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resumo 
 
 

As macroalgas marinhas são consideradas alimentos interessantes pelas suas 
propriedades nutricionais e como fonte de compostos bioativos. Estes incluem 
lípidos polares tais como glicolípidos (GLs), betaínas e fosfolípidos (PLs), 
considerados lípidos com elevado valor nutricional e ingredientes funcionais 
com reconhecidos benefícios para a saúde. A sua biossíntese depende de 
diversos fatores ambientais como a sazonalidade, a nutrição e o habitat, 
aumentando a complexidade estrutural do lipidoma das macroalgas, pelo que 
a sua identificação é um desafio da atualidade. A espectrometria de massa 
(MS) é uma técnica bem-sucedida e promissora no estudo detalhado da 
assinatura lipidómica de distintas matrizes, que pode ser alargada à 
identificação das centenas de espécies no lipidoma das macroalgas e permitir 
que estas possam finalmente ser valorizadas como fonte de lípidos. 
Neste trabalho pretende-se identificar o lipidoma de macroalgas 
representativas do filo das Chlorophyta (Codium tomentosum), das 
Rhodophyta (Gracilaria sp. e Porphyra dioica) e das Ochrophyta (Fucus 
vesiculosus), algas existentes na costa marítima portuguesa e recentemente 
cultivadas num sistema multi-trófico integrado em aquacultura (IMTA), usando 
estratégias de análise por espectrometria de massa acoplada a métodos 
cromatográficos. Pretende-se ainda avaliar as propriedades bioativas dos 
lípidos polares das macroalgas nomeadamente as suas propriedades 
biológicas como agentes anti-inflamatórios e antiproliferativos/antitumorais. 
Para alcançar os objetivos propostos, foram realizados estudos de 
caracterização dos extratos lipídicos por HILIC–MS e MS/MS. Os resultados 
do trabalho permitiram identificar cerca 238 espécies moleculares distribuídas 
por doze classes na macroalga Codium tomentosum, 147 espécies 
moleculares em catorze classes na Gracilaria sp., 110 espécies moleculares 
em catorze classes na Porphyra dioica e 181 espécies moleculares 
distribuídas em dezassete classes na Fucus vesiculosus. De modo geral, o 
lipidoma destas macroalgas inclui os glicolípidos (GLs) monogalactosil 
diacilglicerol (MGDG), digalactosil diacilglicerol (DGDG), sulfoquinovosil 
diacilglicerol (SQDG) e a forma liso (SQMG); inclui os fosfolípidos (PLs) 
fosfatidilcolina (PC) e forma liso (LPC), fosfatidilglicerol (PG) e a forma liso 
(LPG), ácido fosfatidico (PA), fostatidilinositol (PI) e as betaínas (diacilglicerol 
trimetil-homoserina, DGTS). As algas verdes diferenciam-se pela 
predominância de espécies moleculares que contêm ácidos gordos 
polinsaturados com 16, 18 e 20 átomos de carbono, como o 16:3, o 18:3 e o 
20:5 na família n-3, e pela presença da forma liso das betaínas, a classe 
monoacilglicerol trimetil-homoserina (MGTS), identificadas pela primeira vez no 
lipidoma de macroalgas. 
 
 
 



  

 



 

  
 
 
 
 
 
 
 
 
 
 

resumo 
 
 

As macroalgas vermelhas diferenciam-se pelo elevado número de espécies 
moleculares que incluem cadeias de ácidos gordos C20 da família n-3 e n-6, 
principalmente na composição dos GLs, e pela presença das classes 
fosfatidiletanolamina (PE) e inositolfosfoceramida (IPC), apenas identificada 
nestas algas, pelo que podem ser consideradas um biomarcador deste filo. 
Neste trabalho, foi avaliada a variação na assinatura lipidómica em duas fases 
do ciclo de vida (gametófita e esporófita) tomando como alga de estudo a 
Porphyra dioica. Os resultados obtidos indicaram variações a nível molecular 
nas classes PC, PA, PE e PG. Em ambas as fases não se observam variações 
na assinatura dos GLs. O estudo do perfil em ácidos gordos desta alga 
mostrou que ambas as fases contêm ácidos gordos do tipo 20:4(n-6) e 20:5(n-
3), pelo que apresentam elevado valor nutricional. Na composição da 
macroalga castanha Fucus vesiculosus, as espécies moleculares combinam 
diversos ácidos gordos polinsaturados com 18 e 20 átomos de carbono da 
família n-3 (18:3, 18:4 e 20:5), e 20:4 da família n-6. As algas castanhas 
apresentam várias espécies moleculares na categoria das betaínas 
nomeadamente a classe diacilglicerol trimetil-β-alanina (DGTA) e a sua forma 
liso MGTA, identificada pela primeira vez no lipidoma de macroalgas, ambas 
não detetadas no lipidoma dos restantes filo. 
O efeito da sazonalidade na variação da assinatura lipidómica foi estudado 
para a Fucus vesiculosus colhida em duas estações do ano: inverno e 
primavera. Os resultados obtidos mostram que o lipidoma desta macroalga 
mantém o mesmo número de espécies moleculares em todas as classes de 
lípidos polares, observando-se um aumento da abundância relativa das 
espécies moleculares que combinam ácidos gordos polinsaturados C18 e C20 
(18:3, 18:4, 20:4 e 20:5), em especial nas categorias GLs e betaínas na 
macroalga de inverno. Assim, podemos concluir que a sazonalidade tem efeito 
no lipidoma, manifestado pelo aumento de ácidos gordos incorporados nos 
lípidos polares na macroalga de inverno, muito benéfico em termos 
nutricionais. Quanto à bioprospecção, avaliaram-se as atividades anti-
inflamatória e antiproliferativa do extrato lipídico total da macroalga Gracilaria 
sp.. A atividade anti-inflamatória foi avaliada pela capacidade de inibição dos 
extratos na produção de NO em macrófagos RAW 264.7 estimulados com o 
lipopolissacarídeo bacteriano e a atividade anti proliferativa foi testada quanto 
à capacidade inibitória na proliferação de células T-47D, originadas a partir de 
um carcinoma ductal humano (cancro da mama) e de células 5637 originadas 
a partir do carcinoma humano da bexiga. Os extratos totais demonstraram 
atividade anti-inflamatória e antiproliferativa, pelo que se avaliou o efeito do 
extrato rico em glicolípidos e a capacidade inibitória na proliferação de células 
T-47D, verificando-se uma capacidade inibitória da mesma ordem obtida para 
o extrato total, pelo que poderão ter particular interesse como fitoquímicos. 
Assim, os resultados obtidos podem contribuir para a valorização das 
macroalgas como fonte natural e renovável de alimentos, tendo em 
consideração o valor nutricional como fonte de ácidos gordos n-3 e n-6, e de 
compostos bioativos a ser utilizados como ingredientes funcionais, fitoquímicos 
e noutras potenciais aplicações na indústria alimentar e farmacêutica. 
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abstract 

 
Marine macroalgae are considered to be interesting for food in Western 

countries and an important supply of novel natural bioactive compounds. 
Among these are polar lipids such as glycolipids, betaine lipids and 
phospholipids recognized as high valued lipids for nutrition and as functional 
ingredient with recognized health benefits. Its biosynthesis depends on several 
environmental factors such as seasonality, nutrition and habitat, increasing the 
structural complexity of macroalga lipidome, so that its identification is a current 
challenge. Mass spectrometry (MS) is a promising tool successfully applied in 
the study of lipidomic signature of distinct organisms, which can be extended to 
identify the hundreds of species in the lipidome of macroalgae, and allow them 
to finally be explored as potential source of lipids. 
In this work we aim to identify the lipidome of macroalgae representative of 
Chlorophyta (Codium tomentosum), Rhodophyta (Gracilaria sp. and Porphyra 
dioica) and Ochrophyta (Fucus vesiculosus). These algae thrive in the 
Portuguese coast but are recently being cultivated on an integrated multi-
trophic aquaculture system (IMTA). The characterization of the lipidome will be 
performed by using mass spectrometry analysis tools coupled to 
chromatographic methods. We aim to evaluate the bioactive properties of the 
polar lipids from macroalgae fostering the potential application of these 
compounds in function of its biological properties as anti-inflammatory and 
antiproliferative/antitumor agents.  
The main goals of this project were achieved after the characterization by using 
HILIC–MS and MS/MS approaches of the lipid extracts carrying on different 
extraction protocols. The results of this study allowed to identify about 238 
molecular species distributed by twelve classes in the macroalgae Codium 
tomentosum, 147 molecular species in fourteen classes in Gracilaria sp., 110 
molecular species in fourteen classes in Porphyra dioica and 181 molecular 
species distributed by seventeen classes in Fucus vesiculosus. Overall, the 
lipidome of these macroalgae included GLs monogalactosyl diacylglycerol 
(MGDG), digalactosyl diacylglycerol (DGDG), sulfoquinovosyl diacylglycerol 
(SQDG) and its lyso-form (SQMG); phosphatidylcholine (PC) and lyso-PC, 
phosphatidylglycerol (PG), lyso-PG (LPG), phosphatidic acid (PA), 
phosphatidylinositol (PI) and betaines (diacylglyceryl trimethyl-homoserine, 
DGTS). Green macroalgae may be differentiated by the predominance of 
molecular species including C16 – C20, polyunsaturated fatty acids (PUFA) such 
as 16:3, 18:3 and 20:5 from n-3 FA family. It contains several molecular 
species belonging to GLs and betaines including monoacylglyceryl trimethyl-
homoserine (MGTS), never reported before in the lipidome of macroalga. 
Red macroalgae are differentiated by molecular species that incorporate C20 FA 
chains of n-3 and n-6 families, mainly reflected on the composition of GLs. 
 

 
 



 
 



 

 
 
 
 
 

 
 
 
 
 

abstract 
 

Red algae contained phosphatidylethanolamine (PE) and inositol 
phosphoceramides (IPC), only identified in red algae and therefore to be 
considered putative biomarker of this phylum. Among intra-taxonomic groups, 
the differentiation is reflected by the high number of molecular species within 
the PE class and the lowest number of molecular species composing betaine 
lipids present in the lipidome of genus Porphyra. The brown macroalgae Fucus 
vesiculosus hold molecular species mainly combining C18 and C20 n-3 type 
such as 18:3, 18:4 and 20:5 and 20:4(n-6) PUFA. Brown algae contain several 
molecular species within the category of betaine lipids, namely the 
diacylglyceryl trimethyl-β-alanine class (DGTA) and the lyso-DGTA (MGTA), 
class never reported before in the lipidome of macroalga, not detected in the 
lipidome of the remaining phyla. 
In this work, the differentiation between the lipidic signature from two life cycle 
stages (gametophyte and sporophyte) was evaluated, taking Porphyra dioica 
as the case-study. The results showed dissimilarities at the molecular level in 
PC, PA, PE and PG classes. In both stages GLs preserve its signature. The FA 
profile of this macroalgae showed that both stages contained 20:4(n-6) and 
20:5(n-3) FA that infers high nutritional value to Porphyra dioica. 
Season effect on the lipid profile from Fucus vesiculosus was evaluated (winter 
and spring seasons). The results unveil that the lipidomic signature of this 
macroalga is maintained considering the number of molecular species and 
polar lipid classes, and season effect was reflected by the increase of the 
relative abundance of the molecular species that combine C18 and C20 (18:3, 
18:4, 20:4, and 20:5 FA) in the lipidome of F. vesiculosus harvested in winter, 
particularly displayed by GLs and betaine lipids, that enhance the nutritional 
value of this macroalgae. 
After the identification of the different macroalgae and bioprospection of the 
identified molecular species, the anti-inflammatory and antiproliferative 
activities of the total lipid extract of the macroalga Gracilaria sp. were screened. 
The anti-inflammatory activity was evaluated by the inhibitory effect of the 
extracts in the production of NO in RAW 264.7 macrophage cells after bacterial 
cell-wall component lipopolysaccharide (LPS) stimulation. Antiproliferative 
activity was assessed as inhibitory capacity of lipid extracts in the proliferation 
of T-47D cells, originating from a human ductal carcinoma (breast cancer) and 
5637 cancer cells from the human bladder carcinoma. The total extracts 
showed anti-inflammatory and antiproliferative activity, and effect of the 
glycolipid-rich extract and the inhibitory capacity on the proliferation of T-47D 
cells was evaluated resulting similar between both extracts. With this work, we 
were able to identify putative biomarkers for taxonomy, season effect and life 
cycle stages of macroalgae. It was identified species that from the point of view 
of bioprospecting may be considered interesting phytochemicals, and that, in 
fact, have proved to be related with anti-inflammatory and antiproliferative 
activity of the extracts. These results may contribute to the valorization of 
macroalgae as a natural and renewable source of food and feed, considering 
the nutritional value as a source of n-3 and n-6 FA but also as a source of 
bioactive compounds to be used as functional ingredients, phytochemicals or in 
new formulations for food and pharma industries. 
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Introduction 

___________________ 

Macroalgae, also refered to as seaweeds, are a diverse and ubiquitous group of 

photosynthetic organisms. They are known to produce a large amount of bioactive 

compounds, involved in the natural defense mechanisms to biotic and abiotic stresses (1–

3). Thus, they are considered a promising commercial supply of bioactive compounds, 

stimulating further research of novel applications for human and animal health and 

nutrition (1,4–6). The most well-known bioactive compounds of macroalgae include 

sulfated polysaccharides, proteins such as phycobiliproteins, pigments such as carotenoids, 

lipids, among others (7–9). Macroalgae lipids are also a group of bioactive compounds 

(10–13). They can be divided into two main groups: the nonpolar lipids (acylglycerols, 

sterols, free (nonesterified) fatty acids) and the polar lipids that include glycolipids (GLs) 

as the major components, phospholipids (PLs) and betaine lipids (14–16).  

Polar lipids have essential functions as building blocks of membranes (17,18) and as 

signaling molecules (15,19). They are a source of polyunsaturated fatty acids (PUFA) 

(1,20,21) and are considered promising phytochemicals with high nutritional value and 

with potential health benefits as antibacterial (12,22,23), antifungal (1,12,24), antiviral 

(23,25), anti-inflammatory (26,27), and antitumor agents (10,12,25,28,29). The biological 

activity of polar lipids depends on the fatty acids (FA) composition and on the polar head 

group structure (30). Among polar lipids, GLs are valuable products to be used in 

functional foods, as well as in the pharmaceutical and cosmetic industries (23,31,32). 

Phospholipids from algae are used in the cosmetic and pharmaceutical industries, and have 

been described to alleviate senescence, to be beneficial for cognitive functions and 

inflammatory diseases (28,32,33).  

The high complexity, chemical diversity, and huge difference in the molar abundance of 

these compounds explains why up to now the characterization and the evaluation of polar 

lipids profile from macroalgae and their biological properties is still unknown (34–36). The 

lipidomic approach supported by modern research with MS-based techniques (37–41) is an 

emerging field in the research of marine lipids (42). It is considered an important 

molecular tool to understand the features of polar lipids structure as well as structural 
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changes occurring in the lipids due to metabolic adaptation to environmental stress and 

starvation conditions (43–45). 

Macroalgae employed for bioprospection are commonly collected from the wild and the 

same species collected in different regions, or sampling periods, may display different 

chemical compositions (46), tightly dependent on the seasonal, environmental, nutrition 

and habitat effects. These features could be a drawback considering bioprospection and 

potential applications of macroalgae as a source of bioactive compounds where 

replicability of biomass is needed. The use of macroalgae cultivated under controlled 

conditions, moreover when using integrated multi-trophic aquaculture (IMTA) systems, 

presents a sustainable solution to this pitfall, as well as to potential replicability issues 

when larger volumes of biomass are required (47–49). 

In this Ph.D., lipidomic-based strategies were used for the analysis of polar lipids, in 

order to contribute to a better elucidation of the identity of lipids and fostering the 

valorization of macroalgae obtained from IMTA as a source of promising value-added 

bioactive compounds for food and health biotechnological applications (37–41). 

I.1 State of the art 

I.1.1. Macroalgae 

Marine macroalgae are photosynthetic organisms, with close to 10,000 identified 

species that belong to Eukaryota Domain and the Kingdom Plantae (for the green and red 

algae) and Kingdom Chromista (for the brown algae) (6,50). They can be found along the 

littoral zone and are classified according to various structural and biochemical 

characteristics. Nonetheless, the systematic classification of macroalgae within three phyla 

is primarily based on the color of thallus and thus pigment components: phylum 

Chlorophyta for green algae, phylum Rhodophyta for red species and phylum Ochrophyta 

for brown. The most relevant photosynthetic pigments are divide in three categories, 

chlorophylls, carotenoids and phycobiliproteins (51). Chlorophyll (Chl) a is characteristic 

of all macroalgae, Chl b is characteristic of green, and Chl c found in brown macroalgae 

(15,18,52) while carotenoids, which are brown or yellow, are divided into primary (e.g., 

lutein) and secondary (e.g., carotenes and xanthophylls) carotenoids (52).  
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The phylum Chlorophyta 

Chlorophyta, where green algae belong, includes several species that are characterized 

by the pigmentation that includes high amounts of chlorophyll a and b, β-carotene (a 

yellow pigment) and various xanthophylls (yellowish or brownish pigments) (53). 

Chlorophyta is the phylum with the lowest number of macroalgae species (about 1,500) but 

include some of the most common ones, like the species Codium tomentosum, target of this 

study. This species is organized in branches that form spongy, dark green, coenocytic thalli 

of intertwined filaments (54). Codium tomentosum thrives in Portugal, commonly found 

from late spring to the end of summer on semi-exposed rocks and/or deep rock pools on 

the lower seashore (55). The specimen is native to the North East of the Atlantic Ocean but 

is also found around the coasts of Africa and in various other parts of the world. 

Traditionally, it was part of a mixture of macroalgae, the "sargasso”, which was used as 

soil conditioner in northern Portugal. Globally, Codium species are used in human 

nutrition, in cosmetic industry, and as an important source of sulfated galactans (56), and 

other compounds with bioactive properties, such as antioxidant, antigenotoxic, anti-tumor 

and hypoglycemic activities (13,57). With a growing interest from these sectors in 

accessing high quality biomass (e.g., monospecific, native, traceable, certified), together 

with a lack of availability plus the need of preservation of the wild resources, aquaculture 

is the only solution. The cultivation of Codium species is common in Asia, mostly for 

human consumption purposes. However, the production of the Atlantic species Codium 

tomentosum is still in its infancy, with aquaculture initiatives of the species occurring in 

Portugal and southern Spain. 

The phylum Rhodophyta 

Rhodophyta, where red macroalgae belong, contain photosynthetic pigments such as 

chlorophyll a, phycobilins (e.g., R-phycocyanin and R-phycoerythrin) and carotenoids, 

mostly β-carotene, lutein and zeaxanthin (52). Rhodophyta has the highest diversity of 

macroalgae species (about 6,500 species) and includes cylindrical and filamentous 

Gracilaria species from Gracilariales order (55). This macroalgae is represented by more 

than 300 species of which 160 have been accepted taxonomically (58) and is one of the 

world's most cultivated and valuable macroalgae. Gracilaria sp. are the main raw material 

used for production of agar, mainly in China, Indonesia, and Chile (1,9). Gracilaria 
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species are also abundant in Portugal, namely G. gracilis, G. verrucosa and G. 

vermiculophylla, and the only way to distinguish them with certainity is by using 

molecular tools. In Portugal, namely in the region of Aveiro and its coastal lagoon “Ria de 

Aveiro”, Gracilaria is a very common species. In this region, its was once harvested for 

soil conditioning, as it was part of “moliço” - a mixture of algae and seagrasses collected in 

the lagoon that contained Gracilaria spp. (Rhodophyta) among others (59). 

This group of seaweeds is well adapted to cultivation on land-based integrated multi-

trophic aquaculture (IMTA) systems, allowing its sustainable production under controlled 

and replicable conditions that provide a secure supply of high-grade seaweed biomass for 

demanding markets (e.g., food, pharmaceuticals) (49). 

The genus Porphyra is also one of the more diverse within Rhodophyta macroalgae, 

exceeding 150 species. It inhabits the intertidal zone of rocky shores throughout the year, 

with seasonal abundances of the different species (60). Porphyra spp. (Bangiales, 

Rhodophyta) is commercially valuable seaweed used primarily for food and attributed to 

health and longevity in Asian cultures but also as a source of the red pigment R-

phycoerythrin (61,62). Porphyra (Nori) reputation is firmly established in oriental 

countries and recently in western countries as new super food and health promoter. 

Attempts are underway to develop Porphyra spp. as aquaculture crops in the United States, 

South America and Europe. Among the genus, Porphyra dioica (J. Brodie & L. M. Irvine, 

1997, is one of the most common species in North of Portugal (63,64). The blade of 

Porphyra spp. (gametophytes) is the most commercially relevant phase of the life cycle. 

This macroalgae has a trimorphic life history (Fig. I.1) that also includes microscopic 

carposporophyte and uniseriate, branched filamentous conchocelis (sporophyte) (65,66). 

The development of the filamentous sporophyte phase is commercial interesting due to its 

molecular plasticity particularly for target molecules and since has the potential to be 

cultivated on indoor nurseries integrated in aquaculture systems (62). 

Rhodophyta species are of paramount interest for industrial and biotechnological uses 

and are considered economically valuable resources due to their ability to achieve high 

yields of commercially valuable biomass and due to their use as a food and feed (1,21,67). 

These algae are also sources of important metabolites with several biological activities, 

namely anti-inflammatory properties (23,58,68). 
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Figure I. 1. Porphyra spp. life cycle: The gametophytic blade phase reproduces sexually through 

fertilization of the carpogonium by the spermatium and subsequent carpospores formation; the 

development of these spores gives rise to the filamentous sporophyte conchocelis phase, which 

produces conchospores that are release into seawater and germinate forming new blades. 

The phylum Ochrophyta/phaeophyta 

The brown algae are members of the Ochrophyta, Class Phaeophyceae. As 

photosynthetic pigments, besides the normal chlorophylls a and c, brown algae differ for 

having a high amount of carotenoids, particular fucoxanthin (15,18). Ochrophyta comprise 

about 1,500 species, common in cold waters along continental coasts (69,70). Fucus 

vesiculosus, also called bladderwrack, is very common in rocky shores of northern 

temperate regions, also being present in rocky formation of salt marshes. Like the other 

members of Ochrophyta, their cell walls contain cellulose, alginic acid and sulfated 

polysaccharides, mostly exploited for commercial applications (1). Fucus species are thus 

an important source of alginates-colloidal extracts with many industrial uses and was also 

an important source of iodine. Indeed, the great interest of this edible macroalgae is mainly 

due to their bioactive ingredients that have showed benefits in cosmetic and, recently, in 

the prevention of chronic diseases (70,71).  

The exploitation of marine resources including macroalgae and is one of the critical 

sectors within the action plan of economic, social and environmental betterment of 

Portugal (9,72). Although that were recognized the existence of 246 species of 
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Rhodophytes, 98 Phaeophytes and 60 Chlorophytes were identified in Northern Portugal, 

the main economic macroalgae in Portugal are the agarophyte Gelidium sesquipedale, 

harvested on the coast of the mainland, and Pterocladiella capillacea, which is harvested 

on the Azores Islands (73,74). Actually, macroalgae are definitely rather underexploited 

resources considering their great taxonomic diversity and promising source of biologically 

active compounds (5). There is a recent interest for drugs of marine origin and concomitant 

investigation is focusing on bioactivity and potential applications of macroalgae for food, 

feed and health improvement (1,74–77). Macroalgae can be directly consumed by humans 

and animal foods resembling traditional foods or as functional food possessing 

physiological benefits and promoting health by reducing the occurrence and incidence of 

different diseases (cancer, cardiovascular diseases, obesity, and diabetes) (5,11). They also 

constitute a source of high added-value metabolites (e.g., polysaccharides 50 - 70% of dry 

biomass), proteins (7 - 30% of dry biomass), lipids (1 - 10% of dry biomass), among others 

(Fig. I.2) (78).  
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Figure I. 2. Chemical composition of macroalgae. 

These metabolites have high nutraceutical value and infer macroalgae´s several 

applications in agriculture (fertilizers, biostimulants, bioregulators), animal (e.g., feed 

additives and as bioremediators for nitrogen-rich effluents from fed aquaculture) and 
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human products (food, cosmetics, pharmaceuticals) (79) and can be added at different 

stages of the food production process (80).  

New markets are interested in the recovery and valorization of algae, as renewable 

resource, as a source of high value products in a positive integrated sustainable approach 

(81), that endorse the production of edible macroalgae, namely in aquaculture systems (1). 

Integrated multi-trophic aquaculture (IMTA) is being proposed as a mean to develop 

environmentally sound aquaculture practices and resource management through a balanced 

coastal ecosystem approach (82). IMTA mimics the natural ecosystem as nutrients 

excreted from one organism are taken up and transformed into resources needed for the 

growth of others (83). There are different conceptual approaches, the most classical being 

“fed fish” producing water rich in organic matter that is filtered by oyster and inorganic 

dissolved nutrients (like ammonia, nitrate, phosphate) that is extracted by photosynthetic 

organisms (like algae or halophytes). The cleaner water can recirculate back to the fish 

production or be released into the environment. IMTA can be implemented on land or at 

sea. In Western countries, macroalgae employed for bioprospecting are commonly 

collected from the wild, beeing exposed to natural variations of biotic and abiotic factors 

that will affect their chemical composition (6,83). Meanwhile, macroalgae obtained from 

aquaculture such as the IMTA system, by being grown in optimized conditions, are 

expected to guarantee the supply of target metabolites and presents a sustainable solution 

to potential replicability issues when larger volumes of biomass for high value markets are 

required (31,48). The valorization of macroalgae aligns with the innovation platform 

within blue economy for sustainable development of marine products to be the future 

generation of commercial and industrial applications (6,84). 

Among the full diversity of macroalgae, Codium tomentosum, Stackhouse, 1797 (green 

macroalgae), Gracilaria sp., Greville, 1830 (red macroalgae), Porphyra dioica, J. Brodie 

& L. M. Irvine, 1997 (red macroalgae), and Fucus vesiculosus, Linnaeus, 1753, (brown 

macroalgae) were characterized in this Ph.D. focusing their lipidome and infering on 

potential valuable market applications.  

I.1.2. Lipids in macroalgae 

Lipids are considered potential bioactive components of macroalgae supporting the 

actual increase in marine lipid research all over the world. They represent less than 10% 

dry weight biomass (33), provide the structural basis for cell membranes, and fuels for 
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metabolism. Overall, lipids in macroalgae can be divided into two main groups: the 

nonpolar lipids (acylglycerols, sterols, free-nonesterified fatty acids, pigments) and polar 

lipids (phospholipids, sulfolipids, betaine lipids) that can account about 90 % of total lipids 

(16,18,85,86). Polar lipids are major and vital components of cell membranes and 

organelles, play a number of roles as mediators in signal transduction, cytoskeletal 

rearrangement and membrane trafficking (38,87,88). Different cellular compartments of 

algae have a particular lipid signature: extraplastidial cell membranes are mainly composed 

by phospholipids and betaines, while plastids membranes mainly contain glycolipids. 

I.1.2.1. Non-polar lipids 

Triacylglycerols (TAGs)  

The triacylglycerols (TAGs) are a class of nonpolar ester-lipids derived from glycerol 

esterified to three fatty acids. TAGs are storage products and biosynthetic precursors, 

easily catabolized to provide metabolic energy to cellular activities storing high reducing 

power and energy (85). TAGs from macroalgae are being considered for biodiesel 

applications and their content may be manipulated by changing environmental factors 

(15,89). 

Fatty acids (FA) 

Fatty acids in macroalgae occurs mainly esterified to glycerolipids whose main classes 

in algae are the phospholipids, glycolipids and triacylglycerols and barely occur in the free 

form (1,12,90). Macroalgae contain saturated, monounsaturated and polyunsaturated FA 

with 8 to 24-carbon chain (91) FA from macroalgae contain high amounts of n-3 and n-6 

families PUFAs such as eicosapentaenoic acid (EPA, 20:5(n-3) and eicosatetraenoic acid 

(or arachidonic AA, 20:4(n-6)) (71). 

Fatty acids play a number of key roles in metabolism as major metabolic fuel (storage 

and transport of energy), as essential components of all membranes from cells and 

organelles, and as gene regulators (92). They confer flexibility, fluidity and selective 

permeability properties to cellular membranes and are vital important nutraceutical and 

pharmaceutical targets in human and animal health (93–96). Among FA, PUFA are 

essential in the food web processes of human and animal nutrition and have various 

beneficial clinical and nutraceutical applications, such as reducing coronary heart disease 
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risk and blood cholesterol, thus preventing the risk of arteriosclerosis, inflammation and 

several carcinomas (76). Otherwise, fatty acid profiles are considered very significant in 

macroalgae as biomarkers in chemotaxonomy (97). 

Sterols 

Sterols occur in free form, esterified with fatty acids, or, in minor concentrations, 

involved in glycosylated conjugates resulting from the development of a defense strategy 

of macroalgae to survive in a competitive environment (98–100). These compounds are 

important constituents of cell membranes and responsible for many of the cell functions 

(15,101). Sterols, namely phytosterols, are occur naturally in plants, animals and fungi, and 

are indispensable for a multitude of physiological processes in all eukaryotic organisms 

(98,102).  

Pigments 

There are considered three basic classes of pigments found in marine algae: 

chlorophylls, carotenoids and phycobiliproteins (53). Under these categories, many 

pigments have been described in marine algae and are of commercial interest, mainly used 

as food colorants and in nutritional supplements (52,53,103).  

Chlorophylls are green lipid-soluble pigments found in all algae, higher plants or 

cyanobacteria that carry out photosynthesis (104–106). Chlorophyll contains a porphyrin 

stable ring-shaped molecule around which electrons are free to move. The ring has the 

potential to gain or lose electrons easily, and thus the potential to provide energized 

electrons to other molecules. This is the fundamental process by which chlorophyll 

"captures" the energy of sunlight, occurring in the center of the thylakoid, light-harvesting 

structures in which photosynthesis is carried out further converted into pheophytin, 

pyropheophytin and pheophorbide in processed vegetable food and following ingestion by 

humans (52,103). Chlorophyll is confined in chloroplasts, complexed with phospholipids, 

polypeptides and tocopherols and thus is protected by an hydrophobic membrane [6]. 

Within this class, as aforementioned, the most important is chlorophyll a, the molecule that 

makes photosynthesis possible, the second kind is chlorophyll b, and the third form of 

chlorophyll is chlorophyll c (53,107).  
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The second group of pigments are carotenoids, part of the photosynthetic apparatus, 

primarily in the reaction centers of photosystems (or inserted in pigment–protein antenna 

complexes) where they act as accessory pigments for light-harvesting processes during 

photosynthesis, as structural stabilizers for protein assembly in photosystems, and as 

inhibitors of either photo- and free radical oxidation provoked by excess light exposure 

(104,105). Carotenoids are the most widespread pigments in nature and are present in all 

algae, higher plants and many photosynthetic bacteria (7,35,108). They include 

photosynthetic pigments in the red, orange or yellow wavelengths. Green macroalgae 

species contain β-carotene, lutein, violaxanthin, neoxanthin and zeaxanthin, while red 

species mainly contain α- and β-carotene, lutein and zeaxanthin while β-carotene, 

violaxanthin and fucoxanthin are present in brown seaweed (53). Fucoxanthin is a 

xanthophyll with a unique structure that include an unusual allenic bond and 5,6-

monoepoxide in its molecule and is one of the most abundant carotenoids in nature (9,109) 

It is found in brown algae and has important bioactivities (109).  

The third group of pigments are phycobiliproteins, water soluble proteins that form 

particles (phycobilisomes) on the surface of the thylakoids (4,110). They are linear 

tetrapyrroles, with different combinations of the two principal phycobilins 

(phycoerythrobilin (red) and phycocyanobilin (blue) that absorb different regions of 

wavelengths. Phycobiliproteins play an important role in the photosynthetic process of 

algae, namely in Rhodophyta (33,111,112), and are currently being used as natural 

colorants in foods such as chewing gum and in cosmetic applications such as lipsticks and 

eyeliners (35,111). Moreover, they exhibit important activities such as antioxidant, in liver 

protecting, in serum lipid reduction, and in lipase inhibition (78). 

I.1.2.2. Polar lipids 

Polar lipids, as aforementioned, are important structural components in algae cell 

membranes and organelles, namely chloroplast and thylakoids (Fig. I.3). The polar 

lipidome is quite diverse and orchestrated by the activity of a panel of biosynthetic 

enzymes that coordinate the synthesis of each specific lipid, the trafficking of lipid 

intermediates, the catabolic pathways, and the regulatory processes that ensure the 

homeostasis of cell membranes (113). Polar lipids are amphipathic and the orientation of 

their hydrophobic and hydrophilic regions directs their packing and allows the formation of 
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a double layer, the central architectural feature of biological membranes (18,114). In 

addition to membrane stability role, some polar lipids may act as key intermediates (or 

precursors of intermediates) in cell signaling pathways (e.g., inositol lipids, products of 

oxidation) and play a role in adaptation to changes in the environment (115).  

Polar lipids comprise several classes, among are glycolipids, phospholipids and betaine 

lipids that will be described (32,116,117). 

Glycolipids  

Glycolipids (GLs) are important classes of membrane lipids synthesized by prokaryotic 

and eukaryotic organisms and are the most abundant lipids located in photosynthetic 

membranes: thylakoid and chloroplasts (118). GLs are a category of lipids having a 3-

carbon glycerol scaffold (each carbon is numbered following the stereospecific numbering 

nomenclature sn-1, sn-2, sn-3), anchoring one or two acyl chains esterified (R1 and R2) at 

positions sn-1 and sn-2, and a sugar moiety or derivative at position sn-3 denominated the 

polar head (119). Distinct classes can be found depending on the sugar moiety (polar head) 

and several molecular species can result due to the huge variety in the chain lengths, 

degree of unsaturation, and distribution of FA to the sn-1 and sn-2 position of the glycerol 

backbone (hydrophobic part). The properties of GLs straight depend on the polar head and 

on the structure of the two acyl chains thus the GLs can vary within the intra- and inter-

taxonomy and in response to environmental changes (19,120).  

Macroalgae biosynthesize three major types of glycolipids that constitute more than half 

of total polar lipids: the neutral galactolipids 1,2-diacyl-3-O-(β-D-galactopyranosyl)-sn-

glycerol, also called monogalactosyl diacylglycerol (MGDG) and 1,2-diacyl-3-O-(α-D-

galactopyranosyl-(1→6)-O-β-D-galactopyranosyl)-sn-glycerol, also called digalactosyl 

diacylglycerol (DGDG) and the acidic 1,2-diacyl-3-O-(6-sulfo-6-deoxy-α-D-glucosyl)-sn-

glycerol also called sulfoquinovosyl diacylglycerol (SQDG) (Fig. I.3) (113,119). Also, 

glycosphingolipids, lipopolysaccharides and phenolic glycolipids may occur as minor 

components (113). 

Glycolipids such as MGDG and DGDG play important roles for the structural 

stabilization and function of membranes (44,121), and are fundamental in the trafficking of 

lipids between subcellular compartments, namely to be transported to extraplastidial 

membranes (122). Under nutrition starvation and stress conditions, DGDG is exported to 
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various extraplastidial membranes, substituting phosphoglycerolipids (123,124) and 

facilitating the survival in stress environments (122). One of the most important features of 

GLs is in the regulation of homeostasis by the tuning of MGDG/DGDG and SQDG/PG 

(phosphatidylglycerol) ratios within the thylakoids and chloroplasts, and the 

galactoglycerolipid/phosphoglycerolipid (or DGDG/PL) ratio at the whole cell level in 

chloroplast-containing eukaryotes (113).  

The class SQDG refers to a monoglucosyl diacylglycerol with a sulfonic acid linked at 

the monosaccharide moiety (125–127) (Fig. I.3). The sulfoquinovosyl moiety provide 

distinct properties to SQDG and the charged polar head of SQDG, at physiological pH, is 

appropriate to maintain the repulsive forces between neighboring membranes (122). The 

functional role of SQDG in the “membrane mosaic” relies particularly in signaling and 

coordination between chloroplast lipids (outer envelope membrane) and cytosolic partners. 

Upon phosphate starvation, SQDG compensate lower PG level and thus SQDG/PG ratio is 

tuned in response to phosphate availability (124,127). 

The class of MGDG tends to adapt a conical shape when fatty acids are highly 

unsaturated (non- bilayer forming lipid) but if fatty acids are saturated MGDG rather adapt 

cylindrical form (128). DGDGs constitute the former bilayer lipid of chloroplast and 

thylakoid membrane (123,124). DGDG and SQDG has a more cylindric structure. 

Cylindrical shapes are ideally suited for packing side by side in a bilayer (128). The 

knowledge on structural details of GLs are thus very important to understand for the proper 

functioning of thylakoid membranes in chloroplasts. To accomplish their role in 

macroalgae membranes, GLs are known to contain 16- and 18-carbon n-3 trienoic acids 

and very long chain PUFA, with more than 20 carbon atoms and more than 3 double bonds 

such as eicosapentaenoic acid (EPA) (129–133). The contents of GLs in marine 

macroalgae may contain high n-3/n-6 PUFAs ratio.  

Red macroalgae contained about 50 - 75% of GLs in total lipids, brown macroalgae 

contained about 47 - 83% of GLs and green macroalgae contained 68 - 75% of GLs (134). 

MGDGs generally represented 40 - 55% of GLs in brown and green macroalgae and 20 - 

50% of GLs in the red division. DGDG contribute to 10 - 30% of GLs in green algae and 

20 - 45% of GLs in brown and red macroalgae (15,122). The profile of GLs at molecular 

level (class/acyl composition of molecular species) among marine macroalgae was not 

elucidated until now, and analytical approaches such as TLC and GC–MS were most used 



Chapter I. Introduction 

15 

in the analysis of these complex molecular species, giving very limited information 

(97,135,136). Glycolipids are also known to have important bioactive properties as 

antitumor agents (132), as potential antiviral (25) and anti-inflammatory agents (137) and 

the knowledge on structural features is of paramount importance. 

Phospholipids  

Phospholipids (PLs) are a class of lipids, major components of lipid bilayers of all 

eukaryotic cell membranes (116,138). They play important structural and metabolic roles 

in living cells. Cell membranes use the dual hydrophilic and hydrophobic characteristic of 

PLs to maintain the integrity of membranes and act as structural entities confining 

subcellular components (139). In addition to their role in cellular structure they play an 

important part assembling other important molecules within several signaling systems 

(139). 

Phospholipids such as glycerophospholipids commonly have two fatty acids esterified 

to the glycerol backbone and a phosphorous group that is further linked to the hydrophilic 

molecule confining the headgroup (Fig. I.3). PLs can be classified by the head group and 

the simplest form of PLs contains a backbone of phosphatidic acid (PA), formed by 1,2-

diacyl-3-phospho-sn-glycerol with two fatty acids esterified at the positions sn-1 and sn-2 

(15). When one acyl chain is lacking and then only one hydroxyl group of the glycerol 

backbone is acylated they are called lyso-phospholipids (140). 

The phospholipids from macroalgae are phosphatidylglycerol (PG), 

phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) 

that containing glycerol, choline, ethanolamine, myo-inositol, and phosphomonoester as 

their characteristic head groups, respectively (97,135,136). PLs are mainly located in extra-

plastidial membranes, with the exception of phosphatidylglycerol (PG) that is found in 

significant amounts in plastidial membranes where it plays important role to ensure the 

efficiency of photosynthesis (32,97). PC was also found in lower amounts on the outer 

envelope of chloroplasts membrane (38). PLs form many kinds of assemblies such as 

micelles, liposomes and hexagonal phases depending on molecular shapes of each class 

(116,141). PC, PG, PA and PI tend to adapt a cylindrical shape, while unsaturated PE 

adapts a conical form. Lyso-phospholipids are prone to adapt to an inverted cone shape 

(Fig. I.3) (142).  
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The quantity and composition of phospholipids is regulated in a way that enables 

membranes for maintaining their structure and function, in spite of their developmental and 

environmental changes (15,135). Until now, the distribution of phospholipids along marine 

macroalgae was not elucidated due to the limitation of the methodology in the analysis of 

these complex molecular species. The profile of fatty acids of PLs were reported on 

literature based on GC–MS data revealing that PLs contain C16 and C18, C20 and C22 and 

their PUFA from n-3 and n-6 series among are 20:4(n-6) and 20:5(n-3) FA (19,120). It was 

stated that FA-profile of PG was comparable to SQDG due to a common biosynthetic 

pathway of polar lipids from thylakoid membranes (97).  

During the latest years, beneficial health effects of PLs are being considered in both 

animals and humans (28). PLs in diet act as natural emulsifiers, facilitating the digestion 

and absorption of fatty acids, cholesterol, and other lipophilic nutrients. Besides the 

nutraceutical relevance, PLs from algae are also used in the cosmetic and pharmaceutical 

industries [21], and have been described to be beneficial for cognitive functions and 

inflammatory diseases (32). PLs represent about 10 - 20% of total lipids in macroalgae 

(143,144), which quantity and composition are directly dependent on phylum, on 

environmental, and on nutritional growth conditions (143). Amid phyla, it is expected PG 

to be the most abundant PL in green seaweeds (< 50%), PC the most abundant in red 

seaweeds (~ 60% of the total PLs content), and both PC and PE classes to dominate in 

brown seaweed (< 30% of total PLs) (136). PA and PI account for lower percentages (97). 

Polar lipid also includes sphingolipids when a group of acyl lipids with a sphingosine-

based structure (phytosphingosine) is linked to a phosphoinositol group, corresponding to 

the inositol phosphoceramides (IPC). IPCs contain long-chain bases 18-carbon 

phytosphingosine and 14- to 26-carbon of hydroxy and non-hydroxy fatty acids (145,146). 

IPC is an extraplastidial lipid constituent with important biological functions as cellular 

messengers. It is considered characteristic of the red macroalgae lipidome signature 

(88,147,148). 
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Betaine Lipids 

Betaine lipids are naturally occurring lipids not found in higher plants, but are quite 

widely distributed in algae (149,150). They are components of extraplastidial membranes 

and of the outer membrane of chloroplasts (150). Betaine lipids from algae are involved in 

the transfer of fatty acids from the cytoplasm to the chloroplast, tend to replace 

phospholipids under conditions of phosphorous limitation, and may contribute as marker 

for signaling during environmental and nutrition changes (151). This class of 

acylglycerolipids has a quaternary amine alcohol ether-linked to a diacylglycerol moiety 

that confers a zwitterionic character at neutral pH due to the positively-charged 

trimethylammonium group and a negatively-charged carboxyl group, lacking in 

phosphorous. Until this moment, three types of betaine lipids are known to occur in algae: 

diacylglyceryl-N,N,N-trimethyl-homoserine (DGTS) (Fig. I.3) and its structural isomer 

diacylglyceryl hydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) and diacylglyceryl 

carboxyhydroxy methyl-choline (DGCC) (152). Of these, DGTS is considered the most 

common betaine in nature (153,154). Similarly to PCs, betaine lipids tend to adapt to 

cylindrical shape (155). Betaine lipids can have attached at the sn-1 and sn-2 positions of 

the glycerol saturated fatty acids (14:0 and 16:0), 18-carbon unsaturated fatty acid 

(predominantly 18:2 and 18:3), and PUFA (e.g., 20:5 FA) (152). Lyso-betaines containing 

one fatty acid esterified at the glycerol were never described in macroalgae. 

Amid phyla, it was suggested that green macroalgae contain great amounts of betaine 

lipid DGTS (< 20% of total lipids) that act as substitute for PC in extra-chloroplast 

membranes (36,150). In red algae, DGTS and DGTA were found in small amounts 

(36,134). Brown algae was found to contain preferentially DGTA species (36).  

Betaine lipids are a less reported class when compared with GLs and PLs and there is a 

great lack in structural and metabolic information about this category of lipids and their 

role in macroalgae is still unclear. Studies concerning betaine lipids are old and mainly 

devoted to bacteria, fungi and microalgae, and based on FA profile, thus their role in 

macroalgae cells stills unclear (150). Betaine lipids from microalgae were suggested to 

contribute as marker for signaling environmental and nutrition drawbacks that can be 

tuned, that could be interesting to differentiation between taxonomic clusters or target-

biomass production (151). 
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I.1.2.3. Pathways of polar lipids biosynthesis 

Photosyntethic membranes have a unique lipid composition that has been conserved 

from cyanobacteria to chloroplast (119). The biosynthesis of membrane lipids in 

eukaryotic algae involves cooperation between the plastid and the extraplastidial 

compartment (156). The set of reactions of the glycerolipid synthesis occurring within the 

chloroplast are termed the choroplastic or ‘‘prokaryotic” pathway and those that involve 

the participation of enzymes of the endoplasmic reticulum (ER) and chloroplast envelope 

constitute the endoplasmic or ‘‘eukaryotic” pathway (53,156). These enzymes control the 

type of sugar linked in the polar head in GLs and also the fatty acid position. The fatty 

acids linked in GLs are primarly biosynthesized de novo in the chloroplasts that remain in 

the plastid to be assembled to complex lipids such as GLs. These FAs can also be exported 

to the endoplasmic reticulum entering the endoplasmic pathway of the biosynthesis of 

lipids (Fig. I.4) (122).  

GLs are formed in the chloroplast (“prokaryotic” pathway) by the sequential action of 

acyl-ACP glycerol 3-phosphate acyl transferase and acyl-ACP lysophosphatidic acid acyl-

transferase. These enzymes produce phosphatidic acid that assembles almost exclusively 

C16 fatty acids at the sn-2 position of glycerol (18). The biosynthesis of GLs is catalyzed 

by the MGD synthase (galactosylation) that transfer a galactosyl residue from uridine 

diphospho-galactose (UDP-Gal) onto the sn-3 position of diacylglycerol (DAG) to produce 

MGDG, or to MGDG to form DGDG (114). The anomeric configuration of the first sugar 

is a β-glycosidic linkage and a α-glycosidic linkage in the second (113,119). SQDG is 

produced in the chloroplast´s envelope by the assemblage of a sulfoquinovose head group 

from the UDP-sulfoquinovose conjugated to DAG (113). DAG may also be derived from 

the ER, where it is formed during the glycerolipid biosynthetic pathway, followed by 

subsequent transfer of DAG moieties into the chloroplast to be used in the endoplasmic or 

“eukaryotic” pathway.  

In the endoplasmic reticulum, the microsomal acyl-transferases are responsible for 

phosphatidic acid synthesis in the ER and give rise to lipids that contain C18 fatty acids 

exclusively at the sn-2 position and either C16 or C18 fatty acids at the sn-1 position 

(53,156,157) providing a signature of ER origin of a DAG.  



Chapter I. Introduction 

20 

n-6 n-3

B
io

sy
nt

he
si

s 
of

 P
U

FA
 in

 t
he

 E
R

18:1Δ9

18:2Δ9,12

18:3Δ6,9,12

20:3Δ8,11,14

20:4Δ5,8,11,14

Δ6 desaturase

Δ6 elongase

Δ5 desaturase

Δ5 elongase

Δ9elongase

20:2Δ11,14

Δ8 desaturase

22:4Δ7,10,13,16

22:5Δ4,7,10,13,16

20:5Δ5,8,11,14,17

22:5Δ7,10,13,16,19

22:6Δ4,7,10,13,16,19

18:3Δ9,12,15

18:4Δ6,9,12,15

20:4Δ8,11,14,17

n-3 des

n-3 des

n-3 des

n-3 des

20:3Δ11,14,17

Δ9elongase

Δ8 desaturase

MGDG

DAG

SQDG

DGDG

Glycerol-3-phosphate
(G3P)

Acyl-ACP  
(16:0-ACP)

PA

DAG

SQDG

UDP-α-Sq

UDP

(18:1-ACP)

UDP

UDP-α-Gal MGD

MGDG

UDP

DGD
DGDG

UDP-α-Gal

Fatty acid synthesis

sn-1: 18:1
sn-2: 16:0

MGD

DGD

SLS

SLS

GPAT/LPAAT

PAP

sn-1 ∆-C18/sn-2 ∆-C16
sn-1 ∆-C18/sn-2 16:0

sn-1 16:0/ sn-2 ∆-C18

sn-1 16:0/sn-2 ∆-C18

 Import of diacyl precursors synthesized in 
the endoplasmic reticulum (eukaryotic 
pathway)

(18:1-CoA)

Endoplasmic Reticulum
(ER) PA DAG PC

Lipid transporter

PAPGPAT/LPAAT

TAG

DAG-CPT

DGTS
PE

• Import of 20:4/20:5/22:6 precursors
(omega pathway)

thylakoid

outer membrane

inner membrane

Chloroplast

 

Figure I. 4. Simplified diagram of the pathways of the biosynthesis of glycerolipids in macroalgae 

that include chloroplastic (‘‘prokaryotic” pathway) reactions and endoplasmic - ER (‘‘eukaryotic” 

pathway) reactions. Orange arrows refer to the biosynthetic pathway of transport of ER-derived 

glycerolipid to chloroplasts. ACP, acyl carrier protein; PA, phosphatidic acid; DAG, diacylglycerol; PC, 

phosphatidylcholine; MGD, MGDG synthases; DGD, DGDG synthases; UDP, uridine diphosphate galactose 

intermediate in the production of polysaccharides (-Gal galactose, -Sq sulfoquinovose); GPAT, glycerol-3-

phosphatase acyltransferase; LPAAT, lysophosphatidic acid acyltransferase; PA, phosphatidic acid; PAP, 

phosphatidate phosphatase; DAG-CPT, diacylglycerol synthetase-choline: diacylglycerol 

cholinephosphotransferase; SLS, sulfolipid synthase; SQDG, sulfoquinovosyl diacylglycerol; PE, 

phosphatidylethanolamine; DGTS, diacylglyceryl trimethyl-homoserine; TAG, triacylglycerol; ∆, degree of 

unsaturation ranging from 1 - 4 double bonds (adapted from da Costa et al., 2016). 
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Glycolipids can also include PUFAs like 20:4(n-6), 20:5(n-3) and 22:6(n-3) (Fig. I.4) 

formed by the desaturation and elongation reactions occurring in the ER (via omega 

pathway, Fig. I.4) or C14 FA that can be biosynthesized via “prokaryotic” and/or 

“eukaryotic” routes (114,158). In the chloroplast, glycolipids can undergo little turnover by 

deacylation–reacylation reactions. Furthermore, the newly formed galactolipids are 

redistributed to the thylakoid membranes and, under certain growth or stress conditions, 

DGDG may also exported to extraplastidial membranes (53). Based on the positional 

distribution of fatty acids on the individual molecular species of GLs is possible to identify 

the pathway of biosynthesis (114,119,139,158). 

A resumed biosynthesis pathway of GLs, PLs and betaine lipids in the macroalgae is 

proposed on Figure I. 4, adapted by da Costa et al. (159) according to Okazaky et al. (156), 

Boudiére et al. (113) and Yan et al. (160). The current knowledge of the membrane lipids 

biosynthesis was mainly based on green microalgae-model Chlamydomonas reinhardtii 

(15,45,113) and on the plant-model of Arabidopsis (113,119,156,161).  

Phospholipids are mainly biosynthesized in the endoplasmic reticulum. The simplest 

structure of PL is phosphatidic acid (PA) that is biosynthesized from glycerol-3-phosphate 

via sequential acylation at the sn-1 and sn-2 hydroxyl groups by glycerol-3-phosphate acyl 

transferase and acylglycerol-3-phosphate acyl transferase. Following the pathway, it 

diverts onto two main branches: one that leads to the formation of the PI, and the other 

where PA is dephosphorylated by PA-phosphatase (PAP) to diacylglycerol (DAG). DAG 

serves as a precursor of PC and PE. DAG can also be converted into triacylglycerol (TAG) 

to be a reservoir of DAG and fatty acids, or DAG can convert to ceramides via the 

incorporation of serine (not showed in the Fig. I.4). PLs may be imported from 

endoplasmic reticulum to the chloroplastic compartment to be part of the biosynthetic 

pathway of the GLs. The chloroplast system is responsible for the production of GLs and 

for the production of phospholipids such as PA and PG, all incorporated in chloroplast 

membranes. Ensuing chloroplast pathways, PA biosynthesis participate in the formation of 

phosphatidylglycerol (PG) or, by a secondary pathway, can be dephosphorylated by a PAP 

to DAG that serves as a precursor of GLs (32,38).  

Regarding DGTS, the biosynthesis is not completely elucidated until this moment, but it 

was hypothesized to be close to PLs pathway occurring in the ER. One of the most 

important issues about the biosynthesis of the betaine lipids concerns the origin of the polar 
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group and the mechanism of formation of the ether linkage between the glycerol and the 

hydroxyamino acids. Methionine is considered the precursor needed for the formation of 

the polar group of betaine lipids (150). Similar to PLs route, it was suggested that these 

lipids may be imported from ER to the chloroplastic compartment to be part of the 

biosynthetic pathway of the GLs. 

I.1.2.4. Polar Lipid profile dependence with growth conditions 

Macroalgae can be found in natural habitats with harsh environment and experience a 

variety of stressful conditions such as nutrient limitation, salinity variations, intense 

radiation, temperature fluctuation, and repeated immersion due to tidal fluctuation, 

desiccation, and chemical pollution (49,57,79,83). These parameters have great 

interference in the biochemical composition, distribution, production, and fecundity of 

macroalgae (19,124).  

Regarding lipid composition, they are directly dependent on seasonal changes that 

include environmental factors such as temperature, light, nutrient availability, and also of 

the physiological state of the macroalgae (19). These variables and stressful environmental 

conditions have been shown to be associated with the increase in the formation of reactive 

oxygen species (ROS) in cells as a consequence of photosynthetic inhibition with excess 

energy, resulting in the production of singlet oxygen that causes ‘oxidative’ stress 

(15,162). Such climatic stresses disturb the fluidity of cell membranes due to changes in 

the metabolism and lead to changes in membrane composition and in the physiological 

properties of membrane bilayer for maintaining normal cell functioning (ion permeability, 

photosynthesis, respiration and other metabolic activities). The alteration in lipid species 

and lipid classes, namely by changing the chain length and/or the degree of saturation and 

content, and the modification of the metabolism pathways were the most commonly 

observed changes in membrane lipids following adverse environmental conditions in 

macroalgae (15,162). 

Polar lipids PLs, GLs and DGTSs are recognized as signaling biomarkers when algae 

are exposed to different conditions, adapting the expression levels and the polar group and 

fatty acyl composition towards the regulation of homeostasis. The effects of the nutrients 

regime and environmental changes on the lipidome of macroalgae are reviewed. 
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Polar lipids and Nutrients Regime 

Nutritional stress effects caused by limitation of nutrients such as nitrate and phosphate 

alter the metabolic pathways involved in lipid biosynthesis by shifting of lipid classes, fatty 

acids, and production of oxylipins (124,163). Salinity is an important environmental factor 

that affects growth and productivity of algae. Salinity fluctuations influence algae by 

altering membrane permeability and fluidity (124). Under salt stress, the restructuration of 

membrane lipid composition occurs and is mainly attained by increasing the unsaturation 

of the fatty acids from PLs (124). Salt stress cause decrease in the PLs content, namely of 

PC and PG classes, essential lipid for the assembly of light harvesting proteins in 

photosystems. The decrease of PL content is associated with an increase of the SQDG 

content (123). Salt stress may also lead to increasing of the expression levels of GLs 

(MGDG and DGDG) that protect the normal function of membrane under stress condition. 

An increase of DGDG/MGDG ratio is considered crucial for maintaining membrane 

stability and functional activity of membrane proteins (123).  

The differential nitrate and phosphate uptake and their storage are part of adaptive 

strategies of macroalgae for their successful sustenance (164). Phosphate (inorganic 

phosphate, Pi) is an essential nutrient for all plants, including marine species. Under Pi 

deprivation, the uptake of exogenous Pi increase making use of membrane phospholipids 

as an internal Pi source (157). Benning et al. revealed that Pi starvation strongly decreases 

the relative content of overall phospholipids and increases certain non-phosphorus lipids, 

particularly SQDG species (133). Stress and deprivation of Pi relates to the decrease of 

PLs content, probably by the regulation of PC and PG under stress adaptation. Recently, 

Kumari et al. (164) reported that nutritional deprivation of Ulva lactuca inferred the 

accumulation of DGDG, SQDG and DGTS species when deprived of either nitrate, 

phosphate or both. Meanwhile, supplementation of nutrients, especially nitrate, infer the 

recovery of MGDG. PLs biosynthesis is very dependent on phosphate availability and 

deprivation leads to the degradation of PLs and production of PA or lyso-phospholipids 

(164). The deficiency of both N and Pi leads to the to the increase in the DGDG/MGDG 

ratio concomitant with the degradation of PLs that also is reflected in the increase of PA 

and of lyso- lipids.  

Under nitrogen starvation of algae, there is as increase of DGTS species containing 

monounsaturated fatty acid (MUFA) moieties such as 18:1, and PUFAs such as 18:2, while 
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DGTS species exhibiting PUFAs moieties, such as 18:3(n-3) and 18:4(n-3) decreases 

(150). Nitrate deprivation may also accomplish the accumulation of non-polar lipids 

(triacylglycerol; TAG) while an increase in nitrate leads to the increase of the galactolipid 

biosynthesis, especially of MGDG species (15). 

Polar lipids and environmental changes 

Like other biochemical components of algae, the lipid content varies with the season 

and environmental factors like temperature, pH and light exposure (19,120,124,151). The 

research on the effect of seasonality and thermo-adaption on macroalgae Ochrophyta 

(Egregia menziesii), Rhodophyta (Chondracanthus canaliculatus) and Chlorophyta (Ulva 

lobata) suggested that the relative amount of polar lipids increased in winter, which 

coincided with highest unsaturated fatty acids unsaturation (18,120). Higher percentage of 

PUFAs, high unsaturation index, and higher relation n-3/n-6 PUFAs in algae are more 

related to winter than to summer season (97,120,165-167) due to low-temperature 

acclimatization and photosynthetic machinery protection from low temperature (15).  

Generally, it was suggested that algae can accumulate PUFAs when there is a decrease 

in the environmental temperature (91). During the change in season from summer to winter 

occurs a substitution of n-6 by n-3 PUFAs that is accomplished by the partial substitution 

of C20 by C18 PUFAs in the molecular species of GLs and PG in contrast to PC and PE. 

Otherwise, it has been reported that PLs and SQDG increased while MGDG content 

decreases with the decrease of temperatures (15-16,165). However, this was not observed 

within all taxonomic species and the temperature effect on polar lipids alterations deserves 

to be better understood (162,166). 

The effect of light has been reported to interfere with algal lipid metabolism and polar 

lipid composition (166,168). Changes in the quality and quantity of lipids from both 

storage and structural lipids and in the chloroplast development can occur due to 

alterations of light conditions (15). Exposure to low light intensity, with shade about 8 - 

10% of the incident photosynthetically active radiation (PAR), increases content of SQDG, 

PG, and PC membrane lipids (146). High light effect decreases the level of PLs as well as 

the content of EPA in MGDG and PG species. The green algae Ulva fenestrata increased 

amounts of MGDG, SQDG and PG were observed when grown at 24% PAR compared to 

the same specimen cultured at 80% PAR. The content of DGDG and betaine lipids 
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displayed little dependence on light intensity. However, aforementioned behaviors were 

supported by scarce studies, the light effects, environmental effects such as extreme pH 

conditions on polar lipids from macroalgae is still not well documented.  

I.1.3. Lipidomic–based approaches applied to macroalgae 

Mass-spectrometry- based lipidomics is nowadays the analytical approach that allows 

the elucidation of lipid profile in macroalgae and identification of their structural 

deviations. “Lipidomics” refers to the detailed and comprehensive profiling of lipid classes 

and molecular structures considering the plethora of cellular functions mediated by lipids 

(169,170). Polar lipids are a diverse group of highly complex biomolecules due to the 

various combinations of polar headgroups and fatty acyl species (114). They enclose 

distinct roles within the biological system attending their specific structures (42,43,170). 

The knowledge of their biological role is thus a great challenge that is dependent on lipid 

analysis at molecular level. The full characterization of polar lipids includes isoforms and 

isobaric compounds of intact and also modified structures (169). The advantage of mass 

spectrometry such as increased sensitivity, resolution, and speed of analysis boosted the 

development of lipidomics and the structural characterization of the lipidome. New 

perspectives in the understanding of the roles of lipids in human health and disease (171–

174), plants (38,156,157,175–177) and bacteria (38,171,178) have been reported. Based on 

these knowledge, MS-based analytical techniques provided comparable and amenable 

quantification of high through put data analysis, the knowledge of lipid classes and acyl 

chains featuring molecular species, and allow to distinguish composition at molecular 

level, ideal for traceability and taxonomic differentiation (179). The new era of marine 

lipidomic is in progress on the lipidome of microalgae (40,44,123,151,180), and is 

flourishing decoding lipid profiles of macroalgae (145,164,166,181). 

Lipidomics based on mass spectrometry approaches (e.g., liquid chromatography (LC)-

mass spectrometry (MS)) is rapid in comparison to “traditional” methods of lipid analysis 

(thin layer chromatography (TLC), gas chromatography GC, nuclear magnetic resonance 

NMR) and requires relatively small amounts of material (169). It allows the identification 

and quantification of hundreds of lipid species, directly from a total lipid extracts of 

biomass without chemical modification (145). The Figure I.5 presents a general workflow 
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for lipidomics-approach based adapted to the identification of polar lipids from 

macroalgae.  

First step on the methodology is the extraction of the total lipids from the dried or fresh 

biomass, in some cases followed by direct analysis by LC–MS. Some cases, when specific 

classes are the focus of the study, fractionation of lipid extracts by TLC or solid phase 

extraction (SPE) may be useful, and fractions will be further analyzed by MS or LC–MS. 

Moreover, fatty acids esterified to polar lipids are achieved by MS-approaches, either from 

the total extracts or selected fractions of polar lipids, or the profile of fatty acids can also 

be obtained by GC–MS or GC–FID analysis. 
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Figure I. 5. LC–MS, approach in the lipidomic analysis of polar lipids from macroalgae. 

I.1.3.1. Analytical strategies to identify the lipid profile of macroalgae  

Lipid extraction protocols commonly use well-known solid-liquid extraction methods 

with methanol or combinations of methanol and chloroform such as Bligh and Dyer (1:2, 

per volume) (182) and Folch (2:1, per volume) (183) methods. The use of other solvents 

ethyl acetate, acetone, butanol or methyl-tert-butyl ether (MTBE) have been reported 

aiming to avoid organochlorides (184,185). It gives rise to lipid extracts with different 

compositions and extractions with dissimilar yields. In attempt to avoid the use of toxic 
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solvents hazardous for health, or not compatible with food processing, novel “green” 

extraction techniques are being considered for the extraction of polar lipids from 

macroalgae (81,186). Supercritical fluid extraction (SFE) (187,188), microwave-assisted 

extraction (MAE) (189,190), ultrasound- assisted extraction (UAE) (35,151,191) and 

pressurized liquid extraction PLE (192,193) are some of these novel “green” extraction 

techniques. The advantages of use these methods have to consider to be low cost, safety 

and the ability to scale up and easy to apply on the industrial scale for the extraction of 

lipids biomass. These novel extraction technologies may provide an alternative to the 

traditional methods whereas that must to attend that polar lipids are sensitive, thermolabile 

and are found in low concentrations. The development of novel extraction technologies 

must guarantee that alternative extractions won´t interfere with the structure of these lipids. 

Most common lipidomics include ESI source and different analysers such as IT, Q-TOF 

and orbitrap (Fig. I.6) (194).   

Ion trap

Orbitrap

Quadupole

Time-of-Flight

Ionization Mass Analyser                           Detection
(Electrospray-ESI)                                                                                                                 (MS and MS/MS)                

a)

b)

 

Figure I. 6. Schematic representation of mass spectrometer components. Mass analyser referred to 

a) Ion trap and b) Orbitrap (adapted from https: //www.thermofisher.com/pt/en/home/ 

industrial/mass-spectrometry.htm). 

Two main strategies for the analysis of polar lipids by MS have been reported: 

untargeted lipidomics that usually uses chromatographic-based separation techniques prior 

to the MS analysis of lipids (160,195); targeted (shotgun) lipidomics by direct infusion 

analysis of a crude lipid extract (196). Both methods have their advantages and 

disadvantages with shotgun approach being more prone to strong ion suppression effects. 
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These effects can be partially compensated by large sample dilutions and by the use of 

internal reference compounds. Chromatography-based methods (off-line TLC, off-line 

silica columns, on-line HPLC, on-line UPLC) are less prone to these suppression effects, 

due to the previous chromatographic separation (41,197).  

Untargeted-lipidomics supported by modern advanced MS-based techniques allows to 

identify and quantify several molecular species from distinct polar lipid classes. 

Hydrophilic interaction chromatography (HILIC) allows the separation of lipids depending 

on their polar head group and fatty acyl composition. HILIC has been introduced as a 

variant of normal phase chromatography (198,199). Elution is performed by a binary 

eluent of organic solvent/ water. HILIC–MS (acquired in a LIT–MS–analyser) successfully 

applied decoding the lipidome of the red macroalgae Chondrus crispus (145). It allowed 

the identification of more than 100 molecular species in the lipidome of this macroalgae. 

Other works were published about target-lipidomics to identify molecular species/classes 

from previous isolated extracts of macroalgae and have used distinct mass analysers (Q–

TOF, LTQ, and QqQ) (Table I. 1) (40,200,201). MS-based approach was fundamental to 

characterize glycolipids and further evaluate the relation between their structure and 

biological activity (23,25,30). Some case-studies were marine Palmaria palmata (181), 

marine Osmundaria sp. (202), Chondria armata (203), cultivated Chondrus crispus 

(30,145), marine brown algae Sargassum sp. (25,204), and Fucus spiralis (27). MS-based 

lipidomics was used to identify the polar lipid profile of macroalgae during growth, 

showing the high potential on the screening of molecular changes occurring under nutrition 

quality and environmental stress (164) or even as an important tool to profile fatty acids 

biosynthesized by macroalgae. This work allowed to establish and manipulate the distinct 

biotechnological applications, namely by the content in n-3 PUFA (15) (Table I.1).  

In the field of algae, the great improvement to lipidomics is paramount to accomplish 

the analysis of the hundreds of different species that are compose the lipidome of a single 

matrix. However, the full profile at molecular level of distinct classes of polar lipids across 

different taxonomic categories (green, red and brown) is far from being elucidated and, 

attending the great biotechnological potential of lipids, it deserves to be further explored. 
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Table I. 1. Lipidomics of Chlorophyta, Rhodophyta and Ochrophyta macroalgae reported in literature 

Macroalgae 

 

Extraction protocols 

Polar lipid classes, 

and total number of molecular species identified within each class 

Reference Glycolipids Phospholipids Betaine lipids 

CHLOROPHYTA 

Enteromorpha 
intestinalis 

Folch  1 SQDG, 1 SQMG   (33) 

Ulva armoricana Methanol/Chloroform 1 DGDG   (205) 

Ulva fasciata 

 

Bligh and Dyer    1 PS, 1 PA  (116) 

Bligh and Dyer  1 SQDG, 1 MGDG   (127) 

Ulva lactuca* 

 

Bligh and Dyer MGDG, DGDG, SQDG 

 

PG, LPG, PC, LPC, PS 
(#), PA (#), PI (*) 

DGTS 

 

(164) 

Ulva rigida Folch  1 SQDG  4 PCs, 1 LPE - (33) 

RHODOPHYTA 

Asparagopsis taxiformis  Folch  1 SQMG   (33) 

Chondrus crispus 

 

Methyl tert-butyl ether/Methanol 19 DGDGs, 14 SQDGs 18 PGs, 60 PCs, 8 
LPCs, 14 PAs, 2 LPGs 

14 DGTS (145) 

Chondria armata Methanol 

Chloroform 

Butanol 

2 MGMGs, 3 MGDGs, 2 
SQMGs 

 4 DPGs  (203) 

Chondrus crispus 

 

Methanol 

Ethyl acetate 

8 MGDGs   (30) 
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Galaxoura cylindriea 

 

Bligh and Dyer   1 PG, 1 PE, 1PA  (116) 

Bligh and Dyer  1 SQDG, 1 MGDG   (127) 

Laurencia papillose  

 

Bligh and Dyer   1 PE  (116) 

Bligh and Dyer  1 SQDG,1 MGDG   (127) 

Osmundaria obtusiloba  Acetone 

Methanol/Chloroform  

1 MGDG, 1 DGDG, 1 
SQDG, 1 SQMG 

  (202) 

Palmaria palmata Methanol/Chloroform  

Ethyl acetate  

2 MGDGs, 3 DGDGs, 2 
SQDGs 

2 PGs, 1 PE   (181)) 

Pterocodiella capillacea Folch 1 DGDG, 1 SQDG, 1 
SQMG 

2 PGs, 11 PCs, 1 PI, 1 
LPI, 2 PS, 1 LPE 

 (33) 

Porphyra haitensis Methanol/Formic acid/Water  7 PCs, 5 LPCs, 1 LPE  (206) 

Solieria chordalis Methanol/Chloroform 1 MGDG   (205) 

Ochrophyta 

Fucus spiralis Methanol 

 

2 MGDGs   (27) 

Sargassum horneri Ethyl acetate 10 MGDG   (207) 

Sargassum thunbergii Methanol/ Butanol  

2:1 (v/v) 

2 MGDGs   (204) 

Sargassum vulgare Methanol/Chloroform  

2:1 and 1:2  

6 SQDGs   (25) 

Stypocaulum scoparium Folch   2 PGs, 2 PCs, 2 PS  (33) 

Dictyota dicotoma Folch  1 SQDG, 1 SQMG 11 PCs, 1 LPE  (33) 
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Colpomenia sinuosa Folch  1 SQMG 8 PCs, 1 PI, 1 LPE  (33) 

Cystoseyra brachicarpa Folch  1 SQDG 2 PGs, 2 PCs  (33) 

Dilophys fasciola 

 

Bligh and Dyer   PG, PC (#), PE, PI (*)  (116) 

Bligh and Dyer  1 SQDG,1 SQMG   (127) 

Taonia atomaria 

 

Bligh and Dyer   PG, LPC (#)  (116) 

Bligh and Dyer  1 SQDG,1 SQMG   (127) 

 

MGDG, monogalactosyl diacylglycerol; MGMG, monogalactosyl monoacylglycerol; DGDG, digalactosyl diacylglycerol; SQDG, sulfoquinovosyl diacylglycerol; 
SQMG, sulfoquinovosyl monoacylglycerol; PC, phosphatidylcholine; LPC, lyso phosphatidylcholine; PG, phosphatidylglycerol; LPG, lysophosphatidylglycerol; PE, 
phosphatidylethanolamine: PI. Phosphatidylinositol; PA, phosphatidic acid.;(*) detailed composition not included; (#) uncertain assignments; Folch (183); Bligh and 
Dyer (182). 
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I.1.3.2. Identification of the lipidome of macroalgae by mass spectrometry  

LC–MS spectra typically contains several ions and, based on their mass-to-charge 

ratios, it is possible to calculate the molecular weight of the correspondent lipid molecular 

species (170,208). Molecular weight is determined by the identification of the type of the 

ions that are present in the MS data such as protonated, deprotonated or adducted ions. 

Polar lipids are able to ionize as positive ions or negative ions, depending on the chemical 

nature of their polar head groups (209). Following, detailed structural characterization is 

achieved by using Tandem MS, based on the isolation of a specific m/z value (precursor 

ion) that may be submitted to dissociation and subsequent production of ion fragments 

(41).  

Concerning the polar lipids from algae lipids there are three categories: anionic (PA, PI, 

PS, SQDG), weakly anionic (ceramide, PE, PG) and ‘neutral’ lipids (MGDG, DGDG, 

DGTS) (136). Thus, due to their chemical structure, different molecular ions are observed 

in MS spectra of each class, as will be described. According to the pattern of fragmentation 

obtained by tandem MS, the structure of molecular species from distinct classes is built 

based on the polar heads and fatty acyl fragments. The typical fragmentation is identified 

by comparison with databases and literature or by analyzing the detailed fragmentation of 

standards.  

The glycolipids MGDG and DGDG preferably ionize in the positive mode via the 

formation of adduct cations (e.g., Na+, NH4
+). The detailed fragmentation of the precursor 

ion [M+Na]+ yield the product ion galactosyl glycerol head group [C9H16O6 + Na]+ at m/z 

243 (MGDG and DGDG) and the digalactosyl glycerol head group [C15H26O11 + Na]+ at 

m/z 405 (DGDG) (Fig. I.7) (123,145,156,210,211). The neutral loss of the hexose residue 

(Y1, Fig. II.4) plus the hexose unit (Z1, Fig. I.7) in the case of MGDG and DGDG, and the 

loss of the dimer (Y0, Z0, Fig. I.7) in the structure of the DGDG assign the identification of 

these glycolipids. Otherwise, the fatty acid composition as well as the determination of 

their position on the glycerol backbone is obtained from the loss of the fatty acyl moieties, 

described by the product ions D1 (loss of the R1COOH) and D2 (loss of the R2COOH) in 

the Figure I.7. The fragmentation of GLs as [M + NH4]+ may be identified by the product 

ions resulting from the loss of NH3, loss of hexose residue (-162 Da, -Hexres), and hexose 

moiety (-180 Da, -Hex) (123,156,210,211). Product ions formed by combined loss of the 



Chapter I. Introduction 

33 

one FA and the hexose yield a typical acylium ions plus 74 (RCO + 74)+ that allows to 

identify the FA composition. 
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Figure I. 7. Schematic fragmentation pathways of digalactosyl diacylglycerol observed in 

the MS/MS spectra of the [M + Na]+ ions that support their structural characterization. 

Sulfoquinovosyl diacylglycerol ionize preferably as [M – H] – and showed in tandem 

MS the typical product ion at m/z 225, attributed to the sulphoquinovosyl anion, and ions 

due to the loss of fatty acyl chains (Product ions D1 and D2, Fig. I.8), both as acid and keto 

derivatives (127,131,145). The product ions attributed to carboxylate anions (RCOO-) can 

also be found in the MS/MS spectra. 
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Figure I. 8. Schematic fragmentation of sulfoquinovosyl diacylglycerol. The lines indicate the 

product ions formed. The typical product ion at m/z 225 is attributed to the sulfoquinovose head 

group. 

The fragmentation of PLs showed characteristic product ions or neutral losses (Fig. I.9) 

deriving from the head group that are useful since they allow specific identification of the 

distinct classes. PE and LPE ionize as [M + H]+ and as [M – H]– ions. [M + H]+ fragments 

yield the loss of the head group (phosphoethanolamine) as a neutral fragment of 141 Da, 

used to confirm this class in spectra. PG and LPG are seen as [M – H] – ions and the 

MS/MS shows the neutral loss of 74 Da and the formation of the product ions such as 
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glycerol phosphate anion at m/z 171 together with glycerophosphate glycerol anion minus 

H20 at m/z 227 that confirm the class. PI is identified as [M – H]– and the fragmentation 

yields the product ion at m/z 297 arising from consecutive losses of the fatty acyl 

substituents. The product ions at m/z 223 and m/z 241 the inositol head group (138,212–

214). PA is identified as [M – H]– ion by the product ion of glycerophosphate (m/z 153) 

(138,213,214). PC and LPC ionize as [M + H]+ ions in positive ion mode and 

fragmentation of PC ions generate the product ion at m/z 184 (138,214,215). structural 

features are confirmed in the negative-ion mode as [M + CH3COO] – ions.  

The induced cleavage of the ester bonds linking alkyl chains to the glycerol moiety of 

molecular anions yields product ions such as fatty acid carboxylate anions, lyso-PL 

produced leading neutral loss of a fatty acid residue as a ketene and a lyso-PL-like due to 

the neutral loss of a free fatty acid (138), providing direct information of the alkyl 

substituents. 

O
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R 1 O O
P

OH

O

R2

O

O

X

D2 (loss of R2CO2H)

D1 (loss of R1CO2H)

X Phospholipid Precursor ion Neutral loss/product ion (m/z)

H PA [M - H]-
Product ion m/z 153

Product ions R1COO-; R2COO-

Choline PC
[M + H]+ Product ion m/z 184

[M - H]- Product ions R1COO-; R2COO-

Ethanolamine PE
[M + H]+ Neutral loss 141 Da

[M - H]- Product ions R1COO-; R2COO-

Glycerol PG [M - H]-
Neutral loss 74 Da

Product ions R1COO-; R2COO-

Inositol PI [M - H]-
Product ion m/z 241

Product ions R1COO-; R2COO-

 

Figure I. 9. Schematic fragmentation of glycerophospholipids. The dotted lines indicate the most 

labile bonds where fragmentation may occur. The table includes the product ions and neutral losses 

that provide the structural information and allow the identification of PLs classes.  

Betaine lipids are seen in MS as the [M + H]+. They can be identified by characteristic 

product ion at m/z 236 that results from the combined loss of the two fatty acyl chains as 

ketenes (loss of R1CO+R2CO) (Fig. I.10) (216) in the classes DGTS, MGTS, DGTA, and 

MGTA. Betaine lipids can also form adducted ions, such as [M + Na]+ with characteristics 

fragments resulting from the neutral loss of 87 Da (loss of -CH2CH2N+(CH3)3), loss of 74 
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Da (loss of -CH2N+(CH3)3), and a loss of 59 Da representing the loss of trimethylamine -

N(CH3)3.  

O
H

R1 O

O

R2 O

O

OH

O

N+

(loss of 59 Da)

m/z 236
(loss of R1CO+R2CO)

(loss of 73Da)
(loss of 87 Da)  

Figure I. 10. Schematic fragmentation of betaine lipids DGTS. Characteristic product ion at m/z 

236 results from loss of fatty acyl as [M + H]+ or [M + Na]+. Fragmentation of polar head may 

occur in [M + Na]+ ions: neutral loss of 59 Da (loss of the -N+(CH3)3), 73 Da (loss of the -

CH2N+(CH3)3), and 87 Da (loss of -CH2CH2N+(CH3)3). 

I.1.3.3. Studies uncovering the lipidome of macroalgae  

Mass spectrometry based lipidomic analysis of green, red and brown seaweeds were 

reported in literature. The aforementioned works scarcely identified polar lipids species 

considering the diversity expected within polar classes. In fact, some studies reported the 

identification of only few molecular species (two to ten) while one other account around 

two hundred different lipid species in seaweeds lipidome. This section describes current 

state-of-the-art on lipidomics of seaweeds (Table I. 1), and attempts to pinpoint new 

findings regarding polar lipidome of seaweeds within phylum and taxa. 

Lipidomic analysis of Chlorophyta 

Lipidomics studies on green macroalgae (Chlorophyta) by using MS-based approach 

were focused on the lipidome of Ulva sp. and Enteromorpha intestinalis, presently 

accepted as Ulva intestinalis Linnaeus, 1753 (22,33,164). By using MS-based on target 

analysis (direct infusion-shotgun lipidomics) of lipid extracts of Ulva lactuca. The 

screening of neutral loss and precursor ions of PLs and GLs allowed the identification of 

glycolipids MGDG, DGDG and SQDG and the phospholipids PG, LPG, PC, LPC and PI. 

However, the study reported only the total relative amount of each class of lipid and did 

not provide the identification at the molecular level (164). The authors also refer to the 

identification of PA and phosphatidylserine (PS), however they made an incorrect 
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identification of these classes. PS class was identified in positive ion mode as [M + H]+ 

with neutral loss of 153 Da and PA as [M – H] – in negative ion mode with neutral loss of 

120 Da. These assignments differ from the detailed fragmentation pattern established for 

these classes (138,214).  

This study also showed the advantage of MS to evaluate the effect of nutrition 

limitation and environmental stress on the lipid profile. By profiling the distinct classes, it 

was suggested that the biosynthesis of PLs is dependent on phosphate availability and 

under P-limitation occurs degradation of PLs to PA or lyso-phospholipids. When limited 

by nitrogen (nitrate, NO3-N), or by phosphorus (phosphate, PO4-P) or both, U. lactuca also 

accumulates DGDG, SQDG and DGTS concomitant with the decrease of the content in 

PLs. Supplementation of nutrients, especially nitrate, increase the content of MGDG and 

also of the DGDG/MGDG ratio concomitant with the degradation of PLs.  

Non-target lipidomics was used to characterize the lipidome of Ulva rigida and 

Enteromorpha intestinalis (33). LC–MS analysis of the lipidome of Ulva sp. allowed the 

identification of up to six molecular species distributed by sulfolipids and PLs such as PC 

and LPE and two molecular species from sulfolipids, respectively. Amid lipidomics 

platform, other studies reported the FA composition within each class obtained by GC–MS 

and suggested that green macroalgae were rich in 16- and 18-carbon PUFAs, namely 

16:3(n-3) and 18:3(n-3) (97,164,217).  

Overall, the lipidome of the green macroalgae stills a less studied phylum far from 

being completely deciphered. Polar lipids vary according intra and inter taxonomy, but are 

also directly dependent on stress factors that deserve to be explored. The application of 

advanced MS-based lipidomics and accurate-deep knowledge on the detailed analysis of 

the high throughput data and structural features of molecular species of green seaweed is 

actually an emergent and promising field of research of green macroalgae´ lipidome. 

Lipidomic analysis of Rhodophyta  

The characterization of polar lipidome by target lipidomics and untarget LC–MS 

approaches was reported on Rhodophyta macroalgae. Methanol/chloroform extracts of 

Palmaria palmata (181), Chondrus crispus (218), Osmundaria obtusiloba (185), Chondria 

armata (203), and Asparagopsis taxiformis (33) were fractioned by using different liquid-

liquid extraction protocols and the fractions-rich in glycolipids obtained were further 

analyzed by MS. Few glycolipids were identified in each study (less than ten species) 
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distributed by MGDG, DGDG, SQDG, and SQMG classes. After MS-based identification, 

GLs extracted from some red seaweeds were further screened for bioprospection (218). 

PLs such as PG, PE, PI, and LPE were assigned in lipidome of some reported red 

macroalgae (33,181) as shown in the Table I. 1. Based on MS-data and mass accuracy, 

LC–MS was used to identify metabolites of different life cycle stages of Porphyra 

haiatanensis that included conchocelis, sporangial branchlets and conchosporangia phases 

(206). Few classes of PLs were identified and molecular species from PC, LPC, and LPE 

were considered important biomarkers differentiating life cycle phases, showing other 

important application of MS-based approaches to be explored.  

An accurate and complete identification of the profile of Chondrus crispus was 

achieved by LC–MS/MS. Results allowed the identification of 180 molecular species 

distributed by 19 DGDGs, 32 SQDGs, 14 PAs, 60 PCs, and 18 PGs, including lyso-PC and 

lyso-PG subclasses, and 14 DGTS lipids species provided by a single extract (145). By 

using MS–based approaches, several molecular species were for the first time reported in 

DGTS class. Betaine lipids profile at molecular level was never mentioned before on the 

lipidome of Rhodophyta and, in macroalgae, its identification was poorly characterized by 

TLC and GC–MS (36). In the category of sphingolipids, inositol phosphoceramides (IPCs) 

and hexosyl ceramides (HexCer) were detected in C. crispus and were considered a 

specific marker for Rhodophyta phylum (147). Lipidomic study of C. crispus demonstrated 

the great potential of MS-based approaches profiling detailed molecular species of polar 

lipids and less abundant classes in complex lipid matrices.  

The profile of FA from polar lipids of Rhodophyta have been characterized by GC–MS, 

and were reported to be 14-, 16-, 18- and 20-carbon of saturated and unsaturated fatty acids 

(97) with GLs and PLs including eicosapolyenoic acid 20:4(n-6) and 20:5(n-3) (30,97). 

Odd numbered fatty acid species and 20-carbons hydroxy-fatty acids were found (36). 

Overall, the lipidome of red macroalgae was reported generally based on FA profiles but 

characterization of the full lipidome was poorly explored. Considering the great potential 

of LC–MS and MS/MS approaches, not only to complete the lipidome signature or 

differentiating intra and inter Rhodophyta taxonomy, but also attending environmental and 

stress effects on polar lipids response, there is an open field to research. 
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Lipidomics analysis of Ochrophyta 

In the Ochrophyta phylum, the lipidome of Fucus spiralis (27), Sargassum spp. (207), 

Stypocaulon scoparium presently accepted as Halopteris scoparia (33), Dictyota 

dichotoma (33), Colpomenia sinuosa (33), Cystoseira brachycarpa (33), Dilophus fasciola 

(22) presently accepted as Dictyota fasciola (22) and Taonia atomaria (22) were 

characterized by MS–based approaches, as reported in Table I. 1. Fractionated extracts of 

Sargassum spp. and Fucus sp. obtained after chromatographic separation on silica column 

were further analyzed by LC–MS and a small number of molecular species from MGDG 

were identified (up to ten), meanwhile SQDGs (six species) was only found in lipidome of 

Sargassum sp. (25,27,207,219). The identification of PLs or betaines were not reported by 

these authors, because these studies were focused on MS–based approaches to differentiate 

the regiospecific distribution of fatty acyl species in glycolipids and elucidation about the 

relation structure/bioactivity of GLs.  

LC–MS approach was used to identify the lipidic fraction of Stypocaulon scoparium 

and three molecular species of GLs and seventeen PLs as PG, PC, LPI and LPE, were 

tentatively identified (33). There are no findings on betaine lipids in brown macroalgae by 

using MS-based tools. Typical approaches based on TLC and GC–MS analysis reported 

that betaine lipids such as DGTA were present (97,149). The profile of FA in the lipid 

extracts, determined by GC-MS, included 14-, 16-, 18- and 20-carbon saturated and 

unsaturated fatty acids, and included octapolyenoic acids (18:3(n-3) and 18:4(n-3)) and 

eicosapolyenoic acid (20:5(n-3)) PUFA (97).  

Deep knowledge is needed to full assign the lipidome of Ochrophyta, to understand 

metabolic biosynthetic pathways of polar lipids, namely of betaine lipids present in the 

lipidome, as well as to evaluate environmental stress. To decipher brown macroalgae´s 

lipidome is an open field regarding the role of polar lipids for taxonomic differentiation 

and bioprospection. 

I.1.4. Biological properties of polar lipids  

Based on Asian diets, the intake of macroalgae seems to contribute to a lower incidence 

of cancer, namely lower occurrence of breast cancer, and relative longevity and low 

incidence of cardiovascular diseases of the populations. This supports the functional and 

nutraceutical concept of algae in nutrition to provides beneficial effects on human health 
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all over the world (3,13,28,220). Thus, many studies have been done about naturally-

occurring phytochemicals in macroalgae that were reported as being beneficial for human 

health and with potential to replace those used in therapeutics for which are many 

resistances (5,13). Amid are lipids, metabolites produced for a myriad of functions such as 

UV protection, protection against pathogens, improvement of plant survivability, and 

bioactivities such as antioxidant, anti-inflammatory, and antimicrobial, among others, 

(3,35,221). Beneficial effects have been reported recently to dietary polar lipids, namely 

GLs and PLs from macroalgae (28,32,132,222).  

Table I. 2. Polar lipids from macroalgae and their potential biological activities 

Species Name Lipid Class Inhibitory effects  Ref. 

Antitumoral  

Ulva fasciata SQDG MCF-7 and HepG2 cells (127) 

Ulva armoricana DGDG NSCLC-N6 CELLS (205) 

Galaxoura cylindriea SQDG MCF-7 and HepG2 cells (127) 

Porphyra crispata SQDG HepG2 (132) 

Solieria chordalis MGDG NSCLC-N6 CELLS (205) 

Dilophys fasciola SQDG MCF-7 and HepG2 cells (127) 

Sargassum horneri SQDG, DGDG Caco-2 cell (223) 

Anti-inflammatory 

Chondrus crispus MGDG, DGDG Production of NO via iNOS (30) 

Chondrus crispus 

GLs 
Dowregulation of cytokine IL-6 and 
IL-8 

 

Palmaria palmata (224) 

Porphyra dioica  

Palmaria palmata SQDG, PG Production of NO via iNOS (181) 

Fucus spiralis MGDG Production of NO via iNOS (27) 

Antimicrobial/antiviral*/antifungal** 

Ulva fasciata SQDG B. subtilis and E. coli (127) 

Chondria armata MGDG Klebsiella sp /C. albicans (203) 

Galaxoura cylindriea SQDG B. subtilis and E. coli) (127) 

Osmundaria obtusiloba SQDG HSV-1 and HSV-2* (202) 

Dilophys fasciola SQDG B. subtilis and E. coli (127) 

Sargassum thumbergii MGDG Candida albicans** (204) 

Sargassum wightii SQDG X. oryzae pv. (225) 

Taonia atomaria SQDG B. subtilis and E. coli (127) 

Novel works emerged on the study of the properties related with these polar lipids 

extracted from macroalgae (21,26,27,116,127,202), from halophytes (132) and microalgae 

(137), among other natural sources (25).  
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Hypothesis about structure and biological activities of total lipid extracts or 

fractionated-extracts from the macroalgae have been suggested (127,202,204,225) (Table 

I.2). Structural information obtained by MS-based approaches to identify target molecules 

from isolate extracts of marine macroalgae and evaluate their bioactive properties seems 

promising tool in the bioprospection of the polar lipidome (21,207,226).  

In the following section, it will be reported the current knowledge that has been 

gathered so far for the antioxidant, anti-inflammatory, antitumoral, and antimicrobial 

activities from macroalgae. 

I.1.4.1. Antioxidant properties  

Oxidative stress has been associated with several diseases such as atherosclerosis, 

diabetes, neurodegenerative diseases, chemical carcinogenesis, intoxication with certain 

xenobiotics, and aging (4,35). Oxidative stress is currently defined as the discrepancy that 

occurs between pro-oxidant reactions, which produce free radicals, and antioxidant 

mechanisms, which inactivate free radicals (227). This imbalance can be caused by 

increased production of free radicals, so one way to counter the process is through 

supplying antioxidant substances. 

Free radicals are defined as molecules with an odd or unpaired electron in the external 

orbital of their atomic structures. They are very important due to their redox characteristic 

and interfere directly with oxidation-reduction reactions in cellular processes by reacting 

aggressively with other biomolecules to produce highly reactive species within cells 

(221,227). Reactive oxygen species (ROS) include peroxyl radical (RCOO.), superoxide 

anion (O2
-), hydrogen peroxide (H2O2), singlet oxygen (1O2), hydroxyl radical (HO.), and 

peroxynitrite (ONOO-) (228).  

Lipid extracts from marine macroalgae are considered a source of natural antioxidants 

(109,229) and were mainly attributed to PUFAs (74,96,230). However, since FA from 

macroalgae are mainly assembled to polar lipid structures, macroalgae polar lipids deserve 

to be investigated as a potential source of natural antioxidants (231). Regarding 

macroalgae, antioxidant activity of polar lipids from macroalgae has been barely 

investigated. However, the fractionated lipidic extract of the microalgae Porphyridium 

cruentum showed antioxidant activity of polar lipids by the strongly inhibition of the 

production of superoxide anion generated by peritoneal leukocytes primed with phorbol 
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myristate acetate (232). Thus, supported by the antioxidant properties related to the SQDG 

isolated from microalgae and the known antioxidant properties attributed to PUFAs, the 

potential of polar lipids as antioxidants was scarcely addressed and deserves to be 

explored.  

I.1.4.2. Anti-inflammatory properties 

Inflammation is the response of vascular tissues to harmful stimuli such as injury, 

pathogens or irritants, and reactive species are produced. In long term, exaggerated 

misdirected response adversely affect health such in the case of inflammatory bowel 

disease, arthritis, or asthma (137). Chronic and acute inflammation is a complex biological 

process mediated by the activation of immune cells such as neutrophils, eosinophils, 

mononuclear phagocytes and macrophages (13). Under inflammatory conditions, cytokines 

and enzymes induce cell and tissue damage and activate cells involved in several chronic 

diseases as hepatitis, atherosclerosis and rheumatoid arthritis (233).  

The inflammation process is controlled by a group of substances called chemical 

mediators that consist of vasoactive amines, cytokines, bradikinin, fibrin, eicosanoids, 

platelet activating factor (PAF), nitric oxide (NO) and neuropeptides (12,234). 

Eicosanoids, reactive oxygen species (ROS) and nitrogen radicals play a crucial role in 

every step of inflammation. Nitric oxide (NO) is an important signaling molecule that, in 

many tissues, regulates a diverse range of physiological processes (235). NO is highly 

permeable and diffuses rapidly across membranes. In inflammatory responses, NO can 

modulate the release of a wide range of anti-inflammatory modulators, enzymes activity, 

blood flow and adhesion of leucocytes to the vascular endothelium (12,234). Under 

pathological conditions undesirable effects can result from the overproduction of NO such 

as vasodilatation, inflammation, and tissue damage. NO is produced through its precursor, 

L-arginine, by the action of the specific enzyme NOS like the inducible nitric oxide 

synthase (iNOS). This isoform is typically synthesized in response to inflammatory or pro-

inflammatory mediators, such as cytokines or endotoxins (e.g., bacteria products) (234).  

Excessive production of NO is involved in tissue damage, septic shock, organ 

dysfunction, and carcinogenesis processes (27). Effective inhibition of NO accumulation 

represents a beneficial therapeutic strategy for the treatment of NO-mediated disorders 

(235). Macrophages are a major component of the mononuclear phagocyte system and play 
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a critical role in initiation, maintenance and resolution of inflammation and usually start 

the production of NO, for example, when exposed to bacterial LPS (235).  

There is an enormous demand for new and potent anti-inflammatory drugs in view of 

the fact that inflammation triggers a multitude of human diseases and macroalgae 

constitute an endless source of bioactive secondary metabolites such as lipids with 

promising effects for human health (28,181). In this context, some works were published 

and suggested that lipids extracted from macroalgae have anti-inflammatory activity (Table 

I. 2). Lopes et al, 2014 were able to isolate two species of MGDG from Fucus spiralis 

lipids, MGDG (20:5/18:3) and MGDG (20:5/18:3), that expressed the capacity to reduce 

NO release in a dose-dependent manner (27). Banskota et al. (30) evaluated the anti-

inflammatory activity of isolated fractions of extracts-rich in galactolipids from Chondrus 

crispus, that exhibit inhibitory activity against lipopolysaccharide (LPS)- inducible nitric 

oxide synthase (iNOS) production in murine RAW264.7 cells. The molecular species 

identified include MGDG (20:5/20:5), MGDG (20:5/20:4), MGDG (18:4/16:0) and 

MGMG 20:4. The extract also contained MGDG (20:4/16:0) and MGDG (20:5/16:0) and 

DGDG analogues. Some authors evaluated the fraction isolated from the methanolic 

extract of Palmaria palmata (181), rich in SQDG (20:5/14:0), PG (20:5/16:0), and PG 

(20:5/16:1), that showed suppression effect on NO production through down-regulation of 

iNOS. Underlying anti-inflammatory activity of glycolipids, they are considered as novel 

anti-inflammatory agents potentially useful for human pathologies related to inflammation 

(137). However, a better understanding of lipids structures and correspondent action on the 

treatment of inflammatory diseases still represents a scientific challenge for further 

advances in the resolution of pathologies (220). 

I.1.4.3. Antitumoral activity 

Cancer incidences is increasing and, therefore, effective therapies are needed to control 

these malignant diseases (236). Cancer is the most common and serious disease, and there 

are six properties that make cells capable of cancerous growth; they are not under the 

control of signals that regulate cell proliferation, they are resistant to apoptosis, they 

overcome the limitations on proliferation by avoiding replicative senescence and evading 

differentiation, they are genetically unstable, are able to invade surrounding tissues and are 

capable of metastasis. The cancerous tumor develops when cancer cells overcome 
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replicative cell senescence and become “immortalized” i.e. continue dividing indefinitely 

(237).  

Chemotherapy is usually the first line treatment to cure cancers and a group of drugs are 

used to kill or inhibit the growth of cancer cells (238). Many side effects are related to 

chemotherapeutic drugs and comprise baldness, vomiting, diarrhea, loss of appetite, nausea 

and fatigue, consequently new anticancer agents should be investigated from various 

resources (239). Thus, alternative to chemotherapy drugs and side effects, the research in 

anticancer activities of non-toxic biological macromolecules seems a solution to this pitfall 

(236,238).  

Marine algae are considered a potential source of natural bioactive substances and 

efforts have been done towards the identification of compounds with antiproliferative 

effects (236,237,240,241). The antitumor effect of lipids is usually expressed in function of 

the fatty acyl profile due to limitations on the isolation of polar lipids and their 

characterization (67,97). PUFA have been considered biologically active compounds and, 

in macroalgae, are abundant components of glycolipids (97). Some researchers are now 

focusing on the antitumoral and the immunosuppressive effect of macroalgae polar lipid 

extracts on distinct cell lines of cancer (Table I. 2) (127,132). Among polar lipids, 

sulfolipids have been suggested to prevent human cancer diseases (132). 

Sulfonoquinovosyl acyl glycerols, particular those combining PUFAs, were suggested to 

be clinically promising agents (127). An extracted fraction-rich in sulfolipids was 

separated from the glycolipidic fraction of P. crispata containing MGDG, DGDG, and 

SQDG glycolipids (132). Isolated SQDGs inhibit the grow of human hepatocellular 

carcinoma cell line (HepG2) due to its high proportion of PUFAs and its n-3/n-6 ratio in 

addition to its sulfolipid structure and content (132). Aside from the essential sulfate 

moiety of SQDG, eicosapolyenoic moieties seemed to be more critical against the 

carcinoma. SQDGs and DGDGs from Sargassum horneri were found to induce apoptosis 

of the human colon carcinoma Caco-2 cell (223).  

Therefore, it has been hypothesized that not only fatty acids but also the polar head may 

be responsible for biological activities highlighted from glycolipids (127). On general point 

of view, the bioactivities of glycoglycerolipids seems to be related to the sugar moiety, the 

position of the glycerol linkage to the sugar, the length and location of the acyl chain, and 

the anomeric configuration of the sugar (241). Biological activity from SQDGs is 
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suggested to be due to the presence of the unsaturated fatty acids and sulfonate moieties 

(127), meanwhile the antiviral and antitumor activities may be more related to the presence 

of the sulfonate group (25). It is noteworthy that the distribution of PUFAs in glycolipids 

from seaweeds depends on their taxonomic position, and on seasonality, among others 

factors, it may then be logical to expect some taxa to be more active than others (19,120).  

Phospholipids showed in vitro anticancer activity against breast (MCF-7) and liver 

human (HepG2) cancer cells and were attributed to PG class (116). Algal phospholipids of 

D. fasciola, L. papillose and G. cylindriea presented high inhibition of MCF-7 cell line 

growth. The antitumor activity of phospholipids was suggested to be related to not only 

PUFA but to phosphorus contents. So far, the characterization of PLs structure evolving 

fatty acyl and polar head composition, the activity associated with PLs as well as metabolic 

pathways related were not well explored.  

I.1.4.4. Antimicrobial activity 

Mainstream medicine is increasingly receptive to the use of antibacterial and other 

drugs derived from plants and algae, since traditional antibiotics (products of 

microorganisms or their synthesized derivatives) become ineffective and new diseases 

remain intractable to this type of drug (228). Secondary metabolites with potential 

antimicrobial activity in seaweeds have been attributed to a wide range of compounds 

including fatty acids, halogenated compounds, sulfur-containing heterocyclic compounds 

and phlorotannin (242). The functions attributed to macroalgae metabolites included 

defense against herbivores, fouling organisms and pathogens in addition to protection from 

UV radiation and allelopathic agents (12,94).  

Within bacteria there are two main domains, the Gram positive (Gram+) and the Gram 

negative (Gram-), containing a thin peptidoglucan cell wall only surrounded by a second 

layer of LPS and proteins, respectively, inferring Gram- to be more toxic than Gram+ 

(102,243). The use of antibacterial agents (antibiotics), usually small molecules, will 

interfere with the normal life of bacteria without damaging human cells. Lipid-soluble 

extracts from marine macroalgae have been investigated as a source of substances with 

antibacterial activity showing antibacterial activity against Gram+ and Gram- pathogenic 

strains. Some extracts-rich in glycolipids and phospholipids, namely from Ochrophyta, 

exhibit antimicrobial activity (231). The brown macroalgae Sargassum wightii was found 
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to contain SQMGs featuring C16 fatty acids with antimicrobial properties, useful in the 

inhibition of the growth of the bacterium Xanthomonas oryzae pv. Oryzae, which causes 

bacterial blight of rice (225). Baz et al. also suggested that sulfolipids from Rhodophyta 

(Laurencia popillose, Galaxoura cylindriea); Chlorophyta (Ulva fasciata), and Ochrophyta 

(Dilophys fasciola, Taonia atomaria) from Mediterranean macroalgae had antimicrobial 

activity (127). Thus, sulfolipids from macroalgae are potential sources of natural 

antibiotics to be explored. Recently, a great deal of interest has been expressed regarding 

polar lipids from macroalgae as potential antiviral compounds. SQDG from the red 

macroalgae Osmundaria obtusiloba and from brown macroalgae Sargassum vulgare 

exhibited potent anti-HSV-1 and HSV-2 activities (25,202).  

Phospholipids as PG from different macrophytes display antiviral activity of simplex 

virus type 1 (116). U. fasciata and L. papillose phospholipids inhibit virus replication and 

adsorption of virus on host cells. The antivirus activities of phospholipids seem to be 

related to unsaturated fatty acid and phosphorus contents. So far, the characterization of 

PLs structure evolving fatty acyl and polar head composition, the activity associated with 

PLs as well as metabolic pathways was not much developed. 

Due to their biological activities as anti-inflammatory, antibacterial, and anti-tumor 

promoters, marine algae have notably a great potential to be used in food and 

pharmaceutical products (5,19,26). In the future, polar lipids from macroalgae will 

certainly be part of the target bioactive compound to explore for drug discovery, and 

marine algae incorporation as functional food may provide a natural source of health 

promoting benefits against disease.  

I.2. Aims of the work 

The polar lipidome from macroalgae comprise a plethora of complex lipids with 

potential biological properties that is far away from being fully elucidated, preventing the 

discovery of the full potential of macroalgae as a functional food and as a source of 

bioactive compounds. Thus, the main aim of this Ph.D. work is to give some insights in 

this field and contribute to the elucidation of the composition in polar lipids of macroalgae 

native to the Portuguese coast but produced under semi controlled conditions in a land-

based IMTA system, by using mass spectrometry (MS)-based analytical strategies. On the 
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basis of the current knowledge, it can be stated that the complete identification of polar 

lipids is hampered by their diversity and the structural complexity of the structures formed.  

The variability in the chemical composition of macroalgae, aside from the species, may 

be the result of its developmental stage, geographical location, habitat, season and 

associated water quality (inorganic nutrients, salinity). The use of macroalgae cultivated 

under semi controlled conditions under the IMTA concept presents a sustainable solution 

to this pitfall, guaranteeing abundance and replicability issues of targeted biomass. Thus, in 

this Ph.D. work it is aimed to enhance the high value of macroalgae produced in land-

based IMTA by means of their polar lipidome as well as to enhance their biological 

activities, supported by powerful lipidomic approaches and new analytical strategies. 

Having this in mind, the main goals of this Ph.D. were: 

 Characterize the lipid signature of the selected edible macroalgae, representative of 

each phylum, namely Codium tomentosum (Chlorophyta), Gracilaria sp. and 

Porphyra dioica (two distinct phases of life cycle) Rhodophyta) and Fucus 

vesiculosus (two different seasons of the year, Ochrophyta). The identification of 

the lipidomic signature was accomplished by MS-based strategies, and edible 

macroalgae were produced in a land-based IMTA system (ALGAplus Lda., 

Portugal).  

 Evaluate the biological activities of polar lipids from macroalgae extracts attending 

the antitumor and anti-inflammatory properties fostering potential applications of 

macroalgae in cosmetic, nutraceutical and functional food industries, and 

encourage the optimization of the production of high-value macroalgae in IMTA 

system. The biological activity of specific lipid classes fractionated from the total 

lipid extract (glycolipids) were tested.  

This work was developed by using MS-facilities in the Mass Spectrometry Centre from 

QOPNA Research unit (Chemistry Department, Aveiro University). The evaluation of 

biological properties of lipid extracts were performed in collaboration with the Biology 

Department of Aveiro University - Institute for Research in Biomedicine (iBiMED) and 

Center for Neuroscience and Cell biology (CNC), University of Coimbra. All the 

macroalgae biomass, as well as associated informations, was produced and kindly given by 

the company ALGAplus, Produção e Comercialização de Algas e seus derivados Lda. 
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Materials and methods 

__________________ 

The polar lipids were extracted from the selected species Codium tomentosum, 

Gracilaria sp., Porphyra dioica and Fucus vesiculosus. These macroalgae are edible 

macroalgae (WHO - FAO) (59,244,245) cultivated on open land based IMTA system using 

nutrient-rich water from sea-bass and sea-bream ponds at ALGAplus Lda. facilities. Total 

lipids were obtained by using conventional protocols of extraction that were further 

characterized by HILIC–LC–MS and MS/MS. The anti-inflammatory, antioxidant and 

antiproliferative effects of the extract of Gracilaria sp. were evaluated. Partial lipid extract 

(glycolipids-rich fractions) of Gracilaria sp. were obtained, characterized, and 

antiproliferative effect of the fraction-rich in glycolipids was tested. Figure II.1 represents 

the schematic workflow designed to achieve the goals of the Ph.D. plan.  
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Figure II. 1. Schematic representation of the workflow that include extraction of total lipids extract 

(crude extract) and identification polar lipids from macroalgae. Lipids from Gracilaria sp. were 

isolated from the total extract by SPE (solid phase extraction). ESI-electrospray ionization, MS-

mass spectrometry, HILIC- hydrophilic interaction liquid chromatography, MS-mass spectrometry, 

UV-ultraviolet, LC-liquid chromatography, GC-gas chromatography, Si-silica, TLC-thin layer 

chromatography, MTBE-Methyl-tert-butyl ether, UAE-ultrasound assisted extraction. 
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II.1. Macroalgae material 

 Dried samples (25 °C, up to 12% moisture content) of cultivated macroalgae were 

provided by ALGAplus Ltd. (production site in Ria de Aveiro, mainland Portugal, 

40°36′43″N, 8°40′43″W). The biomass was produced in tanks by clonal propagation 

(asexual reproduction strategy) and with lower variability in terms of chemical quality than 

would be expected from wild harvested biomass. Production factors as stocking densities 

and water renewal rates were controlled in order to maintain the lowest level of variation in 

abiotic factors as temperature, salinity, as well as availability of light and inorganic 

nutrients.  

The samples of macroalgae were representative of the bulk in production. Still at 

ALGAplus Lda, macroalgae were cleaned in filtered seawater, and dried at low 

temperature (25ºC) in an air tunnel, until reaching 10 – 12% total moisture. Dried material 

was milled into 0.5 – 1 mm flakes. Codium tomentosum was collected in June 2012, 

Gracilaria sp. (G1.3214M) was collected in August 2014 (G. gracilis or G. 

vermiculophylla, identification pending confirmation by DNA barcode analysis). 

ALGAplus is a successful pioneer in the cultivation of Porphyra dioica. Gametophyte 

stage of Porphyra dioica (blades) was cultivated on outdoor IMTA tanks (1000L) at 

ALGAplus under stable conditions of pH, temperature, and salinity. Blade samples were 

collected on 6th March of 2014 (P1.1014). During the period of cultivation (up to 3 weeks), 

IMTA guaranteed production of seaweed under controlled conditions of water renewal, pH 

(8.0 – 8.2), salinity (average salinity 22.1 PSU (Practical Salinity Units), and temperature 

(13.8 ± 0.93ºC). The conchocelis phase of P. dioica was collected in November 2015 

(P1.00.10.4.151103). This sample was cultivated indoor nursery of ALGAplus Lda, under 

vegetative mode (at 15ºC, irradiance of 25 - 30 µmol photons m2 s-1 and long day growth 

(16:8 h light-dark conditions) from June 2014 till November 2015. The biomass was dried 

at 25 °C up to 12% moisture content, and about 250 mg were used to extract lipids. Fucus 

vesiculosus is harvested within the margins of the fish ponds and the exit channels of the 

aquaculture site. Before processing for food, the seaweed biomass is maintained in tanks 

with controlled conditions for 1 to 2 weeks. Fucus vesiculosus samples were collected in 

February 2016 representing the mid-winter - F1.0716M, and in the end of May 2016, 

representing end-spring season - F1.2116D. Mid-winter Fucus was maintained at 13.2 ± 

1.17ºC, average salinity 27.0 PSU, and an average irradiance of 177 µmol photons m2 s-1; 
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end-spring macroalgae was cultivated at 17.4 ± 1.36ºC, average salinity of 27.5 PSU, and 

average irradiance of 424 µmol photons m2 s-1. The samples were stored at -20 ºC prior to 

extraction. The extraction of lipids is detailed in section II.2.  

 

Porphyra dioica
(blade harvested in March 2014) 

Blade and conchocelis stages

Phylum of Ochrophyta

Fucus vesiculosus 
(harvested in February and May 2016)

Phylum of Rhodophyta

Gracilaria sp.*
(harvested in August 2014) 

Codium tomentosum
(harvested in June 2012) 

Phylum of Chlorophyta  

 

Figure II. 2. Macroalgae species targeted on this Ph.D., produced in a land-based IMTA system. 

*Gracilaria sp. corresponds either to G.vermiculophylla or gracilis, currently pending on DNA results 

II.2. Total lipid extraction  

Total lipid extraction was performed by using conventional solvent extraction protocols 

(CSE) (105,246–248). In the literature, the Bligh and Dyer protocol for extraction is 

currently used to extract total lipid from macroalgae (34,249). Methanol/methyl-tert-butyl 

ether (MTBE) were used to extract lipids from different type of samples (30,145,184). 

However, MTBE extraction requires large volume of solvent and are required time and 

energy to evaporate the solvent. In this Ph.D. work total lipid extracts of macroalgae 

biomass was performed by using distinct adapted methods from CSE as follows: 

Method 1. Methanol extraction  

The macroalgae Codium tomentosum material (500 mg) was homogenized with liquid 

nitrogen in a glass mortar and mixed with 20 mL of MeOH (25 mg of biomass/mL of 
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MeOH) by vortexing 15 s and then incubated on an orbital shaker for 1 h. The MeOH lipid 

extract was obtained after centrifugation (Mixtasel Centrifuge, JP Selecta, Spain) for 10 

min at 1500 rpm.  

Method 2. Methanol/Methyl tert-butyl ether (MeOH/MTBE) extraction  

250 milligrams Codium tomentosum biomass was weighed and a mixture of MeOH/MTBE 

(3:7, v/v) was added, soaking the sample to homogenize it as much as possible and further 

transferred to a glass PYREX tube, homogenized by vortexing 15 s and then incubated on 

an orbital shaker for 1 h. Then, 2 mL of milli-Q water are added to induce phase separation 

followed by centrifugation during 10 min at 1500 rpm, collecting the organic (upper) phase 

to a new tube. The aqueous (lower) phase was re-extracted with 2 mL of solvent mixture 

(MeOH/MTBE/H2O) (10:3:2.5 per volume), repeating the previous steps, collecting the 

upper phase back into the tube, thus combining the two organic phases extracted.  

Method 3. Methanol/Chloroform extraction  

A mixture of methanol/chloroform (1:2, per volume) was added to 250 mg of macroalgae 

(Codium tomentosum, Gracilaria sp., Porphyra dioica (blade and conchocelis) and Fucus 

vesiculosus). The mixture was transferred to a glass tube with a Teflon-lined screw cap 

and, after addition of 3.75 mL of a mixture methanol/chloroform (2:1, per volume), was 

homogenized by vortexing 2 min plus one minute in ultrasonics bath (Selecta, Spain) and 

then incubated in ice on an orbital shaker (STR6 Stuart, UK) during 2h30. The mixture 

was centrifuged at 2000 rpm for 10 min and organic phase was collected. The biomass 

residue is re-extracted twice with 1.5 mL of the mixture and 2.3 mL of water are added to 

the total collected organic phase to induce phase separation, followed by centrifugation for 

10 min at 2000 rpm, collecting the organic (lower) phase to a new tube.  

Three independent replicates were performed to extract macroalgae. The extractions and 

analyses were performed on different days. Solvents were evaporated under a stream of 

nitrogen gas and under vacuum (i.e., methanol extract) and. The total lipid content was 

estimated by gravimetry. Lipid extracts were stored at -20 °C prior to analysis by LC–MS. 

Lipid extracts were analyzed by HILIC–LC–MS and MS/MS, as will be described. The 

polar lipids of Codium tomentosum were separated from pigments by thin layer 

chromatography (TLC) and polar lipids were fractionated from Gracilaria by using solid 

phase extraction (SPE) followed by LC–MS analysis and structural identification. 
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II.3. Thin-layer chromatography (TLC) 

TLC is a method routinely used in the separation and isolation of lipid extracts 

(170,250). This method was widely used to separate the polar lipid classes from algae 

followed by MS-based instrumental approaches (30,97,100,150,207).  

In this work, chlorophyll and other pigments were separated from the polar lipids by 

TLC using silica gel plates. Prior to separation, the plates were washed with 

chloroform/MeOH (1:1, per volume) and activated (sprayed or impregnated) with 2.3% 

boric acid in ethanol and placed in an oven at 100 ºC for 15 min. Plates with spots 

containing 20 µg of total lipid extract were eluted in a solvent mixture of 

chloroform/ethanol/water/triethylamine (30:35:7:35, per volume). Spots corresponding to 

polar lipids were visualized with a UV lamp (254 and 366 nm; Camag, Germany) after 

exposing the plates to primuline (50 mg in 100 mL of acetone/water, 80:20, per volume), 

are scrapped off from the silica and gathered for further extraction (251). The extraction of 

total polar lipids from silica was made by using chloroform/MeOH (2:1, per volume) and 

the identification of polar lipids is obtained by mass spectrometry. 

II.4. Solid Phase extraction (SPE) 

 Solid phase extraction is one of the most powerful techniques available for rapid 

and selective sample preparation (252–258). The most widely cited SPE packing for 

simple separation of glycolipids, phospholipids and neutral lipids are silica packing 

columns (38,100,117,259,260). In this work, total lipid extract of Gracilaria sp. was 

fractionated in distinct lipid-rich fractions by solid phase extraction in SUPELCLEAN™ LC-

SI SPE Tube, bed wt. 500 mg, volume 3mL cartridges (SUPELCO). Fractionation of total 

lipid extract was performed using a modification of Pacetti´s method [61]. A sample of 

lipid extract (1 mg) was dissolved in 300 μL of chloroform and transferred to a 

Supelclean™ LC-Si SPE Tube (bed wt. 500 mg, volume 3 mL cartridges; SUPELCO, 

Sigma-Aldrich, St Louis, MO, USA), followed by sequential elution with 4 mL of 

chloroform, 3 mL of ether diethyl ether/acetic acid (98:2, per volume), 5 mL of 

acetone/methanol (9:1 per volume), and 4 mL of methanol. Fractions 3 and 4, rich in 

glycolipids and in phospholipids plus betaines, respectively, were recovered, separated, 

dried under nitrogen, and stored at –20 °C prior to analysis by ESI–MS. Fractions 1 and 2, 

corresponding to neutral lipids and pigments, were discarded after the analysis by ESI–MS. 
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The content in phospholipids and glycolipids was determined by using colorimetric 

methods. Fraction-rich in glycolipids was used to evaluate antiproliferative effect. 

II.5. Extraction and quantification of pigments 

The macroalgae Gracilaria sp. (50 mg) was extracted with methanol (1.5 mL) (three 

independent replicates), homogenized by vortexing 2 min and then incubated on ice in an 

orbital shaker for 2h30. The mixture was centrifugated at 2000 rpm for 10 min and organic 

phase was collected. The extracts obtained were immediately analyzed in a UV/visible 

light spectrometer between 400 nm and 700 nm (Multiskan GO, Thermo Scientific, 

Hudson, NH, USA). The absorbance values at 666, 653 and 470 nm in methanol extract 

were used to calculate, respectively, the levels of Chl a and total carotenoids according to 

the corresponding equation, according with Lichtenthaler & Wellburn (1983) (261–263).  

II.6. Quantification of glycolipids 

Glycolipids were estimated by using a modified colorimetric method of resorcinol, 

determining the concentration of the total sugars in the lipid extract (CyberLipids, (264)). 

This method determines both reducing and non-reducing sugars due to the presence of 

strongly oxidizing sulfuric acid. Sugars react with the resorcinol reagent under acidic 

conditions and its absorbance is measured at 505 nm.  

Dry lipid extracts were heated at 80 °C for 20 min with 2 mL of a solution of resorcinol 

(5-methylresorcinol (Sigma-Aldrich), 2 mg/mL of 70% sulfuric acid, per volume). After 

cooling, the absorbance of the solution was measured at 505 nm (Multiskan GO, Thermo 

Scientific, Hudson, NH, USA). A blank sample was analyzed simultaneously. The amount 

of sugar was obtained by using the calibration curve of glucose after reaction under acidic 

conditions (stock solution 5 mg/mL of sugar). The factor 100/35 was chosen to convert 

hexoses to GL (265). 

II.7. Quantification of phospholipids 

Quantification of phospholipids in the total lipid extract of macroalgae were assessed by 

a molybdovanadate method for the simultaneous assay of orthophosphate and organic 

phosphates, as described by Bartlett and Lewis (266).  
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Concentrated perchloric acid (125 μL, 70% m/v) was added to the samples in acid- 

washed glass tubes and the mixture is incubated for 60 min at 170 ºC in a heating block 

(Block Heater SBH200D/3, StuartW, Bibby Scientific Ltd., Stone, UK). After incubation, 

825 μL of water, 125 μL of 2.5% of ammonium molybdate and 10% of ascorbic acid were 

added. The reaction mixture was well homogenized in a vortex mixer after each addition 

and incubated for 10 min at 100 ºC in a water bath (Precisterm, JP Selecta S.A.). Standards 

from 0.1 to 2 μg of phosphate (standard solution of NaH2PO4.2H2O, 100 μg P/mL) 

underwent the same treatment as the samples. Finally, the absorbance of the standards and 

samples was measured at 797 nm, at room temperature, in a microplate UV–Vis 

spectrophotometer (Multiskan GO, Thermo Scientific, Hudson, NH, USA) with PL being 

calculated as P x 25 (265). 

II.8. Fatty acid methyl esters (FAMEs) analysis by gas chromatography–

mass spectrometry (GC–MS) 

The analysis by gas chromatography has been used as a rapid and sensitive method of 

analysis to identify the lipids composition in FA of macroalgae, as was recently 

demonstrated, for example, to Chondrus crispus, Ulva sp. Laminaria sp., Sargassum sp., 

Zostera sp. (30,97,203,267,268). To obtain the profile of the FA they can be derivatized to 

fatty acid methyl esters (FAMEs) by alkaline hydrolysis and direct transesterification 

further analyzed by GC or GC–MS (97,269,270).  

In this work, FAMEs were prepared by using 30 µg of total lipid extracts and a 

methanolic solution of potassium hydroxide (2.0 M) to perform the derivatization, 

according to the methodology previously described (145). The FAMEs recovered were 

dried using a nitrogen flow. Volumes of 2.0 μL of the hexane solution containing FAMEs 

were analyzed by gas chromatography–mass spectrometry (GC–MS) on an Agilent 

Technologies 6890 N Network (Santa Clara, CA) equipped with a DB–FFAP column with 

the following specifications: 30 m long x 0.32 mm internal diameter x 0.25 μm film 

thickness (123-3232, J&W Scientific, Folsom, CA). The GC equipment was connected to 

an Agilent 5973 Network Mass Selective Detector operating with an electron impact mode 

at 70 eV and scanning the range m/z 40 – 500 in a 1 s cycle in a full scan mode acquisition. 

The oven temperature was programmed as follows: (1) the initial temperature was set up to 

80 ºC for 3 min; (2) a linear increase to 160 ºC at 25 ºC/min; (3) a linear increase at 2 
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ºC/min to 210 ºC; and (4) a linear increase at 30 ºC/min to 250 ºC followed by 10 min at 

this temperature. The injector and detector temperatures were 220 and 280 °C, 

respectively. Helium was used as carrier gas at a flow rate of 1.7 mL min−1. 
The injector and detector temperatures were 220 and 280 °C, respectively. Helium was 

used as the carrier gas at a flow rate of 0.5 mL/min. At least, three replicates were 

performed. Internal standard methyl heptadecanoate ≥ 99% from Sigma (USA) was used. 

The identification of each FA was performed by mass spectrum comparison with those in 

the Wiley 275 library and confirmed by its interpretation and comparison with the 

literature (AOCS Lipid Library). The relative amounts of FAs were calculated by the 

percent area method with proper normalization, considering the sum of all areas of the 

identified FAs.  

II.9. Mass spectrometry and hyphenated approaches 

Hydrophilic interaction liquid chromatography–ESI–mass spectrometry based (LC–MS) 

in a linear ion trap (LIT) 

In this work, hydrophilic interaction liquid chromatography analysis of total lipid 

extracts was performed on a Waters Alliance 2690 HPLC system (Waters Corp., Milford, 

MA, USA) coupled to a Finnigan LXQ electrospray LIT spectrometer (Thermo Fisher, San 

Jose, CA, USA). Mobile phase A consisted of 25% water, 50% acetonitrile and 25% 

MeOH, with 10 mM ammonium acetate, and mobile phase B consisted of 60% acetonitrile 

and 40% MeOH with 10 mM ammonium acetate. The lipid extracts (12.5 µg) was diluted 

in mobile phase B (90 µL) and 10 µL of the reaction mixture is introduced into an Ascentis 

Si HPLC Pore column (15 cm x 1.0 mm, 3 µm; Sigma-Aldrich). The solvent gradient was 

programmed as follows: gradient started with 0% of A and 100% of B, linearly increased 

to 100% of A in 20 min, and isocratically held for 35 min, returning to the initial 

conditions in 5 min. The flow rate through the column was 7.5 µL min-1 obtained using a 

pre-column split (Accurate, LC Packings, San Francisco, CA, USA). Polar lipid analysis is 

carried out by negative- and positive-ion electrospray ionization mass spectrometry (ESI-

MS). The electrospray voltage was 4.7 kV in the negative-ion mode and 5.0 in the positive-

ion mode. The capillary temperature was 275 °C, and the sheath gas (He) flow rate was 25 

units. A precursor ion isolation width of 0.5 m/z units was used, with a 30 ms activation 

time for MS/MS experiments. Full scan MS spectra and MS/MS spectra were acquired 
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with a maximum ionization time of 50 ms and 200 ms, respectively. The normalized 

collision energy (CE) varied between 17 and 20 (arbitrary units) for MS/MS. Data 

acquisition and treatment of results are carried out with the Xcalibur Data System 2.0 

(Thermo Scientific, San Jose, CA, USA). 

Hydrophilic interaction liquid chromatography–mass spectrometry based (LC–MS) in 

high resolution Orbitrap 

High performance LC (HPLC) system (Thermo scientific AccelaTM) with an 

autosampler coupled online to the Q-Exactive® mass spectrometer with Orbitrap® 

technology was used. The solvent system consisted of two mobile phases as follows: 

mobile phase A (acetonitrile/methanol/water 50:25:25, per volume) with 1 mM ammonium 

acetate) and mobile phase B (acetonitrile/methanol 60:40, per volume) with 1 mM 

ammonium acetate). Initially, 0% of mobile phase A was held isocratically for 8 min, 

followed by a linear increase to 60% of A within 7 min and a maintenance period of 15 

min, returning to the initial conditions in 10 min. A volume of 5 µL of each sample 

containing 5 µg of lipid extract and 95 µL of eluent B was introduced into the Ascentis® 

Si column (15 cm × 1 mm, 3 µm, Sigma-Aldrich) with a flow rate of 40 µL min–1 and at 30 

ºC.  

The mass spectrometer with an Orbitrap® analyser was operated in simultaneous 

positive (electrospray voltage 3.0 kV) and negative (electrospray voltage –2.7 kV) modes 

with high resolution with 70000 and automatic gain control (AGC) target of 1E6, the 

capillary temperature was 250 ºC and the sheath gas flow was 15 U. In MS/MS 

experiments, a resolution of 17,500 and AGC target of 1E5 was used and the cycles 

consisted in one full scan mass spectrum and ten data-dependent MS/MS scans were 

repeated continuously throughout the experiments with the dynamic exclusion of 60 

seconds and intensity threshold of 1E4. Normalized collision energy™ (CE) ranged 

between 25, 30 and 35 eV. Data acquisition was carried out using the Xcalibur data system 

(V3.3, Thermo Fisher Scientific, USA). All the analyses were performed in triplicate. The 

identification of molecular species of polar lipids was based on the assignment of the 

molecular ions observed in LC-MS/MS spectra. In order to identify molecular species, 

mass accuracy (Qual Browser) was determined with ≤ 5 ppm allowed in possible elemental 

composition calculation of empirical formula. Furthermore, and in the case of the lipidome 
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of Fucus vesiculosus, HPLC-MS raw data were preprocessed by spectral filtering stage, 

peak detection, alignment, normalization and further integration into the MZmine 2 (271) 

software, with a tolerance of 5 ppm of exact mass error, after identification of the lipids 

based on the calculation of their theoretical monoisotopic mass and subsequent analysis of 

the MS/MS spectrum. The analysis of polar lipids was performed after normalization in 

relation to the internal standards. 

Electrospray-Mass Spectrometry (ESI-MS) Conditions 

Fractions 3 and 4 recovered from total lipid extract of Gracilaria were analyzed by 

ESI-MS on a Q-Tof 2 quadrupole time of flight mass spectrometer (Micromass, 

Manchester, UK) operating in positive mode. Each sample, diluted in 195 µL of methanol, 

was introduced through direct infusion with the following electrospray conditions: flow 

rate of 10 mL/min, voltage applied to the needle at 3 kV, a cone voltage at 30 V, source 

temperature of 80 °C, and solvation temperature of 150 °C [62]. The resolution was set to 

about 9000 FWHM (full width at half maximum). Tandem mass spectra (MS/MS) were 

acquired by collision induced dissociation (CID), using argon as the collision gas (pressure 

measured as the setting in the collision cell 3.0 × 105 Torr). The collision energy was 

between 30 and 60 eV. Both MS and MS/MS spectra were recorded for 1 min. Data 

acquisition was carried out with a MassLynx 4.0 data system.  

II.10. Evaluation of the biological activity  

Considering the great biological potential of marine species, it is of great interest use of 

appropriate methodologies that can rapidly screen different marine sources for bioactive 

compounds. In vitro screening of anti-inflammatory and antiproliferative activities of 

macroalgae extracts were evaluated. The first approach was the evaluation of total lipids 

extract from Gracilaria sp. and further the evaluation of the fraction-rich in GLs obtained 

from Gracilaria by SPE separation (section II.4). Antioxidant activity of total lipid extract 

from Gracilaria was evaluated by DPPH bioassay. 
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II.10.1. Antiproliferative activity 

Cell Viability Assay on T-47D and 5637 Tumor Cell Lines 

The antiproliferative activity of lipid extracts was examined by the effect of Gracilaria 

sp. lipid extracts on the T-47D human breast cancer and urinary bladder cancer cell lines’ 

metabolism using the Prestoblue colorimetric assay (Invitrogen Life Sciences, Paisley, 

UK). Tumor cells were cultivated in Dulbecco’s Modified Eagle Medium (DMEM-F12, 

Invitrogen Life Technologies, Paisley, UK) with 10% fetal bovine serum (FBS; Gold, 

PAA) and 5 mg/L 1% penicillin/steptomicin (Invitrogen) in a humidified incubator at 37 

°C under an atmosphere of 5% CO2. Cells were plated on 96-well plates and allowed to 

attach for 24 h, 100 µL of cell suspension (1–2 × 104 cell/mL in complete medium) were 

used. Following this step, 200 µL of the treatment solution in a range of 5–20 μg/mL were 

applied to the culture. The lipid extract was dissolved in DMSO and diluted to a final 

concentration of 0.1% DMSO in a phenol-red free RPMI 1640 medium supplemented with 

2% charcoal treated FBS (DCC), 1% glutamate, and 1% PEST. The same concentration of 

DMSO was used in untreated controls [63]. The treatment medium was changed 48 h later, 

and was removed from each well after 48 h for viability assay using PrestoBlue 

Absorbance measured at 570 nm and 600 nm at 1, 2, 3, 4, and 5 h on a plate reader, which 

gave a linear absorbance range. Experiments were carried out in quadruplicate and three 

independent experiments were carried out for each cell line. 

II.10.2. Anti-inflammatory activity 

Immunomodulatory effects of total lipid and fractionated extracts was evaluated on 

Raw 264.7, a mouse leukaemic monocyte macrophage cell line macrophages, key cell of 

immune responses (272). The evaluation in vitro of the anti-inflammatory activity of 

extracts on macrophages was accessed by exposing to the bacterial cell-wall component 

lipopolysaccharide (LPS) that subsequently leads to the production of a broad array of pro-

inflammatory mediators, namely cytokines, chemokines and NO (272,273). The 

production of NO is measured by the accumulation of nitrite in the culture supernatants, 

using a colorimetric reaction with the Griess reagent (274). Test solutions of Gracilaria sp. 

lipid extracts (stock solution 25 mg/mL) were prepared in ethanol and stored at –20 °C 

until used. Serial dilutions of tested solutions with culture medium in a range of 25–200 
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μg/mL were prepared and sterilized by filtration immediately before in vitro assays. 

Ethanol concentrations ranged from 0.1% to 0.8% (v/v). 

RAW 264.7, a mouse leukemic monocyte macrophage cell line from American Type 

Culture Collection (ATCC TIB-71), was supplied by Otília Vieira (Centro de 

Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal) and 

cultured in Dulbecco’s Modified Eagle Medium (Invitrogen Life Technologies, Paisley, 

UK) supplemented with 10% non-inactivated fetal bovine serum, 100 U/mL penicillin, and 

100 μg/mL streptomycin at 37 °C in a humidified atmosphere of 95% air and 5% CO2. 

During the experiments, cells were monitored through microscope observation to detect 

any morphological change. Assessment of metabolically active cells was performed using 

a resazurin bioassay [64]. Briefly, cell duplicates were plated at a density of 0.1 × 106/well, 

in a 96-well plate and allowed to stabilize overnight. Following this period, cells were 

either maintained in a culture medium (control) or pre-incubated with various 

concentrations of Gracilaria sp. lipid extracts or its vehicle for 1 h, and later activated with 

50 ng/mL LPS for 24 h. After the treatments, resazurin solution (50 μM in culture medium) 

was added to each well and incubated at 37 °C for 1 h, in a humidified atmosphere of 95% 

air and 5% CO2. As viable cells are able to reduce resazurin (a non-fluorescent blue dye) 

into resorufin (pink and fluorescent), their number correlates with the magnitude of dye 

reduction. Quantification of resofurin was performed on a Biotek Synergy HT (BioTek 

Instruments, Winooski, VT, USA) plate reader at 570 nm, with a reference wavelength of 

620 nm. The production of nitric oxide was measured by the accumulation of nitrite in the 

culture supernatants, using a colorimetric reaction with the Griess reagent [65]. Briefly, 

170 μL of culture supernatants were diluted with equal volumes of the Griess reagent 

[0.1% (w/v) N-(1-naphthyl)-ethylenediamine dihydrochloride and 1% (w/v) sulphanilamide 

containing 5% (w/v) H3PO4] and maintained for 30 min in the dark. The absorbance at 550 

nm was measured on a Biotek Synergy HT plate reader. Culture medium was used as a 

blank and nitrite concentration (μM) was determined from a regression analysis using 

serial dilutions of sodium nitrite as standard. Experiments were carried out at least three 

times. 
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II.10.3. Antioxidant Capacity 

Antioxidant activity was measured in the total lipid extract of Gracilaria sp. extracts by 

using DPPH methods. Free Radical Scavenging by the Use of the DPPH Radical is based 

on the neutralization of free radicals of DPPH by the extract antioxidants (275–277). 

Antioxidant assays was performed in a 96-well flat-bottom UV transparent microplate (BD 

Falcon TM, ref. 353261, well volume 370 μL). 

Free Radical Scavenging by the Use of the DPPH Radical. 

For the DPPH• assay, a stock solution of DPPH• in ethanol (250 μM) was prepared and 

kept in the dark at room temperature. Three dilutions from the stock DPPH• solution 

(between 10 and 300 μM) must also prepared in ethanol to determine the dilution of the 

DPPH• stock solution necessary to obtain the DPPH• concentration that provide an 

absorbance value of 0.9 at 517 nm. For DPPH• assay, 150 μl of DPPH• and 150 μl of 

ethanol was placed in each well and absorbance was performed at room temperature after 2 

min of incubation, by using spectrophotometric detection in a UV-Vis spectrophotometer 

(Multiskan GO 1.00.38., Thermo Scientific) (275). Then, 150 μl of DPPH• and 150 μl of 

ethanol of the DPPH• solution providing an absorbance 0.9 was prepared and the stability 

of the radical upon reaction time is evaluated by measuring the absorbance at 517 nm 

every 5 min, during 120 min, at room temperature.  

The percentage of DPPH• radical remaining was calculated using the equation:   

 % DPPH• 
Remaining = (Abs sample after incubation time/Abs sample at the beginning of reaction) x 100.  

This solution was used for further experiments. For evaluation of radical species 

scavenging, 150 µL of Trolox standard solutions (between 5 and 75 µmol/L in ethanol), 

extracts of Gracilaria sp. (100, 500 and 1000 µg/mL in ethanol) were placed in each well, 

followed by addition of 150 µL of DPPH• in ethanol. The DPPH• scavenging activity of 

standards and samples was monitored at 517 nm every 5 min after the beginning of 

reaction during 120 min at room temperature. The microplate was automatically shaken for 

5 s prior to each reading. For each sample, the experiment was performed in triplicate in 

three different days. For microplate DPPH• 150 μl of Trolox standard solution or diluted 
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macroalgae extracts and 150 μl of DPPH• are placed in each well (275). The DPPH• 

scavenging capacity was monitored at 517nm during 120 min. The antioxidant activity of 

the tested samples expressed as percentage of inhibition of DPPH• radical was calculated 

(60 and 120 min) using the following equation:   

 % inhibition = ((Abs DPPH•
 -Abssample)/Abs DPPH•) x 100 

The IC50 values (concentration of sample that induces a reduction of 50% in the initial 

DPPH• radical) obtained after 120 min of reaction were calculated by linear regression 

from the concentration of sample versus percentage of inhibition. This value was used to 

choose the range of concentration of lipid extracts to be evaluated in the anti-inflammatory 

assay. 

II.11. Statistical Analysis 

The experiments were done independently (at least two technical replicates of at least 

three different and independent experiments) and the results were expressed as the means ± 

SD. Data analysis was performed by using GraphPad Prism 5.0 for Windows (GraphPad 

Software, San Diego, CA, USA). Variation in the lipidome of macroalgae Fucus 

vesiculosus with season effect (section III.I.3) were obtained by t-test analysis of 

independent samples after test the normality (Shapiro-Wilk test) and homogeneity of 

variance (Levéne test) with results expressed by the changes of the relative abundance in 

the profile of molecular species of all classes. If the null hypothesis of Levene's Test was 

rejected then Welsh t test was performed; and applied non-parametric Mann-Whitney’s U 

test. These preliminary results were obtained by multivariate analysis by using IBM SPSS 

Statistics for Windows, version 24 (IBM Corp., Armonk, N.Y., USA) and R: A language 

and environment for statistical computing. R (Foundation for Statistical Computing, 

Vienna, Austria) with a Package for Metabolomics Univariate and Multivariate Statistical - 

MUMA. Antiproliferative and anti-inflammatory bioassays were measured in 

quadruplicate and in three different and independent experiments. One-way analysis of 

variance (ANOVA) followed by Dunnett’s multiple comparison tests was used to compare 

the treatment group to a single control group, after checking for assumptions. Results were 

expressed as mean  SD. Statistical differences were calculated and represented with the 
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following symbols of significance level * p < 0.05, ** p < 0.01, *** p < 0.001, # p < 0.05, 

### p < 0.001.  

II.12. Nutritional Indexes 

The nutritional quality of the lipids was assessed by considering atherogenic and 

thrombogenic indexes: 

AI and TI indexes calculated by the method of Ulbricht and Southgate (278). 

 

IA = (12:0 + 4 × 14:0 + 16:0) / (Σ MUFAs + Σ n-6 PUFAs + Σ n-3 PUFAs) 

IT = (14:0 + 16:0 + 18:0) / (0.5 × Σ MUFAs + 0.5 × Σ n-6 PUFAs + 3 × Σ n-3 PUFAs + 

Σ n-3/n-6) 

II.13. Standards and Reagents  

HPLC grade chloroform, methyl tert-butyl ether (MTBE), and methanol (MeOH) were 

purchased from Fisher Scientific Ltd. (Loughborough, UK). All other reagents were 

purchased from major commercial sources. Milli-Q water (Synergy®, Millipore 

Corporation, Billerica, MA, USA) was used. TLC silica gel 60 glass plates (20 x 20 cm) 

with concentrating zone were purchased from Merck (Darmstadt, Germany). D-(+)-

Glucose ≥ 99.5%, 6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) and 

2,2-Diphenyl-1-picrylhydrazyl (DPPH●) were purchased from Sigma-Aldrich (St Louis, 

MO, USA), RPMI 1640 media from PAA (Pasching, Austria), Phenol-red-free RPMI 1640 

medium, penicillin–streptomycin, TrypLE express and FBS were from Gibco 

Technologies (Paisley, UK), and Presto Blue was from Invitrogen.  

Standards of polar lipid were purchased from Avanti® Polar Lipids, Inc. (Alabaster, 

USA): 1,2-diacyl-3-O-β-D-galactosyl-sn-glycerol (MGDG); 1,2-diacyl-3-O-(α-D-

galactosyl1-6)-β-D-galactosyl-sn-glycerol (DGDG); sulfoquinovosyl diacylglycerol 

(SQDG); 1,2-dipalmitoyl-sn-glycero-3-O-4'-(N,N,N-trimethyl)-homoserine  (DGTS); 

phospholipids internal standards 1,2-dimyristoyl-sn-glycero-3-phosphocholine (dMPC), 1-

nonadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC), 1,2-dimyristoyl-sn-glycero-

3-phosphoethanolamine (dMPE), 1,2-dimyristoyl-sn-glycero-3-phosphate (dMPA), 1,2-

dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (dMPG), 1,2-dimyristoyl-sn-glycero-3-

phospho-L-serine (dMPS) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-myo-inositol) 
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(dPPI). Methyl ester of fatty acids mixture was from Supelco 37 Component FAME Mix 

and Methyl heptadecanoate ≥ 99% was from Sigma. All standards used had a purity of ≥ 

99% and were used without further purification. 
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The lipidome of Chlorophyta: Codium tomentosum 

__________________ 

Codium tomentosum is a marine green macroalgae (phylum Chlorophyta) of the family 

Codiaceae. It is commonly found on exposed rocks and/or deep rock pools on the lower 

seashore (279). This specimen is native to the North East of the Atlantic Ocean and is 

known to be an important source of compounds with bioactive properties such as sulfated 

galactans and pigments, among others, with antioxidant, antigenotoxic, anti-tumor, and 

hypoglycemic activities (8). Concerning lipids of Codium, a limited number of studies is 

currently available for the characterization of FA composition (143,280) and no studies on 

the profile of polar lipidome. 

This study is the first report on the isolation and characterization of the polar lipids of 

Codium tomentosum from on land-based integrated multi-trophic aquaculture system 

(IMTA) by using a lipidomic-based approach employing hydrophilic interaction liquid 

chromatography–electrospray ionization mass spectrometry (HILIC–ESI-MS). As most of 

polar lipids have been reported to have nutritional and health benefits, the present study 

aims to decode the polar lipidome of C. tomentosum from IMTA fostering the 

bioprospection and their potential commercial applications in food, pharmaceutical and 

cosmetic industries. 

III.1.1.1. Polar lipids from Codium tomentosum  

The LC–MS analysis of the lipid extracts allowed the structural information of the 

lipidome of C. tomentosum, namely profile and the molecular species composition within 

the polar lipid belonging to GLs, PLs and betaine lipids. Structures of polar lipids were 

identified by high resolution MS and the detailed fragmentation obtained by ESI−MS/MS.  

Glycolipids 

Glycoglycerolipids occur widely in marine algae, in cyanobacteria and in higher plants. 

The basic structure of glycoglycerolipids is characterized by a 1,2-diacyl-sn-glycerol 

moiety with a mono- or oligosaccharide attached to the sn-3 position of the glycerol 

backbone [43]. Four groups of GLs were identified: SQDG, SQMG, MGDG, and DGDG. 
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Sulfoquinovosyl diacylglycerol (SQDG) and sulfoquinovosyl monoacylglycerol (SQMG) 

The molecular species from 1,2-diacyl-3-O-(6-deoxy-6-sulfo-α-D-glucopyranosyl)-sn-

glycerol (SQDG) were analyzed in the negative-ion mode and observed as [M − H]− ions 

(Fig. III.1 and Table III.1). The typical fragmentation under MS/MS of SQDGs is 

characterized by the presence of ions at m/z 225 corresponding to the sulfoquinovosyl 

group, confirming the polar head of these lipids, and the presence of ions formed due to the 

loss of fatty acyl chains, both as acid and keto derivatives (127,131,145). The carboxylate 

anions (RCOO-) can also be detected. As an example, in Fig. III.2 it is shown the 

LC−MS/MS spectra of the SQDG molecular species observed as [M − H]− at m/z 737.4 

identified as SQDG (28:0) (SQDG (12:0/16:0) and 14:0/14:0)) (Fig. III.2.A) and at m/z 

833.4 identified as SQDG (35:1) (SQDG (19:1/16:0) and (17:0/18:1)) (Fig. III.2.B). 

Carboxylate anion at m/z 255.1 assigned as RCOO- of the FA 16:0, loss of C11H23COOH at 

m/z 537.2 and loss of C15H31COOH at m/z 481.1 confirm the presence of SQDG 

(12:0/16:0) and the loss of C13H27COOH at m/z 509.2 confirm the presence of SQDG 

(14:0/14:0) (Fig. III.2.A). On the other hand, the carboxylate anions at m/z 255.1 (FA 16:0) 

and 295.1 (FA 19:1), product ions due to loss of C18H35COOH (loss of FA 19:1) at m/z 

537.2 and loss of C15H31COOH at m/z 577.2 confirm the presence of SQDG 35:1 (SQDG 

(19:1/16:0)) (Fig. III.2.B). The SQDG (17:0/18:1) was confirmed by the loss of 

C16H33COOH at m/z 563.2 (loss of FA 17:0) and of the loss of C17H33COOH at m/z 551.2 

(loss of FA 18:1) (Fig. III.2.B).  

Based on the LC−MS and MS/MS analysis, several molecular species of SQDG were 

identified containing fatty acyl chains from 14:0 to 22:6, and the most abundant molecular 

species was found at m/z 793.5 assigned as SQDG (16:0/16:0). SQDGs species containing 

odd fatty acyl chains (C17 and C19) were also identified. Monoacyl forms of 

diacylglycerolipids (SQMG) were detected in C. tomentosum for the first time, and firstly 

reported in the lipidome of Codium spp. (Supplementary Fig. S.1). The typical 

fragmentation of SQMGs by MS/MS reveals the presence of ions at m/z 224.8, as for 

SGDGs (Supplementary Fig. S.2) (127,131,145). Carboxylate anions (RCOO-) could also 

be found. The most abundant species of SQMG was found at m/z 555.3, corresponding to 

SQMG (16:0) (Supplementary Fig. S.2) and at m/z 597.3 attributed to SQMG (19:0). 
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Figure III. 1. LC–MS spectrum of sulfoquinovosyl diacylglycerol (SQDG) observed by HILIC–

ESI–MS as [M − H]− ions. A general structure is also represented. 

 

Figure III. 2. ESI–MS/MS spectra of the SQDG molecular species observed as [M − H]− at m/z 

737.4 identified as SQDG (28:0) (SQDG (12:0/16:0) and (14:0/14:0)) (A), and at m/z 833.4 

identified as SQDG (35:2) (SQDG (17:0/18:1) and (16:0/19:1)) (B). 

Monogalactosyl diacylglycerol (MGDG) 

The molecular species from monogalactosyl diacylglycerol (MGDG) were identified in 

the LC–MS in positive-ion mode as [M + NH4]+ ions (Fig. III.3). Confirmation of the 

structure was achieved by MS/MS analysis, that showed product ions resulting from the 

loss of NH3, loss of hexose residue (-162 Da, -Hexres) and hexose moiety (-180 Da, -Hex) 

(123,156,210,211). Product ions formed by combined loss of the one FA and the hexose 

yield a typical acylium ions plus 74 (RCO + 74)+ confirm the FA composition. The MGDG 



Chapter III. Results and Discussion 

74 

molecular species are indicated in the Figure III.3 and in the Table III.1 (210). The most 

abundant [M + NH4]+ ion was found at m/z 774.3 mainly corresponding to MGDG 

(18:1/16:0) and minor to MGDG (18:0/16:1), followed by the ion at m/z 796.3 assigned to 

MGDG (18:1/18:3) and MGDG (18:2/18:2). Low abundant [M + Na]+ ions correspondent 

to all MGDG species were detected and the structures were confirmed by MS/MS as 

described in the literature and in the Section II.9 (123,145,156,210,211). In the Figure III.4 

is shown as example the MS/MS spectrum of [M + Na]+ ion MGDG (34:1) at m/z 779.7. 

The spectrum contains the ion at m/z 497.4 attributed to the loss of C17H33COOH (FA 

18:1) and the ion at m/z 523.4 due to the loss of C15H31COOH (loss of FA 16:0). The ion at 

m/z 243, as described in the Section II.9, is attributed to the product ion galactosyl glycerol 

head group [C9H16O6 + Na]+.  

MGDG molecular species identified contain in their composition fatty acyl chains from 

16:0 to 20:5, including essential FA like oleic (18:1) and linolenic (18:3, ALA) and long 

fatty acyl chains eicosapentaenoic (20:5, EPA) bearing PUFAs. 
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Figure III. 3. LC–MS spectrum of monogalactosyl diacylglycerol (MGDG) molecular species 

observed by HILIC–ESI–MS as [M + NH4]+ ions. *Eluent contamination. A general structure is 

also represented. 

 

Figure III. 4. ESI–MS/MS spectrum of the ion [M + Na]+ of MGDG (34:1) (MGDG (16:0/18:1) 

and (16:1/18:0)) at m/z 779.7.  
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Digalactosyl diacylglycerol (DGDG) 

The molecular species from digalactosyl diacylglycerol (DGDG) were analyzed by 

LC−MS in positive-ion mode and the molecular species were identified as [M + NH4]+ 

ions. The MS/MS spectrum showed product ions formed due to the losses of the hexose 

moiety (-162 Da and -180 Da), loss of NH3, and further loss of H2O (123,156,210,211), 

similarly to observed for MGDG. The profile of the molecular species of DGDG, 

identified by LC−MS, is shown in the Table III.1 and in the Figure III.5. The most 

abundant ion was found at m/z 936.3 as [M + NH4]+ of DGDG (18:1/16:0) and DGDG 

(18:0/16:1). DGDG molecular species contain fatty acyl chains from C16 to C20 including 

PUFAs 18:3 and 20:5 FA and hydroxyl FA 18:2-OH and 18:3-OH. DGDG containing 

oxylipins precursors were reported in algae species (163,281,282).  
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Figure III. 5. LC–MS spectrum of the digalactosyl diacylglycerol (DGDG) molecular species 

observed by HILIC−ESI−MS as [M + NH4]+ ions. A general structure is represented.  

The confirmation of the proposed identification was obtained from the MS/MS analysis 

of [M + Na]+ ions, as described in the literature (123,145,156,210,211). As an example, it 

is shown in Fig. III.6, the LC−MS/MS spectrum of the DGDG molecular species observed 

as [M + Na]+ at m/z 927.7 identified as DGDG (33:1) ((15:0/18:1), (17:1/16:0) and 

(14:0/19:1)) (Fig. III.6.A) and DGDG (32:2-OH) (14:0/18:2-OH) (Fig. III.6.A).  
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Figure III. 6. LC–MS/MS spectra of the DGDG molecular species observed as [M + Na]+ at m/z 

927.7 identified as DGDG (33:1) (DGDG (16:0/17:1)) and DGDG (32:2-OH) (DGDG (14:0/18:2- 

OH)) (A), and at m/z 955.8 identified as DGDG (35:1) (DGDG (16:0/19:1) and (17:0/18:1)) (B). 

The presence of hydroxylated FA, as oxylipin, was inferred by the presence of the 

product ion due to loss of H2O, that is absent in the MS/MS spectrum of the other DGDG 

as can be seen in Fig. III.6.B for DGDG (35:1), allowing to propose the presence of 

hydroxylated FAs. The ion at m/z 631.5 observed in the Fig. III.6.A, was attributed to the 

loss of C17H31COO-OH (FA 18:2-OH) and the ion at m/z 699.5 was attributed to the loss of 

C13H27COOH (loss of FA 14:0) (Fig. III.6.A), thus confirming the DGDG (14:0/18:2-OH). 

On the other hand, the ion at m/z 645.5 was attributed to the loss of C17H33COOH (FA 

18:1) and the ion at m/z 685.5 was attributed to loss of C14H29COOH (FA 15:0) confirming 

the DGDG (15:0/18:1). Also, the ions at m/z 671.5 and the ion at m/z 658.5 were assigned 

by the loss of C15H31COOH (FA 16:0) and C16H31COOH (FA 17:1) confirming the 

presence of DGDG (16:0/17:1). The assignment of DGDG (14:0/19:1) due to the loss of 

C13H27COOH (FA 14:0) at m/z 699.5 and C18H35COOH (FA 19:1) at m/z 631.5 was also 

considered. The fragmentation under MS/MS of [M + Na]+ ions of DGDGs showed the 

loss of one hexose residue (neutral loss of 162 Da) at m/z 765.5 (Fig. III.6.A) and at m/z 

793.6 (Fig. III.6.B). In both spectra it is possible to see the ions at m/z 405.3 (Fig. III.6.A) 

and 405.2 (Fig. III.6.B) corresponding to the digalactosyl glycero head group [C15H26O11 + 

Na]+. On the other hand, the DGDG 35:1 (19:1/16:0 and 17:0/18:1) (Fig. III.6.B) product 
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ions were observed at m/z 659.4 and 699.4 due to the loss of C18H35COOH (loss of FA 

19:1) and C15H31COOH (loss of FA 16:0) respectively, and the product ions assigned at 

m/z 685.4 and 673.4 are due to the loss of C16H33COOH (loss of FA 17:0) and to the loss 

of C17H33COOH (loss of FA 18:1). 

Table III. 1 Identification of MGDG and DGDG molecular species observed by HILIC–ESI–MS, 

as [M + NH4]+ ions and SQDG and SQMG molecular species observed as [M − H]− ions, with the 

assignment of the fatty acyl composition of each lipid molecular species, according to the 

interpretation of the correspondent MS/MS spectra 

Galactolipids [M + NH4]
+ Lipid Species Sulfolipids [M - H]- Lipid Species

m/z (C:N) m/z ( C:N)

772.3 MGDG (34:2) 18:2/16:0 737.4 SQDG (28:0) 14:0/14:0 and 12:0/16:0

774.3 MGDG (34:1) 18:1/16:0 765.4 SQDG (30:0) 14:0/16:0

776.3 MGDG (34:0) 18:0/16:0 791.5 SQDG (32:1) 16:0/16:1 and 14:0/18:2

790.5 MGDG (36:7) 18:3/18:4 793.5 SQDG (32:0) 16:0/16:0 and 14:0/18:0

792.3 MGDG (36:6) 18:3/18:3 813.4 SQDG (34:4) 18:4/16:0

794.3 MGDG (36:5) 18:2/18:3 815.4 SQDG (34:3) 18:3/16:0

796.3 MGDG (36:4) 18:2/18:2 817.5 SQDG (34:2) 18:2/16:0

800.3 MGDG (36:2) 18:0/18:2 819.5 SQDG (34:1) 18:1/16:0

804.5 MGDG (36:0) 18:0/18:0 831.4 SQDG (35:2) 19:2/16:0 and 17:0/18:2

816.6 MGDG (38:8) 18:3/20:5 833.4 SQDG (35:1) 19:1/16:0 and 17:0/18:1

835.4 SQDG (35:0) 19:0/16:0 and 17:0/18:0

904.6 DGDG (32:3) 16:3/16:0 845.4 SQDG (36:2) 20:2/16:0

906.6 DGDG (32:2) 16:2/16:0 847.3 SQDG (36:1) 20:1/16:0

DGDG (32:3-OH) 14:0/18:3-OH and 865.4 SQDG (38:6) 22:6/16:0

DGDG (33:2) 15:0/18:2 and 14:0/19:2

DGDG (32:2-OH) 14:0/18:2-OH and 549.3 SQMG (16:3)

DGDG (33:1)
15:0/18:1 and 16:0/17:1  
and 14:0/19:1

555.3 SQMG (16:0)

926.2 DGDG (34:6) 16:3/18:3 567.3 SQMG (17:1)

932.3 DGDG (34:3) 18:3/16:0 597.3 SQMG (19:0)

936.3 DGDG (34:1) 18:1/16:0 and 18:0/16:1

948.6 DGDG (35:2) 17:0/18:2  and 19:2/16:0

950.5 DGDG (35:1) 17:0/18:1 and 19:1/16:0

958.6 DGDG (36:4) 18:2/18:2

964.5 DGDG (36:1) 18:0/18:1 and 20:0/16:1

980.3 DGDG (38:7) 18:2/20:5

992.6 DGDG (38:1) 18:1/20:0

922.5

Fatty Acyls Chain

Sulfoquinovosyl diacylglycerol

Digalactosyl diacylglycerol

920.6
Sulfoquinovosyl monoacylglycerol

Fatty Acyl Chain

Monogalactosyl diacylglycerol

 
Bold m/z values correspond to the most abundant species detected in the LC-MS spectrum; C means the number of 
total carbon atoms and N represents total number of double bonds in the fatty acyl chains 

Phospholipids 

Phospholipids are characterized by the presence of a phosphate group at sn-3 position, 

which is further linked to a hydrophilic head group that classifies individual PL molecules. 

The major PLs identified in C. tomentosum are phosphatidylglycerols (PG), 

phosphatidylcholines (PC), phosphatidylinositols (PI), and phosphatidic acids (PA). The 

structural assignments were based on the study of the detailed fragmentation of PLs (138). 
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Phosphatidylglycerol (PG) and lyso PG 

The classes of PG (Fig. III.7) and lyso PG (Supplementary Fig. S.3) were identified by 

LC–MS as [M − H]-  ions. The LC−MS/MS spectra of PG showed ions formed due to the 

loss of fatty acyl chains both as acid and keto derivatives and the carboxylate anions of the 

fatty acyl chains (138,145,156,212). Ions corresponding to the neutral loss of 74 Da (loss 

of glycerol head group as an oxirane, C3H6O2) and to the combined loss of 74 Da and the 

fatty acyl chain were also found (Fig. III.8). The most abundant PG molecular species was 

found at m/z 747.4 corresponding to PG (18:0/18:1). The second most abundant species 

was found at m/z 765.3 and corresponds to PG (16:1/20:5) and PG (18:3/18:3) (Table III.2, 

Fig.III.7). These species contain EPA and AA PUFAs and odd chain FA in their 

composition. 

The LC−MS/MS spectrum of LPGs (Fig. III.8.B) showed ions formed due to the loss of 

74 Da (loss of glycerol head group as an oxirane, C3H6O2), ions at m/z 171 

([C3H7O2OPO3H]−, glycerol phosphate), at m/z 153 (glycerol phosphate- H2O), at m/z 227 

([C6H12O7P]−, loss of water from glycerophosphate glycerol) and the carboxylate anion of 

fatty acyl chain (145,212). Lipidomic analysis showed that the most abundant molecular 

species was LPG (16:0), at m/z 483.3, followed by LPG (18:1), LPG (19:0) and LPG 

(20:3) with [M − H]− ions at m/z 509.3, 525.3 and 533.3 respectively (Table III.2, Fig. S.3). 
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Figure III. 7. LC–MS spectrum of the phosphatidylglycerol (PG) observed by HILIC–ESI–MS as 

[M – H]− ions. A general structure is presented. 
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Figure III. 8. ESI–MS/MS spectra of the PG (34:2) (A), LPG (16:0) (B), PI (34:2) (C), PA (36:4) 

(D), PC (36:2) (E) and LPC (18:3) (F). 

Phosphatidylcholine (PC) and lyso- PC 

The classes of PC and lyso-PC were identified in positive-mode as [M + H]+ ions 

(Fig.III.9 and Fig.III.8.E) and confirmed in the negative-ion mode as [M + CH3COO]− 

ions. The LC−MS spectrum obtained in positive mode and the composition of the PC 

molecular identified, including the fatty acyl chain substitution, is presented in Table III.2. 

The classes PC and LPC also have a specific product ion of the polar head in the MS/MS 

spectra of [M + H]+ ions, at m/z 184 (H2PO4(CH2)2N+(CH3)3, phosphocholine) 

(138,145,156,215). The MS/MS spectra in negative-ion mode allowed the identification of 

the carboxylate anions (RCOO-) of fatty acyl chains. Most abundant molecular species was 

found at m/z 756.5 and assigned as [M + H]+ ions corresponding to PC (16:0/18:3) and PC 

(16:2/18:1). The second most abundant ions was found at m/z 782.5 for [M + H]+ ions and 

correspond to PC (18:2/18:2) and PC (16:0/20:4). Several other species can be seen in 

Figure III.9 also bearing SFA, MUFAs, PUFAs namely AA, EPA and DHA. 
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Figure III. 9. LC–MS spectrum of the phosphatidylcholine (PC) molecular species observed by 

HILIC-ESI-MS as [M + H]+ ions. A general structure is shown. 

The class of lyso-PCs were identified in positive-ion mode as [M + H]+ ions, and the 

LC−MS spectrum obtained for the [M + H]+ ions is presented in Table III.2, Figure S.4. 

The most abundant molecular species was found at m/z 496.4, corresponding to LPC 

(16:0), at m/z 518.4 corresponding to LPC (18:3) (Fig. III.8.F), and at m/z 522.4 that 

corresponds to LPC (18:1). Other species can be seen in Table III.2 also bearing PUFAs. 

Phosphatidylinositol (PI) 

The class of PI was observed in the MS spectra of the [M − H]− ions (Fig. III.10). The 

MS/MS spectra showed the product ion at m/z 241 corresponding to an inositol-1,2-cyclic 

phosphate anion and the product ions attributed to [M – H − R2CO2H]− and [M – H − 

R1CO2H]− arising from losses of the FA substituent as acids allowing to identify the 

structure of PI molecular species (Fig. III.8.C) (138,214).  
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Figure III. 10. LC–MS spectrum and general structure of the phosphatidylinositol (PI) molecular 

species observed by HILIC−ESI−MS as [M − H]− ions. 

The most abundant molecular species were found at m/z 835.4 and at m/z 833.4, 

corresponding to PI (16:0/18:1) and to PI (16:0/18:2). Other ions were found and 

correspond to PIs with fatty acyl chains varying from 16:0 to 19:0 and with PUFAs as 

18:1, 18:2, 18:3, 20:4 and 22:6 (Table III.2, Fig. III.10). 
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Table III. 2. Identification of phospholipids molecular species observed by HILIC–ESI–MS, for 

PG, LPG, PA and PI as [M − H]− ions and for PC and LPC as [M + H]+, with the assignment of the 

fatty acyl composition of each lipid molecular species, according to the interpretation of the 

correspondent MS/MS spectra 

[M − H]
−

Lipid Species Fatty acyl Chain [M + H]
+ 

Lipid Species Fatty Acyl Chain 

m/z (C:N) m/z (C:N)

717.4 PG (32:2) 16:0/16:2 and 16:1/16:1 482.5 LPC (O-16:0a) 

719.4 PG (32:1) 16:0/16:1 494.4 LPC (16:1) 

721.4 PG (32:0) 16:0/16:0 496.4 LPC (16:0) 

733.3 PG (33:1) 16:0/17:1 and 16:1/17:0 516.4 LPC (18:4) 

741.3 PG (34:4) 16:1/18:3 518.4 LPC (18:3) 

743.3 PG (34:3) 16:0/18:3 and 16:1/18:2 520.4 LPC (18:2) 

745.3 PG (34:2) 16:0/18:2 and 16:1/18:1 522.4 LPC (18:1) 

747.4 PG (34:1) 16:0/18:1 and 16:1/18:0 524.4 LPC (18:0) 

759.4 PG (35:2) 17:0/18:2   536.6 LPC (O-18:1a) 

763.3 PG (35:0) 17:0/18:0 and 19:0:16:0 542.4 LPC (20:5) 

765.3 PG (36:6) 16:1/20:5 and 18:3/18:3 544.4 LPC (20:4) 

767.3 PG (36:5) 16:0/20:5 and 18:2/18:3 

787.3 PG (37:2) 17:0/20:2 and 19:0/18:2 702.5 PC (30:2) 14:0/16:2

728.5 PC (32:3) 16:0/16:3 or 16:1/16:2 

481.3 LPG (16:1) 730.6 PC (32:2) 16:0/16:2 or 16:1/16:1

483.3 LPG (16:0) 732.6 PC (32:1) 16:0/16:1 and 14:0/18:1

507.3 LPG (18:2) 734.6 PC (32:0) 16:0/16:0 and 14:0/18:0

509.3 LPG (18:1) 744.6 PC (O-34:2) O-16:0a/18:2 or O-16:0e/18:1

523.3 LPG (19:1) 754.5 PC (34:4) 16:2/18:2

525.3 LPG (19:0) 756.5 PC (34:3) 16:0/18:3 and 16:2/18:1

533.3 LPG (20:3) 758.5 PC (34:2) 16:0/18:2 and 16:1/18:1

535.3 LPG (20:2) 760.5 PC (34:1) 16:0/18:1 

762.5 PC (34:0) 16:0/18:0

665.2 PA (34:5) 16:1/18:4 770.5 PC (O-36:3) O-18:0a/18:3 or O-18:1a/18:2

681.3 PA (O-36:4) O-18:1a/18:3 772.5 PC (O-36:2) O-18:0a/18:2 or O-18:1a/18:1

695.3 PA (36:4) 18:1/18:3 and 16:0/20:4 774.5 PC (O-36:1) O-18:0a/18:1 or O-18:1a/18:0

697.3 PA (36:3) 18:1/18:2 and 18:0/18:3 780.5 PC (36:5) 16:0/20:5 and 18:2/18:3

701.3 PA (36:1) 18:0/18:1 782.5 PC (36:4) 16:0/20:4 and 18:2/18:2

719.4 PA (38:6) 18:3/20:3 784.4 PC (36:3) 16:0/20:3 and 18:0/18:3

721.4 PA (38:5) 18:0/20:5 786.5 PC (36:2) 16:0/20:2 and 18:0/18:2

788.5 PC (36:1) 18:0/18:1

807.4 PI (32:1) 16:0/18:2 794.4 PC (O-38:5) O-18:0a/20:5

831.4 PI (34:3) 16:0/18:3 796.4 PC (O-38:4) O-18:0a/20:4

833.4 PI (34:2) 16:0/18:2 798.4 PC (O-38:3) O-18:0a/20:3 

835.4 PI (34:1) 16:0/18:1 800.4 PC (O-38:2) O-18:0a/20:2

849.4 PI (35:1) 17:0/18:1 802.4 PC (O-38:1) O-18:0a/20:1 and O-18:1a/20:0

861.4 PI (36:2) 18:0/18:2 804.4 PC (38:7) 18:2/20:5 and 18:3/20:4

873.4 PI (37:3) 19:0/18:3 806.4 PC (38:6) 18:2/20:4 and 18:3/20:3

875.4 PI (37:2) and (38:9) 19:0/18:2 and 18:4/20:5 808.4 PC (38:5) 18:2/20:3 and 18:3/20:2

877.4 PI (37:1) and (38:8) 19:0/18:1 and 18:3/20:5 810.4 PC (38:4) 18:2/20:2 and 18:3/20:1

883.3 PI (38:5) 18:0/20:5 812.5 PC (38:3) 18:1/20:2 and 18:3/20:0

907.4 PI (40:6) 18:0/22:6 814.5 PC (38:2) 18:0/20:2 and 18:2/20:0 and 16:0/22:2

818.5 PC (38:0) 18:0/20:0 or 16:0/22:0

822.5 PC (O-40:5) O-18:0a/22:5 or O-18:Oe/22:4

824.4 PC(O-40:4) O-18:0a/22:4 

828.5 PC(O-40:2) O-18:0a/22:2 or O-18:Oe/22:1

830.5 PC(O-40:1) O-18:0a/22:1

834.4 PC (40:6) 20:2/20:4 and 20:3/20:3 and 18:0/22:6

836.4 PC (40:5) 20:2/20:3 and 20:0/20:5 

840.4 PC (40:3) 20:0/20:3 or 20:1/20:2 or 18:3/22:0 or 18:1/22:2

844.4 PC (40:1) 18:1/22:0

846.4 PC (40:0) 20:0/20:0 and 18:0/22:0

Phosphatidylglycerol Lyso-phosphatidylcholine

Phosphatidic acid

Phosphatidylinositol

Lyso-phosphatidylglycerol

Phosphatidylcholine

 

Bold m/z values correspond to the most abundant species detected in the LC-MS spectrum; C means the number of total carbon atoms 
and N represents total number of double bonds in the fatty acyl chains 
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Phosphatidic acid (PA)  

The class of PA was analyzed by LC−MS in negative-ion mode with the formation of 

[M − H]− ions (Supplementary Fig. S.5) (214). The major pathways leading to formation 

of the [M – H – R1CO2H]− and [M – H – R2CH=C=O]− ions are via losses of the fatty acyl 

substituent as an acid or as a ketene derivative, respectively, for the [M − H]− ion of PA 

(Fig. III.10.D) (214). Several molecular species were identified by the LC − MS/MS 

analysis, including PA and PA-O species (Table III.2, Fig. S.5) also bearing PUFAs. 

Betaine lipids 

Betaine lipids (diacylglyceryl-N,N,N-trimethyl-homoserine, DGTS) are a class of 

acylglycerolipids that have a quaternary amine alcohol ether-linked to a diacylglycerol 

moiety, and are lacking in phosphorus. The LC−MS spectrum of DGTS (Fig. III.11) was 

obtained in positive-ion mode and the molecular species of DGTS were identified as [M + 

H]+ ions (145,156,216).  
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Figure III. 11. LC–MS spectrum of the diacylglyceryl-N,N,N-trimethyl-homoserine (DGTS) 

species, observed by HILIC–ESI–MS as [M + H]+ ions. A general structure is presented. 

The LC−MS analysis of DGTS is depicted in the Fig. III.11 and contains several 

molecular species found in the lipid extract of C. tomentosum. The MS/MS spectra of [M + 

H]+ ions typically showed product ions at m/z 236 identified as C10H22O5N+ considered the 

diagnostic product ion of this class, resulting from the combined loss of both FA (Fig. 

III.12.A and B). The most abundant [M + H]+ ion was found at m/z 734.7 mainly 

corresponding to DGTS (16:0/18:3) and minor ions to DGTS (16:1/18:2) and DGTS 

(14:0/20:3). The second most abundant ion was at m/z 740.7 and was attributed to DGTS 

(16:0/18:0) and DGTS (14:0/20:0) species (Fig. III.11, Table III.3). DGTS species also 

include 20:3, 20:5, and 22:6 FA. 
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Figure III. 12. ESI–MS/MS spectra of the DGTS (34:2) (A), DGTS (35:1) (B), MGTS (18:2) (C) 

and MGTS (19:1) (D).  

Monoacylglyceryl-N,N,N-trimethyl-homoserine lipids (MGTS) were identified in 

positive ion mode as [M + H]+ ions (Supplementary Fig. S.6 and Table III.3). These 

species have not been reported for macroalgae but have already been identified in the green 

microalgae Nannochloropsis salina by using lipidomics (283). The MS/MS spectra of [M 

+ H]+ ions showed product ions at m/z 236, considered the diagnostic precursor ion of this 

class, corresponding to the product of cleavage of the unique FA (Fig. III.12.C and D) 

(216). Several MGTS were detected and the most abundant were at m/z 474.6, attributed to 

MGTS (16:0), at m/z 500.4 attributed to MGTS (18:1), at m/z 496.6 to MGTS (18:3) and at 

m/z 522.5 to MGTS (20:4) Supplementary (Fig. S.6). 
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Table III. 3. Identification of betaine molecular species observed by HILIC–ESI–MS, as [M + H]+, 

for DGTS and MGTS, with the assignment of the fatty acyl composition of each lipid molecular 

species, according to the interpretation of the correspondent MS/MS spectra 

[M + H]+ Lipid Species Fatty Acyls Chain [M + H]+ Lipid Species 

m/z (C:N) 
 

m/z (C:N) 

Diacylglyceryl trimethyl-homoserine Monoacylglyceryl trimethyl-homoserine 

680.7 DGTS (30:2) 14:0/16:2 446.5 MGTS (14:0) 

682.7 DGTS (30:1) 14:0/16:1 and 16:0/14:1 470.5 MGTS (16:2) 

706.7 DGTS (32:3) 16:0/16:3 and 16:1/16:2 and 14:0/18:3 472.5 MGTS (16:1) 

710.7 DGTS (32:1) 14:0/18:1 and 16:0/16:1 474.5 MGTS (16:0) 

732.5 DGTS (34:4) 14:0/20:4 and 16:0/18:4 and 16:1/18:3 494.6 MGTS (18:4) 

734.7 DGTS (34:3) 16:0/18:3 and 16:1/18:2 and 14:0/20:3 496.5 MGTS (18:3) 

736.7 DGTS (34:2) 16:0/18:2 and 16:1/18:1 and 14:0/20:2 498.5 MGTS (18:2) 

738.7 DGTS (34:1) 16:0/18:1 and 16:1/18:0 and 14:0/20:1 500.6 MGTS (18:1) 

740.7 DGTS (34:0) 16:0/18:0 and 14:0/20:0 512.5 MGTS (19:2) 

748.6 DGTS (35:3) 15:0/20:3 and 16:3/19:0 514.5 MGTS (19:1) 

750.6 DGTS (35:2) 15:0/20:2 and 16:0/19:2 516.4 MGTS (19:0) 

752.6 DGTS (35:1) 16:1/19:0 520.5 MGTS (20:5) 

760.6 DGTS (36:4) 18:1/18:3 and 18:0/18:4 522.5 MGTS (20:4) 

764.6 DGTS (36:2) 18:1/18:1 and 16:0/20:2 524.5 MGTS (20:3) 

766.5 DGTS (36:1) 16:0/20:1 and 16:1/20:0 and 18:0/18:1 528.5 MGTS (20:1) 

776.5 DGTS (37:3) 18:3/19:0 554.3 MGTS (22:2) 

784.5 DGTS (38:6) 18:1/20:5 and 18:3/20:3 
  

790.5 DGTS (38:3) 18:0/20:3 
  

792.5 DGTS (38:2) 18:0/20:2  
  

794.5 DGTS (38:1) 18:0/20:1 
  

808.5 DGTS (40:8) 18:2/22:6 and 20:4/20:4 
  

818.5 DGTS (40:3) 18:0/22:3 
  

Bold m/z values correspond to the most abundant species detected in the LC-MS spectrum; C means the number of 
total carbon atoms and N represents total number of double bonds in the fatty acyl chains 

III.1.1.2. Fatty acid profile  

 Fatty acids are important components of lipids, being esterified to polar lipids. The 

identification and quantification of the FA profile of the polar lipidic extract of C. 

tomentosum was performed by GC–MS analysis of methyl esters of FA (Table III.4). The 

most abundant FA in this species was palmitic 16:0, palmitoleic 16:1, oleic 18:1(n-9) and 
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α-linolenic 18:3(n-3) acids. C. tomentosum contains others n-3 PUFAs like 

hexadecatrienoic acid 16:3(n-3), eicosatrienoic 20:3(n-3) and eicosapentaenoic acid 

20:5(n-3). Odd FA like C15, C17 and C19 were also identified. It was reported that green 

algae majorly contain C16 and C18 PUFAs (97,143).  

Table III. 4. Fatty acid profile of total lipid extract from Codium tomentosum 

Fatty Acyl Chain Mean (%)  ±S. D. 

12:0 tr  
14:0 1.18 0.06 

16:0 36.7 1.40 

17:0 tr  
18:0 0.80 0.01 

19:0 tr  
20:0 tr  
22:0 2.06 0.62 

24:0 1.94 0.54 

SFA 44.7  
16:1n-7 2.30 0.68 

18:1n-9c+t 17.3 0.53 

MUFA 19.6  
16:2 1.52 0.04 

16:3n-3 8.77 0.21 

18:2n-6 6.04 0.09 

18:3n-6 2.59 0.24 

18:3n-3 13.9 0.48 

18:4n-3 tr  
20:3n-3 0.62 0.04 

20:4n-6 tr  

20:5n-3 2.46 0.09 

22:6n-3 tr  
PUFA 35.9  
Uns/Sat 1.24  
n-6/n-3 0.33   

  

SFA, MUFA, PUFA, saturated, mono- unsaturated, and polyunsaturated fatty acids, respectively; Uns/Sat, 
unsaturation/saturation ratio. Means (%) and standard deviations (S.D.) were obtained from three replicates; tr., traces 
(content less than 0.1%) 

 

 The results herein presented are consistent with those found in the related literature for 

the Codium species (57,96,143,284) and with FA profile inferred by HILIC−ESI−MS 

analysis. 
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III.1.1.3. Discussion 

In the present study, the molecular profile of polar lipids from C. tomentosum cultivated 

on land-based IMTA system was identified for the first time using the modern lipidomic 

approach based on HILIC–LC–MS and MS/MS. The results obtained culminated in the 

identification of two hundred and thirty-eight molecular species from twelve classes of 

polar glycolipids, phospholipids, and betaine lipids. No sphingolipids were found.  

While LC−MS has been used with success in the characterization of the lipidome of 

plants and also of microalgae (40,123,156), only two studies have addressed the lipidome 

of macroalgae (Chondrus crispus (145) and Ulva lactuca (33,164)). Previous works on 

lipid composition of Codium fragile solely used TLC and GC−MS, pinpointing a restricted 

number of lipid classes without identifying the molecular species within each class nor 

detecting less abundant lipid classes (134,135). The results gathered in the present work 

allowed to unravel the detailed lipid composition giving a full picture at molecular level of 

polar lipids including GLs, PLs and betaine lipids. In the group of GLs, it were identified 

MGDG (10 molecular species) and DGDG (22 molecular species) bearing fatty acyl 

substitution from 16:0 to 20:5, and SQDG (20 molecular species) containing 14:0 to 22:6 

FAs with most abundant species combined (16:0/16:0), (18:1/16:0) and (18:3/16:0) FAs. In 

fact, abundant 16:0 and 18:1 obtained by GC−MS in the FA profile is in accordance with 

the results reported for Codium sp. (91,143) and other green algae such as Ulva fenestrata 

(134). These reported results were based on analytical approaches such as separation of 

GLs by plate chromatography and further analysis of FA by GC−MS. In the class of 

DGDG, molecular species containing hydroxy-PUFAs were recently reported in algae 

species (163). Oxidized FAs, including hydroxylated FAs, are natural occurring 

metabolites than can be found in plants and other organisms (285). In plants and marine 

organisms, they can be mainly produced enzymatically by the action of lipoxygenases 

(286). They are involved in the defense mechanisms and are considered essential 

components of innate immunity mechanisms (163). The monoacyl sulfoquinovosyl lipids 

(SQMG or lyso SQDG) were identified, have never been reported in lipidome of Codium 

sp., and were scarcely reported in macroalgae. The major SQMG species detected in the 

lipid extract of C. tomentosum corresponds to SQMG 16:0. This class was found recently 

in spinach and reported to present an antitumoral effect (287). 
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Glycolipids are predominantly located in photosynthetic membranes (thylakoid and 

chloroplasts) (38). Their role is to provide energy and also serve as markers for cellular 

recognition (10,23,33). The SQDGs are acidic lipids important to maintain the anionic 

characteristics, thus preserving the structure and function of the thylakoid membranes. 

Glycolipids have high content in n-3 PUFA, being valuable products to be used in 

functional food, and in the pharmaceutical and cosmetic industries (10). The bioactive 

properties of SQDG (25,30), altogether with MGDG and DGDG (23,27) species, have 

been recently highlighted due to their anti-inflammatory activity, with SQDGs being 

known to display antiviral activity and help in the prevention of cancer (38). 

Phospholipids from C. tomentosum were identified and distributed by PC (60 molecular 

species) and LPC (11 molecular species), PI (13 molecular species), PA (9 molecular 

species), PG (22 molecular species) and LPG (8 molecular species). The PLs in C. 

tomentosum include saturated FA species such as 16:0 and 18:0, unsaturated FA species 

such as 16:1, 18:1, 18:2, 18:3, 20:2 and 20:5, and PC and PI having 20:5 and 22:6 FA, 

respectively. The most abundant PC species were PC (16:0/18:1) and PC (18:2/18:2) plus 

(16:0/20:4). Lyso-PC and lyso-PG, with C18 and C20 unsaturated acyl chains were 

identified. Lyso-phospholipids were previously detected in Ulva lactuca (164) and 

Chondrus crispus by using LC−MS (145). It is likely that these molecules have not been 

detected before in macroalgae due to the lack of sensitivity of the approaches based on 

TLC and GC−MS methodologies commonly employed to screen the lipid profile of these 

organisms. Previous studies have identified PC, PS, and PE classes in Codium fragile, 

based on chromatographic plates (TLC) and GC−MS analyses, designed to screen for FA 

composition (97). Nonetheless, the confirmation of the corresponding PL species was not 

performed by MS and was only tentatively identified by comparison with standards (97). 

We did not identify PS and PE in the present study. By using TLC, PI and PS migrate 

closely and some confusion could occur. PS was recently found in Ulva lactuca by 

employing MS-based approach (164). Nevertheless, the identification was based on 

uncertain patterns of fragmentation and was not consistent with other well documented 

reference (138). 

Phospholipids from algae are considered promising agents to be used in the cosmetic 

and pharmaceutical industries (28,288), have been described to be beneficial for cognitive 

functions, and to fight inflammatory diseases (32), also being known to display antiviral, 
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antibacterial and antitumor properties (116). Also, beneficial effects of PLs on blood and 

hepatic lipids and both cholesterol and TG levels were suggested (32). Marine PLs proved 

to have antivirus, antibacterial and antitumor properties (116). 

Betaine lipids (DGTS) were identified in the lipidome of C. tomentosum. They are 

widely distributed in algae (36,150,216). By MS-based analysis of the lipidic extract, 

DGTS molecular species were identified (43 molecular species) and included saturated FA 

chains such as 14:0, 16:0, 18:0, 20:0 FA, and unsaturated 16:2, 16:3, 18:2, 18:3, 20:4, 20:5 

and 22:6 FA species. Betaine lipids have never been recognized before in the genus 

Codium, but DGTS was identified in Chondrus crispus and Ulva lactuca by LC−MS and 

MS/MS approaches (145,164). Within betaine lipids, a new class was herein reported in 

the lipidome of C. tomentosum and never reported in macroalgae: the betaine lipids with 

one acyl chain, MGTS, corresponding to lyso betaine lipids (16 molecular species). No 

sphingolipids were detected in C. tomentosum, in agreement with reports suggesting them 

to be mainly present in red algae (67,147). 

 Lipid species bearing odd FAs such as FA 17:0 and 19:0 were identified in polar lipids 

classes including SQDG, SQMG, DGDG, PG, LPG and PI. The presence of odd numbered 

FAs is not very usual and could have been contributed by contaminants. However, they can 

also be part of the lipidome from macroalgae and these odd FAs have already been 

reported (135,143,284). Traces of C15, C17, and C19 have been reported in several published 

papers for Codium species. Fatty acids with odd number were identified esterified in lipid 

species of glycolipids from Chondrus crispus, namely C17 and C19 species for example in 

SQDG, PG, and DGTS by a LC−MS approach (145). Odd FAs esterified in SQDG were 

identified by LC−MS in the lipidome of microalgae Nannochloropsis oculata (40) and in 

SQDG and PG molecular species of Skeletonema sp. (160). 

Polar lipids in C. tomentosum contain PUFAs of the n-3 series such 18:3 and 20:5 and 

as 16:3, mainly provided by GLs and betaine lipids, suggesting the capability of Codium 

tomentosum for synthesize larger PUFAs. Since the human body has a limited ability to 

convert linolenic acid into the longer-chain n-3 FA EPA and DHA, C. tomentosum 

produced in aquaculture under controlled conditions may be a marine source of this 

essential PUFAs important to health improvement by preventing pathologic conditions 

such as cancer, cardiovascular, inflammatory and autoimmune diseases (10,95,132). 
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III.1.2. The lipidome of Rhodophyta 
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III.1.2.1. The lipidome of Gracilaria sp. 

Gracilaria sp.*
• harvested on August 2014
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The lipidome of Gracilaria sp. 

__________________ 

Gracilaria spp. is one of the world's most cultivated and valuable seaweeds (49,93). 

Traditionally, its economic importance comes from the phycolloid industry, being the main 

source of agar (289). Among Gracilaria taxonomy, Gracilaria sp. thrives in Ria de Aveiro 

lagoon, Portugal, and is a cosmopolitan in its occurrence (49). Only recently this 

taxonomic classification was confirmed by Saunders (2009) (58); until then, this species 

was misidentified as G. verrucosa and G. bursa-pastoris. To our best knowledge, there is 

no studies about characterization of polar lipids profile of these species from aquaculture, 

neither from the Portuguese coastline (10,203). The present investigation is the first report 

on the characterization of the lipidome of the edible red seaweed Gracilaria sp., cultivated 

in an integrated multi-trophic aquaculture system by using advanced mass-spectrometry 

techniques such as hydrophilic interaction liquid chromatography-electrospray ionization 

mass spectrometry (HILIC−ESI−MS) approach. Lipid extracts from Gracilaria sp. are 

promising phytochemicals with anti-oxidant, anti-inflammatory and antitumor activities, as 

will be described. 

III.1.2.1.1. Polar lipids from Gracilaria sp. 

The lipid extracts of Gracilaria sp. obtained by using methanol/chloroform extraction 

accounted for about 3000  600 mg/kg dry mass. This lipid extract was mainly composed 

of glycolipids (1980  148 mg/kg of biomass) and phospholipids (165  53 mg/kg of 

biomass), and the remaining lipid extract corresponded to betaine lipids and others (Table 

III.5).  

Table III. 5. Composition of lipid extracts of Gracilaria sp.  

1Betaines and others were determined by the difference of lipid content and the sum of content of glycolipids and 

phospholipids. 
Means (%) and standard deviations (S.D.) were obtained from three replicates  

Composition Mean SD 
Lipids (mg/kg biomass) 3000 600 
Glycolipids (mg/kg biomass) 1980 148 
Phospholipids (mg/kg biomass) 165 52.7 

Betaines and others 1 855 - 
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The polar lipidome profile of Gracilaria´s was determined by HILIC–ESI–MS, and it 

allowed the identification of glycolipids, phospholipids and betaine lipids. Overall, the 

lipidome of Gracilaria sp. comprised one hundred and forty-seven molecular species. 

Glycolipids 

The glycolipids identified were monogalactosyl diacylglycerol (MGDG) and 

digalactosyl diacylglycerol (DGDG), identified in the LC–MS spectra in positive mode as 

[M + NH4]+ ions, and sulfoquinovosyl diacylglycerol (SQDG) and sulfoquinovosyl 

monoacylglycerol (SQMG), identified as negative [M − H]− ions. Detailed structure of 

MGDG and DGDG molecular species was also accomplished as [M + Na]+ ions by using 

ESI-MS/MS after solid phase extraction (SPE) fractionation of lipid extract (fraction 3 rich 

in glycolipids). Overall, thirty-four molecular species were identified (Fig. III.13) and are 

described in Table III.6. 

 

Figure III. 13 LC–MS spectra of the GLs classes a) monogalactosyl diacylglyceride (MGDG) and 

b) digalactosyl diacylglyceride (DGDG) observed by HILIC–ESI–MS as [M + NH4]+ ions, and c) 

sulfoquinovosyl diacylglyceride (SQDG) observed as [M − H]− ions. 

Monogalactosyl diacylglycerol and digalactosyl diacylglycerol 

 Galactolipids included nine MGDG molecular species and ten DGDG molecular species 

(Table III.6, Figure III.13 a)). The most abundant MGDG molecular species were found at 

m/z 774.3 and 796.3 [M + NH4]+, corresponding to MGDG (18:1/16:0) and to MGDG 

(20:4/16:0), with a minor contribution from MGDG (18:2/18:2). Other MGDG molecular 

species identified contained in their composition 14-, 16-, and 18-carbon saturated fatty 
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acids (SFAs) and monounsaturated fatty acids (MUFAs) and 18:2, 20:4, and 20:5 

polyunsaturated fatty acyl (PUFAs) moieties (Table III.6). Regarding DGDGs, the most 

abundant molecular species were identified as [M + NH4]+ ions at m/z 936.3, corresponding 

to DGDG (18:1/16:0), followed by DGDG (20:4/16:0) with minor contribution of DGDG 

(18:2/18:2) at m/z 958.2. Moreover, other DGDG molecular species were identified 

containing 14-, 16-, 18-, and 20-carbon fatty acids (FAs) such as 20:4 and 20:5 PUFAs.  

Table III. 6. Identification of MGDG and DGDG molecular species observed by HILIC–ESI–MS 

as [M + NH4]+ ions and SQDG and SQMG molecular species observed as [M − H]− ions in 

Gracilaria sp. 

[M + NH4]+ Lipid Species Fatty Acyl Chains 
m/z (C:N) 

 
Monogalactosyl diacylglycerol 

746.3 MGDG (32:1) 16:1/16:0 and 14:0/18:1 
748.3 MGDG (32:0) 16:0/16:0 and 14:0/18:0 
774.3 MGDG (34:1) 18:1/16:0 
776.3 MGDG (34:0) 18:0/16:0 
794.3 MGDG (36:5) 20:5/16:0 
796.3 MGDG (36:4) 20:4/16:0 and 18:2/18:2 

Digalactosyl diacylglycerol 
908.3 DGDG (32:1) 16:1/16:0 and 14:0/18:1 
910.3 DGDG (32:0) 16:0/16:0 and 14:0/18:0 
934.3 DGDG (34:2) 18:2/16:0 and 18:1/16:1 
936.3 DGDG (34:1) 18:1/16:0 
956.3 DGDG (36:5) 20:5/16:0 
958.3 DGDG (36:4) 20:4/16:0 and 18:2/18:2 

[M − H]− Lipid Species Fatty Acyl Chains 
Sulfoquinovosyl diacylglycerol  

763.6 SQDG (30:1) 14:0/16:1 
765.6 SQDG (30:0) 14:0/16:0 
791.6 SQDG (32:1) 16:1/16:0 and 14:0/18:2 
793.6 SQDG (32:0) 16:0/16:0 and 14:0/18:0 
813.6 SQDG (34:4) 18:4/16:0 
817.6 SQDG (34:2) 18:2/16:0 
819.6 SQDG (34:1) 18:1/16:0 
839.6 SQDG (36:5) 20:5/16:0 
841.6 SQDG (36:4) 20:4/16:0 
857.6 SQDG (36:4-OH) 20:4-OH/16:0 

Sulfoquinovosyl monoacylglycerol 
527.4 SQMG (14:0)   
553.4 SQMG (16:1) 

 
555.4 SQMG (16:0)   

Bold m/z values correspond to the most abundant species detected in the LC-MS spectrum; C means the number of total 
carbon atoms and N represents total number of double bonds in the fatty acyl chains 
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Sulfolipids 

The SQDG molecular species were analyzed in the negative-ion mode and observed as 

[M-H]- ions (Fig. III.13.c). The most abundant species were attributed to SQDG 

(14:0/16:0), SQDG (16:0/16:0) and SQDG (16:0/20:4), observed as [M − H]− ions at m/z 

765.5, 793.5, and 841.6, respectively. The fatty acyl signature of SQDGs included 14-, 16-, 

18-carbon SFAs and MUFAs and 18- and 20-carbon PUFAs ((Table III.6, Fig. III.13 c). 

Three SQMGs were identified, namely SQMG (14:0), SQMG (16:0), and SQMG (16:1). 

SQMGs were never before reported in the lipidome of macroalgae from the genus 

Gracilaria. Glycolipids have already been identified for members of the Rhodophyta (red 

seaweeds), namely in the genus Gracilaria, however, the majority of published works only 

identified a few species of glycolipids, either by using offline TLC-MS (134,181,290) or 

selected solvent extraction and MS analysis (33,224). More recently, a detailed profile of 

Chondrus crispus was reported using LC−MS and MS/MS (145). 

Phospholipids 

The lipidome of Gracilaria sp. hold eighty-seven molecular species of phospholipids 

(PLs) within eight classes, namely phosphatidylglycerol (PG) and lyso-PG (LPG), 

phosphatidylcholine (PC) and lyso-PC (LPC), phosphatidylethanolamine (PE), 

phosphatidylinositol (PI), inositol phosphoceramide (IPC) and phosphatidic acid (PA). PC 

is a main component of extraplastidial membranes, while PG is found in chloroplastic 

membranes (15).  

Phosphatidylcholine and lyso-PC 

About thirty-nine PCs were identified by LC–MS as [M + H]+ and confirmed in the 

negative-ion mode as [M + CH3COO]− ions (Fig. III.14.a)). The most abundant ions were 

observed at m/z 760.6 and at m/z 782.6, respectively attributed to PC (16:0/18:1) and to PC 

(16:0/20:4) with a minor contribution of PC (18:2/18:2). Other PC molecular species were 

identified and contained 14- to 22-carbon fatty acids. Lyso-PC consisted of eight molecular 

species (Table III.7, Fig III.14. b) and the most abundant was LPC (20:4), observed at m/z 

544.4. All molecular species identified are described in Table III.7. 
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Phosphatidylglycerol  

Thirteen PGs and four lyso-PGs species were identified by LC–MS as [M – H]– ions 

(Table III.7, Figure III.14 c). The most abundant ion was observed at m/z 769.4, mainly 

corresponding to PG (16:0/20:4), with a minor contribution from PG (18:2/18:2). The 

prominent lyso-PG at m/z 483.3 was LPG (16:0) (Fig. III.14 d), Table III.7). 

Phosphatidylethanolamine  

The class of PE contained eight molecular species, identified as [M + H]+ (Table III.7, 

Fig. III.14. f). The most abundant ion was observed at m/z 716.4 and identified as PE 

(16:1/18:1) and PE (16:0/18:2). Other PEs were observed at m/z 742.3 and 744.3 (Fig. 

III.14. e), attributed to the PE (18:1/18:2) and PE (18:1/18:1). 

 

Figure III. 14. LC−MS spectra of the classes a) phosphatidylcholine (PC) and b) lyso 

phosphatidylcholine (LPC) observed as [M + H]+ ions; c) phosphatidylglycerol (PG) and d) lyso 

phosphatidylglycerol (LPG) observed as [M − H]− ions; e) phosphatidic acid (PA) observed as [M 

− H]− ions and f) phosphatidylethanolamine (PE) observed as [M + H]+ ions. 

Phosphatidylinositol  

The class of PI was observed as [M − H] − ions at m/z 833.5 and 835.5 and attributed to 

PI (16:1/18:1) and PI (16:0/18:1), respectively.  



Chapter III. Results and Discussion 

98 

Phosphatidic acid  

Eight PAs were identified (Table III.7, Fig. III.14. e), with the most abundant species 

identified as PA (20:4/20:4) at m/z 743.3, while the other PA molecular species were 

esterified to 16:0, 18:1, 18:2, 18:3, 20:3, 20:4, and 20:5 FAs.  

Table III.7. Identification of phospholipid molecular species observed by HILIC–ESI–MS, as [M 

+ H]+ ions for PC, LPC, and PE and as [M − H]− ions for PG, LPG, PI, PA, and IPC in Gracilaria 

sp. 

[M + H]+ Lipid Species Fatty Acyls Chain 
m/z (C:N)  

Phosphatidylcholine  
732.6 PC (32:1) 16:0/16:1 and 14:0/18:1 
734.6 PC (32:0) 16:0/16:0 and 14:0/18:0 
754.6 PC (34:4) 14:0/20:4 and 16:2/18:2 
756.6 PC (34:3) 16:0/18:3 and 14:0/20:3 
758.6 PC (34:2) 16:0/18:2 and 16:2/18:1 
760.6 PC (34:1) 16:0/18:1 
762.6 PC (34:0) 16:0/18:0 
780.6 PC (36:5) 16:0/20:5 and 18:2/18:3 
782.6 PC (36:4) 16:0/20:4 and 18:2/18:2 
784.6 PC (36:3) 16:0/20:3 and 18:1/18:2 
786.6 PC (36:2) 18:0/18:2 and 18:1/18:1 
788.6 PC (36:1) 18:0/18:1 
798.5 PC (37:3) 16:0/21:3 and 18:1/19:2 
804.5 PC (38:7) 18:3/20:4 and 18:2/20:5 
806.5 PC (38:6) 18:2/20:4 and 18:1/20:5 
808.5 PC (38:5) 18:1/20:4 and 18:2/20:3 
810.5 PC (38:4) 18:1/20:3 and 16:0/22:4 
812.5 PC (38:3) 18:0/20:3 and 18:1/20:2 
814.5 PC (38:2) 16:0/22:2 and 18:1/20:1 
818.5 PC (38:0) 18:0/20:0 and 16:0/22:0 
840.4 PC (40:3) 18:1/22:2 
844.4 PC (40:1) 18:1/22:0 

Lyso-phosphatidylcholine  
494.4 LPC (16:1)  
496.4 LPC (16:0)  
518.4 LPC (18:3)  
520.4 LPC (18:2)  
522.4 LPC (18:1)  
524.4 LPC (18:0)  
542.4 LPC (20:5)  
544.4 LPC (20:4)  

Phosphatidylethanolamine  
716.4 PE (34:2) 16:1/18:1 and 16:0/18:2 
718.3 PE (34:1) 16:1/18:0 and 16:0/18:1 
740.4 PE (36:4) 18:2/18:2 
742.4 PE (36:3) 18:1/18:2 
744.4 PE (36:2) 18:1/18:1 
746.3 PE (36:1) 18:0/18:1 

[M − H]− Lipid Species Fatty Acyl Chains 
Phosphatidylglycerol  
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717.4 PG (32:2) 16:1/16:1 and 16:0/16:2 
719.4 PG (32:1) 16:0/16:1 
721.4 PG (32:0) 16:0/16:0 
741.4 PG (34:4) 16:0/18:4 
743.5 PG (34:3) 16:0/18:3 
745.5 PG (34:2) 16:1/18:1 
747.5 PG (34:1) 16:0/18:1 and 16:1/18:0 
767.5 PG (36:5) 16:0/20:5 
769.4 PG (36:4) 16:0/20:4 and 18:2/18:2 
773.5 PG (36:2) 18:1/18:1 

Lyso-phosphatidylglycerol  
481.3 LPG (16:1)  
483.3 LPG (16:0)  
509.3 LPG (18:1)  
531.3 LPG (20:4)  

Phosphatidylinositol  
833.5 PI (34:2) 16:1/18:1 
835.5 PI (34:1) 16:0/18:1 

Phosphatidic acid  
693.4 PA (36:5) 16:0/20:5 
695.4 PA (36:4) 16:0/20:4 
717.4 PA (38:7) 18:3/20:4 
719.4 PA (38:6) 18:2/20:4 
721.4 PA (38:5) 18:1/20:4 
741.3 PA (40:9) 20:4/20:5 
743.3 PA (40:8) 20:4/20:4 
745.3 PA (40:7) 20:3/20:4 

Inositol phosphoceramide  
810.5 IPC (t35:0) t18:0/17:0 
908.6 IPC (t42:0) t18:0/24:0 
920.6 IPC (t42:2-OH) t18:1/24:1-OH 
922.6 IPC (t42:1-OH) t18:0/24:1-OH 
924.6 IPC (t42:0-OH) t18:0/24:0-OH 

Bold m/z values correspond to the most abundant species detected in the LC-MS spectrum; C means the number of total 
carbon atoms and N represents number of double bonds in the fatty acyl chains 

Inositol phosphoceramide (IPC) 

Five molecular species were assigned as IPCs (Fig. III.15. a), Table III.7) and the most 

abundant ones were IPC (t18:0/17:0), observed at m/z 810.5, and IPC (t18:1/24:1-OH), 

observed at m/z 920.6 (Fig. III.15. b). LC–MS/MS spectrum of the [M − H]− ions of IPCs, 

as exemplified for IPC at m/z 920.6, showed the typical fragmentation pathways of IPCs 

such as the losses of 162 Da and 180 Da, due to elimination of inositol, the product ion at 

m/z 538.3 resulting from the loss of hydroxy-fatty acyl chains, and the product ion at m/z 

259.0 that corresponded to an inositol monophosphate anion. IPCs identified in lipid 

extract of Gracilaria sp. are considered an important biomarker of Rhodophyta taxonomy, 

in accordance with what was already reported for Chondrus crispus using a lipidomic 

approach (145). IPCs are required to maintain membrane properties such as viscosity and 
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electrical charge and participate in the control of enzymatic activity or act as membrane 

anchors for some proteins [44]. 

 

Figure III. 15. a) LC–MS spectrum of inositol phosphoceramide (IPC) observed by HILIC–ESI–

MS as [M − H]−. ions; b) LC−MS/MS spectrum of [M − H] − ions of IPC at m/z 920.6 (IPC 

(t18:1/24:1-OH). 

Betaine lipids 

Twenty-one DGTS and five MGTS molecular species were identified by LC−MS and 

MS/MS as [M + H]+ ions (Fig. III.16 and Table III.8). The most abundant DGTS species 

was found at m/z 710.7, corresponding to DGTS (16:0/16:1), with a minor contribution 

from DGTS (14:0/18:1) species, followed by DGTS (18:1/18:1) observed at m/z 764.8. 

Overall, DGTSs combine distinctive molecular species bearing different combinations of 

FAs, ranging between 14- and 20-carbon FAs, as reported on Table III.8. MGTSs 

comprised MGTS (14:0), MGTS (16:1), MGTS (16:0), MGTS (18:2), and MGTS (18:1) 

species, identified at m/z 446.5, 472.5, 474.5, 498.6, and 500.6, respectively. 

 

Figure III. 16. LC–MS spectra of a) diacylglyceryl-N,N,N-trimethyl-homoserine species (DGTS) 

and b) monoacylglyceryl-N,N,N-trimethylhomoserine (MGTS), observed by HILIC–ESI–MS as 

[M + H]+ ions.  
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Table III. 8. Identification of betaine molecular species observed by HILIC–ESI–MS as [M + H]+ 

ions of DGTS and MGTS in Gracilaria sp. 

[M + H]+ Lipid Species Fatty Acyls Chain 

m/z (C:N) 
 

Diacylglyceryl trimethyl-homoserine  

656.7 DGTS (28:0) 14:0/14:0 

682.7 DGTS (30:1) 14:0/16:1  

684.8 DGTS (30:0) 14:0/16:0 

708.7 DGTS (32:2) 16:1/16:1 and 14:0/18:2 

710.7 DGTS (32:1) 16:0/16:1 and 14:0/18:1  

712.7 DGTS (32:0) 16:0/16:0 and 14:0/18:0 

732.7 DGTS (34:4) 16:2/18:2 and 14:0/20:4  

734.7 DGTS (34:3) 16:1/18:2  

736.7 DGTS (34:2) 16:0/18:2 and 16:1/18:1  

738.7 DGTS (34:1) 16:0/18:1 and 16:1/18:0  

740.7 DGTS (34:0) 16:0/18:0 and 14:0/20:0 

760.6 DGTS (36:4) 16:0/20:4 

764.8 DGTS (36:2) 18:1/18:1  

766.8 DGTS (36:1) 18:0/18:1 

Monoacylglyceryl trimethyl-homoserine  

446.5 MGTS (14:0) 
 

472.5 MGTS (16:1) 
  

474.5 MGTS (16:0) 
  

498.6 MGTS (18:2) 
  

500.6 MGTS (18:1) 
 

Bold m/z values correspond to the most abundant species detected in the LC-MS spectrum; C means the number of 
total carbon atoms and N represents number of double bonds in the fatty acyl chains 

III.1.2.1.2. Fatty acid profile 

The fatty acid profile of the lipid extract was characterized by GC−MS analysis of fatty 

acid methyl esters (FAMEs). The profile of fatty acids included 14:0, 16:0, 18:0, 18:1(n-9), 

18:2(n-6), 20:4(n-6), and 20:5(n-3), among which 16:0 (48.5  1.1%), 18:1(n-9) (14.4  

0.38%), and 20:4(n-6) (13.6  0.46%) were the most abundant (Table III.9). Overall, SFA 

accounted for 57.5% of the total FA identified, followed by MUFA (18.3%) and PUFA 

(18.4%). The fatty acids identified by GC−MS were esterified to polar lipids of Gracilaria 

sp., as assigned by LC−MS and MS/MS analysis.  

The n-6/n-3 ratio determined for our Gracilaria sp. sample was 3.69. The World Health 

Organization (WHO) recommends an optimal balance intake of n-6 PUFAs and n-3 

PUFAs to prevent chronic diseases and that this balance should be maintained with an 

adequate daily dosage of n-6 PUFAs (5%–8% of daily energy intake) and n-3 PUFAs (1% 
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– 2% of daily energy intake, World Health Organization, 2003). With this recommendation 

in mind, it is possible to estimate that a suitable n-6/n-3 ratio is less than 5. Also, some 

authors reported that a ratio of n-6/n-3 less than 4 is adequate in the prevention of several 

diseases such as cardiovascular (291), autoimmune (292), and inflammatory diseases 

(292), and cancer (236). These findings support the advantage of the use of Gracilaria sp. 

as a source of n-6 and n-3 for human consumption. 

Table III. 9. Fatty acid profile of lipids from Gracilaria sp. determined by GC–MS analysis of 

fatty acid methyl esters (FAMEs) 

Fatty Acyl Chain Mean (%)  ± S. D. 

14:0 5.25 0.58 

16:0 48.5 1.26 

18:0 2.85 1.29 

24:0 0.95 0.12 

 SFA 43.5 

14:1n-5 0.41 0.01 

16:1n-7 3.49 0.29 

18:1n-9c+t 14.4 0.42 

 MUFA 18.3 

18:2n-6 0.88 0.08 

20:4n-6 13.6 0.50 

20:5n-3 3.92 0.17 

 PUFA 18.4 

Uns/Sat 0.64 

n-6/n-3 3.69   
SFA, MUFA, PUFA, saturated, mono- unsaturated, and polyunsaturated fatty acids, respectively; Uns/Sat, 

unsaturation/saturation ratio. Means (%) and standard deviations (S.D.) were obtained from three replicates (content less 

than 0.1% not shown) 

III.1.2.1.3. Photosynthetic Pigments  

Chlorophyll and pheophytin derivatives were identified in the lipid extracts by LC–MS 

in positive-ion mode as [M + H]+ ions (Supplementary Fig. S.7, Table III.10) 

(104,145,293). The LC–MS/MS spectra of chlorophyll derivatives showed product ions 

formed due to the neutral losses of 278 Da (loss of phytyl side chain as an alkene, [M – 

C20H38]+), 310 Da (loss of 278 plus 32, which means loss of phytyl plus 32 Da) and 338 

(loss of 278 plus 60 Da). In the case of pheophytin derivatives, the LC–MS/MS spectra 

showed ions formed by the losses of 278 Da and 338 (loss of 278 plus 60, which means 

loss of phytyl plus HCOOCH3).  
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Pheophytin derivatives such as pheophorbide were found at m/z 593.5 and 607.4. The 

identification of these molecular species corroborates the reports of previous studies 

(104,145,261,293,294). As shown in Table III.10 the extract of Gracilaria sp. contains 

chlorophyll a, 15-OH-lactone chlorophyll, pheophytin a, pheophytin d, hydroxypheophytin 

and pheophorbide a and b. Table III.11 refers to the proximate composition of pigments in 

the methanolic extract. 

Table III. 10. UV and MS spectral data of chlorophylls and their derivatives extracted from 

Gracilaria sp. 

[M+H]+ lmax (reported)  Species

m/z
593.5 409 Pheophorbide a
607.4 409 Pheophorbide b
609.4 Chlorophyl derivative
871.8 408, 506, 536, 608, 666 Pheophytin a
873.8 408, 506, 536, 608, 666 Pheophytin d
887.6 408, 504, 534, 610, 666 Hydroxypheophytin a
893.5 430,618,664 Chlorophyll a
903.6 15-hydroxypheophytin a lactone  

Table III. 11. Pigments content on the methanolic extract of Gracilaria sp. IMTA cultured. 

Methanolic extract 

Pigments (μg g-1 biomass)
Chl a 267
Carotenoids 15.3  
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III.1.2.2. The lipidome of Porphyra dioica 

 

Porphyra dioica: blade Porphyra dioica: conchocelis  
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The lipidome of Porphyra dioica  

__________________ 

Porphyra spp. (Bangiales, Rhodophyta) are commercially important macroalgae 

produced and traditionally consumed in Asia for nutrition and with recognized human 

health benefits (61,62). In Western countries the consumption of Porphyra (Nori) is 

increasing, mainly due to the “sushi” trend but also for being considered as part of the 

super foods list with health promotion claims. The increasing demand prompted by a 

spreading consumption habits, the need of high-quality biomass, and locally sourced food, 

has been promoting the aquaculture crops of genus Porphyra, among is Porphyra dioica 

(J. Brodie & L. M. Irvine, 1997-World Register of Marine Species) (63). This species is 

native to the Atlantic and its cultivation started in the late 90´ in collaboration between 

Portugal and North American researchers (295). At present, the first steps in its 

commercial production is realized by ALGAplus Lda, where the full life cycle of the 

species is completed, with continuous organic production of conchocelis and blades, in a 

land-based IMTA system (60,295).  

Porphyra dioica has a unique trimorphic life history and two of the stages were 

analyzed in the present work: the blade and conchocelis phases (65,66). Blades are the 

gametophyte phase of Porphyra spp., being the most commercially relevant stage and used 

mainly for nutrition and other high value biotechnological applications (1,21). Porphyra 

species are also a source of diverse metabolites such as peptides, sulfated polysaccharides 

(296), or valuable lipids such as n-3 and n-6 PUFAs (297). 

Lipids from macroalgae are mainly composed of polar lipids that are a source of 

esterified FA (18). Some studies suggested that they have a vast array of biological 

activities (23,30,181). Polar lipids from Porphyra sp. were reported to display anti-

inflammatory properties by downregulation of LPS-induced pro-inflammatory responses in 

human macrophages through inhibition of IL-6 and IL-8 production (23,224) and 

antitumoral activities such as telomerase-inhibition effect (298). However, there is still a 

gap in the knowledge of its lipidome and related health benefits. The early-stage filaments 

of Porphyra, conchocelis, are already used in cosmetics but not routinely consumed for 

food, are at present being surveyed by researchers, as it can be a potential source of PUFAs 

namely 20:5(n-3) FA (299,300). Nowadays, it can be vegetatively propagated in controlled 
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conditions, with the advantages of exhibiting a fast growth and controlled cost production 

of standardized biomass (61,206,299). In fact, and similarly to microalgae (1,301), 

conchocelis can be used to produce biomass enriched in target compounds such as lipids 

with nutritional and biological added-value and for distinct applications 

(62,296,298,302,303). In Asia, conchocelis (from Pyropia spp.) was typically cultivated on 

oyster shells (62). However, for the first time in the case of Porphyra dioica, the 

Portuguese farmer partners of this study were able to overcome that need and developped 

an easier processes, with the potential for outdoor cultivation of conchocelis (60).  

Lipids from macroalgae are considered a source of valuable compounds for food and 

pharma and have been bioprospected worldwide (6). Glycolipids anchor potential health 

benefits to be used for food and feed and for biotechnological applications (23,86,304). 

Phospholipids have a superior nutritional source of n-3 PUFAs for food industries, but are 

also good for pharmaceutical applications due to the beneficial impact on the central 

nervous system and their recognized antitumoral effects (32,116,288). These molecules are 

also used as vehicles or carriers in dermatologic delivery systems and skin moisturizing 

products in the cosmetics industry (32).  

The lack of knowledge on the lipidome of Porphyra, at molecular level, has encourage 

us to identify and characterize the polar lipid profile of the conchocelis phase (indoor 

nursery) and young blades (outdoor cultures) of Porphyra dioica (P. dioica) from in land-

based IMTA system. To achieve this unprecedented characterization, we have used 

hydrophilic interaction chromatography coupled to Q–Exactive high resolution−mass 

spectrometry instrument (LC−MS). This approach will allow to unveil the composition of 

these distinct life stages of Porphyra dioica and contribute to a better understanding on the 

lipid dynamics along the life cycle of this alga. Moreover, this study will also provide 

valuable clues on the potential bioactive properties and nutritional value, as source of n-3 

and n-6 FA, for the different life stages of this macroalgae fostering the integral 

valorization of Porphyra dioica as food, feed or other high end biotechnological 

applications. 

III.1.2.2.1. Polar lipids from Porphyra dioica 

The lipid extracts of the two life stages of P. dioica analyzed in the present study 

accounted for about 8.60  1.20 g/kg dry biomass of blade and 10.8  0.90 g/kg dry 
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biomass of conchocelis. These results are in accordance with those previously reported for 

Porphyra spp. in other studies, which ranged between 2.5 - 10.3 g/kg of biomass 

(305,306).  

The profile of polar lipids from the extracts of blade and conchocelis eluted in 

HILIC−LC−MS is represented in Figure III.17. Differences between chromatograms of 

both stages were reflected on peak abundance eluted at 5 minutes in positive mode (Fig. 

III.17. B and C) and at 2, 5 and 19 minutes in the negative mode (Fig. III.18, B´and C´), 

slight higher in the analysis of the lipidome from conchocelis and particularly attributed to 

the elution of phospholipids after the comparison with standards profile. However, based 

on LC–MS analysis, we found the same classes of polar lipids in both life cycle stages: 

glycolipids, betaines and PL, although with some different profile mainly observed in PLs 

category. 
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Figure III. 17. LC–MS chromatograms of Porphyra dioica blade (B) and conchocelis (C) stages 

observed by HILIC–MS, acquired in the positive mode and blade (B´) and conchocelis (C´) 

acquired in the negative mode. 

The analysis of the MS data & mass accuracy and the MS/MS spectra from the lipid 

extracts of P. dioica blade and conchocelis stages provided the detailed structural 

information to identify the different lipid classes at molecular level in each life cycle stage. 

The analysis of lipid classes allowed the identification of glycolipids (GLs), phospholipids 

(PLs), and betaine lipids in P. dioica lipid extracts will be detailed. 

Glycolipids 

The analysis of total lipid extracts allowed the identification of galactolipids and 

sulfolipids (Table III.12, Fig. III.18). MGDG and DGDG were identified by LC–MS as [M 

+ NH4]+ ions (Fig. III.18.a-b), Table III.12). GLs are important membrane lipids located in 
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photosynthetic membranes (thylakoid and chloroplast membranes) (15,134). MGDG and 

DGDG were identified by LC–MS as [M + NH4]+ ions. MGDG included five and six 

molecular species and DGDG contained four molecular species assigned in blade and 

conchocelis lipidome, respectively. Both life stages contained the abundant MGDG 

(20:5/16:0) at m/z 794.6. The MGDG (20:4/16:0) and MGDG (18:1/16:0) (m/z 796.6 and 

m/z 774.6, respectively) were also abundant in conchocelis extracts and a source of 

eicosapolyenoic acid 20:4(n-6). MGDG (18:1/18:0) at m/z 802.6 was not observed in blade 

lipidome. The most abundant DGDG in both stages was DGDG (20:5/16:0) at m/z 956.6. 

In the case of conchocelis the second most abundant molecular species was the DGDG 

(18:1/16:0) at m/z 936.7, matching with results observed in the MGDG class. The 

remaining molecular species included 18:2 FA, a precursor of omega-pathway (114,163). 
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Figure III. 18. LC–MS spectra of glycolipids from Porphyra dioica blade (B) and conchocelis (C) 

stages: a) MGDG and b) DGDG observed by HILIC–LC–MS as [M + NH4]+ ions, c) SQDG and d) 

SQMG observed as [M – H]– ions. 

The anionic sulfolipids SQDG and SQMG were identified in both stages as [M − H] − 

ions. Overall, four SQDGs were identified and were common in both stages. SQDG 

(20:5/16:0) at m/z 839.5 was the most abundant. Other molecular species combining 16:0 

plus 18:2, 20:4 and 20:5 FA were observed. Only one SQMG (16:0), a lyso-SQDG, was 

identified in the lipidome of blades and conchocelis (m/z 555.3). Sulfolipids have a 
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functional role in the “plastid membrane mosaic” that relies particularly in signaling and 

coordinating between chloroplast lipids and cytosolic partners (122).  

Table III. 12. Identification of glycolipid molecular species observed by HILIC–LC–MS in 

Porphyra dioica blade and conchocelis, MGDG and DGDG molecular species were identified as 

[M + NH4]+ ions and SQDG and SQMG as [M – H]− ions  

Galactolipids [M + NH4]+ Fatty acyl composition 

m/z Theoretical (C:N) Blade Conchocelis 

 Monogalactosyl diacylglycerol  

772.594 MGDG (34:2) 18:2/16:0 18:2/16:0 

774.609 MGDG (34:1) 18:1/16:0 18:1/16:0 

794.578 MGDG (36:5) 20:5/16:0  20:5/16:0  

796.594 MGDG (36:4) 20:4/16:0 20:4/16:0 

800.624 MGDG (36:2) 18:0/18:2 18:2/18:0 

802.641 MGDG (36:1) ----------- 18:1/18:0 

 Digalactosyl diacylglycerol  

934.647 DGDG (34:2) 18:2/16:0 18:2/16:0 

936.662 DGDG (34:1) 18:1/16:0 18:1/16:0 

956.631 DGDG (36:5) 20:5/16:0  20:5/16:0  

972.626 DGDG (36:5-OH) 20:5-OH/16:0 20:5-OH/16:0 

Sulfolipids [M – H]− Fatty acyl composition 

m/z Theoretical (C:N) Blade Conchocelis 

 Sulfoquinovosyl monoacylglycerol  

555.284 SQMG 16:0 16:0 16:0 

 Sulfoquinovosyl diacylglycerol  

793.514 SQDG (32:0) 16:0/16:0 16:0/16:0 

817.514 SQDG (34:2) 18:2/16:0 18:2/16:0 

839.498 SQDG (36:5) 20:5/16:0 20:5/16:0  

855.493 SQDG (36:5-OH) 20:5-OH/16:0 20:5-OH/16:0 
Numbers in parentheses (C:N) indicate the number of carbon atoms (C) and number of double bonds (N) in the fatty acid 
side chains. Bold represents the abundant molecular species 

Phospholipids 

The PLs classes identified in Porphyra dioica were phosphatidic acid (PA), 

phosphatidylglycerol (PG), lyso-PG (LPG), phosphatidylcholine (PC), lyso-PC (LPC), 

phosphatidylethanolamine (PE), lyso-PE (LPE), phosphatidylinositol (PI), lyso-PI (LPI), 

and inositol phosphoceramide lipids (IPC) (Figure III.19, Table III.13).  
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Phosphatidylcholine and lyso - PC 

Twenty-seven PCs were identified in blade stage and seventeen PCs in conchocelis 

stage by LC−MS as [M + H]+ (Table III.13, Fig. III.19. a) and confirmed in the negative-

ion mode as [M + CH3COO]− ions. The most abundant PC was common to both stages and 

attributed to PC (18:1/18:1) at m/z 786.6, with minor contribution of PC (18:0/18:2). The 

second prominent PC in the lipidome of blades was PC (16:0/20:3) at m/z 784.6, with 

minor contribution of PC (18:1/18:2), while in the lipidome of conchocelis the second most 

representative was PC (18:1/20:4) at m/z 808.6. However, the blade stage was also 

distinguishable from conchocelis, not only by the number of PC identified, but also by the 

profile of molecular species, as can be seen in Figure 19. a). Particularly, the blade stage 

included molecular species combining the fatty acyl 14:0/18:1, 16:0/16:1, 16:0/18:0, 

18:0/18:1, 18:0/20:3, and 18:3/20:4 plus 18:2/20:5 that were absent on the lipidome of 

conchocelis, contributing to a slightly higher number of PCs on blades. Some of these 

molecular species present in blades included the important 18:3 and 20:5(n-3) FA and 16:0 

FA related to chloroplastic biosynthesis of lipids. Moreover, both stages have molecular 

species with the 20:3 FA that along with 18:3 FA are precursor of the n-3 and n-6 pathway. 

Both stages have also lyso-PC, similarly as described for Porphyra haitanensis (307), as 

well as other Rhodophyta (145,308). Five LPC molecular species were identified in blade 

and two LPC assigned conchocelis with most abundant LPC (16:0), observed at m/z 496.3 

(Table III.13, Fig. III.19. b). 

Phosphatidylethanolamine and lyso-PE 

PEs and lyso-PE were identified as [M − H]− ions (Table III.13, Fig. III.19. c). Eleven 

PEs were identified in the lipidome of blades while thirteen PEs were found in 

conchocelis. Herein, it was observed a large differentiation between the profile of 

molecular species of PE between stages (Figure 3c). The most abundant species found in 

the blade was PE (16:0/20:4) at m/z 738.5, that was not assigned in the profile of 

conchocelis. Nevertheless, PE (16:0/16:1) and PE (16:1/18:1) were the most abundant in 

conchocelis stage (m/z 688.5 and 714.5). In common, both stages included the molecular 

species with acyl composition C14-16/C14-20, while their differentiation was based on the 

higher number of PEs combining C18/C18 moieties, absent in the lipidome of the blade 

stage (e.g., PE (18:0/18:1)). Meanwhile, PE (20:4/20/4) was only identified in the lipidome 
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of the blade. Three lyso-PEs were identified on both stages (Table III.13, Fig. III.19. d), 

however LPE 16:0 at m/z 452.3 was the most abundant molecular species on the blade, 

while LPE 16:1 and LPE 18:1 (m/z 450.3 and 478.3) were higher on conchocelis. The non-

photosynthetic class PE can be a precursor of PC and play very important roles in the 

maintenance of shape and curvature of cell membranes; these features are important to 

membrane fusion and the molecular folding of some membrane proteins, as well as to 

establish protein-lipid conjugates in biological pathways (15,309). 

Phosphatidylglycerol and lyso-PG 

Phosphatidylglycerol (PG) and lyso-PG (LPG) classes were identified as [M – H]- ions. 

Twenty PGs were identified in the blade, while twenty-seven PGs assigned conchocelis 

(Table III.13, Fig. III.19. e). In the lipidome of conchocelis, the most abundant PG was at 

m/z 719.5 corresponding to PG (16:1/16:0) with minor contribution of PG (14:0/18:1), 

followed by PG (18:0/18:1) at m/z 775.5, with minor contribution of PG (16:0/20:1). It is 

worth highlighting that PG (18:0/18:1) at m/z 775.5, was the most abundant in the blade 

stage and that PG (16:0/20:5) at m/z 767.5 with minor contribution of PG (16:1/20:4) was 

also relevant in the PG profile of this life stage of P. dioica. Overall, both stages contained 

molecular species of PG that incorporated C16 with C14 - C22 and C18 with C14 - C22 of 

saturated, MUFA and PUFA with a distinct relative abundance profile of molecular 

species. PG is involved in the formation of chloroplasts and directly related to the 

biosynthesis of SQDG (18,310). The profile of PG from the conchocelis stage was 

differentiated by molecular species that incorporate more four molecular species. Three 

lyso-PG are present in both stages, and the most abundant in blade corresponded to LPG 

(16:0), while both LPG (16:0) and LPG (18:1) are abundant in the lipidome of conchocelis 

(Table III.13, Fig. III.19. f). 

Phosphatidic acid 

The class PA was identified in negative-mode as [M – H]- ions and seventeen molecular 

species were identified in the lipidome of the blade, while only six were detected in 

conchocelis (Table III.19, Fig III. 19 g). The most abundant PA observed in the blade was 

PA (16:0/20:1) at m/z 701.5, while the second most abundant was recorded at m/z 693.4 

and corresponded to PA (16:0/20:5). The predominant PA in the conchocelis lipidome was 

detected at m/z 671.5 and assigned to PA (16:0/18:2) and at m/z 645.4 corresponding to PA 
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(16:0/16:1) plus PA (14:0/18:1). The profile of molecular species of PA in the lipidome of 

both stages included distinct combinations between 16:0 and 16- to 20-carbon chains FA. 

The number of molecular species is significantly higher in the blade stage and the profile 

of molecular species is contrasting between both stages. 
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Figure III. 19. LC–MS spectra of phospholipids from Porphyra dioica blade (B) and conchocelis 

(C) stages: a) PC, b) LPC observed by HILIC–LC–MS as [M + H]+ ions and c) PE, d) LPE, e) PG, 

f) LPG, g) PA, and (h) IPC observed as [M – H]– ions. 
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Table III. 13. Identification of phospholipid molecular species observed by HILIC–LC–MS in 

Porphyra dioica blade and conchocelis, PC and LPC as [M + H]+ ions and PE, LPE, PG, LPG, PA, 

PI, and IPC as [M – H]– ions 

[M + H]+ Fatty Acyls Chain 
m/z Theoretical (C:N) Blade Conchocelis 

Phosphatidylcholine  
732.554 PC (32:1) 16:0/16:1 and 14:0/18:1 ----------- 
734.569 PC (32:0) 16:0/16:0 and 14:0/18:0 16:0/16:0 
752.523 PC (34:5) ----------- 14:0/20:5 
754.538 PC (34:4) 14:0/20:4 and 16:2/18:2 14:0/20:4 and 16:2/18:2 
756.554 PC (34:3) 16:0/18:3 and 14:0/20:3 16:1/18:2 
758.569 PC (34:2) 16:0/18:2 and 16:1/18:1 16:0/18:2 and 16:1/18:1 
760.585 PC (34:1) 16:0/18:1 16:0/18:1 
762.601 PC (34:0) 16:0/18:0 ----------- 
780.554 PC (36:5) 16:0/20:5 and 16:1/20:4 16:0/20:5  
782.569 PC (36:4) 16:0/20:4 16:0/20:4 
784.585 PC (36:3) 16:0/20:3 and 18:1/18:2 16:0/20:3 and 18:1/18:2 
786.601 PC (36:2) 18:1/18:1 and 18:0/18:2 18:1/18:1 and 18:0/18:2 
788.616 PC (36:1) 18:0/18:1 ----------- 
804.554 PC (38:7) 18:3/20:4 and 18:2/20:5 ----------- 
806.569 PC (38:6) 18:2/20:4 and 18:1/20:5 18:1/20:5 
808.585 PC (38:5) 18:1/20:4 18:1/20:4 
810.601 PC (38:4) 18:1/20:3 18:1/20:3 
812.616 PC (38:3) 18:0/20:3 ----------- 

Lyso-phosphatidylcholine  
494.339 LPC (16:1) LPC (16:1) ------------_ 
496.323 LPC (16:0) LPC (16:0) LPC (16:0) 
518.321 LPC (18:3) LPC (18:3) ------------ 
522.355 LPC (18:1) LPC (18:1) LPC (18:1) 
524.370 LPC (18:0) LPC (18:0) ------------ 
[M – H]− Fatty Acyls Chain 
m/z Theoretical (C:N) Blade Conchocelis 

Phosphatidylethanolamine 
660.460 PE (30:1) 14:0/16:1 14:0/16:1 
662.477 PE (30:0) 14:0/16:0 14:0/16:0 
686.477 PE (32:2) 16:1/16:1 16:1/16:1 
688.492 PE (32:1) 16:0/16:1 16:0/16:1 
712.492 PE (34:3) 16:0/18:3 and 16:1/18:2 16:0/18:3 and 16:1/18:2 
714.508 PE (34:2) 16:1/18:1 16:1/18:1 
716.524 PE (34:1) 16:0/18:1 16:0/18:1 
736.492 PE (36:5) 16:0/20:5 16:0/20:5 
738.508 PE (36:4) 16:0/20:4 ----------- 
740.524 PE (36:3) ----------- 18:0/18:3 
742.539 PE (36:2) ----------- 18:1/18:1 and 18:0/18:2 
744.555 PE (36:1) ----------- 18:0/18:1 
786.508 PE (40:8) 20:4/20:4 ----------- 

Lyso-Phosphatidylethanolamine  
450.263 LPE (16:1) LPE (16:1) LPE (16:1) 
452.278 LPE (16:0) LPE (16:0) LPE (16:0) 
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478.294 LPE (18:1) LPE (18:1) LPE (18:1) 
Phosphatidylglycerol  

691.456 PG (30:1) ----------- 14:0/16:1 
717.471 PG (32:2) ----------- 16:0/16:2 and 16:1/16:1 
719.487 PG (32:1) 16:1/16:0 and (14:0/18:1) 16:1/16:0 and 14:0/18:1 
721.502 PG (32:0) 16:0/16:0 and 14:0/18:0 16:0/16:0 and 14:0/18:0 
745.503 PG (34:2) ----------- 16:1/18:1 and 16:0/18:2 
747.518 PG (34:1) 16:0/18:1 and 18:0/16:1 16:0/18:1 and 18:0/16:1 
749.534 PG (34:0) ----------- 16:0/18:0  
765.471 PG (36:6) 16:1/20:5 and 18:3/18:3 16:1/20:5 and 18:3/18:3 
767.487 PG (36:5) 16:0/20:5 and 16:1/20:4 16:0/20:5 and 16:1/20:4 

769.503 PG (36:4) 
16:0/20:4 and 18:1/18:3  
and 18:2/18:2 

16:0/20:4 and 18:1/18:3  
and 18:2/18:2 

771.518 PG (36:3) 18:1/18:2 and 16:0/20:3 18:1/18:2 and 16:0/20:3 
773.534 PG (36:2) 18:1/18:1 and 16:0/20:2 18:1/18:1 and 16:0/20:2 
775.549 PG (36:1) 18:0/18:1  18:0/18:1 and 16:0/20:1 
801.565 PG (38:2) 16:0/22:2 16:0/22:2 
803.580 PG (38:1) 16:0/22:1 16:0/22:1 

Lyso-phosphatidylglycerol  
481.257 LPG (16:1) LPG (16:1) LPG (16:1) 
483.273 LPG (16:0) LPG (16:0) LPG (16:0) 
509.289 LPG (18:1) LPG (18:1) LPG (18:1) 

Phosphatidic acid  
643.434 PA (32:2) 14:0/18:2 and 16:1/16:1 ----------- 
645.450 PA (32:1) 14:0/18:1 and 16:0/16:1 14:0/18:1 and 16:0/16:1 
647.466 PA (32:1) 16:0/16:0 ----------- 

669.450 PA (34:3) 
16:0/18:3 and 16:1/18:2  
14:0/20:3 ----------- 

671.465 PA (34:2) 16:0/18:2 16:0/18:2 
673.481 PA (34:1) 16:1/18:0 and 16:0/18:1 ----------- 
691.434 PA (36:6) 16:1/20:5 ----------- 
693.450 PA (36:5) 16:0/20:5 ----------- 
695.466 PA (36:4) 16:0/20:4 16:0/20:4 
697.481 PA (36:3) 16:0/20:3 ----------- 
699.497 PA (36:2) 16:0/20:2 16:0/20:2 
701.513 PA (36:1) 16:0/20:1 16:0/20:1 

Phosphatidylinositol  
831.503 PI (34:3) ----------- 16:0/18:3 
833.519 PI (34:2) 16:0/18:2 and 16:1/18:1 16:0/18:2 and 16:1/18:1 
835.534 PI (34:1) 16:0/18:1 16:0/18:1 
883.534 PI (38:5) ----------- 18:0/20:5 

Inositol phosphoceramide  
918.681 IPC (d44:1) d18:1/26:0 ----------- 
920.623 IPC (t42:2-OH) t18:1/24:1-OH t18:1/24:1-OH 
922.639 IPC (t42:1-OH) t18:0/24:1-OH t18:0/24:1-OH 
924.654 IPC (t42:0-OH) t18:0/24:0-OH t18:0/24:0-OH 
Numbers in parentheses (C:N) indicate the number of carbon atoms (C) and double bonds (N) in the fatty acid side chains 
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Phosphatidylinositol  

Phosphatidylinositol (PI) molecular species were identified in negative-mode as [M – 

H]– ions: three PIs were identified in the blade and five PIs were verified in conchocelis 

lipidome (Table III.13). Both stages included PI (16:0/18:2) with contribution of PI 

(16:1/18:1) at m/z 833.5 and PI (16:0/18:1) at m/z 835.5. Other molecular species of PI that 

fingerprinted the lipidome of conchocelis included n-3 FA: PI (16:0/18:3) and PI 

(18:0/20:5). It is known that PI are present in low abundance in the pool of PLs or display 

a transient occurrence in polar lipids metabolism, although they play important regulatory 

roles (311). 

Inositol phosphoceramide  

Inositol phosphoceramides (IPC) were identified as [M – H]– ions and found in both 

development stages were identified in Porphyra dioica as [M – H]– ions, in both life stages 

studied. Four molecular species were detected in the blade and three in conchocelis (Table 

III.13, Fig. III.19. h). The most abundant IPC in blades was observed at m/z 920.6 (IPC 

(t42:2-OH), and the molecular species IPC (d18:1/26:0) was not present in the lipidome of 

conchocelis. Other molecular species included phytosphingosine t18:0 as the long-chain 

base and C24 as the fatty acid component. It is important highlight that IPCs were reported 

for the first time for the Rhodophyta in Gracilaria verrucosa (312), latter also being 

reported for Chondrus crispus and Gracilaria sp. (145,308) being considered a putative 

biomarker of this phylum.  

Betaine lipids 

The analysis of total lipid extract provided the identification of betaine lipids 

diacylglyceryl-N,N,N-trimethyl-homoserine DGTS, identified as [M + H]+ ions. A total of 

six molecular species were identified in conchocelis phase but only three were identified in 

blade samples (Fig. III.20 and Table III.14). The most abundant molecular species in 

conchocelis corresponded to DGTS (16:0/16:1) at m/z 710.6, with minor contributions of 

DGTS (14:0/18:1). These molecular species were also identified in the blade lipidome, that 

included other DGTSs combining 14:0, 16:0, 16:1 and 18:2 FA, but not eicosapolyenoic 

20:4 and 20:5 FA. 
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Figure III. 20. LC–MS spectra of betaine lipids from Porphyra dioica blade (B) and conchocelis 

(C) stages: DGTS observed by HILIC–LC–MS as [M + H]+ ions.  

Table III. 14. Identification of betaine molecular species observed by HILIC–LC–MS in Porphyra 

dioica blade and conchocelis, DGTS as [M + H]+  

[M + H]+ Fatty acyl composition 
m/z Theoretical  (C:N) Blade Conchocelis 
  Betaine lipids  
682.562 DGTS (30:1) ----------- 14:0/16:1 
684.578 DGTS (30:0) ----------- 14:0/16:0 
710.593 DGTS (32:1) 16:0/16:1 and 14:0/18:1 16:0/16:1 and 14:0/18:1 
736.609 DGTS (34:2) 16:0/18:2 16:0/18:2 
738.625 DGTS (34:1) ----------- 16:0/18:1 
Numbers in parentheses (C:N) indicate the number of carbon atoms (C) and double bonds (N) in the fatty acid side chains 

III.1.2.2.2. Fatty acids profile  

The fatty acid profile of the lipid extracts was obtained for the two phases. Fifteen 

different fatty acids were identified in P. dioica blade and conchocelis stages (Table 

III.15). Among these were 14:0 (myristic acid), 15:0 (pentadecanoic acid), 16:0 (palmitic 

acid), 16:1 (palmitoleic acid), 18:0 (stearic acid), 18:1(n-9) (oleic acid), 18:1(n-7) 

(vaccenic acid), 18:2(n-6) (linoleic acid), 20:1(n-9) (eicosenoic acid), 20:2(n-6) 

(eicosadienoic acid), 20:3(n-6) (dihomo-gama linolenic acid), 20:4(n-6) (eicosatetraenoic 

acid or arachidonic acid, AA), 20:5(n-3) (eicosapentaenoic acid, EPA), 22:1(n-9) 

(docosenoic acid). Both life stages displayed the same composition in terms of FAs, but 

differed in the content of some of the fatty acids identified. The blade phase was 

characterized by higher amounts of SFA (47.2%) mainly due to the high content of 16:0 

(44.4 ± 1.06%); and higher amount of eicosapentaenoic acid 20:5(n-3) (24.9 ± 1.51%). In 

comparison, conchocelis contained a higher amount of MUFA and PUFA, and was richer 

in arachidonic acid 20:4(n-6) (21.2 ± 0.79%), but also contained a high amount of 20:5(n-

3) (15.5 ± 2.00%). Porphyra dioica contained alpha-linolenic acid 18:3(n-3) in low 

amounts, an important precursor of 20:5(n-3).  
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Comparing with available literature, Porphyra sp. (adult stages) typically display high 

concentrations of 20:5(n-3), with 20:4(n-6) being the second most abundant PUFA 

(306,313,314). The percentage of 20:5(n-3) commonly ranges from 20 up to 50 % of the 

total pool of FA (224,306,315). This feature highlights the particular potential for 

Porphyra spp. as a commercial supply of n-3 EPA, assuming that sufficient biomass can be 

provided sustainably, such as in the case of cultivation in aquaculture systems 

(34,292,313).  

Table III. 15. Fatty acids profile of polar lipids from blade and conchocelis stages of Porphyra 

dioica determined by GC–MS analysis of fatty acid methyl esters (FAMEs) 

  Blade Conchocelis 

Fatty acids Mean (%) ±SD Mean ±SD 

14:0 0.42 0.01 0.65 0.14 

15:0 0.95 0.04 0.97 0.15 

16:0 44.4 1.06 22.9 2.76 

18:0 1.36 0.06 1.49 0.19 

 SFA 47.2  26.1  

16:1n-7 1.92 0.03 6.09 0.76 

18:1n-9 9.29 1.27 10.5 0.81 

18:1n-7 2.13 0.16 8.31 0.22 

20:1n-9 2.87 0.17 2.40 0.11 

22:1n-9 0.18 0.01 0.14 0.06 

 MUFA 16.4  27.4  

18:2n-6 3.37 0.57 4.43 0.11 

18:3n-3 0.00 0.00 0.36 0.06 

20:2n-6 0.85 0.13 0.77 0.01 

20:3n-6 1.74 0.28 4.21 0.01 

20:4n-6 5.58 0.51 21.2 0.79 

20:5n-3 24.9 1.51 15.5 2.00 

 PUFA 36.4  46.5  

n-6/n-3 0.46   1.93   

IA* 1.10 0.35 

IT* 0.52 0.32 
*IA-Index of atherogenicity; IT-Index of thrombogenicity; Means (%) and standard deviations (S.D.) were obtained from 
three replicates (content less than 0.1% not shown) 

The conchocelis stage displayed a higher content of 20:4(n-6) rather than 20:5(n-3), in 

agreement with literature (206,299,315). Both FA are within ranges previously reported: 

23% up to 45% of 20:4(n-6) FA and 5% up to 26 % of 20:5(n-5) (315). Highest PUFA and 

MUFA, and lowest SFA contents were found in conchocelis phase, but the relative 
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percentage of 20:5(n-3) of blade stage was higher than in conchocelis. It must be 

highlighted that n-3 FA have important roles on regulatory pathways controlling 

inflammatory responses (316,317). Consistent with this, many studies support that 

supplementation in nutrition with EPA contribute to reduce the risk of acute inflammatory 

response (71,318). General benefit to human health through anti-inflammatory actions can 

be achieved by reinforcing diet with EPA of somewhere between 1.35 and 2.7 g EPA per 

day (319). 

The balance n-6/n-3 PUFA ratio in both life stages was calculated as 0.46 for blades and 

1.93 for conchocelis. Overall, the n-6/n-3 ratio was less than 2 in both stages, and below 

the upper limit reported for Porphyra spp. (1.2% up to 9%) or other seaweeds (299,306). 

This ratio in P. dioica is within the range recommend as beneficial (< 4) to reduce chronic 

diseases (96,291,297,320). This feature enhances its valorization for consumption in 

human diet, as well as other potential application for this species biomass (299), since 

lipids provided by diet are recognized to promote health and complement therapies 

(278,297,318,319).  

Atherogenic and thrombogenic indexes (IA and IT) allow to estimate the effects of 

dietary FA on human health and on coronary diseases, such in atheroma and/or thrombus 

formation (278). The ratio between saturated thrombogenic FA and the sum of anti-

thrombogenic MUFA and PUFA were estimated for both P. dioica life stages studied and 

are presented in (Table III.15). Both IA and IT were higher in the blade stage (1.10 and 

0.52 respectively) than in conchocelis (0.35 and 0.32 respectively), but lower than reported 

for some Rhodophyta and even Ochrophyta and Chlorophyta macroalgae (278,321). The 

IT values obtained in this study were similar to those of other products which consumption 

is considered to be beneficial for the prevention of chronic diseases, namely olive oil 

(0.32), chicken (0.95) and milk-based products (2.1). Altogether, based on the FA profile, 

both Porphyra dioica blade and conchocelis are valuable in what concerns lipid 

composition for food, as a food additive, for nutraceutical purposes or for inclusion in the 

formulation of highly unsaturated low-fat diets. Overall, they can help to prevent diseases 

by improving the thrombogenic and atherogenic potential and thus allow the development 

of healthier lipid formulations. 
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III.1.2.3. Discussion on the lipidome of Rhodophyta 

 The lipid extracts of Gracilaria sp. yielded about 3.00  0.60 g/kg of dry biomass while 

lipid extracts of Porphyra dioica sp. accounted for about 8.60  1.20 g/kg dry biomass of 

blade and 10.8  0.90 g/kg dry biomass of conchocelis. These results are in accordance 

with previous reports, Gracilaria sp. has low lipid content within expected range 0.60 - 3 

g/kg of dry biomass (67,267,322). The total content of lipids from Porphyra sp. reported 

ranged between 2.5 - 10.3 g/kg of dry biomass (305,306), pinpointing that season and life 

cycle effects influence lipid yield. Lipid content from P. dioica was higher compared to 

Gracilaria and in accordance with literature (313).  

 The molecular profile of polar lipids from Gracilaria sp. and P. dioica, cultivated on-

land based IMTA system, were established for the first time by using modern lipidomic 

approaches based on HILIC–LC–MS and MS/MS. Gracilaria sp. contained 147 molecular 

species distributed by MGDG, DGDG, SQDG, SQMG, phospholipids PC and lyso- PC, 

PG and lyso- PG, PI, PA, PE, and IPC plus betaine lipids such as DGTS and MGTS (Fig. 

III.21), while both stages of Porphyra dioca contained 110 and 100 molecular species on 

the lipidome of blade – B and conchocelis – C, respectively, and contained LPE not found 

in Gracilaria. However, the lipidome of Gracilaria sp. contained MGTS and higher 

number of molecular species of DGTS while P. dioica stages contained high number of PE, 

PG, and PA (Fig. III. 21).  

 Porphyra dioica contained a lower number of molecular species of GLs, particularly in 

the SQDG class, than Gracilaria sp. or other reported Rhodophyta such as Chondrus 

crispus (145). These features deserve to be more explored by the analysis of other 

Rhodophyta to evaluate if these dissimilarities could be due to genetic evolutionary reasons 

and taxonomic variation. MS-based approach is an important tool for discrimination 

between families from the same phylum. 

Glycolipids from Gracilaria sp. mostly included molecular species with acyl 

composition 16:0 FA combined to C14, C16, C18, and C20 FA while GLs combining 16:0 

with C18 and C20 FA, were assigned in Porphyra macroalgae. Both specimens contained 

GLs with 20:4(n-6) and 20:5(n-3) FA. By using distinct MS-approaches (159,308) and 

NMR-approaches (181), it was reported that GLs from Rhodophyta (e.g., Chondrus 

crispus, Palmaria palmata, Porphyra sp., among others) contained a range of molecular 

species combining eicosapolyenoic acids such as 20:4(n-6) and 20:5(n-3). However, herein 
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this work it were found in same extent in both MGDG and DGDG, contrary to reported by 

using other analytical techniques (134). Both stages of P. dioica contained a lower number 

of molecular species of SQDG class than other Rhodophyta already screened by using the 

same lipidomics analytical strategy, such as Gracilaria sp. or reported Chondrus crispus 

(145) and may constitute a putative biomarker for intra-taxonomic differentiation.  
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Figure III. 21. Number of molecular species identified in the lipidome of Gracilaria sp., Porphyra 

dioica – blade and conchocelis phases. 

No great changes were observed in the profile of GLs from P. dioica comparing 

between both life cycle stages, showing a similar profile of the majority of GLs. Since GLs 

are found in chloroplast, during the development stages, the formation of chloroplasts, 

structural rearrangement and development of plastid structure occurs but seems to preserve 

the profile. A particular feature was observed within GLs, MGDG and DGDG class from 

conchocelis rather contained relevant molecular species combining 18:1 and 16:0, reported 

to confer less flexibility to membrane (323). Moreover, the predominance of molecular 

species that include desaturated acyl chains within the chloroplast membrane lipids, as 

noted here namely in blade stage, are more associated to the increase of membrane fluidity 

and more developed-stadiums.  
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In fact, GLs bearing n-3 PUFA were reported with biological activities as antibacterial, 

antitumor, and antiviral activities, enhancing the pharmacological potential of these 

compounds (23,71). MGDG (20:4/16:0), MGDG (20:5/16:0), SQDG (20:5/14:0) are 

recognized by their inhibitory effects as anti-inflammatory and antitumoral activity 

(132,181,308). Altogether these structures provide important cues related to the potential 

bioactive properties of both lipid extracts and GLs from P. dioica and also as an important 

source of n-3 and n-6 FA, envisaging the valorization of these macroalgae.  

The phospholipids (PLs) identified in the lipidome of both Rhodophyta Gracilaria sp. 

and both stages of P. dioica included PC, LPC, PG, LPG, PA, PE, and PI. The PLs from 

Gracilaria mainly included C14, C16, C18, C20, and C22 while P. dioica included PLs with 

C14-C20 FAs. The fatty acyl composition of PLs was distinguished from GLs by the 

predominance of molecular species that combine C18 and C20. A plethora of molecular 

species from distinct classes of PLs fingerprint both stages from P. dioica. PLs such as PC, 

LPC and PA contained a variety of molecular species in blade while PG and PE contained 

a high number of molecular species in the lipidome of conchocelis. Overall, dissimilarities 

of the phospholipidome were observed between stages due to the number of molecular 

species, composition and profile of molecular species, suggesting some change in the 

metabolism of this important biological membranes lipids across the development stages. 

PC, PE, PG, and PI are related to the formation of new cells and organelles and thus 

contribute to the variation on the profiles of molecular species between stages (167). The 

quantity and composition of PLs is regulated in a way that enables membranes for 

maintaining their structure and function in spite of their developmental and environmental 

changes (167,324,325). Early-stages contain less developed chloroplast than more 

developed stages (113,324). Comparing with the lipidome of Gracilaria, P. dioica 

contained higher number of molecular species from the class of PE and contained LPE 

that, altogether, may suggest that these classes are putative candidates in the intra-

taxonomic differentiation of Rhodophyta, which deserve to be explored. Interestingly, 

distinct lyso-phospholipids from PC, PG, and PE were found in the lipidomes of these 

macroalgae, suggesting that phospholipases can be activated to a greater extent than 

galactolipases (307). 

The industrial application of PLs is a new area in food industry, mainly as an ingredient 

for food fortification. PLs may serve important functions within the functional food 
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segment: (a) emulsifying properties, (b) supplementation of n-3 FAs such as 20:5(n-3), (c) 

better bioavailability of PUFA, and (d) beneficial nutritional effects of the PLs themselves 

(288). PLs in diet act as natural emulsifiers, facilitating the digestion and absorption of 

fatty acids, cholesterol and other lipophilic nutrients [21]. Furthermore, emulsions of 

marine PL can be used as effective carriers of n-3 PUFA-rich oil as they could be 

incorporated easily into aqueous and emulsified foods. Besides the nutraceutical relevance, 

there is also a growing interest to use PLs from macroalgae in the cosmetic and 

pharmaceutical industries, not only as emulsifiers but also considering their described 

health benefits (30,224,308,326). The n-6 and n-3 PUFA incorporated into PLs classes 

have been reported with important biological functions, namely to alleviate senescence, to 

be beneficial for cognitive functions or to prevent inflammatory diseases (32). Anti-

inflammatory effect of PLs rich-extracts was attributed to PUFA composition and to polar 

head groups, namely molecular species such as PG (20:5/16:0), PG (20:5/16:1), and PC 

(20:5/20:5) (181). Choline from the headgroup of PC was considered to play important 

roles in the stimulation of the production of acetylcholine with beneficial impact on the 

central nervous system (32). Thus, macroalgae or isolated PLs used as functional food or 

ingredients afford diverse health benefits. 

Betaine lipids from Gracilaria comprised DGTS and MGTS and include C14, C16, C18, 

and C20 FA, particularly the 20:4(n-6) FA. Regarding betaine lipids from P. dioica, few 

molecular species from DGTS assigned in the lipidome of blade and of conchocelis. 

Betaine lipids can be considered a biomarker to discriminate between Rhodophyta. 

Otherwise, by using TLC-based approaches, Kunzler reported that DGTS was detected in 

small amounts in the orders Gigartinales, Rhodymeniales and Ceramiales, and not in 

Bangiales, the order of Porphyra (153). This suggest that, at least in some red algal 

species, the biosynthetic pathway for betaine lipids is operating, although these classes do 

not contribute substantially to polar lipids as occurs in Chlorophyta (36,150,327). Betaine 

lipids are naturally occurring lipids not found in higher plants, but are quite widely 

distributed in algae (149,150). They are components of extraplastidial membranes and of 

the outer membrane of chloroplasts (150), are involved in the transfer of fatty acids from 

the cytoplasm to the chloroplast, and may contribute as marker for signaling during 

environmental and nutrition depleted conditions (36,151). They can replace phospholipids 

under conditions of phosphorous limitation being correlated with the phospholipids PC and 
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PE to substitute PLs membrane constituent and/or an intermediate in cellular lipid 

metabolism (153). This are novel-lipids not well explored in macroalgae, several gaps 

remain in the field of structural characterization, metabolic pathways, bioactivity and, thus, 

potential further applications. Amphiphilic character of betaines is similar to those from 

PC, suggesting some relation to biological role and bioactivity, however all these 

properties are an unexplored field. 

The set of FA from Gracilaria sp. and Porphyra dioica mainly comprised C14, C16, C18, 

and C20, FA, particularly 14:0, 16:0, 18:1, 18:2(n-6), 20:4(n-6) and 20:5(n-3) species, 

esterified to polar lipids. Gracilaria sp. contained high abundant 16:0, 18:1 FA and 20:4(n-

6) FA. Porphyra dioica was found to contain high content 20:5(n-3) PUFA in blade stage 

and 20:4(n-6) followed by 20:5(n-3) in conchocelis phase. Blade phase of P. dioica 

account for high concentrations of 20:5(n-3), with 20:4(n-6) as the second most abundant 

PUFA in accordance with literature (306,313,314). Depending on season effect and other 

abiotic factors, the percentage of 20:5(n-3) ranges from 20% - 50% (224,306,315). This 

feature highlights the particular potential for red species as a source of this n-3, suitable as 

commercial source of PUFA, assuming that sufficient biomass can be provided sustainably 

(e.g., aquaculture system) (34,292,313). In the conchocelis stage, 20:4(n-6) content was 

higher than 20:5(n-3), in agreement with literature (206,299,315). Both FA are within 

reported range: 23% up to 45% of 20:4(n-6) FA and 5% up to 26% of 20:5(n-5) (315). 

Highest content of PUFA and MUFA, and lowest of SFA, was found in conchocelis phase, 

but the relative percentage of 20:5(n-3) of blade stage was higher than in conchocelis. The 

n-3 FA have important roles on regulatory pathways controlling inflammatory responses 

(316,317). Consistent with this, many studies support that supplementation in nutrition 

with EPA contribute to reduce the risk of acute inflammatory response (71,318). General 

benefit to human health through anti-inflammatory actions can be achieved by reinforcing 

diet with EPA of somewhere between 1.35 and 2.7 g EPA per day (319). 

The balance n-6/n-3 PUFAs ratio it was found as 0.47 in blade stage and a higher value 

of 1.93 was obtained in the conchocelis stage, n-6/n-3 ratio was less than 2 in both stages. 

Gracilaria sp. has the highest value (3.69) but below reported for other macroalgae 

(299,306). A balanced ratio n-6/n-3 of less than 4 is in agreement with intake ratios 

recommended by WHO (292), enhancing the valorization of genus Gracilaria and 

Porphyra as food item for human consumption with beneficial contribution to reduce 
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chronic diseases, with ratio assigned to be less than four (96,291,297,320). Dietary factors 

of lipids can promote or protect against the development of cardiovascular disease that 

usually involve atherosclerosis or thrombosis events (278,328,329). The ratio between 

saturated thrombogenic FA and the sum of anti-thrombogenic MUFA and PUFA estimated 

for Porphyra stages was much lower than those reported for Rhodophyta and even 

Ochrophyta and Chlorophyta macroalgae (321). The IA and IT values observed in the 

results of the present study were in some order of reported for the most of the macroalgae 

(278). Macroalgae possess great amounts of protective PUFA of the n-6 and n-3 series and 

MUFA linked with the slow down intra-arterial occlusion and platelet aggregation, 

preventing disease (330). Indeed, IT values obtained herein were similar to the values for 

products which consumption is considered beneficial to health and for the prevention of 

chronic diseases, such as olive oil (0.32), and much lower than chicken (0.95) and milk-

based products (2.1). These results for the IA and IT are important to prevent the 

emergence of heart diseases by diet. Indeed, the highest PUFAs and MUFA, and lowest 

SFA contents were found in conchocelis phase, however higher contents of 20:5(n-3) 

where found in blade stage. Thus, altogether, Gracilaria sp., Porphyra dioica blade, and 

Porphyra dioica conchocelis stages are valuable in what concerns polar lipid composition. 

Their intrinsic nutritional value is useful for food, or food additive, and for inclusion in the 

formulation of highly unsaturated low-fat diets, with particular emphasis in both stages of 

macroalgae Porphyra dioica. Moreover, same molecular species may be functional to 

prevent diseases and thus in the development of healthier lipid formulations for pharma.  
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III.1.3. The lipidome of Ochrophyta: 

Fucus vesiculosus 
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The lipidome of Fucus vesiculosus 

__________________ 

The brown macroalgae Fucus vesiculosus (family Fucaceae, order Fucales), is a native 

species in the Atlantic cost of Portugal, and thrives in Ria de Aveiro. This macroalgae was 

widely used as fertilizer and feed for animal and also as a source of sulphated fucan for 

industrial exploitation (13). As other macroalgae, Fucus sp. is considered a potential 

source of food and n-3 fatty acids with nutritional value and/or pharmaceutical applications 

(314). Lipids have recognized beneficial effects on human health (1,331) but are modeled 

by environmental factors (330,332). In aquaculture systems such as IMTA, the 

manipulation of factors such as pH, salinity, light and nutrients may minimize drastic 

effects due to seasonal variations, or even modulate the plasticity of lipids and furthermore 

adjust composition to enhance the production of target compounds and standard biomass. 

Brown macroalgae are considered important sources of lipids, such as n-3 and n-6 with 

optimal n-6/n-3 ratio between of 1.5 - 3 (313,330,333). However, beside the fatty acids 

profile of Fucus vesiculosus (F. vesiculosus), the composition of lipids at molecular level, 

as others brown macroalgae, is not well documented. It encourages us to study the detailed 

composition of the polar lipidome of F. vesiculosus. Due to the considerable interest in 

understanding metabolism of polar lipids relying on season effects, the polar lipids profile 

of F. vesiculosus collected on mid-winter and end-spring from a land based IMTA in the 

west coast of Portugal is studied for the first time. It was performed by using high 

resolution HILIC–LC–MS & MS/MS. This will contribute to the elucidate the lipidome of 

F. vesiculosus and the role of season effect towards lipids. 

III.1.3.1. Polar lipids from Fucus vesiculosus 

The total lipid extracts from Fucus vesiculosus were extracted by using 

methanol/chloroform system, and F. vesiculosus collected on mid-winter (February) 

accounted for about 9.13  0.91 g/kg dry biomass while the one obtained from end-spring 

(May) accounted for 4.10  0.36 g/kg dry biomass. The elution profile of polar lipids in the 

extracts from both seasons was obtained by LC–MS and is represented in Figure III.22. 

Variations in the profile between seasons were observed at 2 up to 3 minutes within both 
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ionization modes and at 16 minutes in the positive mode of acquisition (Fig. III.22. A and 

C).  
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Figure III. 22.. LC–MS chromatograms of lipid extracts obtained from Fucus vesiculosus collected 

on February (mid-winter) and acquired on positive mode (A) and negative mode (B) and collected 

on May (end-spring) on positive mode (C) and negative mode (D). 

The MS raw data was pre-processed by using the software package MZmine 2 with 

mass tolerance of 5 ppm. Based on mass accuracy and on detailed structural information 

inferred by MS/MS spectra, the lipid classes and molecular species assigned on the 

lipidome of F. vesiculosus from different seasons were identified. Data integration and 

statistical analyses allowed the comparison between the profile of molecular species of all 

classes from F. vesiculosus in both seasons and variation in the lipidome was expressed by 

the changes of the relative abundance. These are preliminary results about the lipidome of 

F. vesiculosus extracts that deserve to be explored in the future.  

The polar lipid profile of F. vesiculosus was identified for the first time and it were 

identified glycolipids, phospholipids, and betaine lipids distributed by seventeen classes 

with a total of 181 molecular species. The same classes and lipid species were detected in 

the lipidome of F. vesiculosus collected in both seasons, showing variation in their relative 

abundance profile within each class, as will be described. 
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Identification of the glycolipids´ profile of Fucus vesiculosus and their variation with 

season effect 

Seventy-two molecular species of glycolipids were detected and were distributed within 

sulfolipids and galactolipids categories. Galactolipids from F. vesiculosus (both seasons) 

were identified by LC–MS as [M + NH4]+ ions (Fig. III.23. a-b and e-f), Table III.16) and 

included 25 MGDG molecular species and 27 DGDG molecular species. In both seasons, 

the most abundant was MGDG (38:8) attributed to MGDG (20:5/18:3) at m/z 816.6 with 

minor contribution from MGDG (20:4/18:4). The lipidome of F. vesiculosus collected on 

winter (February) also contained the abundant MGDG (38:9) attributed to MGDG 

(20:5/18:4) at m/z 814.5 and MGDG (36:7) attributed to MGDG (18:3/18:4) at m/z 790.5.  

The lipidome of F. vesiculosus from spring (May) season contained the abundant 

MGDG (38:7) at m/z 818.6 due to MGDG (20:5/18:2) with slight contribution from 

MGDG (20:4/18:3) and the abundant MGDG (38:6) at m/z 820.6 due to MGDG 

(20:4/18:2). Significant alterations were observed comparing the glicolipidomes of F. 

vesiculosus from spring versus winter (February) (Fig. III.24. a). Statistically analysis 

revealed significant increase of MGDG (32:3), MGDG (32:4), MGDG (34:4), MGDG 

(36:5), MGDG (38:5), MGDG (38:6), MGDG (38:7) (p < 0.001); MGDG (36:4) (p < 

0.01); and MGDG (32:1) (p < 0.05) and combine C16, C18 and C20 FA in spring season. In 

the glycolipidome of winter F. vesiculosus, it was observed a significant increase of 

MGDG (36:6), MGDG (36:7), MGDG (36:8), MGDG (38:8), and MGDG (38:9) (p < 

0.001); MGDG (34:2) (p < 0.01); MGDG (36:2) (p < 0.05) with high contribution from 

molecular species combining 18:3 and 18:4 and 20:5 FA to differentiate the lipidome of 

winter macroalgae. 

In both seasons, most abundant DGDG (38:8) at m/z 978.6 was attributed to DGDG 

(20:5/18:3) plus DGDG (20:4/18:4). Significant alterations were observed comparing the 

lipidome of F. vesiculosus from spring versus winter (Fig. III.24. b), with statistically 

significant increase of relative abundance of DGDG (36:4), DGDG (36:5), DGDG (38:4), 

DGDG (38:5), DGDG (38:6), DGDG (38:7) (p < 0.001) in spring season, most of them 

related to molecular species combining C16, C18 and C20 FA among are molecular species 

combining 20:4 and 20:5 FA with 18:1 and 18:2 FA. 
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Figure III. 23. LC–MS spectra of glycolipids from Fucus vesiculosus collected in February (mid-

winter) and May (end-spring) observed by LC–MS, respectively a) and e) MGDG, b) and f) DGDG 

molecular species were identified as [M + NH4]+ ions, c) and g) SQMG and d) and h) SQDG 

identified as [M – H]– ions. 
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Significant increase of DGDG in the lipidome of winter F. vesiculosus was reflected on 

DGDG (32:1), DGDG (32:2), DGDG (32:3), DGDG (34:2), DGDG (36:6), DGDG (36:7), 

DGDG (38:8) and DGDG (38:9) (p < 0.001); DGDG (34:1) and DGDG (36:2) (p < 0.01), 

among molecular species majorly contributing to the differentiation include PUFA such as 

16:3, 18:2, 18:3 and 18:4 FA. 

Sulfolipids SQDG were analysed by LC–MS as [M – H] – ions (Fig. III.23. c-d and g-h), 

Table III.16) and 14 molecular species of SQDG plus six molecular species of SQMG 

were identified. In both seasons, most abundant SQDG (34:1) was attributed to SQDG 

(18:1/16:0) at m/z 819.5 and a second prominent molecular species SQDG (32:1) at m/z 

791.5 identified as SQDG (18:1/14:0). The lipidome of F. vesiculosus from spring 

contained the abundant SQDG (30:0) at m/z 765.5 identified as SQDG (16:0/14:0). 

Significant alterations were observed comparing spring versus winter lipidomes (Fig. 

III.24. c) and significant increase was observed in spring at SQDG (28:0), SQDG (30:0) 

and SQDG (32:1) (p < 0.001), SQDG (30:1) and SQDG (32:0) (p < 0.01), and SQDG 

(36:4) and SQDG (36:5) (p < 0.05). Most significant increase included SQDG with SFA 

such as 14:0, 16:0 and 18:0 while the major contribution in the differentiation of spring 

lipidome was reflected by the increase of SQDG (30:0). Significant increase was observed 

in winter season at SQDG (32:1), SQDG (32:2), SQDG (32:3), SQDG (34:1), SQDG 

(34:2), SQDG (34:3) (p < 0.001); and SQDG (30:1) (p < 0.01), with molecular species 

including 18:1, 18:2, and 18:3 FA. 

Lyso-sulfolipids (SQMG) were identified in the lipidome from both seasons, with the 

most abundant SQMG (16:0) at m/z 555.3. Lyso-sulfolipids included the C14 and C16 SFA 

and C18 FA. Significant alterations were observed comparing spring versus winter 

lipidomes (Fig. III.24 d) with significant increase of SQMG (16:1) (p < 0.001); SQMG 

(16:0) and SQMG (18:2) (p < 0.01); and SQMG (14:0). (p < 0.05). Otherwise, significant 

increase of SQMG (18:1) and SQMG (18:3) was observed in the lipidome of F. 

vesiculosus from winter.  
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Figure III. 24. Percentage of a) MGDG, b) DGDG and c) SQDG plus d) SQMG molecular species 

identified after LC–MS and MS/MS. The results are expressed as percentage obtained by dividing 

the ratio between peak areas of each molecular species and internal standards and the total of all 

ratios. Values are means ± standard deviation of the duplicate of three independent experiments. 

(***, significantly different p < 0.001; **, significantly different p < 0.01, * significantly different 

p < 0.05). February refers to Fucus vesiculosus collected in mid-winter. May refers to Fucus 

vesiculosus collected in end-spring. 
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Table III. 16. Identification of glycolipids observed by HILIC–LC–MS in Fucus vesiculosus. 

MGDG and DGDG molecular species were identified as [M + NH4]+ ions, SQDG and SQMG as 

[M – H]- ions  

Galactolipids [M + NH4]+  Mass accuracy < 5 ppm 

   

Observed m/z Lipid species (C:N) Fatty acyl chain 

  Monogalactosyl diacylglycerol 

740.5309 MGDG (32:4) 16:0/16:4 

742.5479 MGDG (32:3) 16:0/16:3 and 14:1/18:2 

746.5765 MGDG (32:1) 14:0/18:1 and 16:0/16:1 

768.5621 MGDG (34:4) 18:4/16:0 and 16:1/18:3 

772.5935 MGDG (34:2) 18:2/16:0 and 16:1/18:1 

774.6074 MGDG (34:1) 18:1/16:0 

788.5307 MGDG (36:8) 18:4/18:4 

790.5459 MGDG (36:7) 18:3/18:4 

792.5614 MGDG (36:6) 18:3/18:3 

794.5772 MGDG (36:5) 18:2/18:3 and 20:5/16:0  

796.5929 MGDG (36:4) 20:4/16:0 and 18:2/18:2 

814.5546 MGDG (38:9) 20:5/18:4 

816.5608 MGDG (38:8) 20:5/18:3 and 20:4/18:4 

818.5766 MGDG (38:7) 20:5/18:2 and 20:4/18:3 

820.5926 MGDG (38:6) 20:4/18:2 

822.6073 MGDG (38:5) 20:4/18:1 

824.6235 MGDG (38:4) 20:4/18:0 

  Digalactosyl diacylglycerol 

904.5992 DGDG (32:3) 16:0/16:3  

906.6148 DGDG (32:2) 14:0/18:2 

908.6305 DGDG (32:1) 14:0/18:1 and 16:0/16:1 

932.6305 DGDG (34:3) 18:3/16:0 

934.6461 DGDG (34:2) 18:2/16:0 and 18:1/16:1 

936.6618 DGDG (34:1) 18:1/16:0 

938.6780 DGDG (34:0) 18:0/16:0 

952.5992 DGDG (36:7) 18:3/18:4 

954.6148 DGDG (36:6) 18:3/18:3 

956.6305 DGDG (36:5) 20:5/16:0 and 18:2/18:3 

958.6461 DGDG (36:4) 20:4/16:0 and 18:2/18:2  

960.6623 DGDG (36:3) 18:1/18:2 

962.6780 DGDG (36:2) 18:1/18:1 

964.6936 DGDG (36:1) 18:1/18:0 

976.5992 DGDG (38:9) 20:5/18:4 

978.6148 DGDG (38:8) 20:5/18:3 and 20:4/18:4 

980.6305 DGDG (38:7) 20:4/18:3 and 20:5/18:2 

982.6461 DGDG (38:6) 20:4/18:2 and 20:5/18:1 
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984.6623 DGDG (38:5) 20:4/18:1 

986.6780 DGDG (38:4) 20:4/18:0 

Sulfolipids [M − H]−   Mass accuracy < 5 ppm 

Observed m/z Lipid species (C:N) Fatty acyl chain 

  Sulfoquinovosyl monoacylglycerol 

527.2525 SQMG (14:0)   

553.2688 SQMG (16:1)   

555.2838 SQMG (16:0)   

577.2678 SQMG (18:3)   

579.2839 SQMG (18:2)   

581.3000 SQMG (18:1)   

  Sulfoquinovosyl diacylglycerol  

737.4510 SQDG (28:0) 14:0/14:0 

763.4666 SQDG (30:1) 16:0/14:1 

765.4823 SQDG (30:0) 16:0/14:0 

787.4666 SQDG (32:3) 18:3/14:0 

789.4666 SQDG (32:2) 18:2/14:0 

791.4979 SQDG (32:1) 18:1/14:0 

793.5136 SQDG (32:0) 18:0/14:0 

813.4823 SQDG (34:4) 18:3/16:1 

815.4979 SQDG (34:3) 18:3/16:0 

817.5136 SQDG (34:2) 18:2/16:0 

819.5292 SQDG (34:1) 18:1/16:0 

821.5449 SQDG (34:0) 18:0/16:0 

839.4979 SQDG (36:5) 20:5/16:0 

841.5136 SQDG (36:4) 20:4/16:0 
Numbers in parentheses (C:N) indicate the number of carbon atoms (C) and double bonds (N) in the fatty acid side 
chains. Bold represents the abundant molecular species 

Identification of the phospholipids´ profile of Fucus vesiculosus and their variation with 

season effect 

Phospholipids in the lipid extract of Fucus vesiculosus from both seasons were 

identified by LC–MS and distributed by nine classes of PLs such as phosphatidylcholine 

(PC) and lyso-PC, phosphatidylglycerol (PG) and lyso-PG, phosphatidylinositol (PI) and 

lyso-PI, phosphatidylethanolamine (PE) and lyso-PE, and phosphatic acid (PA) (Figure 

III.25, Table III.17). 

Phosphatidylcholine and lyso-PC 

The PC and lyso-PC (LPC) were identified as [M + H]+ ions. Seven PCs were seen in 

the lipidome of macroalgae from both seasons with most abundant at m/z 784.6 attributed 
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to PC (36:3). Other molecular species are described in Table III.17. Significant alterations 

were observed comparing the lipidomes of F. vesiculosus from spring versus winter (Fig. 

III.27. a). Statistically significant increase of PC (36:2) (p < 0.001) was observed in spring 

season. In winter, it was observed a significant increase of PC (36:5) (p < 0.001) and of PC 

(38:6) (p < 0.01). Three LPC were detected (Table III.17, Fig. III.26. b) and the most 

abundant was LPC (16:0), observed at m/z 496.3 in winter while LPC (18:1) was the most 

abundant in spring. Comparing spring versus winter lipidomes, there was a significant 

increase of aforementioned molecular species (p < 0.001) and decrease of LPC (16:1) (p < 

0.05).  

Phosphatidylglycerol and lyso-PG 

The classes PG and lyso-PG were identified as [M – H] – ions. Sixteen PGs were 

identified and PG (34:4) at m/z 741.4, attributed to PG (16:1/18:3) while the lipidome of F. 

vesiculosus from winter contained the abundant at m/z 743.5 attributed to PG (16:0/18:3) 

and in the spring, it contained the abundant at m/z 773.5 attributed to PG (18:1/18:1). The 

other molecular species are described in Table III.17. Significant alterations were observed 

comparing lipidomes from spring versus winter macroalgae (Fig. III.25. c). Significant 

increase of PG (32:1), PG (34:1), PG (36:2) plus PG (36:4) (p < 0.001); PG (32:2) (p < 

0.01), and PG (34:0) (p < 0.05) was observed in spring. These molecular species are 

mainly composed by 16:0 and 18:0 SFA and C18 MUFA. Regarding the winter lipidome, 

there was a significant increase of PG (34:3), identified as PG (16:0/18:3) and PG (34:4), 

identified as PG (16:1/18:3) (p < 0.001). Three LPG were observed in the lipidome from 

both seasons, being the most abundant the LPG (16:0) and the LPG (16:1), at m/z 483.3 

and 481.3, respectively. It was observed a significant increase of LPG (16:0) (p < 0.01) and 

decrease of the LPG (16:1) (p < 0.001) comparing spring versus winter seasons (Fig. 

III.25. d). 
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Figure III. 25. LC–MS spectra of phospholipids from Fucus vesiculosus collected in February 

(mid-winter) and May (end-spring) observed by LC–MS, respectively a) and g) PC, b) and h) LPC 

as [M + H]+ ions; c) and i) PG, d) and j) LPG, e) and k) PE, f) and l) PI as [M – H]– ions. 
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Table III. 17. Identification of phospholipid molecular species observed by HILIC–LC–MS in 

Fucus vesiculosus, PC and LPC as [M + H]+ ions; PG, LPG, PI, LPI, PE, LPE, and PA, were 

identified as [M – H]– ions 

Phospholipids [M + H]+  Mass accuracy < 5 ppm 

Observed m/z Lipid species (C:N) Fatty acyl chain 

  Phosphatidylcholine  

758.5689 PC (34:2) * 

760.5835 PC (34:1) * 

780.5530 PC (36:5) * 

784.5850 PC (36:3) * 

786.6005 PC (36:2) * 

806.5683 PC (38:6) * 

808.5831 PC (38:5) * 

  Lyso-phosphatidylcholine  

496.3392 LPC (16:0) 

494.3241 LPC (16:1) 

522.3556 LPC (18:1) 

Phospholipids [M − H]−   Mass accuracy < 5 ppm 

Observed m/z Lipid species (C:N) Fatty acyl chain 

  Phosphatidylglycerol  

717.4710 PG (32:2) 16:0/16:2 and 16:1/16:1 

719.4868 PG (32:1) 16:1/16:0 and 14:0/18:1 

721.5033 PG (32:0) 16:0/16:0 and 14:0/18:0 

741.4713 PG (34:4) 16:1/18:3  

743.4862 PG (34:3) 16:0/18:3 and 16:1/18:2 

745.5018 PG (34:2) 16:0/18:2 

747.5183 PG (34:1) 18:0/16:1 

749.5335 PG (34:0) 16:0/18:0 

769.5017 PG (36:4) 16:0/20:4 and 18:2/18:2  

771.5160 PG (36:3) 18:1/18:2  

773.5333 PG (36:2) 18:1/18:1  

  Lyso-phosphatidylglycerol  

481.2569 LPG (16:1) 

483.2733 LPG (16:0) 

509.2887 LPG (18:1) 

  Phosphatidylinositol    

833.5175 PI (34:2) 16:0/18:2 

835.5339 PI (34:1) 16:0/18:1 

837.5491 PI (34:0) 16:0/18:0 

855.5041 PI (36:5) 18:4/18:4 

857.5196 PI (36:4) 16:0/20:4 

859.5352 PI (36:3) 18:0/18:3 

861.5505 PI (36:2) 18:0/18:2 
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863.5674 PI (36:1) 18:0/18:1 

                                                  Lyso-Phosphatidylinositol  

597.3060 LPI(18:1) 

  Phosphatidylethanolamine  

686.4758 PE (32:2) 14:0/18:2 

688.4923 PE (32:1) 14:0/18:1 

714.5067 PE (34:2) 16:0/18:2 

716.5227 PE (34:1) 16:0/18:1 

762.5073 PE (38:6) 18:2/20:4 

764.5232 PE (38:5) 18:1/20:4 

784.4918 PE (40:9) 20:4/20:5 

786.5076 PE (40:8) 20:4/20:4 

788.5218 PE (40:7) 20:4/20:3 

  Lyso-Phosphatidylethanolamine  

498.2613 LPE (20:5) 

500.2779 LPE (20:4) 

  Phosphatidic acid    

619.4330 PA (30:0) 14:0/16:0 

645.4507 PA (32:1) 14:0/18:1 

665.4184 PA (34:5) 14:0/20:5 
Numbers in parentheses (C:N) indicate the number of carbon atoms (C) and double bonds (N) in the fatty acid side 
chains; * molecular species were identified by mass accuracy and by MS/MS by the product ion at m/z 184 of [M + H]+ 
ions 

Phosphatidylinositol  

The class of PI was identified in negative-mode as [M – H]- ions and eight molecular 

species were identified in the lipidome of macroalgae from mid-winter (February) and 

seven were assigned in the lipidome from end-spring (May). The lipidome from both 

seasons was characterized by the abundant PI (34:1) at m/z 835.5, PI (16:0/18:1), followed 

by PI (34:2) at m/z 833.5 as PI (16:0/18:2). Others molecular species are described in Table 

III.17. Differences were observed after comparison between lipidomes of F. vesiculosus 

from spring versus winter (Fig. III.26. e). In the lipidome of spring, there was a significant 

increase of PI (34:1) and PI (34:2) (p < 0.001) that were composed by 16:0 and 18:1 or 

18:2 FA, respectively; in the winter lipidome there was increase of PI (34:0), PI (36:1), PI 

(36:2), PI (36:3), and PI (36:4) (p < 0.001) plus PI (36:5) (p < 0.01) with some of these 

molecular species including 18:3, 18:4 and 20:4 PUFA. Only one LPI was identified at m/z 

597.3 as LPI (18:1) that was more abundant in the lipidome of spring season (data not 

shown). 
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Phosphatidylethanolamine and lyso-PE 

The classes of PE and lyso-PE were identified as [M − H] − ions. Nine PEs were 

identified in the lipidome from both seasons, with the most abundant PE (40:8) at m/z 

786.5 attributed to PE (20:4/20:4). All molecular species are described in Table III.17. 

Significant alterations were observed comparing lipidome of F. vesiculosus from spring 

versus winter (Fig. III.25. f) and significant increase was found in PE (32:1), PE (32:2), 

and PE (34:2) (p < 0.001) from spring season while significant increase of PE (38:5) and 

PE (40:8) (p < 0.001); PE (38:6), PE (40:7), and PE (40:9) (p < 0.05) was observed in the 

lipidome from winter season. Moreover, two LPE were identified at m/z 498.3 and 500.3 

corresponding to LPE (20:4) (the most abundant LPE in both seasons) and LPE (20:5). 

Comparing the lipidomes of spring versus winter, a statistically significant increase occurs 

with the LPE (20:4) and the contrary was observed with LPE (20:5) (Fig. III.25. f).  
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Figure III. 26. Percentage of a) PC, b) LPC and c) PG plus d) LPG, e) PI, f) PE and g) LPE, 

molecular species identified after LC–MS, MZ mine software and MS/MS analysis. The results are 

expressed as percentage obtained by dividing the ratio between peak areas of each molecular 

species and internal standards and the total of all ratios. Values are means ± standard deviation of 

the duplicate of three independent experiments. (***, significantly different p < 0.001; **, 

significantly different p < 0.01, * significantly different p < 0.05). February refers to Fucus 

vesiculosus collected in mid-winter. May refers to Fucus vesiculosus collected in end-spring. 
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Phosphatidic acid  

PAs were identified in negative-mode as [M – H]– ions and three PAs were identified in 

the lipidomes of F. vesiculosus from both seasons. Significant alterations were observed 

comparing lipidomes from spring versus winter macroalgae (Supplementary Fig. S.8.) and 

significant increase was found at PA (30:0) as PA (14:0/16:0) and this was the abundant 

molecular species in the lipidome of macroalgae from spring. Most abundant PA (32:1) 

characterized the lipidome from winter and was attributed to PA (14:0/18:1), that also 

contribute to the statistically decrease observed comparing spring versus winter 

macroalgae.  

Identification of the betaine lipids´ profile of Fucus vesiculosus and their variation with 

season effect 

The analysis of total lipid extract provided the identification of betaine lipids 

diacylglyceryl-N,N,N-trimethyl-homoserine (DGTS), monoacylglyceryl-N,N,N-trimethyl-

homoserine (MGTS), diacylglyceryl hydroxymethyltrimethyl-β-alanine (DGTA) and 

monoacylglyceryl hydroxymethyltrimethyl-β-alanine (MGTA) that were identified as [M + 

H]+ ions (Fig. III.27. a-h), Table III.18, Supplementary Fig. S.9). In both seasons, it was 

identified sixteen DGTS, seven MGTS, twenty-one DGTA and twelve MGTA. Regarding 

DGTS, in both seasons, most abundant DGTS was DGTS (32:1) observed at m/z 710.6 

attributed to DGTS (14:0/18:1) and DGTS (16:0/16:1). Significant alterations were 

observed comparing lipidomes of macroalgae from spring versus winter (Fig. III.28.a) and 

significant increase was observed at DGTS (32:0), DGTS (32:1), DGTS (36:2), and DGTS 

(36:3) (p < 0.001), molecular species that combine 16:0, 16:1, 18:1, 18:2, and 18:3 FA. 

Significant increase of DGTS in the lipidome of F. vesiculosus from winter was attributed 

to DGTS (32:2), DGTS (32:3), DGTS (34:2) and DGTS (34:3) (p < 0.001); DGTS (34:1) 

(p < 0.01); and DGTS (32:4) (p < 0.05), molecular species combining 16:0 FA and C16 and 

C18 PUFA. All molecular species are described in Table III.18.  

Betaine lipids were identified by using LC–MS, MS/MS and mass accuracy approaches 

as [M + H]+ ions. The class of DGTA was for the first time identified at molecular level in 

Fucus vesiculosus and in macroalgae; and MGTA was identified for the first time in the 

lipidome of macroalgae (Fig. III.27. e-f), Table III. 18). These classes have different 
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elution profile in the chromatogram (LC–MS), with DGTS and MGTS eluting within 6 - 8 

minutes while DGTA and MGTA eluted within 16 - 20 minutes (Supplementary Fig. S.9).  
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Figure III. 27. LC–MS spectra of betaine lipids from Fucus vesiculosus collected in February 

(mid-winter) and May (end-spring) observed by LC-MS, respectively a) and e) DGTS, b) and f) 

MGTS, c) and g) DGTA, e) and h) MGTA as [M + H]+ ions. 

Moreover, the structural identification of each class was supported by MS/MS and the 

fragmentation pattern analysis by polar head assigned at the characteristic m/z 236 and the 

assignment of product ions that result from the loss of fatty acyl (Supplementary Fig. S.9). 

DGTA was distinguished from the structural isomer DGTS by the higher abundance of the 
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molecular ion and much lower abundance of the product ions representing the polar head 

and the loss of fatty acyl. These features were described by Roche et al (2010) that studied 

sodiated adducts of DGTS and DGTA of Chlorarachniophyta (216). The most abundant 

DGTA observed in the lipidome of F. vesiculosus from winter was attributed to DGTA 

(32:2) at m/z 708.6 as DGTA (14:0/18:2) and DGTA (16:0/16:2), and to DGTA (32:1) at 

m/z 710.6 and DGTA (34:2), that was also the most abundant DGTA in spring season. 

Significant alterations were observed comparing lipidomes of F. vesiculosus from spring 

versus winter (Fig. III.28. c) and significant increase was observed for DGTA (28:0), 

DGTA (30:0), DGTA (32:1), and DGTA (34:1) (p < 0.001); and DGTA (32:0) (p < 0.01), 

with molecular species including SFA and MUFA. Moreover, significant increase 

observed in the lipidome of macroalgae from winter was attributed to DGTA (32:2), 

DGTA (32:3), DGTA (34:2), DGTA (34:4), DGTA (36:3), and DGTA (36:4) (p < 0.001); 

and DGTA (30:1), DGTA (32:4), and DGTA (34:3) (p < 0.01), molecular species that 

include C16, C18, and C20 PUFAs. 

The molecular species MGTA (18:2), observed at m/z 498.4, was the most abundant and 

was common in the lipidome from both seasons, while spring F. vesiculosus also contained 

the MGTA (18:1) at m/z 500.4. Considering the variation on the lipidome of F. vesiculosus 

from spring, it was inferred by the significant increase of MGTA (18:1), MGTA (18:2), 

and MGTA (18:4) (p < 0.001), while significant increase in the lipidome from winter was 

inferred by the MGTA (16:0), MGTA (18:3), MGTA (20:2), MGTA (20:3), MGTA (20:4), 

and MGTA (20:5). 
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Figure III. 28. Percentage of a) DGTS, b) MGTS and c) DGTA plus d) SQMG molecular species 

identified after LC–MS, and MS/MS analysis. The results are expressed as percentage obtained by 

dividing the ratio between peak areas of each molecular species and internal standards and the total 

of all ratios. Values are means ± standard deviation of the duplicate of three independent 

experiments. (***, significantly different p < 0.001; **, significantly different p < 0.01, * 

significantly different p < 0.05). February refers to Fucus vesiculosus collected in mid-winter. May 

refers to Fucus vesiculosus collected in end-spring. 
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Table III. 18. Identification of betaine molecular species observed by HILIC–LC–MS in Fucus 

vesiculosus. DGTS, MGTS, DGTA, and MGTA are identified as [M + H]+ ions 

Betaine lipids [M + H]+  Mass accuracy < 5 ppm 

Observed m/z Lipid species (C:N) Fatty acyl chain 

Diacylglyceryl trimethyl-homoserine (DGTS) 

656.5465 DGTS (28:0) 14:0/14:0 

682.5622 DGTS (30:1) 14:0/16:1 

684.5778 DGTS (30:0) 14:0/16:0 

704.5465 DGTS (32:4) 16:1/16:3 

706.5622 DGTS (32:3) 14:0/18:3 and 16:0/16:3 

708.5778 DGTS (32:2) 16:0/16:2 

710.5935 DGTS (32:1) 14:0/18:1 and 16:0/16:1  

712.6091 DGTS (32:0) 16:0/16:0 

732.5778 DGTS (34:4) 16:0/18:4 

734.5935 DGTS (34:3) 16:0/18:3 

736.6091 DGTS (34:2) 16:0/18:2 

738.6248 DGTS (34:1) 16:0/18:1 

762.6248 DGTS (36:3) 18:0/18:3 

764.6404 DGTS (36:2) 18:0/18:2 

Monoacylglyceryl trimethyl-homoserine (MGTS) 

446.3470 MGTS (14:0) 

472.3632 MGTS (16:1)  

474.3792 MGTS (16:0)  

494.3477 MGTS (18:4)  

496.3634 MGTS (18:3) 

498.3796 MGTS (18:2) 

500.3943 MGTS (18:1) 

Diacylglyceryl hydroxymethyl-trimethyl-β-alanine (DGTA) 

656.5465 DGTA (28:0) 14:0/14:0 

680.5465 DGTA (30:2) 14:0/16:2 

682.5622 DGTA (30:1) 14:0/16:1 

684.5778 DGTA (30:0) 14:0/16:0 

704.5465 DGTA (32:4) 16:1/16:3 

706.5622 DGTA (32:3) 14:0/18:3 and 16:0/16:3 

708.5778 DGTA (32:2) 14:0/18:2 and 16:0/16:2 

710.5935 DGTA (32:1) 14:0/18:1 and 16:0/16:1 

712.6091 DGTA (32:0) 14:0/18:0 and 16:0/16:0 

732.5778 DGTA (34:4) 14:0/20:4  

734.5935 DGTA (34:3) 14:0/20:3 and 16:0/18:3 

736.6091 DGTA (34:2) 14:0/20:2 and 16:0/18:2 

738.6248 DGTA (34:1) 16:0/18:1 

760.6091 DGTA (36:4) 16:0/20:4 

762.6248 DGTA (36:3) 16:0/20:3 
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Monoacylglyceryl hydroxymethyl-trimethyl-β-alanine (MGTA) 

446.3481 MGTA (14:0)  

468.3308 MGTA (16:3)  

472.3632 MGTA (16:1)  

474.3799 MGTA (16:0)  

494.3472 MGTA (18:4)  

496.3632 MGTA (18:3)  

498.3784 MGTA (18:2)  

500.3942 MGTA (18:1)  

520.3642 MGTA (20:5)  

522.3795 MGTA (20:4)  

524.3957 MGTA (20:3)  

526.4109 MGTA (20:2)  
Numbers in parentheses (C:N) indicate the number of carbon atoms (C) and double bonds (N) in the fatty acid side chains 

III.1.3.2. Fatty acids profile  

The fatty acid methyl esters (FAMEs) profile of the lipid extracts from February (mid-

winter) and May (end-spring) Fucus vesiculosus included twenty different fatty acids 

(Table III.19). The fatty acids were 14:0, 15:0, 16:0, 16:1, 16:2(n-6), 16:3(n-3), 18:0, 

18:1(n-9), 18:2(n-6), 18:3(n-6), 18:3(n-3), 18:4(n-3), 20:0, 20:1(n-9), 20:2(n-6), 20:3(n-6), 

20:4(n-6), 20:5(n-3), 22:0, and 24:0. 

The lipidome of macroalgae from both seasons had similar composition in FAs, but 

showed significant differences in the content of some of the FAs. Fucus vesiculosus was 

characterized by high amounts of the 18:1(n-9) FA (25.3 ± 0.69% and 28.1 ± 1.44%, 

respectively) and 16:0 (17.2 ± 1.98% and 20.8 ± 2.12% in winter and spring seasons, 

respectively). However, both seasons F. vesiculosus also contained 20:4(n-6) (10.7 ± 

0.96% and 13.5 ± 1.81%, respectively), 18:2(n-6) (8.78 ± 0.22% and 6.62 ± 0.49%, 

respectively), 18:3(n-3) (7.13 ± 0.58% and 3.92 ± 0.34%, respectively) and 20:5(n-3) (6.69 

± 0.94% and 4.75 ± 0.47%, respectively). In winter, F. vesiculosus was characterized by 

high amounts of PUFAs (40.5%), followed by SFA (32.2%) and MUFA (27.3%), 

meanwhile in spring season it mainly contained SFA (36.1%), followed by PUFAs 

(33.9%) and MUFAs (29.9%). Significant alterations were observed comparing FA profile 

of F. vesiculosus from spring versus winter (Fig. III.29) and significant increase was 

observed for FA 18:0 (p < 0.001), 18:1(n-9), 20:4(n-6) (p < 0.01), 16:0 and 20:0 (p < 0.05). 

In the winter season, there was a significant increase of the FA 16:2(n-6), 18:2(n-6) (p < 

0.001), 14:0, 18:3(n-3), 18:4(n-3) and 20:1(n-9) p < 0.01, 16:1(n-7), and 20:5(n-3) FA (p < 
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0.05). Among these, the content of 18:0 was much higher in spring (6.09 ± 0.43%) than in 

winter (1.64 ± 0.25 %), and 18:3(n-3) was much lower in spring (3.92 ± 0.34%) than in 

winter (7.13 ± 0.58%). 

Table III. 19. Fatty acid profile of Fucus vesiculosus collected in February (mid-winter) and May 

(end-spring), determined by GC–MS analysis of fatty acid methyl esters (FAMEs) 

 February  May  

Fatty acids Mean (%) ±SD Mean (%) ±SD 

14:0 10.9 1.08 6.58 1.48 

15:0 0.54 0.05 0.49 0.05 

16:0 17.2 1.98 20.8 2.12 

18:0 1.64 0.25 6.09 0.43 

20:0 0.35 0.11 0.59 0.14 

22:0 0.50 0.07 0.65 0.25 

24:0 1.11 0.23 0.90 0.22 

 SFA 32.2  36.1  

16:1n-7 1.55 0.05 1.41 0.10 

18:1n-9 25.3 0.69 28.1 1.44 

20:1n-9 0.49 0.04 0.34 0.07 

 MUFA 27.3  29.9  

16:2n-6 0.37 0.02 0.15 0.03 

16:3n-3 0.12 0.03 0.21 0.06 

18:2n-6 8.78 0.22 6.62 0.49 

18:3n-6 0.89 0.41 0.70 0.11 

18:3n-3 7.13 0.58 3.92 0.34 

18:4n-3 4.35 0.51 2.71 0.19 

20:2n-6 0.71 0.04 0.70 0.15 

20:3n-6 0.71 0.09 0.70 0.17 

20:4n-6 10.7 0.96 13.5 1.81 

20:5n-3 6.69 0.94 4.75 0.47 

 PUFA 40.5  33.9  

AA/EPA 1.60 2.85 

 n-6/ n-3 1.15  1.86  

 C16/ C18 0.40  0.47  
AA – Arachidonic acid; EPA – Eicosapentaenoic acid; Means (%) and standard deviations (S.D.) were obtained from 
three replicates (content less than 0.1% not shown) 
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Figure III. 29. Percentage of FAMEs expressed by the ratio between each FAME and the total of 

all individual areas. Values are means ± standard deviation of the duplicate of three independent 

experiments. (***, significantly different p < 0.001; **, significantly different p < 0.01, * 

significantly different p < 0.05). February refers to Fucus vesiculosus collected in mid-winter. May 

refers to Fucus vesiculosus collected in end-spring. 

These aforementioned contents are reflected on n-6/n-3 PUFAs ratio that was 1.15 in 

winter season and 1.86 in spring season. AA/EPA ratio was higher in spring season (2.85) 

than in winter season (1.60), and same trend was observed for the content of MUFA and 

SFA, while the highest content of PUFA was obtained in the lipidome of winter F. 

vesiculosus. 

III.1.3.3 Discussion 

The lipids extracted from mid-winter Fucus vesiculosus accounted for 9.13 ± 0.91 g/kg 

of dry biomass and end-spring biomass accounted for 4.10 ± 0.36 g/kg of dry biomass. 

These amounts are in agreement with previous published works, obtained in analogous 

seasons and adult stages and accumulation of lipids in winter is known to be related with 

membrane-forming, energy storage roles of lipids and the decrease of lipid content in 

spring may be due to the energy loss on sporogenesis (310,330,334).  
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The lipidome of F. vesiculosus was established for the first time by using LC–MS, mass 

accuracy & MS/MS. In both season samples, seventy-two glycolipids, fifty-three 

phospholipids, and fifty-six betaine lipids were identified. Among these it was identified 

the MDGD, DGDG, SQDG, PC, PG, PI, PE, and DGTA also previously described in the 

order of Fucales and other brown alga (150,335). The classes SQMG, lyso-PC, lyso-PG, 

lyso-PI, lyso-PE, phosphatic acid (PA); betaine lipids DGTS, MGTS, and MGTA were 

identified in the lipidome of F vesiculosus never reported before (36,335). Most probably, 

the nonappearance of these classes in previous published work can be due to the use of low 

sensitive analytical techniques such as off-line TLC. In what concern betaine lipids, both 

DGTA and the structural isomer DGTS were identified. DGTA is reported as a typical 

class of brown macroalgae, while DGTS was mainly attributed to assign green and, more 

recently found in red macroalgae (36,136). Otherwise, it was reported that some 

Ochrophyta like genus Fucus did not contain DGTS structural isomers (150,154,335). 

DGTS and MGTS were herein found in Fucales, contrary to previous published 

information. The full differentiation of these isomers was possible herein by using HILIC–

MS, that allowed the elution of both isomers at different retention times, and MS/MS & 

mass accuracy to confirm the identity of DGTA and DGTS based on the fragmentation 

pattern (154). Roche & Leblond identified both isomers in the lipidome of microalgae as 

sodiated adducts, with a previous separation of both classes by off-line TLC (216). It has 

been suggested that the presence of DGTA within brown macroalgae is an indicative for 

the differentiation inter-taxonomy, that its corroborate with our results (336).  

At molecular level, the lipidome of Fucus vesiculosus can be characterized by the high 

number of GLs including PUFA highlighting the presence of MGDG and DGDG 

molecular species that include 20:4, 20:5 with 18:3 and 18:4. SQDG preferably combined 

SFA and a minor number of species included 20:4 and 20:5 FA. These species showed 

variation with season, with the ones with PUFA increasing in winter, probably due to the 

lower temperature characteristic from this season. Also, there is a tendency of the increase 

of the abundance of polar lipids molecular species with C18 while a partial decrease of C20, 

as was already been reported for the FA profile (97). Some glycolipid esterified to 18:2, 

18:3, 18:4, 20:4 and 20:5 FA from brown algae have been reported with activity against 

tumors (27,67,94,97), namely some SQDG and DGDG were found to induce apoptosis of 

the human colon carcinoma Caco-2 cell (223). 
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The PLs from brown macroalgae molecular species had a varied composition including 

14:0, 16:0, C18 and C20 FA. PG is a plastidial lipid and contained a major number of 

molecular species that include the C16 combined with C18 FA type such as 18:3 FA and, in 

less extent, C20 PUFA. Among PLs, PE class major include PUFAs such as 20:3, suggested 

as brown macroalgae´s biomarker of PLs (97,335). The role of PE carrying on more 

unsaturated lipid PLs deserves to be more explored, suggesting the greatest importance of 

this extra-plastidial class as a source of 20:4 and 20:5 PUFA. The composition of PLs was 

found to be dependent on season effect. The classes PC, PG, PI and PE of macroalgae from 

the winter season showed the increasing in the relative abundance of several molecular 

species that contained PUFAs preferably 18:3 and 18:4, while molecular species 

combining MUFAs such as 18:1 and as 18:2 substantially decreased, and with PE 

contributing to the increase of 20:4 and 20:5 pool in winter season.  

Betaine lipids classes commonly combined 14:0 and 16:0 with C18 FA, however DGTS 

and MGTS are differentiated by including C16 and C18 PUFA while DGTA and MGTA 

preferably included C18 and C20 FA such as 20:4 and 20:3 FA. The season effect was also 

reflected in betaine lipids such as DGTS and MGTS, by the increase of molecular species 

C16 and unsaturated C18 in winter season while DGTA and MGTA was major reflected by 

the statistically increase of molecular species with PUFA such as 16:3, 18:3, and 20:3. 

Spring season effects was more reflected in the increase of molecular species combining 

SFA and MUFA.  

In the lipidome of macroalgae, it was identified a new class, MGTA, never reported in 

algae, and showed the increase of C18 PUFA in winter season. Thus, overall, with season 

effect it is suggested a great variation in the content of total lipids and a shift between SFA 

and PUFA, mainly reflected by the increase of C18 and C20 PUFA by major contributions 

of GLs related to C18 and C20 (n-3) type while in PLs was generally more reflected on 

18:2(n-6) and 18:3(n-3) and C20 pool inferred by the contribution of PE class to while 

betaine lipids contributed to the increase of C16, C18 (n-3), and DGTA plus MGTA 

particular contribution to the variation of C20 PUFA namely 20:3(n-6) and 20:4(n-6) FA.  

Fucus vesiculosus contained abundant 14:0, 16:0, 18:1(n-9) and 20:4(n-6) FA, in 

accordance with literature (335,337). The variation in the lipidome with season effect was 

particularly reflected by the increase of C18-PUFA and of n-3 FA in F. vesiculosus from 



Chapter III. Results and Discussion 

152 

winter season, and consequently, total PUFA content in winter is higher than MUFA and 

SFA. Lipidome from spring season was characterized by high SFA content (36.1%). 

To maintain cell membrane fluidity, adaptive changes allow macroalgae to adjust to 

environmental conditions (85,338). It is known that major adaptation of metabolic function 

at low temperatures to maintain membrane fluidity is by changing membrane lipid 

desaturation to control the melting point and thus respond to environment temperature 

(339). These changes are directly reflected on the n-6/n-3 PUFA ratio that was lower in 

winter season, and lower than reported to genus Fucus (297). In fact, temperature seems to 

have major effects in the composition and profile of polar lipids from brown macroalgae to 

adapt according season (97,120). Altogether, Fucales from winter season have major 

features to be used for food or feed diet as a source of lipids with nutritional value and as 

potential source of bioactive lipids fostering their smart valorization. 
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Bioprospection of polar lipids 

___________________ 

Macroalgae are consumed all over the world and are recognized as a source of nutrients 

and bioactive compounds. Macroalgae and macroalgae-based products are continuously 

reaching the markets and are associated with health claims and beneficial effects in 

maintenance of health and preventing aging associated disease (28,181). New products 

containing anti-inflammatory compounds are gathering the attention of food and pharma 

industries to treat and prevent these chronic and inflammatory diseases. Polar lipids from 

macroalgae are considered high value novel-lipids with health beneficial effects such as 

anti-inflammatory and antitumoral, with potential applications in nutraceutical, cosmetics 

and pharmaceutical industries (1,23,28).  

III.2.1. Anti-inflammatory activity on nitrite production in RAW 264.7 

cells 

III.2.1.1 Introduction 

Inflammation is a pathological condition and the first response of the immune system to 

infection or irritation in which highly reactive species are produced. Inflammation 

activated by lipopolysaccharide (LPS) release various pro- and anti-inflammatory 

mediators. Among them, NO a free radical produced from L-arginine by nitric oxide 

synthases (NOS) play key roles in this process (316,340,341). NF-κB is one of the most 

important transcription factors involved in the transactivation of genes related to the 

regulation of inflammatory responses (341) and in response to LPS, it controls expression 

of genes for iNOS (Fig.III.30). 

The anti-inflammatory effects of lipids have been related to the inhibition of certain 

inflammation mediators such as inducible forms of NOS (341), important pro-

inflammatory enzymes. Nitric oxide – NO - is a small diffusible molecule responsible for 

vasodilatation, neurotransmission and inflammation. Expression of inducible NOS (iNOS) 

catalyzes the formation of large amounts of NO that plays a key role in the pathogenesis of 

a variety of inflammatory diseases. Therefore, the level of NO induced by iNOS may 

reflect the degree of inflammation and provides an indicator to assess inflammatory 
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processes. The use of macrophage cell lines exposed to the bacterial cell-wall component 

lipopolysacharide (LPS) is a common in vitro procedure for anti-inflammatory capacity 

evaluation (234). In murine macrophage RAW 264.7 cells, LPS stimulation alone allows 

nuclear translocation of the transcription factor to activate the expression of iNOS and its 

protein synthesis, with a corresponding increase in NO production. This cell system is 

often used as model for drug screening with anti-inflammatory properties and the 

subsequent evaluation of potential inhibitors against iNOS and NO production. 

NF-kB

iNO
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+
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Figure III. 30. Representation of the inhibitory effect on NO production by lipid extracts in 

macrophages. LPS stimulation induces NF-kB that induce the nucleus translocation and production 

of iNOS through the activation of iNOS gene in the nucleus. iNOS produces NO and L-citrulline 

through the precursor L-arginine. NO is released to the extracellular medium. LPS – 

lipopolysaccharide; TLR4 – toll like receptor 4; NF-kB –nuclear factor kappa; iNOS – inducible 

nitric oxide synthase. 

Polar lipids and FA isolated from algae have been reported as iNOS inhibitors. In 

addition, most of the inhibitory activity of these compounds towards NO production has 

been demonstrated to occur by the inhibition of the expression of iNOS (316,342). Lopes 

et al, 2014 were able to isolate two species of MGDG from Fucus spiralis that expressed 

the capacity to reduce NO release in a dose-dependent manner (27). Banskota et al. (30) 

evaluated the anti-inflammatory activity of isolated fractions of lipid extracts-rich in 

galactolipids from Chondrus crispus, that exibit inhibitory activity against 

lipopolysaccharide (LPS) inducible nitric oxide synthase (iNOS) production in murine 

RAW264.7 cells.  
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However, a better understand of lipid structures and correspondent action on the 

treatment of inflammatory diseases still represents a scientific challenge for further 

advances in the resolution of pathologies. Thus, the ability of lipid extracts from 

Gracilaria sp. to reduce the NO production in the extracellular medium of LPS-stimulated 

macrophages was evaluated. The Griess reaction, a spectrophotometric determination for 

nitrite, was carried out to quantify the nitrite levels in the conditioned medium of RAW 

264.7 cells treated with LPS.  

III.2.1.2 Results  

The anti-inflammatory activity of the lipid extract of Gracilaria sp. was assessed 

based on its ability to inhibit nitric oxide (NO) production in RAW 264.7 macrophages 

stimulated with LPS. Previously, anti-oxidant activity of the extract was assessed by DPPH 

bioassay for a range of concentration between 50 and 500 µg/mL and it was obtained a 

IC50 of 250 µg/mL of ethanol. For a range of concentrations between 25 and 100 µg/mL, 

the lipid extract did not compromise the cellular viability of macrophages (Figure 

III.31.A).  

 
Figure III. 31. Cell viability and anti-inflammatory activity of Gracilaria sp. lipid extract. (A) 

Assessment of metabolically active cells was performed using a resazurin bioassay. Results are 

expressed as a percentage of resazurin reduction relative to the control (Ctrl). (B) Anti-

inflammatory activity was measured as inhibition of NO production, quantified by the Griess assay. 

Nitrite concentration was determined from a sodium nitrite standard curve and the results are 

expressed as concentration (μM) of nitrite in a culture medium. Each value represents the mean ± 

SD from at least three independent experiments (** p < 0.01 compared to Ctrl; # p < 0.05, ### p < 

0.001 compared to ethanol (EtOH, vehicle) plus lipopolysaccharide (LPS)). 
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The extract showed a dose-dependent NO inhibition of 35% attained at the 

concentration of 100 µg/mL (Figure III.31.B). Therefore, the concentration exhibiting anti-

inflammatory activity also presented a safety profile to macrophages (Figure III.31.A). 

Meanwhile, at lower concentrations (≤ 50 μg/mL), the extract had no significant inhibitory 

effect. 

Previous works have reported that polar lipid rich in PUFA may be beneficial for 

inflammatory diseases (23,30,32,181). Moreover, inflammation effect was more related to 

the omega-families of FA and, particularly, with the increasing ratio of n-6 to n-3. In fact, 

eicosanoids derived from n-6 PUFAs (such as 20:4(n-6)) have pro-inflammatory and 

immunoactive functions, while eicosanoids derived from n-3 PUFAs (20:5(n-3)) have anti-

inflammatory properties (343). However, these FA showed less inhibitory effect when 

compared with polar lipids and it was suggested that the activity was rather related to the 

entire polar lipid structure (344). Accordingly, polar lipids isolated from red algae have 

demonstrated strong anti-inflammatory activity, even higher when compared with pure 

20:5(n-3) FA isolated from the same extracts (181), suggesting that the polar lipid itself 

may contribute to the anti-inflammatory activity. In the cases of Chondrus crispus and 

Palmaria palmata the polar lipids such as glycolipids and phospholipids showed NO 

inhibitory activity through downregulation of inducible nitric oxide synthase (iNOS) 

(30,181). Moreover, extracts rich in glycolipids bearing high proportions of PUFA, 

isolated from the red macroalgae Palmaria palmata, Porphyra dioica, and Chondrus 

crispus, downregulated LPS-induced pro-inflammatory responses in human macrophages 

through the inhibition of IL-6 and IL-8 production, thus inferring their potential anti-

inflammatory activity (224). Therefore, as for other red macroalgae, the lipid extract from 

Gracilaria sp. proved to have effective anti-inflammatory activity.  
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III.2.2. Activity of Lipid Extract on Human Cancer Cell Viability 

III.2.2.1. Introduction 

Cancer incidences are increasing and therefore instant effective therapies are needed to 

control these malignant diseases (236). Cancer is one of the most common and serious 

disease, and there are six properties that make cells capable of cancerous growth; they are 

not under the control of signals that regulate cell proliferation, they are resistant to 

apoptosis, they overcome the limitations on proliferation by avoiding replicative 

senescence and evading differentiation, they are genetically unstable, are able to invade 

surrounding tissues and are capable of metastasis (345,346). The cancerous tumor develops 

when cancer cells overcome replicative cell senescence and become “immortalized” i.e. 

continue dividing indefinitely (237) and instead of stopping, they continue to grow and 

divide. Chemotherapy is usually the first line treatment to cure cancers and a group of 

drugs are used to kill or inhibit the growth of cancer cells (238). The research in anticancer 

activities of non-toxic biological macromolecules as alternative to chemotherapy drugs 

emerges (236,238).  

Macroalgae consumption and health benefits are considered potential source of 

anticancer drugs, functional foods and pharmacological products (5). In the current 

scenario, pharmaceutical companies are gaining much interest into compounds isolated 

from marine algae for drug development, for example lipids (71,223,347,348). Marine 

algae are considered a potential source of natural bioactive substances and there has now 

emerged a great interest towards isolating and identifying compounds and constituents 

from algae (236,237,240,241). Recent research on polar lipids isolated from macroalgae 

revealed that these can promote growth-inhibiting effects on distinct human 

adenocarcinoma, malignant melanoma and human hepatocellular carcinoma, as well as 

inhibiting DNA polymerases (132,349). Lipid-based agents are therefore emerging 

molecules in therapeutics aimed to regulate inflammatory pathways or even impair 

downstream tumorigenic processes that promote the proliferation of cancer cells (287,350). 

Among the polar classes, glycolipids dominated the research and were found to induce 

apoptosis of the human colon carcinoma Caco-2 cell (223) or inhibit the grow of human 

hepatocellular carcinoma cell line (HepG2) (132). Algal phospholipids showed high 
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anticancer activity against breast (MCF-7) and liver human (HepG2) cancer cells and 

highly inhibition of MCF-7 cell line growth.  

The biological properties of polar lipids are closely related to chemical composition, but 

it is nevertheless difficult to determine exactly which compounds are responsible for the 

bioactivity (188). The modulating effects of macroalgae extracts and their bioactive 

components on oxidative stress and on oxidative stress-related diseases and cancers need to 

be more investigated (3,137). 

In the process of identifying potential anticancer agents, they are tested for cytotoxic 

activity against a panel of standard cancer cell lines, estimating the dose required to inhibit 

the growth of each cell line (236). Bladder cancer is one of most common urological 

malignancy in the world, with transitional cell carcinoma being the most prevalent type 

(~90%) of bladder cancer (351) while breast cancer is a complex heterogeneous disease 

and one of the leading causes of death among women (316,348,352). Red macroalgae 

studied so far, exhibited strong potential against various cancer cells without producing 

toxicity. Thus, in this work, antiproliferative effect of Gracilaria sp. lipid extract in two 

human cancer cell lines of breast cancer - T-47D and bladder cancer – 5637 was assessed 

by using a colorimetric Presto blue assay, aiming to contribute for developing potential 

anticancer drugs from red macroalgae. 

III.2.2.2 Results  

The growth inhibitory effect induced by the lipid extract on cancer cells is shown in 

Figure III.32. A lipid extract of Gracilaria sp. reduced cell viability in both cell lines in a 

dose-dependent manner at concentration range of 10 up to 20 μg/mL (p < 0.001), with a 

calculated half-maximal inhibitory concentration (IC50) of 12.2 μg/mL and 12.9 μg/mL for 

T-47D (Figure III.32.A) and 5637 (Figure III.32.B) cancer cells, respectively.  

The anti-tumor effects of polar lipids were previously reported as affecting angiogenesis 

and solid tumor growth via inhibition of replicative DNA polymerase activities (236,287). 

Extracts rich in glycolipids isolated from distinct macroalgae inhibited the growth of a 

human hepatocellular carcinoma cell line (HepG2) (IC50 of 126 μg/mL) (132) and were 

found to induce apoptosis of human colon carcinoma Caco-2 cells when associated with 

sodium butyrate (223). Otherwise, SQDG isolated from Gigartina tenella inhibited DNA 
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polymerase α, DNA polymerase β, and HIV-reverse transcriptase type 1 or downregulated 

Tie2 gene expression in tumors (241,350). 

 
Figure III. 32. Effect of lipid extracts of Gracilaria sp. on T-47D breast (A) and 5637 bladder (B) 

cancer cell lines, after 96 h incubation. Results are shown as mean  SD of three independent 

determinations (*** p < 0.001, compared to control). OD: optical density; a.u.: arbitrary units. 

It has been hypothesized that the biological properties of glycolipids such as SQDG 

are closely related to the sugar moiety and the presence of PUFA chains.  
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Figure III. 33. Effect of glycolipid rich extracts of Gracilaria sp. on T-47D breast cancer cell 

lines, after 96 h incubation. Results are shown as mean  SD of three independent determinations 

(*** p < 0.001, compared to control). OD: optical density; a.u.: arbitrary units. 

Thus, we further isolated the glycolipids-rich extract of Gracilaria sp. total lipid 

extract and the glycolipids-rich extract of Gracilaria sp. effect was tested to evaluate cell 

viability in T-47D cell lines in a dose-dependent manner at concentration range of 5 to 20 
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μg/mL (p < 0.001), with a calculated half-maximal inhibitory concentration (IC50) of 17.5 

μg/mL for T-47D, of the same order than the obtained with total lipid extract (Fig. III. 33).  

III.2.3. Discussion 

Lipid extract from Gracilaria sp. showed antiproliferative and anti-inflammatory 

activity. However, it was not possible to determine exactly which lipid components are 

responsible for these bioactivities. Even in the literature, the majority of studies have also 

addressed biological activities of lipid extracts rather than pure lipid molecules that 

hampers the determination of a relationship between structure and bioactivity. This is due 

to the fact that the isolation of a pure lipid molecule is very difficult and even pure lipid 

standards are not available for several lipid classes. Some authors have put some effort into 

this issue, scarcely addressed for the lipid extracts from macroalgae, and isolated enriched 

extracts in some classes of lipids to further test their bioactivity. Having this in mind, we 

also have also isolated a glycolipids-rich extract from total lipid extract and tested 

antiproliferative effect on T-47D cell line. The results of the measured IC50 (12.2 μg/mL – 

total extract and 17.5 μg/mL – GLs-rich extract) were of the same order, slightly minor in 

the total lipid extract. These results may infer the potential role of glycolipids on the 

antiproliferative effect of the total lipid extract.  

Ohta et al. [17] reported that SQDG (20:5/16:0), isolated from red macroalgae 

Gigartina tenella, was a potent inhibitor of eukaryotic DNA polymerases [17]. Tsai et al. 

also reported that enriched extract with SQDG isolated from red macroalgae, with high 

levels of PUFAs such as 20:4(n-6) FA and 20:5(n-3) FA, inhibited the growth of human 

hepatocellular carcinoma cell line (HepG2), rather than enriched extracts with MGDG or 

DGDG [16]. This research group has also showed that the sulfolipids isolated from 

macroalgae exhibited higher inhibitory effect than sulfolipids isolated from spinach, 

previously reported as inhibitors of DNA polymerases and of the proliferation of human 

cervix carcinoma (HeLa) [22]. The aforementioned SQDG-enriched extracts displayed 

strong inhibitory effects and contained SQDG (20:5/16:0) [17] or contained SQDG 

assembling PUFAs [16], which are also found in the extract of Gracilaria sp. analyzed 

within this work. Thus, SQDG (18:2/16:0), SQDG (18:4/16:0), SQDG (20:4/16:0), and 

SQDG (20:5/16:0), identified in the extract of Gracilaria sp., can contribute to the 

observed antiproliferative effects. 
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In what concern anti-inflammatory activities, Banskota et al. reported that the extracts 

rich in MGDG and DGDG isolated from red macroalgae Chondrus crispus inhibited NO 

production through downregulation of iNOS [21]. The enriched extract contained MGDG 

(20:5/20:5), MGDG (20:5/20:4), MGDG (18:4/16:0), MGDG (20:4/16:0), and MGDG 

(20:5/16:0) and the respective DGDG analogues. Interestingly, the majority of these 

molecular species were also found in the extract of Gracilaria sp. analyzed in the present 

work. Moreover, the same group of researchers isolated MGDG, DGDG, SQDG, PC, and 

PG molecular species from the lipid extract of Palmaria palmata and all the polar lipids 

showed NO inhibitory activity [20]. The isolated polar lipids identified were MGDG 

(20:5/20:5), MGDG (20:5/16:0), DGDG (20:5/20:5), DGDG (20:5/14:0), DGDG 

(20:5/16:0), SQDG (20:5/14:0), PG (20:5/16:0), PG (20:5/16:1) and PC (20:5/20:5). All 

the molecular species contained 20:5(n-3) FA, and showed higher activity than the free FA 

20:5(n-3), suggesting that the entire polar lipid structure (e.g., sulfolipid, phospholipid, or 

galactolipids) is essential for the extension of NO inhibition. Aside from the PC, the 

reported glycolipids and PG were also found in the lipidome of Gracilaria sp. Thus, the 

presence of these glycolipids and PGs in the lipid extract of Gracilaria sp. can contribute 

to the observed anti-inflammatory properties.  

Lipid extracts (~80% polar lipids and 66% of glycolipids) from Gracilaria sp. 

cultivated on land-based IMTA were screened for bioactivity and collectively shown to be 

a natural source of bioactive lipids with antiproliferative and anti-inflammatory activities. 

The presence of these bioactive polar lipids in Gracilaria sp. promotes its consumption as 

a functional food for the prevention of various diseases and give insights for further 

biotechnological applications of this macroalgae. Using land-based culture of macroalgae 

may present a sustainable solution towards the production of large volumes of biomass 

displaying replicable bioactive properties. In the future, it is expected that marine 

macroalgae lipids will become part of the target bioactive compound to exploit for drug 

discovery, and marine algae incorporation as functional food may provide a natural source 

of health promoting benefits against disease. The presence of several polar lipids with 

recognized bioactive polar lipids in Gracilaria sp. can be related to the bioactivity 

observed in this work. However, more studies are needed to understand the 

structural/bioactivity relation of macroalgal polar lipids, and extracts rich in glycolipids, 

which deserve to be explored. 
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Conclusions 

__________________ 

The work developed during this Ph.D. aimed to characterize the polar lipidome from 

selected macroalgae, obtained from sustainable aquaculture practices and representative of 

the Chlorophyta, Rhodophyta, and Ochrophyta phyla, as well as to evaluate possible 

bioactive properties of selected polar lipid extracts.  

The characterization of the polar lipid profile from macroalgae Codium tomentosum 

(Chlorophyta), Gracilaria sp. and Porphyra dioica (Rhodophyta), and Fucus vesiculosus 

(Ochrophyta) was accomplished at molecular level by using advanced lipidomic-

approaches based on HILIC–LC–MS/MS. With the results obtained, it was possible to 

identify the complex and diverse lipidome of macroalgae from the three phyla that was 

related to different categories of glycolipids, phospholipids and betaine lipids. Among 

these, several classes such as MGDG, DGDG, SQDG, SQMG, PG, LPG, PC, LPC, PI, PA, 

and DGTS were identified in all specimens. Meanwhile, MGTS and MGTA were 

identified for the first time in macroalgae. 

In addition, inter-taxonomic differentiation may be suggested by some lipid classes 

detected in specific phylum such as the case of IPC identified in Rhodophyta, PE identified 

in Rhodophyta and Ochrophyta, MGTS identified in Chlorophyta, Ochrophyta and in the 

Rhodophyta Gracilaria sp., LPE was identified in Ochrophyta and in the Rhodophyta 

Porphyra dioica while LPI, DGTA, and MGTA were only identified in Ochrophyta.  

Depending on the phylum, different profiles of polar lipids were observed, based on the 

number of molecular species and in fatty acyl composition. Chlorophyta are clearly 

marked by having an important number of molecular species of glycolipids in the MGDG 

and DGDG groups that include species with C16, C18, and C20 PUFA from n-3 type and a 

high number of the betaine lipids DGTS and MGTS.  

Rhodophyta are distinguished by the presence of a low number of molecular species of 

MGDG and DGDG that however include molecular species with n-3 FA such as 20:5(n-3) 

and n-6 FA such as 20:4(n-6). Within PLs, Rhodophyta is particularly assigned by PE and 

its molecular species that include saturated and monounsaturated C16 and C18 FA and by the 
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high number of PC that in higher extent combined C18 with C20 FA. Low number of 

betaine lipids assigned Rhodophyta. A characteristic feature of polar lipid from red 

macroalgae is the presence of the class IPC, a putative biomarker specific to the 

Rhodophyta phylum.  

The intra-taxonomic differentiation in Rhodophyta was also achieved between genus 

Gracilaria and Porphyra. A lower number of molecular species in SQMG and betaine 

lipid classes and a higher number of molecular species in PE class assigned the lipidome of 

Porphyra dioica. The LPE class only assigned the lipidome of Porphyra dioica while 

MGTS only assigned the lipidome of Gracilaria sp.. Altogether, these features support the 

putative differentiation between the red algae. Regarding composition, the molecular 

species particularly include C20 PUFA that was mainly inferred by GLs and PLs such as 

PC and PG, and PE in the case of Porphyra dioica, supporting the nutritional benefits of 

this macroalgae suitable to be consumed as functional food.  

Within Rhodophyta, the lipidomic profile of two different life cycle stages of Porphyra 

dioica was established. The differences between the stages was mainly reflected on the 

phospholipidome, particularly PE and PG highlighted on the lipidome of the sporophyte 

and PC and PA on the lipidome of gametophyte, while glycolipids seem to be preserved. 

Otherwise, the profile of GLs and PLs is characterized by the presence of diverse 

molecular lipids that include C20 FA-type from n-3 and n-6 families, a similar feature 

aforementioned within Rhodophyta. 

Ochrophyta are particularly differentiated by the high number of MGDG and DGDG 

that include C18 FA-family such as 18:3 and 18:4(n-3), and the C20 FA-family such as 

20:4(n-6) and 20:5(n-3) PUFA. Comparing with Chlorophyta and Rhodophyta, 

Ochrophyta are mainly differentiated by the high number of molecular species identified in 

betaine lipid classes that exclusively include DGTA and MGTA (reported for the first time 

in macroalgae). The season effect in Ochrophyta was evaluated by MS-based approaches 

that allowed to identify the increase of number of molecular species with n-3 PUFA from 

C18 family such as 18:3, 18:4 and from C20 such as 20:5 in winter season, mainly supplied 

by GLs and betaine lipid classes. Its low ratio n-6/n-3 makes Fucus vesiculosus a good 

functional food for human nutrition and feed.  
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By using MS-based approaches, results gathered within this Ph.D. work, in the 

identification of the lipid signature of macroalgae from different origins, genus and phyla, 

different growth cycles and seasons, will certainly contribute to further investigation about 

their role in biosynthesis, in lipid metabolism, and for bioprospection.  

Polar lipids containing n-3 and n-6 PUFA seems to have important roles in human 

health. Total lipid extracts and extracts rich in glycolipids from Gracilaria sp. 

demonstrated antiproliferative effect and anti-inflammatory properties. These properties 

suggest that macroalgae can be valuable not only for food and feed, but also for 

pharmaceutical and cosmetical, fostering new biological and biotechnological applications.  

The profile of lipids can be standardized by obtaining algae biomass produced in IMTA 

systems and lipidomics can act as fast and reliable tool to aid producers optimizing culture 

protocols based on the identification of the target bioactive trait and/or responsible lipid 

compound. The accurate knowledge on the value of the polar lipid fraction of macroalgae 

and the ability to “naturally” manipulate its content is a key point in the context of 

biorefinery.  

All macroalgae studied may be considered an interesting cash-crop for food stuffs, but 

mostly as a functional ingredient for feed and food, due to their high nutritional value and a 

complex range of health benefits for human life. Rhodophyta, Ochrophyta, and 

Chlorophyta are a source of promising lipids with potential biological activities associated 

to different molecular species, namely from glycolipids and phospholipids, to be used both 

in the development of functional foods or additives with anti-inflammatory and antitumor 

effects. Overall, based on the lipidome profile, the results obtained within this work 

contribute to the smart and integral valorization of macroalgae cultivated on land-based 

IMTA systems. 
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Figure S. 1. LC–MS spectrum of the sulfoquinovosyl monoacylglycerol (SQMG) molecular 

species observed by HILIC–ESI–MS as [M − H]−  ions. Bold m/z values correspond to the most 

abundant species detected in the LC−MS spectrum. (C means number of carbon atoms and N 

represents the number of double bonds in the fatty acyl side chains). A general structure is also 

represented. 

 

 

Figure S. 2. ESI–MS/MS spectrum of the ion [M − H]− of SQMG 16:0 at m/z 555.2 (A). 
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Figure S. 3. LC–MS spectrum of the lyso phosphatidylglycerol (LPG) molecular species observed 

by HILIC−ESI−MS as [M − H]− ions. Bold m/z values correspond to the most abundant species 

detected in the LC–MS spectrum. (C means number of carbon atoms and N represents the number 

of double bonds in the fatty acyl side chains). *Eluent contamination. A general structure is also 

represented. 
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Figure S. 4. LC–MS spectrum of the lyso phosphatidylcholine (LPC) molecular species. The table 

includes the molecular species observed by HILIC–ESI–MS as [M + H]+ ions. Bold m/z values 

correspond to the most abundant species detected in the LC-MS spectrum. (C means number of 

carbon atoms and N represents the number of double bonds in the fatty acyl side chains). A general 

structure is also represented. 
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Figure S. 5. LC–MS spectrum of the phosphatidic acid (PA) molecular species. The table includes 

the molecular species, observed by HILIC-ESI-MS, as [M − H]− ions. (C means number of carbon 

atoms and N represents the number of double bonds in the fatty acyl side chains). A general 

structure is also represented. 
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Figure S. 6. LC−MS spectrum of the monoacylglyceryl-N,N,N-trimethylhomoserine (MGTS) 

molecular species. The table includes the molecular species observed by HILIC−ESI−MS, as [M + 

H]+. Bold m/z values correspond to most abundant species detected in the LC-MS spectrum. (C 

means number of carbon atoms and N represents the number of double bonds in the fatty acyl side 

chains). A general structure is also represented. 
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Figure S. 7. LC–MS spectrum of the pigments species in the total extract of Gracilaria sp.as [M + 

H]+ ions and UV spectrum. 
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Table S. 1. Molecular species observed by HILIC−ESI−MS with the assignment of the total fatty 

acyl composition of each lipid molecular species, according to the analyses performed by mass 

accuracy (error < 5 ppm) using the Xcalibur software, exact mass calculator - 

http://www.sisweb.com/referenc/tools/exactmass.htm, and lipid maps tools - 

http://www.lipidmaps.org/tools/. C means number of carbon atoms and N represents the number of 

double bonds in the fatty acyl side chains  

Porphyra dioica   Mass error (ppm, ≤ 5 ppm)   

    

Glycolipids m/z theoretical Blade Conchocelis Identification 

Sulfolipids [M - H]-         

C25 H47 O11 S 555.2839 -0.7010 0.3110 SQMG 16:0 

C41 H77 O12 S 793.5136 -1.0770 -0.3210 SQDG (32:0) 

C43 H77 O12 S 817.5136 -1.1560 1.9510 SQDG (34:2) 

C45 H75 O12 S 839.4979 -1.5180 -0.7920 SQDG (36:5) 

C45H75O13S 855.4928 -1.5190 -0.2680 SQDG (36:5-OH) 

Galactolipids [M + NH4]+         

C43H82O10N 772.5939 -3.2540 -4.6650 MGDG (34:2) 

C43H84O10N 774.6095 -2.4190 -3.8910 MGDG (34:1) 

C45H80NO10 794.5782 -4.0575 -4.4351 MGDG (36:5) 

C45H82NO10 796.5939 -2.6410 -2.7920 MGDG (36:4) 

C45H86NO10 800.6240 -4.9206 -4.8712 MGDG (36:2) 

C45H88NO10 802.6408 ------------- -4.9140 MGDG (36:1) 

C49 H92 O15 N 934.6467 -3.4210 -2.2650 DGDG (34:2) 

C49 H94 O15 N 936.6618 -3.8435 -2.6660 DGDG (34:1) 

C51 H90 O15 N 956.6310 -3.6054 -0.3648 DGDG (36:5) 

C51H90O16 N 972.6260 -3.9728 -1.0939 DGDG (36:5-OH) 

Phospholipids m/z theoretical Blade Conchocelis Identification 

Phosphatidylcholine [M + H]+       

C40H79O8NP 732.5538 -3.2762 ------------ PC (32:1) 

C42H73O8NP 734.5695 -1.6336 -2.5866 PC (32:0) 

C42H75O8NP 752.5225 ------------ -2.6577 PC (34:5) 

C42H77O8NP 754.5382 -1.7229 -3.1808 PC (34:4) 

C42H79O8NP 756.5538 -3.0401 -2.7758 PC (34:3) 

C42H81O8NP 758.5695 -3.4275 -2.7684 PC (34:2) 

C42H83O8NP 760.5851 -3.4184 -2.6296 PC (34:1) 

C44H75O8NP 762.6008 -4.1962 ------------ PC (34:0) 

C44H79O8NP 780.5538 -3.7153 -4.0997 PC (36:5) 

C44H81O8NP 782.5695 -3.7058 -3.9613 PC (36:4) 

C44H83O8NP 784.5851 -3.5688 -2.6766 PC (36:3) 

C44H85O8NP 786.6008 -3.5596 -3.3054 PC (36:2) 

C44H87O8NP 788.6164 -4.8186 ------------ PC (36:1) 

C46H79O8NP 804.5538 -4.8474 ------------ PC (38:7) 
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C46H81O8NP 806.5695 -4.9593 -4.4634 PC (38:6) 

C46H83O8NP 808.5851 -4.9469 -4.4522 PC (38:5) 

C46H85O8NP 810.6008 -2.4673 -4.9346 PC (38:4) 

C46H87O8NP 812.6164 -4.4302 ------------ PC (38:3) 

Lyso-Phosphatidylcholine [M + H]+       

C24H49NO7P 494.3241 -2.4276 ------------ LPC (16:1) 

C24H51NO7P 496.3398 -2.6192 -3.6266 LPC (16:0) 

C26H49NO7P 518.3241 -4.6303 ------------ LPC (18:3) 

C26H53NO7P 522.3554 -2.1059 -0.5743 LPC (18:1) 

C26H55NO7P 524.3711 -1.7163 ------------ LPC (18:0) 

          

Phospholipids m/z theoretical Blade Conchocelis Identification 

Lyso-Phosphatidylglycerol [M-H]-       

C22H42O9P 481.2572 -2.0779 -1.4545 LPG (16:1) 

C22H44O9P 483.2728 -5.8179 -1.2467 LPG (16:0) 

C24H46O9P 509.2885 -2.3562 -1.7672 LPG (18:1) 

Phosphatidylglycerol [M-H]-         

C36H68O10P 691.4556 ------------ -0.0782 PG (30:1) 

C38H70O10P 717.4712 ------------ -2.0964 PG (32:2) 

C38H72O10P 719.4869 -2.8551 -1.6042 PG (32:1) 

C38H74O10P 721.5025 -2.6393 -2.6393 PG (32:0) 

C40H74O10P 745.5025 -2.6884 -1.4812 PG (34:2) 

C40H76O10P 747.5182 -2.3468 -2.3468 PG (34:1) 

C40H78O10P 749.5338 ----------- -4.9422 PG (34:0) 

C42H70O10P 765.4712 -2.8794 -1.9649 PG (36:6) 

C42H72O10P 767.4869 -3.1977 -1.8947 PG (36:5) 

C42H74O10P 769.5025 -4.2940 -2.8645 PG (36:4) 

C42H76O10P 771.5182 -2.7923 -2.1442 PG (36:3) 

C42H78O10P 773.5338 -2.5912 -2.0741 PG (36:2) 

C42H80O10P 775.5495 -3.1648 -2.3911 PG (36:1) 

C44H82O10P 801.5651 -4.1170 -0.9980 PG (38:2)  

C44H84O10P 803.5802 -1.6178 -1.3689 PG (38:1) 

Phosphatidic acid [M-H]-         

C35H64O8P 643.4344 -4.2346 ------------ PA (32:2) 

C35H66O8P 645.4501 0.9687 -0.8904 PA (32:1) 

C35H68O8P 647.4657 -0.9680 ------------ PA (32:0) 

C37H66O8P 669.4501 2.5771 ------------ PA (34:3) 

C37H68O8P 671.4652 -0.1191 -0.8638 PA (34:2) 

C37H70O8P 673.4814 -1.4475 ------------ PA (34:1) 

C39H64O8P 691.4344 -1.9158 ------------ PA (36:6) 

C39H66O8P 693.4501 -2.1267 ------------ PA (36:5) 

C39H68O8P 695.4652 -1.1216 3.6235 PA(36:2) 

C39H70O8P 697.4814 -1.4337 ------------ PA (36:3) 

C39H72O8P 699.4970 -1.5726 -2.1444 PA (36:2) 
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C39H74O8P 701.5127 -1.4255 -1.8531 PA (36:1) 

Phosphatidylethanolamine [M-H]-       

C35H67O8NP 660.4610 1.5538 -4.3512 PE (30:1) 

C35H69O8NP 662.4766 2.9830 -3.8097 PE (30:0) 

C37H69O8NP 686.4766 -1.4914 -0.9088 PE (32:2) 

C37H71O8NP 688.4923 -1.4145 -1.8503 PE (32:1) 

C39H71O8NP 712.4923 -2.0687 -2.7704 PE (34:3) 

C39H73O8NP 714.5079 -0.5934 -1.5731 PE (34:2) 

C39H75O8NP 716.5236 1.1527 4.9209 PE (34:1) 

C41H71O8NP 736.4923 -1.0508 -1.7297 PE (36:5) 

C41H73O8NP 738.5079 -0.9803 ------------ PE (36:4) 

C41H75O8NP 740.5236 ------------ -2.1256 PE (36:3) 

C41H77O8NP 742.5392 ------------ -2.0525 PE (36:2) 

C41H79O8NP 744.5549 ------------ 2.3179 PE (36:1) 

C45H73O8NP 786.5079 2.7667 ------------ PE (40:8) 

Lyso-Phosphatidylethanolamine [M-H]-       

C21H41NO7P 450.2626 -1.3326 0.8884 LPE (16:1) 

C21H43NO7P 452.2782 -1.1055 -0.4422 LPE (16:0) 

C23H45NO7P 478.2939 -1.6726 -1.8817 LPE (18:1) 

Phosphatidylinositol [M-H]-         

C43H76O13P 831.5029 ------------ -4.2070 PI (34:3) 

C43H78O13P 833.5185 -4.3769 -4.2569 PI (34:2) 

C43H80O13P 835.5342 -2.1523 1.1989 PI (34:1) 

C47H80O13P 883.5342 ------------ -3.5067 PI (38:5) 

Inositephosphoceramide [M-H]-       

C50H97NO11P 918.6805 -2.3947 ------------ IPC (d44:1) 

C48H99NO11P 920.6228 -1.3111 -1.4197 IPC (t42:2-OH) 

C48H93NO13P 922.6385 -3.8553 -4.1804 IPC (t42:1-OH) 

C48H95NO13P 924.6541 0.7495 1.7228 IPC (t42:0-OH) 

        

Betaine lipids [M + H]+ m/z theoretical Blade Conchocelis Identification 

C40H76O7N 682.5622 ------------- -2.606 DGTS (30:1) 

C40H78O7N 684.5778 ------------- -4.571 DGTS (30:0) 

C42H80NO7 710.5935 -4.755 -2.504 DGTS (32:1) 

C44H82O7N 736.6091 -3.703 -3.568 DGTS (34:2) 

C44H84O7N 738.6248 ------------- 0.406 DGTS (34:1) 
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Appendix C. Supplementary material of Chapter III.1.3 
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Figure S. 8. Percentage of PA molecular species identified after LC–MS, and MS/MS analysis. 

The results were expressed as percentage contained by dividing the ratio between peak areas of 

each molecular species and internal standards and the total of all ratios. Values are means ± 

standard deviation of the duplicate of three independent experiments. (***, significantly different p 

< 0.001; **, significantly different p < 0.01, * significantly different p < 0.05). 
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Figure S. 9. LC chromatogram and MS/MS spectra of the betaine molecular species as standard a) and 

b), respectively. The Figure b) includes the fragmentation of the ion at m/z 712.6 as [M + H]+. LC 

chromatogram c); MS/MS spectrum of the ion at m/z 710.6 as [M + H]+ identified in the extract of 

Fucus vesiculosus corresponding to the DGTS d) and MS/MS spectrum of the ion at m/z 710.6 as [M 

+ H]+ identified in the extract of Fucus vesiculosus corresponding to betaine class DGTA e). The 

figure f) includes the range of m/z between 375 and 550 and was extracted from spectrum e) 

representing product ions that allow the identification of the fatty acyl composition of [M + H]+ ion at 

m/z 712.6 attributed to DGTA (16:0/16:1) and DGTA (14:0/18:1). 
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Appendix D. Supplementary resume table of the identification of polar lipids 

Table S. 2. Molecular species identification observed by HILIC–ESI–MS as [M + NH4]+, as [M + 

H]+, and as [M – H]– ions, with the assignment of the fatty acyl composition of each lipid molecular 

species, according to the interpretation of the corresponding MS/MS spectra. (C means number of 

carbon atoms and N represents the number of double bonds in the fatty acyl side chains) 

Ionization m/z Molecular species (C:N) 

[M + NH4]+   910.3 DGDG (32:0) 16:0/16:0 and 14:0/18:0 

[M + NH4]+ 908.6305 DGDG (32:1) 14:0/18:1 and 16:0/16:1 

[M + NH4]+ 906.6148 DGDG (32:2) 14:0/18:2 

[M + NH4]+ 922.5 DGDG (32:2-OH) 14:0/18:2-OH  

[M + NH4]+ 904.5992 DGDG (32:3) 16:0/16:3  

[M + NH4]+ 920.6 DGDG (32:3-OH) 14:0/18:3-OH  

[M + NH4]+ 922.5 DGDG (33:1) 15:0/18:1 and 16:0/17:1 and 14:0/19:1 
[M + NH4]+ 920.6 DGDG (33:2) 15:0/18:2 and 14:0/19:2 

[M + NH4]+ 938.678 DGDG (34:0) 18:0/16:0 

[M + NH4]+ 936.6618 DGDG (34:1) 18:1/16:0 and 18:0/16:1 

[M + NH4]+ 934.6461 DGDG (34:2) 18:2/16:0 and 18:1/16:1 

[M + NH4]+ 932.6305 DGDG (34:3) 18:3/16:0 

[M + NH4]+ 926.2 DGDG (34:6) 16:3/18:3 

[M + NH4]+ 950.5 DGDG (35:1) 17:0/18:1 and 19:1/16:0 

[M + NH4]+ 948.6 DGDG (35:2) 17:0/18:2 and 19:2/16:0 

[M + NH4]+ 964.6936 DGDG (36:1) 18:1/18:0 

[M + NH4]+ 962.678 DGDG (36:2) 18:1/18:1 

[M + NH4]+ 960.6623 DGDG (36:3) 18:1/18:2 

[M + NH4]+ 958.6461 DGDG (36:4) 20:4/16:0 and 18:2/18:2  

[M + NH4]+ 956.6305 DGDG (36:5) 20:5/16:0 and 18:2/18:3 

[M + NH4]+ 972.626 DGDG (36:5-OH) 20:5-OH/16:0 

[M + NH4]+ 954.6148 DGDG (36:6) 18:3/18:3 

[M + NH4]+ 952.5992 DGDG (36:7) 18:3/18:4 

[M + NH4]+ 992.6 DGDG (38:1) 18:1/20:0 

[M + NH4]+ 986.678 DGDG (38:4) 20:4/18:0 

[M + NH4]+ 984.6623 DGDG (38:5) 20:4/18:1 

[M + NH4]+ 982.6461 DGDG (38:6) 20:4/18:2 and 20:5/18:1 

[M + NH4]+ 980.6305 DGDG (38:7) 20:4/18:3 and 20:5/18:2 

[M + NH4]+ 978.6148 DGDG (38:8) 20:5/18:3 and 20:4/18:4 

[M + NH4]+ 976.5992 DGDG (38:9) 20:5/18:4 

[M + NH4]+ 748.3 MGDG (32:0) 16:0/16:0 and 14:0/18:0 

[M + NH4]+ 746.5765 MGDG (32:1) 14:0/18:1 and 16:0/16:1 

[M + NH4]+ 742.5479 MGDG (32:3) 16:0/16:3 and 14:1/18:2 

[M + NH4]+ 740.5309 MGDG (32:4) 16:0/16:4 

[M + NH4]+ 776.3 MGDG (34:0) 18:0/16:0 
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[M + NH4]+ 774.3 MGDG (34:1) 18:1/16:0 

[M + NH4]+ 774.6074 MGDG (34:1) 18:1/16:0 

[M + NH4]+ 774.609 MGDG (34:1) 18:1/16:0 

[M + NH4]+ 772.5935 MGDG (34:2) 18:2/16:0 and 16:1/18:1 

[M + NH4]+ 768.5621 MGDG (34:4) 18:4/16:0 and 16:1/18:3 

[M + NH4]+ 804.5 MGDG (36:0) 18:0/18:0 

[M + NH4]+ 802.641 MGDG (36:1) 18:1/18:0 

[M + NH4]+ 800.624 MGDG (36:2) 18:2/18:0 

[M + NH4]+ 796.5929 MGDG (36:4) 18:1/18:3 and 20:4/16:0 and 18:2/18:2 

[M + NH4]+ 794.3 MGDG (36:5) 18:2/18:3 

[M + NH4]+ 794.3 MGDG (36:5) 20:5/16:0 

[M + NH4]+ 794.5772 MGDG (36:5) 18:2/18:3 and 20:5/16:0  

[M + NH4]+ 792.5614 MGDG (36:6) 18:3/18:3 

[M + NH4]+ 790.5459 MGDG (36:7) 18:3/18:4 

[M + NH4]+ 788.5307 MGDG (36:8) 18:4/18:4 

[M + NH4]+ 824.6235 MGDG (38:4) 20:4/18:0 

[M + NH4]+ 822.6073 MGDG (38:5) 20:4/18:1 

[M + NH4]+ 820.5926 MGDG (38:6) 20:5/18:1 and 20:4/18:2 

[M + NH4]+ 818.5766 MGDG (38:7) 20:5/18:2 and 20:4/18:3 

[M + NH4]+ 816.5608 MGDG (38:8) 20:5/18:3 and 20:4/18:4 

[M + NH4]+ 814.5546 MGDG (38:9) 20:5/18:4  

[M - H]-   737.4 SQDG (28:0) 14:0/14:0 and 12:0/16:0 

[M - H]-   765.4823 SQDG (30:0) 16:0/14:0 

[M - H]-   763.4666 SQDG (30:1) 16:0/14:1 

[M - H]-   793.5136 SQDG (32:0) 16:0/16:0 and 14:0/18:0 

[M - H]-   793.6 SQDG (32:0) 16:0/16:0 and 14:0/18:0 

[M - H]-   791.4979 SQDG (32:1) 16:0/16:1 and 14:0/18:2 

[M - H]-   789.4666 SQDG (32:2) 18:2/14:0 

[M - H]-   787.4666 SQDG (32:3) 18:3/14:0 

[M - H]-   821.5449 SQDG (34:0) 18:0/16:0 

[M - H]-   819.5292 SQDG (34:1) 18:1/16:0 

[M - H]-   819.6 SQDG (34:1) 18:1/16:0 

[M - H]-   817.5 SQDG (34:2) 18:2/16:0 

[M - H]-   817.5136 SQDG (34:2) 18:2/16:0 

[M - H]-   815.4979 SQDG (34:3) 18:3/16:0 

[M - H]-   813.4 SQDG (34:4) 18:4/16:0 

[M - H]-   813.4823 SQDG (34:4) 18:3/16:1 

[M - H]-   835.4 SQDG (35:0) 19:0/16:0 and 17:0/18:0 

[M - H]-   833.4 SQDG (35:1) 19:1/16:0 and 17:0/18:1 

[M - H]-   831.4 SQDG (35:2) 19:2/16:0 and 17:0/18:2 

[M - H]-   847.3 SQDG (36:1) 20:1/16:0 

[M - H]-   845.4 SQDG (36:2) 20:2/16:0 

[M - H]-   841.5136 SQDG (36:4) 20:4/16:0 

[M - H]-   839.4979 SQDG (36:5) 20:5/16:0 
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[M - H]-   855.493 SQDG (36:5-OH) 20:5-OH/16:0 

[M - H]-   865.4 SQDG (38:6) 22:6/16:0 

[M - H]-   857.6 SQDG(36:4-OH) 20:4-OH/16:0 

[M - H]-   527.2525 SQMG (14:0)   

[M - H]-   555.2838 SQMG (16:0)   

[M - H]-   555.3 SQMG (16:0)   

[M - H]-   555.4 SQMG (16:0)   

[M - H]-   553.2688 SQMG (16:1)   

[M - H]-   549.3 SQMG (16:3)   

[M - H]-   567.3 SQMG (17:1)   

[M - H]-   581.3 SQMG (18:1)   

[M - H]-   579.2839 SQMG (18:2)   

[M - H]-   577.2678 SQMG (18:3)   

[M - H]-   597.3 SQMG (19:0)   

Ionization m/z Molecular species (C:N) 

[M - H]-   908.6 IPC (t42:0) t18:0/24:0 

[M - H]-   918.681 IPC (d44:1) d18:1/26:0 

[M - H]-   810.5 IPC (t35:0) t18:0/17:0 

[M - H]-   924.654 IPC (t42:0-OH) t18:0/24:0-OH 

[M - H]-   922.639 IPC (t42:1-OH) t18:0/24:1-OH 

[M - H]-   920.623 IPC (t42:2-OH) t18:1/24:1-OH 

[M + H]+   496.3392 LPC (16:0)   
[M + H]+   494.3241 LPC (16:1)   
[M + H]+   524.37 LPC (18:0)   

[M + H]+   522.3556 LPC (18:1)   
[M + H]+   520.4 LPC (18:2)   

[M + H]+   518.321 LPC (18:3)   

[M + H]+   518.4 LPC (18:3)   

[M + H]+   516.4 LPC (18:4)    

[M + H]+   544.4 LPC (20:4)   

[M + H]+   542.4 LPC (20:5)   

[M + H]+   482.5 LPC (O-16:0a)   

[M + H]+   536.6 LPC (O-18:1a)    

[M - H]-   450.263 LPE (16:1)   

[M - H]-   452.278 LPE (16:0)   

[M - H]-   478.294 LPE (18:1)   

[M - H]-   500.2779 LPE (20:4)   
[M - H]-   498.2613 LPE (20:5)   
[M - H]-   483.2733 LPG (16:0)   

[M - H]-   481.2569 LPG (16:1)   
[M - H]-   509.2887 LPG (18:1)   
[M - H]-   525.3 LPG (19:0=    

[M - H]-   535.3 LPG (20:2)    
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[M - H]-   533.3 LPG (20:3)    

[M - H]-   531.3 LPG (20:4)   

[M - H]-   507.3 LPG 18:2    

[M - H]-   523.3 LPG 19:1   

[M - H]-   597.306 LPI (18:1)   
[M - H]-   619.433 PA (30:0) 14:0/16:0 

[M - H]-   645.4507 PA (32:1) 14:0/18:1 

[M - H]-   647.466 PA (32:1) 16:0/16:0 

[M - H]-   643.434 PA (32:2) 14:0/18:2 and 16:1/16:1 

[M - H]-   673.481 PA (34:1) 16:1/18:0 and 16:0/18:1 

[M - H]-   671.465 PA (34:2) 16:0/18:2 

[M - H]-   669.45 PA (34:3) 16:0/18:3 and 16:1/18:2  

[M - H]-   669.45 PA (34:3) 14:0/20:3 

[M - H]-   665.4184 PA (34:5) 14:0/20:5 and 16:1/18:4 

[M - H]-   701.513 PA (36:1) 16:0/20:1 

[M - H]-   699.497 PA (36:2) 16:0/20:2 

[M - H]-   697.481 PA (36:3) 16:0/20:3 

[M - H]-   695.466 PA (36:4) 16:0/20:4 

[M - H]-   693.4 PA (36:5) 16:0/20:5 

[M - H]-   691.434 PA (36:6) 16:1/20:5 

[M - H]-   721.4 PA (38:5)   18:0/20:5 and 18:1/20:4 

[M - H]-   719.4 PA (38:6) 18:3/20:3 and 18:2/20:4 

[M - H]-   717.4 PA (38:7) 18:3/20:4 

[M - H]-   745.3 PA (40:7) 20:3/20:4 

[M - H]-   743.3 PA (40:8) 20:4/20:4 

[M - H]-   741.3 PA (40:9) 20:4/20:5 

[M - H]-   681.3 PA (O-36:4)  O-18:1a/18:3 

[M + H]+   702.5 PC (30:2) 14:0/16:2 

[M + H]+   734.569 PC (32:0) 16:0/16:0 and 14:0/18:0 

[M - H]-   732.554 PC (32:1) 16:0/16:1 and 14:0/18:1 

[M + H]+   730.6 PC (32:2) 16:0/16:2 or 16:1/16:1 

[M + H]+   728.5 PC (32:3)  16:0/16:3 or 16:1/16:2  

[M + H]+   762.5 PC (34:0) 16:0/18:0 

[M + H]+   762.601 PC (34:0) 16:0/18:0 

[M + H]+   760.5835 PC (34:1) 16:0/18:1  

[M + H]+   758.569 PC (34:2) 16:0/18:2 and 16:1/18:1 

[M + H]+   758.6 PC (34:2) 16:0/18:2 and 16:1/18:1 

[M + H]+   756.554 PC (34:3)  14:0/20:3 

[M + H]+   754.538 PC (34:4) 14:0/20:4 and 16:2/18:2 

[M + H]+   752.523 PC (34:5) 14:0/20:5 

[M + H]+   788.616 PC (36:1) 18:0/18:1 

[M + H]+   786.5 PC (36:2) 16:0/20:2  
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[M + H]+   786.6005 PC (36:2) 18:0/18:2 and 18:1/18:1 

[M + H]+   784.4 PC (36:3) 16:0/20:3 and 18:0/18:3 

[M + H]+   784.585 PC (36:3) 16:0/20:3 and 18:1/18:2 

[M + H]+   784.6 PC (36:3) 16:0/20:3 and 18:1/18:2 

[M + H]+   782.569 PC (36:4) 16:0/20:4 and 18:2/18:2 

[M + H]+   780.553 PC (36:5) 16:0/20:5 and 18:2/18:3 

[M + H]+   780.554 PC (36:5)  16:1/20:4 

[M + H]+   798.5 PC (37:3) 16:0/21:3 and 18:1/19:2 

[M + H]+   818.5 PC (38:0) 18:0/20:0 and 16:0/22:0 

[M + H]+   814.5 PC (38:2) 18:0/20:2 and 18:2/20:0 and 16:0/22:2 

[M + H]+   814.5 PC (38:2)  18:1/20:1 

[M + H]+   812.5 PC (38:3) 18:3/20:0 

[M + H]+   812.616 PC (38:3) 18:0/20:3 and 18:1/20:2 

[M + H]+   810.4 PC (38:4) 18:2/20:2 and 18:3/20:1 

[M + H]+   810.5 PC (38:4) 18:1/20:3 and 16:0/22:4 

[M + H]+   810.601 PC (38:4) 18:1/20:3 

[M + H]+   808.585 PC (38:5) 18:1/20:4 

[M + H]+   806.5683 PC (38:6) 18:3/20:3 

[M + H]+   806.569 PC (38:6) 18:2/20:4 and 18:1/20:5 

[M + H]+   804.554 PC (38:7) 18:3/20:4 and 18:2/20:5 

[M + H]+   808.5831 PC (38:7) 18:2/20:3 and 18:3/20:2 

[M + H]+   846.4 PC (40:0) 20:0/20:0 and 18:0/22:0 

[M + H]+   844.4 PC (40:1) 18:1/22:0 

[M + H]+   834.4 PC (40:6) 20:2/20:4 and 20:3/20:3 and 18:0/22:6 

[M + H]+   744.6 PC (O-34:2) O-16:0a/18:2 or O-16:0e/18:1 

[M + H]+   774.5 PC (O-36:1) O-18:0a/18:1 or O-18:1a/18:0 

[M + H]+   772.5 PC (O-36:2) O-18:0a/18:2 or O-18:1a/18:1 

[M + H]+   770.5 PC (O-36:3) O-18:0a/18:3 or O-18:1a/18:2 

[M + H]+   802.4 PC (O-38:1) O-18:0a/20:1 and O-18:1a/20:0 

[M + H]+   800.4 PC (O-38:2) O-18:0a/20:2 

[M + H]+   798.4 PC (O-38:3)  O-18:0a/20:3  

[M + H]+   796.4 PC (O-38:4) O-18:0a/20:4 

[M + H]+   794.4 PC (O-38:5) O-18:0a/20:5 

[M + H]+   830.5 PC (O-40:1) O-18:0a/22:1 

[M + H]+   828.5 PC (O-40:2) O-18:0a/22:2 or O-18:Oe/22:1 

[M + H]+   824.4 PC (O-40:4) O-18:0a/22:4  

[M + H]+   822.5 PC (O-40:5) O-18:0a/22:5 or O-18:Oe/22:4 

[M + H]+   758.5689 PC (34:2) 16:0/18:2 and 16:2/18:1 

[M + H]+   756.5 PC (34:3) 16:0/18:3 and 16:2/18:1 

[M + H]+   840.4 PC (40:3) 20:0/20:3 or 20:1/20:2 or 18:3/22:0 or 18:1/22:2 

[M - H]-   836.4 PC (40:5) 20:2/20:3 and 20:0/20:5  

[M - H]-   662.477 PE (30:0) 14:0/16:0 
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[M - H]-   660.46 PE (30:1) 14:0/16:1 

[M - H]-   688.492 PE (32:1) 16:0/16:1 

[M - H]-   688.4923 PE (32:1) 14:0/18:1 

[M - H]-   686.4758 PE (32:2) 14:0/18:2 

[M - H]-   716.5227 PE (34:1) 16:1/18:1 and 16:0/18:2 

[M + H]+   718.3 PE (34:1) 16:1/18:0 and 16:0/18:1 

[M - H]-   714.5067 PE (34:2) 16:0/18:2 

[M - H]-   712.492 PE (34:3) 16:0/18:3 and 16:1/18:2 

[M - H]-   744.555 PE (36:1) 18:0/18:1 

[M + H]+   746.3 PE (36:1) 18:0/18:1 

[M - H]-   742.539 PE (36:2) 18:1/18:1 and 18:0/18:2 

[M + H]+   744.4 PE (36:2) 18:1/18:1 

[M - H]-   740.524 PE (36:3) 18:0/18:3 

[M + H]+   742.4 PE (36:3) 18:1/18:2 

[M - H]-   738.508 PE (36:4) 16:0/20:4 

[M + H]+   740.4 PE (36:4) 18:2/18:2 

[M - H]-   736.492 PE (36:5) 16:0/20:5 

[M - H]-   764.5232 PE (38:5) 18:1/20:4 

[M - H]-   762.5073 PE (38:6) 18:2/20:4 

[M - H]-   788.5218 PE (40:7) 20:4/20:3 

[M - H]-   786.5076 PE (40:8) 20:4/20:4 

[M - H]-   784.4918 PE (40:9) 20:4/20:5 

[M - H]-   691.456 PG (30:1) 14:0/16:1 

[M - H]-   721.502 PG (32:0) 16:0/16:0 and 14:0/18:0 

[M - H]-   719.4868 PG (32:1) 16:1/16:0 and 14:0/18:1 

[M - H]-   717.471 PG (32:2) 16:0/16:2 and 16:1/16:1 

[M - H]-   733.3 PG (33:1) 16:0/17:1 and 16:1/17:0 

[M - H]-   749.5335 PG (34:0) 16:0/18:0 

[M - H]-   747.5183 PG (34:1) 16:0/18:1 and 18:0/16:1 

[M - H]-   745.5018 PG (34:2) 16:0/18:2 and 16:1/18:1 

[M - H]-   745.503 PG (34:2) 16:1/18:1 and 16:0/18:2 

[M - H]-   743.4862 PG (34:3) 16:0/18:3 and 16:1/18:2 

[M - H]-   743.5 PG (34:3) 16:0/18:3 

[M - H]-   741.4 PG (34:4) 16:0/18:4 

[M - H]-   741.4713 PG (34:4) 16:1/18:3  

[M - H]-   763.3 PG (35:0) 17:0/18:0 and 19:0:16:0  

[M - H]-   759.4 PG (35:2) 17:0/18:2    

[M - H]-   775.549 PG (36:1) 18:0/18:1  

[M - H]-   773.5333 PG (36:2) 18:1/18:1 and 16:0/20:2 

[M - H]-   771.518 PG (36:3) 18:1/18:2 and 16:0/20:3 

[M - H]-   769.4 PG (36:4) 16:0/20:4 and 18:2/18:2 

[M - H]-   769.5017 PG (36:4) 16:0/20:4  
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[M - H]-   769.503 PG (36:4)  8:1/18:3 and 18:2/18:2 

[M - H]-   767.3 PG (36:5) 16:0/20:5 and 18:2/18:3  

[M - H]-   767.487 PG (36:5) 16:0/20:5 and 16:1/20:4 

[M - H]-   765.471 PG (36:6) 16:1/20:5 and 18:3/18:3 

[M - H]-   787.3 PG (37:2) 17:0/20:2 and 19:0/18:2  

[M - H]-   803.58 PG (38:1) 16:0/22:1 

[M - H]-   801.565 PG (38:2) 16:0/22:2 

[M - H]-   807.4 PI (32:1)  16:0/18:2 

[M - H]-   837.5491 PI (34:0) 16:0/18:0 

[M - H]-   835.5339 PI (34:1) 16:0/18:1 

[M - H]-   833.5175 PI (34:2) 16:0/18:2 and 16:1/18:1 

[M - H]-   831.503 PI (34:3) 16:0/18:3 

[M - H]-   849.4 PI (35:1) 17:0/18:1 

[M - H]-   863.5674 PI (36:1) 18:0/18:1 

[M - H]-   861.5505 PI (36:2) 18:0/18:2 

[M - H]-   859.5352 PI (36:3) 18:0/18:3 

[M - H]-   857.5196 PI (36:4) 16:0/20:4 

[M - H]-   855.5041 PI (36:5) 18:4/18:4 

[M - H]-   877.4 PI (37:1) 19:0/18:1 and 18:3/20:5  

[M - H]-   875.4 PI (37:2) 19:0/18:2  and 18:4/20:5  

[M - H]-   873.4 PI (37:3) 19:0/18:3 

[M - H]-   883.534 PI (38:5) 18:0/20:5 

[M - H]-   907.4 PI (40:6)  18:0/22:6  

Ionization m/z Molecular species (C:N) 

[M + H]+  656.5465 DGTA (28:0) 14:0/14:0 

[M + H]+ 684.5778 DGTA (30:0) 14:0/16:0 

[M + H]+ 682.5622 DGTA (30:1) 14:0/16:1 and 16:0/14:1 

[M + H]+ 680.5465 DGTA (30:2) 14:0/16:2 

[M + H]+ 712.6091 DGTA (32:0) 14:0/18:0 and 16:0/16:0 

[M + H]+ 710.5935 DGTA (32:1) 14:0/18:1 and 16:0/16:1 

[M + H]+ 708.5778 DGTA (32:2) 14:0/18:2 and 16:0/16:2 

[M + H]+ 706.5622 DGTA (32:3) 14:0/18:3 and 16:0/16:3 

[M + H]+ 704.5465 DGTA (32:4) 16:1/16:3 

[M + H]+ 738.6248 DGTA (34:1) 16:0/18:1 

[M + H]+ 736.6091 DGTA (34:2) 14:0/20:2 and 16:0/18:2 

[M + H]+ 734.5935 DGTA (34:3) 14:0/20:3 and 16:0/18:3 

[M + H]+ 732.5778 DGTA (34:4) 14:0/20:4  

[M + H]+ 762.6248 DGTA (36:3) 16:0/20:3 

[M + H]+ 760.6091 DGTA (36:4) 18:1/18:3 and 16:0/20:4 

[M + H]+ 656.5465 DGTS (28:0) 14:0/14:0 

[M + H]+ 684.5778 DGTS (30:0) 14:0/16:0 

[M + H]+ 682.5622 DGTS (30:1) 14:0/16:1 
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[M + H]+ 680.7 DGTS (30:2) 14:0/16:2 

[M + H]+ 712.6091 DGTS (32:0) 16:0/16:0 

[M + H]+ 710.5935 DGTS (32:1) 14:0/18:1 and 16:0/16:1  

[M + H]+ 708.5778 DGTS (32:2) 16:0/16:2 

[M + H]+ 706.5622 DGTS (32:3) 14:0/18:3 and 16:0/16:3 

[M + H]+ 704.5465 DGTS (32:4) 16:1/16:3 

[M + H]+ 740.7 DGTS (34:0) 16:0/18:0 and 14:0/20:0 

[M + H]+ 738.6248 DGTS (34:1) 16:0/18:1 

[M + H]+ 736.6091 DGTS (34:2) 16:0/18:2 

[M + H]+ 734.5935 DGTS (34:3) 16:0/18:3 

[M + H]+ 732.5778 DGTS (34:4) 16:0/18:4 

[M + H]+ 752.6 DGTS (35:1) 16:1/19:0 

[M + H]+ 750.6 DGTS (35:2) 15:0/20:2 and 16:0/19:2 

[M + H]+ 748.6 DGTS (35:3) 15:0/20:3 and 16:3/19:0 

[M + H]+ 766.5 DGTS (36:1) 16:0/20:1 and 16:1/20:0 and 18:0/18:1 

[M + H]+ 764.6 DGTS (36:2) 18:1/18:1 and 16:0/20:2 

[M + H]+ 764.6404 DGTS (36:2) 18:0/18:2 

[M + H]+ 762.6248 DGTS (36:3) 18:0/18:3 

[M + H]+ 760.6 DGTS (36:4) 16:0/20:4 and 18:0/18:4 and 18:1/18:3 

[M + H]+ 776.5 DGTS (37:3) 18:3/19:0 

[M + H]+ 794.5 DGTS (38:1) 18:0/20:1 

[M + H]+ 792.5 DGTS (38:2) 18:0/20:2  

[M + H]+ 790.5 DGTS (38:3) 18:0/20:3 

[M + H]+ 784.5 DGTS (38:6) 18:1/20:5 and 18:2/20:4 

[M + H]+ 818.5 DGTS (40:3) 18:0/22:3 

[M + H]+ 808.5 DGTS (40:8) 18:2/22:6 and 20:4/20:4 

[M + H]+ 446.3481 MGTA (14:0)   

[M + H]+ 474.3799 MGTA (16:0)   

[M + H]+ 472.3632 MGTA (16:1)   

[M + H]+ 468.3308 MGTA (16:3)   

[M + H]+ 500.3942 MGTA (18:1)   

[M + H]+ 498.3784 MGTA (18:2)   

[M + H]+ 496.3632 MGTA (18:3)   

[M + H]+ 494.3472 MGTA (18:4)   

[M + H]+ 526.4109 MGTA (20:2)   

[M + H]+ 524.3957 MGTA (20:3)   

[M + H]+ 522.3795 MGTA (20:4)   

[M + H]+ 520.3642 MGTA (20:5)   

[M + H]+ 446.347 MGTS (14:0)   

[M + H]+ 474.3792 MGTS (16:0)   

[M + H]+ 472.3632 MGTS (16:1)   

[M + H]+ 500.3943 MGTS (18:1)   

[M + H]+ 498.3796 MGTS (18:2)   

[M + H]+ 496.3634 MGTS (18:3)   
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[M + H]+ 494.3477 MGTS (18:4)   

[M + H]+ 528.5 MGTS (20:1)   

[M + H]+ 524.5 MGTS (20:3)   

[M + H]+ 554.3 MGTS (22:2)   

[M + H]+ 470.5 MGTS (16:2)   

[M + H]+ 516.4 MGTS (19:0)   

[M + H]+ 514.5 MGTS (19:1)   

[M + H]+ 512.5 MGTS (19:2)   

[M + H]+ 522.5 MGTS (20:4)   

[M + H]+ 520.5 MGTS (20:5)   

 

 

 

 

 


