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Abstract: The recently discovered pure-quartic solitons, arising from the interaction of quartic
dispersion and Kerr nonlinearity, open the door to unexplored soliton regimes and ultrafast laser
science. Here, we report a general analysis of the dispersion and nonlinear properties necessary
to observe pure-quartic solitons in optical platforms. We apply this analysis, in combination
with numerical calculations, to the design of pure-quartic soliton supporting microstructured
optical fibers. The designs presented here, which have realistic fabrication tolerances, support
unperturbed pure-quartic soliton propagation providing access to an unmatched platform to study
novel soliton physics.
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1. Introduction

Pure-quartic solitons (PQSs) are a novel class of solitary optical waves that arise from the
interaction of negative fourth-order dispersion (FOD) and self-phase modulation (SPM) [1].
Due to the Kerr nonlinearity of the medium, intense optical pulses undergo SPM, which
generates new red (blue) frequencies at the trailing (leading) edge of the pulse. In the presence of
negative FOD the red frequencies travel faster than the blue frequencies, which compensates the
effect of SPM and keeps the pulse from spreading either in time or in frequency. This soliton
formation mechanism, which is analogous to that of conventional nonlinear Schrödinger (NLS)
solitons [2–6], can in principle be extended to all the even orders of dispersion.
The idea that soliton-like behavior could arise from the interplay of negative FOD and SPM
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was suggested in the early 90’s by Christov et al. [7], in the context of a Ti:sapphire laser
system operating at near-zero group-velocity dispersion (GVD) and third-order dispersion (TOD).
Other theoretical efforts aimed to elucidate the behavior of NLS solitons in the presence of
significant FOD [8–14]. Given the difficulty of engineering optical platforms with dominant
FOD over a sufficiently large bandwidth, most of these predictions were never experimentally
confirmed. Recently, however, some of us demonstrated experimentally the existence of PQSs
in a dispersion-engineered slow-light silicon photonic crystal waveguide (PhC-wg) [1]. In this
nanophotonic platform, the FOD effect was strongly dominant over all the other orders of
dispersion at wavelengths centered around λ0 = 1550 nm and for pulse durations T0 ≈ 0.8 ps,
across a bandwidth of approximately 4 − 5 nm. This strong FOD was balanced by the slow-light
enhanced SPM in the silicon PhC-wg giving rise to PQSs in a few hundred microns waveguide.
Although the advantages of this particular nanophotonic platform are numerous – CMOS
compatibility, compact footprint, low power required – it is crucial to extend the demonstration
of PQSs to other physical platforms to prove that they are a general optical phenomenon and to
extend their application range.
PQSs are interesting in their own right. Aside from their different physical origin, PQSs

present significant differences with respect to every other soliton reported to date. For instance,
they can occur with normal or zero GVD, expanding the available wavelength range for soliton
functionality in optical media; the PQS shape [1] is different to that of conventional NLS solitons
or any other optical soliton observed to date [4]; more importantly, perhaps, one of the key
features of PQSs is their advantageous energy scaling, U ∝ T−3

0 , with respect to NLS solitons,
U ∝ T−1

0 . This yields dramatically higher PQS energies at low pulse durations creating an
outstanding potential for ultrafast lasers and opening up new avenues of study for supercontinuum
generation and frequency combs. Nanophotonics platforms, however, are inherently confined to
sub-nanojoule energies [15, 16] and therefore not suitable to exploit this advantage. Further, the
PQSsmeasurements in Ref. [1], were strongly perturbed by the effect of the two-photon absorption
(TPA) generated free-carriers in silicon, namely asymmetrical blue-shift and self-acceleration of
the pulse [17–19].
In contrast to nanophotonic platforms, silica microstructured optical fibers (MOFs) [20,21]

are TPA-free and can support very high energies while still providing excellent possibilities for
dispersion engineering. MOFs guide light by a modified form of total internal reflection in a solid
core, generally silica, surrounded by a cladding of air holes. The strong index contrast between
core and cladding gives rise to tight optical confinement, which enhances the nonlinearities, and a
strongly wavelength-dependent effective index that can overcome material dispersion [22]. These
remarkable dispersion-engineering possibilities have enabled fine tuning of the zero-dispersion
wavelength (ZDW) in a broad spectral range [23, 24] and even the realization of dispersion
profiles with three [25, 26] and four ZDWs [27,28].
Here, by using dispersion-engineering, we present a design approach and final realizable

designs for MOFs with dominant negative quartic dispersion that can support PQS propagation.
We start by discussing the dispersion requirements necessary to achieve PQS propagation,
followed by a brief discussion on the desirable nonlinear properties. Next we provide a detailed
approach to design MOF fibers fulfilling those requirements and complying with the fabrication
constraints. Finally we study a realizable designs in detail and characterize its performance for
PQS propagation by providing nonlinear Schrödinger equation (NLSE) simulations.

2. Dispersion requirements

The observation of PQSs requires that the quartic dispersion is negative, that it dominates for
the pulse durations of interest, and that the nonlinear coefficient is sufficiently large so the
nonlinearity can balance the quartic dispersion for practical values of the peak power. In practice,
the requirements on the dispersion are much more difficult to meet and we examine them first.
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We consider a dispersive waveguide and neglect all dispersion of fifth order and higher, so
that β2 = β2(ω) is a quadratic function of frequency. A necessary condition for the observation
of PQSs is that β4 < 0. Without loss of generality, we can then define frequency ω0 such that
β3(ω0) ≡ ∂β2/∂ω|ω=ω0 = 0, and can thus write the relationship between the group velocity
dispersion β2 and the frequency ω as

β2(ω) = β20 −
1
2
|β40 | (ω − ω0)2 . (1)

Thus β2 = β20 at ω0 and varies quadratically at other frequencies with a curvature given by
β40 < 0; if β20 > 0 then β2 = 0 when ω = ω0 ±

√
2β20/|β40 | ≡ ω0 ± δω.

To estimate the influence of the various dispersion orders, following Agrawal [5], we introduce
the dispersion lengths Lp = T p

0 /|βp |, with p representing the dispersion order. Ideally, the
dispersion of our waveguide is such that for a suitable pulse duration, L4 � L2,3. For the
dispersion relation in Eq. (1) we find that

L2 =
T2

0

|β20 − 1
2 |β40 | (ω − ω0)2 |

, L3 =
T3

0
|β40 (ω − ω0) |

, L4 =
T4

0
|β40 |

. (2)

Their frequency dependence is schematically shown in Fig. 1(a). Here and below we take β20 > 0
as will be justified later. Thus L2 (dashed-dotted red) diverges at ω − ω0 = ±δω, whereas L3
(dashed blue) diverges at ω − ω0 = 0. In this approximation L4 (solid black) does not depend on
frequency. While Fig. 1(a) refers to a particular pulse duration T0, the pulse duration-dependence
follows from Eqs. (2). Thus shortening the pulse strengthens the effect of higher-order dispersion
(and thus shortens L4 w.r.t. L3, and L3 w.r.t. L2).

(a)!
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Fig. 1. (a) Schematic of the characteristic lengths L2 (dashed-dotted red), L3 (dashed-blue),
and L4 (solid black), versus frequency for β20 > 0. The frequency regions ∆ω2 and ∆ω3 are
indicated for α2 = 2 and α3 = 1.6; (b) Pulse duration as a function of wavelength for which
the conditions in Eq. (3) are met for α2 = α3 = 1 (blue curve), α2 = α3 = 2 (yellow curve)
α2 = α3 = 4 (green curve). .

While shortening the pulses increases the effect of β4, it also broadens the bandwidth over
which it needs to dominate. To investigate this further we quantify the degree to which the quartic
dispersion needs to dominate the lower order dispersion for a PQS to exist through

L2 ≥ α2L4, L3 ≥ α3L4, (3)

where α2,3 > 1. Considering Fig. 1(a) we note that the first of Eqs. (3) needs to be satisfied at ω0.
This immediately leads to the requirement

|β40 |
β20
≥ α2T2

0 (4)
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The bandwidth over which this condition is satisfied can be found from the frequency for which
the denominator of the first of Eqs. (2) changes sign with respect to ω = ω0 (see Fig. 1(a)), so

∆ω2 = 4

√
β20
|β40 |

, (5)

which does not depend on α2. Similarly, the second of Eqs. (3) leads to

∆ω3 ≤
2

α3T0
. (6)

We can express these results in terms of time-bandwidth products of the pulse duration and the
spectral widths for which Eqs. (3) are satisfied, namely

∆ω3T0 ≤
2
α3
, ∆ω2T0 ≤

4
√
α2
. (7)

Since α2,3 > 1, we find that the first of these is the most restrictive, consistent with Fig. 1(a).
Since the time-(angular) bandwidth product for a Gaussian and for hyperbolic secant pulses
is 2π × 0.44 ≈ 2.8 and 2π × 0.32 ≈ 2.0, we conclude that in the approximation, in which we
neglect 5th and higher order dispersion, it is possible for the 4th order dispersion to dominate
over a substantial fraction of the pulse spectrum. However, a more detailed statement requires
knowledge of shape of PQSs and of parameter α3.
An alternative way to represent the information is shown in Fig. 1(b). It shows the pulse

durations for which the two conditions in Eq. (3) are satisfied for α2 = α3 = 1 (blue curve),
α2 = α3 = 2 (yellow curve), and α2 = α3 = 4 (blue curve). Consistent with Fig. 1(a), the part of
the curves closest to λ0 = 1550 nm are determined by β2, while the sections further away are
determined by β3. Figure 1(b) confirms that the available bandwidth decreases when the values
of α2,3 increase.

3. Fiber design method

Once the dispersion requirements are understood, the question is whether we can meet them in
fiber platforms. In contrast to the material dispersion of silica, which has a large and monotonically
decreasing negative β2 and large positive β3 around 1550 nm, the PQS-supporting fiber must
have β2, β3 ≈ 0 and β4 < 0 over a sufficiently wide bandwidth around that center wavelength.
Fibers with such a dispersion profile have been reported in the context of three ZDWs and
ultra-flattened dispersion MOFs. Two approaches have led to similar dispersion curves, each with
advantages and disadvantages. The first approach is to use a uniform array of holes [25, 29–31].
This type of MOF is simple to fabricate, as the applied pressure can be kept constant throughout
the structure. However, to obtain the desired dispersion profile described in Eq. (1) with uniform
holes, the hole size (d) and the hole-to-pitch ratio (d/Λ) have to be small: d ≈ 600 nm and
d/Λ ≈ 0.24 − 0.3. Such fiber parameters lead to large confinement loss which can only be
compensated by a huge number of rings of holes, which strongly complicates the fabrication.
The second approach is to use rings of holes with a gradient in hole size, i.e., each ring of holes
is composed of holes of the same size, but the hole size increases for rings further away from the
center of the fiber [26, 32]. These structures allow for excellent control of the dispersion, and
allow us to achieve the desired profile. However, they require a different applied pressure to each
ring to achieve the desired hole area and to maintain the holes from collapsing because of surface
tension. Having differential pressures for each hole size is hard to realize at the cane level and,
although allowing for great fabrication flexibility, it introduces a large number of parameters that
can be changed independently and makes the process hard to fully exploit. Probably because of
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the complications related to the fabrication, to the best of our knowledge, no fibers with graded
holes have been fabricated with similar dispersion profiles to the desired one. It should be noted
that in all proposed designs the hole-to-hole distance (or pitch, Λ) is constant across the entire
fiber because the capillaries used for stacking are required to have the same size in order to obtain
an hexagonally packed structure.

Fig. 2. Hole sizes (d in blue and D in red) for various hole spacing (Λ) of the simulated
structures with dominant FOD and with zero of TOD centered at 1550 nm. The black
diamonds represent the simuated loss corresponding to those structures.

We find a compromise that combines the advantages of the two approaches mentioned above.
Thus, we design a fiber structure that provides the desired dispersion while meeting the fabrication
constraints. To this purpose, we limit the number of rings to a maximum of 5 and with just 2
different hole sizes. The innermost holes are small and have a strong impact on the dispersion,
while the outermost holes are larger and act as a barrier to reduce confinement loss. We also aim
to find structures with dominant FOD close to λ0 = 1550 nm (corresponding to ω0 in Eq (1) and
Fig. 1). The parameters to investigate are the number of rings with small holes and large holes,
the pitch of the structure Λ, the diameter of the small holes d, and the diameter of the large holes
D. As discussed below, we choose to use all 5 rings of holes and to have more holes with larger
holes than with small ones, in particular 3 and 2. From previous investigations [26, 29, 33] it is
known that the pitch of the structure determines the position of ω0. Values of Λ between 1.5 and
2.7 µm have been proposed for dispersion curves with the required trend.

We started our investigation from fiber F3 of Ref. [26]. We optimized the number of rings with
large and small holes and fine tuned the structure to achieve the desired dispersion profile, keeping
in mind the fabrication constraints. We also look into structures for which β20 >0 , in order to
prevent the competition of ordinary and pure quartic solitons, leading to three-zero-dispersion
curves. Moreover, we initially considered α3 = α2 = 1 for simplicity, requiring the FOD to be the
dominant dispersion term.
We performed numerical simulations by using the CUDOS Microstructured Optical Fiber

(MOF) solver [34], which uses the multipole method to calculate the effective index [35, 36].
After few preliminary simulations, we realized that having a larger number of rings with large

holes makes it easier to move the dispersion curve across wavelengths and still keep the desired
curvature. However, it also made the dispersion more sensitive to small changes in the design
parameters. Also, a large number of rings with large holes improved the confinement with a
smaller difference between the size of the large and small holes. In order to compromise between
wavelength and guidance, we chose the above mentioned combination of 2 rings of small holes
and 3 rings of large holes.

With this structure we changed the pitch and adjusted the size of small and large holes to obtain
structures that still had a FOD dominant region around 1550 nm but trying to obtain as close size
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as possible between the small and the large holes. Figure 2 shows the parameters for some of
the structures. It is clear that the size of the small holes (around 600 nm) is the dominant factor
and it changes very little. This is in agreement with the structures of both Ref. [31] and [26].
In approaching the ideal condition for fiber drawing, which is uniform holes, the pitch has to
become larger and the structure approaches the the one from Ref. [31] and fiber F4 of Ref. [26].
As already mentioned, at this stage the loss become a crucial factor. The black diamonds in Fig. 2
show the loss for the simulated structures.

3.1. Fine tuning and robustness

Once we identified the parameters of interest we look at how small variations of the structure
influence the dispersion in order to both be able to fine tune the dispersion profile and to estimate
its robustness to fabrication tolerances. For this purpose we selected one of the structures from
Fig. 2 (particularly the one with Λ = 1.92 µm as will become clear below) and changed the three
parameters (d,D,Λ) independently by 1% both in the positive and the negative direction. The
resulting β2, β3 and β4 curves are shown in Figs. 3(a)- 3(i).

Fig. 3. β2 (a-c), β3 (d-f), and β4 (g-i) curves for fiber structures with ±1% variations in
d (a,d,g), D (b,e,h) and Λ (c,f,i) from a selected structure. The black curve represent the
base structure, while the blue and the red curve represent the case for which the specific
parameter is 1% smaller and larger than the base structure, respectively.

It becomes immediately clear that changing the various parameters has a noticeably larger
effect on β2 than on β4. The advantage here is two-fold: we can tune the structure by focusing
primarily on β2, which is simpler than having to work with higher orders of dispersion; and,
given that β4 remains negative and largely unchanged against small changes, all these structures
should be able to support PQS propagation even in the presence of fabrication tolerances. The
effect on β3 is effectively a shift of the zero-TOD wavelength, which can be addressed by tuning
the operational wavelength.

We now have a closer look to the effect of the various parameters. Small increase (decrease) in
the size of d leads to a combined effect of shifting the β2 curve to lower (higher) values and to
longer (shorter) wavelengths, as shown in Fig. 3(a). Moreover, as it becomes apparent in Fig. 3(g),
small changes to the small holes size have the largest impact on β4. This is not surprising as the
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inner holes have a larger interaction with the guided mode. Also, it is consistent with the results
in Fig. 2, where almost constant d was necessary to keep the maximum of β2 close to 1550 nm.
It is also worth noticing that a 1% change in d is smaller in absolute value compared to the other
parameters. Modifications of both D − Figs. 3(b), 3(e), and 3(h) − and Λ − Fig. 3(c), 3(f),
and 3(i) − show similar effects on β2, β3 and β4, with the effect of changing Λ being larger in
magnitude (even when considered the change in absolute value). This explains why a decrease of
D was necessary when increasing Λ (Fig. 2) in order to keep β2 just above zero while keeping λ0
fixed. Given this analysis, the easiest way to fine-tune the dispersion is by small changes in D.
However, this is not easy from a fabrication point of view.

During fiber fabrication, the parameter on which there is the most control is the holes spacing
Λ. In fact, the outer size of the fiber is constantly monitored during drawing and the spacing
between the holes is fixed to the outer diameter by preparation of the preform. Instead, the
diameter of the holes is not known in real time and it depends on both the applied pressure and
the tension (which is related to the drawing temperature and velocities). Despite some techniques
having been investigated for monitoring the structure of highly scattering fibers [37, 38] none
is currently used in fiber fabrication. Therefore, adjusting Λ is a more reliable way to tune the
dispersion. However, it should be remembered that changing the size of the fiber also changes the
size of the holes.
The fiber fabrication process, although very well developed, is not expected to yield perfect

matching with the design. Further, the structural parameters may not be perfectly constant along
the fiber length. In this investigation, we consider the latter to be of minor importance, since the
required lengths are on the order of a few meters. Moreover, in practice, random variations in the
holes sizes can also be expected. However, a proper characterization of the effect of randomness
is a computationally hard task. Instead, a linear combination of the presented effects can be used
as a reasonable approximation to random variations. From Fig. 3 we can infer the robustness of
the dispersion to fabrication deviations from the design. As mentioned, β4 stays negative and
quite unchanged for reasonable variations of all the parameters. Therefore, the ability of the
structure to support PQS depends on whether or not the FOD dominates. Even if Fig. 3 shows
relatively large changes in the value of β2, it should be emphasized from Eq. (4) that shortening
the pulse compensates quadratically for a change in ratios between β4 and β2. This provide us
with a useful control knob, the pulse duration, to achieve PQS propagation even in non-ideal
structures.

4. Pure-quartic soliton supporting fiber

We now focus our attention in a particular MOF design and demonstrate that, consistent with the
analytic results from Section 2, it can support the propagation of PQSs using numerical solutions
of the generalized NLSE [1].
In order to choose the most promising MOF design from the plethora of results presented in

Fig. 2, we established two main practical criteria. First, the propagation loss must be under 0.01
dB/m. This is to avoid excessive loss after propagation for a few L4’s, with L4 of the order of
a few meters at the targeted pulse durations for most of the considered MOF designs. Second,
to limit fabrication challenges, the contrast between D and d must be as moderate as possible.
Based on these two criteria we selected the MOF design with the following parameters: Λ =
1.92 µm, D = 1.027 µm, and d = 0.578 µm. As shown in Fig. 2, this design represents a good
compromise between loss and fabrication feasibility.
The calculated GVD, TOD, and FOD as a function of wavelength for this particular MOF

design are shown in Figs. 4(a)- 4(c). The relationship of β2 with wavelength approximately
matches the expression introduced in Eq. (1), which supports the validity of our analysis. In this
case β20 = 1.4 × 10−2 ps2/km, β30 ≈ 0, and β40 = −1.18 × 10−4 ps4/km at the center wavelength
λ0 = 1550 nm, or equivalently at the center angular frequency ω0 = 1.22 × 1015 rad/s.
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Fig. 4. Dispersion values and relation between dispersion lengths for specific microstructured
optical fiber design. (a)-(c) GVD, TOD and FOD as a function of wavelength; (d) Pulse
durations as a function of wavelength for which L2>L4 and L3>L4 (cyan), L2>2L4 and
L3>2L4 (orange),L2>4L4 and L3>4L4 (green).Inset: MOF cross-section and mode profile.

Using the dispersion curves in Figs. 4(a)- 4(c), we calculated the characteristic dispersion
lengths for a range of pulse durations realistically obtainable with a commercial femtosecond
laser T0 = [10-140] fs. Subsequently, we found the wavelength regions in which FOD is dominant
over GVD and TOD by looking for the boundaries set in Eqs. (3). Figure 4(d) shows the location
of these boundaries for α2 = α3 = 1 (cyan), α2 = α3 = 2 (orange), and α2 = α3 = 4 (green).
Therefore the area under the cyan curve represents moderate FOD dominance whereas the areas
under the orange and green curves represent increasing levels of FOD dominance. For a pulse
duration T0 = 40 fs at 1550 nm, for instance, the width of the moderate FOD dominant region is
∆λ = 67 nm. This is sufficient to loosely accommodate the whole bandwidth of a PQS pulse of
that duration that, assuming an approximately Gaussian PQS shape [1] with time × bandwidth ≈
0.44, is 53 nm. Further, a significant part of the pulse bandwidth fits within the areas of strongly
dominant FOD. This is also consistent with the requirement established in Eq. (4), which at this
pulse duration is satisfied for every α2>1. Finally, we found that the available bandwidth is always
determined by the second of Eqs. (3), which is always the most restrictive far from the pulse
center, in accordance with the conclusion extracted from Eq. (7).
After verifying that the dispersion requirements are satisfied, we consider the nonlinear

properties of the MOF. The inset in Fig. 4(d) shows the MOF cross-section and the calculated
modal field profile, which yields a modal effective area Aeff ≈ 14.5 µm. This small effective
area, around 7 times smaller than that of standard single mode fibers, ensures large nonlinearity.
Specifically, given the nonlinear parameter of silica n2 = 2.6×10−20 m2/W, the expected nonlinear
parameter is γ ≈ 7 × 10−2 m−1W−1. In the context of using these fibers for the generation of
high-energy ultrashort pulses, it is worth noting that the PQS energy scales linearly with the
effective area and there is therefore a trade off between achieving large nonlinearities − and thus
PQS formation in short fiber lengths using low input powers − and yielding high output energy.
This is an inherent limitation to any soliton system, however, PQSs advantageous energy scaling
guarantees that dramatically higher energies can be achieved for the same pulse duration with
respect to NLS solitons.

Using the dispersion and nonlinear parameters discussed above, we simulated the propagation
of 40 fs pulses at 1550 nm along 10 × L4 in the MOF for different power levels by numerically
solving the NLSE [1,5]. The simulations shown in Fig. 5 include only the effects of FOD and



SPM for the sake of clarity. We have verified that FOD is clearly dominant over all the other
orders of dispersion for 40 fs pulses (L4 = 0.19L4 = 0.01L3 = 0.5L5) and, whereas the results of
the NLSE simulations may change slightly when including all the orders of dispersion up to β5,
the qualitative behavior does not change. First we focus our attention on the linear regime, at
a peak power P0 = 0.3 W. As shown in Fig. 5(a) the pulse spectrum remains unchanged after
ten propagation lengths, with L4 = 21.7 m. However, in the time domain, Fig. 5(b), the pulse
broadens significantly due to FOD. At the output the pulse duration is 61 fs, as shown by the
solid blue curve, 50% wider than the input pulse. The output phase (dashed black) exhibits a
concave profile and a quartic dependence with time, as expected from linear propagation in a
FOD dominant regime.

1 

1 

100 50 200 
Propagation distance (m) 

150 0 
Phase (π rad) 

0 -2 2 100 50 200 
Propagation distance (m) 

150 0 
Phase (π rad) 

0 -2 2 

0 
100 

-200 
-100 

200 

0 
100 

-200 
-100 

200 

1550 

1450 

1650 

W
av

el
en

gt
h 

(n
m

) 
Ti

m
e 

 (f
s )

 

1550 

1450 

1650 

W
av

el
en

gt
h 

(n
m

) 
Ti

m
e 

 (f
s )

 

(a) 

(b) 

(c) 

(d) 

Intensity (a.u.) 
0 0.5 1 

Intensity (a.u.) 
0 0.5 

P0 = 0.3 W P0 = 2 W 

0 0.5 1 0 0.5 

I (a.u.) 
0 1 

T0 ≈ 61 fs T0 ≈ 40 fs 

I (a.u.) 
0 1 

I (a.u.) 
0 1 

I (a.u.) 
0 1 

Fig. 5. Pulse propagation in microstructured optical fiber design. (a-b) Pulse propagation
in the frequency and time domains respectively for a 40 fs pulse with a P0 = 0.3 W. The
intensity (solid blue) and the phase (dashed black) at the output are shown at the right of the
propagation plot; (c-d) Similar to (a-b) for P0 = 2 W, where PQSs occur.

For increasing power levels, the nonlinear Kerr effect becomes important and starts balancing
the negative FOD effect. In particular at P0 = 2 W, as depicted in Figs. 5(c) and 5(d), the
interplay of SPM and FOD give rise to a PQS. The pulse does not broaden in the frequency or in
the time domain. Further the phase (dashed black curve in 5(d)) becomes flat across the pulse
duration, in a strong manifestation of soliton behavior.

5. Conclusions

The discovery of every new class of optical soliton in the past has inspired waves of new work in
experiments, theory, and applications that were limited before the discovery. In a similar way, in
this paper we aimed to provide the community with a rigorous understanding of the physical
origin of PQSs, as well as a set of design rules for practical optical platforms suitable to observe
this physical phenomenon.
We presented a formal analysis of the dispersion properties required to observe PQSs, which

is general and applicable to any type of optical waveguide. Unlike NLS solitons, which can be
studied in the absence of other orders of dispersion aside the GVD even in realistic platforms
for sufficiently long pulses, the study of PQSs necessarily requires to consider the effect of the
GVD and TOD. We analytically quantified the dominance of the quartic dispersion over the other
orders of dispersion, providing the boundaries for PQS propagation in terms of pulse duration and
bandwidth. This analysis furthers our understanding of this novel type of solitary wave beyond
our previous experimental observations reported in [1]. Furthermore, it establishes a design
toolkit that will enable the realization of PQS-supporting integrated and fiber-based platforms.

In this paper we applied these findings to the design of fiber-based platforms. In particular we
provided a detailed design strategy for PQS-supporting MOFs. We provided a set of realistic
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designs based on a common basic structure composed of 2 inner rings with small diameter and 3
outer rings with large diameter that provides a good compromise between fabrication feasibility,
dispersion characteristics, and loss. We demonstrated that the designs are robust to expectable
fabrication tolerances by computing the dispersion of the fibers with slightly modified parameters
and demonstrating that they are still suitable for PQS propagation.
Finally, we reported NLSE simulations on a specific MOF design and verified that the

interaction of the negative quartic dispersion and the Kerr nonlinearity gives rise to PQSs, even
in the presence of the inherent GVD and TOD.

These results highlight the advantages of fiber platforms, which are expected to produce clean
observations of PQSs and thus enable experimental evidence that leads to a formal description
of important new soliton physics, such as the PQS energy scaling and higher-order soliton
propagation.
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