 2008. In situ growth rates and biofilm development of Pseu-
domonas aeruginosa populations in chronic lung infections. J Bacteriol
190:2767–2776. https://doi.org/10.1128/JB.01581-07.

18. Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Distinguishing be-
tween resistance, tolerance and persistence to antibiotic treatment. Nat
Rev Microbiol 14:320 –330. https://doi.org/10.1038/nrmicro.2016.34.

19. Marvig RL, Sommer LM, Molin S, Johansen HK. 2015. Convergent evo-

lution and adaptation of Pseudomonas aeruginosa within patients with
cystic fibrosis. Nat Genet 47:57– 64. https://doi.org/10.1038/ng.3148.

20. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, Harding
CL, Radey MC, Rezayat A, Bautista G, Berrington WR, Goddard AF, Zheng
C, Angermeyer A, Brittnacher MJ, Kitzman J, Shendure J, Fligner CL,
Mittler J, Aitken ML, Manoil C, Bruce JE, Yahr TL, Singh PK. 2015. Regional
isolation drives bacterial diversification within cystic fibrosis lungs. Cell
Host Microbe 18:307–319. https://doi.org/10.1016/j.chom.2015.07.006.

21. Feliziani S, Marvig RL, Luján AM, Moyano AJ, Di Rienzo JA, Krogh
Johansen H, Molin S, Smania AM. 2014. Coexistence and within-host
evolution of diversified lineages of hypermutable Pseudomonas aerugi-
nosa in long-term cystic fibrosis infections. PLoS Genet 10:e1004651.
https://doi.org/10.1371/journal.pgen.1004651.

22. Marvig RL, Dolce D, Sommer LM, Petersen B, Ciofu O, Campana S, Molin
S, Taccetti G, Johansen HK. 2015. Within-host microevolution of Pseu-
domonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiol
15:218. https://doi.org/10.1186/s12866-015-0563-9.

23. Kozlowska J, Rivett DW, Vermeer LS, Carroll MP, Bruce KD, James Mason
A, Rogers GB. 2013. A relationship between Pseudomonal growth be-
haviour and cystic fibrosis patient lung function identified in a meta-
bolomic investigation. Metabolomics 9:1262–1273. https://doi.org/10
.1007/s11306-013-0538-5.

24. Behrends V, Ryall B, Zlosnik JEA, Speert DP, Bundy JG, Williams HD. 2013.
Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis
chronic lung infections. Environ Microbiol 15:398 – 408. https://doi.org/
10.1111/j.1462-2920.2012.02840.x.

25. Behrends V, Bell TJ, Liebeke M, Cordes-Blauert A, Ashraf SN, Nair C,
Zlosnik JEA, Williams HD, Bundy JG. 2013. Metabolite profiling to char-
acterize disease-related bacteria: gluconate excretion by Pseudomonas
aeruginosa mutants and clinical isolates from cystic fibrosis patients. J
Biol Chem 288:15098 –15109. https://doi.org/10.1074/jbc.M112.442814.

26. Markussen T, Marvig RL, Gómez-Lozano M, Aanæs K, Burleigh AE, Høiby
N, Johansen HK, Molin S, Jelsbak L. 2014. Environmental heterogeneity
drives within-host diversification and evolution of Pseudomonas aerugi-
nosa. mBio 5:e01592-14. https://doi.org/10.1128/mBio.01592-14.

27. Marvig RL, Johansen HK, Molin S, Jelsbak L. 2013. Genome analysis of a
transmissible lineage of Pseudomonas aeruginosa reveals pathoadap-
tive mutations and distinct evolutionary paths of hypermutators. PLoS
Genet 9:e1003741. https://doi.org/10.1371/journal.pgen.1003741.

28. La Rosa R, Behrends V, Williams HD, Bundy JG, Rojo F. 2016. Influence of
the Crc regulator on the hierarchical use of carbon sources from a
complete medium in Pseudomonas. Environ Microbiol 18:807– 818.
https://doi.org/10.1111/1462-2920.13126.

29. Behrends V, Ebbels TMD, Williams HD, Bundy JG. 2009. Time-resolved
metabolic footprinting for nonlinear modeling of Bacterial substrate
utilization. Appl Environ Microbiol 75:2453–2463. https://doi.org/10
.1128/AEM.01742-08.

30. Rojo F. 2010. Carbon catabolite repression in Pseudomonas: optimiz-
ing metabolic versatility and interactions with the environment.
FEMS Microbiol Rev 34:658 – 684. https://doi.org/10.1111/j.1574-6976
.2010.00218.x.

31. Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT, Rau MH, Hansen
SK, Folkesson A, Johansen HK, Ciofu O, Høiby N, Sommer MOA, Molin S.
2011. Evolutionary dynamics of bacteria in a human host environment.
Proc Natl Acad Sci U S A 108:7481–7486. https://doi.org/10.1073/pnas
.1018249108.

32. Schobert M, Tielen P. 2010. Contribution of oxygen-limiting conditions
to persistent infection of Pseudomonas aeruginosa. Future Microbiol
5:603– 621. https://doi.org/10.2217/fmb.10.16.

33. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P,
Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S,
Boucher RC, Döring G. 2002. Effects of reduced mucus oxygen concen-
tration in airway Pseudomonas infections of cystic fibrosis patients. J Clin
Invest 109:317–325. https://doi.org/10.1172/JCI13870.

34. Palmer KL, Brown SA, Whiteley M. 2007. Membrane-bound nitrate re-
ductase is required for anaerobic growth in cystic fibrosis sputum. J
Bacteriol 189:4449 – 4455. https://doi.org/10.1128/JB.00162-07.

La Rosa et al. ®

March/April 2018 Volume 9 Issue 2 e00269-18 mbio.asm.org 14

 
m

bio.asm
.org

 on A
pril 10, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

https://doi.org/10.1038/nrmicro1955
https://doi.org/10.1038/nrmicro1955
https://doi.org/10.1016/j.tim.2011.04.003
https://doi.org/10.1128/microbiolspec.MBP-0002-2014
https://doi.org/10.7717/peerj.2174
https://doi.org/10.7717/peerj.2174
https://doi.org/10.1128/JB.01138-07
https://doi.org/10.1038/nrmicro2907
https://doi.org/10.3389/fcimb.2017.00039
https://doi.org/10.1111/j.1462-2920.2011.02459.x
https://doi.org/10.1111/j.1462-2920.2011.02459.x
https://doi.org/10.1038/nrmicro.2016.12
https://doi.org/10.1371/journal.pgen.1004518
https://doi.org/10.1371/journal.pgen.1004518
https://doi.org/10.1073/pnas.1419677112
https://doi.org/10.1073/pnas.1419677112
https://doi.org/10.1111/evo.12468
https://doi.org/10.1111/evo.12468
https://doi.org/10.1126/science.1259145
https://doi.org/10.1126/science.1259145
https://doi.org/10.1136/thorax.55.9.795
https://doi.org/10.1136/thorax.55.9.795
https://doi.org/10.1099/00222615-45-2-110
https://doi.org/10.1099/mic.0.000093
https://doi.org/10.1128/JB.01581-07
https://doi.org/10.1038/nrmicro.2016.34
https://doi.org/10.1038/ng.3148
https://doi.org/10.1016/j.chom.2015.07.006
https://doi.org/10.1371/journal.pgen.1004651
https://doi.org/10.1186/s12866-015-0563-9
https://doi.org/10.1007/s11306-013-0538-5
https://doi.org/10.1007/s11306-013-0538-5
https://doi.org/10.1111/j.1462-2920.2012.02840.x
https://doi.org/10.1111/j.1462-2920.2012.02840.x
https://doi.org/10.1074/jbc.M112.442814
https://doi.org/10.1128/mBio.01592-14
https://doi.org/10.1371/journal.pgen.1003741
https://doi.org/10.1111/1462-2920.13126
https://doi.org/10.1128/AEM.01742-08
https://doi.org/10.1128/AEM.01742-08
https://doi.org/10.1111/j.1574-6976.2010.00218.x
https://doi.org/10.1111/j.1574-6976.2010.00218.x
https://doi.org/10.1073/pnas.1018249108
https://doi.org/10.1073/pnas.1018249108
https://doi.org/10.2217/fmb.10.16
https://doi.org/10.1172/JCI13870
https://doi.org/10.1128/JB.00162-07
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


35. Grasemann H, Ioannidis I, Tomkiewicz RP, de Groot H, Rubin BK, Ratjen
F. 1998. Nitric oxide metabolites in cystic fibrosis lung disease. Arch Dis
Child 78:49 –53. https://doi.org/10.1136/adc.78.1.49.

36. Arai H. 2011. Regulation and function of versatile aerobic and anaerobic
respiratory metabolism in Pseudomonas aeruginosa. Front Microbiol
2:103. https://doi.org/10.3389/fmicb.2011.00103.

37. Schobert M, Jahn D. 2010. Anaerobic physiology of Pseudomonas
aeruginosa in the cystic fibrosis lung. Int J Med Microbiol 300:549 –556.
https://doi.org/10.1016/j.ijmm.2010.08.007.

38. Hoshino T, Kose K. 1990. Cloning, nucleotide sequences, and identifica-
tion of products of the Pseudomonas aeruginosa PAO bra genes, which
encode the high-affinity branched-chain amino acid transport system. J
Bacteriol 172:5531–5539. https://doi.org/10.1128/jb.172.10.5531-5539
.1990.

39. Gao C, Hu C, Zheng Z, Ma C, Jiang T, Dou P, Zhang W, Che B, Wang Y,
Lv M, Xu P. 2012. Lactate utilization is regulated by the FadR-type
regulator LldR in Pseudomonas aeruginosa. J Bacteriol 194:2687–2692.
https://doi.org/10.1128/JB.06579-11.

40. Vander Wauven C, Piérard A, Kley-Raymann M, Haas D. 1984. Pseudomo-
nas aeruginosa mutants affected in anaerobic growth on arginine: evi-
dence for a four-gene cluster encoding the arginine deiminase pathway.
J Bacteriol 160:928 –934.

41. Lüthi E, Baur H, Gamper M, Brunner F, Villeval D, Mercenier A, Haas D.
1990. The arc operon for anaerobic arginine catabolism in Pseudomonas
aeruginosa contains an additional gene, arcD, encoding a membrane
protein. Gene 87:37– 43. https://doi.org/10.1016/0378-1119(90)90493-B.

42. Hebert MD, Houghton JE. 1997. Regulation of ornithine utilization in
Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional reg-
ulator, OruR. J Bacteriol 179:7834 –7842. https://doi.org/10.1128/jb.179
.24.7834-7842.1997.

43. Eschbach M, Schreiber K, Trunk K, Buer J, Jahn D, Schobert M. 2004.
Long-term anaerobic survival of the opportunistic pathogen Pseudomo-
nas aeruginosa via pyruvate fermentation. J Bacteriol 186:4596 – 4604.
https://doi.org/10.1128/JB.186.14.4596-4604.2004.

44. Hoffman LR, Richardson AR, Houston LS, Kulasekara HD, Martens-
Habbena W, Klausen M, Burns JL, Stahl DA, Hassett DJ, Fang FC, Miller SI.
2010. Nutrient availability as a mechanism for selection of antibiotic
tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog
6:e1000712. https://doi.org/10.1371/journal.ppat.1000712.

45. Baez A, Shiloach J. 2014. Effect of elevated oxygen concentration on
bacteria, yeasts, and cells propagated for production of biological com-
pounds. Microb Cell Fact 13:181. https://doi.org/10.1186/s12934-014
-0181-5.

46. Zampieri M, Enke T, Chubukov V, Ricci V, Piddock L, Sauer U. 2017.
Metabolic constraints on the evolution of antibiotic resistance. Mol Syst
Biol 13:917. https://doi.org/10.15252/msb.20167028.

47. LaCroix RA, Sandberg TE, O’Brien EJ, Utrilla J, Ebrahim A, Guzman GI,
Szubin R, Palsson BO, Feist AM. 2015. Use of adaptive laboratory evolu-
tion to discover key mutations enabling rapid growth of Escherichia coli
K-12 MG1655 on glucose minimal medium. Appl Environ Microbiol
81:17–30. https://doi.org/10.1128/AEM.02246-14.

48. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong
J, Shimizu K, Soga T, Tomita M, Palsson BO, Robert M. 2014. Global

metabolic network reorganization by adaptive mutations allows fast
growth of Escherichia coli on glycerol. Nat Commun 5:3233. https://doi
.org/10.1038/ncomms4233.

49. Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta
A, Wu GC, Wielgoss S, Cruveiller S, Médigue C, Schneider D, Lenski RE.
2016. Tempo and mode of genome evolution in a 50,000-generation
experiment. Nature 536:165–170. https://doi.org/10.1038/nature18959.

50. Hindré T, Knibbe C, Beslon G, Schneider D. 2012. New insights into
bacterial adaptation through in vivo and in silico experimental evolu-
tion. Nat Rev Microbiol 10:352–365. https://doi.org/10.1038/nrmicro
2750.

51. Fong SS, Joyce AR, Palsson BØ. 2005. Parallel adaptive evolution cultures
of Escherichia coli lead to convergent growth phenotypes with different
gene expression states. Genome Res 15:1365–1372. https://doi.org/10
.1101/gr.3832305.

52. Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM, Lewis NE, Landick R,
Palsson BØ. 2010. RNA polymerase mutants found through adaptive
evolution reprogram Escherichia coli for optimal growth in minimal
media. Proc Natl Acad Sci U S A 107:20500 –20505. https://doi.org/10
.1073/pnas.0911253107.

53. Utrilla J, O’Brien EJ, Chen K, McCloskey D, Cheung J, Wang H, Armenta-
Medina D, Feist AM, Palsson BO. 2016. Global rebalancing of cellular
resources by pleiotropic point mutations illustrates a multi-scale mech-
anism of adaptive evolution. Cell Syst 2:260 –271. https://doi.org/10
.1016/j.cels.2016.04.003.

54. Blount ZD, Barrick JE, Davidson CJ, Lenski RE. 2012. Genomic analysis of
a key innovation in an experimental Escherichia coli population. Nature
489:513–518. https://doi.org/10.1038/nature11514.

55. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ,
Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L,
Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger
KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK-s, Wu Z, Paulsen
IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV. 2000. Complete
genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic
pathogen. Nature 406:959 –964. https://doi.org/10.1038/35023079.

56. Damkiær S, Yang L, Molin S, Jelsbak L. 2013. Evolutionary remodeling of
global regulatory networks during long-term bacterial adaptation to
human hosts. Proc Natl Acad Sci U S A 110:7766 –7771. https://doi.org/
10.1073/pnas.1221466110.

57. Dötsch A, Schniederjans M, Khaledi A, Hornischer K, Schulz S, Bielecka
A, Eckweiler D, Pohl S, Häussler S. 2015. The Pseudomonas aerugi-
nosa transcriptional landscape is shaped by environmental hetero-
geneity and genetic variation. mBio 6:e00749. https://doi.org/10
.1128/mBio.00749-15.

58. Winstanley C, O’Brien S, Brockhurst MA. 2016. Pseudomonas aeruginosa
evolutionary adaptation and diversification in cystic fibrosis chronic lung
infections. Trends Microbiol 24:327–337. https://doi.org/10.1016/j.tim
.2016.01.008.

59. Galperin MY, Makarova KS, Wolf YI, Koonin EV. 2015. Expanded microbial
genome coverage and improved protein family annotation in the COG
database. Nucleic Acids Res 43:D261–D269. https://doi.org/10.1093/nar/
gku1223.

Metabolic Evolution of Pseudomonas aeruginosa ®

March/April 2018 Volume 9 Issue 2 e00269-18 mbio.asm.org 15

 
m

bio.asm
.org

 on A
pril 10, 2018 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

https://doi.org/10.1136/adc.78.1.49
https://doi.org/10.3389/fmicb.2011.00103
https://doi.org/10.1016/j.ijmm.2010.08.007
https://doi.org/10.1128/jb.172.10.5531-5539.1990
https://doi.org/10.1128/jb.172.10.5531-5539.1990
https://doi.org/10.1128/JB.06579-11
https://doi.org/10.1016/0378-1119(90)90493-B
https://doi.org/10.1128/jb.179.24.7834-7842.1997
https://doi.org/10.1128/jb.179.24.7834-7842.1997
https://doi.org/10.1128/JB.186.14.4596-4604.2004
https://doi.org/10.1371/journal.ppat.1000712
https://doi.org/10.1186/s12934-014-0181-5
https://doi.org/10.1186/s12934-014-0181-5
https://doi.org/10.15252/msb.20167028
https://doi.org/10.1128/AEM.02246-14
https://doi.org/10.1038/ncomms4233
https://doi.org/10.1038/ncomms4233
https://doi.org/10.1038/nature18959
https://doi.org/10.1038/nrmicro2750
https://doi.org/10.1038/nrmicro2750
https://doi.org/10.1101/gr.3832305
https://doi.org/10.1101/gr.3832305
https://doi.org/10.1073/pnas.0911253107
https://doi.org/10.1073/pnas.0911253107
https://doi.org/10.1016/j.cels.2016.04.003
https://doi.org/10.1016/j.cels.2016.04.003
https://doi.org/10.1038/nature11514
https://doi.org/10.1038/35023079
https://doi.org/10.1073/pnas.1221466110
https://doi.org/10.1073/pnas.1221466110
https://doi.org/10.1128/mBio.00749-15
https://doi.org/10.1128/mBio.00749-15
https://doi.org/10.1016/j.tim.2016.01.008
https://doi.org/10.1016/j.tim.2016.01.008
https://doi.org/10.1093/nar/gku1223
https://doi.org/10.1093/nar/gku1223
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/

	RESULTS
	Coexistence of Pseudomonas aeruginosa clone types in the airways of a CF patient. 
	Reduction of metabolic abilities and growth rates during within-patient adaptation. 
	Metabolic specialization during within-patient adaptation. 
	Metabolic adaptation to the CF sputum. 
	Increase in oxygen consumption during within-patient adaptation. 
	Relationship between metabolic and genomic changes. 

	DISCUSSION
	MATERIALS AND METHODS
	Bacterial strains and media. 
	Time-resolved exometabolome analysis and quantification of amino acids, organic acids, and sugars. 
	Measurement of oxygen consumption. 
	Comparative genomics and statistical analyses. 
	Additional information. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

