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Abstract

We investigate the impact of choosing regres-
sors and molecular representations for the con-
struction of fast machine learning (ML) models
of thirteen electronic ground-state properties of
organic molecules. The performance of each re-
gressor /representation /property combination is
assessed using learning curves which report out-
of-sample errors as a function of training set size
with up to ~118k distinct molecules. Molecu-
lar structures and properties at hybrid density
functional theory (DFT) level of theory come
from the QM9 database [Ramakrishnan et al,
Scientific Data 1 140022 (2014)] and include
enthalpies and free energies of atomization ,
HOMO/LUMO energies and gap, dipole mo-
ment, polarizability, zero point vibrational en-
ergy, heat capacity and the highest fundamental
vibrational frequency. Various molecular repre-
sentations have been studied (Coulomb matrix,
bag of bonds, BAML and ECFP4, molecular
graphs (MG)), as well as newly developed dis-
tribution based variants including histograms
of distances (HD), and angles (HDA/MARAD),
and dihedrals (HDAD). Regressors include lin-
ear models (Bayesian ridge regression (BR)
and linear regression with elastic net regu-

larization (EN)), random forest (RF), kernel
ridge regression (KRR) and two types of neural
networks, graph convolutions (GC) and gated
graph networks (GG). Out-of sample errors
are strongly dependent on the choice of rep-
resentation and regressor and molecular prop-
erty. Electronic properties are typically best
accounted for by MG and GC, while energetic
properties are better described by HDAD and
KRR. The specific combinations with the low-
est out-of-sample errors in the ~118k training
set size limit are (free) energies and enthalpies
of atomization (HDAD/KRR), HOMO/LUMO
eigenvalue and gap (MG/GC), dipole moment
(MG/GC), static polarizability (MG/GG), zero
point vibrational energy (HDAD/KRR), heat
capacity at room temperature (HDAD/KRR),
and highest fundamental vibrational frequency
(BAML/RF). We present numerical evidence
that ML model predictions deviate from DFT
(B3LYP) less than DFT (B3LYP) deviates from
experiment for all properties. Furthermore,
out-of-sample prediction errors with respect to
hybrid DF'T reference are on par with, or close
to, chemical accuracy. The results suggest that
ML models could be more accurate than hybrid
DFT if explicitly electron correlated quantum
(or experimental) data was available.
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1 Introduction

Due to its favorable trade-off between accuracy
and computational cost, Density Functional
Theory (DFT)'? is the workhorse of quan-
tum chemistry3—despite its well known short-
comings regarding spin-states, van der Waals
interactions, and chemical reactions.*" Fail-
ures to predict reaction profiles are particu-
larly worrisome,® and recent analysis casts even
more doubts on the usefulness of DFT func-
tionals obtained through parameter fitting.”
The prospect of universal and computation-
ally much more efficient machine learning (ML)
models, trained on data from experiments or
generated at higher levels of electronic structure
theory such as post-Hartree Fock or quantum
Monte Carlo (e.g. exemplified in Ref.®), there-
fore represents an appealing alternative strat-
egy. Not surprisingly, a lot of recent effort has
been devoted to developing ever more accurate
ML models of properties of molecular and con-
densed phase systems.

Several ML studies have already been pub-
lished using a data set called QM9,° consist-
ing of molecular quantum properties for the
~134k smallest organic molecules containing
up to 9 heavy atoms (C, O, N, or F; not
counting H) in the GDB-17 universe.'® Some
of these studies have developed or used rep-
resentations we consider in this work, such as
BAML (Bonds, angles, machine learning),!!
bag of bonds (BOB)!%!3 and the Coulomb ma-
trix (CM). '3 Atomic variants of the CM have
also been proposed and tested on QM9.'5 Other
representations have also been benchmarked on
QM9 (or QM7 which is a smaller but simi-
lar data set), such as Fourier series of radial
distance distributions,!® motifs,!” the smooth
overlap of atomic positions (SOAP)'® in com-
bination with regularized entropy match,® con-
stant size descriptors based on connectivity and
encoded distance distributions.?® Ramakrish-
nan et al.® introduced a A-ML approach, where
the difference between properties calculated at
coarse/accurate quantum level of theories is
being modeled. Furthermore, neural network
models, as well as deep tensor neural networks,
have recently been proposed and tested on the

same or similar data sets.?1?2 Dral et al.?® use
such data to machine learn optimal molecule
specific parameters for the OM22* semiempir-
ical method, and orthogonalization tests are
benchmarked in Ref.?

However, limited work has yet been done in
systematically assessing wvarious methods and
properties on large sets of the exact same chem-
icals.?® In order to unequivocally establish if
ML has the potential to replace hybrid DFT
for the screening of properties, one has to
demonstrate that ML test errors are system-
atically lower than estimated hybrid DFT ac-
curacies for all the properties available. This
study accomplishes that through a large scale
assessment of unprecedented scale: (i) In or-
der to approximate large training set sizes
N, we included 13 quantum properties from
up to ~118k molecules in training (90% of
QM9). (i) We tested multiple regressors
(Bayesian ridge regression (BR), linear regres-
sion with elastic net regularization (EN), ran-
dom forest (RF), kernel ridge regression (KRR),
neural network (NN) models graph convolu-
tions (GC)?" and gated graphs (GG)?®) and
(iii) multiple representations including BAML,
BOB, CM, extended connectivity fingerprints
(ECFP4), histograms of distance, angle, and
dihedral (HDAD), molecular atomic radial an-
gular distribution (MARAD), and molecular
graphs (MG). (iv) We investigated all combi-
nations of regressors and representations, ex-
cept for MG/NN which was exclusively used
together because GC and GG depend funda-
mentally on the input representation being a
graph instead of a flat feature vector.

The best models for the various proper-
ties are: atomization energy at 0 Kelvin
(HDAD/KRR), atomization energy at room
temperature (HDAD/KRR), enthalpy of atom-
ization at room temperature (HDAD/KRR),
atomization of free energy at room tempera-
ture (HDAD/KRR), HOMO/LUMO eigenvalue
and gap (MG/GC), dipole moment (MG/GC),
static polarizability (MG/GG), zero point vi-
brational energy (HDAD/KRR), heat capac-
ity at room temperature (HDAD/KRR), and
the highest fundamental vibrational frequency
(BAML/RF). For training set size of ~118k
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(90% of data set) we have found the additional
out-of-sample error added by machine learning
to be lower or as good as DFT errors at BSLYP
level of theory relative to experiment for all
properties, and that chemical accuracy (See ta-
ble 3) is reached, or in sight.

This paper is organized as follows: First
we will briefly describe the methods, includ-
ing data set, model validation protocols, rep-
resentations, and regressors. In section III, we
present the results and discuss them, and sec-
tion IV concludes the paper.

2 Method

2.1 Data set

We have used the QM9 data set consisting of
~134k drug-like organic molecules.” Molecules
in the data set consist of H, C, O, N and F, and
contain up to 9 heavy atoms. For each molecule
several properties, calculated at DFT level of
theory (B3LYP/6-31G(2df,p)), were included.
We used: Atomization energy at 0 Kelvin Uy
(eV); atomization energy at room temperature
U (eV); enthalpy of atomization at room tem-
perature H (eV); atomization of free energy
at room temperature G (eV); HOMO eigen-
value egomo (€V); LUMO eigenvalue epymo
(eV); HOMO-LUMO gap Ae (eV); norm of

dipole moment :\/Zrex,y,z(f drn(r)r)? (De-

bye), where n(r) is the molecular charge den-
sity distribution; static isotropic polarizability
a = %Ziex’w oy (Bohr?), where ay; is the di-
agonal element of the polarizability tensor; zero
point vibrational energy ZPVE (eV); heat ca-
pacity at room temperature C, (cal/mol/K);
and the highest fundamental vibrational fre-
quency w; (cm™1). For energies of atomization
(Up, U, H and G) all models yield very sim-
ilar errors. We will therefore only discuss U
for the remainder. The 3053 molecules speci-
fied in Ref.? which failed SMILES consistency
tests were excluded from our study, as well as
two linear molecules, leaving ~131k molecules.

Journal of Chemical Theory and Computation

2.2 Model validation

Starting from the ~131k molecules in QM9 af-
ter removing the ~3k molecules (see above) we
have created a number of train-validation-test
splits. We have splitted the data set into test
and non-test sets and varied the percentage of
data in test set to explore the effect of amount
of data in error rates. Inside the non-test set,
we have performed 10 fold cross validation for
hyperparameter optimization. That is, for each
model 90% (the training set) of the non-test
set is used for training and 10% (the valida-
tion set) is used for hyperparameter selection.
For each test /non-test split, we have trained 10
models on different subsets of the non-test set,
and we report the mean error on the test set
across those 10 models. Note that the non-test
set will be referred to as training set in the re-
sults section in order to simplify discussion.

In terms of CPU investments necessary for
training the respective models we note that
EN/BR, RF/KRR, and GC/GG required min-
utes, hours, and multiple days, respectively.
Using GPUs could dramatically reduce such
timings.

2.3 DFT errors

To place the quality of our prediction er-
rors in the right context, experimental accu-
racy estimates of hybrid DFT become desir-
able. Here, we summarize literature results
comparing DFT at BSLYP level of theory to ex-
periments for the various properties we study.
Where data is available, the corresponding de-
viation from experiment is listed in Table 3,
alongside our ML prediction errors (vide infra).

In order to also get an idea of hybrid DFT
energy errors for organic molecules, such as the
compounds studied herewithin, we refer to a
comparison of PBE and B3LYP results for 6k
constitutional isomers of C;H;005.8 After cen-
tering the data by subtracting their mean shift
from G4MP2 (177.8 (PBE) and 95.3 (B3LYP)
kcal/mol). The remaining MAEs are roughly
~2.5 and ~ 3.0 kcal/mol for BSLYP and PBE,
respectively. This is in agreement with what
Curtiss et al.? found. They compared DFT
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to experimental values from 69 small organic
molecules (of which 47 were substituted with
F, Cl, and S), with up to 6 heavy atoms (not
counting hydrogens), and calculated the ener-
gies using B3LYP/6-311+G(3df,2p). The re-
sulting mean absolute deviation from experi-
mental values was 2.3 kcal/mol.

Rough hybrid DFT error estimates for dipole
moment and polarizability have been obtained
from Refs.?°. The errors are estimated refer-
enced to experimental values, for a data set con-
sisting of 49 molecules with up to 7 heavy atoms
(C,CL F, H, O, P,or S)

Frontier molecular orbital energies (HOMO,
LUMO and HOMO-LUMO gap) can not be
measured directly. However, for the exact (yet
unknown) exchange-correlation potential, the
Kohn-Sham HOMO eigenvalues correspond to
the negative of the vertical ionization poten-
tial (IP).3! Unfortunately, within hybrid DFT,
the precise meaning of the frontier eigenvalues
and the gap is less clear, and we therefore re-
frain from a direct comparison of B3LYP to
experimental numbers. Nevertheless, we have
included eigenvalues and the gap due to their
widespread use for molecular and materials de-
sign applications.

Hybrid DFT RMSE estimates with respect to
experimental values of ZPVE and w; (the high-
est fundamental vibrational frequency) were
published in Ref.?? for a set of 41 organic
molecules, with up to 6 heavy atoms (not count-
ing hydrogen) and calculated using B3LYP /cc-
pVTZ.

Normally distributed data has a constant
ratio between RMSE and MAE,?® which is
roughly 0.8. We have used this ratio to ap-
proximate the MAE from the RMSE estimates
reported for ZPVE and w;. Deviation of DFT
(at the B3LYP/6-311g** level of theory) from
experimental heat capacities were reported by
DeTar®* who obtained errors of 16 organic
molecules, with up to 8 heavy atoms (not count-
ing hydrogens).

Note, however, that one should be cautious
when referring to these errors: Strictly speak-
ing they can not be compared since different ba-
sis sets, molecules, and experiments were used.
We also note that all DFT errors in this pa-

per are estimated from B3LYP and using other
functionals can yield very different errors.

Nevertheless, we feel that the quoted errors
provide meaningful guidance as to what one can
expect from DFT for each property.

2.4 Representations

The design of molecular representations is a
long-standing problem in chem-informatics and
materials informatics, and many interesting and
promising variants have already been proposed.
Below, we provide the details on the represen-
tations selected for this study. While finalizing
our study, competitive alternatives were intro-
duced?>3¢ but have been tested only for ener-
gies (and polarizabilities).

2.4.1 CM and BOB

The Coulomb matrix (CM) representation®? is
a square atom by atom matrix, where off diago-
nal elements are the Coulomb nuclear repulsion
terms between atom pairs. The diagonal ele-
ments approximate the electronic potential en-
ergy of the free atoms. Atom indices in the CM
are sorted by the L' norm of each atom’s row
(or column). The Bag of Bonds (BOB)!? repre-
sentation uses exclusively CM elements, group-
ing them for different atom pairs into different
bags, and sorting them within each bag by their
relative magnitude.

2.4.2 BAML

The recently introduced BAML (Bonds, an-
gles, machine learning) representation can
be viewed as a many-body extension of
BOB.!! All pairwise nuclear repulsions are re-
placed by Morse/Lennard-Jones potentials for
bonded /non-bonded atoms respectively. Fur-
thermore, three- and four-body interactions
between covalently bonded atoms are included
using angular and torsional terms, respectively.

Parameters and functional forms are based on
the universal force field (UFF).37
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2.4.3 ECFP4

Extended Connectivity Fingerprints®® (ECFP4)
are a common representation of molecules in
cheminformatics based studies. They are par-
ticularly popular for drug discovery.3® ! The
basic idea, typical also for other cheminfor-
matics descriptors*? (e.g. the signature descrip-
tor*341) is to represent a molecule as the set of
subgraphs up to a fixed diameter (here we use
ECFP4, which is a max diameter of 4 bonds).
To produce a fixed length vector, the subgraphs
can be hashed such that every subgraph sets
one bit in the fixed length vector to 1. In this
work, we use a fixed length vector of size 1024.
Note that ECFP4 is based solely on the molec-
ular graph specifying all covalent bonds, e.g. as
encoded by SMILES strings.

2.4.4 MARAD

Molecular atomic radial angular distribution
(MARAD) is an atomic radial distribution
function (RDF) based representation. Per atom
it consists of three RDFs using Gaussians of in-
teratomic distances, and parallel and orthog-
onal projections of distances in atom triplets,
respectively. Distances between two molecules
can be evaluated analytically. Unfortunately,
most regressors evaluated in this work, such as
BR, EN and RF, do not rely on inner prod-
ucts and distances between representations. We
resolve this issue by projecting MARAD onto
bins in order to work with all regressors (apart
for GG and GC which use MG exclusively).
The three body terms in MARAD contain in-
formation about both, angles and distances of
all atoms involved. This differs from HDA (see
below), where distances, and angles are decou-
pled, and placed in separated bins. Note that
unlike BAML or HDAD, there are only two and
three-body terms, no four-body terms (dihedral
angles) have been included within MARAD.

Details about how the projected MARAD is
calculated can be found under in the Supple-
mentary materials.

Further details and characteristics of
MARAD will also be discussed in a forthcoming
separate in-depth study.

Journal of Chemical Theory and Computation

2.4.5 HD, HDA, and HDAD

BOB, BAML and MARAD rely on comput-
ing functions for given interatomic distances,
and /or angles, and/or torsions, and then either
project that value on to discrete bins, or sort
the values. As a straightforward alternative, we
also investigated representations which account
directly from pairwise distances, triple-wise an-
gles, and quad-wise dihedral angles through
manually generated bins in histograms. The
resulting representations in increasing inter-
atomic many-body order are called HD (His-
togram of distances), HDA (Histogram of dis-
tances and angles), and HDAD (Histogram of
distances, angles and dihedral angles). For any
given molecule, one iterates through each atom
a;, producing a set of distances, angle and di-
hedral angle features for a;.

Distance features were produced by measur-
ing the distance between a; and a; (for i # j)
for each element pair. The distance features
were assigned a label incorporating the atomic
symbols of a; and a; sorted alphabetically (with
H last), e.g. if a; was a carbon atom and a;
was a nitrogen atom, the distance feature for
the atom pair would be labeled C-N. These la-
bels will be used to group all features with the
same label into a histogram and allow us to only
count each pair of atoms once.

Angle features were produced by taking the
principal angles formed by the two vectors span-
ning from each atom a; to every subset of 2 of
its 3 nearest atoms, a; and a;. The angle fea-
tures were labeled by the element type of a;,
followed by the alphabetically sorted element
types (Except for hydrogens, which were listed
last) of a; and a;. The example where q; is a
Carbon atom, a; a Hydrogen atom, a; a Nitro-
gen would be assigned the label C-N-H.

Dihedral angle features were produced by tak-
ing the principal angles between two planes. We
take a; as the origin, and for each of the four
nearest neighbors in turn, labeling the neighbor
atom a;, and forming a vector V;; = a; — a;.
Then all (3) subsets of the remaining three out
of four nearest neighbors of a; are chosen, and
labeled as aj, and a;. This third and fourth atom
respectively form two triangular faces when
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paired with Vj;: (ax,a;, a;) and {(a;, a;,a;). The
dihedral angle between the two triangular faces
was calculated. These dihedral angle features
were labeled with the atomic symbol for a;, fol-
lowed by the atomic symbols for a;, a; and a;,
sorted alphabetically, with the exception that
hydrogens were listed last, e.g. C-C-N-H.

The features from all molecules have been ag-
gregated for each label type to generate a his-
tograms for each label type. Fig. 1 exemplifies
this for C-N distances, C-C-C angles, and C-
C-C-0O dihedrals for the entire QM9 data set.
Certain typical molecular characteristics can be
recognized upon mere inspection. For example,
the CN histogram displays a strong and iso-
lated peak between 1.1 and 1.5 A, correspond-
ing to occurrences of single, double, and triple
bonds. For distances above 2 A, peaks at typ-
ical radii of second and third covalent bonding
shells around N can be recognized at 2.6 A and
3.9 A. Also C-C-C angles can be easily inter-
preted: The peak close to zero and m Rad cor-
responds to geometries where three atoms are
part of a linear (alkyne, or nitrile) type of mo-
tif. The broad and largest peak corresponds to
120 and 109 degrees, typically observed in sp?
and sp? hybridized atoms.

The morphology of each histogram has then
been examined to identify apparent peaks
and troughs, motivated by the idea that
peaks indicate structural commonalities among
molecules. Bin centers have been placed at
each significant local minimum and maximum
(Shown as vertical lines in Fig. 1). Values at
15-25 bin centers have been chosen as a rep-
resentation for each label type. All bin center
values are provided in the Supplementary Ma-
terial. For each molecule, the collection of
features has subsequently been rendered into a
fixed-size representation, producing one vector
component for each bin center, within each la-
bel type. This has been accomplished following
a two-step process. (i) Binning and interpola-
tion: Each feature value is projected on the two
nearest bins. The relative amount projected on
each bin uses linear projection between the two
bins. For example: A feature with value 1.7
which lies between two bins placed at 1.0 and
2.0 respectively, contributes 0.3 and 0.7 to the

first and second bin respectively. (ii) Reduction:
The collection of contributions within each bin
of each molecule’s feature vector is condensed
to a single value by summing all contributions.

2.4.6 Molecular Graphs

We have investigated several neural network
models which are based on molecular graphs
(MG) as representation.  The inputs are
real-valued vectors associated with each atom
and with each pair of atoms. More specifi-
cally, we have used the featurization described
in Kearnes et al.?” with the removal of partial
charge and the addition of Euclidean distances
to the pair feature vectors. All elements of the
feature vector are described in Tables 1 and 2.

The featurization process was unsuccessful
for a small number of molecules (367) because
of conversion failures from geometry to ratio-
nal SMILES string when using OpenBabel® or
RDKit, % and were excluded from all results us-
ing the molecule graph features.

Table 1: Atom features for the MG represen-
tation: Values provided for each atom in the
molecule.

Feature ‘ Description

Atom type H, C, N, O, F (one-hot).

Chirality R or S (one-hot or null).

Formal charge Integer electronic charge.

Ring sizes For each ring size (3-8),
the number of rings that
include this atom.

Hybridization sp, sp?, or sp> (one-hot or

null).

Whether this atom is a hy-
drogen bond donor and/or
acceptor (binary values).
Whether this atom is part
of an aromatic system.

Hydrogen bonding

Aromaticity

Note that within a previous draft of this
study,?” we reported biased results for GC/GG
models due to use of Mulliken partial charges
within the MG representation. All MG re-
sults presented herewithin have been obtained
without any Mulliken charges in the represen-
tation. Model hyper parameters for the GC
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Figure 1: Tllustration of select histograms of distances, angles and dihedral angles in QM9. Vertical
lines constitutes placements of the bins in the HD and/or HDAD representations. (a) All C-N
distances. (b) All C-C-C angles. (c¢) All C-C-C-O dihedral angles.

Table 2: Atom pair features for the MG rep-
resentation: Values provided for each pair of
atoms in the molecule.

Feature ‘ Description

Single, double, triple, or aro-
matic (one-hot or null).

Bond type

Graph distance | For each distance (1-7),
whether the shortest path
between the atoms in the
pair is less than or equal to
that number of bonds (binary
values).

Whether the atoms in the pair
are in the same ring.

Same ring

Spatial distance | The euclidean distance be-

tween the two atoms.

model, however, still correspond to the previ-
ously obtained hyper parameter search.

2.5 Regressors

For all methods, we first standardized the prop-
erty values so that all properties have zero mean
and unit standard deviation.

2.5.1 Kernel Ridge Regression

KRR*™! is a type of regression with regular-
ization®® which uses kernel functions as basis
set. A property p of a query molecule m is
predicted by a sum of weighted kernel func-
tions K (m, mP®) between m and all molecules

i
m'™ in the training set,

N
pm) = Yok (mm™) (1)

where «; are regression coefficients, obtained
by minimizing the Euclidean distance between
the estimated and the reference property of all
molecules in the training set. We used Lapla-
cian and Gaussian kernels as implemented by
scikit-learn®® for all representations.

The level of noise in our data is very low so
strong regularization is not necessary. We have
set the regularization parameter to 10°%, and
we note that prediction errors change negligi-
bly when altering it to 107'°. Kernel widths
were chosen by screening values on a base-2
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logarithmic grid for the 10 percent training set
(from 0.25 to 8192 for Gaussian kernel and 0.1
to 16384 for Laplacian kernel). In order to sim-
plify the width screening, prior to learning all
feature vectors were normalized (scaling the in-
put vector by the mean norm across the train-
ing set) by the Euclidean norm for the Gaussian
kernel and the Manhattan norm for the Lapla-
cian kernel.

2.5.2 Bayesian Ridge Regression

We use BR™ as is implemented in scikit-
learn.®® BR is a linear model with a L? penalty
on the coefficients. Unlike Ridge Regression
where the strength of that penalty is a regu-
larization hyperparameter which must be set,
in Bayesian Ridge Regression the optimal reg-
ularizer is estimated from the data.

2.5.3 Elastic Net

Also EN® is a linear model. Unlike BR, the
penalty on the weights is a mix of L' and L?
terms. In addition to the regularization hyper-
parameter for the weight penalty, Elastic net
has an additional hyperparameter 11 ratio to
control the relative strength of the L' and L?
weight penalties. We used the scikit-learn®® im-
plementation and set 11 _ratio = 0.5. We then
did a hyperparameter search on regularizing pa-
rameter in a base 10 logarithmic grid from le—6
to 1.0.

2.5.4 Random Forest

We use RF% as implemented in scikit-learn. %3

RF regressors produce a value by averaging
many individual decision trees fitted on ran-
domly resampled sets of the training data. Each
node in each decision tree is a threshold of one
input feature. Early experiments did not reveal
strong differences in performance based on the
number of trees used, once a minimal number
was reached. We have used 120 trees for all
regressions.

2.5.5 Graph Convolutions

We have used the GC model as described
in Kearnes et al. 27, with several structural mod-
ifications and optimized hyperparameters. The
graph convolution model is built on the con-
cepts of “atom” layers (one real vector asso-
ciated with each atom) and “pair” layers (one
real vector associated with each pair of atoms).
The graph convolution architecture defines op-
erations to transform atom and pair layers to
new atom and pair layers. There are three
structural changes to the model used herewithin
when compared to the one described in Kearnes
et al.2”. We describe these briefly here with de-
tails in the Supplementary Material. First, we
have removed the “Pair order invariance” prop-
erty by simplifying the (A — P) transforma-
tion. Since the model only uses the atom layer
for the molecule level features, pair order in-
variance is not needed. Second, we have used
the Euclidean distance between atoms. In the
(P — A) transformation, we divide the value
from the convolution step by a series of dis-
tance exponentials. If the original convolution
for an atom pair (a,b) with distance d pro-
duces a vector V', we concatenate the vectors V/,
;/—1, d%, dlg, and dzﬁ to produce the transformed
value for the pair (a,b). Third, we have fol-
lowed other work on neural networks based on
chemical graphs®” which uses a sum of softmax
operations to convert a real valued vector to
a sparse vector and sum those sparse vectors
across all the atoms. We use the same oper-
ation here along with a simple sum across the
atoms to produce molecule level features from
the top atom layer. We have found that this
works as well or better than the Gaussian his-
tograms first used in GC.?" To optimize the
network, we have searched the hyperparame-
ter space using Gaussian Process Bandit Op-
timization®® as implemented by HyperTune.?®
The hyperparameter search has been based on
the evaluation of the validation set for a sin-
gle fold of the data. Further details including
parameters, and search ranges chosen for this
paper are listed in the Supplementary materi-
als.
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2.5.6 Gated Graph Neural Networks

We have used the GG Neural Networks model
(GG) as described in Li et al.?®. Similar to the
GC model, it is a deep neural network whose
input is a set of node features {z,,v € G}, and
an adjacency matrix A with entries in a discrete
set S ={0,1,---,k} to indicate different edge
types. It has internal hidden representations
for each node in the graph h! of dimension d
which it updates for T steps of computation. Its
output is invariant to all graph isomorphisms,
meaning the order of the nodes presented to the
model does not matter. To include the most rel-
evant distance information we distinguish four
different covalent bonding types (single, double,
triple, aromatic). For all remaining atom-pairs
we bin them by their interatomic distance [in
A] into 10 bins: [0, 2], [2,2.5], [2.5,3], [3,3.5],
[3.5,4], [4,4.5], [4.5,5], [5,5.5], [5.5,6], and [6,00].
Using these bins, the adjacency matrix has en-
tries in an alphabet of size 14 (k=14), indicating
bond type for covalently bonded atoms, and dis-
tance bin for all other atoms. We have trained
the GG model on each target property individ-
ually. Further technical details are specified in
the Supplementary materials.

3 Results and discussion

3.1 Overview

We present an overview of the most relevant nu-
merical results in Table 3. It contains the test
errors for all combinations of regressors and rep-
resentations and properties for models trained
on ~118 k molecules. The best models for the
respective properties are Uy (HDAD/KRR),
EHOMO (MG/GC), ELUMO (MG/GC), Ae
(MG/GC), p (MG/GC), a (MG/GG), ZPVE
(HDAD/KRR), C, (HDAD/KRR), and w;
(BAML/RF). We do not show results for the
other three energies, U(T = 298K),H(T =
298K),G(T = 298K) since identical observa-
tions as for Uy can be made.

Overall, NN and KRR regressors perform well
for most properties. The ML out-of-sample
errors outperform DFT accuracy at B3LYP
level of theory and reach chemical (target)

Journal of Chemical Theory and Computation

accuracy, both defined alongside in table 3,
for Uy (HDAD/KRR and MG/GG), u (GC),
C, (HDAD/KRR), and w; (BAML/KRR,
MG/GC, HDAD/KRR, BOB/KRR, HD/KRR
and MG/GG). For the remaining properties
( enomo, eLumo, A€, «, and ZPVE) the best
models come within a factor 2 of target accu-
racy, while all (except epomo, eLumo and Ae)
where we don’t have reliable data. outperform-
ing DFT accuracy.

In Fig. 2 out-of-sample errors as a function
of training set size (learning curves) are shown
for all properties and representations with the
best corresponding regressor. It is important
to note that all models on display systemat-
ically improve with training set size, exhibit-
ing the typical linearly decaying behavior on a
log-log plot. 16! Errors for most models shown
decay with roughly the same slopes, indicat-
ing similar exponents in the power-law of error
decay. Notable exceptions, i.e. property mod-
els with considerably steeper learning curves
(Slopes and off-sets of all learning curves can be
found in Tables S4 and S5 in the Supplemen-
tary Material ), are MG /GC for u, MG/GG and
HDAD/KRR for o, CM/KRR and BOB/KRR
for (R?), HDAD/KRR and MG/GG for Uy, and
MG/GG for w;. These results suggest that
the specified representations capture particu-
larly well the effective dimensionality of the cor-
responding property in chemical space.

3.2 Regressors

Inspection of Table 3 indicates that the regres-
sors can roughly be ordered by performance,
independent of property and representation:
GC>GG>KRR>RF>BR>EN. It is notewor-
thy how EN, BR, and RF regressors perform
substantially worse than GC/GG/KRR. The
bad performance of EN and BR is due to
their low model capacities. This can also be
seen from the learning curves of all regressors
presented in Figures S1 to S6 of the Supple-
mentary Material. The performance of BR
and EN improves only slightly with increased
training set size and even gets worse for some
property /representation combinations. These
two regressors also exhibit very similar learn-
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Table 3: MAE on out-of-sample data of all representations for all regressors and properties at ~118k
(90%) training set size. Regressors include linear regression with elastic net regularization (EN),
Bayesian ridge regression (BR), random forest (RF), kernel ridge regression (KRR) and molecular
graphs based neural networks (GG/GC). The best combination for each property are highlighted
in bold. Additionally, the table contains mean MAE of representations for each property and
regressor; and normalized, by MAD (See Table 4), mean MAE (NMMAE) over all properties for

each regressor /representation combination.

UQ EHOMO E€LUMO Ace 12 « ZPVE Cv w1 NMMAE
eV eV eV eV Debye Bohr® eV cal/molK cm~' arb. u.
CM 0.911 0.338 0.631 0.722 0.844 1.33 0.0265 0.906 131.0 0.423
BOB 0.602 0.283 0.521 0.614 0.763 1.2 0.0232 0.7 81.4 0.35
BAML 0.212 0.186 0.275 0.339 0.686 0.793 0.0129 0.439 604 0.231
EN ECFP4 3.68 0.224 0.344 0.383 0.737 3.45 0.27 1.51  86.6 0.462
HDAD 0.0983 0.139 0.238 0.278 0.563 0.437  0.00647 0.0876 94.2 0.183
HD 0.192 0.203 0.299 0.36 0.705 0.638 0.00949 0.195 104.0 0.236
MARAD| 0.183 0.222 0.305 0.391 0.707 0.698 0.008 08 0.206 108.0 0.256
Mean 0.84 0.228 0.373 0.441 0.715 1.22 0.0509 0.578 95.1
CM 0.911 0.338 0.632 0.723 0.844 1.33 0.0265 0.907 131.0 0.424
BOB 0.586 0.279 0.521 0.614 0.761 1.14 0.0222 0.684 80.9 0.343
BAML 0.202 0.183 0.275 0.339 0.685 0.785 0.0129 0.444 604 0.229
BR |ECFP4 3.69 0.224 0.344 0.383 0.737 3.45 0.27 1.51  86.7 0.462
HDAD 0.0614 0.14 0.238 0.278 0.565 0.43 0.00318 0.0787 94.8 0.182
HD 0.171 0.203 0.298 0.359 0.705 0.633 0.00693 0.19 104.0 0.235
MARAD| 0.171 0.184 0.257 0.315 0.647 0.533 0.008 54 0.201 103.0 0.226
Mean 0.828 0.221 0.367 0.43 0.706 1.19 0.05 0.574 94.5
CM 0.431 0.208 0.302 0.373 0.608 1.04 0.0199 0.777 13.2 0.239
BOB 0.202 0.12 0.137 0.164 0.45 0.623 0.0111 0.443 3.55| 0.142
BAML 0.2  0.107 0.118 0.141 0.434 0.638 0.0132 0451 2.71| 0.141
RF |ECFP4 3.66 0.143 0.145 0.166 0.483 3.7 0.242 157 147 0.349
HDAD 1.44 0.116 0.136 0.156 0.454 1.71 0.0525 0.895 3.45| 0.198
HD 1.39 0.126 0.139 0.15 0.457 1.66 0.0497 0.879 4.18| 0.197
MARAD| 0.21 0.178 0.243 0.311 0.607 0.676 0.0102 0.311 194 0.199
Mean 1.08 0.142 0.174 0.209 0.499 1.43 0.0569 0.761  8.74
CM 0.128 0.133 0.183 0.229 0.449 0.433 0.0048 0.118 33.5 0.136
BOB 0.0667 0.0948 0.122 0.148 0.423 0.298 0.00364 0.0917 13.2 0.0981
BAML 0.0519 0.0946 0.121 0.152 0.46 0.301 0.00331 0.082 19.9 0.105
KRR |ECFP4 425 0.124 0.133 0.174 049  4.17 0.248 1.84 26.7 0.383
HDAD 0.0251 0.0662 0.0842 0.107 0.334 0.175 0.00191 0.0441 23.1 0.0768
HD 0.0644 0.0874 0.113 0.143 0.364 0.299 0.00316 0.0844 21.3 0.0935
MARAD| 0.0529 0.103 0.124 0.163 0.468 0.343 0.00301 0.0758 21.3 0.112
Mean 0.662 0.101 0.126 0.159 0.427 0.859 0.0383 0.333 22.7
GG |MG 0.0421 0.0567 0.0628 0.0877 0.247  0.161 0.004 31 0.0837 6.22| 0.0602
GC MG 0.15 0.0549 0.062 0.0869 0.101  0.232 0.00966 0.097 4.76| 0.0494

ing curves and BR performs only slightly better
than EN for most combinations. The only clear
exception to this rule is for ZPVE and U, to-
gether with HDAD, where BR performs signifi-
cantly better than EN. Also, BR and EN errors
rapidly converge to a constant w.r.t. training
set size for all representations and properties,
except for HDAD, which is the only representa-

tion which has a noteworthy improvement with
increased training set size for some properties.
The constant learning rates are not surprising
as (a) the number of free regression parame-
ters in BR and EN is relatively small and does
not grow with training set size, and as (b) the
underlying model is a linear combination with
small flexibility. This behavior implies error
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Table 4: Mean and mean absolute deviation (MAD) for all properties in the QM9 data set, as well
as target MAE, and DFT (at B3LYP level of theory) MAE relative to experiment for each property,
and the number of molecules used to estimate the values (In parentheses of DFT row). The target
accuracies taken from Ref.'® Target accuracy for energies of atomization, and orbital energies were
set to 1 kcal /mol, which is generally accepted as (or close to) chemical accuracy within the chemistry
community. Target accuracies used for 4 and o are 0.1 D and 0.1 Bohr? respectively, which is within
the error of CCSD relative to experiments.?® Target accuracies used for w; and ZPVE are 10 cm™!,
which is slightly larger than CCSD(T) error for predicting frequencies.%° Target accuracies used for

C, were not explained in article.!® Section 2.3 discusses how the errors for DF'T where obtained.

Uo EHOMO E€LUMO Ae 1% « ZPVE Cv w1

eV eV eV eV Debye Bohr’ eV cal/molK  cm™!
Mean | —76.6 —6.54 0.322 6.86 2.67 75.3 4.06 31.6 3500
MAD 8.19 0439 1.05 1.07 1.17 6.29 0.717 3.21 238

Target| 0.043  0.043 0.043 0.0430.10  0.10  0.0012 0.050 10
DFT 0.10(69) NA NA NA 0.10(49) 0.4(49) 0.0097(41) 0.34(16) 28(41)

convergence already for relatively small train- tance are: O-H placed at 0.961 A, N-H placed
ing sets. at at 1.01 A and C-C-H at 3.138 radians with

RF performs poorly compared to GC, GG and an importance of 0.587, 0.305 and 0.064 respec-
KRR for all properties except for wy, the high- tively. These three first bins constitute ~96%

est lying fundamental vibrational frequency in of the prediction of w; and distances of the O-H
each molecule. For this property RF yields and N-H bins are very similar to O-H and N-H
an astounding performance with out-of-sample bond lengths. C-C-H is placed on ~ 7 radians
errors as small as single digit cm™!. B3LYP which means that it has to correspond to a lin-
achieves a mean absolute error of only 28 cm ™! ear C-C-H (alkyne) chain which implies that the
with respect to experiment.3? The distribution two carbons must be bonded by a triple bond

of wy, Fig. 1 of reference,!® suggests a simple (typically the C-H with the lowest pK, and the
reason for this: There are three distinct peaks highest C-H stretch vibration).

which correspond to typical C-H, N-H and O-H KRR performs remarkably well on average.
stretch vibrations in increasing order. There- For extensive energetic properties it yields
fore the principal learning task in this property the lowest overall errors in combination with
is to detect if there is an OH group, and if not HDAD and BOB, respectively. Its outstand-
if there is an NH group. If neither group is ing performance is not unsurprising in light of
present, CH will yield the vibration with the the multiple previous ML studies dealing with
highest frequency. As such, this is essentially compositional as well as configurational spaces.
about classifying which bonds are present in The neural network flavors GC and GG, how-
the molecule. RF works by fitting a decision ever, yield better performance on average, and
tree to the target property. Each branch in the the lowest errors for all electronic (mostly in-
tree is based on an inequality of one entry in the tensive) properties, i.e. dipole moment, polar-
representation. RF should therefore be able to izability, HOMO/LUMO eigenvalues and gaps.
identify which bonds are present in a molecule, A possible explanation for this property depen-
simply by looking at the entries in the each el- dent difference in performance between KRR
ement pair, and/or triplet bin of the represen- and NN could be the inherent respective addi-
tations. For RF, a fractional importance can tive and multiplicative nature of these regres-
be assigned to each input feature (the sum of sors. The energy being extensive, it is con-
all importances is 1.0). Analyzing the impor- sistent with this picture that effective, quasi-
tance of the bins in HDAD of the RF model particle based linear KRR based estimates have
reveals that the three bins with highest impor- recently been reported to deliver very accurate
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Figure 2: Learning curves (mean absolute error (MAE) as a function of training set size N) for 10

properties of QM9 molecules, displaying the best regressor for each representation and property.
Horizontal solid lines correspond to target accuracies, vertical dotted lines correspond to approxi-

mated B3LYP accuracies (unless off-chart), see also table 3. Note that due to its poor performance
ECFPA4 results have been excluded for o, ZPVE, U and C,.

predictions which can scale. 52

3.3 Representations

As one would expect, HDAD contains more
relevant information and thus it always out-

performs HD when using KRR. Tests also
showed that an HDA representation systemat-
ically yields errors in between HDAD and HD,
and similar observations hold for BR and EN
regressor. In the case of RF, however, we ob-

serve little difference between HDAD and HD,
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and HD can even yield slightly lower errors than
HDAD. In our opinion, this is due to the addi-
tional bins of angles and dihedrals rather adding
noise than signal. By contrast, the separation
of distances, angles and dihedral angles into dif-
ferent bins is not a problem for the KRR meth-
ods because the kernels used are purely distance
based. This makes it possible for KRR to ex-
ploit the extra three- and four-body informa-
tion in HDAD and to gain an advantage over
HD. We note however that the remarkable per-
formance of HDAD is possible despite its strik-
ing simplicity. As illustrated in Fig. 1 and dis-
cussed above, characteristic chemical behavior
can be directly obtained by human inspection of
HDAD. As such, HDAD corresponds to a rep-
resentation very much "Occam’s razor style".
Unfortunately, due to its discrete nature and
its origin in sorting distances, HDAD will suf-
fer from lack of differentiability, which might
limit its applicability when modeling forces or
other non-equilibrium properties.

MARAD, containing similar information
as HDA, performs similarly to BAML—yet,
MARAD requires no prior knowledge about
the physics encoded in the universal force-field
such as electronic hybridization states, bond-
order, or functional potential shapes (Morse,
Lennard-Jones, harmonic angular potentials, or
sinusoidal dihedrals). BOB and CM, previously
state of the art, result in relatively poor perfor-
mance. ECFP4 produces out-of-sample errors
on par or slightly better than CM/KRR for
intensive properties (y, HOMO/LUMO eigen-
values and gap), however the model produces
errors that are off-the-chart for all extensive
properties (o, ZPVE, Uy and Cy).

4 Conclusions

We have benchmarked many combinations of
regressors and representations on the same
QM9 data set consisting of ~131k organic
molecules. For all properties, the best ML
model prediction errors reach the accuracy of
DFT at B3LYP level with respect to experi-
ment. For 7 out of 12 distinct properties (at-
omization energies, heat-capacity, wy, u) out-
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of-sample errors reach levels on par with chem-
ical accuracy, or better, using a training set size
of ~118k (90% of QM9 data set) molecules.
For the remaining properties o, egomo, ELUMO,
Ae, and ZPVE, errors of the best models come
within a factor 2 of chemical accuracy.

Regressors EN, BR, and RF lead to rather
high out-of-sample errors, while KRR and
graph based NN regressors compete for the low-
est errors. We have found that GC, GG, and
KRR have best performance across all prop-
erties, except for the highest vibrational fre-
quency for which RF performs best. There is no
single representation and regressor combination
that works best for all properties (though forth-
coming work with further improvements to the
GG based models indicates best in class per-
formance across all properties®). For inten-
sive electronic properties (pu, HOMO/LUMO
eigenvalues and gap) we have found MG/NN
to yield the highest predictive power, while
HDAD/KRR corresponds to the most accurate
model for extensive properties (o, ZPVE, Uy
and Cv). The latter point is remarkable when
considering the simplicity of KRR, being just
a linear expansion of property in training set,
and HDAD, being just histograms of distances,
angles, dihedrals. Using BR and EN is not rec-
ommended if accuracy is of importance, both
regressors perform worse across all properties.
Apart from predicting highest fundamental vi-
brational frequency best, RF based models de-
liver rather unsatisfactory performance. The
ECPF4 based models have shown poor general
performance in comparison to all other repre-
sentations studied; it is not recommended for
investigations of molecular properties.

We should caution the reader that all our re-
sults refer to equilibrium structures of a set of
only ~131 k organic molecules. While ~131k
molecules might seem sufficiently large to be
representative, this number is dwarfed in com-
parison to chemical space, i.e. the space popu-
lated by all theoretically stable molecules, es-
timated to exceed 10 for medium sized or-
ganic molecules.%* Furthermore, ML models
for predicting properties of molecules in non-
equilibrium or strained configurations might re-
quire substantially more training data. This
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point is also of relevance because some of the
highly accurate models described herewithin
(MG based) currently use bond based graph
connectivity in addition to distance, raising
questions about the applicability to reactive
processes.

In summary, for the organic molecules stud-
ied, we have collected numerical evidence which
suggests that the out-of-sample error of ML
is consistently better than estimated DFT at
B3LYP level accuracy. While this is no guar-
antee that ML models would reach same error
levels if more accurate, explicitly electron corre-
lated or experimental reference data was used,
previous studies indicate that similar perfor-
mance can be expected when using higher levels
of theory.® More specifically, one might intu-
itively expect that going beyond hybrid DFT to
higher quality data (either wavefunction based-
QM or experiment) in terms of reference meth-
ods would represent a more challenging learn-
ing problem, and therefore imply the need for
larger training set sizes. Results in Ref.,® how-
ever, suggest that ML models can predict the
differences between HF and MP2, CCSD, and
CCSD(T) equally well using the same training
set.

As such, we conclude that future reference
datasets for training state-of-the-art machine
learning models of molecular properties should
preferably use reference levels of theory which
go beyond DFT at B3LYP level of accuracy.
While it seems unlikely that for each class of
molecules, hundreds of thousands of experimen-
tal training data points will become available
in the foreseeable future, it might well be pos-
sible to reach such scale using efficient imple-
mentations of explicit electron correlated meth-
ods within high-performance computing cam-
paigns. Finally, we note that future work could
deal with improving representations and regres-
sors, with the goal of reaching similar predictive
power using less data.
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5 SI

Supplementary information regarding raw data,
MARAD representation, graph convolutions,
gated graphs, random forests, and learning
curves are reported, as well as root mean square
errors for ML predictions after training on the
largest training set.
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