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Long-pulse laser launch and ionization of tailored large neutral 
silver nanoparticles with atomic mass assignment   

A. Gallego,a U. Sezer,b M. Arndtb and M. Mayor*a,c,d  

We explore the synthesis, characterization, neutral launch and vacuum ultraviolet ionization of massive perfluorinated-alkyl-

capped nanoparticles. The presence of the ligand coating in solution is corroborated by Fourier transform infrared 

spectroscopy (FT-IR) and the particle size distribution is analyzed by transmission electron microscopy (TEM). Matrix-assisted 

laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifies perfluoralkyl coated silver 

nanoparticles as the most stable species among the materials studied here. They can be launched in high vacuum using long-

pulse low-power laser heating – orders of magnitude below typical thresholds for laser desorption. Energy-dispersive X-ray 

spectroscopy (EDX) of the recaptured silver clusters confirms the expected elemental distribution. Volatilization with 

subsequent ionization of the neutral nanoparticle beam in high vacuum by 157 nm light allows analyzing their mass with 

atomic resolution. 

Introduction 

Nanoparticles have moved into the spotlight of research, 

because their physical and chemical properties are size-

dependent and can be tailored by controlling their structure1, 2. 

Metal nanoclusters have a wide spectrum of potential 

applications in catalysis3-5, nanoelectronics6,7, sensing8-11, 

nanoprinting12-16 and drug delivery.17 Functionalization with 

tailored ligands can provide them with electrical, optical, 

catalytic, thermal or solubility properties that would be 

otherwise inconceivable.18-22  

Several techniques have been developed for volatilizing and 

characterizing isolated high-mass particles in high vacuum: 

Electrospray ionization (ESI) has been used to generate highly 

charged beams of ligand-stabilized nanoclusters in the gas 

phase23-25. However, applications in soft surface deposition26, 

laser induced forward transfer27, classical deflectometry or 

fundamental tests of quantum physics28 can profit from beams 

of neutral and slow nanoparticles. Common volatilization 

methods (MALDI, ESI) require elaborate techniques to slow 

down the charged nanoparticles to ensure low kinetic energies 

for soft landing as higher energies will lead to substantial 

deformation of nanoparticles during the impact. Low velocities 

are also a prerequisite for successful fundamental quantum 

experiments, as the particle’s momentum is inversely 

proportional to its de Broglie wavelength. Techniques like laser 

desorption ionization (LDI) without the use of an additional 

matrix have shown already that the molecular beam velocity 

can be drastically reduced.29, 30  

Evidence has recently been provided for the thermal 

transfer of neutral silicon nanoparticles between two surfaces 

across a short distance in ultrahigh vacuum31. Subsequent 

atomic force microscopy allowed imaging the re-captured 

silicon with core diameters around 2 nm covered by a thin soft 

shell. Here, we show that mass spectrometry of thermally 

launched neutral particles can furthermore provide the 

unambiguous identification of the attached ligands in the gas 

phase, with atomic resolution. We achieve this using soft photo-

ionization in the gas phase even for masses up to several 10 kDa. 

We test this idea for various combinations of cluster cores and 

ligand shells and find, that the successful launch, ionization and 

detection strongly depends on the specific nature of the particle 

core and ligand composition. Based on successful experiments 

with carbon nanospheres32, 33 and massive libraries of porphyrin 

derivatives30, 34, we have explored the possibility of synthesizing 

a library of silver nanoparticles capped by perfluoroalkyl chains. 

The electronegative fluorine atoms withdraw electron density 

from the alkyl chains, reduce their polarizability and lower the 

attractive van der Waals interaction between neighboring 

nanoparticles. This should facilitate the volatilization even of 

compounds of considerable size. The metal cluster core shall 

add mass, define the optical response and enable soft 

photoionization by vacuum ultraviolet (VUV) radiation for 

subsequent mass analysis of the free-flying neutral 

nanoparticles. Inspired by this vision, we here report on the 

synthesis, launch and ionization of such tailored nanoclusters.   
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Experimental Results  

Nanoparticle synthesis 

Even though a large range of metals is amenable to 

functionalization, it is not a priori obvious which material-ligand 

combination may offer the highest stability35 during thermal 

launch and the highest detectability in laser induced ionization 

after volatilization. In a preliminary search, we synthesized 

nanoparticles of gold, platinum, silicon, silver and silver-sulfur 

which we coated with different aromatic and/or fluorinated 

ligands in order to assist the ionization and volatilization 

processes, respectively (see Fig. S1). The particles were 

characterized and analyzed by MALDI-ToF mass spectrometry. 

In most of the cases, low-intensity broad bands were detected 

due to fragmentations or aggregations of the particles under 

MALDI conditions. A well-resolved spectrum was obtained with 

platinum particles coated with 2-phenylethanethiol, however 

its detailed analysis revealed C-O bond cleavage during MALDI 

which left ligand-free platinum oxide clusters behind (Fig. Suppl. 

Inf. S1). The desired behavior was finally found for silver 

nanoparticles coated with alkylthiols exposing perfluorinated 

tails. While a Brust-Schiffrin36, 37 approach could not attach the 

ligands to the metal cores, the polyol-method38,39 was 

successful. Details in the synthesis are crucial for the 

reproducibility of the procedure and strongly influence the 

physico-chemical behavior of the particles. However, once 

prepared, samples maintained reproducible properties over at 

least two years. 

To explore the reactivity of the terminal thiol group we 

selected alkylthiols of various lengths. 

 
Scheme 1. Synthesis of silver nanoparticles decorated by three 

different perfluorinated ligands: F9-AgNP1 (L(1)=SC2H4C4F9), F13-

AgNP2 (L(2)=SC2H4C6F13) and F17-AgNP3 (L(3)=SC2H4C8F17), to 

study the role of the ligand length, and with the non-fluorous 

octanethiol (L(4)=SC2H4C6H13) on H17-AgNP4 to verify the 

importance of fluorination.  
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Fig. 1. Infrared spectrum of the free ligands (blue line) and the 

silver nanoparticle F17-AgNP3 (red line). The purified 

nanoparticles display all vibrational bands of the isolated 

ligands, indicating their intact attachment to the silver core.  

 

We synthesized particles capped by 3,3,4,4,5,5,6,6,6-

nonafluoro-1-hexanethiol  (L(1)=SC2H4C4F9), 

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanethiol 

(L(2)=SC2H4C6F13), and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,-10,10,10-

heptadecafluoro-1-decanethiol (L(3)=SC2H4C8F17;) to yield the 

particles F9-AgNP1, F13-AgNP2 and F17-AgNP3, respectively. The 

non-fluorous analogue H17-AgNP4 was produced using 

octanethiol (L(4)=SC2H4C6H13) and served as a reference sample. 

All four nanoparticles were synthesized by heating silver nitrate 

and two equivalents of the thiol ligand in ethylene glycol at 

160°C for 20 hours (Scheme 1). They were purified through 

cycles of centrifugation-redispersion in methanol, THF and 

diethyl ether. 

 

Verification of ligand attachment in solution 

 Infrared spectroscopy on purified silver nanoparticles 

retrieved all absorption bands of the free ligands, only slightly 

shifted towards higher energy. Fig. 1 compares both spectra for 

F17-AgNP3. This corroborates that they were stably attached to 

the metal cores. Similar spectra have been recorded for all 

nanoparticles types in this study (see Suppl. Inf. Fig. S2). 

 A subsequent thermogravimetric analysis (TGA) of the same 

batch allowed us to determine the molar ratio of silver atoms 

and ligands (see Suppl. Inf. Fig. S3) to be 2.3 for F9-AgNP1, 1.5 

for F13-AgNP2, 2.3 for F17-AgNP3, and 2.0 for H17-AgNP4.  

 TEM images (Fig. 2) showed well isolated nanoparticles with 

core diameters between 0.5-1 nm varying by up to 40% within 

one sample. Such polydispersity is common in colloidal 

nanoparticles.40  

  To understand their underlying atomic composition, we 

subjected all species to MALDI-ToF mass spectrometry 

recording all spectra in the positive mode (Suppl. Inf. Fig. S4). A 

zoom into the low mass range up to 10’000 Da (Fig. 3) shows a 

series of equidistant peaks consistently separated by the mass 

of exactly one ligand and one silver atom, i.e. by 388 Da for 

AgL(1) in F9-AgNP1, 488 Da for AgL(2) in F13-AgNP2, 588 Da for 

AgL(3) in F17-AgNP3 and 256 Da for AgL(4) in H17-AgNP4.  
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Fig. 2. Transmission electron micrographs of ligand-stabilized 

silver nanoparticles. Particles in solution are dropped onto a 

graphene TEM grid, dried and imaged. The mean particle 

diameters and their standard deviation are a) F9-AgNP1 d = 

(0.7±0.3) nm, b) F13-AgNP2 d = (0.5±0.2) nm, c) F17-AgNP3 d = 

(0.7±0.3) nm and d) H17-AgNP4 d = (1±0.4) nm. The scale bar 

corresponds to 50 nm. 

 

Thermal launch and VUV ionization 

 The silver nanoparticles were then exposed to thermal laser 

heating and the emerging plume subjected to VUV ionization in 

high vacuum (Fig. 4). A blue diode laser, gated to a pulse length 

of 10 ms and a pulse energy of up to E=30 mJ, was focused onto 

the nanoparticles that had been prepared as a thin layer on a 

metal plate. The laser intensity of up to 95 W/cm2 was 4-5 

orders of magnitude below threshold for MALDI-like laser 

desorption (106-107 W/cm2).  

 In a first set of experiments, we heated the nanoparticles in 

the blue laser beam and captured them on a carbon grid 4 cm 

above. EDX in scanning electron microscopy allowed us to 

identify the atomic content of the collected material. Starting 

from F13-AgNP2 particles, we found silver, carbon and fluorine. 

In contrast to that, the laser-induced transfer of H17-AgNP4 

resulted in a pure carbon film, sparsely decorated with particles 

up to several hundred nanometers in diameter, containing 

silver and sulfur but hardly any carbon. This indicates that the 

cores separated from their ligands and aggregated to metal-

sulfide clumps. 
 To characterize the atomic composition of the nanoparticles 

in free flight, we have intersected them with an F2 laser beam. 

The resulting ions were analyzed in a linear time-of-flight mass 

spectrometer. All nanoparticles were tested under the same 

volatilization conditions and we verified the initial neutrality of 

the evaporated beam: ions could only be detected in the 

presence of ionizing VUV light. Its intensity was optimized for 

each species to maximize their signal and minimize their photo-

fragmentation.  
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Fig. 3. MALDI mass spectra of the Nanoparticles a) F9-AgNP1, b) 
F13-AgNP2, c) F17-AgNP3 and d) the non-fluorous nanoparticles 
H17-AgNP4 and the assigned molecular formulas of the species 
within the cluster library. 

 

 Clean and atomically resolved mass spectra could only be 

acquired for F9-AgNP1 and F13-AgNP2. Fig. 5a shows three 

different libraries within the mass distribution of F9-AgNP1, 

marked by dots, stars and triangles. For F13-AgNP2, we identify 

at least five different cluster libraries (Fig. 5b).  

 

Fig. 4. Launch, recapture and VUV ionization of perfluoroalkyl-

capped silver nanoparticles. The particles were launched by a 

long-pulse (10 ms) laser beam (445 nm, electrically chopped, 

max. 3 W cw, 2 mm spot diameter). In recapture experiments 

the particles were collected on a carbon grid 4 cm above the 

launch pad and later analyzed ex-situ in scanning electron 

microscopy. For mass analysis, particles were ionized by a 

vacuum ultraviolet (VUV) laser beam (157 nm, E ≤1.1 mJ, A=1×3 

mm, pulse length 10 ns) and detected in time-of-flight mass 

spectrometry (m/Δm ≈ 100).  
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  They differ in their basic AgxLy core but within the same 

library, the nanoparticles differ consistently between next 

neighbors in the mass spectrum by one AgL(1) for F9-AgNP1 and 

one AgL(2) for F13-AgNP2. This is consistent with our previous 

MALDI-ToF spectra and with the hypothesis that the 

nanoparticles are launched intactly, surrounded by their ligand 

chains.  

F13-AgNP2 had higher signal than F9-AgNP1 even though the 

particles are more massive.  This confirms the importance of a 

well-tailored perfluoroalkyl coating. Consistent with this 

hypothesis we could not detect any sizeable signal for the non-

fluorous H17-AgNP4 nanoparticles. Surprisingly, we were not 

able to record any ionization mass spectrum of F17-AgNP3, the 

particle with the longest perfluorinated chains of all four test 

objects.  

 Since F17-AgNP3 particles seem to be susceptible to laser 

induced transfer in high vacuum, as verified by TEM imaging, we 

hypothesize that electron recapture may suppress the 

ionization probability. It therefore seems that the 

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanethiol ligand of 

F13-AgNP2 represents a good compromise in chain length  

between facilitating volatilization and not preventing ionization. 

We note that high ionization laser intensities may also cause 

fragmentation and thus down-shift the mass spectra (see Fig. 

Suppl. Inf. S5). When we gradually increase the ionization 

intensity by a factor of five from 8.5×105 to 4×106 W/cm2 the 

detected ion distribution shifts to lower masses and the peaks 

are less well resolved. However, at optimized detection laser 

intensity the multimodal character of the mass spectra is 

present both in MALDI and in the post-volatilization data. This 

corroborates the assumption that the long-pulse neutral launch 

largely maintains the integrity of the original particles. 

 
Fig. 5. Vacuum ultraviolet photoionization mass spectra after ms-

laser heating. The peak separation within every series corresponds 

to AgL, the mass of one ligand and one silver atom. a) F9-AgNP1 

library; VUV laser intensity is (85±4) × 104 W/cm2, signal 

electronically amplified by x 50 b) F13-AgNP2 signal, without 

electronic amplification; the ionization intensity was (58±4) × 104 

W/cm2. The different nanoparticle libraries were identified and are 

labelled with blue triangles, stars, rhombuses, circles (empty & filled) 

and squares.  

 

 

Discussion 

 It may seem surprising that even nanoparticles in the mass 

range up to 20’000 Da can be volatilized using millisecond laser 

heating, at light intensities far too low for typical laser 

desorption. Preliminary experiments with an extended library 

of F17-AgNP2, in the mass range between 60’000 and 100’000 

Da show that volatilization by slow laser heating can even be 

extended to such highly massive particles – although at reduced 

signal strength and without atomic mass resolution. 

A tentative explanation for the underlying mechanism may be 

found in analogy to a recent study where perfluoroalkylated 

gold nanoparticles were used as a decomposing matrix to softly 

launch small biomolecules: a nanosecond UV laser pulse 

detached the ligands from the gold particles and provided an 

expanding perfluorinated matrix to launch the analyte 

biomolecules.41    

 Here we propose that a similar mechanism may also be at 

work, however with the analyte particles providing their own 

matrix and the nanosecond laser pulse being replaced by 

millisecond laser heating. Earlier studies using microfocus laser 

sources showed that at laser intensities of 3 MW/cm2 thin layers 

of dye molecules could be heated to about 1000 K and 

evaporated intactly.42 In our case, purely thermal evaporation 

of 10 kDa particles at 200 m/s could only be explained by 

assuming a temperature of 36,000 K. This temperature is very 

unlikely, since we know from thermogravimetric analysis that 

perfluoroalkyl-capped silver nanoparticles in the mass range of 

10 kDa will decompose when exposed to 520 K for a long period 

of time. In comparison to that, a self-seeded matrix process 

seems plausible: Long-pulse laser desorption is likely to release 

a locally dense gas of perfluoroalkyl chains from a subset of 

clusters and these chains propel another subset of silver 

nanoparticles intactly into the gas phase, which may even be 

surprisingly massive. Their beam velocity is then determined by 

the mass and energy of the ligand plume that acts as a slow 

carrier gas, leading to a more realistic launch temperature 

around 1000 K. This mechanism resembles MALDI in that small 

molecules can launch surprisingly large nanoparticles largely 

intactly. However, our studies were only successful using long-

pulse low-intensity radiation and consistently failed when using 

nanosecond pulses of the same energy of several mJ.   

 This observation raises the question whether the ligand 

coated nanoparticles observed in postionization mass 

spectrometry may have aggregated in the desorption plume 

and not represent the synthesized sample. To elucidate this 

question, a mixture of F9-AgNP1 and F13-AgNP2 was launched, 

ionized and detected following the same procedure as before. 

If the fragmentation-aggregation model were correct, both 

ligands L(1) and L(2) should finally be found on the same particle. 

However, we find only peak distances of around 490 Da (Fig. 

Suppl. Inf. S6) corresponding to the ligands of F13-AgNP2. F9-

AgNP1 ligands never appear on F13-AgNP2. F9-AgNP1 does not 

appear in the mixed sample either. They are visibly desorbed 

from the sample plate but are not recorded in the same mass 

spectrum, since the optimal detection laser pulse energy – 

maximizing the ion signal and minimizing ionization-induced 
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fragmentation – differs by a factor of two between the two 

nanoparticle species. 

 

Conclusion   

 We have presented the synthesis and characterization of a 

new class of perfluoroalkyl-functionalized silver nanoparticles, 

and the assignment of their atomic composition using MALDI. 

We have found that surprisingly massive particles can be 

launched in high vacuum by millisecond laser heating at low 

optical intensity. We have proved the presence of massive 

ligand-capped particles using VUV photoionization mass 

spectrometry, with unambiguous atomic assignment. The 

ligand length and chemical composition can be tailored to shape 

the thermal and ionization properties of the nanoparticles. Soft 

launch and postionization require a delicate balance between 

ligand length, composition and core mass. The data are 

consistent with the assumption that ligand-capped nano-

particles can be launched by the expansion of a self-seeding 

carrier gas of ligand side chains.  
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