
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 28, 2019

Topology optimization of a flexible multibody system with variable-length bodies
described by ALE–ANCF

Sun, Jialiang; Tian, Qiang; Hu, Haiyan; Pedersen, Niels Leergaard

Published in:
Nonlinear Dynamics

Link to article, DOI:
10.1007/s11071-018-4201-6

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Sun, J., Tian, Q., Hu, H., & Pedersen, N. L. (2018). Topology optimization of a flexible multibody system with
variable-length bodies described by ALE–ANCF. Nonlinear Dynamics, 93(2), 413-441. DOI: 10.1007/s11071-
018-4201-6

https://doi.org/10.1007/s11071-018-4201-6
http://orbit.dtu.dk/en/publications/topology-optimization-of-a-flexible-multibody-system-with-variablelength-bodies-described-by-aleancf(0c55ea34-9842-4c6b-accf-0e92cfd5ab57).html


1 
 

Submitted to Nonlinear Dynamics 
 

Topology optimization of a flexible multibody system  

with variable-length bodies described by ALE-ANCF 

 

Jialiang Suna, Qiang Tianb, Haiyan Hua,b,*, Niels L. Pedersenc 

 

 

a State Key Laboratory of Mechanics and Control of Mechanical Structures,  

College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 

Nanjing 210016, China 

E-mail address: sunjialiang@nuaa.edu.cn; 

*hhyae@nuaa.edu.cn 

 

b MOE Key Laboratory of Dynamics and Control of Flight Vehicle,  

School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China 

E-mail address: tianqiang_hust@aliyun.com 

 

c Department of Mechanical Engineering,  

Solid Mechanics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark 

E-mail address: nlp@mek.dtu.dk 

  

                                                              
*  Author to whom all correspondence should be addressed 



2 
 

Abstract 

Recent years have witnessed the application of topology optimization to flexible 

multibody systems (FMBS) so as to enhance their dynamic performances. In this study, 

an explicit topology optimization approach is proposed for an FMBS with variable-

length bodies via the moving morphable components (MMC). Using the arbitrary 

Lagrangian-Eulerian (ALE) formulation, the thin plate elements of the absolute nodal 

coordinate formulation (ANCF) are used to describe the plate-like bodies with variable-

length. For the thin plate element of ALE-ANCF, the elastic force and additional inertial 

force, as well as their Jacobians, are analytically deduced. In order to account for the 

variable design domain, the sets of equivalent static loads (ESL) are reanalyzed by 

introducing the actual and virtual design domains so as to transform the topology 

optimization problem of dynamic response into a static one. Finally, the novel MMC-

based topology optimization method is employed to solve the corresponding static 

topology optimization problem by explicitly evolving the shapes and orientations of a 

set of structural components. The effect of the minimum feature size on the optimization 

of an FMBS is studied. Three numerical examples are presented to validate the accuracy 

of the thin plate element of ALE-ANCF and the efficiency of the proposed topology 

optimization approach, respectively. 

 

Keywords Flexible multibody dynamics • Arbitrary Lagrangian-Eulerian formulation 

• Absolute nodal coordinate formulation • Topology optimization • Moving morphable 

components 
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1 Introduction 

Flexible multibody systems (FMBS) with variable-length bodies serve as useful 

models for a wide range of industrial products, such as cranes, elevators, pipes 

conveying fluids, cable-driven parallel manipulators, tethered satellites, telescoping 

boom systems and deployable solar sails [1-8]. Fig. 1 shows the first stage deployment 

of a spinning solar sail, similar to the problem studied by Sakamoto et al. [6]. During 

the deployment, four flexible beams extend from a spinning rigid hub and their lengths 

are variable. Previous studies in this field focused on the dynamic modeling and 

analysis of one-dimensional systems, like wire ropes, cables and belts [1-5, 9-11]. For 

a planar or spatial FMBS with variable-length bodies, such as a solar sail [6] or a 

deployable articulated mast [8, 12], neither dynamic modeling nor optimal design has 

received much attention. 

 

 
Fig. 1 The first stage deployment of a spinning solar sail [6] 

 
Topology optimization of an FMBS has called considerable attention in recent 

years to reduce the moving weight, improve the energy efficiency and enhance the 

dynamic performance. Since the pioneering work by Bendsøe and Kikuchi [13], several 

approaches [14] have been studied for the topology optimization of fluids, acoustics, 

electromagnetics and optics, as well as FMBS [15-19], but not yet for any FMBS with 

variable-length subject to both large overall motion and large deformation. This is 

probably due to the fact that the variable-length gives rise to three challenges for the 

topology optimization. 

The first challenge is how to accurately describe the FMBS. At present, many 

formulations can be used to describe the FMBS, such as the floating frame of reference 

formulation (FFRF), the absolute nodal coordinate formulation (ANCF) [20] and the 

large rotation vector formulation (LRVF) [21]. Ding et al. [22] has clearly illustrated 

the performance of the LRVF. For the simulation of an FMBS with variable-length 



4 
 

bodies, however, only two formulations are available. One is the variable-domain finite 

element (VFE) model based on the FFRF [23, 24]. The other is the arbitrary 

Lagrangian-Eulerian (ALE) description based on the ANCF [25]. Nevertheless, the 

VFE-FFRF cannot account for the large deformations of an FMBS with variable-length 

bodies due to the inherent nature of FFRF [15]. In the ALE-ANCF, additional material 

coordinates, besides the node positions and their slopes, are introduced as generalized 

coordinates [2, 3, 25]. Consequently, different from the conventional nodes tied to 

material points in ANCF, the nodes in ALE-ANCF are not associated with specific 

material points. When the material coordinates in ALE-ANCF are fixed, the finite 

element of ALE-ANCF becomes the conventional finite element of ANCF. The 

material coordinates of the ALE-ANCF give rise to a variable shape function matrix, 

and as a consequence, a variable mass matrix and additional inertial forces. Many kinds 

of finite elements of ALE-ANCF have been proposed for different applications [2-4, 

11, 26], including a thin plate element of ALE-ANCF proposed first by Hyldahl et al. 

[26]. Their studies, however, have not given the analytical formulae of the elastic force 

and additional inertial force, as well as the corresponding Jacobians. 

The second challenge is how to deal with the dynamic characteristics concerned 

with the variable design domain. In the conventional topology optimization of an FMBS, 

the design domain is prescribed and constant. Consequently, the topology optimization 

can be performed using the method of the equivalent static loads (ESL) or directly from 

the dynamic simulation of an FMBS. The former is named the ESL method [15, 18, 27-

31], while the latter is called the integrated optimization method [16, 32]. For an FMBS 

with variable-length bodies, the design domain varies over time. It is therefore hard to 

perform the topology optimization of an FMBS with variable-length bodies using the 

integrated optimization method. By introducing the concepts of actual and virtual 

design domains, the ESL sets are redefined. Taking the extension case of a flexible body 

as an example, the stretching domain is called the actual design domain, while the 

unstretched domain is the so-called virtual design domain. The whole design domain, 

which is the union of the actual and virtual design domains, is time-invariant. The ESL 

sets are separately analyzed for the actual and virtual design domains. In the actual 

design domain, the ESL sets are computed by multiplying the nonlinear stiffness matrix 

and the deformations of the flexible bodies [15], while in the virtual design domain, the 

ESL sets are identically equal to zeros. Thus, the dynamic topology optimization of an 

FMBS with variable-length bodies can be turned into a static one under multiple 
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equivalent static loading conditions. 

The third challenge is how to describe the structural topology and how to 

efficiently solve the corresponding topology optimization problem. Previous studies on 

the topology optimization of an FMBS mainly employ the density method and the level 

set method (LSM). Held et al. [17] studied the effect of the model reduction of FFRF 

on the topology optimization results of an FMBS by using the solid isotropic material 

with penalization (SIMP) approach. Moghadasi et al. [18] involved an accurate revolute 

joints and bearing domains model into the topology optimization of an FMBS via SIMP 

approach. Tromme et al. [16] employed an LSM to optimize the flexible bodies of an 

FMBS and used elliptical holes to generate new topologies. Sun et al. [15] utilized a 

semi-implicit LSM to perform the topology optimization of an FMBS described by 

ANCF. However, the traditional pixel-based density method and node point-based LSM 

describe the structural topology and perform the topology optimization implicitly. As a 

result, the two methods can have a large number of design variables, and might also 

have difficulty in precisely controlling the feature sizes of a component. It is noteworthy 

that recently, the moving morphable components (MMC) based topology optimization 

method has been first extended to the optimization of a spatial FMBS undergoing both 

large overall motions and large deformations [19]. The MMC-based topology 

optimization method [33-37] has a potential to overcome the shortcomings of the 

traditional density method and LSM as mentioned above by performing topology 

optimization explicitly and geometrically. According to the MMC method, a set of 

structural components serve as the building blocks, and enable one to get the optimal 

topology by optimizing the positions and shapes of the components. As a result, the 

MMC method can not only directly link with computer-aided design (CAD) modeling, 

but also easily control the feature sizes, like the minimum thickness of a component. 

This paper aims at solving the above problems in the following sections. Section 

2 introduces the fundamentals of the thin plate element of ALE-ANCF, presents the 

efficient schemes of the elastic forces, additional inertial forces and the corresponding 

Jacobian formulations, and gives the dynamic equation of an FMBS with variable-

length bodies. Section 3 outlines the MMC-based topology optimization method, and 

presents the ESL-based computation flow of the topology optimization for an FMBS 

with variable-length bodies. Section 4 includes three numerical examples to validate 

the accuracy of the thin plate element of ALE-ANCF and the efficiency of the topology 

optimization approach. Finally, Section 5 gives the concluding remarks. 
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2 Flexible multibody dynamics with variable-length bodies 

The rectangular thin plate element of ALE-ANCF was first proposed by Hyldahl 

et al. [26] by combining the ALE framework and ANCF and ignoring the transverse 

shear deformation. However, they did not derive the efficient computational schemes 

for the elastic force vector, additional inertial force vector and their Jacobians. This 

section, hence, presents these schemes for the later use in topology optimization. 

2.1 Implementation of a thin plate element of ALE-ANCF 

 

 

Fig. 2 A deformed thin plate element of ALE-ANCF 

 
Different from the rectangular thin plate element of ANCF [38], the rectangular 

thin plate element of ALE-ANCF in Fig. 2 uses the global position vectors, in-plane 

slope vectors, as well as the local material coordinates as the generalized coordinates, 

that is, 

 
TT T

e l   q q q ,  (1) 

where 
TT T T T T T

1 1, 1, 4 4, 4,e x y x y   q r r r r r r  is the vector of ANCF coordinates 

and  T1 1 2 2l m n m nq  is the vector of local material coordinates. 

The position vector of an arbitrary point in the rectangular thin plate element can 

be described as 

 e er N q ,  (2) 

where  1 3 3 2 3 3 3 3 3 12 3 3e N N N N       N I I I I  is the matrix of 1C  
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continuous interpolation functions with entries determined as follows 
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 (3) 

In Eq. (3), 1 2

2 1

2m m m

m m
  



  1 2m m m   and 1 2

2 1

2n n n

n n
  



  1 2n n n   

are the isoparametric coordinates, and 2 1a m m   and 2 1b n n   are the length and 

the width of the undeformed thin plate element, respectively. 

According to Eq. (2), the velocity and acceleration vectors of an arbitrary point 

can be expressed as 

 , p    r N q r N q r     ,  (4) 

where 
1 1 2 2, , , ,e e m e e n e e m e e n e

   N N N q N q N q N q  is the shape function matrix. 

pr  is the term that results in the additional inertial force, and can be expressed as 
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 (5) 

Here, 
1,e mN  denotes 

1

e

m



N

, and 
1 1,e m mN  denotes 

2

1 1

e

m m


 

N
. 

2.2 Formulations of the elastic force and its Jacobian 

The strain energy of the thin plate element can be divided into two terms, that is, 

the in-plane term U   due to the longitudinal and shear deformations in the mid-plane 

and the out-of-plane term U   due to the bending and twist deformations as follows 

[26, 38, 39] 
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0 0

T T1 1
d d

2 2V V
U U U V V       ε E ε κ E κ ,  (6) 

where V0 is the initial volume of the thin plate element, ε  and κ  are the mid-plane 

strain tensor and curvature vector as follows 

 

TTT T T T T
, , , , , , ,T

, , 3 3 3

1 1 2
,

2 2
m m n n mm nn mn

m n

   
    

    

r r r r r n r n r n
ε r r κ

n n n
,  (7) 

with , ,m n n r r . In Eq. (6), E  and E  are the elastic coefficient matrix under the 

assumption of plane stress, and are given by 

 

 

2

2

1 0

1 0 ,
1 12

0 0 1 2

E c  







 
      

E E E ,  (8) 

where E denotes Young's modulus,   denotes Poisson's ratio and c is the thickness of 

the thin plate. 

According to the work of Sanborn et al. [40], the interpolation function matrix in 

Eq. (3) and the strain energy in Eq. (6) of the thin plate element may result in the 

curve-induced distortion and membrane locking. However, the membrane locking 

occurs only during the bending of the thin plate element [40]. The present study mainly 

focuses on the topology optimization of the variable-length bodies in an FMBS 

undergoing only planar overall motions. Therefore, these variable-length bodies 

undergo the in-plane longitudinal and shear deformations, rather than the out-of-plane 

bending and twist deformations. The study, hence, does not account for the membrane 

locking problem of the thin plate element of ALE-ANCF. In addition, Sanborn et al. 

[40] also proposed the flat-mapped extension modeling method to address the curve-

induced distortion and membrane locking in 1-axis bending problems of the thin plate 

element of ANCF. It is possible, thus, to introduce the method into further studies to 

achieve accurate results. More specific information can be found in [40]. 

According to Eq. (6), the elastic force vector is defined as 

 
T T

e U U 
      

          
F F F

q q
,  (9) 

where F  is the elastic force vector associated with in-plane deformations and F  is 

the elastic force vector associated with out-of-plane deformations. For the planar 

topology optimization problems of stiffness design, the out-of-plane strain energy U   

can be omitted as it contributes little to the elastic force [15]. To reduce the 
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computational cost associated with the in-plane elastic force vector F  and the 

corresponding Jacobian formulation, efficient schemes are derived in this study by 

using the invariant matrix method [41]. 

The in-plane elastic force vector F  in Eq. (9) can be expressed as 

 
0

T T

d
V

U
V


     
       


ε

F E ε
q q

.  (10) 

The entries of the elastic force vector F  can then be efficiently computed as 

         
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

. (11) 

In Eq. (11), the subscripts , , , 1, 2, , 36i j a b    and the detailed expressions of

 1 ikab
K ,  2 ikab

K ,  3 ikab
K ,  4 ijkab

K ,  5 ijkab
K ,  6 ijkab

K ,  1 ik
G ,  2 ik

G , 

 3 ijk
G  and  4 ijk

G  are derived and listed in the Appendix. 

According to Eq. (11), the entries of the Jacobian formulation of the elastic force 

are derived as follows: 

when 1, 2, , 36k    and 1, 2, , 36l   , 
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  (12) 

when 1, 2, , 36k    and 37, 38, , 40l   , 
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   
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+
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,
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K K K

G G

  (13) 

when 37, 38, , 40k    and 1, 2, , 36l   , 
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when 37, 38, , 40k    and 37, 38, , 40l   , 
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In Eqs. (13) and (15),  1 , likab q
K  represents the partial derivatives of  1 ikab

K  

with respect to the local material coordinates  37, 38, ,40lq l   . The detailed 

expressions of  1 , likab q
K ,  2 , likab q

K ,  3 , likab q
K ,  4 , lijkab q

K ,  5 , lijkab q
K , 

 6 , lijkab q
K ,  1 , lik q

G ,  2 , lik q
G ,  3 , lijk q

G  and  4 , lijk q
G  are derived and listed in the 

Appendix. 

2.3 Formulations of the additional inertial force and its Jacobian 

According to Eq. (5), the additional inertial force vector aF  is defined as 

 
0

T da
pV

V F N r , (16) 

where   is the density. The entries of the additional inertial force vector aF  can be 

efficiently computed as follows: 

when 1, 2, , 36k   , 

 

       
       
     
     

1 1 1 2 2 3 2 4

2 2 2 2
1 5 1 6 2 7 2 8

1 1 9 1 2 10 1 2 11

1 2 12 1 2 13 2 2 14 ,

a
k aka ka ka ka

aka ka ka ka

aka ka ka

aka ka ka

F m n m n q

m n m n q

m n m m m n q

n m n n m n q

     
     
    
    

H H H H

H H H H

H H H

H H H

    

   

     

     

  (17) 

when 37, 38, , 40k   , 
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       
       
     
     

1 15 1 16 2 17 2 18

2 2 2 2
1 19 1 20 2 21 2 22

1 1 23 1 2 24 1 2 25

1 2 26 1 2 27 2 2 28 .

a
k b akba kba kba kba

b akba kba kba kba

b akba kba kba

b akba kba kba

F m n m n q q

m n m n q q

m n m m m n q q

n m n n m n q q

     
     
    
    

H H H H

H H H H

H H H

H H H

    

   

     

     

  (18) 

In Eqs. (17) and (18), the subscripts , 1, 2, , 36a b    and the detailed 

expressions of  1 ka
H ,  2 ka

H , …,  14 ka
H  and  15 kba

H ,  16 kba
H , …,  28 kba

H  

are listed in the Appendix. 

According to Eqs. (17) and (18), the entries of the Jacobian formulation of the 

additional inertial force are derived as follows: 

when 1, 2, , 36k    and 1, 2, , 36l   , 

 

       

     
     

2 2 2 2
1 5 1 6 2 7 2 8

1 1 9 1 2 10 1 2 11

1 2 12 1 2 13 2 2 14 ,

a
k

kl kl kl kl
l

kl kl kl

kl kl kl

F
m n m n

q

m n m m m n

n m n n m n


   



  

  

H H H H

H H H

H H H

   

     

     

  (19) 

when 1, 2, , 36k    and 37, 38, , 40l   , 

 

       

       

     

   

1 1 1 2 2 3 2 4, , , ,

2 2 2 2
1 5 1 6 2 7 2 8, , , ,

1 1 9 1 2 10 1 2 11, , ,

1 2 12 1 2 13 2 2, ,

=
l l l l

l l l l

l l l

l l

a
k

aka q ka q ka q ka q
l

aka q ka q ka q ka q

aka q ka q ka q

ka q ka q

F
m n m n q

q

m n m n q

m n m m m n q

n m n n m n

     

     
    

  

H H H H

H H H H

H H H

H H H

    

   

     

       14 ,
,

l
aka q

q 
 

  (20) 

when 37, 38, , 40k    and 1, 2, , 36l   , 

 

       

       
       
     

1 15 1 16 2 17 2 18

2 2 2 2
1 19 1 20 2 21 2 22

2 2 2 2
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1 1 23 1 2 24 1 2 25
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k

akla kla kla kla
l

akla kla kla kla

akal kal kal kal

akla kla kla

F
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q

m n m n q

m n m n q

m n m m m n q

      

     
     
    



H H H H

H H H H

H H H H

H H H

    

   

   

     

     
     
     

1 1 23 1 2 24 1 2 25

1 2 26 1 2 27 2 2 28

1 2 26 1 2 27 2 2 28 ,

akal kal kal

akla kla kla

akal kal kal

m n m m m n q

n m n n m n q

n m n n m n q

   
    
    

H H H

H H H

H H H

     

     

     

 (21) 

when 37, 38, , 40k    and 37, 38, , 40l   , 
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       

       

     

 

1 15 1 16 2 17 2 18, , , ,

2 2 2 2
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1 2 26
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l l l
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k

b akba q kba q kba q kba q
l

b akba q kba q kba q kba q

b akba q kba q kba q

kb

F
m n m n q q

q

m n m n q q

m n m m m n q q

n m

      

     
    



H H H H

H H H H

H H H

H

    

   

     

     1 2 27 2 2 28, , ,
.

l l l
b aa q kba q kba q

n n m n q q   H H   

  (22) 

In Eqs. (19)-(22), the subscripts , 1, 2, , 36a b    and  1 , lka q
H  represents the 

partial derivatives of  1 ka
H  with respect to the local material coordinates 

 37, 38, ,40lq l   . The detailed expressions of  1 , lka q
H ,  2 , lka q

H , …,  14 , lka q
H  

and  15 , lkba q
H ,  16 , lkba q

H , …,  28 , lkba q
H  are listed in the Appendix. 

2.4 Time integration scheme considering variable-length bodies 

The dynamic equation of an FMBS modeled via ALE-ANCF can be expressed as 

[26] 

 
 
 

T
,

,
D

e a
D

D

t

t

    




qM q Φ λ F F Q

Φ q 0


  (23) 

where  
0

T d
V

t V M N N  is the time-dependent mass matrix of the system, Dq  is 

the generalized coordinate vector of the system, , DqΦ  is the Jacobian of the constraint 

Φ  and λ  is the Lagrange multiplier vector. eF  and aF  are the elastic force vector 

assembled by Eq. (9) and the additional inertial force vector assembled by Eqs. (17) 

and (18), respectively. Q  denotes the generalized external force vector. The second 

equation in Eq. (23) represents the kinematic constraints including driving constraints. 

To solve the dynamic equation in Eq. (23), the generalized-α method [42-45] is 

utilized and reevaluated to deal with the variation of the degrees of freedom due to the 

variable-length. Fig. 3 gives the generalized-α time integration scheme considering 

variable-length bodies. The readers are referred to Refs. [42-45] for detailed 

descriptions of the generalized-α method. The key point of the time integration scheme 

in Fig. 3 is that when the length of a flexible body is varying, ALE-ANCF nodes of 

boundary elements have to be inserted or removed to avoid excessively long or short 

lengths of boundary elements. Excessively long lengths of boundary elements can 

reduce the accuracy of the computational result, while excessively short case can result 
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in the singularity of the stiffness matrix. Therefore, in Fig. 3, when the length of the 

boundary element Lb is longer than the given maximum length Lmax, new nodes are 

inserted into the boundary element, as illustrated in Fig. 4(a). Likewise, when the length 

of the boundary element Lb is shorter than the given minimum length Lmin, the nodes 

inside the boundary element are removed, as illustrated in Fig. 4(b). 

 

 

Fig. 3 Time integration scheme considering variable-length bodies 
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(a) Insert nodes (b) Remove nodes 

Fig. 4 Illustration of boundary element treatment 

 

3 Topology optimization of an FMBS 

3.1 Moving morphable components based topology optimization 

In the MMC-based topology optimization method, the structural topology is first 

represented by a set of morphable components. The optimal topology, then, can be 

obtained by optimizing the layout including positions and shapes of those components 

[34-37]. To achieve this goal, the structural components have to be explicitly and 

mathematically described by the topology description function (TDF). Fig. 5 depicts 

the iteration history of the MMC-based topology optimization process, where the 

components in different colors are of the same kind for illustration purpose. 

 

  

  

Fig. 5 Iteration history of the MMC-based topology optimization process 
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(a) Schematic diagram 

 

(b) TDF with L = 0.5, c1 = 0.1, c2 = 0.15 and c3 = 0.07 

Fig. 6 A thickness-varying structural component 

 
In this study, the following TDF is employed to describe the geometry of a planar 

thickness-varying structural component, as shown in Fig. 6(a) [34] 

    
, 1

pp
x y

X Y
L g x


            

,  (24) 

where 

 0

0

cos sin

sin cos

X Xx

Y Yy

 
 

    
           

.  (25) 

In Eq. (24) and (25), p is a large even integer number (usually p = 6), O-XY and o-xy 

denote the global frame of coordinates and the local frame of coordinates, respectively. 

 0 0,X Y  represents the global coordinates of the component center. L,  g x  and   

are the semi-length, the thickness profile and the inclined angle with respect to OX axis 

of the component, respectively. Here, the thickness profile yields the quadratic relation 

as follows 

   21 2 3 2 1
32

2

2 2

c c c c c
g x x x c

L L

  
   ,  (26) 

where the parameters 1c , 2c  and 3c  are the semi-thickness parameters at both ends 
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and in the middle of the structural component, as illustrated in Fig. 6(a). Fig. 6(b) gives 

the TDF of a thickness-varying structural component with L = 0.5, 1c  = 0.1, 2c  = 

0.15 and 3c  = 0.07. 

According to Eqs. (24)-(26), the design variable vector of the component is 

defined as follows 

  T0 0 1 2 3X Y L c c cb .  (27) 

For a single component, the material domain i , the material interface i  of the i-

th component and the void domain \ iD   can be represented by the TDF as 

 

 
 
 

0

0

0 \

i i

i i

i iD







  


  
    

X X

X X

X X

,  (28) 

where X  is an arbitrary point in the design domain D of 2 , i  is the TDF defined 

in Eq. (24) for the i-th component and N is the total number of structural components. 

Then, the topology description of the entire design domain can be achieved by defining 

the TDF for all the structural components as follows 

 

 
 
 

0

0

0 \D







  


  
    

X X

X X

X X

,  (29) 

where  1max , , N     and 
1

N

ii
    represents the material domain 

occupied by at least one structural component. 

3.2 Topology optimization formulation 

The formulation of the MMC-based topology optimization for an FMBS with 

variable-length bodies can be mathematically expressed as 

 

  
     
 
 

T
,

max

find

to minimize ,

subject to

, 0

0

D

D

e a
D

D

f t

t

V V

u

   



 



q

b

b

b q

M b q Φ λ F b F b Q

Φ q

b

b


.  (30) 

In Eq. (30), 
TT T T

1 i N   b b b b   is the vector of design variables with 
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ib  denoting the vector of design variables of the i-th structural component in Eq. (27). 

From Eq. (30), it can be easily found that b  belongs to an admissible set ub . As a 

result, the minimum thickness of the components can be controlled by setting the lower 

bounds of the geometric design variables in ub . Other symbols in Eq. (30) are 

explained as follows.   , Df tb q  is the objective function associated with the design 

variables and time t for the dynamic optimization problem. Taking the stiffness design 

into consideration, the objective function is defined as the mean compliance of the 

flexible bodies. The first two equations in the constraints represent the dynamic 

equation of an FMBS, which have been explained in detail in section 2.3. max 0V V   

is called the inequality volume constraint, where V is the volume ratio of the flexible 

bodies to be optimized and Vmax is the volume fraction determined by the designers. 

3.3 ESL-based computation flow of optimization 

In solving the topology optimization for the dynamic response of an FMBS as 

shown in Eq. (30), the ESL method has seen successful applications [15-18, 46]. 

Compared with the integrated optimization method [32], the ESL method has many 

merits, such as high efficiency in computation and convenience in implementation [15, 

32]. In this study, the ESL method is modified to deal with the topology optimization 

problem for the dynamic response of an FMBS with variable-length bodies. 

Based on the ANCF, the ESL sets are defined as the static loads that generate the 

same deformations of the flexible bodies in the static analysis as those from the 

nonlinear dynamic analysis [15], that is, 

            , 1, 2, ,eq i D i D i R it t t t i n  F K b q q q  ,  (31) 

where K  is the nonlinear stiffness matrix of ANCF associated with the design 

variable vector b  and the generalized nodal coordinate vector Dq , n is the total 

number of time steps concerned and it  represents the simulation time at i-th time step. 

The generalized coordinate vectors Dq  and Rq  are obtained from the dynamic 

analysis and the simulation of rigid multibody system, respectively. 

However, some challenges arise when computing the ESL sets for an FMBS 

modeled via ALE-ANCF as the lengths of the flexible bodies to be optimized are 

varying over time. As a consequence, the design domains are different at different time 

steps. To overcome the difficulty in computing ESL sets and to obtain a comprehensive 
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optimization result, the concept of virtual design domain is proposed in this study. As 

illustrated in Fig. 7, for the extension case of a flexible body, the stretching domain is 

called the actual design domain aD , and the unstretched domain is the so-called virtual 

design domain vD . Likewise, for the contraction case, the contracted domain is named 

the virtual design domain vD . The whole design domain of the flexible body, hence, 

can be defined as a vD D D  . The difference between aD  and vD  is that the ESL 

sets in the two domains are separately defined as follows 

  
         

 
 

,
, 1, 2, ,

a a a a a
D i D i R i

eq i v

t t t D
t i n

D

   


K b q q q X
F X

0 X
 . (32) 

 

  

(a) Extension in length (b) Contraction in length 

Fig. 7 The concept of virtual design domain 

 
In Eq. (32), the ESL sets are computed in the same way as that in Eq. (31) in the 

actual design domain aD , and are identically equal to zeros in the virtual design 

domain vD . However, aK , a
Dq  and a

Rq  denoting the nonlinear stiffness matrix and 

generalized coordinates in the actual design domain aD , are different from K , Dq  

and Rq  in Eq. (31). 

According to Eq. (32), when eqF  is used as the external force vector, the 

generalized coordinate vector Sq  can be obtained from the static analysis as follows 

            , , 1, 2, ,D i S i R i eq it t t t i n  K b q q q F X  , (33) 

where K  is the stiffness matrix defined in the whole design domain D. If only single 

flexible body is considered, the equilibrium of Eq. (33) can be directly solved by taking 
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the displacement boundary conditions into account. Otherwise, if more than one 

flexible body is considered, the deformation of each body has to be computed 

independently to get rid of the impact of the kinematic joints [27]. 

 

 

Fig. 8 The flowchart of ESL-based computation for the topology optimization of an FMBS with 

variable-length bodies 

 
To this end, the topology optimization for the dynamic response of an FMBS with 

variable-length bodies as shown in Eq. (30) can be turned into a static one under 

multiple loading conditions in the following way 
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  
         

 
  max

find

to minimize ,
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1, 2, ,

0

S

D i S i R i eq i

f t

t t t t

i n

V V

u

 



 

 b

b

b q

K b q q q F X

b

b


.  (34) 

In Eq. (34), f is the objection function, defined as the weighted summation of the 

compliances of the flexible bodies at all time steps, namely, 

     T

1

=
n

i i S i S
i

f w

 σ q ε q ,  (35) 

where iw , determined by the expert evaluation method of weights [15, 47], is the 

weight for the i-th time step, iσ  and iε  are the Piola-Kirchhoff stress tensor of the 

second kind and the Green-Lagrange strain tensor at the i-th time step, respectively. To 

solve the topology optimization problem of static response in Eq. (34), the method of 

moving asymptotes (MMA) [34, 48] is employed. Then, the whole ESL-based 

computation flow is briefly illustrated in Fig. 8 for the topology optimization of an 

FMBS with variable-length bodies. 

 

4 Numerical examples 

In this section, three numerical examples are presented to validate the accuracy of 

the thin plate element of ALE-ANCF and the topology optimization approach proposed 

for an FMBS with variable-length bodies. The first example is a thin plate pendulum 

falling down under gravity [26]. The second one is the topology optimization for a 

rotating variable-length plate with different extension velocities taken into account and 

the third one is the topology optimization of a 3 degrees-of-freedom (DOF) motion 

platform. In the first example, the elastic force vector of the thin plate element of ALE-

ANCF is computed according to Eq. (9) with the out-of-plane strain energy taken into 

account. For efficient computation, in the second and third ones, the elastic force vector 

is only computed by Eq. (10). 

4.1 Dynamics of a thin plate pendulum 

This classic example has been widely studied [26, 39, 49-53] to validate different 
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kinds of plate and shell elements of ANCF. Compared with the fully parameterized 

elements of ANCF, the gradient deficient thin plate element of ANCF exhibits better 

computational efficiency and convergence rate [39]. Besides, many methods have been 

proposed to solve the locking problems of ANCF [40, 54, 55]. As a thin plate element 

of ALE-ANCF can be degenerated into a thin plate element of ANCF when the four 

material coordinates of the element are fixed, the results obtained from the two kinds 

of finite element of ANCF are comparatively studied. As shown in Fig. 9, the pendulum 

is a thin square plate [26] with an edge length of 0.3 m and a thickness of 0.01 m. The 

mass density of the plate is 7810 kg/m3, and Young’s modulus and Poison’s ratio are 

1×105 Pa and 0.3, respectively. The pendulum is initially at rest as shown in Fig. 9, 

where a corner point of the plate is fixed via a spherical joint at the origin O and starts 

falling down due to gravity when 0t  . To validate the thin plate element of ALE-

ANCF derived in Section 2, the pendulum is modeled via 8×8 thin plate elements of 

ALE-ANCF in this study and 8×8 traditional thin plate elements of ANCF [38], 

respectively. 

 

 

Fig. 9 A thin plate pendulum under gravity 

 
Fig. 10 illustrates the deformed shapes of the pendulum at four moments, and 

shows good agreement between the ALE-ANCF model and ANCF model. Fig. 11 gives 

the comparison results of the x-, y- and z-displacements of corner point A, and shows 

that the results from ALE-ANCF model and ANCF model match with each other very 

well. Fig. 12 presents the energy of the pendulum with an increase of time. Fig. 12(a) 

indicates that the total energy of the pendulum keeps constant since the only external 

force comes from gravity. Fig. 12(b) depicts the perfect agreement of the strain energy 

between the ALE-ANCF and ANCF models, as well as between the results in this study 

and those in Ref. [26]. Hence, it is possible to reach the assertion that the thin plate 

element of ALE-ANCF proposed here can accurately describe an FMBS subject to both 

large overall motion and large deformation. 
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(a) 8×8 thin plate elements of ALE–ANCF (b) 8×8 thin plate elements of ANCF 

Fig. 10 Comparison of the deformed shapes of the thin plate pendulum 

 

 
Fig. 11 Comparison of two models for predicting the displacement of corner point A 

 

(a) Energy balance of ALE-ANCF model (b) Comparison of strain energy 

Fig. 12 Energy of the thin plate pendulum with respect to time 
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4.2 Topology optimization of a rotating variable-length plate 

This example simplifies the four deployable beams of a spinning solar sail [6], as 

shown in Fig. 1, to a rotating variable-length plate carrying a tip mass. Due to the high 

efficiency of the adopted MMC methods, the proposed optimization method can be 

further used to optimize the deployable beams and membranes in a large-scale space 

structure. As shown in Fig. 13, the rotating thin plate is connected to the ground via a 

revolute joint at origin O, and a tip mass of 0.5 kg is mounted at the free end of the 

plate. The rotating plate has an initial length of 0.5 m, a width of 0.1 m and a thickness 

of 0.01 m. The mass density of the plate is 2700 kg/m3, and Young’s modulus and 

Poison’s ratio are 1×108 Pa and 0.3, respectively. The plate moves in the X-Y plane at a 

constant angular velocity 2π rad/s   while its length extends at the same time. The 

initial configuration of the rotating plate is modeled via 10×2 thin plate elements of 

ALE-ACNF. The maximum length of the boundary element is 0.1 m. That is, when the 

length of the boundary element reaches 0.1 m, two nodes of ALE-ANCF are inserted 

to divide the boundary element from the middle into two elements, as illustrated in Fig. 

4(a). 

 

 

Fig. 13 A rotating variable-length plate 

 
Two kinds of extension velocities are investigated to topologically optimize the 

rotating plate, that is, v = 0.1 m/s and v = 0.5 m/s. The analysis time is set to be 1 s in a 

period of motion. Therefore, the final lengths for the two extension velocity cases are 

0.6 m and 1.0 m. To compute the ESL sets, the time step size is set as 0.05 s for the 

extension velocity 0.1 m/s and 0.01 s for the extension velocity 0.5 m/s. Hence, there 

are 20 and 100 time steps all together correspondingly. During the static topology 

optimization, the weights for the 20 and 100 time steps can be determined via an expert 

evaluation method of weights to avoid the subjective influence of the designers. 
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However, the study does not focus on the influence of the weights. To take the practical 

situation into consideration, all the weights are selected to be the same. The volume 

fraction Vmax is 0.5 for the two cases. 

Fig. 14 shows the initial configurations of the structural components for the two 

extension velocity cases, which include 96 and 160 structural components, respectively. 

According to Eq. (27), each structural component has 7 design variables. Therefore, 

the number of design variables for the two extension velocity cases are 672 and 1120. 

Compared with the traditional density-based and level set-based topology optimization 

methods [33], the MMC-based method can dramatically reduce the number of design 

variables. This is one of the features of the MMC method. If a 400×40 mesh is used to 

discretize the rotating plate for the case of v = 0.5 m/s, the number of design variables 

in the traditional topology methods (density method and LSM) will be great than 16000. 

 

 

(a) v = 0.1 m/s 

 

(b) v = 0.5 m/s 

Fig. 14 Initial configurations of the structural components for the two extension velocity cases 

 
The other feature of the MMC method is the controllability of the minimum 

thickness of the structural components during topology optimization when 

manufacturability or stability of a structural component is important. For the case of 

extension velocity v = 0.1 m/s, the topology optimization results in the first cycle of the 

rotating plate are depicted in Fig. 15 and Fig. 16, where the lower bounds of the 

thicknesses c1, c2 and c3 of the structural components are set either cmin = 0.001 m or 

cmin = 0.005 m. The comparison between the optimization results in Fig. 15(d) and Fig. 

16(d) shows that the two results have similar topologies, but different thickness scales 

at some domains. The optimization result in Fig. 15(d) and the optimized structural 

components in Fig. 15(e) illustrate that without the minimum thickness control, i.e., 

setting cmin as a very small positive value, the results give very thin and unsmooth 

components, such as the red cycle parts in Fig. 15(d). While for the case of cmin = 0.005 
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m, Fig. 16(d) and Fig. 16(e) show that the minimum thickness control can result in well-

posed optimization results. 

Fig. 17 illustrates the iteration histories of the convergent objective function and 

the volume ratio for the cases of cmin = 0.001 m and cmin = 0.005 m. The figure shows 

that the inequality volume constraints are both satisfied for the two cases. Besides, the 

convergence history of the objective function for the case of cmin = 0.001 m is not that 

smooth with plenty of peaks during the iteration process. This is probably because that 

the thicknesses of some structural components are so small that the topology of the 

rotating plate may easily jump from one to the other when cmin = 0.001 m. Comparing 

the objective functions as shown in Fig. 17(a) and Fig. 17(b), it can be observed that 

the converged objective functions have about the same value for the two cases. 

 

 

(a) Iteration No. 10 

 

(b) Iteration No. 100 

 

(c) Iteration No. 600 

 

(d) Iteration No. 690 

 

(e) Optimized components of iteration No. 690 

Fig. 15 Topology optimization results for the case of v = 0.1 m/s and cmin = 0.001 m 

 

 

(a) Iteration No. 10 

 

(b) Iteration No. 100 
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(c) Iteration No. 500 

 

(d) Iteration No. 600 

 

(e) Optimized components of iteration No. 600 

Fig. 16 Topology optimization results for the case of v = 0.1 m/s and cmin = 0.005 m 

 

(a) cmin = 0.001 m (b) cmin = 0.005 m 

Fig. 17 Iteration histories of the objective function and the volume ratio for v = 0.1 m/s 

 
Fig. 18 and Fig. 19 show the topology optimization results in the first cycle of the 

rotating plate in the case of extension velocity v = 0.5 m/s. The lower bounds of the 

thicknesses c1, c2 and c3 are similarly set as cmin = 0.001 m and cmin = 0.005 m for Fig. 

18 and Fig. 19, respectively. The optimized results in Fig. 18(d) and Fig. 19(d) have 

similar topologies, and both have more materials on the left part. Without the minimum 

thickness control by setting cmin as 0.001 m, Fig. 18(d) depicts an unsmooth solution as 

some parts (see the red cycle parts) of the rotating plate have such thin structures that 

serious instability problem may arise. With the minimum thickness control by setting 

cmin as 0.005 m, Fig. 19(d) and Fig. 19(e) illustrate a smoother solution. Fig. 20 gives 

the iteration histories of the convergent objective function and the volume ratio for the 

cases of cmin = 0.001 m and cmin = 0.005 m. The figure indicates that the inequality 

volume constraint is satisfied for the two cases. It is worth noting that the objective 

functions converge to almost the same value for the two cases of the minimum thickness 
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control, just like that in Fig. 17. Likewise, for the case of cmin = 0.001 m, Fig. 20(a) 

gives an unsmooth convergence history with many peaks in the objection function. 

 

 

(a) Iteration No. 10 

 

(b) Iteration No. 100 

 

(c) Iteration No. 400 

 

(d) Iteration No. 530 

 

(e) Optimized components of iteration No. 530 

Fig. 18 Topology optimization results for the case of v = 0.5 m/s and cmin = 0.001 m 

 

 
(a) Iteration No. 10 

 
(b) Iteration No. 100 

 
(c) Iteration No. 300 

 
(d) Iteration No. 400 

 

(e) Optimized components of iteration No. 400 
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Fig. 19 Topology optimization results for the case of v = 0.5 m/s and cmin = 0.005 m 

 

(a) cmin = 0.001 m (b) cmin = 0.005 m 

Fig. 20 Iteration histories of the objective function and the volume ratio for v = 0.5 m/s 

 
The comparison between the results in Fig. 18 and Fig. 19 gives rise to the question 

that what is the best minimum thickness scale to control the minimum thickness of the 

structural components. An additional numerical example is used to explain this in Fig. 

21 and Fig. 22, where cmin = 0.008 m for the case of extension velocity v = 0.5 m/s. The 

optimized result in Fig. 21(d) looks like those in Fig. 18(d) and Fig. 19(d), but is a 

smoother and more robust one. The converged objective function for cmin = 0.008 m 

case in Fig. 22 is approximately equal to those in Fig. 20. From the point of view of 

objective function, hence, the three optimized results in Fig. 18(d), Fig. 19(d) and Fig. 

21(d) have little difference. If the minimum thickness scale of the structural component 

is taken into account, Fig. 19(d) and Fig. 21(d) will be superior to the one in Fig. 18(d). 

In practice, the best minimum thickness scale is unknown to the designers. One way to 

overcome this difficulty, therefore, is to try to design several times with different 

minimum thickness scales. The other is to include additional stability or 

manufacturability constraints into the optimization formulation, which will be studied 

in future research. 

 

 
(a) Iteration No. 10 

 
(b) Iteration No. 100 
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(c) Iteration No. 600 

 
(d) Iteration No. 670 

 

(e) Optimized components of iteration No. 670 

Fig. 21 Topology optimization results for the case of v = 0.5 m/s and cmin = 0.008 m 

 

 
Fig. 22 Iteration histories of the objective function and the volume ratio for v = 0.5 m/s and cmin = 

0.008 m 

 

(a) v = 0.1 m/s (b) v = 0.5 m/s 

Fig. 23 Deflection responses of tip mass A for the unoptimized and optimized models 

 
Fig. 23 presents the deflection responses of tip mass A in Fig. 13 for the 

unoptimized and optimized models. For a better comparison, the unoptimized model 



30 
 

has only half materials, which is evenly distributed, of the initial design. It can be easily 

observed that the amplitudes of the optimized models have about the same values, and 

are all smaller than the unoptimized ones. This phenomenon indicates that the 

optimization of the rotating variable-length plate is successful. That is, the stiffness of 

the rotating plate is actually improved. Regarding the vibration frequencies, the 

optimized models have higher first-order vibration frequencies than the unoptimized 

ones. 

4.3 Topology optimization of a 3-DOF motion platform 

This example is intended to validate the proposed optimization approach to deal 

with a complex FMBS with many flexible variable-length bodies. As shown in Fig. 24, 

a 3-DOF motion platform consists of a rigid motion platform, four rigid bearings (A, B, 

C and D), and two flexible variable-length connecting bars, as well as four revolute 

joints and two sliding joints. The rigid motion platform has a mass of 2 kg and a 

geometric size of 0.4 m×0.2 m×0.1 m. The four rigid bearings have the same mass and 

geometric size, that is, 0.1 kg and 0.1 m×0.1 m×0.01 m. In this study, the five rigid 

bodies are modeled by the natural coordinate formulation (NCF) [56]. The two variable-

length connecting bars are the design domains, both of which have a width of 0.1 m 

and a thickness of 0.01 m. The mass density of the connecting bars is 2700 kg/m3, and 

Young’s modulus and Poison’s ratio are 7.2×109 Pa and 0.3, respectively. It is assumed 

that the mass flows in and out at end A and end B of the two variable-length connecting 

bars. 

 

 
Fig. 24 The initial configuration of a 3-DOF motion platform 

 
The rigid platform has 3 DOF of motion, which means it can freely move and 

rotate in the X-Y plane under the three control inputs, that is, the length 1L  of 
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connecting bar 1, the length 2L  of connecting bar 2, and the rotating angle 1  of 

rigid bearing A. In this study, to optimize the two flexible connecting bars, the motion 

platform is designed to translate along the dot-dashed line in Fig. 24. The trajectory of 

the platform centroid E is 

 
  
  

0.5cos π

0.5sin π 0.4

E

E

X t

Y t





  

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,  (36) 

with 

    
3

1 3 π
2π π 0,

2 2 4
t t t t T        

 
,  (37) 

where T = 1 s is the total analysis time. For the initial configuration of the motion 

platform in Fig. 24, the coordinates of the centroids of the four rigid bearings A, B, C 

and D are  0.4, 0 ,  0.4, 0 ,  0.65, 0.4  and  0.35, 0.4 , respectively. 

According to Eqs. (36) and (37), the desired lengths 1L , 2L  and the desired rotating 

angle 1  can be obtained as shown in Fig. 25. Fig. 25(a) indicates that the maximum 

length of the variable-length connecting bars is 0.87 m. Hence, the design domains of 

the optimization problem are two domains of 0.87 m×0.1 m. The length of the boundary 

element of the connecting bars can vary from 0.05 m to 0.1 m. This means that when 

the length of the boundary element increases to 0.1 m, two nodes of ALE-ANCF are 

inserted to divide the boundary element from the middle into two elements, as 

illustrated in Fig. 4(a). On the contrary, when the length of the boundary element 

reduces to 0.05 m, two boundary elements will merge into one element, as illustrated 

in Fig. 4(b). 
 

(a) Desired lengths of two connecting bars (b) Desired rotating angle of rigid bearing A 

Fig. 25 The desired inputs for the desired movement of the platform 
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To optimize the two connecting bars, the time step size is set as 0.01 s and the 

weights for the 100 time steps are all set the same. The volume fraction Vmax of the 

optimization problem is set as 0.5 for the two connecting bars. Fig. 26 shows the initial 

configurations of the structural components for the two connecting bars, each of which 

has 120 components. Based on the optimization results of the rotating variable-length 

plate in Section 4.2, the lower bounds of the thicknesses c1, c2 and c3 are set as cmin = 

0.005 m here. The topology optimization results in the first cycle of the two connecting 

bars are shown in Fig. 27 and Fig. 28, where the left ends are ends C and D for the two 

connecting bars, respectively. The comparison between Fig. 27(d) and Fig. 28(d) shows 

that the two connecting bars have different topologies after optimization. The 

optimization result in Fig. 27(d) has more materials on the right part and is similar to a 

truss structure. While the optimization result in Fig. 28(d) is more like a tree structure 

with one thick tree trunk and some thin branches. This is probably due to the different 

driving modes for the two connecting bars. Connecting bar 1 is driven by length 1L  

and rotating angle 1  at the same time, while connecting bar 2 is only driven by length

2L . As a consequence, the sets of ESL are totally different for the two connecting bars. 

 

 

(a) Connecting bar 1 

 

(b) Connecting bar 2 

Fig. 26 Initial configurations of the structural components for the two connecting bars 

 

 

(a) Iteration No. 10 

 

(b) Iteration No. 100 
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(c) Iteration No. 400 

 

(d) Iteration No. 500 

 

(e) Optimized components of iteration No. 500 

Fig. 27 Topology optimization results for connecting bar 1 

 

 

(a) Iteration No. 10 

 

(b) Iteration No. 100 

 

(c) Iteration No. 500 

 

(d) Iteration No. 600 

 

(e) Optimized components of iteration No. 600 

Fig. 28 Topology optimization results for connecting bar 2 

 
Fig. 29 gives the iteration histories of the objective function and the volume ratio 

for the two connecting bars. The figure indicates that the inequality volume constraint 

is satisfied for the two connecting bars. It is also easy to observe that the convergent 

objective functions have different values for the two connecting bars due to the different 

ESL sets for them. Fig. 30 depicts the optimized results of the 3-DOF motion platform 

at four moments. Fig. 31 presents the comparison of the dynamic responses of the 

platform E between the unoptimized model and the optimized model. Likewise, the 
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unoptimized model has only half materials, which is evenly distributed, of the initial 

design. In Fig. 31, EX , EY  are the differences of E coordinates between the actual 

ones and the desired ones in Eq. (36), and E  is the rotating angle of platform E. Fig. 

31 reveals that the optimized model is better than the unoptimized one as the optimized 

model has smaller maximum absolute deflections and rotating angles of the platform E 

than the unoptimized model. 

 

(a) Connecting bar 1 (b) Connecting bar 2 

Fig. 29 Iteration histories of the objective function and the volume ratio for the two connecting bars 

 

  

(a) t = 0 s (6) t = 0.4 s 
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(c) t = 0.6 s (d) t = 1 s 

Fig. 30 Optimized results of the 3-DOF motion platform at four moments 

 

(a) Deflections of centroid E in X direction (b) Deflections of centroid E in Y direction 

 

(c) Rotating angle of the platform E 

Fig. 31 Dynamic responses of the platform E for the unoptimized and optimized models 
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5 Conclusions 

The paper presents an explicit topology optimization approach for a flexible 

multibody system (FMBS) with variable-length undergoing both large overall motions, 

and large deformations by jointly using the arbitrary Lagrangian-Eulerian (ALE) 

description, the absolute nodal coordinate formulation (ANCF) and the moving 

morphable components (MMC). The ALE-ANCF modeling scheme enables one to 

accurately describe the dynamics of such an FMBS, and the MMC can explicitly and 

geometrically describe the topology of the FMBS. The paper also presents the effective 

computation schemes of the elastic forces and the additional inertial forces, as well as 

the corresponding Jacobian formulations of the thin plate element of ALE-ANCF. 

The paper verifies the thin plate element of ALE-ANCF via a classic thin plate 

pendulum by the comparison with the conventional thin plate element of ANCF, and 

demonstrates the optimization approach via two planar examples. The optimization of 

the rotating variable-length plate under different extension velocities shows that the 

MMC-based topology optimization approach is able to effectively optimize an FMBS 

with variable-length bodies. This is due to the fact that the MMC method can 

dramatically reduce the number of design variables. Moreover, this example studies the 

minimum feature size control in the topology optimization of an FMBS by explicitly 

setting the lower bounds of certain geometrical design variables in the MMC method. 

The results reveal that the minimum thickness control is of great importance to obtain 

a smooth and robust result in the topology optimization of an FMBS. The best minimum 

thickness scale, however, is unknown to the designers, but may be found from a 

parameter study or by including additional stability, manufacturability or 

eigenfrequency constraints into the optimization formulation. The proposed 

optimization approach also makes it possible to optimize a complex FMBS by 

optimizing the two flexible connecting bars in a 3-DOF motion platform. 
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Appendix 

First of all, the strain tensor ε  as shown in Eq. (7) can be rewritten as 
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where the subscripts , 1, 2, , 36i j   , and T
, ,e m e mA N N , T

, ,e n e nB N N , 

T
, ,e m e nC N N . 

Then, the invariant matrices  1 ikab
K ,  2 ikab

K ,  3 ikab
K ,  4 ijkab

K ,  5 ijkab
K , 

 6 ijkab
K ,  1 ik

G ,  2 ik
G ,  3 ijk

G  and  4 ijk
G  in Eq. (11) can be computed as 

follows 
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where the subscripts , , , 1, 2, , 36i j a b    and 11
E , 12

E , 33
E  are the entries of the 

elastic coefficient matrix E  in Eq. (8). From Eq. (A.2), it can be observed that 1K  

and 2K  are symmetric about i, k and a, b, respectively. 4K  and 5K  are symmetric 

about i, j and a, b, respectively. 3K , 1G  and 2G  are symmetric about i, k. 6K , 3G  

and 4G  are symmetrical about i, j. 

In Eqs. (13) and (15), the expressions of  1 , likab q
K ,  2 , likab q

K ,  3 , likab q
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G ,  2 , lik q
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G  and  4 , lijk q
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are listed as follows 
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d ,

l k l k l

k l k l

ijkab q ij q q ab ij q ab qV

ij q q ab ij q ab qV

V

V





 

 





K E B A B A

E A B A B
 

           
0

6 33, , , ,
4 d ,

l k l k lijkab q ij q q ab ij q ab qV
V K E C C C C  (A.3) 

       
0

1 11, , ,
d ,

l l lik q ik q ik qV
V G E A B  

       
0

2 12, , ,
d ,

l l lik q ik q ik qV
V G E A B  

       
0

3 11, , ,
d ,

l k l k lijk q ij q q ij q qV
V G E A B  

       
0

4 12, , ,
d ,

l k l k lijk q ij q q ij q qV
V G E A B  

where the subscripts , , , 1, 2, , 36i j a b   . 
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Besides, the expressions of  1 ka
H ,  2 ka

H , …,  14 ka
H  and  15 kba

H , 

 16 kba
H , …,  28 kba

H  in Eqs. (17) and (18) are listed as follows 

      
1

0
1 ,2 d ,e e mka jkV ja

V H N N  

      
1

0
2 ,2 d ,e e nka jkV ja

V H N N  

      
2

0
3 ,2 d ,e e mka jkV ja

V H N N  

      
2

0
4 ,2 d ,e e nka jkV ja

V H N N  

      
1 1

0
5 , d ,e e m mka jkV ja

V H N N  

      
1 1

0
6 , d ,e e n nka jkV ja

V H N N  

      
2 2

0
7 , d ,e e m mka jkV ja

V H N N  

      
2 2

0
8 , d ,e e n nka jkV ja

V H N N  (A.4) 

      
1 1

0
9 ,2 d ,e e m nka jkV ja

V H N N  

      
1 2

0
10 ,2 d ,e e m mka jkV ja

V H N N  

      
1 2

0
11 ,2 d ,e e m nka jkV ja

V H N N  

      
1 2

0
12 ,2 d ,e e n mka jkV ja

V H N N  

      
1 2

0
13 ,2 d ,e e n nka jkV ja

V H N N  

      
2 2

0
14 ,2 d ,e e m nka jkV ja

V H N N  

and 

      
1

0
15 , ,2 d ,

ke q e mkba V jajb
V H N N  

      
1

0
16 , ,2 d ,

ke q e nkba V jajb
V H N N  

      
2

0
17 , ,2 d ,

ke q e mkba V jajb
V H N N  

      
2

0
18 , ,2 d ,

ke q e nkba V jajb
V H N N  

      
1 1

0
19 , , d ,

ke q e m mkba V jajb
V H N N  
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      
1 1

0
20 , , d ,

ke q e n nkba V jajb
V H N N  

      
2 2

0
21 , , d ,

ke q e m mkba V jajb
V H N N  

      
2 2

0
22 , , d ,

ke q e n nkba V jajb
V H N N  (A.5) 

      
1 1

0
23 , ,2 d ,

ke q e m nkba V jajb
V H N N  

      
1 2

0
24 , ,2 d ,

ke q e m mkba V jajb
V H N N  

      
1 2

0
25 , ,2 d ,

ke q e m nkba V jajb
V H N N  

      
1 2

0
26 , ,2 d ,

ke q e n mkba V jajb
V H N N  

      
1 2

0
27 , ,2 d ,

ke q e n nkba V jajb
V H N N  

      
2 2

0
28 , ,2 d .

ke q e m nkba V jajb
V H N N  

In Eqs. (A.4) and (A.5), the subscripts , 1, 2, , 36a b    and 1,2,3j  . 

Likewise, the expressions of  1 , lka q
H ,  2 , lka q

H , …,  14 , lka q
H  and  15 , lkba q

H , 

 16 , lkba q
H , …,  28 , lkba q

H  in Eqs. (19)-(22) are listed as follows 

          
1 1

0
1 , , ,,

2 + d ,
l ll

e q e m e e m qka q jkV jajk ja
V     H N N N N  

          
1 1

0
2 , , ,,

2 + d ,
l ll

e q e n e e n qka q jkV jajk ja
V     H N N N N  

          
2 2

0
3 , , ,,

2 + d ,
l ll

e q e m e e m qka q jkV jajk ja
V     H N N N N  

          
2 2

0
4 , , ,,

2 + d ,
l ll

e q e n e e n qka q jkV jajk ja
V     H N N N N  

          
1 1 1 1

0
5 , , ,,

+ d ,
l ll

e q e m m e e m m qka q jkV jajk ja
V     H N N N N  

          
1 1 1 1

0
6 , , ,,

+ d ,
l ll

e q e n n e e n n qka q jkV jajk ja
V     H N N N N  

          
2 2 2 2

0
7 , , ,,

+ d ,
l ll

e q e m m e e m m qka q jkV jajk ja
V     H N N N N  

          
2 2 2 2

0
8 , , ,,

+ d ,
l ll

e q e n n e e n n qka q jkV jajk ja
V     H N N N N  (A.6) 

          
1 1 1 1

0
9 , , ,,

2 + d ,
l ll

e q e m n e e m n qka q jkV jajk ja
V     H N N N N  
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          
1 2 1 2

0
10 , , ,,

2 + d ,
l ll

e q e m m e e m m qka q jkV jajk ja
V     H N N N N  

          
1 2 1 2

0
11 , , ,,

2 + d ,
l ll

e q e m n e e m n qka q jkV jajk ja
V     H N N N N  

          
1 2 1 2

0
12 , , ,,

2 + d ,
l ll

e q e n m e e n m qka q jkV jajk ja
V     H N N N N  

          
1 2 1 2

0
13 , , ,,

2 + d ,
l ll

e q e n n e e n n qka q jkV jajk ja
V     H N N N N  

          
2 2 2 2

0
14 , , ,,

2 + d ,
l ll

e q e m n e e m n qka q jkV jajk ja
V     H N N N N  

and 

          
1 1

0
15 , , , ,,

2 + d ,
k l k ll

e q q e m e q e m qkba q V jajb jb ja
V     H N N N N  

          
1 1

0
16 , , , ,,

2 + d ,
k l k ll

e q q e n e q e n qkba q V jajb jb ja
V     H N N N N  

          
2 2

0
17 , , , ,,

2 + d ,
k l k ll

e q q e m e q e m qkba q V jajb jb ja
V     H N N N N  

          
2 2

0
18 , , , ,,

2 + d ,
k l k ll

e q q e n e q e n qkba q V jajb jb ja
V     H N N N N  

          
1 1 1 1

0
19 , , , ,,

+ d ,
k l k ll

e q q e m m e q e m m qkba q V jajb jb ja
V     H N N N N  

          
1 1 1 1

0
20 , , , ,,

+ d ,
k l k ll

e q q e n n e q e n n qkba q V jajb jb ja
V     H N N N N  

          
2 2 2 2

0
21 , , , ,,

+ d ,
k l k ll

e q q e m m e q e m m qkba q V jajb jb ja
V     H N N N N  

          
2 2 2 2

0
22 , , , ,,

+ d ,
k l k ll

e q q e n n e q e n n qkba q V jajb jb ja
V     H N N N N  (A.7) 

          
1 1 1 1

0
23 , , , ,,

2 + d ,
k l k ll

e q q e m n e q e m n qkba q V jajb jb ja
V     H N N N N  

          
1 2 1 2

0
24 , , , ,,

2 + d ,
k l k ll

e q q e m m e q e m m qkba q V jajb jb ja
V     H N N N N  

          
1 2 1 2

0
25 , , , ,,

2 + d ,
k l k ll

e q q e m n e q e m n qkba q V jajb jb ja
V     H N N N N  

          
1 2 1 2

0
26 , , , ,,

2 + d ,
k l k ll

e q q e n m e q e n m qkba q V jajb jb ja
V     H N N N N  

          
1 2 1 2

0
27 , , , ,,

2 + d ,
k l k ll

e q q e n n e q e n n qkba q V jajb jb ja
V     H N N N N  

          
2 2 2 2

0
28 , , , ,,

2 + d .
k l k ll

e q q e m n e q e m n qkba q V jajb jb ja
V     H N N N N  
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In Eqs. (A.6) and (A.7), the subscripts , 1, 2, , 36a b    and 1,2,3j  . 

The matrices in Eqs. (A.2)-(A.7) are all invariant and can be computed and stored 

with sparse matrix technique in the preprocessing procedure to greatly improve the 

computation efficiency. 
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