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Abstract

Due to environmental concerns, greenhouse gas emissions, particularly carbon diox-

ide, need to be reduced. There are numerous methods being discussed, one of

which is carbon dioxide capture and utilization (CCU). Carbon dioxide capture and

utilization removes the carbon dioxide from the offgas streams and transforms it

into commercial products, for example the conversion to value-added chemicals.

While CCU is promising, especially as the commercial products provide an eco-

nomic incentive, the sustainability needs to be ensured. Assuring the sustainability

of carbon dioxide capture and utilization processes is a challenge as the energy

requirements of result in indirect emissions that should not exceed the utilization.

In this work, therefore, a framework for the sustainable design of carbon dioxide

capture and utilization (with a focus on conversion) processes is developed and

implemented. The developed framework adopts a 3-stage approach for sustainable

design, which is comprised of: (1) synthesis, (2) design, and (3) innovation. In

the first stage, the optimal processing route is obtained from a network via a

superstructure-based approach. This stage incorporates a structured database for

the storage and retrieval of data, reaction path synthesis for the generation of

reaction pathways and products, and a user interface, Super-O, which facilitates the

implementation of Stage 1 of the framework. Then, the output of this stage is used

as the input to the second stage, where the optimal route is rigorously designed,

simulated and analyzed. Stage 2 provides detailed equipment design and stream

information, which is used in the analysis to provide targets for improvement. In

Stage 3, the targets are addressed by finding innovative alternatives via hybrid

methods, process integration and process intensification. The end result is a more

sustainable carbon dioxide capture and utilization process.

The developed framework is then applied to the design of sustainable processes

using carbon dioxide captured from a coal-fired power plant (as these represent

almost 30% of global emissions). In the first stage, seven scenarios are considered
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to evaluate the influence of different parameters (such as prices and conversion)

in finding the optimal processing route(s). The results show a trade-off in the

reduction of carbon dioxide and the profit for the different routes. From Stage 1,

four processes are considered and are designed and simulated in detail:

1. Dimethyl ether from methanol via combined reforming

2. Dimethyl ether from methanol via direct hydrogenation

3. Dimethyl carbonate via ethylene carbonate and methanol from combined

reforming

4. Dimethyl carbonate via ethylene carbonate and methanol from direct hydro-

genation.

Through the analysis of the processes, it can be seen that the methanol dis-

tillation and the dimethyl carbonate downstream separation contribute to large

amounts of the utility consumption and therefore costs. Therefore, the reduction

of the utility consumption of the methanol distillation and dimethyl carbonate

downstream process are targeted for improvement. In Stage 3, the targets are

addressed by introducing a hybrid distillation-membrane process and an intensified,

reactive distillation dimethyl carbonate process. The result is four improved, more

sustainable processes for the production of dimethyl ether and dimethyl carbon-

ate from carbon dioxide. However, while it is possible to design carbon dioxide

reducing processes, the amount of emissions that can be offset by these processes

is small. Therefore, these carbon dioxide capture and utilization or conversion

processes should be considered in conjunction with methods to improve efficiency

and other alternative, sustainable processes.



Resumé på dansk

Af miljømæssige årsager er der et behov for at reducere emissioner af drivhus-

gasser – dette gælder især kuldioxid. Der er adskillige metoder til dette formål,

der diskuteres i denne afhandling, hvoraf en er kuldioxidopsamling og -udnyttelse

(eng. Carbon capture and utilization, CCU). Kuldioxidopsamling og -udnyttelse

fjerner kuldioxid fra affaldsstrømme/røg og omdanner det til kommercielle pro-

dukter, f.eks. via værdiskabende kemikalier. Selvom CCO er lovende, især pga. de

kommercielle produkters økonomiske incitament, skal bæredygtigheden sikres. Det

er en udfordring at sikre bæredygtigheden af CCU, idet processernes energibehov

resulterer i indirekte udledninger, som ikke må underminere gevinsten ved CCU. I

dette arbejde udvikles og implementeres derfor en ramme for bæredygtig udformn-

ing af CO2-opsamling og -udnyttelse (med fokus på omdannelse). Den udviklede

ramme anvender en 3-trins tilgang til bæredygtigt design, der består af: (1) syntese,

(2) design og (3) innovation. I det første trin opnås den optimale omdanneslesrute

fra et netværk via en superstruktur-tilgang. Dette trin inkorporerer en struktur-

eret database til lagring og hentning af data, reaktionsvejssyntese til generering

af reaktionsveje og produkter samt en brugergrænseflade, Super-O, som faciliterer

gennemførelsen af trin 1 af rammen. Derefter anvendes resultatet af dette trin

som input til trin 2, hvor den optimale rute på detaljeret vis designes, simuleres

og analyseres. Trin 2 resulterer således i detaljeret udstyrsdesign og strøminfor-

mation, som bruges til at analysere mål for forbedringer. I trin 3 adresseres må-

lene ved at finde innovative alternativer via hybrid-metoder, procesintegration og

procesintensivering. Slutresultatet er en mere bæredygtig kuldioxidopsamling- og

udnyttelsesproces.

Den udviklede ramme anvendes på udformningen af bæredygtige processer til

kuldioxid opsamlet fra et kulfyret kraftværk (fordi de repreæsenterer næsten 30%

af de globale emissioner). I første trin betragtes syv scenarier for at vurdere indfly-
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delsen af forskellige parametre (såsom priser og stofomsætning) for at finde de(n)

optimale behandlingsrute(r). Resultaterne viser en afvejning mellem reduktionen

af kuldioxid og profitten for de forskellige ruter. I trin 1 betragtes følgende fire

processer med henblik på design og simulering:

1. dimethylether fra methanol via kombineret reformering

2. dimethylether fra methanol via direkte hydrogenering

3. dimethylcarbonat via ethylencarbonat og methanol fra kombineret reformer-

ing

4. dimethylcarbonat via ethylencarbonat og methanol fra direkte hydrogenering.

Ud fra analyse af processerne kan det konkluderes, at methanoldestillationen

og dimethylcarbonat-nedstrømsadskillelsen bidrager til store mængder af utilityfor-

brug og dermed omkostninger. Derfor er reduktionen af utilityforbrug i methanol-

destillationen og dimethylcarbonat-nedstrømadskillelse udvalgt til undersøgelser

for mulige forbedringer. I trin 3 behandles de udvalgte forbedringsforslag ved

at indføre en hybrid destillationsmembranproces og en intensiveret, reaktiv des-

tillationsdimethylcarbonatproces. Resultatet er fire forbedrede, mere bæredygtige

processer til produktion af dimethylether og dimethylcarbonat fra kuldioxid. Imi-

dlertid er det muligt at konstruere kuldioxidreducerende processer, men mængden

af emissioner, som kan kompenseres af disse processer, er lille. Derfor bør kul-

dioxidopsamling og -udnyttelse betragtes sammen med metoder til forbedring af

effektiviteten og andre alternative, bæredygtige processer.
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Chapter1

Introduction

Summary and significance:

Due to population growth and continued development, there is an increasing

amount of waste and emissions being produced. These emissions result

in environmental concerns, including global warming, that need to be

addressed and sustainable development needs to be ensured. Greenhouse

gases are the cause for global warming and need to be mitigated; these gases

consist primarily of carbon dioxide, at over 75%. Carbon dioxide capture

and utilization, particularly conversion, is one method of addressing these

emissions. This chapter provides an overview of the current environmental

situation, the emissions that need to be reduced, and what methods can be

used to achieve this, primarily carbon dioxide capture and utilization. In

addition, the objective of the work and structure of the thesis are detailed.

Outline:

1.1 Emission sources . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Emission location, amount and purity . . . . . . . . . 3

1.2 Reduction methods . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Carbon dioxide capture . . . . . . . . . . . . . . . . . 5

1.2.2 Carbon dioxide utilization . . . . . . . . . . . . . . . . 8

1.2.3 Combined carbon capture and utilization (CCU) . . . . 10

1.3 Objective of the PhD project . . . . . . . . . . . . . . . . . . . 10

1.4 Structure of the PhD thesis . . . . . . . . . . . . . . . . . . . . 11



2 Chapter 1. Introduction

As a result of rapid population growth over the past years, reaching almost 8

billion, there are increasing concerns about the state of the planet (UNFPA, 2016b).

Climate change issues are associated with this increasing population (UNFPA, 2016a);

there is an increasing demand on natural resources (food, water, minerals, etc.)

and more manufacturing and energy consumption, resulting in increased waste

and emissions. As part of these emissions, greenhouse gases are linked to global

warming. Global warming is the increase in the global temperature due to the

increasing concentration of greenhouse gases in the atmosphere (Dincer, 2009).

These greenhouse gases include carbon dioxide, methane, water vapor, nitrous

oxide and various hydrofluorocarbons (HFCs, etc.). In the year 2010, greenhouse

gas emissions reached 49 Gigatonnes of carbon dioxide equivalents per year and

trends show this increasing by 1 Gigatonne per year (IPCC, 2014). The threshold

concentration of carbon dioxide equivalents of 400 parts per million (ppm) was

already passed in 2016 (Keeling et al., 2005); this corresponds to a 1.5 degrees Cel-

cius global temperature rise (IPCC, 2014). The new threshold has been set to 450

ppm, representing a global temperature rise of 2 degrees Celcius (IPCC, 2014). If

this cannot be met, the temperature rise will continue to cause irreparable damage

to the earth and its ecosystem. While greenhouse gases are naturally emitted to the

atmosphere, these are also counterbalanced by other natural processes. However,

due to human activities, there is an imbalance resulting in the environmental cli-

mate concerns. While all greenhouse gases needed to be addressed (methane, NOx

and HFCs are also harmful greenhouse gases), carbon dioxide represents the largest

constituent at almost 80 percent of greenhouse gases and the need to reduce the

amount of carbon dioxide in the atmosphere has become an urgent matter.

1.1 Emission sources

The source, quantity and purity of the emissions is important to effectively target

and reduce the amount of carbon dioxide in the atmosphere. Carbon dioxide

containing emissions come from different economic sectors IPCC (2007). These

economic sectors produce emissions in varying processes, including processes to

produce energy, products, or serve other needs. In addition to the economic sector

of the sources, the carbon source used in the process alters the emission compo-

sition. When the process uses coal versus natural gas, for example, the emissions

contain a higher content of carbon dioxide because coal contains a larger quantity

of impurities. Therefore, emissions can be categorized as follows:

1. Process type (i.e. power generation, steel industry, cement production)
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2. Specific process (i.e. power plant)

3. Carbon source (i.e. coal)

1.1.1 Emission location, amount and purity

While the category of the emissions is important for organizing the information, the

amounts and purity of the emissions in different locations need to be considered for

proper design of capture and utilization processes. While there are emissions from

transportation and other transient processes that need to be reduced, in this work,

stationary emissions coming from a fixed location are considered. The categories

listed in Section 1.1 span across locations. However, at the different locations, the

specific amount and purity vary. The purity is the most important as it defines

whether purification is necessary to make the carbon dioxide applicable for utiliza-

tion. The purity of the emissions can be split into three qualities:

1. High quality emissions (greater than 85% carbon dioxide)

2. Medium quality emissions (between 20 and 85% carbon dioxide)

3. Low quality emissions (less than 20% carbon dioxide)

1.1.1.1 High purity sources

Only 430 million tons per year of emissions come from high purity industrial sources

(IPCC, 2014). The amounts of these emissions at various sources are (Zakkour and

Cook, 2010):

• between 0.5 and 1 million tons of carbon dioxide per year at sites for natural

gas production.

• around 0.2 million tons of carbon dioxide per year from ethylene oxide pro-

duction sites.

• between 1.6 and 3.8 tons of carbon dioxide per ton of ammonia produced,

where the hydrogen production contributes a significant amount, between

1.15 and 2.6 tons of carbon dioxide per ton of hydrogen.

1.1.1.2 Medium purity sources

A much higher amount of emissions, around 30%, comes from medium purity

sources. These sources include some metal and cement manufacturing industries.

Annually, 930 million tons of carbon dioxide come from the cement industry alone.
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These emissions have concentrations of around 20% carbon dioxide in amounts of

0.8 million tons per year per site (IPCC, 2005). The other emissions are NOx, SOx,

dust, metals and others. The exact composition depends on the location and the

fuel source used.

1.1.1.3 Low purity sources

The largest contributors to emissions of carbon dioxide are low purity. Over 50% of

these come from power plants alone (IPCC, 2005). The rest come from steel mills

and other production processes. Similar to medium purity sources, the other com-

pounds include NOx, SOx, other hydrocarbons, water and nitrogen. The amount

of low purity emissions per site depend greatly on the exact process. For power

plants, the largest amount comes from coal-fired sources, averaging at 3.94 million

tons per year (IPCC, 2005). The smallest comes from fuel oil sources.

1.1.1.4 Availability and locality of emissions

Carbon dioxide containing emissions are a global issue. The location and amount

of the given source, however, need to be considered. While globally there are

approximately 50 Gigatonnes of carbon dioxide equivalents per year being emitted,

only about 60% of these can be addressed by carbon capture and storage (IPCC,

2014) with the remainder being from non-stationary sources that cannot be eas-

ily captured. The availability and locality of the emissions from these stationary

sources varies. Emissions are available in every country. However, generally the

sources are concentrated in industrial and manufacturing areas and power genera-

tion facilities. As mentioned previously, depending on the exact source, the amount

and purity varies. The high purity sources are the least available and also in the

lowest amount per year. However, as these are generally located at chemical plants,

the capture and utilization of these emissions can be more easily realized. Medium

and low purity emissions are prevalent and present in large quantities. For these

emissions, the challenge is utilizing all the emissions from a given source, as the

utilization capacity may not match. Despite the global availability of the emissions,

the exact location and amount needs to be considered for the design of carbon

dioxide reduction technology.

1.2 Reduction methods

There are numerous ways of addressing emissions from the different sources. There

are three primary methods considered:
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1. Improve process efficiency

2. Carbon dioxide capture and storage/sequestration

3. Carbon dioxide capture and utilization (including conversion)

All of these methods will play an important role in reducing the atmospheric car-

bon dioxide concentration. Carbon dioxide capture involves the removal of carbon

dioxide from process streams, especially flue gas streams (Wilcox, 2012). Storage or

sequestration involves the transportation and storage of the compressed, captured

carbon dioxide gas in tanks, in geological formations or under sea beds (Wilcox,

2012). Carbon dioxide utilization is the reuse of the separated carbon dioxide to

produce commercial products (Song, 2002). Carbon dioxide capture is necessary

in order to address all types of emissions with higher concentrations and lower

concentrations. Then, the separated carbon dioxide is either stored or utilized.

While there are advantages and disadvantages to both, carbon dioxide utilization is

able to provide an economic incentive to offset the cost of carbon dioxide capture.

Therefore, the opportunities of carbon dioxide capture and utilization are focused

on in this work.

1.2.1 Carbon dioxide capture

In carbon capture, separation processes are used to remove the carbon dioxide

from the rest of the gas stream, whether these are flue gas streams or natural

gas streams for the pipeline. There are three types of carbon capture: (i) pre-

combustion capture, (ii) oxy-fuel combustion, and (iii) post-combustion capture

(Wilcox, 2012). These three and the types of separation processes that can be

implemented for each are shown in Figure 1.1 (Wilcox, 2012).

Figure 1.1. Different types of capture processes according to the types of capture.

Oxy-fuel and pre-combustion capture alter the process to reduce emissions formed.

However, post-combustion capture removes the emissions after they have been
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formed and is therefore applicable to the largest range of stationary emission sources.

In addition, post-combustion capture results in a purified carbon dioxide stream

that can be utilized or stored. As a result, post-combustion capture is considered in

this work. Post-combustion capture processes are defined according to the separa-

tion mechanism involved (IPCC, 2005):

1. Adsorption: use of a solid compound to form a complex with the compound

to be removed, thereby transferring it to the solid phase.

2. Membrane Separation: use of a driving force (the difference in the con-

centration or partial pressure between the two ends of the membrane) to

filter the mixture selectively using particle size or other interactions with the

membrane.

3. Absorption: use of a solvent to cause transfer of a compound from one phase

into another; more specifically, uses mass transfer to transfer a compound

between gas and liquid phases.

4. Other: there are other methods which are also investigated but not with

as much interest as the other methods. This includes cryogenic separation

methods and pressure swing separation.

1.2.1.1 State-of-the-art

Carbon capture is necessary in order to remove carbon dioxide from emissions

into the atmosphere to reduce the concentration and thereby reduce the threat

of global warming. Research has been devoted to the development of all types of

post-combustion capture technologies. Research is focused on developing carbon

dioxide capture processes that are economically and environmentally sustainable

by all mechanisms described.

Absorption/Desorption processes are the predominantely considered methods of

removing carbon dioxide from flue gas/off-gas streams (Wilcox, 2012). Absorption

processes use solvents to remove the carbon dioxide from a gas. Physical absorption

relies on the solubility of the carbon dioxide in the solvent. Meanwhile, reactive

absorption also relies of the reactivity of the carbon dioxide and the binding com-

ponent. Reactive absorption is often required to overcome the low solubility of

carbon dioxide and the slow absorption (Wilcox, 2012). Research is focused on the

development of suitable solvents which provide a high solubility, rapid diffusion

and a good binding agent. Amines are the dominant class of solvents in reactive

absorption, of which monoethyl amine (MEA) has been studied in the most detail

(Wilcox, 2012). This is a result of its properties as a strong absorbant of carbon



1.2. Reduction methods 7

dioxide, which means that the carbon dioxide can be absorbed in large amounts

using less solvent. However, the downside to this strong absorption is the difficult

desorption. Recovery of the absorbed carbon dioxide requires large amounts of

energy, which is costly and not sustainable. Therefore, the primary research is

focused on finding more sustainable alternatives with similar performance. For

example, Gaspar et al. (2016) discuss the use of enzymes to enhance the capture

using other solvent bases. They find that the capture is possible and requires less

energy. However, the development of process technology that can enable the use of

such enzymes effectively is needed. Ionic liquids are able to achieve high physical

absorption rates due to the unique nature of the cation-anion interactions. Hasib-

ur-Rahman et al. (2010) discuss the “tunable” properties that ionic liquids have

making them promising for carbon capture processes. Ionic liquids for carbon

capture can be designed to capture the desired compounds and facilitate an energy

efficient desorption process. Therefore, research covers the development of optimal

ionic liquids and industrial scale implementation of such processes.

Membrane processes are also studied to find capture membranes that are se-

lective enough for implementation in carbon capture processes. However, the issue

with membrane processes is the large volumes that need to be processed. Flue gases

have low concentrations, but are in the largest amounts (IPCC, 2014). Therefore,

these large flows need to be captured. However, for membrane processes, this then

requires large pressure drops and large material costs. Khalilpour et al. (2015)

study different materials and membranes for implementation, which is important

to develop materials that are economic and effective.

There is also limited research in adsorption, amongst other capture technolo-

gies, and the selection of the proper adsorption agent (Hasan et al., 2012a). These

technologies are not as promising as they often require large amounts of energy for

the pressure changes or cooling to low temperature.

Depending on the emission source, the capture technology that is optimal may

vary. Hasan et al. (2015) use superstructure optimization to evaluate the capture

technology for different emission sources. They determine that depending on the

source of the emissions, there is a more or less optimal capture technology. Of the

four types of capture considered, the ideal, especially for the large quantity of low

purity emissions from power plants, is absorption with monoethyl amine (MEA)

(Hasan et al., 2015). However, for all the cases considered in this work, the carbon

dioxide is purified (aka captured) to high purity (99.9% CO2). Depending on the

subsequent use, this high purity is not necessary. The different purity of captured

carbon dioxide is considered in the work of Fjellerup (2015). The capture processes

is optimized for a reduced carbon dioxide concentration at the outlet. In this way,
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the reboiler duty, and consequently energy and cost, is greatly reduced to make

the capture process sustainable. Additionally, the integration of the capture and

conversion processes is performed. The concentration of the carbon dioxide that is

captured needs to be evaluated. As carbon capture is a way of concentrating the

carbon dioxide so that it can be used or stored, the concentration depends on the

subsequent implementation. Therefore, more work needs to be done optimizing

the concentration of the product concentration for the integrated CCU or CCS

processes.

According to Styring et al. (2011), in their assessment of the status of the

technology, there are differences in the maturity. Capture has been implemented

in select industries for a while, especially in the gas processing industry. The most

mature, and that which is industrially implemented to date, is absorption with

monoethyl amine (MEA) (Styring et al., 2011). The high energy requirement and

resulting cost negatively impacts the process. The cost is currently too high for such

processes to make it promising, generally increasing power generation costs by at

least 10% (von der Assen et al., 2013). The current carbon capture and storage

(CCS) projects are listed in a database by the Global CCS Institute. There are a

handful of test facilities for carbon capture globally implementing MEA capture

processes. These are primarily in Norway and North America. With improvements

in technology, these could spread to more industrial implementations. There is only

one industrial implementation at commercial scale and that is the Boundary Dam

Project by Sask Power in Canada (Armstrong and Styring, 2015).

1.2.2 Carbon dioxide utilization

Carbon dioxide utilization encompasses various reuses which are shown in Figure

1.2 (Aresta and Dibenedetto, 2007; North and Styring, 2015; Styring et al., 2011;

Song, 2002).

Figure 1.2. Different types of utilization processes

Some of these methods, use the carbon dioxide in the molecular form as the

product. In these cases, the carbon dioxide is only relocated from the atmosphere
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to other purposes, such as in fire extinguishers or the use in enhanced oil recov-

ery. In mineralization, biological fixation and conversion, the carbon dioxide is

transformed to another product. Conversion is the use of a reaction, chemical or

biochemical, which uses the carbon dioxide as a reactant to produce value-added

products. While all these utilization alternatives can play a valuable role, this work

will focus on conversion. Chemical and biochemical conversion present potential

as they have the possibility of finding alternative processes to produce products

currently used industrially in a large scale, including fuel replacements, and are

therefore a dominant research focus. In addition, conversion can result in net

negative carbon dioxide emissions, where more carbon dioxide is consumed than is

emitted. Due to the chemical stability of carbon dioxide (Aresta et al., 2013), the

feasible and sustainable processes and products are limited. The products that can

be produced often require an energy carrying co-reactant, such as hydrogen.

1.2.2.1 State-of-the-art

The research is focused on developing new and better catalysts to increase the

selectivity and conversion of processes to value-added products. The difficulty in

chemical conversion is the amount of energy that is required to react carbon dioxide

due to its chemical state (Aresta et al., 2013). Currently, promising research is being

performed on improving catalysts to the reaction to alcohols, such as methanol,

and acids, such as formic acid, amongst others. There is also the technological

aspect that is investigated. This includes intensified reactor technology to overcome

certain equilibrium limitations, such as membrane reactors in dimethyl carbonate

production (Kuenen et al., 2016b). This is especially relevant for thermochemical

conversion processes. Alternatively, there is another branch of research focused on

electrochemical utilization reaction. This research is working on innovative ways of

supplying the required energy.

Biological conversion processes are primarily focused on the development of

algal processes to produce biofuels using carbon dioxide. These are promising and

have been piloted by companies such as Shell (Styring et al., 2011). However,

the technology is limited by the space required to grow the algae to produce the

products efficiently. Therefore, research is focused on the development of algae

that can grow in unique environments and the processes to contain it.

Carbonylation is a promising option as a long-term storage option that can

utilize the carbon dioxide in rocks and other construction materials (IPCC, 2005).

Carbonylation research is focused on accelerating the process sustainably (Styring

et al., 2011). This uses pressure and pretreatment of materials. However, with

exothermic reactions and the energy required to accelerate the process, this is
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difficult. Therefore, research is dedicated to resolving these issues.

Carbon dioxide conversion is mature in certain areas, such as urea production

(Styring et al., 2011). In addition, there is a methanol production process in

Iceland from Carbon Recycling International (Carbon Recycling International (CRI),

2017). However, other than the previously implemented conversion processes

(primarily urea), only methanol has been considered industrially. Pilot processes

to other products have been developed, such as the production of a polymer in the

DREAM project (Styring et al., 2011). Hopefully, with new catalysts and process

innovations, this number will increase.

1.2.3 Combined carbon capture and utilization (CCU)

It is also important to consider the integrated capture and utilization processes.

Little research focuses on this. By looking at the combined system, it is possible to

consider not only the individual processes, but also the interactions between them.

Frauzem (2014) considers a CO2 hydrogenation-based methanol plant integrated

with a carbon dioxide capture plant employing the monoethanolamine (MEA) sol-

vent with a reduced purity carbon dioxide stream. By considering the concentration

of the captured stream, it is possible to optimize the combined process to reduce

the overall energy. Additionally, the optimization of the supply chain, in terms of

location of capture and utilization or storage facilities and the types of utilization

or storage needs to be considered. Hasan et al. (2014) developed a large-scale

(nationwide, regional, and statewide) CCUS network model and determined an

optimal solution that minimizes the cost to reduce stationary carbon dioxide emis-

sions in the United States. More than 3,000 emission points and various alternatives

of carbon dioxide capture technologies (absorption, adsorption, and membrane-

based), utilization (enhanced oil recovery) and sequestration (in saline formations

and un-mineable coal bed areas) are considered in this study. There are some pilot

scale facilities involved in capture and utilization. However, none of them have

considered the integrated effects of the processes on each other. Rather, they have

been developed and optimized individually.

1.3 Objective of the PhD project

As the environmental concerns grow regarding the amount of carbon dioxide emis-

sions, methods of reducing emissions to the atmosphere need to be developed. In

order to do this, a combination of improved energy efficiency of processes and

carbon dioxide capture, storage and/or utilization is needed. Of these, carbon

dioxide capture and utilization, especially conversion, is promising as it provides
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economic incentive, easy implementation in current infrastructure, and the poten-

tial to be a net reduction of carbon dioxide emissions. However, in order to address

the environmental concerns, the sustainable design of carbon dioxide capture and

utilization processes needs to be ensured. To realize this, the objective of this work

is the development of a framework for the sustainable design of carbon dioxide

capture and conversion processes. This framework incorporates computer-aided

methods and tools for the synthesis, design and intensification of sustainable pro-

cesses. This framework is then applied to the development of sustainable carbon

dioxide capture and conversion processes considering different scenarios. In ad-

dition to the sustainable design of these processes, these scenarios provide insight

into the areas that these processes have the most potential. Through the use of the

framework, sustainable capture and conversion processes can be achieved, which

produce value-added chemicals and are net carbon dioxide reducing.

1.4 Structure of the PhD thesis

This thesis contains the following chapters:

1. Introduction: The first chapter of this thesis is dedicated to introducing the

motivation for the PhD, the objective of the project, and structure of the thesis.

2. Literature review: In this second chapter, the necessary literature is reviewed

to understand the existing methods and tools and determine the gaps that

need to be filled by this work and future work. In addition, this review

provides the foundation for the development of the framework.

3. Framework: Thirdly, the developed framework is presented in it’s entirety.

This includes the workflow and data flow, developed methods and tools and

additional methods and tools incorporated into the framework.

4. Application: The application of the framework to various case studies is de-

tailed in the fourth chapter. These case studies consider various scenarios for

a complete understanding of the application. The results are then discussed

for each of the case studies in this chapter.

5. Perspectives: Some perspectives on the role and potential of carbon dioxide

capture and utilization processes are presented in the fifth chapter.

6. Conclusion: Finally, the sixth chapter offers some conclusions on the PhD

work, including the objectives and gaps addressed as well as future work that

still needs to be performed.





Chapter2

Literature Review

Summary and significance:

In this chapter, the relevant literature is reviewed. This literature provides

the necessary information to develop an understanding of the elements

needed for the development of a framework for the sustainable design of

carbon dioxide capture and conversion processes. In order to sustainably

design these processes, the concepts of process synthesis, process design,

process intensification, and sustainability are reviewed. In addition, the

application of these concepts to carbon dioxide capture and conversion is

stated. A framework also requires a data storage system and therefore

concepts related to ontologies are also presented. Finally, the gaps in the

existing literature are discussed and the areas that this work attempts to fill

are pointed out.
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The sustainable design of carbon dioxide capture and utilization processes en-

compasses the reaction, the synthesis of the processing route, the design of the pro-

cess, innovation (inclusive of process intensification), ontologies to organize all the

information and data, and sustainability analysis. A framework is an architecture

which provides the steps along with the necessary inputs and the resulting outputs,

to achieve the desired goal. Each of these elements needs to be well understood in

order to develop a framework for the sustainable design of carbon dioxide capture

and utilization processes. In this chapter, all the relevant areas for developing and

implementing a framework for the sustainable design of carbon dioxide capture

and utilization processes are covered. First, the design problem and the methods

for the different elements of this overall design problem are described thoroughly,

from synthesis to design to intensification. Then, how to generate the reactions

will also be described as this is especially important for carbon dioxide conversion

processes. In addition, how to assess the sustainability of the processes at all levels

of design needs to be understood. These elements are reviewed in general and

then the specifics are applied to carbon dioxide capture and utilization processes.

All the elements of setting up a framework to address the design of such processes

require data. Therefore, how to systematically organize such data in ontologies is

discussed. This review of available literature serves to provide a background and

understanding of all the elements needed in the development of a framework for the

sustainable design of carbon dioxide capture and utilization, especially conversion,

processes. Subsequently the gaps and the role of this work in addressing these are

stated.

2.1 The overall design problem

The overall process design problem involves determining how to produce a product

from a given raw material or materials. This design problem can be described

as a mathematical programming problem. The objective of the design problem is

to find the optimal, according to the objective function, sequence of operations

to convert (transform via chemical reaction or other operation) raw material to

product, including the design of the equipment. The generic form of this problem

is described by Equations 2.1 - 2.5 (Duran and Grossmann, 1986).

Fob j = min/max
x,y

Z =CT y+ f (x) (2.1)

s.t.

r(x) = 0 (2.2)

s(x)+B(y)≤ 0 (2.3)
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x ∈ Rn (2.4)

y(0,1)l (2.5)

In this definition, the objective function, Fob j is a function of the continuous

variables, x, and discrete variables, y. The continuous variables are related to

processing information, including flow rates, design parameters and so on, while

discrete variables are related to decisions, including those related to topology (the

arrangement, including sequence, of the intervals, aka units or tasks). CT is a

matrix of cost coefficients related to the discrete variables. f (x) is the cost related

to the continuous variables. The objective function is subject to linear, r(x) = 0, and

non-linear, s(x)+B(y)≤ 0, constraints. These equations yield a mixed-integer (non)-

linear programming problem (MI(N)LP). Whether or not it contains non-linearities

determines whether it is an MINLP or MILP.

There are different types and levels of problems that can be described by this

formulation. This general formulation can, more specifically, be applied to process

synthesis and process intensification, which are discussed in more detail in Section

2.1.1 and 2.1.2. Within these sections, important methods and tools will be sum-

marized. The application of process synthesis and process intensification in the area

of carbon dioxide capture and utilization are presented in Sections 2.4.1 and 2.4.2,

respectively.

2.1.1 Process synthesis

The process synthesis problem is defined as: given a raw material, or set of raw

materials, and a product, or set of products, determine the optimal configuration,

including sequence and equipment, to achieve the objective. This encompasses

the synthesis of different elements of processes, from heat exchanger networks to

reactor networks to separation sequences, all the way to entire processes. For this

work, focus is placed on the synthesis methods for entire processes, as these are

applied to the synthesis of carbon dioxide capture and utilization processes in their

entirety. Methods for addressing problems for all these areas can be split into: (i)

heuristic, (ii) mathematical programming, and (iii) hybrid methods.

2.1.1.1 Heuristic

Heuristic (rule-based) and knowledge-based methods are defined as methods which

implement a set of rules, often based on collected know-how and expert knowledge,

in a systematic manner to solve the synthesis problem. Heuristic methods are

advantageous because of their ease of use and ability to quickly provide solu-

tions. However, these methods do not always provide the optimal solution (not
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all the alternatives are necessarily considered and the global optimization cannot

be guarenteed) and the rules can be contradictory (i.e. first separate the most

prevalent compound and perform the easiest separation first are two heuristics

that can be difficult to implement if they conflict when the easiest separation is

the least prevalent compound and so on). The methods for heuristics of entire

chemical processes are limited. Douglas (1985) developed an extremely important

method for the synthesis-design of chemical processes. It follows the initial work

by Siirola et al. (1971), Nath and Motard (1981) and Lu and Motard (1985) in the

synthesis of entire chemical processes. Siirola et al. (1971) first introduced the use

of computers to automate heuristic methods, first for separation sequences and later

for entire chemical processes (Siirola, 1996). Additionally, Nath and Motard (1981)

expanded this method to incorporate two phases: a heuristic method for an initial

structure and then an evolutionary method to change the structure successively.

This work was expanded to cover entire flowsheets (Lu and Motard, 1985).

Douglas (1985) provides the first introduction into the hierarchical approach to

process synthesis. This method decomposes the design problem into various levels,

a hierarchy of decisions. In order to utilize the method, the user must follow these

levels in order, implementing the heuristics for each level. There are five levels

in the method: (i) batch vs continuous, (ii) input-output structure, (iii) recycle

structure and reactor considerations, (iv) separation system specification (split into

vapor recovery and liquid recovery), and (v) heat exchanger network. This hier-

archical method introduces hierarchical decision making in process synthesis and

provides an easy method for the design of entire chemical processes with heuristics.

This method provides the foundation for all further heuristic methods for the design

of entire chemical processes.

Methods that employ chemical engineering, by the way of thermodynamics, try

to include a justifiable reason for the steps that are followed for the synthesis meth-

ods utilizing thermodynamic laws and properties to calculate aspects of the synthe-

sis; pure component and mixture properties are determined and these values are

implemented through a series of equations or graphs. Jaksland et al. (1995) exploit

the physical aspect of the different properties associated with different separation

processes to synthesize separation sequences. Jaksland and Gani (1996) elaborate

this work to consider entire processes. This hierarchical method incorporates two

levels that are founded on thermodynamic-based algorithms. Following the steps

involved, this method calls for the implementation of data and tools to understand

the behavior of the system. Each step targets different elements of the separation

task by applying various thermodynamic laws. Using a method similar to the CAMD

(computer aided molecular design) problem, the sequences are formulated based
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on properties indicative of certain behavior and then combined using combinatorial

laws. The implementation of this method has been applied to two cases, which

illustrate how this method can be used to design separation sequence alternatives

containing the optimal solution.

As part of heuristic methods, there are graphical techniques relying on ther-

modynamic knowledge to get a basic understanding of the system and thereby

design the process. Sempuga et al. (2010) and Fox et al. (2013) developed a

graphical method for the synthesis of entire chemical processes. This method

allows for the incorporation of heat and work into the design. This utilizes en-

thalpy and Gibb’s free energy and represents them in the GH-space. With the

visualization of the material, energy and work, it is possible to find the process

that is as thermodynamically efficient as possible. The explanation of the graphical

method is highlighted through the application to a simple and generalized chemical

process as well as to Carnot cycles and reforming processes. With a thorough

description of the elements of the graph, it is possible to use it for the design of

entire process with thermodynamic considerations. The final flow sheet represents

the thermodynamically ideal solution. This reveals that the GH-space is a way of

allowing the user to interpret the thermodynamics and apply this in the design.

2.1.1.2 Mathematical programming

With the advances in computational power, it has also become possible to formulate

and solve the mathematical optimization problems. However, it is still not always

possible to solve the problems to global optimality due to their size (computation-

ally intensive) and complexity. The synthesis of the entire process flowsheet can

be performed through a superstructure optimization approach (Grossmann, 1990).

A superstructure contains the alternative processing units and their connectivity,

which is modeled by discrete or binary variables representing the choices of the

unit that has potential to be selected in the final flowsheet. With the superstruc-

ture formulation, optimization techniques and solution strategies are needed and

proposed to obtain optimal configurations in the process system.

Duran and Grossmann (1986) first developed an Outer-Approximation (OA)

algorithm for solving Mixed Integer Non-linear Programming (MINLP), which was

further improved by other researchers (Kocis and Grossmann, 1987, 1989; Turkay

and Grossmann, 1998). This algorithm consists of two parts: (i) the optimiza-

tion of the Non-linear Programming (NLP) sub-problem with the initial continuous

variables for a specific flowsheet structure and (ii) optimization of the Mixed In-

teger Linear programming (MILP) master problem for generating new candidate

flowsheet configurations in order to determine an optimal configuration. But,
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this approach runs into limitations when addressing non-convex problems. Subse-

quently, Raman and Grossmann (1994) introduced the Generalized Disjunctive Pro-

gramming (GDP) as an alternative representation of mixed integer programming.

Kocis and Grossmann (1987, 1989) introduce the Modeling/Decomposition (M/D)

strategy in order to solve the Outer Approximation with the Equality Relaxation

(OA/ER) algorithm. This method separates the superstructure into nodes (process

units) and their interconnections.

Frameworks have been developed relying on these solution methods; Papalexan-

dri and Pistikopoulos (1996) present a general modeling framework for process

flowsheet synthesis based on mass/heat principles; in retrofitting cases, Jackson

and Grossmann (2002) offered an optimization strategy using a multiperiod gen-

eralized disjunctive programming (GDP) model for evaluating a complete process

network at a high level and analyzing a detail process flowsheet at a low level. In

order to allow simultaneous approach, Papoulias and Grossmann (1983a,b,c) pro-

posed MILP programming for simultaneous synthesis of a total processing system

by considering the interactions among three different subsystems: chemical plant,

heat recovery network and utility plant. Duran and Grossmann (1986) developed

a solution procedure for simultaneously handling heat exchanger networks and

process networks. This method is based on a pinch method for the utility. A

simultaneous optimization of water, heat and flowsheet was proposed by Yang and

Grossmann (2013), where the upper bounds are determined using an LP targeting

model.

Recently, Quaglia et al. (2012) proposed a systematic framework for the syn-

thesis of processing networks by integrating business and engineering aspects. This

framework proposes a generic processing interval model to represent the processing

units requiring the definition of the parameters in the model. Thereby, the different

alternatives are all described by the same model. The proposed framework is

comprised of different methods and tools needed to define and formulate problem

as a MINLP. This generic process interval model was adapted and modified from

a previous study dealing with a bio-refinery processing network Zondervan et al.

(2011) by adding a waste separation task in the process interval.

The described methods for entire flowsheet synthesis have been applied to vari-

ous case studies. These include the synthesis of chemical processes (Lee and Gross-

mann, 2003) bio-refinery processes (Martín and Grossmann, 2013), wastewater

treatment networks (Quaglia et al., 2014). An extensive review on MILP and MINLP

techniques can be found in Grossmann (2002).
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2.1.1.3 Hybrid

While both the aforementioned approaches have their advantages and disadvan-

tages, it is possible to take advantages of both and avoid some of the disadvantages.

This is achieved via hybrid methods. These methods concentrate on narrowing the

search space in order to reduce the size of the synthesis problem and to obtain

near-optimal solutions which deserve to be analyzed in more detail.

Lu and Motard (1985) propose a hybrid method to synthesize complete flow-

sheets, where first the preliminary process flowsheet is generated by using suc-

cessive linear programming and then the separation techniques are synthesized

using heuristics. Afterwards, further improvements are found using evolutionary

principles. Similarly, Mészáros and Fonyó (1986) and Mizsey and Fonyo (1990)

introduce a framework using hierarchical decomposition and mathematical opti-

mization methods to generate and screen processes. These are then verified and

solved using algorithmic methods. Hostrup et al. (2001) present a method based

on thermodynamic insights and mathematical programming. This method consists

of three main steps: (i) pre-analsyis, (ii) flowsheet and superstructure generation,

and (iii) simulation and optimization. First, alternatives are generated with thermo-

dynamic insights. Then, MINLP models are used to solve the optimization problem.

Later, Li et al. (2003) use conflict-based analysis and mathematical programming to

perform process synthesis with waste minimization. A three-step hierarchy is used

to generate alternatives: (i) waste sources identified, (ii) improve characteristics

with heuristics, and (iii) solve the MINLP optimization.

d’Anterroches and Gani (2005a,b) introduce a method for flowsheet synthesis

based on the principles of the group-contribution. A framework for computer aided

flowsheet design (CAFD) is presented, in which process flowsheets are synthesized

in the same way as atoms or groups of atoms are synthesized to form molecules in

computer aided molecular design (CAMD) techniques. In this framework, process-

groups are used as building blocks, connectivity rules connect the process-groups,

and different property models are used to compare the alternatives generated.

These building blocks represent various process operations, the connectivity rules

are heuristics and the alternatives are evaluated mathematically with the different

property models. This framework is expanded to include different flowsheet prop-

erty models by Tula et al. (2015) and was successfully applied to industrial impor-

tant case studies involving chemical (Tula et al., 2015) and biochemical processes

(Alvarado-Morales et al., 2010).
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2.1.2 Process intensification

Process intensification involves the enhancement of the function of the process

by performing one or more tasks simultaneously in a unit or in the design of

a new unit operation. The overall design problem formulation described previ-

ously (Equations 2.1 - 2.5 in Section 2.1) also describes the process intensification

problem. More specifically, the process intensification problem is: given raw ma-

terials and products, find a process route considering innovative techniques and

equipment to improve the process by considering integration of unit operations,

integration of functions, integration of phenomena and/or targeted enhancement

of a phenomenon within an operation (Lutze et al., 2010). However, an extension

of the unit operations search space is needed in order to include other types of unit

operations not frequently considered during process synthesis, that is, hybrid (used

interchangeably with intensified) unit operations. Therefore, the general definition

of the process synthesis problem must be expanded in order to include constraints

and performance criteria that provide the opportunity, where applicable, to consider

hybrid/intensified unit operations when performing process synthesis. Similar to

process synthesis methods, process intensification methods can be divided into the

3 categories: heuristic, mathematical programming and hybrid.

2.1.2.1 Heuristic

To date, there are no heuristic methods for the process intensification of entire

processes. This is the result of the lack of experience with most intensified equip-

ment. However, there are heuristic methods for the application of select intensified

equipment, particularly reactive distillation and dividing wall columns. For reactive

distillation, Bessling et al. (1997) introduce the concept of reactive distillation lines

to study the feasibility of reactive distillation. In this work, a procedure for the

identification of reactive distillation processes is developed using these lines and

the reaction space concept. In addition, Barnicki et al. (2006) present heuristics for

introducing reactive distillation in a process. Kiss et al. (2007) present a case study

from Akzo Nobel Chemicals on integrated design of a reactive divided-wall column

(RDWC). In this industrial example, two integrated units, reactive distillation and

divided wall columns are combined to make a single, more intensified unit which

improves the process.

2.1.2.2 Mathematical programming

Similar to heuristic methods, mathematical programming methods for process in-

tensification of entire processes, have not been proposed. Rather, methods for
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specific intensified equipment, such as reactive distillation, have been proposed.

Ciric and Gu (1994) use a superstructure approach to synthesize reactive distillation

columns. In this approach, a rigorous MINLP model is developed, which considers

each tray individually and then optimizes the total annualized cost. Caballero and

Grossmann (2004) present a superstructure optimization approach for the design

of separation sequences for zeotropic mixtures. This procedure uses two stages,

where, in the first, the sequence of tasks is selected and then, in the second, the

configuration is determined. This approach considers conventional distillation as

well as intensified alternatives in the superstructure optimization. Urselmann et al.

(2011) present a memetic algorithm (MA) for the global optimization of design

problems. In this way, the sub-problems are solved by mathematical programming

solvers. This method is applied to the design of reactive distillation columns (RDC).

Amte (2011) present work on reactive distillation-pervaporation (RD-PV) systems.

In this work, the optimization of the hybrid system is done by formulating the

problem as a superstructure and solving the MINLP formulation. In this work, they

present the economic feasibility of such a hybrid process and the use of mathemat-

ical programming to solve the problem.

2.1.2.3 Hybrid

Alternatively, hybrid methods for the process intensification of entire processes and

individual parts of the process have been applied.

Schembecker and Tlatlik (2003) propose a method that combines superstruc-

ture optimization and heuristics for systems containing reaction and separation.

By considering the elements and the reactions that are involved, this method can

be used to generate intensified units. Franke et al. (2008) propose a three stage

method for the design of hybrid separation schemes. First, heuristics are used to

generate alternatives; then, shortcut methods are used to optimize these alterna-

tives; finally, MINLP optimization is used to rigorously optimize the most promising

options. This method is applied to the design of a hybrid distillation/melt crystal-

lization process. Marquardt et al. (2008) present a similar three stage framework

for the design of separation flowsheets for multi-component mixtures that also

consider hybrid and intensified options. First, the flowsheets are generated, then

these are evaluated with shortcut models, and finally MINLP optimization is used to

determine the optimal. Sun et al. (2009) develop a four step procedure specifically

to deepen the mass integration for reactive distillation. This is then evaluated by

application to four hypothetical systems. Errico et al. (2008) propose two retrofit

alternatives for an industrial case study using thermal coupling. In the presented

study this is able to significantly reduce the energy consumption. These methods,
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however, do not extend beyond existing equipment.

Freund and Sundmacher (2008) introduce functional modules based on elemen-

tary process functions to describe chemical processes rather than unit operations.

This allows for the identification of the areas in the process where intensification

should be considered. Peschel et al. (2010) and Peschel et al. (2011) use this new

description of chemical processes in the development of novel reactor networks

using a three level approach. First, the optimal reaction route is found amongst a set

of different alternatives. Second, mass and energy balances are incorporated into

the optimization to design catalyst packing. Finally, technical constraints for the

equipment are determined by finding the appropriate unit operation. This method

is applied to two reactors.

Siirola (1996) presents a Means-Ends Analysis to identify tasks with the help of

expert knowledge to satisfy process requirements. In this way, intensified equip-

ment can be included via expert knowledge and then evaluated according to per-

formance criteria. This method is then applied to the synthesis of an intensified

solution using reactive distillation for the production of methyl-acetate.

Papalexandri and Pistikopoulos (1996) first introduce the phenomena scale for

the synthesis of processes. They introduce the generalized modular (GMR) ap-

proach to represent the alternatives in a block-superstructure based on fundamental

mass and heat transfer principles. In this way, it is possible to consider equipment

outside of predefined or conventional unit operations. The presented framework

involves the generation of the superstructure with the help of heuristics and engi-

neering knowledge. Then, the superstructure can be optimized to find the process

alternatives. This framework was applied to ethylene glycol production, resulting

in the synthesis and design of a process using reactive distillation.

Rong et al. (2004) first introduce a seven step method for process intensification

based on chemical phenomena to overcome thermodynamic limitations. The chem-

ical phenomena represent key features of processes, including phases, flow patterns

and operating modes. This method is extended by Rong et al. (2008) to a ten-step

process. In both, these steps are split into three stages; where the first stage is the

identification of the bottleneck of the process, the second stage is the identification

of the phenomena and then the final stage is the generation of alternatives. This

method is based on a trial-and-error approach where promising phenomena are

manipulated to improve the design iteratively via seven principles. This method is

highlighted in the application to the production of hydrogen peroxide and peracetic

acid.

Arizmendi-Sánchez and Sharratt (2008) introduce a framework for phenomena-

based process intensification based on the modularisation principles. In this work,
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there are phenomena that represent the behavioral level consisting of accumulation,

generation and transport of mass and energy, which are bounded by structural

phenomena. These phenomena can be aggregated sequentially to form tasks and

then processes. Modularisation criteria are then used to ensure that consistent

qualitative and quantitative models are generated. This framework is applied to a

theoretical example of a process containing two competing reactions.

Lutze et al. (2013) propose an innovative and systematic computer-aided method-

ology to perform synthesis-design at the phenomena scale for the intensification of

the entire process. This method was further expanded by Babi et al. (2015). By de-

scribing the process with phenomena rather than unit operations, the search space

can be expanded to include innovative and hybrid technologies. This hybrid method

uses phenomena to describe the process; predefined rules, analogous to computer

aided molecular design (CAMD), are used to combine phenomena building blocks

(PBBs) to simultaneous phenomena building blocks (SPBs) which can describe any

process. These SPBs or sets of SPBs are then linked to describe an entire process,

which is then evaluated to find innovative and intensified alternatives. This method

has been applied to the intensification of dimethyl carbonate (DMC) production

(Babi et al., 2016; Kongpanna et al., 2016).

2.2 Reaction path synthesis

The synthesis, analysis and evolution of reactions is the goal of reaction path synthe-

sis, which is an important part of chemical and biochemical process design (Powers

and Jones, 1973; Govind and Powers, 1981; Nishida et al., 1981; Barnicki and

Siirola, 2004; Klatt and Marquardt, 2009). The problem of reaction path synthesis

is defined as follows: given a set of desired product(s) or starting raw material(s),

determine the best (optimal) reaction path that utilizes the given raw material

or produces the desired product(s), while maximizing/minimizing a pre-defined

objective function subject to constraints. Reaction path synthesis has been exten-

sively discussed by Wipke (1974a,b); Wipke and Dyott (1974) and Wipke and Howe

(1977). The problem can be split into two tasks: (i) generation of reaction paths

and (ii) evaluation of the alternatives to determine the alternatives. Methods have

been developed to address this problem and they can be classified in two categories:

synthetic (determining products from given raw materials) and retrosynthetic, or

antithetic (determining raw materials from given products) (Powers and Jones,

1973; Nishida et al., 1981). Within these synthetic and retrosynthetic methods,

the generation of alternatives is performed in three ways (Agnihotri and Motard,

1980; Nishida et al., 1981)
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1. Logic centered, also known as logic-based: In these methods, intermediates

are generated iteratively to form a tree of molecules. These methods use

parameters or mathematical representations to synthesize molecules and re-

actions.

2. Information-based or rule-based, direct associative: These methods use struc-

tural sub-units combined with certain reactions to produce target molecules.

All this information on sub-units and transforms (reactions or chemical trans-

formations to produce target molecules) is stored in a database or library.

3. Hybrid methods: These methods combine elements of different types of meth-

ods, such as heuristics and mathematical optimization.

2.2.1 Logic-based methods

The first to identify an underlying mathematical model for the representation and

generation of chemical molecules was Ugi and co-workers (Ugi and Gillespie, 1971;

Ugi et al., 1972; Dugundji and Ugi, 1973; Blair et al., 1974; Gasteiger et al., 1974)

via a synthetic approach. In this work, a molecule is represented by a Bond-

Electron (BE) matrix and the collection of such matrices forms an EM (ensemble

of molecules) matrix. The reactions then change the BE matrices to show the new

electron-bonding. This representation of molecules is used by Agnihotri (1978) in

the program CHIRP.

Hendrickson (1971, 1975a,b) presents a method in which the molecule is rep-

resented by parameters for the types of atoms and the topological structure of the

bonds. Then, during a reaction, the molecule is transformed to another state by

changing the parameters in various ways.

Subsequently, Rotstein et al. (1982) present a framework in which reaction

paths are synthesized based on algebraic properties of reactions in the so-called

∆G-T space. In this work, they use retrosynthesis to find reactions from a set of raw

materials to a fixed product with various byproducts. In the method, the ∆G-T space

is manipulated algebraically to generate reaction paths which can then be screened

thermodynamically. Heuristic thermodynamic screening was introduced by Govind

and Powers (1977), Agnihotri and Motard (1980) and Rudd (1976), in which rules

based on ∆G and other thermodynamic properties are used to screen the reactions.

2.2.2 Information-based methods

Corey and Wipke (1969) first developed a methodology for retrosynthesis, which

was then implemented in a computer system OCSS (Organic Chemical Simula-
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tion and Synthesis). In this methodology, a connection table is used to represent

the molecules and these connection tables are then transformed to change the

molecules and determine reaction paths. Subsequently, the computer program

LHASA (Logic and Heuristics Applied to Synthetic Analysis) was developed by

Corey (1971) and Corey et al. (1972). This is similar to the previous computer

system, but now incorporates man-computer interaction. This computer program

also uses a retrosynthetic approach to generate all precursors to a certain com-

pound using heuristics and logic. Wipke (1974a,b), Wipke and Dyott (1974) and

Wipke and Howe (1977) generate the program SECS (Simulation and Evaluation

of Chemical Synthesis), which is based on LHASA. Govind and Powers (1981)

developed the program REACT for the retrosynthetic reaction path synthesis from a

chemical engineering perspective. This program searches a databases of reactions

to transform the molecules which are represented by a linear list of numbers.

Gasteiger et al. (1990) and Gasteiger et al. (2000) present three systems: EROS

(Elaboration of Reactions for Organic Synthesis), WODCA (Workbench for the Or-

ganization of Data for Chemical Applications) and CORA (Classification of Organic

Reactions for Applications). EROS uses electronic and energy effects to model

the reactions and predict the products. WODCA is used to plan the synthesis

of combinatorial libraries. CORA is used to analyze all the reactions found in

databases to obtain the necessary information for the design and simulation of

chemical reactions. Crabtree and El-Halwagi (1994) introduce a hierarchical ap-

proach to incorporate environmental criteria in the generation. In this work, the

goal is to produce environmentally acceptable reactions (EARs) by increasing the

complexity as the number of alternatives decreases. Thereby only performing a

detailed analysis of the most promising reactions.

2.2.3 Hybrid methods

Hybrid methods use different aspects of the information-based and logic-based

methods to take full advantage of the information and methods available. Funatsu

and Sasaki (1988) developed the program AIPHOS (Artificial Intelligience for Plan-

ning and Handling Organic Synthesis) for the generation of possible precursors for

a product, by combining the logic-based elements in the form of a central algorithm

and information-based elements in the form of a database.

Buxton et al. (1997) decompose the synthesis problem into a series of steps in

order to include environmental impact minimization. First, computer-aided molec-

ular design methods, taken from Gani et al. (1991) and amended by Constantinou

et al. (1996), are used to design the raw material and co-products, then promising

candidates are selected using logic-based methods, and finally MEIM (Methodology
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for Environmental Impact Minimization) (Pistikopoulos et al., 1994) is used to

evaluate the resulting mechanisms in detail.

Li et al. (2000a,b) introduce a systematic method to ensure sustainability by re-

ducing avoidable pollution. In this method, simple stoichiometric reactions (SSRs)

are used to represent the different steps in the network. Then, optimization is used

to identify promising reactions. Similarly, Hu et al. (2004) extend this method

for waste minimization. In this work, mathematical transformations are used to

generate the reactions from simple stoichiometric reations. Then, the optimization

is performed at two levels: (i) an economic evaluation of the overall reactions

and (ii) decomposition of the overall reactions to find the optimal (in terms of

thermodynamic feasibility) set of sub-reactions.

There are also alternative methods based on metabolic pathway analysis. Voll

and Marquardt (2011) first propose metabolic analysis methods by combining two

approaches: (i) computer-aided molecular design (CAMD), to find promising tar-

gets, and (ii) reaction network flux analysis (RNFA), to identify and screen the

different alternative routes.

2.3 Sustainability

Sustainable development is generally defined according to the Brundtland report

as development without compromising the ability of future generations to meet

their needs (Hueting, 1990). In process design, sustainability is incorporated by

considering alternative and renewable feedstocks (biomass and carbon dioxide),

alternative energy sources (solar and wind), and improving the efficiency of pro-

cesses (Jayal et al., 2010). Sustainability can also be defined by certain metrics, as

defined by Institution of Chemical Engineers (IChemE) (2002). Here sustainability

is defined according to various process parameters, split into economic, environ-

mental and social metrics.

In order to measure the sustainability, there are various methods of determining

sustainability. One of the effective methods is lifecycle assessment (LCA), which is

to quantify the potential environmental impacts throughout the chemical product

or process lifecycle (cradle-to-cave). Using this method, one can evaluate improve-

ment options to identify the more sustainable designs (Kalakul et al., 2014). For

this, useful software exists, including Ecoinvent (Ecoinvent, 2016), SimSci (SimSci,

2016), SustainPro (Carvalho et al., 2013), and LCSoft (Kalakul et al., 2014), which

provide various analysis-assessment options with massive databases.

Carbon footprint is especially important for carbon dioxide utilizing processes.

By reducing the amount of carbon dioxide, one element of sustainability can be
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achieved. However, in order to achieve non-trade-off solutions, the other metrics

(global warming potential (GWP), OPEX, CAPEX, etc.) also need to be evaluated.

2.4 Process Systems Engineering (PSE) issues in CCU

Over the past two decades, carbon dioxide capture and utilization (CCU) processes

have been receiving increasing attention due to their potential to help reduce the

amount of carbon dioxide in the atmosphere by taking emissions and making fur-

ther use of them. CCU has been the topic of an increasing number of papers

covering a variety of elements of CCU. These papers review the details of reactions,

new catalysts, information on developed technologies and the industrial status of

such processes, together with life cycle impacts. A time line diagram showing the

developments and the corresponding category of the topics is given in Figure 2.1.

As highlighted in Figure 2.1, there has been increasing research interest in topics

related to CCU, thereby increasing visibility of it and promoting the possibility it

presents in the abatement of carbon dioxide emissions.

2.4.1 Carbon dioxide utilization process synthesis and design

The general process synthesis problem can be more specifically defined for carbon

dioxide conversion as: given carbon dioxide feedstock (either as flue gas or in a

purer form from a carbon dioxide capture process), determine the optimal pro-

cessing route to produce the desired product(s). For carbon dioxide conversion

processes, as the amount of information related to reactions and processes is large,

there is a need to determine the optimal amongst a large set of alternatives.

For carbon dioxide conversion processes, Prasertsri et al. (2016) use logic to

screen the alternatives for the production of dimethyl ether (DME) from carbon

dioxide. The most promising candidates from this screening step are then retained

for further examination. In this work, three routes for the production of dimethyl

ether utilizing carbon dioxide are taken for more rigorous design. Similarly, Roh

et al. (2016b) use logic to screen amongst alternatives for the synthesis of methanol

from carbon dioxide. In this case, the processing routes via direct hydrogenation

and via syngas from bi-reforming are selected for further consideration.

Alternatively, mathematical programming and hybrid methods are recently grow-

ing in application. Especially the use of superstructures, is of interest. This involves

the representation of the processing alternatives, linking raw materials and prod-

ucts, as a superstructure. Agarwal et al. (2009, 2010) used superstructure optimiza-

tion to determine the optimal configuration of pressure swing adsorption processes

for carbon dioxide capture. Similarly, Hasan et al. (2012a,b) used superstructure
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Figure 2.1. Time line of the research in CCU and the areas in which they focus
(Roh et al., 2016a).
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optimization to determine the carbon dioxide capture process for different emission

sources.

In addition, Quaglia et al. (2012, 2015) introduce a generic model for the

superstructure representation. In this model, the superstructure is broken down

into processing steps containing processing intervals. These intervals have a generic

model to describe the tasks being performed (mixing, reaction, separation). In the

work of Kongpanna et al. (2015, 2016) this generic model is used in the superstruc-

ture optimization to determine the optimal production route for dimethyl carbonate

(DMC) from carbon dioxide. This generic model has been modified by Bertran

et al. (2016) and applied to a network of carbon dioxide conversion processes. In

this work, the carbon dioxide conversion to three products with various routes are

compared. This is represented by the superstructure in Figure 2.2. In addition, a

software tool called Super-O (Bertran et al., 2015) is presented and implemented

for the superstructure optimization; the use of the generic model is facilitated by

the software tool to compare the production of three products from captured carbon

dioxide.

Figure 2.2. The superstructure representation of the network of methanol,
dimethyl ether and dimethyl carbonate production processes from carbon dioxide
(Bertran et al., 2016).
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Given a processing route connecting feedstocks to target products, rigorous

process design is performed to evaluate its economics and sustainability. For carbon

dioxide conversion, process design is an essential step to go forward into more

rigorous evaluation, improvement, and large-scale implementation. Even though

most carbon dioxide conversions are at early stages of technical maturity, it is

nevertheless important to determine their potentials early on, so that limited R&D

resources can be directed to the most promising ones. In doing so, the entire process

may be considered to understand the influence of all aspects of the process (North

and Styring, 2015).

Process design methods and tools have been frequently applied in the study of

carbon dioxide conversion to specific products. Table 2.1 lists recent publications

that address process design for carbon dioxide conversion. It is noted that all of the

studies targeted bulk chemicals as products. Methanol is the most popular product

followed by syngas and dimethyl carbonate.

2.4.2 Process intensification in carbon dioxide utilization

Process intensification methods have not been greatly applied to carbon dioxide

capture and utilization processes. While intensified processes are considered in

some cases, these are incorporated on a case-by-case basis. Babi et al. (2015) and

Kongpanna et al. (2016) apply methods of phenomena-based process intensification

(Babi et al., 2014b,a, 2015) to design processes with intensified equipment; the

use of intensified equipment, such as dividing-wall columns or membrane reactors,

improves both the economics and sustainability compared to the base case design.

2.4.3 Carbon dioxide conversion reaction networks

Carbon dioxide is a stable molecule that is in an energetic potential well (Aresta

and Dibenedetto, 2007) and, as a result, the reactions involving carbon dioxide as

a reactant need to be carefully evaluated before considering associated processing

routes. It is possible to generate and screen reactions which show promise and

produce products that are of interest. The generation of reaction networks and the

selection of the optimal reaction path, or reaction path synthesis, is an important

step in synthesis and design of carbon dioxide conversion processes.

Following a heuristic approach, Aresta (2010); Aresta et al. (2016) and Otto

et al. (2015) have collected information and compiled lists of reactions involving

carbon dioxide as a reactant. In these compilations, the chemistry, detailed reaction

information, catalysts available and operating conditions for various carbon dioxide

conversion reactions are provided. Also, Centi et al. (2013) provide perspectives
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Table 2.1. Selected list of published carbon dioxide conversion processes stating
the product produced and whether sustainability is considered (Roh et al., 2016a).

Publication Methanol Syngas DMC Other Sustainability?
Indala (2004) X X X Ethanol, DME,

etc.
N

Minutillo and Perna
(2010)

X N

Taghdisian et al.
(2012, 2015)

X Y

Van-Dal and Bouallou
(2013)

X Y

Zhang et al. (2013) X N
Cañete et al. (2014) X N
Park et al. (2014) X N
Roh et al. (2015,
2016b,c)

X Y

Frauzem (2014) X X Y
Frauzem et al. (2015) X X Y
Fjellerup (2015) X Formic acid Y
Nguyen (2015) X Y
Pérez-Fortes et al.
(2016)

X Y

Kiss et al. (2016a,b) X N
Cho et al. (2009) X N
Aboosadi et al. (2011) X N
Lim et al. (2012) X Y
Luyben (2014) X N
Babi et al. (2015) X Y
Kongpanna et al.
(2015, 2016)

X Y

Li et al. (2011) Methanol,
DMC, DME
together

N

Dimitriou et al. (2015) Liquid fuel N
Noureldin et al. (2015) Mixed alcohol N
Prasertsri et al. (2016) DME Y

on the chemical aspects of catalytic carbon dioxide conversion reactions that are

relevant in determining new catalysts and the state-of-the-art in carbon dioxide

conversion catalysts.

While methods and tools for the systematic and automated generation of reac-

tion paths , such as RING (Rangarajan et al., 2012a,b, 2014) have been proposed,

most of them have not been applied to carbon dioxide capture and conversion.

ProCARPS (Cignitti, 2014) is a tool for a hybrid method, which uses heuristics based

on knowledge of chemical interactions combined with a computational model, to

generate reaction paths. This tool is implemented by the four-step method proposed
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by Roh et al. (2016b). The four steps in this method are: target generation, reaction

path synthesis, thermodynamic screening, and reaction network generation. By

following these steps, the search space is reduced, starting from an extremely large

number of reactions to the network of feasible reactions. By applying reaction path

synthesis, it is possible to generate a reaction network of carbon dioxide conversion

reactions; these reactions can then be investigated for implementation in processes

and process networks.

2.4.4 Sustainability within CCU

The importance of sustainability analysis for carbon dioxide conversion processes

has been emphasized in several review papers (Araújo et al., 2014; North and

Styring, 2015; Poliakoff et al., 2015; Quadrelli et al., 2011). Generally, carbon

footprint or net carbon dioxide emission of a certain conversion process is used as

the most significant indicator in assessing sustainability of the process.

Various methods for sustainability analysis have been developed and applied

to carbon dioxide conversion processes. As von der Assen et al. (2013, 2014)

and von der Assen and Bardow (2014) point out, there are common pitfalls in

performing LCA of a CCU system:

1. carbon dioxide consumed by utilization (including conversion) might be con-

sidered as negative GHG emissions

2. one should decide how to allocate overall emissions between the products in

the capture (captured carbon dioxide) and in the utilization (produce chemi-

cal products) processes

3. traditional LCA is not well suited to assessing global warming impact of car-

bon dioxide storage duration

In the first pitfall, the upstream emissions in obtaining the carbon dioxide are

not always considered; in order to avoid this, the carbon dioxide utilized can not

always be directly considered as negative emissions. The second pitfall results from

the problem in allocating emissions to the carbon dioxide being utilized as it is not

intuitive how to allocate the emissions to different products. The third pitfall is that

traditional LCA does not allow for the delayed emission that result from utilization.

von der Assen et al. (2013, 2014) and von der Assen and Bardow (2014) propose

the use of a systematic framework to perform LCA on carbon dioxide conversion

processes to avoid such problems; CO2-based methanol (via CO2 hydrogenation)

and polymer production are used as examples to highlight their framework. Babi
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et al. (2015), Kongpanna et al. (2016), and Roh et al. (2016b) suggest a method

for designing sustainable carbon dioxide conversion processes involving the three-

stages of process synthesis, process design, and innovative design/implementation

and providing lists of applicable tools for each stage. These three stages decompose

the problem and address sustainability in each stage. In the final stage, more

sustainable processes are obtained by considering innovative and intensified al-

ternatives. All the analyses performed greatly depend on the assumptions made,

especially with regard to feedstock.

Beyond sustainability analysis for a fixed design of carbon dioxide conversion

processes, Taghdisian et al. (2015) performed multi-objective optimization for

a bi-reforming based methanol plant. This study aimed to maximize methanol

production while minimizing carbon dioxide emission simultaneously. The trade-

off relation between the two objective functions was given as the Pareto frontier,

which showed a typical trend found in conventional chemical processes.

2.4.5 Integration of carbon dioxide utilization with other systems

For carbon dioxide conversion processes to be sustainable, they need to be inte-

grated with infrastructure (such as for supply of raw materials and utilities, sales

of products, implementation with existing technology such as reactors, catalysts or

distillation columns) and other processes (such as for energy production and carbon

dioxide capture). By looking at the combined system, it is possible to consider not

only the individual processes, but also the interactions between them, as illustrated

in Figure 2.3. In this way, better and even optimal performance of the overall

systems can be achieved.

Indala (2004) and Xu et al. (2005) propose a superstructure network that in-

volves an integrating an existing ammonia plant with various potential conversion

plants producing methanol, ethanol, dimethyl ether, syngas, and so on by using the

high-purity carbon dioxide byproduct. Their optimal configuration considers the

following three aspects: operating margins, environmental costs, and sustainable

costs. Roh et al. (2016b) also addressed the integration issue. In their study, it is

assumed that an existing methanol plant, where carbon dioxide is not utilized, is

integrated with a bi-reforming based methanol plant and then the effect of changing

the integration switch (IS) on carbon dioxide reduction is evaluated. It is concluded

that as the IS increases, the overall carbon dioxide emission decreases. Martín

and Grossmann (2016) designed a CO2 hydrogenation-based methanol production

facility integrated with switchgrass gasification units that produce the syngas for

methanol production. The carbon dioxide feedstock is captured from the syngas

produced from the switchgrass gasification and the hydrogen feedstock is produced



2.4. Process Systems Engineering (PSE) issues in CCU 35

Figure 2.3. A visualization of the entire carbon capture and conversion system
and the interactions. If the different processes are only considered individually,
it is not possible to design around interaction. However, when the entire system
is considered, it is possible to optimize while taking into account the interactions,
such as those in bold considered here. (Roh et al., 2016a)

via water splitting with wind and solar power. They conclude that the designed

process can only be used in regions where wind velocity and solar radiation are

high enough, such as the US Midwest or the south of Europe.

Within integration of carbon dioxide utilization processes with other systems,

the feedstock needs to be considered. Jones et al. (2011) designed and evaluated

a sodium bicarbonate production process that utilizes flue gas directly. Minutillo

and Perna (2010) as well as Nguyen (2015) design tri-reforming based methanol

plants that utilize flue gas as a carbon dioxide source. Alternatively, the carbon

dioxide can be captured at a reduced concentration. Frauzem (2014) considers a

CO2 hydrogenation-based methanol plant integrated with a carbon dioxide capture

plant employing the monoethanolamine (MEA) solvent with a reduced purity car-

bon dioxide stream. Both are possible, however, the reduced purity increases the

energy costs of the methanol production.

Optimization of a CCUS supply chain network is another important issue of the

integration with sources of carbon dioxide. Hasan et al. (2014) developed a large-

scale (nationwide, regional, and statewide) CCUS network model and determined

an optimal solution that minimizes the cost to reduce stationary carbon dioxide

emissions in the United States. More than 3,000 emission points and various

alternatives of carbon dioxide capture technologies (absorption, adsorption, and

membrane-based), utilization (enhanced oil recovery) and sequestration (in saline

formations and un-mineable coal bed areas) are considered in this study. Han

and Lee (2011) worked on carbon dioxide utilization and disposal infrastructure
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development and its optimization in the case of South Korea. Four different carbon

dioxide sources (two fired-power plants, one petroleum refinery, and one iron/

steel plant) were targeted. Manufacturing of green polymer and bio-butanol were

considered as the utilization methods, while geological/ocean sequestration were

considered as the disposal methods.

2.5 Ontologies

As with any problem, the sustainable design of carbon dioxide capture and utiliza-

tion processes involves large amounts of information. This information needs to

be organized and stored in a way that it can be used and reused. Therefore, an

ontology is needed to organize the knowledge base (or database) in a way that

it is systematic. An ontology is an explicit specification of a conceptualization

covering a certain domain and the relations between them (Gruber, 1993). A

conceptualization is a formal representation of a knowledge base, including the

objects, concepts, etc. that exist within this knowledge base. In order to develop an

ontology, certain terms need to be defined (Noy and McGuinness, 2001):

classes (concepts) descriptions of the concepts in the domain

slots (roles or properties) properties of the concepts to describe features

and attributes

facets (role restrictions) restrictions on slots

instances individual instances of classes within an ontology form a knowl-

edge base

In order to develop ontologies, methodologies have been developed. Noy and

McGuinness (2001) propose a simple methodology for the development of an on-

tology. They discuss the general issues and propose an iterative approach in which

the first pass is refined with more details each round. The methodology is composed

of seven steps starting with defining the scope of the ontology to the instances of

the classes. Gruber (1995) defines criteria for the design of ontologies:

1. Clarity: the ontology needs to be effective in the communication of the con-

cept

2. Coherence: the ontology needs to be logically consistent

3. Extendibility: the ontology needs to be able to accommodate new information

4. Minimal encoding bias: the ontology should not depend on the notation
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5. Minimal ontological commitment: the ontology should be free so that it can

be specialized when needed

This method for the design of ontologies has been implemented by Singh et al.

(2010), where an ontology is developed for the use in process monitoring and

analysis. The result is a knowledge base containing two sections which also are

linked by certain objects.

An ontology is needed to develop a structured database that facilitates the

addition and extraction of information for the solution of problems. For the work

of carbon dioxide capture and utilization, no ontology or knowledge base is avail-

able. However, certain information on emissions (source, quality, etc.) is available

and stored; but, none of these are structured or address the design of carbon

dioxide capture or utilization processes. Therefore, use of methodologies, such

as that proposed by Noy and McGuinness (2001) can be implemented to develop

an ontology for a knowledge base, which is structured to enable easy addition and

extraction of information related to the design of sustainable carbon dioxide capture

and utilization processes. This includes information on the process, materials and

reactions.

2.6 Gaps and challenges

Process synthesis methods are prevalent in determining the processing route; heuris-

tic, mathematical programming and hybrid methods have all been developed and

applied to a variety of problems, including to chemical, biochemical and waste

water processes. However, very few have been applied to the optimization of carbon

dioxide conversion networks. This is in part due to the limited information available

about such processes. Due to the novel nature of such processes and the immaturity

of the information, the accurate description of the conversion alternatives is a

challenge. Recently, superstructure optimization methods have been applied to de-

termine the optimal processing route to produce a specific product or a selection of

products. The application of these methods is, however, limited to considering only

a small number of products or to the synthesis of capture processes; the application

to multiple conversion products and the link of capture and conversion processes

is missing. A wider application of these methods would enable to selection of the

optimal carbon dioxide capture and conversion products and processes.

Rigorous design methods, such as those in Seider et al. (2008), and tools, such

as AspenPlus (AspenPlus, 2016) and ProII (SimSci, 2016) are well developed for

application in the design of chemical and biochemical processes. For carbon diox-

ide capture and utilization processes (specifically conversion processes), detailed
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information about the reaction and catalyst, including the reaction kinetics, are

needed. Without such information, the models are inaccurate, which will affect

the equipment and the downstream processing. In addition, basic knowledge for

process design like thermodynamics, heat and mass transfer phenomena, reaction

and separation engineering is also available. Thermochemical reaction information,

along with basic knowledge and experience is available for carbon dioxide conver-

sion processes; rigorous design methods have been applied using this information

to the production of methanol and other chemicals from carbon dioxide. However,

most carbon dioxide conversion technologies are currently in their early stages of

development, which limits the studies on carbon dioxide conversion process design.

Process intensification and integration methods have been applied to carbon

dioxide capture and utilization processes. However, these cases are limited, espe-

cially in terms of the process integration and the influence that the supply chain

and other processes have on the design of carbon dioxide capture and conversion

processes. While the systematic methods, for example phenomena-based methods,

for process intensification have been developed, they have only been applied to

carbon dioxide capture and conversion processes to specific products (Kongpanna

et al., 2016). Carbon dioxide capture and conversion processes have been designed,

but they could benefit from process intensification as this would reduce the amount

of equipment and energy required in some of the processes.

While reaction path synthesis methods and tools have been developed, carbon

dioxide conversion reaction networks are dominated by heuristics and knowledge

bases. Computer-aided methods and tools have been developed for use in reac-

tion path synthesis, to facilitate the generation of reaction paths and generate

more exhaustive lists of reaction. Currently, only the known reactions are inves-

tigated further. This limits the ability to find new and innovative reaction paths

and networks that are not discovered previously. Especially dominant in these

compilations are the reactions producing bulk chemicals (such as methanol and

urea) and fuels (such as gasoline and diesel). However, with the help of tools from

reaction path synthesis, the large number of additional reactions can be determined

and compared. In addition, this extensive list of reactions can be screened for

thermodynamic properties, ranked, or products can be selected according to their

need.

Sustainability is one of the most important issues for carbon dioxide capture

and utilization processes, as the motivation for developing them is to address envi-

ronmental concerns. However, in carbon dioxide capture and utilization processes,

there are certain pitfalls that need to be avoided in the sustainability and life cycle

analyses. For carbon dioxide capture and utilization, the goal is to identify those
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processes with very low carbon footprints or negative net carbon dioxide emissions.

However, one should be careful in the analysis as the results depend strongly on

how wide their system boundaries are chosen to be, how the feedstock and utility

are assumed to be prepared, and what conventional (or reference) cases they are

compared against.

Despite the application of process synthesis-design, integration, intensification,

reaction path synthesis and sustainability analysis to carbon dioxide capture and

utilization processes, there are areas that have not been explored or need to be

further explored for these processes. The synthesis methods need to be applied to

a wider range of processes and products to optimize the processes. Then, intensifi-

cation and integration should be applied to more cases to overcome bottlenecks in

the processes as well as ensure the optimal capture and conversion process. Reac-

tion path synthesis methods should be applied more extensively to ensure that all

promising reactions using carbon dioxide are considered. Finally, the sustainability

analysis needs to be consistent and applied to all processes as this is a requirement

in the design of carbon dioxide capture and conversion processes.

In the area of carbon dioxide capture and utilization, there are large amounts

information, from materials (carbon dioxide emission sources to products) to tech-

nologies for the capture and utilization of the carbon dioxide, that needs to be

appropriately organized and stored. Currently, this collection of technologies is

lacking. A structured database is necessary for design of a database which enables

the systematic storage and retrieval of the information.

As interest in carbon dioxide capture and utilization, especially conversion,

grows, there is a need to sustainably design such processes. Through the devel-

opment and implementation of a systematic and computer-aided framework, this

can be ensured. This framework should incorporate the existing methods and

tools (especially for process synthesis, design, intensification and sustainability)

and adapt/develop methods and tools where needed (especially for reaction path

synthesis and databases). In addition, it should be flexible enough to be applied

to various carbon dioxide capture and utilization problems. Through the use of

this framework, more products and feedstocks, and novel routes can be considered.

Additionally, integrated and intensified solutions can be presented. The objective of

this work is to design sustainable carbon dioxide capture and utilization processes

using a framework that addresses the aforementioned gaps.
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Framework

Summary and significance:

In this chapter, the developed framework for the sustainable design of

carbon dioxide capture and conversion processes along with the necessary

computer-aided methods and tools is presented. The developed computer-

aided framework adapts a 3-stage approach for sustainable design (Babi

et al., 2015), comprising of synthesis, design and innovation. Each stage

has its own workflow and data flow, where the outputs of one stage serve as

the inputs to another; these are described in detail in this chapter. There are

various methods and tools, which are included in the framework. In Stage

1, which uses a superstructure-based method to find the optimal route(s),

the framework incorporates reaction path synthesis, an especially structured

database for the storage of information, and the software interface, Super-O.

Stage 3 makes use of process integration methods, phenomena-based pro-

cess intensification and a method for hybrid distillation-membrane process

design. Finally, the framework includes simulation software, analysis tools

and evaluation criteria, which are also presented.
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Carbon dioxide capture and utilization processes are one method to address

the environmental concerns associated with carbon dioxide emissions. However,

the processes need to be sustainable; a systematic, computer-aided framework has

been developed to facilitate the design and ensure their sustainability. Through the

implementation of the framework, the overall design problem, given a feedstock,

or set of feedstocks, determine the optimal route and configuration to a product or

set of products, which is mathematically formulated according to Equation 3.1, is

addressed (Duran and Grossmann, 1986).

min/max
x,y

Fob j =CT y+ f (x)

s.t. r(x) = 0

s(x)+B(y)≤ 0

x ∈ Rn, y(0,1)l

(3.1)

Fob j is the objective function, which is a function of the continuous variables,

x, and discrete variables, y. The continuous variables are related to processing

information, including flow rates, design parameters and so on, while the discrete

variables are related to decisions, including those related to topology. CT is a matrix

of cost coefficients related to the discrete variables, such as capital costs. f (x) is the

cost related to the continuous variables, such as material prices. The objective func-

tion is subject to linear, r(x) = 0, and non-linear, s(x)+B(y)≤ 0, constraints. These

equations yield a mixed-integer (non)-linear programming problem (MI(N)LP).

The developed framework is based on the 3-stage approach to sustainable de-

sign introduced by Babi et al. (2015). By decomposing the problem into three

stages, the complexity of the problem can be managed, as otherwise it can be

computationally infeasible to solve the entire problem in one stage. The overall

3-stage framework is shown in Figure 3.1. The detailed workflow and data flow

is presented in Sections 3.2 - 3.4 and the methods and tools spanning across the

stages are presented in Section 3.5.

3.1 3-stage approach

In the 3-stage approach, the problem is decomposed into three sub-problems: (1)

synthesis, (2) design and (3) innovation. Each of these stages has an output that

serves as the input for the subsequent stages. The stages enable the solution of the

problem, which might not be computationally possible in a single stage. In each

stage, the search space is reduced and more details are considered. Qualitatively

correct but simpler models are used to select from the large number of alternatives
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Figure 3.1. An overview of the adapted 3-stage approach.

in Stage 1. In this way, infeasible alternatives are discarded after Stage 1 to avoid

the time spent in design and modeling of these alternatives. The remaining alter-

natives are then designed and analyzed in Stage 2. Finally, in the third stage, more

sustainable alternatives are found for designs from the second stage. The stages

function independently, so long as the necessary input information is provided.

Across the three stages, the overall formulation remains the same. However,

the scale considered, complexity of the models and the number of alternatives vary

between stages. In the first stage, the models are simple so that a large number of

alternatives can be considered. The inputs of this stage are the process parameters

needed for the simple models and the output is the optimal topology along with

mass and energy flows. This ouput is then used as the input in the second stage.

For the second stage, rigorous process models are considered for the small number

of alternatives. The result of detailed design includes the stream and equipment

information and the analysis results provide the targets for improvement. These

targets are then used as the input for the final stage. Here, the selected process is

described by phenomena-based models. These are then used to obtain improved

design alternatives that address the targets; these alternatives are then designed

rigorously and analyzed to ensure the specifications are met. The characteristics of

the models and data of the different stages are listed in Table 3.1 (adapted from

Bertran et al. (2017)).
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Table 3.1. The problem characteristics, data flow, optimization problem form and
problem variables across the three stages (adapted from Bertran et al. (2017).)

Stage 1 Stage 2 Stage 3
No. of alternatives large medium small
Complexity low high high
Scale interval unit operation phenomena
Inputs process

parame-
ters

topology, mass flows,
energy flows

base case design (equip-
ment design, stream ta-
bles, economic parame-
ters, sustainability indi-
cators), targets for im-
provement

Outputs topology,
mass
flows,
energy
flows

base case design (equip-
ment design, stream ta-
bles, economic parame-
ters, sustainability indi-
cators), targets for im-
provement

improved design (equip-
ment design, stream ta-
bles, economic parame-
ters, sustainability indi-
cators)

Model shortcut
models

rigorous process models phenomena-based
process models

3.2 Stage 1: Synthesis

Stage 1, the synthesis stage, is a decision-making problem; it involves the determi-

nation of the optimal processing route(s) converting raw material to product. This

can be more specifically defined as, given a carbon dioxide containing feedstock

or set of carbon dioxide containing feedstocks, determine the optimal sequence,

including selection of optimal equipment, to produce a product or set of products.

A superstructure-based method developed by Quaglia et al. (2012, 2015) and ex-

tended by Bertran et al. (2017) is used to address this problem. A superstructure

is a representation of the alternatives where boxes represent process alternatives

and arrows are feasible connections between alternatives (Bertran et al., 2017).

Elements in the superstructure are organized in terms of processing steps and

processing intervals, where each column in the superstructure represents a process-

ing step and the alternatives within them are represented by processing intervals

(Bertran et al., 2017). This is called a Processing Step-Interval Network (PSIN) and

organizes the network according to the representation in Figure 3.2.

The PSIN representation provides an organized superstructure that can repre-

sent processing networks of varying scales: from a part of a process to a network

of processes (Bertran et al., 2017). Depending on the scale and level of detail, a

processing interval is used to represent a task, a unit operation, multiple units, or a

complete process.
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Figure 3.2. Visual representation of the Processing Step-Interval Network repre-
sentation used in Stage 1 of the framework (Bertran et al., 2017).

A generic optimization model for the synthesis of these processing networks

problems using the PSIN representation was proposed by Quaglia et al. (2012) and

extended by Bertran et al. (2017). The extension added the following features:

location dependency, multiple utility locations, material assignments modified for

capacity optimization, and capital cost linearization (Bertran et al., 2017). All inter-

vals in the superstructure are modeled with the same set of equations representing a

sequence of tasks: mixing, reaction, waste removal, product separation, and utility

consumption. A schematic diagram of the generic interval is shown in Figure 3.3.

Figure 3.3. The generic interval used to represent the superstructure alternatives
(Bertran et al., 2017).

The superstructure is modeled by a series of equations within the overall formu-

lation in Equation 3.1 (Bertran et al., 2017). These equations are broken down into
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the objective function, linear constraints and non-linear constraints. The linear con-

straints are comprised of mass balances, capital costs and composition constraints

(Bertran et al., 2017) and the non-linear constraints contain connection equations

and logic constraints (Bertran et al., 2017).

Objective function

maxZ = SPROD−CRAW −CCHEM−CUT −CT R−CWAST E − CCAP

τ
(3.2)

where

SPROD = ∑
k

∑
i

PPROD
k f W

i,k (3.3)

CRAW = ∑
k

∑
i

PRAW
k f W

i,k (3.4)

CCHEM = ∑
k

∑
i

PCHEM
i gM

i,k (3.5)

CUT = ∑
k

∑
ut

PUT
ut f UT

ut,k (3.6)

CT R = ∑
k,kk

PT R
k,kkηk,kk ∑

i
fi,k,kk (3.7)

CWAST E = ∑
k

∑
i

PWAST E
i (gW

i,k) (3.8)

CCAP = ∑
k

invk (3.9)

The objective is to maximize EBIT (earnings before interest and tax), where Z is

the objective function, SPROD is the sales, CRAW is the cost of raw material(s), CCHEM

is the cost of chemicals, CUT is the cost of utilities, CT R is the cost of transportation,

CWAST E is the cost of waste, CCAP is the capital cost and τ is the project lifetime. The

parameter P is the price, the variable f is the component flow rate, the variable g

is the added or removed component flow rate, and η is the transportation distance.

The subscripts i, k, kk, and ut are for component, starting interval, ending interval,

and utilities, respectively. The superscripts PROD, RAW , CHEM, UT , T R, WAST E,

CAP indicate the product, raw material, chemicals, utilities, transportation, waste

and capital cost elements. The superscripts W and M are for the points after the

waste separation and after the mixing for the flow in the intervals. inv is the

investment cost. While the objective function in this case is only economic, all the

alternatives will additionally be ranked by NetCO2 so as to ensure the sustainability

of the alternatives.
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Equality constraints

Mass balance The mass balances are constraints to ensure that the mass bal-

ance closes.

fi,k,kk = f P
i,k,kk + f S

i,k,kk (3.10)

f IN
i,k = ∑

kk
fi,k,kk (3.11)

gM
i,k = ∑

ii
f IN
ii,kµi,ii,k (3.12)

f M
i,k = f IN

i,k +gM
i,k (3.13)

f R
i,k = f M

i,k +∑
r

f M
react,kθreact,r,kγi,r,k

MWi

MWreact
(3.14)

f W
i,k = f R

i,k(1−δi,k) ∀k > NRAW (3.15)

gW
i,k = f R

i,k− f W
i,k ∀k > NRAW (3.16)

f OUT,P
i,k = f W

i,kσi,k (3.17)

f OUT,S
i,k = f W

i,k − f OUT,P
i,k (3.18)

gUT,1
ut,k = ∑

i
β

1
ut,k f IN

i,k (3.19)

gUT,2
ut,k = ∑

i
β

2
ut,k f M

i,k (3.20)

gUT,3
ut,k = ∑

i
β

3
ut,k f W

i,k (3.21)

gUT
ut,k = gUT,1

ut,k +gUT,2
ut,k +gUT,3

ut,k (3.22)

f OUT,1
i,k = ∑

k
f 1
i,k,kk ∀k < (NRAW +NINT +1) (3.23)

f OUT,2
i,k = ∑

k
f 2
i,k,kk ∀k < (NRAW +NINT +1) (3.24)

f W
i,k = ∑

l
f source
i,k,l ∀k < (NRAW +1) (3.25)

The parameters represent different parameters in the tasks; µ is the mass mixing

fraction, θ is the conversion, γ is the stoichiometric coefficient, MW is the molecular

weight, δ is the waste separation factor, σ is the product separation factor, and β is

the utility addition factor. Additionally, N is the interval number. The superscripts

define different points in the interval; P is the primary outlet stream from an

interval, S is the secondary outlet stream from an interval, IN is the inlet, R is the

point after the reaction task, OUT is the outlet from product separation, UT,1, UT,2
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and UT,3 are the first, second and third utility addition points, 1 is the first utility

point, 2 is the second utility point, 3 is the third utility point, INT is the number of

intervals and source is the source. The subscripts react and r are the reactant and

reaction, respectively, and the subscript ii represents the mixing component.

Capital costs The capital cost constraints describe the flow-rate based cost

model and the linearization.

FCAP
k = ∑

i
f M
i,k (3.26)

FCAP
k = ∑

j
FD

k, j (3.27)

FD
k, j = FPOINTj+1 piecek, j (3.28)

invk = ∑
j

A j,kFD
k, j +B j,k piecek, j (3.29)

Here, the F are the total flow rates, the superscript D signifies disaggregated,

FPOINT is the point flow in the linearization, piece is the binary variable for the

interval considered in the piecewise linearization, and A and B are the coefficients

for the linearization.

Raw material composition These constraints define the mass balance based

on the composition of the streams.

f W
i,k = φi,kFRAW

k (3.30)

FRAW
k = ∑

i
f W
i,k (3.31)

The parameter φ is for the mass fraction.

Inequality constraints

Connection equations The connections equations describe the connection of

intervals in the superstructure.

f 1
i,k,kk ≤ f OUT,P

i,k SP
k,kk (3.32)

f 2
i,k,kk ≤ f OUT,S

i,k (SSk,kk−SSP
k,kk) (3.33)

ykkωkk ≤ yk (3.34)

ω is the binary variable indicating whether the interval is a mixer (two streams

enter the interval), SS is the binary variable for the superstructure connection, and

y is the binary variable for the selection of intervals.
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Logic constraints The logic constraints are used to limit the solutions to fea-

sible and desirable alternatives by using the binary variables for the selection of the

intervals.

f W
i,k ≤ ykM (3.35)

gW
i,k ≤ ykM (3.36)

yk ≤∑
i

f W
i,k

M
1000

(3.37)

∑
i

f IN
i,k ≤ ykM (3.38)

∑
kk

ykkυkk,step ≤ 1+∑
k

∑
kk
(υk,stepSk,kkωkk) (3.39)

FPOINTj piecek, j ≤ FD
k, j (3.40)

M is the “big M” variable, which is an artificial variable that is significantly

big, which is needed for the solution of the problem containing “greater-than”

constraints. υ is the allocation of the interval to a step. The “big M” variable is

an artificial variable that is needed to

The resulting optimization problem is solved by solving all equations (Bertran

et al., 2017). This problem takes the form of a Mixed-Integer Nonlinear Program

(MINLP) or a Mixed-Integer Linear Program (MILP) depending on the form of the

models. If all the models for technologies are linear or any non-linear models are

approximated via linear models, the problem is an MILP (Bertran et al., 2017). The

mathematical solution approach for the optimization problem depends on the type

of problem. The steps used to solve this synthesis problem are described in Section

3.2.1.

3.2.1 Workflow and data flow

This stage is broken into three steps: (1) problem definition, (2) superstructure

generation and data collection, and (3) solution of the optimization problem. The

workflow and data flow are shown in Figure 3.4.

Step 1.1 is the problem definition. The objective is to define the synthesis

problem that needs to be solved by specifying the available raw materials, the

desired products, the location(s), the number of processing steps, and the available

technologies able to perform the tasks involved in each of the considered steps

(Bertran et al., 2017). During this step, not all the mentioned characteristics need

to be specified. For example, a single raw material can be selected, such as flue gas
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Figure 3.4. The workflow and data flow for Stage 1 of the developed framework
along with the input methods and tools (adapted from Bertran et al. (2017)).

from a coal-fired power plant, or a group of raw materials can be chosen, such as

power plant flue gases.

After the first step, there is a decision of whether the reaction data is available

or not. If the reaction information is complete, the user can proceed to Step

1.2. Otherwise, the user first proceeds to Reaction Path Synthesis (RPS), which

is described in Section 3.2.3, to generate all thermodynamically feasible reactions

satisfying the objectives.

Step 1.2 is superstructure generation and data collection. The objective of Step

1.2 is to collect all the necessary data for the problem that has been defined and

to generate a superstructure of alternatives (Bertran et al., 2017). To achieve this,
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the complete problem formulation from Step 1.1 is needed. Step 1.2 is further de-

composed into the following: data collection, superstructure generation, selection

of the generic mathematical model from a library and modifications to it in order to

suit the specific problem being considered. In data collection, the data is collected

from various literature sources, online databases or estimated via thermodynamic

models. This data can also be stored and retrieved from an especially structured

database (see Section 3.2.2). Then, the superstructure, in the form of a PSIN,

is generated through data on connections, technolgies and materials. Finally, if

changes to the model are necessary (modification of the objective function, etc.),

this is performed. Parts of this step are made easier by the use of the interface,

Super-O (see Section 3.2.4). The superstructure with the data is then transfered to

the next step.

Step 1.3 is the solution of the optimization problem. This is achieved by em-

ploying solvers from an external software tool (GAMS) through the user interface

Super-O (see also Section 3.2.4). The inputs to the solver are the generic model and

an input file with all the necessary problem data (model parameters, material data,

cost data, etc.). The outputs from the solver is given in an output file containing the

optimal values of the objective function, the corresponding optimization variables,

and all other process variables.

Once these three steps have been followed, the user needs to determine if

the objectives have been met and if further scenarios, variations in the problem

definition (objective of the synthesis problem) are desired. If the objectives have not

been met or if other scenarios are desired, the user returns to Step 1.1 and repeats

the steps until the objectives have been met and no other scenarios are desired. The

resulting optimal processing route(s) and the corresponding information is taken to

Stage 2.

3.2.2 Superstructure database

All the information involved in the superstructure generation needs to be stored;

this includes the connections, materials, technologies, parameters and reactions. In

order to ensure that this information can be retrieved and added upon for different

situations and problems that are solved, a database has been developed. This

database is organized according to an ontology, which facilitates the easy addition

and extraction of data (Bertran et al., 2017). In total there are three sections of

data, where the first two are divided into materials and intervals, which are united

by basic data, the third section. Materials represent the arrows in the superstruc-

ture; these materials need data about composition and prices. The intervals are split

into tasks: mixing, reaction, waste separation and product separation; additionally,
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there is the addition of chemicals and utilities. All these tasks have data on the

parameters, mixing ratio, reaction conversion, and waste and product separation

factors. Furthermore, the intervals need the data describing the location in the

superstructure in terms of steps. The basic data is either shared by both material

and technology sections or multiple elements of the sections. The component

information, including properties, reactions, with the stoichiometry, and locations

are basic data. In order to store all this data in a way that makes it systematic and

easy to use, the ontology depicted in Figure 3.5 is used.

Basic Data Information that is shared across the other sections or needed by

multiple items in a section is stored here. There are three elements of this sec-

tion: components, reactions and locations. Components represent the chemical

compounds that comprise the materials and are needed to define reactions, mixing,

separation and other tasks. Compounds are stored according to component ID.

The data that needs to be provided for these includes molecular weight and pure

component properties. The reactions that are present in the intervals are stored

first according to reaction sets and subsequently reaction ID. In this section, the

stoichiometry of the reactions and their sets is stored. Finally, the locations which

are used to define the materials and the technologies are stored.

Materials Information about the materials, which are the arrows in the super-

structure, is stored in this section. The section is split into: feedstocks, materi-

als, products and utilities. The feedstock and product have data on the location,

composition, demand or availability, and price, where the composition is described

by the components from the basic information. The utilities contain information

on the heating values and the prices. The materials are all connections in the

superstructure and are only stored by name.

Technologies The data for the intervals is stored in this section. First, the pa-

rameter data for the different tasks is stored: mixing task, reaction task, waste

separation task and product separation task. For the mixing task, the chemical

compound being mixed, the base compound for the mixing, and the ratio of mixing

are the data that are needed. The reaction task stores the conversion and the

key reactant of the reaction in the intervals. This makes use of the reaction list

from the basic data section with the addition of the data relevant to the specific

interval. In the waste and product separation task, the separation factors of the

various compounds present in the interval are stored using the components from

the basic data section. In utility mixing, the mixing parameters of the utilities, from
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Figure 3.5. The structure of the database used to store the data for Stage 1
(adapted from Bertran et al. (2017)).

the materials section, at the different mixing points is specified. Finally, the position

in the superstructure is stored; this is achieved by storing the processing step and

connections. A material, from the materials section, is defined at every inlet and

outlet; when the inlet of one interval matches the outlet of another, a connection is

formed. In this way, the connections are easily stored and new connections for new

intervals can be easily added.
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The statistics of the developed database for carbon dioxide capture and uti-

lization are listed in Table 3.2. Further details on the database can be found in

Appendix B.1.

Table 3.2. The statistics of the superstructure database for carbon dioxide capture
and utilization processes.

Number of feedstocks 4
Number of technologies 91
Number of utilities 3
Number of products 13
Number of components 36
Number of reactions 37
Number of steps 24

3.2.3 Reaction path synthesis (RPS)

After the first step in the first stage, the user can decide if there is sufficient reaction

information to satisfy the objectives of the synthesis stage. If this is not the case,

reaction path synthesis is performed to generate all feasible reactions. Reaction

path synthesis involves seven steps, as shown in Figure 3.6.

In Step a, the objectives are defined. Based on the objectives of the synthesis

stage, objectives for the types of reactions and products of the reactions are defined.

This includes the number of stages in the reactions and the components that are

considered as products. Once the objectives are defined, Step b is the generation

of all the products. The products are generated using computer-aided molecular

design (CAMD) methods and tools. The constraints for these products, such as

number and type of functional groups and chain length, have been defined by

the objectives in the previous steps. CAMD generates the molecules fulfilling the

objectives and satisfying the constraints by combining groups according to combi-

natorial rules. The list of possible products for the reactions is thereby generated in

this step. Step c is then the generation of all the reactions from carbon dioxide

as a reactant to the products generated in the previous step. This step makes

use of a reaction path synthesis (RPS) tool, ProCARPS (Cignitti, 2014). This tool

makes use of stoichiometric balances and rules about the connection of certain

groups (valence electrons available for bonding). As the primary reactant, carbon

dioxide, and product, determined in the previous step, are set, any co-reactants and

byproducts need to be determined using the tool. One stage (A+B↔C(+D)), two

stage (A+B↔ E(+F); E +G↔C(+D)) or more stage reactions can be generated

via this tool. In these reactions, A is CO2, C represents a product determined in

the second step, B and G are co-reactants which are calculated using the tool, E
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Figure 3.6. Detailed Reaction Path Synthesis framework with the corresponding
workflow and data flow and the necessary methods and tools.

are intermediates also from the list of products determined in the second step, and

D and F are byproducts which are cycled through. As a result of this step, all

the reactions are generated linking carbon dioxide with the generated products in

various ways. Then, Step d screens all these reactions for thermodynamic feasibility.

To achieve this, the Gibb’s free energy ∆G is calculated and used to eliminate

thermodynamically infeasible reactions. In Step e, the remaining feasible reactions

are connected to form a reaction tree. When the product matches a reactant of

another reaction, these are linked. This reaction tree and the reactions in it are

stored in a database. In Step f, literature is scoured for data on the reactions to

verify reactio kinetics. Therefore, using literature, the kinetics of the reactions

in the network are verified and stored. Then, those reaction with kinetic and

thermodynamic data are transferred to the superstructure database in Step g.
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3.2.3.1 Reactions database

For the ease of use and the storage of the reactions for future investigation and

use in additional case studies, the results of the different stages of reaction path

synthesis need to be stored along with the reaction information obtained from

literature. Therefore, a reactions database is developed. This database is structured

to organize the information according to the steps of reaction path synthesis and

the information obtained in them. The results of each step are stored in separate

sections with the necessary information as illustrated in Figure 3.7.

Figure 3.7. The different sections of the RPS database and the data that it contains.

The reaction path database currently contains the information as listed in Table

3.3. More details on the types of products and the reactions generated are described

in Appendix B.2.

Table 3.3. The statistics of the reaction path synthesis database for carbon dioxide
capture and utilization processes.

Product targets Step b approximately 100
Single and multi-step reactions Step c over 2000
Thermodynamically feasible reactions Step d over 100
Reaction tree Step e 1
Reactions with published kinetic data Step f 37

3.2.4 Super-O

Parts of the Stage 1 workflow, indicated by the “Super-O logo” in Figure 3.4, are

implemented in a software interface named Super-O (Bertran et al., 2016). It has
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been developed in the C# platform and it automates most of the tasks in Steps

1.2 and 1.3. For given data on a problem superstructure, the Super-O interface is

able to organize the data (for the input file), do consistency checks, give a visual

representation of the superstructure, linearize any nonlinear functions, allow access

to the model for modifications if necessary, solve the optimization problem, and

open an output file of the results (Bertran et al., 2017). Further details about

the structure of Super-O and its connection to the other tools can be found in the

Appendix C.

3.3 Stage 2: Design

In Stage 2, the detailed design, simulation and analysis of the optimal processing

route(s) is performed. This problem can be more specifically defined as: given

the flowsheet topology, mass balances and energy balances, determine the detailed

equipment configuration, operation and performance specifications. The inputs

are: the processing route and the associated parameters provided from the pre-

vious stage or independently. The outputs are: the detailed process information

(including flow rates, utilities, and equipment sizing), the analyses (providing the

economic indicators, sustainability metrics and environmental impacts), and the

targets for improvement.

This stage is mathematically defined by the general design formulation (Equa-

tion 3.1). As given in Table 3.1, this stage involves the use of detailed process

models for the equality constraints and design specification and constraints for the

inequality constraints, with more complex models (in the unit operation scale)

compared with those used in Stage 1. There are fewer alternatives because the

flowsheet (processing route) is fixed and the complexity of the process models is

increased, as more details are required to accurately describe the process.

3.3.1 Workflow and data flow

Stage 2 implements traditional process design methods, which are highlighted by

the three-step procedure in Figure 3.8, showing the workflow, data flow and then

incorporated methods and tools. This stage involves three steps: (2.1) detailed

design and simulation, (2.2) process optimization, and (2.3) analysis. Note that

steps 2.1 and 2.2 of this stage may be bypassed when the processing route together

with detailed plant and/or simulation data is available, as in a retrofit problem.

In Step 2.1, the basic process flow diagram is needed to provide the topology

(the unit operations and their interconnections). In addition, the basic design

information is necessary for these units, including operating conditions, reaction
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Figure 3.8. The workflow and data flow for Stage 2 of the developed framework
along with the input methods and tools (adapted from Bertran et al. (2017)).

conversions, and feed and product material information and requirements. This

information is obtained from literature, databases and using design calculations (as

outlined in process design textbooks, including Process and Product Design Princi-
ples (J. D. Seader, 2010)). Using this basic information, the base case process is

designed and simulated using simulation software (such as Aspen Plus (AspenPlus,

2016) or SIMSCI ProII (SimSci, 2016)). The result is a base case design with

detailed information on the streams and equipment.

After Step 2.1 the user determines if the process has or has not been optimized,

in terms of operating conditions. If it has, further optimization is not always

necessary, and therefore the user can also proceed directly to Step 2.3. If it has not,

in Step 2.2, the base-case design is optimized using standard design and simulation

software to determine the optimal process, including operating conditions. The

output of Step 2.2 is also the detailed information on streams and equipment for

the optimal design.

Finally, in Step 2.3, the detailed stream and equipment information is used to

analyze the process for sustainability (economic and environmental). The tools
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that are used here include economic analysis software, such as ECON (Saengwirun,

2011), sustainability analysis software, such as SustainPro (Carvalho et al., 2013),

and life cycle analysis software, such as LCSoft (Kalakul et al., 2014). The sustain-

ability indicators and economic parameters of the process are calculated to deter-

mine the targets for further improvement of the optimized base-case. These targets

are the hot spots or areas with the largest potential for improvement. For example,

with the results of the sustainability analysis (via SustainPro (Carvalho et al., 2013)

or another software tool), indicators of material value added or energy and waste

cost can show where product or energy are being lost, so that adjustments could be

made (in Stage 3) to further improve the process and make it more sustainable.

The result of this stage is a detailed process design and analysis of a process

including hot spots (or targets) which can be used as inputs for Stage 3, if further

improvements are necessary.

3.4 Stage 3: Innovation

In the final stage, Stage 3, the targets for improvement are addressed. This is

done by applying unique process integration, process intensification and hybrid

methods. The input to this stage is the output from the previous stage, the process

design with the stream and equipment information, analysis results, and targets for

improvement. The output of this stage is the final, more sustainable design and

the corresponding equipment and stream information. Depending on the targets,

either a single method or a combination of methods is used; the workflow and data

flow is shown in Figure 3.9.

Figure 3.9. The workflow and data flow for Stage 3 of the developed framework
along with the input methods and tools.
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Stage 3 is especially important for existing processes where the desire is to find

more sustainable process alternatives, that is, the retrofit problem.

3.4.1 Process integration

Carbon dioxide capture and utilization processes are often designed and optimized

individually. However, a consideration of the interactions between processes is par-

ticularly important. Therefore, process integration can be applied; by performing

heat and/or mass integration (Klemeš et al., 2013) of the integrated processes, the

trade-offs can be accounted for. In carbon dioxide capture and utilization processes,

the connection between the capture and utilization are important as the composi-

tion and amount of carbon dioxide from the capture process affects the conversion

process. Moreover, the purity of the captured carbon dioxide, affects the energy

consumption and design of the capture process. However, there is often a trade-off

between these two elements. Therefore, by expanding the system boundary from

the individual processes to the integrated processes, as shown in Figure 3.10, it is

possible to improve the overall sustainability and optimize the energy consumption

of the integrated process. Integration can already be considered in Stage 2 and

should be performed in Stage 3 if it has not been already.

Figure 3.10. An example of extending the system boundaries from the capture
process and the utilization process individually, to considering the integrated system
with energy/utility supply.

3.4.2 Phenomena-based process intensification

In addition to considering the possible integration options, process intensification

methods can be used to generate innovative and intensified process alternatives.

Intensified equipment combines the tasks of traditional unit operations into one

intensified operation, thereby, reducing size, energy and/or waste. Process intensi-

fication methods, such as the method proposed by Lutze et al. (2013) and extended

by Babi et al. (2015), can be applied to obtain targeted process improvements; the
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phenomena-based method reduces the scale to the phenomena-scale to enable the

generation of unique equipment alternatives.

The developed method for phenomena-based synthesis and design consists of

six steps: problem definition, process analysis, phenomena identification, flowsheet

generation, screening, and optimization (Lutze et al., 2013; Babi et al., 2015). The

targets for improvement that have been identified are translated into the objective

in the first step of this method. Then, the base-case design from Stage 2 is analyzed

for mass and energy balances in the second step. Additionally, in this step, the flow-

sheet is transformed into a task-based and then phenomena-based flowsheet; the

hot-spots and the targets for improvement are also linked to specific phenomena. In

the third step, desirable phenomena, which address the targets, are identified using

different algorithms for component properties and mixing properties; additionally,

information on the phenomena is retrieved from a database. In the fourth step,

the phenomena are connected to form simultaneous phenomena building blocks

(SPBs) (Lutze et al., 2013; Babi et al., 2015), which are linked to form entire

processes. These connections are formed with the help of connectivity rules and

with logical and structural constraints. The alternatives may or may not include

intensified equipment. Subsequently, in the fifth step, the economic, environmental

and LCA analyses of the alternatives are performed. Finally, the objective function

is calculated and the processes are ranked. These processes are more sustainable

as they satisfy the objective function and the performance criteria. However, by

generating the alternatives at the phenomena level, the more sustainable alterna-

tives can consider new equipment and by addressing the targets, more sustainable

alternatives are ensured.

3.4.3 Hybrid processes

In the cases where distillation is a hot spot with high utility consumption, hybrid

processes can be considered according to the method proposed by Tula et al. (2017).

Hybrid distillation-membrane separation schemes can be synthesized and designed

via this method. It takes into account the mixture and its properties and the

challenges of the individual unit operations. The developed method consists of

five steps to achieve a design that reduces the energy consumption by at least 50%.

First, the driving force diagram is generated for the binary pair that represents the

primary separation. The driving force exploits the difference in properties that is

utilized in that separation process, such as the difference in volatility for distillation

(Bek-Pedersen and Gani, 2004). Then, in the next step, with the help of a database

of reboiler and condenser duties for various product purities, the energy required

to obtain the target purity and the intermediate purity (the purity entering the
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membrane) are determined. In the third step, the potential energy savings are

calculated (Tula et al., 2017). The hybrid process is then simulated in the fourth

step. This determines the actual energy savings of the hybrid process. Finally,

the design of the membrane process, area and cost, is performed. The result is

the optimal configuration of the hybrid separation along with the potential energy

saving and capital and operating costs.

3.5 Methods and tools

Over the course of the three stages, there are methods and tools that are used which

are shared by all or some of the stages. An overview of all the tools, including where

they are used and their function, is listed in Table 3.4 (adapted from (Bertran et al.,

2017)). In addition to those that have been described previously in Sections 3.2

- 3.4, and their subsections, simulation tools and analysis tools are described in

Sections 3.5.1 and 3.5.2.

3.5.1 Simulation tools

In order to perform the rigorous design and simulation in stages 2 and 3, simulation

tools are needed. These tools contain detailed property models, model equations

(mass balance and energy balances), equipment models and powerful calculation

tools, that are used to simulate the process and provide the necessary design in-

formation. Tools such as AspenPlus (AspenPlus, 2016) and SIMSCI ProII (SimSci,

2016) are used to achieve this.

3.5.2 Analysis tools

In order to determine the sustainability of the processing route and designed pro-

cesses across the three stages, analysis tools are implemented. There are various

types of tools that are used. They fall into three categories: economic, sustainability,

and life cycle assessment. Economic analysis tools include the tool ECON (Saeng-

wirun, 2011). In this tool, or similarly in economic tools provided by simulation

software, the economic parameters are calculated via the Guthrie Method (Seider

et al., 2008). These economic parameters include operating costs (OPEX), capital

costs (CAPEX), return on investment (ROI), and production costs. These indicators

provide an insight into the economic feasibility of the CCU processes. Then, the

tool SustainPro (Carvalho et al., 2013) can be used to analyze the process in terms

of sustainability. In this tool, factors such as energy waste consumption (EWC) and

material value added (MVA) are used to determine the “hot spots” or areas of the
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process which can be improved. And finally, life cycle analyses are performed with

the tool LCSoft (Kalakul et al., 2014), which applies ReCiPe LCI to transform the

results from the inventories to the indicators (Goedkoop et al., 2008). Through the

use of inventories and process stream and equipment data, it is possible to assess

the process acording to sustainability indicators, especially carbon footprint.

3.5.3 Evaluation criteria

The processes are all analyzed for NetCO2 as a means for comparison across the

stages. NetCO2 is defined in Equation 3.41.

NetCO2 = IndirectCO2 −UtilizedCO2 (3.41)

This criterion must be considered in evaluating an application scenario during

the second stage. When the right hand side of Equations 3.41 is negative, the

amount of CO2 that is utilized by the process is greater than the amount that is

generated making it a CO2 reducing process. However, when the NetCO2 emission

for a process alternative is positive, it should not be rejected, rather, the new

conversion process should be compared with existing conventional processes. If

the emissions are lower in the generated process alternative, then a reduction of

CO2 emission has been achieved. In other words, a relative reduction with respect

to the level of business as usual (BAU) has been achieved.

While the CO2 emission criterion has the highest priority in determining optimal

CO2 utilization processes, other factors, such as, economic indicators and sustain-

ability factors, are also considered. The processes are analyzed for sustainability ac-

cording to the IChemE sustainability metrics (Cuéllar-Franca and Azapagic, 2015).

That is, the streams entering and leaving the process are analyzed for toxicity,

environmental impact (including the global warming potential (GWP)), and the

economic feasibility (via the operating costs, capital investment, payback period,

and utility requirements). The operating costs and investments indicate to a com-

pany how much investment will be needed. Additionally, the utility requirements

are an indicator of sustainability because utilities are often associated with negative

environmental impact.
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Table 3.4. The tools used in the framework, including a description and function
(adapted from Bertran et al. (2017)).

Name Type Step Description Function
ProCAMD In-

house
RPS
Step b

Program interface for
Computer-Aided Molecular
Design

Generation of the reac-
tion products for RPS

ProCARPS In-
house

RPS
Steps c
and d

Program interface for
Computer-Aided Reaction
Path Synthesis

Generation of all, includ-
ing the thermodynami-
cally feasible, reaction
paths from carbon diox-
ide to the products in RPS

RPS
Database

In-
house

RPS
Steps
a-g

Storage system of all the in-
formation and results of re-
action path synthesis (RPS)

RPS data storage/re-
trieval

Super-
structure
Database

In-
house

1.2 and
1.3

Especially structured
system of storage for all
the information involved in
superstructure generation
and solution

Synthesis data
storage/retrieval

Super-O In-
house

1.2 and
1.3

Interface for formulation
and solution of superstruc-
ture optimization problems

User guidance through
the formulation and solu-
tion of synthesis problems
of different kinds

GAMS External 1.3 Modeling system for math-
ematical programming and
optimization

Solution of the optimiza-
tion problem

AspenPlus
or ProII

External 2.1,
2.2 and
Stage 3

Rigorous simulation pro-
grams that are used to in
the detailed design

Provide base-case, opti-
mize and innovative de-
tailed design with equip-
ment design and stream
tables

SustainPro In-
house

2.3 and
Stage 3

Tool for the sustainability
analysis

Determine sustainability
indicators and hot spots
or targets for improve-
ment

ECON In-
house

2.3 and
Stage 3

Tool for the economic anal-
ysis

Determine economic pa-
rameters and hot spots or
targets for improvement

LCSoft In-
house

2.3 and
Stage 3

Tool for life cycle assess-
ment (LCA)

Determine carbon foot-
print and other sustain-
ability indicators along
with hot spots and targets
for improvement

Process
Intensi-
fication

In-
house

Stage 3 A method that allows for
systematic process intensi-
fication based on phenom-
ena

Development of intensi-
fied process alternatives

Simulation
library

In-
house

Stages 2
and 3

Library of all the simula-
tions accross the stages

Storage/reuse of simula-
tions
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Application

Summary and significance:

In this chapter, the application of the framework is presented. The three-

stage framework is applied to the design of sustainable carbon dioxide

capture and conversion processes. In the first stage, the superstructure

is generated and optimized. Through the use of reaction path synthesis,

a complete list of conversion reactions and products is obtained. The

optimization is performed for seven scenarios, considering the influence of

the objective function, reaction conversion, location, product demand and

prices. From the first stage, dimethyl ether and dimethyl carbonate via

methanol are determined to be the most promising products via different

conversion routes. The optimal processes are then considered in Stage 2.

The design and analysis of the different processes considered is presented

and the targets for improvement are obtained. More sustainable processes,

which address these targets, are achieved in Stage 3, by the application of

intensification and hybrid methods. Through the use of a hybrid distillation-

membrane concept, the methanol part of the processes is improved and

through the use of reactive distillation, the dimethyl carbonate process can

be intensified. Each of the Stages and the results will be discussed to analyze

the results.
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The framework presented in Chapter 3 is applied to the sustainable design of

carbon dioxide capture and utilization processes. The goal is to convert carbon

dioxide from flue gas to value-added chemicals and thereby reduce emissions. The

3-stage approach is used to first determine the optimal processing route, then de-

sign the process in detail and, finally, provide more sustainable design alternatives.

4.1 Stage 1: Synthesis

In the first stage, the goal is to find the optimal processing route(s) taking carbon

dioxide captured from a coal-fired power plant to a value-added product. A coal-

fired power plant is selected as the emission source as these emissions represent

almost 30% of global emissions and therefore addressing them can provide a signif-

icant impact. This is achieved by applying the steps in the framework, which apply

the superstructure-based method.

4.1.1 Step 1.1: problem definition

First, the objectives of the synthesis problem are defined. The goal of the synthesis

stage is to find the best sustainable process to produce value-added products from

carbon dioxide. A single feedstock from the database is considered, which is car-

bon dioxide captured from flue gas from a coal-fired power plant. The objective

function is to maximize the profit with an additional ranking based on NetCO2 (see

Equation 3.41). In this case, the location of the conversion process is considered

to be the same as the location of the capture process located in the United States.

The reaction pathways yielding potential products are not known beforehand, so

they need to be generated systematically using reaction path synthesis (RPS), as

described in Section 3.2.3 and the results are presented in Section 4.1.2.

The objective function for maximizing profit is defined by Equation 4.1, which

is based on the objective function in Section 3.2, however transportation and waste

costs are not considered.

Fob j = maxZ = SPROD−CRAW −CCHEM−CUT − CCAP

τ
(4.1)

Here, SPROD is the product sales, CRAW is the cost of raw materials, CCHEM is

the cost of added chemicals, CUT is the cost of utilities, and CCAP is the capital

cost, which is a function of the project lifetime τ. These elements are defined by

Equations 3.3, 3.4, 3.5, 3.6 and 3.9, which are function of the parameters for the

product prices PPROD, raw material prices PRAW , chemical prices PCHEM and utility

prices PUT , respectively. This objective function is constrained by the equality and
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inequality constraints that are defined in the Section 3.2, which include constraints

on the mass balances (with the product amount FPROD, feedstock amount FRAW and

the reaction conversion parameter θ included in these constraints).

4.1.2 Reaction path synthesis (RPS)

The reaction pathways from carbon dioxide yielding value-added products are gen-

erated by the seven step method for reaction path synthesis (RPS). Step a trans-

lates the objectives of the synthesis problem (see Section 4.1.1) to constraints

and objectives for the RPS. As the goal is to design sustainable carbon dioxide

capture and conversion processes, the products that are produced should also fulfill

environmental criteria (non-toxic, not harmful to animals and humans, etc.). This

is translated into the limits on the constraints for the computer-aided molecular

design problem (CAMD) by limiting chain length, restricting the number of func-

tional groups, and considering only hydrogen, oxygen and carbon atoms. In Step

b, a list of over 100 products is generated (see a detailed list in Appendix B.2 Table

B.10). Step c is applied to generate a list of over 2000 one or two stage reactions

(A+B↔C(+D) and A+B↔ E(+F); E +G↔C(+D)) converting carbon dioxide,

that are chemically feasible. This is reduced to over 100 thermodynamically feasible

reactions in Step d. These reactions are linked, in Step e, to form a reaction tree,

an excerpt of which is shown in Figure 4.1 and the entire reaction tree is shown in

Appendix B.2 Figures B.1 and B.2. In Step f, the result of the literature search is a list

of 37 reactions with kinetic information (see a complete list in Appendix B.2 Table

B.11). Finally, in Step g, these 37 reactions are transferred to the superstructure

database. These reactions produce 13 products, which are listed in Table 4.1. These

products are used as the products for the superstructure.

4.1.3 Step 1.2: superstructure generation and data collection

The problem has been defined, in terms of the objective function, feedstock and

location, in Step 1.1. Then, the desired products are determined by reaction path

synthesis (Table 4.1). The superstructure is generated by linking the feedstock and

products with the appropriate processing steps and then connecting the appropriate

intervals. This is done by using the database with the stored information on the

intervals and connections. The resulting superstructure is shown in Figure 4.2.

4.1.3.1 Scenarios

For the generated superstructure, there are different scenarios that are considered

in the optimization to determine the optimal route(s) and the influential factors
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Figure 4.1. An excerpt of the reaction tree generated in Step e of reaction path
synthesis.

in the optimization. These scenarios consider different elements in the objective

function from Equation 4.1, vary parameter values (prices and reaction conversion

θ) or constrain the product amount according to demand (by varying the feedstock

amount). All of the scenarios consider the same superstructure and the connec-

tions that are present. In addition, the parameter values for mixing (chemical or

utility), waste separation and product separation are held constant in all scenarios.

The seven scenarios considered are: (1) material costs, (2) operating costs, (3)

operating and capital costs, (4) reaction conversion, (5) product price, (6) product

demand and (7) location.

Scenarios 1-3 serve to evaluate the most influential parts of the objective func-

tion in determining the optimal route. Therefore, the values for the parameters

in the model (including the prices P and reaction conversion θ) are fixed, while

the components of the objective function that are considered vary. In Scenario 1,
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Figure 4.2. The generated superstructure from captured carbon dioxide to value-
added products.
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Table 4.1. The products and by-products from the reactions that are transferred to
the Superstructure database in Step g of reaction path synthesis.

Product Number of routes
Methanol 3
Dimethyl ether 4
Succinic acid 1
Acetic acid 4
Dimethyl carbonate 4
Ethanol 1
Formic acid 1
Ethylene carbonate (by-product)
Ethylene glycol (by-product)
Propylene carbonate (by-product)
Propylene glycol (by-product)
Water (by-product)
Methane (by-product)

the objective function is a maximization of sales minus material prices, as the sales

prices SPROD, raw material costs CRAW and chemical costs CCHEM are considered.

Scenario 2 additionally includes the utility cost CUT in the objective function, which

means that the result for the objective function is the maximization of sales minus

operating costs. Scenario 3 considers the complete objective function described in

Equation 4.1, as it also includes the capital cost CCAP.

In Scenarios 4-7, the effect of varying prices, reaction conversion or product

amount based on demand on the optimal route(s) is evaluated. All these scenarios

consider the objective function for profit shown in Equation 4.1. In Scenario 4, the

reaction conversion θ is varied, while all other model parameters remain fixed, to

evaluate the potential for routes given new catalysts. For Scenario 5, the product

price PPROD, which is present in product sales SPROD in the objective function, is

varied to evaluate the influence of fluctuations in prices on the optimal route.

Scenario 6 evaluates the influence of the product demand on the optimal routes

by varying the feedstock amount FRAW , thereby limiting the product amount FPROD

accordingly. In Scenario 7, the different locations are considered by varying the

chemical PCHEM and/or utility prices PUT , which are the parameters in the cost of

chemicals CCHEM and cost of utilities CUT in the objective function.

These scenarios first evaluate the dominating element of the objective function

(Equation 4.1), by considering different elements of it. Then, while optimizing

with the same objective function, the influence of prices and reaction conversions

is investigated, as prices are variable and the reaction conversion is an important

element of carbon dioxide capture and conversion processes. Finally, the demand

is considered as this has an impact on the size of the application of the processing
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route and the amount of carbon dioxide that can be reduced. An overview of these

scenarios and the parameters that are considered or varied are listed in Table 4.2.

Table 4.2. The different scenarios considered in this work.

Scenario 1 2 3 4 5 6 7
Name Material

costs
Operating
costs

Operating
& capital
costs

Reaction
conver-
sion

Product
price

Product
demand

Location

Reaction
conver-
sion

x x x varied x x x

Feedstock
Amount

x x x x x varied x

Product
Amount

x x x x x varied x

Feedstock
Price

x x x x x x x

Product
Price

x x x x varied x x

Chemical
Price

x x x x x x varied

Utility
Price

x x x x x varied

Capital
Cost

x x x x x

4.1.4 Step 1.3: solution of the optimization problem

The superstructure generated in Step 1.2 is solved according to the seven different

scenarios. This is facilitated by the use of the software interface, Super-O. All the

data for the superstructure and the parameters is stored as an excel input file. This

input file defines all the parameters needed by the GAMS model. Using GAMS, the

optimization problem is solved and generates an excel output file. Each scenario

therefore has an input file and an output file that store the parameter values and

can therefore be stored and used to resolve the problem at any point in time. Table

4.3 lists the properties of the superstructure, which is the same for all scenarios,

and the properties of the model.

4.1.4.1 Scenarios 1-3

For the first three scenarios, the different objective function scenarios all results in

the same optimal processing route. The optimal route is the production of dimethyl

ether (DME) via combined reforming, which is shown in Figure 4.3. Table 4.4 lists

the objective function value, the overall capital cost (CAPEX) for the 10 year project
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Table 4.3. The statistics of the superstructure and the mathematical model for the
generated superstructure.

Superstructure

No. of feedstock 1

No. of products 12

No. of steps 24

No. of intervals 167

Mathematical model

No. of equations 3150683

No. of discrete variables 366

Solution time (s) 15

time, the operating costs (OPEX), the product sales, the raw material cost, the utility

cost, the chemical costs, the NetCO2, and the global CO2 reduction potential per

year.

Table 4.4. The important results for the solutions of Scenarios 1-3, 4 and 7.

Scenario 1 2 3 4 7
Route DME via

MeOH from
combined
reforming

DME via
MeOH from
combined
reforming

DME via
MeOH from
combined
reforming

Succinic
acid

Succinic
acid

Objective function
(MM USD/y)

276.0 246.5 202.9 220.8 201.6

CAPEX (MM USD) 0.0 0.0 653.8 582.1 582.1
OPEX (MM USD/y) 96.5 126.0 126.0 553.8 576.3
Sales (MM USD/y) 372.5 372.5 372.5 813.4 813.4
Raw material cost
(M USD/y)

21.4 21.4 21.4 21.4 21.4

Utility cost (MM
USD/y)

0.0 29.5 29.5 12.1 13.3

Chemical cost (MM
USD/y)

96.5 96.5 96.5 541.7 541.7

NetCO2
(kgCO2,eq /kgProd)

-0.43 0.07 0.07 0.03 0.03

Global reduction
potential (MM
tCO2,eq /y)

-33.1 -9.8 -9.8 0.002 0.002

4.1.4.2 Scenario 4

In the fourth scenario, the reaction conversions of the reactions are manipulated

(from the current reaction conversion to a maximum equilibrium reaction conver-

sion) to consider the possibility of higher reaction conversion as a result of improved

catalysts. As a result of changing reaction conversion, however, only the processing
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Figure 4.3. The superstructure with the optimal route for Scenario 1, 2 and 3
highlighted in red.
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route to succinic acid is improved enough to be more optimal. This route is shown

by the green route in Figure 4.4 and Table 4.4 lists the solution results (the objective

function, the overall capital cost (CAPEX) for the 10 year project time, the operating

costs (OPEX), the product sales, the raw material cost, the utility cost, the chemical

cost, the NetCO2, and the global CO2 reduction potential per year).

4.1.4.3 Scenario 5

The fifth scenario varies the product price to determine the price variation needed

for the different products to be optimal. By varying the product prices individually,

it is determined that the production of methanol, dimethyl carbonate, succinic acid

and acetic acid would require the smallest increase in price. The calculated prices

and the corresponding increase from the current prices are listed in Table 4.5.

Table 4.5. List of the price changes needed for the products to be selected as the
optimal route according to the economic objective function.

Product Route Price needed
(USD/kg)

increase
in price

Methanol via combined reforming 0.68 42%
Dimethyl ether (DME) via MeOH from combined

reforming
0.97 0%

Formic acid via hydrogenation 15.10 1941%
Succinic Acid via glucose fermentation 1.98 10%
Acetic acid via carbonylation of MeOH

from combined reforming
1.60 119%

Dimethyl carbonate via EC and MeOH from
combined reforming

1.60 60%

The routes for methanol, acetic acid, succinic acid and dimethyl carbonate,

which require the smallest changes in price, are shown in Figure 4.4. The im-

portant solution results, which describe the differences in the optimal routes at

the increased product prices, are listed in Table 4.6, with the objective function

maximizing profit according to Equation 4.1.

4.1.4.4 Scenario 6

In Scenario 6, the product amount is varied by varying the feedstock amount,

while considering the objective function maximizing profit (see Equation 4.1). By

adjusting the amount of carbon dioxide used to produce the different products, to

account for the demand of the products, the amount of carbon dioxide that can be

reduced changes. When the demand is considered, the objective function (profit),

NetCO2 and the global CO2 reduction vary for each route. In Figure 4.5, the results
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Figure 4.4. The superstructure in which the optimal route for Scenario 4 and 7
(succinic acid) is highlighted in green. Then, the routes for Scenario 5 are shown:
methanol in orange, dimethyl carbonate in purple, succinic acid in green and
acetic acid in blue. These routes require the smallest price changes to be deemed
economically optimal.
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Table 4.6. The solution results for the different routes in Scenario 5.

Route MeOH DMC Succinic
acid

Acetic
acid

Objective function (MM USD/y) 158.3 172.8 158.2 157.8
CAPEX (MM USD) 306.9 254.7 279.6 403.9
OPEX (MM USD/y) 93.0 245.8 395.4 342.6
Sales (MM USD/y) 282.0 444.0 581.5 540.8
Raw material cost (M USD/y) 5.3 5.3 5.3 5.3
Utility cost (MM USD/y) 20.6 14.9 8.1 25.1
Chemical cost (MM USD/y) 72.4 230.8 387.3 317.6
NetCO2 (kgCO2,eq /kgprod) 0.20 0.04 0.03 0.21
Global reduction potential (MM
tCO2,eq /y)

-19.7 -1.2 0.002 -0.37

for these three values are shown, revealing that there is a trade-off between the

profit and the amount of carbon dioxide that can be reduced.

The most promising routes, which have the highest profit with reduction po-

tential, methanol (MeOH), dimethyl ether (DME) and dimethyl carbonate (DMC),

are highlighted in Figure 4.6. The most important solution results for these routes

(objective function, NetCO2 and global reduction potential) are listed in Table 4.7.

4.1.4.5 Scenario 7

The seventh scenario considers different locations by varying the chemical and

utility prices by factors, considering the objective function in Equation 4.1. Of the

differences tested within a 10% range, only an increase by 10% in the utility prices

results in another solution. If the utility prices are increased by 10%, the optimal

route produces succinic acid. This route is shown by the green route in Figure 4.4

and the results of the objective function, etc. are listed in Table 4.4.

4.1.5 Discussion Stage 1 results

Stage 1 of the framework is applied to determine the optimal processing route(s)

and products from a single feedstock (carbon dioxide from a coal-fired power plant)

to a value added product. After Step 1.1, reaction path synthesis is used to generate

all the reaction pathways to convert carbon dioxide to value-added products. These

reactions define the products that are included in the superstructure. The super-

structure database is then used to generate the superstructure of all the alternatives

for Stage 1. This superstructure contains 26 processing routes to 13 products and

by-products. The optimization is performed considering seven scenarios.

The Scenarios 1, 2 and 3 are used to determine if material costs, utility costs
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Figure 4.5. The results for the NetCO2, profit and CO2 reduction for the different
processing routes in Scenario 6. Here, MDS is methanol direct synthesis, MCR is
methanol via combined reforming, MDR is methanol via dry reforming, DME is
dimethyl ether via direct synthesis, DME MCR and DME MDS are the two dimethyl
ether routes via methanol, DMC EC is dimethyl ether via ethylene carbonate, DMC
PC is dimethyl ether via propylene carbonate, DMC MCR and DMC MDS are the two
direct dimethyl carbonate routes from methanol, FA is formic acid, SA is succinic
acid, AA is acetic acid with the use of a membrane after the dry reforming, and AA
MCR and AA MDS are the two acetic acid routes via methanol.

or capital costs dominate the solution. In these scenarios, with the results listed in

Table 4.4, the same process is optimal in each case. The production of dimethyl

ether via methanol synthesis from combined reforming syngas, considering mate-

rial, utility and capital costs is optimal. In addition, as the breakdown of costs in

the table indicates, the chemical costs dominate the optimal route. This indicates

that if the prices of the chemicals were to change, the route might change as well.

Then in Scenario 4, the reaction conversion is varied for the reactions. As carbon

dioxide capture and conversion processes are still in early stages of development,

new catalysts or reactor configurations could be developed which improve the

reaction conversions. Therefore, it is of interest to see if this improved reaction

conversion alone would influence the optimal route. However, only one product,
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Figure 4.6. The superstructure in which the optimal routes from Scenario 6 are
highlighted; the two optimal routes for methanol are shown in blue, the two
optimal routes for dimethyl ether are shown in red and the two optimal routes
for dimethyl carbonate are shown in purple.
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Table 4.7. The results for the different routes in Scenario 6.

Route MeOH
via com-
bined
reform-
ing

MeOH
via
direct
hydro-
gena-
tion

DME via
MeOH
from
com-
bined
reform-
ing

DME via
MeOH
from
direct
hydro-
genation

DMC via
EC and
MeOH
from
combined
reforming

DMC via
EC and
MeOH
from
direct
hydro-
genation

Objective
function
(MM
USD/y)

65.2 -16.3 24.9 -2.3 58.6 7.6

Product
amount
(MM t/y)

0.75 0.75 0.10 0.10 0.10 0.10

CAPEX
(MM USD)

370.0 276.5 128.3 97.2 320.8 242.9

OPEX (MM
USD/y)

177.9 268.7 59.3 89.6 165.5 224.3

Sales (MM
USD/y)

280.0 280.0 97.0 97.0 256.2 256.2

Raw mate-
rial cost (M
USD/y)

9.7 9.7 1.9 1.9 3.8 3.8

Utility
cost (MM
USD/y)

37.3 83.0 12.4 27.7 15.8 29.5

Chemical
cost (MM
USD/y)

130.9 176.0 48.6 63.7 145.9 191.0

NetCO2
(kgCO2,eq /kgprod)

-0.02 0.20 0.07 0.06 0.04 -0.24

Global
reduction
potential
(MM
tCO2,eq /y)

-40.00 -24.50 -28.25 -28.42 -1.24 -1.52

succinic acid becomes optimal with an improved reaction conversion. This indicates

that the reaction conversion alone is generally not the most influential parameter

in the optimal solution.

Scenario 5 varies the product price until that product becomes optimal to ac-

count for the fluctuating prices as a result of the changing demand and the cost of

the typical raw materials in the industrial production. The results of this Scenario

show that succinic acid, methanol, dimethyl carbonate and acetic acid need to have

their prices increased by 10%, 42%, 60% and 119% respectively. Alternatively, the

price of the other products could decrease by these values, while the prices of the
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individual products is held constant. These four processes are therefore considered

in more detail at these prices. The results (see Table 4.6) show that the profit for

these products is similar. However, the dominant element of the objective function

varies. For methanol, the sales, chemical cost, utility cost and capital cost are

small, with the capital costs dominating the need for the increased price. Dimethyl

carbonate, on the other hand, is dominated by the operating costs, particularly

chemical costs. Both succinic acid and acetic acid routes have high sales as the

products have a higher value. However, they also have the highest chemical costs.

While the varying product price in Scenario 5 indicates the influence that the price

will have, an analysis of the breakdown of the objective functions, reveals that the

chemical costs are dominant for dimethyl carbonate, succinic acid and acetic acid.

Scenario 6 is important as it considers the plant capacity along with the global

demand to assess the potential impact of the different routes. In this scenario, the

feedstock amount is varied to vary the product amount according to the demand of

the products. The results of the profit (per kgProd), global CO2 reduction potential

and the NetCO2 are shown in Figure 4.5. This indicates that there is often a trade-

off in the carbon dioxide that can be reduced annually and the profit, for the

routes. The routes that are most profitable are: (1) dimethyl carbonate via ethylene

carbonate and methanol from combined reforming syngas, (2) dimethyl ether via

methanol from combined reforming syngas, and (3) methanol from combined re-

forming syngas. However, the reduction potential of these routes is increased when

the methanol is synthesized via direct hydrogenation. Also, dimethyl carbonate,

while the most profitable has the smallest impact of these three routes due to the

small demand. The results in Table 4.7 indicate that the operating cost for the

methanol synthesis via direct hydrogenation are higher due to the higher price

of raw materials and the increased utilities. In addition, the dimethyl carbonate

processes have the highest operating costs, but for the smaller production amount

compared to methanol, the capital costs are lower. The dimethyl ether process has

the lowest capital and operating costs, but also has the lowest sales.

In Scenario 7, the changing of the utility prices is considered to be higher or

lower by 10%. This resulted in the selection of succinic acid, when the utility

price was increased by 10%. The breakdown of the objective function results

are presented in Table 4.4. As the objective function is close enough to that for

dimethyl ether via methanol from combined reforming syngas and the utility costs

are significantly lower, the increase in the utility costs results in succinic acid being

optimal.

The scenarios show that the product price and the product demand have an

influence on the optimal route and the carbon dioxide that can be reduced. Based
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on the potential for carbon dioxide reduction and profit, four routes, which use

methanol, are selected: (1) dimethyl ether via methanol from combined reforming,

(2) dimethyl ether via methanol from direct hydrogenation, (3) dimethyl carbonate

via ethylene carbonate and methanol from combined reforming, and (4) dimethyl

carbonate via ethylene carbonate and methanol from direct hydrogenation.

4.2 Stage 2: Design

Due to the trade-offs between the reduction of CO2 and the profit, the optimal

processes are limited. The four promising routes involve the production of dimethyl

ether (DME) and dimethyl carbonate (DMC). The four routes are: (1) the pro-

duction of dimethyl ether via methanol from combined reforming, which is the

optimal route in Scenarios 1-3 (see Section 4.1.4.1), (2) the production of dimethyl

ether via methanol from direct hydrogenation as this provides a higher reduction of

carbon dioxide compared to route 1 (see Scenario 6 results in Section 4.1.4.4), (3)

the production of dimethyl carbonate via ethylene carbonate and methanol from

combined reforming, which is the most profitable (per kilogram of product) from

Scenario 6 (see Section 4.1.4.4), and (4) the production of dimethyl carbonate via

ethylene carbonate and methanol from direct hydrogenation as this also provides an

increased reduction of carbon dioxide compared to route 2 (see Scenario 6 results

in Section 4.1.4.4). The design and analysis of these four processes is performed in

Stage 2. All processes are designed to produce 0.1 million tons of product per year.

Additional details for both processes can be found in Appendix D.

4.2.1 CCU: Dimethyl ether (DME) production

The two routes for dimethyl ether (DME) production (shown in red in Figure 4.6)

are designed according to the flowsheet shown in Figure 4.7. The flow diagrams

are broken down into three parts: the carbon capture process, methanol synthesis

and dimethyl ether synthesis.

4.2.1.1 Step 2.1: detailed design and simulation

The first step in this stage, is the detailed design and simulation according to the

framework. From Stage 1, the process flow diagram along with material balances

is provided. With the use of literature (for information on catalysts and operating

conditions) and design principles (distillation column design, etc.), the equipment

is designed in detail (for example sizing) and then the process is simulated, in this

case using ProII.
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Figure 4.7. Process flow diagram of the carbon dioxide capture and conversion
processes to dimethyl ether (DME) via methanol from direct hydrogenation (right)
and combined reforming of methane (left).

Carbon capture The carbon dioxide capture process is the first part of the flow

diagram. It is a monoethyl amine (MEA) absorption/desorption process. The cap-

ture process was previously optimized to reduce the reboiler duty in the desorption

column (Fjellerup, 2015) by reducing the purity of the outlet carbon dioxide stream

from 99.9 mol% to 97.2 mol%, realizing a tenfold reduction in utility consumption.

In this section of the process, the thermodynamic model for amines is used. (See

Appendix Section D.1 for additional details.)
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Methanol synthesis There are two methanol synthesis routes considered, methanol

from combined reforming syngas and methanol from direct hydrogenation. Com-

bined reforming uses the captured carbon dioxide along with methane and steam

to produce a syngas with a 2H2:1CO ratio. For the combined reforming route, the

reforming reaction is modeled using a Gibb’s reactor, which minimizes the Gibb’s

energy in the reactor as there is no kinetic model, at 25 bar and 915◦C. The feed

to the methanol reactor needs to be compressed. This can be done by a single

compressor or by a multi-stage compressor. In this work, a multi-stage compressor

is considered. Then, the methanol synthesis reaction is modeled using a Langmuir-

Hinshelwood-Hougen-Watson (LHHW) kinetic model (Bussche and Froment, 1996)

at 60 bar and 240◦C. This model and the operating conditions are also used to

model the methanol synthesis via direct hydrogenation, which reacts the captured

carbon dioxide with hydrogen directly to produce methanol. The product from

the reactor is first flashed to separate the light gases and then distillation is used,

as there is no azeotrope present, to purify the methanol from water before the

dimethyl ether synthesis. In the simulation, Soave-Redlich-Kwong is used as the

thermodynamic model as it is appropriate for the mixture present and describes the

behavior accurately. (See Appendix Sections D.2 and D.3 for additional details.)

Dimethyl ether synthesis The dimethyl ether synthesis uses the methanol to pro-

duce dimethyl ether and water. This reaction is described by a LHHW kinetic model

(Ng et al., 1999) and the operating conditions are 10 bar and 240◦C (Prasertsri

et al., 2016). Subsequently, distillation is used to separate the dimethyl ether

and the methanol as, again, no azeotropes are present. In the simulation, Soave-

Redlich-Kwong is also used as the thermodynamic model as it is appropriate for the

mixture present and describes the behavior accurately. (See Appendix Section D.4

for additional details.)

The two integrated dimethyl ether processes are then simulated in ProII and the

flowsheets are shown in Figures 4.8 and 4.9. The detailed stream information is

provided in Appendix Section D.7.

As the operating conditions for the catalyst have been optimized previously, Step

2.2 is not performed.

4.2.1.2 Step 2.3: analysis

After the simulation is performed, the results are analyzed for economic and envi-

ronmental parameters. This is done by using the tools ECON (Kalakul et al., 2014)

and LCSoft (Kalakul et al., 2014) to obtain the economic and environmental/life

cycle impacts, respectively. Using the stream tables and the equipment information
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Figure 4.8. ProII flowsheet of the process for the synthesis of dimethyl ether from
methanol via combined reforming.
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Figure 4.9. ProII flowsheet of the process for the synthesis of dimethyl ether from
methanol via direct hydrogenation.
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from the design, the economic parameters are calculated. Some of the important

results, operating costs, capital costs and production costs, are listed in Table 4.8.

In addition, the contributions of the different units of the integrated process to

utility costs and capital costs are shown in Figures 4.10, 4.11, 4.12 and 4.13. Then,

using the tool LCSoft along with the stream and equipment information, the carbon

footprint and other environmental indicators are calculated for the processes. The

carbon footprint for each of the units confirms the breakdown of the utility costs

shown in Figures 4.17 and 4.18. The entire carbon footprint of the processes

combined with the carbon dioxide utilized in the process is used in the calculation

of the NetCO2, which is also listed in Table 4.8.

Table 4.8. Important results from the analysis of the dimethyl ether capture and
conversion processes.

DME with CR MeOH DME with direct MeOH
Capture
CAPEX (MM USD) 31.1 31.1
OPEX (MM USD/y) 69.4 69.4
Utility cost (MM USD/y) 42.3 42.3
Methanol synthesis
CAPEX (MM USD) 209.3 257.4
OPEX (MM USD/y) 205.7 233.9
Utility cost (MM USD/y) 23.6 34
Dimethyl ether synthesis
CAPEX (MM USD) 19.4 19.4
OPEX (MM USD/y) 10.5 10.5
Utility cost (MM USD/y) 5.4 5.4
Integrated process
CAPEX (MM USD) 259.8 307.9
OPEX (MM USD/y) 285.6 313.8
NetCO2 (kgCO2,eq /kgProd) 0.08 -0.17
Production cost (USD/t) 780 897
Global CO2 reduction (MM tCO2,eq /y) -9.7 -35.4

From the analysis of the utility costs, it is evident that the capture process,

the compression of methane, hydrogen, and carbon dioxide, and the distillation of

methanol are the largest contributors. Therefore, these are also the largest contrib-

utors to the carbon footprint. The capture process and the conditions have already

been optimized to reduce the reboiler duty, which is the high utility consumption,

and therefore, this is not targeted for further improvement. The compression

cannot be further improved either, as the process design already considers a multi-

stage compressor, which decreases the energy consumption but increases the capital

costs. The high utility consumption of the methanol distillation, however, has not

been previously addressed. Therefore, the reduction of the cost and the utility
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Figure 4.10. The breakdown of the utility costs for the production of dimethyl
ether (DME) via methanol (MeOH) from combined reforming (CR).

consumption of the second methanol distillation column is set as the target for

improvement.

4.2.2 CCU: Dimethyl carbonate (DMC) production

The two routes for dimethyl carbonate (DMC) production (shown in purple in

Figure 4.6) are designed according to the flowsheet shown in Figure 4.14. These

processes contain four parts: the capture process, ethylene carbonate synthesis from

CO2, methanol synthesis from CO2 and dimethyl carbonate production.

4.2.2.1 Step 2.1: detailed design and simulation

Again, from Stage 1, the process flow diagram, along with material balances is pro-

vided. With the use of literature and design principles, the equipment is designed in

detail and then the process is simulated using ProII. In these two dimethyl carbonate

production processes, the carbon dioxide capture part and the methanol synthesis

parts remain the same as in the DME processes, therefore only the ethylene carbon-

ate synthesis and dimethyl carbonate synthesis parts are described here.
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Figure 4.11. The breakdown of the utility costs for the production of dimethyl
ether (DME) via methanol (MeOH) from direct synthesis/hydrogenation (DS).

Ethylene carbonate (EC) synthesis Part of the carbon dioxide that is captured is

used in the ethylene carbonate synthesis by reacting it with ethylene oxide. This

process is performed at elevated pressure, 125 bar, and 110◦C (Kongpanna et al.,

2015, 2016). The reaction products are separated via distillation as the mixture

properties indicate this as suitable. Again, the Soave-Redlich-Kwong is used as the

thermodynamic model. (See Appendix Section D.5 for more details.)

Dimethyl carbonate (DMC) synthesis The produced methanol and ethylene car-

bonate are reacted to produce dimethyl carbonate at 10 bar and 125◦C. After the

reaction, a series of distillation columns is used to purify the products. The output

is a four-component mixture. In the first column, the unreacted methanol and

dimethyl carbonate are separated from the unreacted ethylene carbonate and the

ethylene glycol. Subsequently, water is added to the mixture, as the ethylene glycol

and ethylene carbonate cannot be separated by distillation due to the azeotrope that

forms that is not pressure sensitive. This water reacts with the ethylene carbonate to

produce ethylene glycol (Fu et al., 2016), which is simply purified by a distillation

column as the ethylene carbonate is nearly completely converted. The methanol

and dimethyl carbonate also form an azeotrope, however, this is pressure sensitive.
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Figure 4.12. The breakdown of the purchase costs for the production of dimethyl
ether (DME) via methanol (MeOH) from combined reforming (CR).

By increasing the pressure, the concentration of the mixture shifts to the side of

the azeotrope, which allows the separation of purified dimethyl carbonate and

azeotropic methanol (95 mol%), which can be recycled. An NRTL model is used

with the interaction parameters provided to properly model the interactions in this

section of the process (Wang et al., 2010).

Details on the ProII flowsheet and the stream tables are provided in Appendix

Section D.8. Again, the flowsheet conditions considered are already optimal for the

information available and therefore, Step 2.2 is not performed for these processes.

4.2.2.2 Step 2.3: analysis

Similarly to the dimethyl ether processes, the results are analyzed and the important

economic and environmental results for the two processes are listed in Table 4.9.

The detailed breakdown of the purchase costs and utility costs are calculated in the

analysis and are shown in Figures 4.15, 4.16, 4.17 and 4.18.

From the analysis of these processes, it becomes evident that again the cap-

ture process, the compression of methane, hydrogen and carbon dioxide, and the

methanol distillation contribute to the utility consumption and costs. In addition,
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Figure 4.13. The breakdown of the purchase costs for the production of dimethyl
ether (DME) via methanol (MeOH) from direct synthesis/hydrogenation (DH).

the dimethyl carbonate downstream separation contributes a large amount to the

utility consumption and the costs. Therefore, in addition to the utility consumption

of the methanol distillation (as is also the case in the dimethyl ether processes),

the high utility consumption of downstream separation of dimethyl carbonate is

targeted for improvement (reduction) in Stage 3.

4.2.3 Other processes

In addition to these four processes, there is a simulation library of all the carbon

dioxide capture and conversion simulations. These simulations include the individ-

ual capture simulations, conversion simulations to a variety of products (including

succinic acid and acetic acid), and integrated capture and conversion processes (for

example CCU to formic acid and methanol). The complete list of simulations can

be found in Appendix B.3 Table B.3.

4.2.4 Discussion Stage 2 results

In Stage 2, the four processing routes which are determined to be optimal from

Stage 1 are designed and analyzed. The results of the design and analysis show that
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Figure 4.14. Process flow diagram of the carbon dioxide capture and conversion
processes to dimethyl carbonate (DMC) via ethylene carbonate (EC) and methanol
from direct hydrogenation (right) and combined reforming of methane (left).
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Table 4.9. Important results from the analysis of the dimethyl carbonate capture
and conversion processes.

DMC via EC
with CR MeOH

DMC via EC
with direct
MeOH

Capture
CAPEX (MM USD) 31.1 31.1
OPEX (MM USD/y) 69.4 69.4
Utility cost (MM USD/y) 42.3 42.3
Methanol synthesis
CAPEX (MM USD) 209.3 257.4
OPEX (MM USD/y) 205.7 233.9
Utility cost (MM USD/y) 23.6 34
Ethylene carbonate synthesis
CAPEX (MM USD) 52 52
OPEX (MM USD/y) 22.5 22.5
Utility cost (MM USD/y) 4.7 4.7
Dimethyl carbonate synthesis
CAPEX (MM USD) 68 68
OPEX (MM USD/y) 81.8 81.8
Utility cost (MM USD/y) 30 30
Integrated process
CAPEX (MM USD) 360.4 408.5
OPEX (MM USD/y) 379.4 407.6
NetCO2 (kgCO2,eq /kgProd) 0.04 -0.22
Production cost (USD/t) 1139 1178
Global CO2 reduction (MM
tCO2,eq /y)

-1.24 -1.5

carbon dioxide capture and conversion processes to dimethyl ether and dimethyl

carbonate can be designed to be carbon dioxide reducing and profitable.

The designed process for dimethyl ether via methanol from combined reforming

can globally reduce carbon dioxide, as the NetCO2 is lower than the current indus-

trial process. Industrial methanol synthesis uses a 2-step reforming process with

0.55 kgCO2/kgProd. The dimethyl ether synthesis, which uses this methanol, has an

industrial NetCO2 of 0.99 kgCO2/kgProd. In addition, the process is profitable, as the

production costs are lower than the selling price (970 USD per ton dimethyl ether).

The dimethyl ether process via methanol from direct hydrogenation, is NetCO2

negative and profitable. However, the profit is lower than the process via methanol

from combined reforming.

Both dimethyl carbonate processes are not as profitable as the production costs

are equal to the selling price of the product and by-product (average selling price

of 1230 USD per ton). Again, the process via methanol from combined reforming

is not negative NetCO2, however, it is still lower than the NetCO2 of the industrial
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Figure 4.15. The breakdown of the purchase costs for the production of dimethyl
carbonate via ethylene carbonate and methanol from combined reforming.

process (1.28 kgCO2/kgProd). The dimethyl carbonate process via methanol from

direct hydrogenation is NetCO2 negative, but, again, not as profitable.

The processes are also analyzed for hot spots. In the economic analysis and

environmental analysis, the utility consumption of the individual units show that

the methanol distillation and the dimethyl carbonate downstream processes are hot

spots that should be targeted for further improvement to make the processes more

sustainable (economically and environmentally).

4.3 Stage 3: Innovation

The processes from Stage 2 have hot spots in the high utility consumption for the

methanol distillation (for both dimethyl ether and dimethyl carbonate processes)

and energy demand in the dimethyl carbonate downstream separation processes.

In Stage 3, the goal is to address these hot spots, by applying process intensification

and hybrid methods, as process integration has already been considered in the base

case design.
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Figure 4.16. The breakdown of the purchase costs for the production of dimethyl
carbonate via ethylene carbonate and methanol from direct hydrogenation.

4.3.1 Hybrid method

The hybrid method for distillation-membrane sequences is suited for the application

to systems where distillation is energy intensive, and is therefore applied to the

methanol distillation. In the methanol part of the carbon dioxide capture and con-

version process, the distillation sequence needs to achieve high purity methanol. As

a result, the column is large and has a high duty in the reboiler and the condenser.

This can be addressed by applying the method of Tula et al. (2017) for hybrid

distillation-membrane sequences. First, the driving force diagram is generated and

then the data from the database is extracted to obtain the energy for distillation to

90 mol% (the intermediate) and 99.5 mol% (the target). This difference is used to

calculate the potential energy savings (a 42% potential savings) in the third step.

Then, the hybrid methanol process is simulated for detailed stream and equipment

information. The distillation column is re-designed to account for the reduced

product purity, reducing the height from 30 meters to 12 meters and the duties

by 35%. Finally, the membrane area and cost are calculated using the selectivity

and permeability for the appropriate Pervatech membrane (800 square meters and

a purchase cost of 3.3 million USD over the project time of 10 years). By applying
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Figure 4.17. The breakdown of the utility costs for the production of dimethyl
carbonate via ethylene carbonate and methanol from combined reforming.

this method, the single distillation column is replaced by a distillation column and a

membrane, where the distillation column only purifies the product to 90 mol% and

the membrane is used to achieve the target 99.5 mol%, resulting in the improved

methanol processes shown in Figure 4.19. The simulation flowsheet and stream

tables are provided in Appendix E.1.

The overall methanol processes are then designed and analyzed with the im-

proved distillation design. As a result of the hybrid design, the capital cost of the

entire methanol processes is increased by 4.6 million USD (over the 10 year span).

This is a 2.2% increase for the combined reforming process and a 1.8% increase for

the direct hydrogenation process. While the capital cost of the distillation column

is reduced, the added membrane unit increases the capital costs. However, the

operating costs are reduced by 22 million USD per year, which corresponds to a 11%

reduction for combined reforming and a 9.4% reduction for direct hydrogenation.

This large reduction in the operating costs, due to the reduced utility costs, results

in a reduction of the NetCO2 by 0.02 kgCO2/kgProd.
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Figure 4.18. The breakdown of the utility costs for the production of dimethyl
carbonate via ethylene carbonate and methanol from direct hydrogenation.

4.3.2 Process intensification

The dimethyl carbonate process is also very energy intensive. As a result of the

azeotropes that form, the conventional separation involves numerous distillation

columns to obtain the product at the desired purity. The goal of this stage is to

reduce the utility consumption of the downstream processing. In order to address

this, the phenomena-based method of process intensification is applied. In the

first step of this method, the objective for Stage 3 (the reduction of the utility

consumption of the dimethyl carbonate downstream processes) is stated as the

objective for the intensification. Then, the flowsheet and simulation of the dimethyl

carbonate production part of the processes from Stage 2 are used to obtain the mass

and energy balances. The unit operations from the base case design are transformed

to tasks and then phenomena. In the third step, the appropriate 15 phenomena

building blocks (PBBs) are identified. Subsequently, these are combined to form

simultaneous phenomena building blocks (SPBs), which are over 70 SPBs, after

the use of connectivity rules (Kongpanna et al., 2016). Then, the alternatives are

generated and compared by calculating the objective function, in this case profit

(Profit = Sales - Material Costs - Utility Costs - Capital Costs). From this, it is de-
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Figure 4.19. Process flow diagram of the methanol synthesis part of the carbon
dioxide capture and conversion processes, and the hybrid design that is used to
address the targets for improvement. The left is the direct hydrogenation and the
right is the combined reforming process.
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termined that dimethyl carbonate synthesis using reactive distillation, which allows

for simultaneous reaction and separation, will provide the most improvement and

the flowsheet is shown in Figure 4.20. The simulation flowsheet and stream tables

are provided in Appendix E.2.

In this new design, the reactive distillation column is designed at 1 bar and has

the reactive section in the bottom 26 stages and the separation part in the top 7

stages. With this setup, the ethylene carbonate can be nearly 100% converted and

high purity ethylene glycol near the boiling point can be removed from the bottom

of the column. The top of the column is methanol and dimethyl carbonate near the

azeotrope. This can be separated as before with an increase in pressure. This design

is simulated providing the detailed stream and equipment information. Due to the

reduced amount of equipment and a reduction in the duty of the columns, this

intensified design provides a reduction in capital cost, operating cost and NetCO2.

The capital cost is reduced by 15.9 million USD, which is 23% of the capital cost

in the process. The operating cost is reduced by 7.8 million USD per year, which

corresponds to 9% of the operating costs. Finally, the NetCO2 is reduced by 0.01

kgCO2/kgProd. This improved and intensified process, when included in the inte-

grated carbon dioxide capture and conversion processes yields the improved results

listed in Table 4.10.

4.3.3 Overview of improved DME and DMC processes

For the capture and conversion of carbon dioxide to dimethyl ether, the target from

Stage 2 was the reduction of the utility consumption in the methanol distillation

column. This is achieved by replacing the methanol distillation with a distillation-

membrane hybrid process, as described in Section 4.3.1. The rest of the process

remains the same. With this new design (methanol with the hybrid distillation-

membrane process), the economical and environmental analysis results in the val-

ues in Table 4.10.

The dimethyl carbonate processes targeted the utility consumption in the methanol

distillation and the downstream dimethyl carbonate processing. The processes are

improved by implementing the hybrid methanol distillation-membrane process de-

scribed in Section 4.3.1 and the reactive distillation intensified dimethyl carbonate

process as explained is Section 4.3.2. As a result of the combined improvements

to the methanol distillation and dimethyl carbonate downstream processing, the

analysis values yield a reduction in the capital costs, operating costs and NetCO2

for the integrated carbon dioxide capture and conversion process. The important

analysis results for the two dimethyl carbonate routes are also listed in Table 4.10.
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Figure 4.20. Process flow diagram of the dimethyl carbonate (DMC) synthesis part
of the carbon dioxide capture and conversion processes, and the intensified design
(using reactive distillation) that is used to address the targets for improvement.



4.3. Stage 3: Innovation 103

Table 4.10. The overall results of the improved dimethyl ether and dimethyl
carbonate processes. For dimethyl ether, the methanol processes have been
improved via a hybrid distillation-membrane sequence. For dimethyl carbonate, the
methanol processes have also been improved via the hybrid distillation-membrane
sequence and the intensified dimethyl carbonate synthesis part with reactive
distillation.

improved
DME with CR
MeOH

improved
DME with
direct MeOH

improved
DMC via
EC with CR
MeOH

improved
DMC via EC
with direct
MeOH

Integrated
process
CAPEX (MM
USD)

264.4 312.5 349.1 397.2

OPEX (MM
USD/y)

263.6 291.8 349.6 377.8

NetCO2
(kgCO2,eq /kgProd)

0.06 -0.19 0.01 -0.25

Production
cost (USD/t)

710 827 1014 1053

Global CO2 re-
duction (MM
tCO2,eq /y)

-10.3 -40 -1.27 -1.53

4.3.4 Other innovative processes

In addition to the hybrid and intensified processes for the dimethyl ether and

dimethyl carbonate processes presented here, Stage 3 has been applied to some

other processes, including integration of methanol (Roh et al., 2016b) and intensi-

fication of dimethyl carbonate via other routes(such as via propylene carbonate and

urea) (Babi et al., 2015; Kongpanna et al., 2015, 2016). For dimethyl carbonate via

propylene carbonate and urea, the use of reactive distillation, pervaporation and

membrane reactors result in more sustainable, intensified processes. All simula-

tions that are available are listed in the simulation library, which can be found in

Appendix B.3 Table B.3.

4.3.5 Discussion Stage 3 results

Stage 3 applies the methods for hybrid distillation-membrane design and phenomena-

based process intensification to address the targets for improvement, which are

the reduction of utilities in the methanol distillation and the dimethyl carbonate

downstream separation. The application of these two methods results in more

sustainable processes with reduced production costs and a reduced NetCO2.

The production costs of dimethyl ether are reduced by 70 USD per ton. Despite
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the small increase in capital costs, the large decrease in utility costs results in

an overall reduction. The capital cost of the integrated processes have a capital

cost increase of 1.9% and 1.6%, for dimethyl ether via methanol from combined

reforming and dimethyl ether via methanol from direct hydrogenation, respectively.

The operating costs are decreased by 7.7% and 7.0%, respectively. In addition, the

NetCO2 is decreased by 0.02 kgCO2,eq/kgProd for both methanol synthesis routes.

However, while the process via combined reforming is still positive NetCO2, it is

less than the industrial process.

The improved dimethyl carbonate processes have reduced capital costs, operat-

ing costs and NetCO2. The decrease in the capital cost of the intensified dimethyl

carbonate process is able to offset the increase in capital cost of the hybrid methanol

distillation-membrane process. The overall reduction in capital costs for the pro-

cesses is 3.5% and 3.0% for the dimethyl carbonate production via ethylene car-

bonate and methanol from combined reforming and dimethyl carbonate production

via ethylene carbonate and methanol from direct hydrogenation, respectively. The

utility costs are reduced 5.8% and 5.5%, respectively. This corresponds to a 125

USD per ton reduction in the production cost. The overall NetCO2 is reduced by

0.03 kgCO2,eq/kgProd. Again, the process via combined reforming is still positive

NetCO2.

While both dimethyl ether and dimethyl carbonate can be made via carbon

dioxide conversion routes that are sustainable with the framework, the production

cost is still high and therefore the profit margin is small. Through the incorporation

of the hybrid distillation-membrane process and reactive distillation (intensified)

process, the base case design can be made more sustainable and the targets for

improvement are addressed. The processes using methanol from direct hydrogena-

tion are able to reduce more carbon dioxide. However, the cost of the hydrogen

needed, is currently too high when compared with the methanol from combined

reforming syngas. In order to make these carbon dioxide capture and conversion

processes more economically competitive, hydrogen needs to be cheaper and more

sustainable and the carbon dioxide capture processes need to be given incentives to

offset the capture cost.

4.4 Summary of results and discussion

The developed framework has been applied to the design of carbon dioxide capture

and converison processes to value-added chemicals. By considering seven scenarios

in Stage 1, it is possible to evaluate the influence that different parameters have on

the optimization. Then, four processes to dimethyl ether and dimethyl carbonate
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are designed and analyzed in Stage 2. These processes are profitable and carbon

dioxide reducing. However, the profit is low as the production costs are close to the

selling prices. The energy consumption and cost of the methanol distillation and

dimethyl carbonate production can be improved and the targets for improvement

are determined to be to reduce the energy consumption of the methanol distilla-

tion and the dimethyl carbonate downstream separation. In Stage 3, through the

use of a hybrid distillation-membrane in the methanol distillation and an inten-

sified reactive distillation process for the dimethyl carbonate, the targets can be

addressed. Overall, the operating costs and NetCO2 of the processes are reduced by

this. Through the application of the computer-aided framework, more sustainable

design alternatives for the production of dimethyl ether and dimethyl carbonate are

obtained.

The results show that there is a trade-off in the profitability and the carbon

dioxide reduction for most processes. In addition, while most processes are car-

bon dioxide reducing (they emit less carbon dioxide than the industrial standard

process), it is difficult to make the processes NetCO2 negative. This is the result

of the need for sustainable hydrogen and energy for these processes. In addition,

the overall impact of carbon dioxide capture and utilization processes is minimal as

only a fraction of the emissions can be reduced.
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Perspectives

Summary and significance:

In this chapter, some perspectives on carbon dioxide capture and utilization

are presented. Through the development and implementation of the frame-

work, insights are obtained on the potential and some of the limitations

of carbon dioxide capture and utilization processes. These include the

interaction it can play with existing technology and new technology, the

need for other sustainable materials, in particular hydrogen and energy,

and the role that CCU can play in addressing climate change and mitigating

emissions.

Outline:

5.1 Need for sustainable hydrogen and energy . . . . . . . . . . . 108

5.2 Interaction with other technology and existing infrastructure . 109

5.3 Role of CCU in carbon mitigation . . . . . . . . . . . . . . . . 111
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Sustainable carbon dioxide capture and utilization, particularly conversion, pro-

cesses can be designed according to the presented framework (see Chapter 3), as

is shown through the application (see Chapter 4). However, in the application, it

becomes evident that there is often a trade-off in the profitability and the carbon

dioxide that can be reduced. In addition, the type of the energy supply and other

raw materials influence the ability of the process to reduce carbon dioxide as well

as the profitability. In the next three sections, the need for sustainable raw materials

and energy, the interaction with existing industrial processes, and the potential role

of carbon dioxide capture and utilization processes can have are investigated.

5.1 Need for sustainable hydrogen and energy

Carbon dioxide capture and utilization, particularly conversion, often requires elec-

tricity and hydrogen. The processes use energy in compression and separation. In

addition, the processes require certain reactants that carry the energy needed to

react with the stable carbon dioxide molecule. Hydrogen is a common reactant

that achieves this. However, the energy and the hydrogen that are used need to be

sustainable in order for the entire carbon dioxide capture and conversion process

to be sustainable.

Sustainable energy can be produced from renewable or alternative sources,

including wind, water, solar, biomass and waste. However, these technologies are

still being further developed to be competitive and efficient. Currently, therefore,

these energy sources are still being expanded and are not able to supply the needed

amounts. In order to achieve the goals of carbon mitigation, the development of

these new energy sources and technologies is needed.

Traditionally, hydrogen is produced via steam methane reforming (SMR) of

natural gas or coal gasification (Häussinger et al., 2011). However, these two

processes result in a large amount of carbon dioxide emissions, which is not sustain-

able, especially for processes with the goal of reducing carbon dioxide emissions.

For carbon dioxide capture and conversion processes, using hydrogen that is not

sustainable results in higher emissions than can be utilized. Therefore, alterna-

tives need to be evaluated for obtaining the hydrogen necessary for the conversion

process; the hydrogen can be obtained via more sustainable means or from waste

streams in industrial processes. Around the globe there are waste streams contain-

ing hydrogen that are generated in industrial plants, such as refineries or ammonia

plants (Häussinger et al., 2011). The quantity and composition of these streams

varies. However, most industries currently reuse these waste streams as fuel. These

waste streams can be considered free, except for the associated replacement of
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the heating value in the processes. In spite of the presence of some impurities, the

utilization of such waste streams may become a favorable option. The exact amount

of these streams and the cost of replacing them is currently not well publicized, and

therefore other options for sustainable hydrogen are also needed. Alternatively,

hydrogen can be produced via electrolysis of water using renewable sources of

energy, such as water, solar, wind or biomass, to power the electrolysis. Using

these energy sources results in hydrogen that emits less carbon dioxide than the

traditional routes (SMR or gasification) (Carbon Recycling International (CRI),

2017). The influence of the hydrogen source on the NetCO2 and cost of production

for methanol is investigated by Roh et al. (2016b). As these results show, for all the

cases considered, it is evident that less NetCO2 emissions are obtained compared to

hydrogen from steam methane reforming. Nevertheless, the methanol production

costs for all the renewable hydrogen feed source cases exceed the methanol market

price.

While sustainable energy and hydrogen is needed to ensure that the carbon

dioxide capture and conversion processes are NetCO2 reducing, further develop-

ment or financial compensation are needed to improve the economics of the pro-

cesses. Currently, the sustainable hydrogen and energy are too expensive and make

the processes using carbon dioxide less competitive.

5.2 Interaction with other technology and existing

infrastructure

In addition to the sustainability of the raw materials and energy, the realistic imple-

mentation of carbon dioxide capture and conversion needs to be considered.

The first element that needs to be discussed is the compatibility with existing

infrastructure. While all the reduction methods need to be considered, the promise

of carbon capture and utilization technology lies not only in the economic potential,

but also in the similarity to existing technology. While some of the catalysts and

solvents still are being developed, the general technology already exists (pumps,

columns, tanks, etc.). Therefore, this can be quickly implemented in industrial

settings. In addition, it is compatible with pipelines and other transportation infras-

tructure. The products formed in the utilization processes are traditional products

that have existing infrastructure for the supply chain. In contrast, sequestration

technology and innovative energy reducing technology, still needs to be developed

and therefore cannot be directly implemented in the current infrastructure, and

technology with improved efficiency still needs to be developed.

There is potential in carbon dioxide capture and utilization in integration with
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other new technology. Carbon dioxide emissions are a waste material that can be

used as a feedstock. Similarly, certain biomass processes are being developed from

material waste products. The goal of these processes is to use such feedstocks to

develop more sustainable energy and products. However, while these processes use

renewable and alternative feedstocks, they are not always more sustainable. Espe-

cially since they also produce emissions to some extent. Therefore, carbon dioxide

capture and utilization processes can be integrated with such new and innovative

processes to make use of the emissions and produce more of the same or other

products. This is considered by the work of Martín and Grossmann (2016). Martín

and Grossmann (2016) designed a carbon dioxide hydrogenation-based methanol

production facility integrated with switchgrass gasification units that produce the

syngas for methanol production. The carbon dioxide feedstock is captured from

the syngas produced from the switchgrass gasification and the hydrogen feedstock

is produced via water splitting with wind and solar power. They conclude that

the designed process can only be used in regions where wind velocity and solar

radiation are high enough such as the US Midwest or the South of Europe. Similarly,

the interactions for other products and bioprocesses can be investigated. There is

the potential that the bioprocesses have by-products that can be raw materials for

carbon dioxide conversion processes and vice versa.

Carbon dioxide capture and utilization technology, as mentioned, is promising,

however, the interaction with the other reduction methods is important. Carbon

capture and sequestration is immature and the consequences are unknown. There

is also no economic incentive (via carbon tariffs or tax breaks for capture) to capture

and sequester as there is no valuable product produced and there are only costs.

Alternatively, methods of improving the efficiency of processes can truly solve part

of the problem of increasing emissions as they do not just transform or remove emis-

sions after being produced, but rather the emissions are avoided. However, these

technologies have not been developed yet. Also, there is a cost associated with de-

veloping and replacing the equipment with more efficient technology. Meanwhile,

carbon dioxide capture and utilization, at least in part, can be directly integrated in

industry and power plants as the equipment and products are the same. Thereby, it

can serve as an immediate and intermediate step in the solution towards reducing

carbon dioxide emissions. In addition, the revenue from the commercial products

can be used to offset the costs of developing and implementing the other reduction

methods. In this way, carbon capture and utilization is especially promising an

immediate solution and a bridge between current and future technology. As, the

amount that can be reduced with utilization is limited (North and Styring, 2015),

it is only part of the solution.
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5.3 Role of CCU in carbon mitigation

The sustainable design of carbon dioxide capture and utilization processes can be

realized. Through the application of the framework, this has been shown for the

production of dimethyl ether and dimethyl carbonate. Both dimethyl ether and

dimethyl carbonate can be produced via carbon dioxide conversion processes that

are profitable and carbon dioxide reducing. However, it is difficult to make the pro-

cesses NetCO2 negative. Only the routes using direct hydrogenation with hydrogen

from sustainable sources are NetCO2 negative, in the application of the developed

framework. The designed processes shown in Chapter 4, however, are often more

expensive than the current industrial standard as a result of the expensive materials

and energy required. In addition, the amount of carbon dioxide emissions that can

be reduced is small compared to the global emissions. As is shown in Figure 5.1,

the amount of emissions that can be reduced by producing various products from

carbon dioxide capture and conversion is limited. Of the hundreds of power plants,

only a fraction (approximately 1%) can be reduced in this way.

Figure 5.1. The number of power plants (considering emissions from a 150
MW coal-fired power plant) whose carbon dioxide emissions can be offset by the
production of the products via carbon dioxide capture and conversion processes.

Although carbon dioxide capture and conversion processes are sustainable and

reduce carbon dioxide, only a fraction can be reduced due to the limited number

of products and the small demand. The largest impact comes from methanol and

dimethyl ether, due to the highest demand. In order for carbon dioxide capture and
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conversion to play a substantial role in reducing carbon dioxide emissions, more

bulk chemicals produced via carbon dioxide conversion should be investigated.

Climate change cannot be ignored and methods of addressing this need to be

considered. In order to ensure that the damage is not irreversible, drastic and

immediate actions are needed. Alone, carbon dioxide capture and utilization can

only offset a fraction of the emissions. However, it can serve as a bridge between

existing technology and future practices. In order to realize its implementation,

along with the research and development for future technology, both economic and

regulatory incentives are required. The costs of changing the existing processes

and the production costs of the utilization processes is too high to motivate in the

current situation. Carbon dioxide tariffs and incentives for innovative technology

are necessary to motivate commercial and industrial realization. Sustainability and

the reduction of carbon dioxide emissions requires the attention of research and

development to provide technical solutions, regulatory incentives to motivate the

economic shift to alternative processes, and societal acceptance of these alternative

technologies.
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Conclusions & Future work

6.1 Conclusions

In order to help address climate change issues and reduce carbon dioxide emissions,

a framework for the sustainable design of carbon dioxide capture and utilization

processes, particularly conversion processes, has been developed and applied. This

computer-aided framework consists of three stages: (1) synthesis, (2) design, and

(3) innovation. By decomposing the problem into these three stages, simpler mod-

els are used to first select from a large number of process alternatives and then more

detailed models are used to rigorously design, analyze and improve the optimal

process(es).

The framework has been used to design sustainable carbon dioxide capture and

conversion processes from coal-fired power plant flue gas to value-added chemicals.

The goal is to determine the optimal processing route to produce a product and sub-

sequently design the process to be sustainable. This considers the single feedstock

and the capture of carbon dioxide using monoethyl amine (MEA) absorption. In

Stage 1, the superstructure-based optimization method is used to determine the

optimal route(s) from a large number of alternatives. Seven different scenarios,

which vary elements of the objective function or parameters, are considered to

evaluate the influence of key model parameters (prices, reaction conversion, etc.)

on the optimization. The results show that the primary influence on the selection of

the optimal route is the product and material costs. In addition, when the demand

for the products is considered, it becomes evident that there is often a trade-off

in the profit and the carbon dioxide reduction. By considering the processes with

the largest impact in carbon dioxide emission reduction and the profitability, four

processes, producing dimethyl ether or dimethyl carbonate from carbon dioxide,

are selected. These four routes are:
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1. Dimethyl ether synthesis via methanol from combined reforming syngas

2. Dimethyl ether synthesis via methanol from direct hydrogenation of carbon

dioxide

3. Dimethyl carbonate synthesis via ethylene carbonate and methanol from com-

bined reforming syngas

4. Dimethyl carbonate synthesis via ethylene carbonate and methanol from di-

rect hydrogenation of carbon dioxide.

After the design and analysis in Stage 2, all four processes can be profitable and

carbon dioxide reducing. However, economic evaluation has shown small profit,

as the production costs are close to the selling price. Also, only the routes using

methanol from direct hydrogenation are NetCO2 negative, where more carbon

dioxide is utilized than emitted. In addition, the breakdown of the utility costs and

purchase costs for the four processes indicate that the methanol distillation (for all

four processes) and dimethyl carbonate downstream process (for the two dimethyl

carbonate processes) are hot spots and can be improved (targets for improvement).

In Stage 3, by applying the methods for design of hybrid distillation-membrane

separations and phenomena-based intensification, more sustainable processes are

found to address these targets. The methanol distillation is improved by introduc-

ing a hybrid distillation-membrane process, reducing the utility consumption by

approximately 10%. The dimethyl carbonate process is intensified by introducing

reactive distillation, thereby reducing the number of separation steps required. The

intensified process reduces the capital costs and the operating costs by 23% and

9%, respectively.

The computer-aided framework requires large amounts of data, which moti-

vates the development of databases to store the information. This includes the

reaction path synthesis database and the superstructure database. The reaction

path synthesis database stores all the information collected from the application of

the reaction path synthesis method, which is incorporated in the framework. These

reactions are stored so they may motivate further research in certain conversion

reactions, as not all have kinetic information available now. The superstructure

database is systematically structured and contains a collection of carbon dioxide

capture and conversion technologies, which previously was not organized. This

organizes information pertaining to the process technologies, including reactions,

separations, and utilities. This database can facilitate the storage of alternatives for

comparison among alternatives with future technologies in Stage 1.
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The application of the framework and the scenarios considered also provide

some insights into: (1) the role of carbon dioxide capture and utilization in carbon

mitigation, (2) the importance of sustainable hydrogen and energy, and (3) the

integration of these processes with infrastructure, industry and other reduction

methods. While carbon dioxide capture and utilization processes can reduce carbon

dioxide emissions, they can only offset a fraction of the emissions. Therefore, it

is necessary that other carbon dioxide reduction methods are considered in con-

junction. As carbon dioxide capture and utilization processes are technologically

mature, they can serve as a bridge between the existing status of industry and

future technologies. They are able to provide an economic incentive that can

help offset the costs of capture and the development and implementation of new,

more efficient technology. However, in order to make these processes competitive,

the development of cheaper, more sustainable hydrogen and energy will play a

large role. Without the production of energy and hydrogen from renewable and

alternative sources, such as wind, solar, biomass and waste, the development of

sustainable processes cannot address the global issues.

In order to address climate change issues, a variety of drastic measures are

needed. Carbon dioxide capture and utilization can play an integral part in the

transition from current practices to future, more sustainable practices. This project

introduces a framework that can help in the sustainable design of these carbon

dioxide capture and utilization processes. In addition, some insights on the sustain-

ability and role of carbon dioxide capture and utilization processes are presented.

6.2 Future work

While a framework for the sustainable design of carbon dioxide capture and uti-

lization processes has been developed and applied, there are still areas for future

work.

First of all, the developed framework has only been applied considering one

carbon dioxide emission source and one method of capture. However, it would

greatly expand this work, if multiple carbon dioxide sources and capture methods

were considered. This would not only provide insight into what conversion process

and product to produce, but what capture process to use for the carbon dioxide

source.

Secondly, the application of the framework is only considered for single loca-

tions. That is, the capture and conversion processes are located together. However,

this will not always be the case. Therefore, the transportation between capture

and conversion locations needs to be considered. Depending on the location of the
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emission source, the chemical conversion process cannot be easily incorporated into

the infrastructure. The chemical industry has already established a market for the

products that would be produced and has the equipment and necessary materials

for the conversion processes. In addition, the locations considered vary the utility

and chemical prices. However, when these are considered, the varying cost of the

capture process is not considered, as this part of the process is fixed. Therefore,

different locations and the transportation between them should be considered to

assess the economic feasibility and the environmental impact with transportation.

Additionally, the impact of the corresponding utility price on the selection of the

optimal capture process and cost can be investigated.

The databases that are incorporated in the framework should also be expanded.

The superstructure database provides an organized collection of the conversion

technologies that have been developed to different value-added products. This

database should be expanded as more process technologies are developed (includ-

ing new catalysts and reactors) and with more feedstock and capture alternatives.

This organized database provides a source that can be used for further research in

carbon dioxide capture and conversion processes. Reaction path synthesis is also

applied to determine all the reactions converting carbon dioxide. While there are

numerous literature sources, this systematic method allows the systematic genera-

tion of all reactions also those that have not been investigated experimentally. The

result of this can help guide research on which reactions should be focused on as

they have potential for carbon dioxide conversion.

As carbon dioxide capture and utilization is a field of growing importance, the

continuation and elaboration of this work can help in the sustainable design of the

processes and in indicating the need for other carbon dioxide reduction methods.
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esis, Chulalongkorn University, 2015
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3. C. C. Plaza. Sustainable carbon dioxide capture and conversion process de-

sign. mathesis, Technical University of Denmark, June 2016

4. W. Prasertsri, R. Frauzem, U. Suriyapraphadilok, and R. Gani. Sustainable

DME synthesis-design with CO2 utilization. In Z. Kravanja and M. Bogataj,

editors, 26th European Symposium on Computer Aided Process Engineering,

pages 1081–1086, Portorož, Slovenia, 2016. Elsevier BV

5. 26th European Symposium on Computer Aided Process Engineering (ESCAPE26)

in Portorož, Slovenia: oral presentation titled "Sustainable DME synthesis-

design with CO2 utilization" presented by Weeranut Prasertsri

6. A. Wisutwattana, R. Frauzem, U. Suriyapraphadilok, and R. Gani. Intensi-

fication of ethylene glycol production process. In A. Espuña, M. Graells,

and L. Puigjaner, editors, Proceedings of the 27th European Symposium on
Computer Aided Process Engineering – ESCAPE 27, volume 40 of Comput. Chem.
Eng., pages 1135–1140. Elsevier BV, 2017

7. 27th European Symposium on Computer Aided Process Engineering (ESCAPE27)

in Barcelona, Spain: poster presentation titled "Intensification of ethylene

glycol production process" presented by Apiwit Wisutwattana

Through these papers and presentations and any future papers and presenta-

tion, this PhD project has been presented internationally.



AppendixB

Superstructure

Stage 1 of the framework involves the superstructure-based optimization; the su-

perstructure model, the databases and the other tools of this stage are presented in

Section 3.2. For the databases presented, further information about the information

contained in them is presented in Section B.1, B.2 and B.3.

B.1 Superstructure database

The superstructure database is structured and contains the statistics presented in

Section 3.2.2. The details on feedstocks, products, intervals, etc. are presented in

this appendix.
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Table B.1. Components in the database.

ComponentID ComponentName Formula MolarWeight

carbondioxide carbon dioxide CO2 44

carbonmonoxide carbon monoxide CO 28

hydrogen hydrogen H2 2

water water H2O 18

methane methane CH4 16

methanol methanol CH4O 32

dimethylether dimethyl ether C2H6O 46

ammonia ammonia NH3 17

urea urea N2H4CO 60

propyleneoxide propylene oxide C3H6O 58

propylenecarbonate propylene carbonate C4H6O3 102

ethyleneoxide ethylene oxide C2H4O 44

ethylenecarbonate ethylene carbonate C3H4O3 88

dimethylcarbonate dimethyl carbonate C3H6O3 90

propyleneglycol propylene glycol C3H8O2 76

ethyleneglycol ethylene glycol C2H6O2 62

formicacid formic acid CH2O2 46

glucose glucose C6H12O6 180

succinicacid succinic acid C4H6O4 118

aceticacid acetic acid C2H4O2 60

methylacetate methyl acetate C3H6O2 74

ethane ethane C2H6 30

propane propane C3H8 44

nitrogen nitrogen N2 28

hydrogensulfide hydrogen sulfide H2S 34

butane butane C4H10 58

oxygen oxygen O2 32

argon argon Ar 40

monoethylamine monoethylamine C2H7N 45

ethylene ethylene C2H4 28

ethanol ethanol C2H6O 46

propanol propanol C3H8O2 60

monohydrogen monohydrogen H 1

malicacid malic acid C4H6O5 134

pyruvicacid pyruvic acid C3H4O3 88

butanol butanol C4H10O 74
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Table B.2. Reaction sets in the database.

ReactionSetID ReactionSetName No. Reac-

tions in Set

Sequential?

cr combined reforming of natural gas

to produce syngas (M=2)

1 no

dr dry reforming of natural gas to pro-

duce syngas (M=1)

2 yes

meohdirsyn MeOH synthesis from CO2 and H2 2 no

meohsyn MeOH synthesis from syngas

(M=2)

2 yes

meohsyn2 MeOH synthesis from syngas

(M=1)

2 no

dmemeohsyn DME synthesis from MeOH 1 no

dmedirsyn DME synthesis from syngas (M=1) 3 yes

ureasyn urea synthesis from NH3 and CO2 1 no

ecsyn EC synthesis from EO and CO2 1 no

pcsyn PC synthesis from PO and CO2 1 no

dmcdirsyn DMC synthesis directly from CO2

and methanol

1 no

dmcureasyn DMC synthesis from urea 1 no

dmcecsyn DMC synthesis from EC 1 no

dmcpcsyn DMC synthesis from PC 1 no

aasyn acetic acid synthesis from methanol

and CO

2 yes

fasyn formic acid synthesis from CO2 and

H2

1 no

etohsyn ethanol synthesis from CO2 and H2 10 no

sasyn succinic acid synthesis by glucose

fermentation

4 no
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Table B.3. Reactions in the database.

ReactionID ReactionSetID Components Reaction

cr-1 cr 5 3CH4 +2H2O+CO2↔ 4CO+8H2

dr-1 dr 4 CH4 +CO2↔ 2CO+2H2

dr-2 dr 4 CO2 +H2↔CO+H2O

meohdirsyn-1 meohdirsyn 4 CO2 +3H2↔CH3OH +H2O

meohdirsyn-2 meohdirsyn 4 CO2 +H2↔CO+H2O

meohsyn-1 meohsyn 4 CO+H2O↔CO2 +H2

meohsyn-2 meohsyn 4 CO2 +3H2↔CH3OH +H2O

meohsyn2-1 meohsyn2 3 CO+2H2↔CH3OH

meohsyn2-2 meohsyn2 4 CO+H2O↔CO2 +H2

dmemeohsyn-

1

dmemeohsyn 4 2CH3OH↔CH3OCH3 +H2O

dmedirsyn-1 dmedirsyn 4 CO+H2O↔CO2 +H2

dmedirsyn-2 dmedirsyn 3 CO+2H2↔CH3OH

dmedirsyn-3 dmedirsyn 3 2CH3OH↔CH3OCH3 +H2O

ureasyn-1 ureasyn 4 CO2 +2NH3↔ NH2CONH2 +H2O

ecsyn-1 ecsyn 4 CO2 +C2H4O↔ (CH2O)2CO

pcsyn-1 pcsyn 4 CO2 +C3H6O↔CH3(C2H3O2)CO

dmcdirsyn-1 dmcdirsyn 4 CO2 +2CH3OH↔ OC(OCH3)2 +H2O

dmcureasyn-1 dmcureasyn 4 NH2CONH2 + 2CH3OH ↔
OC(OCH3)2 +2NH3

dmcecsyn-1 dmcecsyn 4 (CH2O)2CO + 2CH3OH ↔
OC(OCH3)2 +(CH2OH)2

dmcpcsyn-1 dmcpcsyn 4 CH3(C2H3O2)CO + 2CH3OH ↔
OC(OCH3)2 +C3H8O2

fasyn-1 fasyn 3 CO2 +H2↔CHOOH

sasyn-1 sasyn 5 C6H12O6 + 2CO2 + 4H ↔ 2C4H6O4 +

2H2O

sasyn-2 sasyn 2 C6H12O6 +2CO2↔ 3CH3COOH

sasyn-3 sasyn 3 C6H12O6↔ 2CH3COCOOH +4H

sasyn-4 sasyn 3 C6H12O6 + 2CO2 ↔
COOHCH2COHCOOH

etohsyn-1 etohsyn 4 2CO2 +6H2↔CH3CH2OH +3H2O

etohsyn-2 etohsyn 4 3CO2 +7H2↔CH3COOCH3 +4H2O

etohsyn-3 etohsyn 4 CO2 +4H2↔CH4 +2H2O

etohsyn-4 etohsyn 4 2CO2 +7H2↔C2H6 +4H2O

etohsyn-5 etohsyn 4 4CO2 +13H2↔C4H10+8H2O

etohsyn-6 etohsyn 4 3CO2 +10H2↔C3H8 +6H2O
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etohsyn-7 etohsyn 4 3CO2+9H2↔CH3CH2CH2OH+4H2O

etohsyn-8 etohsyn 4 CO2 +3H2↔CH3OH +H2O

etohsyn-9 etohsyn 4 4CO2 +12H2↔CH3CH2CH2CH2OH +

7H2O

etohsyn-10 etohsyn 4 CO2 +H2↔CO+H2O

aasyn-1 aasyn 4 2CH3OH +CO↔CH3COOCH3 +H2O

aasyn-2 aasyn 4 CH3COOCH3 + H2O ↔ CH3COOH +

CH3OH

Table B.4. Feedstocks in the database

FeedstockID FeedstockName Components LocationID Price

highpurCO2 high-purity CO2 4 US 0

USD/t

MEACO2 CO2 from MEA Capture 2 CA 74 US-

D/t

coalCO2_1 flue gas from coal-fired power

plant

3 CA 0

USD/t

NG natural gas for sweetening 12 US 37 US-

D/t

Table B.5. Utilities in the database.

UtilityID LocationID Price

electricity US 0.0664 USD/kWh

hp steam US 0.0066 USD/kg steam

coolingwater US 0.00011 USD/kg CW
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Table B.6. Products in the database

ProductID LocationID Price Demand Plant size

MeOH US 0.48 USD/kg 70 million metric

tons

0.75 million met-

ric tons/year

H2O US 0.00011 USD/kg

DME US 0.97 USD/kg 30 million metric

tons

0.1 million metric

tons/year

DMC US 1 USD/kg 1 million metric

tons

0.1 million metric

tons/year

NH3 US 0.48 USD/kg 55 million metric

tons

EG US 1.45 USD/kg 12 million metric

tons

0.75 million met-

ric tons/year

PG US 2.06 USD/kg 1.5 million metric

tons

0.1 million metric

tons/year

EC US 1.75 USD/kg 0.5 million metric

tons

AA US 0.73 USD/kg 6 million metric

tons

0.5 million metric

tons/year

FA US 0.74 USD/kg 0.75 million met-

ric tons

0.1 million metric

tons/year

SA US 1.8 USD/kg 0.2 million metric

tons

0.02 million met-

ric tons/year

EtOH US 1.13 USD/kg 75 million metric

tons

0.3 million metric

tons/year

CH4 US 0.37 USD/kg
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Table B.7. Materials in the database.

MaterialID MaterialName MaterialDescription

coalMEACO2 coalMEACO2 CO2 from MEA capture of coal-fired power plant

flue gas

coalCO2_1 coalCO2_1 CO2-containing flue gas from coal-fired power

plant

M1 coalCO2+MEA coalCO2_1 mixed with MEA solvent

M2 loadedMEA loaded MEA from CapABS1

M3 capturedCO2 CO2 captured from coal-fired power plant flue gas

M4 feedCR feed mixture (CO2, CH4, H2O) for combined re-

forming

M5 feedDR feed mixture (CO2, CH4) for dry reforming

M6 Crout outlet of combined reforming reactor

M7 DR1out outlet of dry reforming reaction 1

M8 DR2out outlet of dry reforming reactor

M9 feedmeohdirsyn feed mixture (CO2, H2) for methanol direct hydro-

genation

M10 feedmeohsyn feed mixture for methanol synthesis from syngas

(M=2)

M11 feedmeohcosyn feed mixture for methanol synthesis from syngas

(M=1)

M12 feedfasyn feed mixture (CO2, H2) for formic acid synthesis

M13 feedsasyn feed mixture (CO2, glucose) for succinic acid syn-

thesis

M14 feedetohsyn feed mixture (CO2, H2) for ethanol synthesis

M15 meohdirsynout outlet of methanol direct synthesis reactor

M16 meohsyn1out outlet of methanol synthesis from syngas (M=2)

reaction 1

M17 meohcosyn1out outlet of methanol synthesis from syngas (M=1)

with H2 addition

M18 meohcosyn2out outlet of methanol synthesis from syngas (M=1)

without H2 addition

M19 dmedirsyn1out outlet of dme direct synthesis reaction 1

M20 fasynout outlet of formic acid synthesis reactor

M21 sasynout outlet of succinic acid synthesis reactor

M22 etohsynout outlet of ethanol synthesis reactor

M23 meohsyn2out outlet of methanol synthesis from syngas (M=2)

reaction 2

M24 dmedirsyn2out outlet of dme direct synthesis reaction 2

M25 dmedirsyn3out outlet of dme direct synthesis reaction 3
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M26 flash1.1out raw methanol stream from flash 1.1

M27 flash1.2out raw methanol stream from flash 1.2

M28 flash1.3out raw methanol stream from flash 1.3

M29 dist1.1out raw dme stream from dist 1.1

M30 flash1.4out raw formic acid stream from flash 1.4

M31 reactex1.1 raw succinic acid from reactex 1.1

M32 flash1.5top top product (raw methane) from flash 1.5

M33 flash1.5bottom bottom product (raw ethanol) from flash 1.5

M34 flash1.6top top product (raw CO) from flash 1.6

M35 flash1.6bottom bottom product (raw methanol) from flash 1.6

M36 dist2.1out raw methanol stream from dist 2.1

M37 dist2.2out raw methanol stream from dist 2.2

M38 flash2.1out raw methanol stream from flash 2.1

M40 dist2.4out raw formic acid stream from dist 2.4

M41 vacdist2.1out raw succinic acid from vacdist 2.1

M43 flash2.2out raw methanol stream from flash2.2

M44 crystalizer3.1out raw succinic acid stream from crystalizer 3.1

M45 dist3.5out raw ethanol stream from dist 3.5

M46 dist3.6out raw methanol stream from dist 3.6

M47 memb4.1out CO stream from memb 4.1

M48 feedUreasyn feed mixture (CO2, NH3) for urea synthesis

M49 feedECsyn feed mixture (CO2, EO) for ethylene carbonate

synthesis

M50 feedPCsyn feed mixture (CO2, PO) for propylene carbonate

synthesis

M51 ureasynout oulet of urea synthesis

M52 ecsynout outlet of ethylene carbonate synthesis

M53 pcsynout outlet of propylene carbonate synthesis

M54 dist5.1out raw urea stream from dist 5.1

M55 dist5.2out raw ethylene carbonate stream from dist 5.2

M56 flash5.1out raw propylene carbonate stream from flash 5.1

M57 feedDMCdirsyn feed mixture (CO2, methanol) for DMC direct

synthesis

M58 feedDMCureasyn feed mixture(urea, methanol) for DMC synthesis

from urea

M59 feedDMCECsyn feed mixture (EC, methanol) for DMC synthesis

from ethylene carbonate

M60 feedDMCPCsyn feed mixture (PC, methanol) for DMC synthesis

from propylene carbonate

M61 feedAAsyn feed mixture (methanol, CO) for AA synthesis
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M62 feedAA2syn feed mxture (methanol, CO) for AA synthesis with

membrane

M63 dmemeohsynout outlet of dme synthesis from methanol

M64 dmcdirsynout outlet of dmc direct synthesis

M65 dmcureasynout outlet of dmc synthesis from urea

M66 dmcecsynout outlet of dmc synthesis from ethylene carbonate

M67 dmcpcsynout outlet of dmc synthesis from propylene carbonate

M68 aasyn1.1out outlet of aa synthesis reaction 1

M69 aasyn1.2out outlet of aa synthesis reaction 1 with membrane

M70 aasyn2.1out outlet of aa synthesis reaction 2

M71 aasyn2.2out outlet of aa synthesis reaction 2 with membrane

M72 flash6.1top top product (raw DME) of flash 6.1

M73 flash6.1bottom bottom product (raw H2O) of flash 6.1

M74 dist6.1out raw dmc product from dist 6.1

M75 dist6.2top top product (raw DMC) from dist 6.2

M76 dist6.3top top product (raw DMC) from dist 6.3

M77 dist6.3bottom bottom product (raw EG/EC) from dist 6.3

M78 dist6.4top top product (raw DMC) from dist 6.4

M79 dist6.4bottom bottom product (raw PG) from dist 6.4

M80 flash6.2out raw aa product from flash 6.2

M81 flash6.3out raw aa product (with membrane) from flash 6.3

M82 dist7.2out raw DMC product from dist 7.2

M83 dist7.3out raw DMC product from dist 7.3

MeOH methanol

H2O water

DME dimethylether

DMC dimethylcarbonate

NH3 ammonia

EG ethyleneglycol

EC ethylenecarbonate

PG propyleneglycol

FA formicacid

SA succinicacid

EtOH ethanol

CH4 methane

AA aceticacid
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Table B.8. Processing steps in database.

StepID StepName StepPosition

RM raw material 1

CM capture mixing 2

CS1 capture step 1 3

CS2 capture step 2 4

PM precursor mixing 5

PS precursor synthesis 6

PS* precursorsynthesis* 7

M1 mixing 1 8

C1 conversion 1 9

C1* conversion 1* 10

C1** conversion 1** 11

P1 purification 1 12

P2 purification 2 13

P3 purification 3 14

P4 purification 4 15

P2M precursor 2 mixing 16

P2S precursor 2 synthesis 17

P2P precursor 2 purification 18

M2 mixing 2 19

C2 conversion 2 20

C2* conversion 2* 21

P5 purification 5 22

P6 purification 6 23

P7 purification 7 24

PROD products 25
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Table B.9. Intervals and their processing step in the database.

IntervalID StepID IntervalType

coalMEACO2 RM feedstock

coalCO2 RM feedstock

CapM1 CM technology

CapABS1 CS1 technology

CapDES1 CS2 technology

preM1 PM technology

preM2 PM technology

cr PS technology

dr1 PS technology

dr2 PS* technology

M1.1 M1 technology

M1.2* M1 technology

M1.3 M1 technology

M1.4 M1 technology

M1.5 M1 technology

M1.6 M1 technology

meohdirsyn C1 technology

meohsyn1 C1 technology

meohcosyn C1 technology

dmedirsyn1 C1 technology

fasyn C1 technology

sasyn C1 technology

etohsyn C1 technology

meohsyn2 C1* technology

dmedirsyn2 C1* technology

dmedirsyn3 C1** technology

flash1.1 P1 technology

flash1.2 P1 technology

flash1.3 P1 technology

dist1.1 P1 technology

flash1.4 P1 technology

reactex1.1 P1 technology

flash1.5 P1 technology

flash1.6 P1 technology

dist2.1 P2 technology

dist2.2 P2 technology

flash2.1 P2 technology
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dist2.3 P2 technology

dist2.4 P2 technology

vacdist2.1 P2 technology

memb2.1 P2 technology

flash2.2 P2 technology

dist3.1 P3 technology

dist3.2 P3 technology

dist3.3 P3 technology

dist3.4 P3 technology

crystalizer3.1 P3 technology

dist3.5 P3 technology

dist3.6 P3 technology

dryer4.1 P4 technology

pervap4.1 P4 technology

memb4.1 P4 technology

preM3 P2M technology

preM4 P2M technology

preM5 P2M technology

ureasyn P2S technology

ecsyn P2S technology

pcsyn P2S technology

dist5.1 P2P technology

dist5.2 P2P technology

flash5.1 P2P technology

M2.1 M2 technology

M2.2 M2 technology

M2.3 M2 technology

M2.4 M2 technology

M2.5 M2 technology

M2.6 M2 technology

dmemeohsyn C2 technology

dmcdirsyn C2 technology

dmcureasyn C2 technology

dmcecsyn C2 technology

dmcpcsyn C2 technology

aasyn1.1 C2 technology

aasyn1.2 C2 technology

aasyn2.1 C2* technology

aasyn2.2 C2* technology
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flash6.1 P5 technology

dist6.1 P5 technology

dist6.2 P5 technology

dist6.3 P5 technology

dist6.4 P5 technology

flash6.2 P5 technology

flash6.3 P5 technology

dist7.1 P6 technology

dist7.2 P6 technology

dist7.3 P6 technology

dist7.4 P6 technology

dist7.5 P6 technology

dist7.6 P6 technology

dist7.7 P6 technology

dist8.1 P7 technology

dist8.2 P7 technology

dist8.3 P7 technology

dist8.4 P7 technology

dist8.5 P7 technology

MeOH PROD product

H2O PROD product

DME PROD product

DMC PROD product

NH3 PROD product

EG PROD product

EC PROD product

PG PROD product

FA PROD product

SA PROD product

EtOH PROD product

CH4 PROD product

AA PROD product
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B.2 Reaction path synthesis database

The reaction path synthesis database and the statistics are presented in Section

3.2.3.1. In this appendix, further information on the reactions and the database

are presented. The targets generated, thermodynamically feasible reactions, the

network generated and the reactions with kinetic data are listed.

Table B.10. CAMD targets generated in Step b of RPS.

Smiles Group 1 Group 2 Group 3 Group 4

CO2 1 COO

H2O 1 H2O

HH 1 H2

C=C 1 CH2=CH2

C#C 1 CH2C

C=O 1 CH2O

O=CO 1 HCOOH

CO 1 CH3 1 OH

C 1 CH4

CC 2 CH3

C(=O)C 1 CH3 1 COH

O=CC(C)=O 1 CH3CO 1 CHO

CC(=O)C(O)=O 1 CH3CO 1 COOH

CO 1 CH3 1 OH

CC=O 1 CH3 1 CHO

COC(=O)C 1 CH3 1 CH3COO

COC=O 1 CH3 1 HCOO

COC 1 CH3 1 CH3O

CC(O)=O 1 CH3 1 COOH

CC(C)=O 1 CH3 1 CH3CO

CC 2 CH3

CCC(=O)C=O 1 CH3 1 CH2CO 1 CHO

CCC(=O)C(O)=O 1 CH3 1 CH2CO 1 COOH

COC(=O)CO 1 CH3 1 OH 1 CH2COO

O=CCC(=O)OC 1 CH3 1 CHO 1 CH2COO

COC(=O)COC(=O)C 1 CH3 1 CH3COO 1 CH2COO

COCC(=O)OC 1 CH3 1 CH2COO 1 CH3O

COC(=O)CC(O)=O 1 CH3 1 CH2COO 1 COOH

COC(=O)CC(C)=O 1 CH3 1 CH3CO 1 CH2COO

COC(=O)CC 2 CH3 1 CH2COO

CCOC=O 1 CH3 1 CHO 1 CH2O
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CCOC(O)=O 1 CH3 1 CH2O 1 COOH

OCC(C)=O 1 CH2 1 OH 1 CH3CO

O=CCC(C)=O 1 CH2 1 CH3CO 1 CHO

CC(=O)COC(=O)C 1 CH2 1 CH3CO 1 CH3COO

O=COCC(C)=O 1 CH2 1 CH3CO 1 HCOO

COCC(C)=O 1 CH2 1 CH3CO 1 CH3O

CC(=O)CC(O)=O 1 CH2 1 CH3CO 1 COOH

CC(=O)CC(C)=O 1 CH2 2 CH3CO

CCO 1 CH3 1 CH2 1 OH

CCC=O 1 CH3 1 CH2 1 CHO

CCOC(=O)C 1 CH3 1 CH2 1 CH3COO

CCOC 1 CH3 1 CH2 1 CH3O

CCC(O)=O 1 CH3 1 CH2 1 COOH

CCC(C)=O 1 CH3 1 CH2 1 CH3CO

CCC 2 CH3 1 CH2

CC(O)C(C)=O 1 CH3 1 CH 1 OH 1 CH3CO

O=CC(C)C(C)=O 1 CH3 1 CH 1 CH3CO 1 CHO

O=C(C)OC(C)C(C)=O 1 CH3 1 CH 1 CH3CO 1 CH3COO

O=COC(C)C(C)=O 1 CH3 1 CH 1 CH3CO 1 HCOO

COC(C)C(C)=O 1 CH3 1 CH 1 CH3CO 1 CH3O

CC(=O)C(C)C(O)=O 1 CH3 1 CH 1 CH3CO 1 COOH

CC(=O)C(C)C(C)=O 1 CH3 1 CH 2 CH3CO

CC(C)O 2 CH3 1 CH 1 OH

O=CC(C)C 2 CH3 1 CH 1 CHO

CC(C)OC(=O)C 2 CH3 1 CH 1 CH3COO

O=COC(C)C 2 CH3 1 CH 1 HCOO

COC(C)C 2 CH3 1 CH 1 CH3O

CC(C)C(O)=O 2 CH3 1 CH 1 COOH

CC(C)C(C)=O 2 CH3 1 CH 1 CH3CO

CC(C)C 3 CH3 1 CH

COC(=O)C(=O)OC 2 CH3 2 COO

COC(=O)CC(=O)OC 2 CH3 1 CH2COO 1 COO

CCC(=O)CC(=O)OC 2 CH3 1 CH2CO 1 CH2COO

COC(=O)CCC(=O)OC 2 CH3 2 CH2COO

CCOCC(=O)OC 2 CH3 1 CH2COO 1 CH2O

CCC(=O)CO 1 CH3 1 CH2 1 OH 1 CH2CO

CCCC(=O)C=O 1 CH3 1 CH2 1 CH2CO 1 CHO

O=CCC(=O)CC 1 CH3 1 CH2 1 CH2CO 1 CHO

CCC(=O)COC(=O)C 1 CH3 1 CH2 1 CH2CO 1 CH3COO
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COCC(=O)CC 1 CH3 1 CH2 1 CH2CO 1 CH3O

CCC(=O)CC(O)=O 1 CH3 1 CH2 1 CH2CO 1 COOH

CCCC(=O)C(O)=O 1 CH3 1 CH2 1 CH2CO 1 COOH

CCC(=O)CC(C)=O 1 CH3 1 CH2 1 CH3CO 1 CH2CO

CCC(=O)CC 2 CH3 1 CH2 1 CH2CO

CCOC(=O)CO 1 CH3 1 CH2 1 OH 1 CH2COO

OCCC(=O)OC 1 CH3 1 CH2 1 OH 1 CH2COO

OCOC(=O)CC 1 CH3 1 CH2 1 OH 1 CH2COO

CCOC(=O)CC=O 1 CH3 1 CH2 1 CHO 1 CH2COO

O=CCCC(=O)OC 1 CH3 1 CH2 1 CHO 1 CH2COO

O=CCOC(=O)CC 1 CH3 1 CH2 1 CHO 1 CH2COO

CCOC(=O)COC(=O)C 1 CH3 1 CH2 1 CH3COO 1 CH2COO

COC(=O)CCOC(=O)C 1 CH3 1 CH2 1 CH3COO 1 CH2COO

O=COCCC(=O)OC 1 CH3 1 CH2 1 CH2COO 1 HCOO

O=COCOC(=O)CC 1 CH3 1 CH2 1 CH2COO 1 HCOO

CCOC(=O)COC 1 CH3 1 CH2 1 CH2COO 1 CH3O

COCCC(=O)OC 1 CH3 1 CH2 1 CH2COO 1 CH3O

COCOC(=O)CC 1 CH3 1 CH2 1 CH2COO 1 CH3O

CCOC(=O)CC(O)=O 1 CH3 1 CH2 1 CH2COO 1 COOH

COC(=O)CCC(O)=O 1 CH3 1 CH2 1 CH2COO 1 COOH

CCC(=O)OCC(O)=O 1 CH3 1 CH2 1 CH2COO 1 COOH

CCOC(=O)CC(C)=O 1 CH3 1 CH2 1 CH3CO 1 CH2COO

COC(=O)CCC(C)=O 1 CH3 1 CH2 1 CH3CO 1 CH2COO

CCC(=O)OCC(C)=O 1 CH3 1 CH2 1 CH3CO 1 CH2COO

CCOC(=O)CC 2 CH3 1 CH2 1 CH2COO

CCCC(=O)OC 2 CH3 1 CH2 1 CH2COO

CCOCO 1 CH3 1 CH2 1 OH 1 CH2O

CCCOC=O 1 CH3 1 CH2 1 CHO 1 CH2O

CCOCC=O 1 CH3 1 CH2 1 CHO 1 CH2O

CCOCOC(=O)C 1 CH3 1 CH2 1 CH3COO 1 CH2O

CCOCOC 1 CH3 1 CH2 1 CH3O 1 CH2O

CCCOC(O)=O 1 CH3 1 CH2 1 CH2O 1 COOH

CCOCC(O)=O 1 CH3 1 CH2 1 CH2O 1 COOH

CCOCC(C)=O 1 CH3 1 CH2 1 CH3CO 1 CH2O

CCOCC 2 CH3 1 CH2 1 CH2O

OCCO 2 CH2 2 OH

OCCC=O 2 CH2 1 OH 1 CHO

O=CCCC=O 2 CH2 2 CHO

OCCOC(=O)C 2 CH2 1 OH 1 CH3COO



B.2. Reaction path synthesis database 155

O=CCCOC(=O)C 2 CH2 1 CHO 1 CH3COO

O=C(C)OCCOC(=O)C 2 CH2 2 CH3COO

OCCOC=O 2 CH2 1 OH 1 HCOO

O=CCCOC=O 2 CH2 1 CHO 1 HCOO

O=COCCOC(=O)C 2 CH2 1 CH3COO 1 HCOO

O=COCCOC=O 2 CH2 2 HCOO

OCCOC 2 CH2 1 OH 1 CH3O

O=CCCOC 2 CH2 1 CHO 1 CH3O

COCCOC(=O)C 2 CH2 1 CH3COO 1 CH3O

O=COCCOC 2 CH2 1 HCOO 1 CH3O

COCCOC 2 CH2 2 CH3O

OCCC(O)=O 2 CH2 1 OH 1 COOH

O=CCCC(O)=O 2 CH2 1 CHO 1 COOH

O=C(C)OCCC(O)=O 2 CH2 1 CH3COO 1 COOH

O=COCCC(O)=O 2 CH2 1 HCOO 1 COOH

COCCC(O)=O 2 CH2 1 CH3O 1 COOH

OC(=O)CCC(O)=O 2 CH2 2 COOH

OCCC(C)=O 2 CH2 1 OH 1 CH3CO

O=CCCC(C)=O 2 CH2 1 CH3CO 1 CHO

CC(=O)CCOC(=O)C 2 CH2 1 CH3CO 1 CH3COO

O=COCCC(C)=O 2 CH2 1 CH3CO 1 HCOO

COCCC(C)=O 2 CH2 1 CH3CO 1 CH3O

CC(=O)CCC(O)=O 2 CH2 1 CH3CO 1 COOH

CC(=O)CCC(C)=O 2 CH2 2 CH3CO

CCCO 1 CH3 2 CH2 1 OH

CCCC=O 1 CH3 2 CH2 1 CHO

CCCOC(=O)C 1 CH3 2 CH2 1 CH3COO

CCCOC 1 CH3 2 CH2 1 CH3O

CCCC(O)=O 1 CH3 2 CH2 1 COOH

CCCC(C)=O 1 CH3 2 CH2 1 CH3CO

CCCC 2 CH3 2 CH2

C=C 1 CH2=CH2

C#C 1 CH2C

C=O 1 CH2O

O=CO 1 HCOOH

C 1 CH4

C(=O)C 1 CH3 1 COH
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Figure B.1. The first part of the generated reaction tree.
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Figure B.2. The second part of the generated reaction tree.
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Table B.11. List of the reactions with kinetic data that is also transferred to the

superstructure database.

Unit Reaction(s) Temp.

(◦C)

Pres.

(bar)

Cat. Reference

1 combined

reformer

3CH4 + 2H2O + CO2 ↔

4CO+8H2

915 25 Olah et al.

(2013)

2 & 3 dry re-

forming

CO2 +CH4 ↔ 2CO + 2H2 ;

CO2 +H2↔CO+H2O

800 1 Ni/γ-Al2O3 Becerra

et al.

(2003)

4 & 5 methanol

direct

hydro-

genation

CO2 +3H2↔CH4O+H2O ;

CO2 +H2↔CO+H2O

240 60 Cu/ZnO-

multi-

component

Bussche

and

Froment

(1996)

6 & 7 methanol

from

syngas

(M=2)

CO + H2O ↔ CO2 + H2 ;

CO2 +3H2↔CH4O+H2O

240 60 Cu/ZnO-

multi-

component

Bussche

and

Froment

(1996)

8 & 9 methanol

from

syngas

(M=1)

CO+ 2H2 ↔ CH4O ; CO+

H2O↔CO2 +H2

220 75 Cu/ZnO-

multi-

component

Graaf et al.

(1988)

10 dimethyl

ether

2CH4O↔C2H6O+H2O 270 10 Ni/γ-Al2O3 Ng et al.

(1999)

11, 12

& 13

dimethyl

ether

from

syngas

(M=1)

CO + H2O ↔ CO2 + H2

; CO + 2H2 ↔ CH4O ;

2CH4O↔C2H6O+H2O

250 50 Cu/ZnO/

Al2O3 +

γ-Al2O3

Ng et al.

(1999)

14 urea syn-

thesis

CO2 + 2NH3 ↔ CH4N2O +

H2O

190 160 Isla et al.

(1993)

15 ethylene

car-

bonate

synthesis

CO2 +C2H4O↔C3H4O3 110 40 ionic liquid Dai et al.

(2009)

16 propylene

carbon-

ate

synthesis

CO2 +C3H6O↔C4H6O3 100 7.9 ionic liquid Park et al.

(2004)
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17 dimethyl

car-

bonate

synthesis

CO2 + 2CH4O↔ C3H6O3 +

H2O

150 50 CeO2 Kuenen

et al.

(2016b,a)

18 dimethyl

carbon-

ate via

urea

synthesis

CH4N2O + 2CH4O ↔

C3H6O3 +2NH3

140 8 ionic liquid Wang et al.

(2009)

19 dimethyl

car-

bonate

via EC

synthesis

C3H4O3 + 2CH4O ↔

C3H6O3 +C2H6O2

160 10 immobilized

ionic liquid

Kim et al.

(2010)

20 dimethyl

car-

bonate

via PC

synthesis

C4H6O3 + 2CH4O ↔

C3H6O3 +C3H8O2

40 1 homogeneous

CH3NaO

Holtbruegge

et al.

(2013)

21 formic

acid

synthesis

CO2 +H2↔CHOOH 90 80 homogeneous

Ru

Moret et al.

(2014)

22,

23, 24

& 25

succinic

acid via

fermen-

tation

C6H12O6 + 2CO2 + 4H ↔

C4H6O4 + H2O ;

C6H12O6 ↔ 3CH3OOH ;

C6H12O6 ↔ 2C3H4O3 + 4H

; C6H12O6 + 2CO2 ↔

C4H6O5

37 1.5 M.

succinici-

producens

Vaswani

(201)
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26 -

35

ethanol

synthesis

2CO2 + 6H2 ↔

CH3CH2OH + 3H2O

; 3CO2 + 7H2 ↔

C3H6O2 + 4H2O ;

CO2 +4H2↔CH4 +2H2O ;

2CO2+7H2↔C2H6+4H2O

; 4CO2 + 13H2 ↔

C4H10 + 8H2O ;

3CO2+7H2↔C3H8+6H2O

; 3CO2 + 9H2 ↔

C3H8O + 5H2O ;

CO2 + 3H2 ↔ CH4O + H2O

; 4CO2 + 12H2 ↔

C4H10O + 7H2O ;

CO2 +H2↔CO+H2O

240 50 Rh-Li/SiO2 Kusama

et al.

(1997)

36 &

37

acetic

acid

synthesis

2CH4O + CO ↔ C3H6O2 +

H2O ; C3H6O2 + H2O ↔

CH3COOH +CH4O

190 30 Ni-active

carbon

Omata

et al.

(1985)

B.3 Simulation library

This work contains a large number of simulations done in the various simulation

tools. In order to organize these, they have been collected in a simulation library.

This library contains all simulations related to capture and conversion processes.

They are organized by product and whether capture is considered or not. Then,

the various simulations are organized by base case or any other special features.

In addition, the software and version that is used is stated so that the reuse of

the simulations is simplified. Currently, the simulation has simulations covering

the products listed in Table B.12. Additionally, a detailed list of the simulations is

provided in Table B.13.
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Table B.12. The statistics of the simulation library of carbon dioxide capture and

utilization processes.

Type Product Simulations Description

Carbon cap-

ture (CC)

Carbon

dioxide

27 Simulations in various versions of ProII cap-

turing carbon dioxide from flue gas from a

coal-fired power plant and in natural gas

sweetening; considers various concentra-

tions and optimizations

CO2

utilization

and CCU

Methanol 20 Simulations in AspenPlus and ProII taking

carbon dioxide to methanol via different

route; considers various optimization alter-

natives and some are integrated with carbon

capture via MEA absorption

CO2

utilization

and CCU

Dimethyl

ether

(DME)

13 Simulations in AspenPlus and ProII taking

carbon dioxide to dimethyl ether via differ-

ent synthesis routes (via methanol or di-

rectly from syngas); considers various op-

timization alternatives and some are inte-

grated with carbon capture via MEA absorp-

tion

CO2

utilization

and CCU

Dimethyl

carbonate

(DMC)

12 Simulations in AspenPlus and ProII taking

carbon dioxide to dimethyl carbonate via

different routes (ethylene carbonate, direct,

etc.) and considering methanol production

or purchase; some are also intensified alter-

natives and some are integrated with carbon

capture via MEA absorption

CO2

utilization

and CCU

Formic acid 6 Simulations in ProII capturing and convert-

ing carbon dioxide to formic acid with some

optimization

CO2 utiliza-

tion

Succinic

acid

1 Simulation in AspenPlus taking carbon diox-

ide to succinic acid

CO2 utiliza-

tion

Acetic acid 9 Simulations in AspenPlus taking carbon

dioxide to acetic acid considering different

routes and optimization options
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Table B.13. The simulation library.

Type Title CO2

source

Product Route Soft-

ware

Author

capture CC_ref_ v9.2 coal-

fired

flue

gas

CO2

(99

mol%)

MEA capture ProII

V9.2

Fjellerup

capture CC_ref_ v9.3 coal-

fired

flue

gas

CO2

(99

mol%)

MEA capture ProII

V9.3

Fjellerup

capture CC_opt_

v9.2

coal-

fired

flue

gas

CO2

(97.2

mol%)

MEA capture ProII

V9.2

Fjellerup

capture CC_opt_

v9.3

coal-

fired

flue

gas

CO2

(97.2

mol%)

MEA capture ProII

V9.3

Fjellerup

capture &

conversion

CCU_MeOH_

v9.2

coal-

fired

flue

gas

MeOH MEA capture

and direct

hydrogenation

ProII

V9.2

Fjellerup

capture &

conversion

CCU_MeOH_

v9.3

coal-

fired

flue

gas

MeOH MEA capture

and direct

hydrogenation

ProII

V9.3

Fjellerup

capture &

conversion

CCU_FA_

basecase_

v9.2

coal-

fired

flue

gas

Formic

acid

(95

wt%)

MEA capture and

hydrogenation

ProII

V9.2

Fjellerup

capture &

conversion

CCU_FA_

basecase_

v9.3

coal-

fired

flue

gas

Formic

acid

(95

wt%)

MEA capture and

hydrogenation

ProII

V9.3

Fjellerup

capture &

conversion

CCU_FA_

extDist_

v9.2

coal-

fired

flue

gas

Formic

acid

(95

wt%)

MEA capture and

hydrogenation

ProII

V9.2

Fjellerup
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capture &

conversion

CCU_FA_

extDist_

v9.3

coal-

fired

flue

gas

Formic

acid

(95

wt%)

MEA capture and

hydrogenation

ProII

V9.3

Fjellerup

capture &

conversion

CCU_FA_

optDist_

v9.2

coal-

fired

flue

gas

Formic

acid

(95

wt%)

MEA capture and

hydrogenation

ProII

V9.2

Fjellerup

capture &

conversion

CCU_FA_

optDist_

v9.3

coal-

fired

flue

gas

Formic

acid

(95

wt%)

MEA capture and

hydrogenation

ProII

V9.3

Fjellerup

conversion AA_DR_

basecase

CO2 Acetic

Acid

dry reforming,

methanol

synthesis and

carbonylation

Aspen

V8.6

Prasertsri

conversion AA_DR_

compopt

CO2 Acetic

Acid

dry reforming,

methanol

synthesis and

carbonylation

Aspen

V8.6

Prasertsri

conversion AA_DR_

heatint

CO2 Acetic

Acid

dry reforming,

methanol

synthesis and

carbonylation

Aspen

V8.6

Prasertsri

conversion AA_

DRmemb_

basecase

CO2 Acetic

Acid

dry reforming

with membrane,

methanol

synthesis and

carbonylation

Aspen

V8.6

Prasertsri

conversion AA_

DRmemb_

compopt

CO2 Acetic

Acid

dry reforming

with membrane,

methanol

synthesis and

carbonylation

Aspen

V8.6

Prasertsri

conversion AA_

DRmemb_

heatint

CO2 Acetic

Acid

dry reforming

with membrane,

methanol

synthesis and

carbonylation

Aspen

V8.6

Prasertsri



164 Appendix B. Superstructure

conversion AA_

meohdir_

basecase

CO2 Acetic

Acid

direct

hydrogenation

and

carbonylation

Aspen

V8.6

Prasertsri

conversion AA_

meohdir_

compopt

CO2 Acetic

Acid

direct

hydrogenation

and

carbonylation

Aspen

V8.6

Prasertsri

conversion AA_

meohdir_

heatint

CO2 Acetic

Acid

direct

hydrogenation

and

carbonylation

Aspen

V8.6

Prasertsri

capture CC_NG_ref_

v8.2

natural

gas

CO2

(99%)

MEA capture ProII

V8.2

Godfroy

capture CC_NG_ref_

v8.3

natural

gas

CO2

(99%)

MEA capture ProII

V8.3

Godfroy

capture CC_NG_ref_

v9.3

natural

gas

CO2

(99%)

MEA capture ProII

V9.3

Godfroy

capture CC_NG_+6 natural

gas

CO2

(99%)

MEA capture ProII

V8.3

Godfroy

capture CC_NG_+12 natural

gas

CO2

(99%)

MEA capture ProII

V8.3

Godfroy

capture CC_NG_PZ natural

gas

CO2

(99%)

PZ capture ProII

V8.3

Godfroy

capture CC_NG_

RR0.25

natural

gas

CO2

(99%)

MEA capture ProII

V8.3

Godfroy

capture CC_CF_ref_

v8.3

coal-

fired

flue

gas

CO2

(99%)

MEA capture ProII

V8.3

Godfroy

capture CC_CF_ref_

v9.2

coal-

fired

flue

gas

CO2

(99%)

MEA capture ProII

V9.3

Godfroy

capture CC_CF_ref_

v9.3

coal-

fired

flue

gas

CO2

(99%)

MEA capture ProII

V9.3

Godfroy
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capture CC_CF_+6_

v8.3

coal-

fired

flue

gas

CO2

(99%)

MEA capture ProII

V8.3

Godfroy

capture CC_CF_+6_

v9.3

coal-

fired

flue

gas

CO2

(99%)

MEA capture ProII

V9.3

Godfroy

capture CC_CF_+12_

v8.3

coal-

fired

flue

gas

CO2

(99%)

MEA capture ProII

V8.3

Godfroy

capture CC_CF_+12_

v9.3

coal-

fired

flue

gas

CO2

(99%)

MEA capture ProII

V9.3

Godfroy

capture CC_CF_AMP_

v8.3

coal-

fired

flue

gas

CO2

(99%)

AMP capture ProII

V8.3

Godfroy

capture CC_CF_AMP_

v9.3

coal-

fired

flue

gas

CO2

(99%)

AMP capture ProII

V9.3

Godfroy

capture CC_CF_PZ_

v8.3

coal-

fired

flue

gas

CO2

(99%)

PZ capture ProII

V8.3

Godfroy

capture CC_CF_PZ_

v9.3

coal-

fired

flue

gas

CO2

(99%)

PZ capture ProII

V9.3

Godfroy

capture CC_CF_DEA_

v8.3

coal-

fired

flue

gas

CO2

(99%)

DEA capture ProII

V8.3

Godfroy

capture CC_CF_DEA_

v9.3

coal-

fired

flue

gas

CO2

(99%)

DEA capture ProII

V9.3

Godfroy
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synthesis DMC_PC_

basecase

N/A DMC &

PG

DMC synthesis

via propylene

carbonate

Aspen

V8.6

Babi

synthesis DMC_PC_

pervap

N/A DMC &

PG

DMC synthesis

via propylene

carbonate

Aspen

V8.6

Babi

synthesis DMC_PC_

reactdist

N/A DMC &

PG

DMC synthesis

via propylene

carbonate

Aspen

V8.6

Babi

conversion DMC_

dirsyn_

basecase

CO2 DMC &

PG

DMC synthesis

via propylene

carbonate

Aspen

V8.6

Calvera

conversion MeOH_dir_

basecase_

scaled

CO2 MeOH direct

hydrogenation

Aspen

V8.6

Calvera

conversion PC_

basecase_

scaled

CO2 PC carbonate

synthesis

ProII

V9.3

Calvera

synthesis DMC_

PCMeOH_

basecase_

scaled

N/A DMC &

PG

DMC synthesis

via propylene

carbonate

Aspen

V8.6

Calvera

conversion DMC_EC_

basecase

CO2 DMC,

EC, EG

DMC synthesis

via ethylene

carbonate

Aspen

V8.8

Kongpanna

conversion DMC_Urea_

basecase

CO2 DMC DMC synthesis

via urea

Aspen

V8.8

Kongpanna

conversion DMC_EC_RD CO2 DMC,

EC, EG

DMC synthesis

via ethylene

carbonate

Kongpanna

conversion DMC_Urea_

RD

CO2 DMC DMC synthesis

via urea

Aspen

V8.6

Kongpanna

conversion DMC_Urea_

pervap

NH3removal

CO2 DMC DMC synthesis

via urea

Aspen

V8.6

Kongpanna

conversion DMC_Urea_

pervap

CO2 DMC DMC synthesis

via urea

Kongpanna
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conversion DME_DR_

basecase

CO2 DME DME synthesis

via methanol

from dry

reforming

Aspen

V8.6

Prasertsri

conversion DME_DR_

compopt

CO2 DME DME synthesis

via methanol

from dry

reforming

Aspen

V8.6

Prasertsri

conversion DME_DR_

heatint

CO2 DME DME synthesis

via methanol

from dry

reforming

Aspen

V8.6

Prasertsri

conversion DME_DR_

MeOHpur

CO2 DME DME synthesis

via methanol

from dry

reforming

Aspen

V8.6

Prasertsri

conversion DME_

meohdir_

basecase

CO2 DME DME synthesis

via methanol

from direct

hydrogenation

Aspen

V8.6

Prasertsri

conversion DME_ meo-

hdir_ heatint

CO2 DME DME synthesis

via methanol

from direct

hydrogenation

Aspen

V8.6

Prasertsri

conversion DME_

meohdir_

wastepur

CO2 DME DME synthesis

via methanol

from direct

hydrogenation

Aspen

V8.6

Prasertsri

conversion DME_

dirsyn_

basecase

CO2 DME DME synthesis

via syngas from

dry reforming

Aspen

V8.6

Prasertsri

conversion DME_

dirsyn_

heatint

CO2 DME DME synthesis

via syngas from

dry reforming

Aspen

V8.6

Prasertsri

conversion DME_

dirsyn_

memb

CO2 DME DME synthesis

via syngas from

dry reforming

Aspen

V8.6

Prasertsri

conversion DME_

dirsyn_

wastepur

CO2 DME DME synthesis

via syngas from

dry reforming

Aspen

V8.6

Prasertsri
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conversion PC_basecase CO2 PC carbonate

synthesis

ProII

V9.3

Calvera

conversion SA_glucose_

basecase

CO2 SA succinic acid via

glucose fermen-

tation

Aspen

V8.6

Calvera

conversion MeOH_SR_

basecase

N/A MeOH methanol via

steam reforming

Aspen

V8.6

Roh

conversion MeOH_CR_

basecase2

CO2 MeOH methanol via

combined

reforming

Aspen

V8.6

Roh

conversion MeOH_CR_

basecase

CO2 MeOH methanol via

combined

reforming

Aspen

V8.6

Nguyen

conversion MeOH_CR_opt CO2 MeOH methanol via

combined

reforming

Aspen

V8.6

Nguyen

conversion MeOH_CR_alt CO2 MeOH methanol via

combined

reforming

Aspen

V8.6

Nguyen

conversion MeOH_dir_

basecase

CO2 MeOH direct

hydrogenation

Aspen

V8.6

Nguyen

conversion MeOH_dir_opt CO2 MeOH direct

hydrogenation

Aspen

V8.6

Nguyen

conversion MeOH_TR_

basecase

CO2 MeOH methanol via tri-

reforming

Aspen

V8.6

Nguyen

conversion MeOH_TR_opt CO2 MeOH methanol via tri-

reforming

Aspen

V8.6

Nguyen

conversion MeOH_TR_alt CO2 MeOH methanol via tri-

reforming

Aspen

V8.6

Nguyen

capture &

conversion

CCU_MeOH_

basecase2

coal-

fired

flue

gas

MeOH MEA capture

and direct

hydrogenation

ProII

V9.3

Mads

capture &

conversion

CCU_MeOH_

Alt1

coal-

fired

flue

gas

MeOH MEA capture

and direct

hydrogenation

ProII

V9.3

Mads
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capture &

conversion

CCU_MeOH_

Alt2

coal-

fired

flue

gas

MeOH MEA capture

and direct

hydrogenation

ProII

V9.3

Mads

capture &

conversion

CCU_MeOH_

Alt3

coal-

fired

flue

gas

MeOH MEA capture

and direct

hydrogenation

ProII

V9.3

Mads

capture &

conversion

CCU_MeOH_

Alt4

coal-

fired

flue

gas

MeOH MEA capture

and direct

hydrogenation

ProII

V9.3

Mads

conversion MeOH_dir_

im-

pureCO2H2

CO2 MeOH direct

hydrogenation

Aspen

V8.6

Frauzem

conversion MeOH_dir_

pureCO2H2

CO2 MeOH direct

hydrogenation

Aspen

V8.6

Frauzem

conversion MeOH_dir_

impureCO2

pureH2

CO2 MeOH direct

hydrogenation

Aspen

V8.6

Frauzem

conversion MeOH_dir_

pureCO2

impureH2

CO2 MeOH direct

hydrogenation

Aspen

V8.6

Frauzem

capture &

conversion

DME_ meo-

hdirsyn

coal-

fired

flue

gas

DME MEA capture,

direct

hydrogenation

and DME

synthesis

ProII

V9.3

Frauzem

capture &

conversion

DME_meohcr coal-

fired

flue

gas

DME MEA capture,

methanol

from combined

reforming and
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AppendixC

Super-O

As has been mentioned in Section 3.2.4, the software interface, Super-O, is used

in the framework to facilitate the implementation of certain steps in Stage 1. The

different functions of the interface and their interaction are shown in Figure

Figure C.1. The visual representation of the steps in Super-O and the interaction
between Super-O and the other tools. The dashed orange lines are manual actions
and the dashed green lines are automated in the interface. (adapted from Bertran
et al. (2017))

Further details on Super-O are presented in the Supplementary Material of

the paper A generic methodology for processing route synthesis and design based on
superstructure optimization (Bertran et al., 2017).





AppendixD

Stage 2 results

The important results of Stage 2 are presented in Section 4.2. In this appendix,

further details are provided on the individual process parts (carbon dioxide capture,

methanol synthesis, dimethyl ether synthesis, ethylene carbonate synthesis and

dimethyl carbonate synthesis) and the integrated processes (CCU to dimethyl ether

and dimethyl carbonate).

D.1 Carbon dioxide capture

Carbon dioxide capture is designed as a monoethyl amine (MEA) absorption pro-

cess, which is currently the industrial standard (Wilcox, 2012). This process consists

of 4 units: an absorber, a desorber, a heater to the desorber column and a cooler

to the absorber column. This process is applied to the removal of carbon dioxide

from flue gas from a coal-fired power plant. The amount of flue gas entering the

process is fixed to 4.5 million tons per year and 1 million tons per year of carbon

dioxide, which is the amount for a traditional 150MW coal-fired power plant. The

equipment is designed using traditional design methods. The flowsheet of this part

is shown in Figure D.1 with the resulting stream table also provided (Table D.1).

Traditionally, the desorber column has high reboiler duties in order to remove

the carbon dioxide from the solvent at a high purity (99.9 mol%). To address this,

the process has been optimized by reducing the purity of the recovered carbon

dioxide (Fjellerup, 2015) to 97.2 mol%. The optimized process is the analyzed

for economic and environmental parameters using the tools ECON (Saengwirun,

2011) and LCSoft (Kalakul et al., 2014). The results show that the utility costs,

equipment costs and carbon footprint are all decreased. the utility cost is decreased

by almost 90%, the equipment cost is reduced by 28% and the carbon footprint

becomes negative (more carbon dioxide is captured than emitted via utilities).
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Table D.1. The stream table of the simulation shown in Figure D.1.
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Figure D.1. The flowsheet of the simulation for the capture process (adapted from
Fjellerup (2015)).

D.2 Methanol synthesis via combined reforming

Traditionally, methanol is synthesized via a 2-step process, where natural gas (or

coal) is reformed to produce syngas and then this syngas is converted to methanol.

However, this 2-step process is associated with high emissions. An alternative to

this is combined reforming, which combines dry reforming and steam reforming.

Combined reforming, also known as bi-reforming, is able to provide the syngas at

the desired ration (M=2) for methanol synthesis (Olah et al., 2013). The combined

reforming process is designed and simulated in Pro II, as shown in Figure D.2 with

the stream results listed in Table D.2.

The process consists of two reactors, compressors, a flash and two distillation

columns. The combined reforming and methanol synthesis reaction conditions

were optimized in the work of Roh et al. (2016b). The compressors considered

are multi-stage compressors with intercooling for the carbon dioxide. The steam is

assumed to come from a pipeline at the necessary pressure. After the combined

reforming reaction, the gases are compressed to the necessary pressure for the

methanol synthesis reaction. The methanol synthesis reaction is modeled using
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Figure D.2. The flowsheet of the simulation for the methanol from combined
reforming process (adapted from Roh et al. (2016b)).
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Table D.2. The stream table of the simulation for methanol synthesis via combined
reforming shown in Figure D.2.
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a LHHW model (Bussche and Froment, 1996). The raw methanol is first flashed to

remove the light components, which are recycled. Then, a two-step distillation is

used to achieve the desired high-purity methanol (99.95 mol%). In addition, heat

integration is performed to make use of the temperature differences throughout the

process. This process is simulated and analyzed.

From the analysis, the economics and environmental performance are evalu-

ated. For the 400000 tons per year needed for dimethyl carbonate synthesis and

dimethyl ether synthesis, the capital cost is 209.3 million USD and the operating

cost is 205.7 million USD per year. The majority of the costs in this section come

from the compression and the second distillation column. Also, the NetCO2 of this

part of the process is 0.55 kgCO2/kgMeOH, which is positive, though less than the

traditional route.

D.3 Methanol synthesis via direct hydrogenation

Alternatively to combined reforming, methanol can synthesized from carbon diox-

ide directly via hydrogenation. In direct hydrogenation, the carbon dioxide is

reacted with hydrogen to produce methanol. The entire process is shown in Figure

D.3 with the streams shown in Table D.3.

First, the hydrogen and carbon dioxide are compressed using multi-stage comm-

pressors with intercooling. The conditions of the reaction are the same as the

methanol synthesis via syngas as described in combined reforming. The reaction

is again modeled by the LHHW kinetic model (Bussche and Froment, 1996). The

conversion of the reaction is lower compared to when syngas is used as the feed.

However, the product can be flashed and recycled to obtain an overall conversion

of 0.8 for carbon dioxide. Again, two distillation columns are used to obtain the

methanol at the desired purity.

From the economic and environmental analysis, the capital and operating costs

for the production of 400000 tons per year are 257.4 million USD and 233.9 million

USD per year, respectively. The majority of the operating and capital costs of this

section are from the methanol distillation and the compression of carbon dioxide

and hydrogen. Also, the NetCO2 is -0.45 kgCO2/kgMeOH. This route is therefore, net

carbon dioxide reducing (converts more carbon dioxide than is emitted indirectly).

D.4 Dimethyl ether synthesis

Dimethyl ether is synthesized from methanol. The reactor is modeled using a LHHW

kinetic model (Ng et al., 1999). The operating conditions have been previously
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Figure D.3. The flowsheet of the simulation for the methanol via direct hydrogena-
tion process (adapted from Roh et al. (2016b)).
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Table D.3. The stream table of the simulation for methanol synthesis via direct
hydrogenation shown in Figure D.3.
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optimized by Prasertsri et al. (2016). Subsequently, the dimethyl ether is easily

purified using distillation, as there are no azeotropes. The entire flowsheet from

the simulation is shown in Figure D.4 and the stream information provided in Table

D.4.

Figure D.4. The flowsheet of the simulation for the dimethyl ether from methanol
process.

From the analysis of the process, this simple part of the process has a capital

cost of 19.4 million USD and an operating cost of 10.5 million USD per year.

D.5 Ethylene carbonate synthesis

The ethylene carbonate is synthesized by reacting carbon dioxide with ethylene

oxide. The flowsheet from the simulation is shown in Figure D.5. The stream table

is provided in Table D.5.

From the analysis of the process, the capital cost is 52 million USD and the

operating costs are 22.5 million USD per year. This process has the highest costs in

the compression and separation of the ethylene carbonate.
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Table D.4. The stream table of the simulation for dimethyl ether synthesis shown
in Figure D.4.
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Figure D.5. The flowsheet of the simulation for the ethylene carbonate from carbon
dioxide and ethylene oxide process.
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Table D.5. The stream table of the simulation for ethylene carbonate synthesis
shown in Figure D.5.
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D.6 Dimethyl carbonate synthesis

The dimethyl carbonate process uses ethylene carbonate and methanol. The syn-

thesis of of the dimethyl carbonate is provided from literature information on the

conversion using immobilized ionic liquid (Kim et al., 2010). Subsequently, the

product separation is performed using a series of distillation columns. From the

analysis of the mixture behavior, the methanol/dimethyl carbonate mixture can

be separated using different pressures in the distillation. The ethylene carbon-

ate/ethylene glycol mixture cannot be separated conventionally. Therefore, water

is added, which reacts with the ethylene carbonate to produce ethylene glycol and

carbon dioxide. The resulting mixture can then be easily separated and the carbon

dioxide is recycled. The simulation flowsheet is shown in Figure D.6 with the stream

information in Table D.6.

The dimethyl carbonate part of the process is also analyzed. The capital costs

are 68 million USD and the operating costs are 81.8 million USD per year. The

dimethyl carbonate purification columns are energy intensive. In this process, they

both account for 75% of the energy consumption. Therefore, the reduction of the

energy consumption is targeted.

D.7 CCU: Dimethyl ether synthesis

There are two carbon dioxide capture and conversion processes to produce dimethyl

ether: (1) dimethyl ether via methanol from combined reforming and (2) dimethyl

ether via methanol from direct hydrogenation. The first is comprised of capture,

methanol via combined reforming and dimethyl ether synthesis. Similarly, the

second is comprised of capture, methanol via direct hydrogenation and dimethyl

ether from methanol synthesis. The flowsheets and the proII simulation are shown

in Section 4.2.1. The corresponding stream tables are provided here (Tables D.7

and D.8) and the simulation and analysis files are provided digitally.

D.8 CCU: Dimethyl carbonate synthesis

There are two carbon dioxide capture and conversion processes to produce dimethyl

carbonate: (1) dimethyl carbonate via ethylene carbonate and methanol from com-

bined reforming and (2) dimethyl carbonate via ethylene carbonate and methanol

from direct hydrogenation. The first is comprised of capture, ethylene carbon-

ate synthesis, methanol via combined reforming, and dimethyl carbonate synthe-

sis from ethylene carbonate and methanol. Similarly, the second is comprised

of capture, ethylene carbonate synthesis, methanol via direct hydrogenation, and
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Figure D.6. The flowsheet of the simulation for dimethyl carbonate synthesis via
ethylene carbonate and methanol process (adapted from Kongpanna et al. (2016)).
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Table D.6. The stream table of the simulation for dimethyl carbonate shown in
Figure D.6.
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Table D.7. The stream table of the simulation of combined capture and conversion
to dimethyl ether via methanol from combined reforming shown in Figure 4.8.
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Table D.8. The stream table of the simulation of combined capture and conversion
to dimethyl ether via methanol from direct hydrogenation shown in Figure 4.9.
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dimethyl carbonate synthesis from ethylene carbonate and methanol. The flow-

sheets and stream tables are provided here for the route via methanol from com-

bined reforming (Figure D.7 and Tables D.9 and D.10) and the route via methanol

from direct hydrogenation (Figure D.8 and Tables D.11 and D.12). The simulation

and analysis files are provided digitally.
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Figure D.7. The flowsheet of the simulation for carbon dioxide capture and
conversion to dimethyl carbonate via ethylene carbonate and methanol from
combined reforming.
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Table D.9. Part 1 of the stream table of the CCU simulation for dimethyl carbonate
with methanol from combined reforming shown in Figure D.7.
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Table D.10. Part 2 of the stream table of the CCU simulation for dimethyl carbonate
with methanol from combined reforming shown in Figure D.7.
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Figure D.8. The flowsheet of the simulation for carbon dioxide capture and
conversion to dimethyl carbonate via ethylene carbonate and methanol from direct
hydrogenation.
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Table D.11. Part 1 of the stream table of the CCU simulation for dimethyl carbonate
with methanol via direct hydrogenation shown in Figure D.8.
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Table D.12. Part 2 of the stream table of the CCU simulation for dimethyl carbonate
with methanol via direct hydrogenation shown in Figure D.8.
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Stage 3 results

In Stage 3 of the framework, more sustainable solutions are found by targeting the

areas for improvement from Stage 2. In the application, this is done by using hybrid

methods and process intensification. The energy intensive methanol distillation is

replaced by a hybrid methanol distillation-membrane process. Then, the dimethyl

carbonate process is improved by using reactive distillation. Details are provided in

Section E.1 and Section E.2, respectively.

E.1 Methanol synthesis with hybrid distillation-membrane

As the analysis from Stage 2 showed, one of the areas that could be improved is the

energy intensive methanol distillation. This is done by apply the method of Tula

et al. (2017) for the design of hybrid distillation-membrane separation sequences.

The flowsheet of the new distillation sequence is shown for methanol via direct

hydrogenation in Figure E.1 and the stream table is provided in Table E.1.

The analysis of the hybrid process reveals an increase in capital costs for that

section of the CCU process. However, the decrease in operating costs offsets this

increase, resulting in an overall reduction of the production costs of methanol. In

addition, the NetCO2 is reduced.

E.2 Dimethyl carbonate synthesis with reactive distillation

In addition to the methanol process, the dimethyl carbonate process is energy inten-

sive in the downstream processing. This is the result of the steps needed to separate

the product mixture due to the presence of azeotropes. The base case design was

translated to a phenomena-based flowsheet and alternatives were generated. The

best flowsheet alternative that was generated, uses reactive distillation and is shown
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Figure E.1. The flowsheet of the simulation for methanol via direct hydrogenation
with the hybrid distillation-membrane separation.
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Table E.1. The stream table of the simulation for methanol via direct hydrogenation
with the hybrid distillation membrane sequence shown in Figure E.1.
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in Figure E.2. The process is designed in Aspen with the resulting stream table in

Table E.2.

The intensified alternative greatly reduces the amount of equipment in this part

of the carbon dioxide capture and conversion processes. As a result, the capital

costs are greatly reduced. In addition, as there are no longer as many distillation

columns, the operating costs are also decreased, also resulting in a decrease in

NetCO2.
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Figure E.2. The flowsheet of the simulation for dimethyl carbonate with reactive
distillation.
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Table E.2. The stream table of the simulation of the intensified reactive distillation
process for dimethyl carbonate shown in Figure E.2.



AppendixF

Digital appendix

In addition to the written thesis, there is a digital appendix, organized in the

subsequent manner, which contains any necessary files and electronic data that

is not included in the written thesis.

Digital thesis This folder contains the PDF of the thesis along with the Latex

files, including figures, that are used to compile it.

Papers This folder contains the different publications that were written dur-

ing the PhD divided into the 7 folders for the journal or proceedings they are

included in.

Reaction path synthesis (RPS) This folder contains all the information for

the reaction path synthesis performed. It is subdivided in to three further

folders for the tools used, the results from the tools, and the database.

Simulation library This is the library of all the simulations organized by

product and type.

Stage 1 This contains all the results for Stage 1 and all the Scenarios con-

sidered, including input and output files.

Stage 2 This folder has all the results for Stage 2 for the four processes

considered, including simulation files and analysis results.

Stage 3 The contains the results for Stage 3 for the improved methanol and

dimethyl carbonate processes.

Superstructure database This folder contains the superstructure database.
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