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resumo 
 

 

As doenças musculoesqueléticas afetam atualmente uma grande percentagem 
da população mundial sendo esperado que a sua prevalência venha a aumentar 
no futuro. De entre as abordagens terapêuticas atualmente aplicadas a nível 
clínico para as patologias ou danos ósseos, a utilização de terapias celulares 
baseadas em células estaminais mesenquimais humanas (hMSCs) surge como 
uma das mais promissoras devido à capacidade de diferenciação das hMSCs 
em células do tecido esquelético. No entanto, a diferenciação destas células em 
células osteoprogenitoras tem sido limitada pela relativa ineficácia e elevados 
custos das tecnologias de diferenciação. Para ultrapassar estas limitações, 
novas abordagens farmacológicas baseadas em compostos naturais como os 
flavonoides ou flavanonas têm sido exploradas para a diferenciação de hMSCs. 
A Naringina é uma flavanona natural, tipicamente presente em frutos do género 
Citrus que demonstrou bioatividade em várias patologias do osso e também 
capacidade de promover a diferenciação osteogénica de células estaminais. No 
entanto, este flavonoide hidrofóbico possui uma baixa biodisponibilidade e é 
metabolizado extensivamente, o que limita ao seu potencial terapêutico. Estas 
limitações podem ser colmatadas com o desenvolvimento de 
nanotransportadores especializados como as micelas poliméricas anfifílicas que 
alteram a farmacocinética/farmacodinâmica das flavanonas. Neste contexto, o 
trabalho de investigação apresentado nesta tese foca o desenvolvimento de 
micelas copoliméricas di-bloco para entrega controlada de Naringina a células 
osteoprogenitoras, com o objetivo de potenciar o efeito pro-osteogénico desta 
molécula natural. Inicialmente a síntese do copolímero anfifílico foi efetuada num 
passo através da reação de adição nucleofílica de Michael, entre o polímero 
hidrofílico metoxi-polietilenoglicol-maleimida (mPEG-MAL) e o polímero 
hidrofóbico poliácido láctido-tiol (PLA-SH). A caracterização do copolímero 
através de ressonância magnética nuclear de protão e de espectroscopia de 
infravermelho com transformada de Fourier em modo de atenuação total 
confirmaram a síntese do mPEG-MS-PLA. Através da utilização da técnica de 
nanoprecipitação o copolímero sintetizado formou micelas poliméricas 
monodispersas (70.69 ± 5.48 nm) e com uma elevada eficiência de 
encapsulação de Naringina (87.2 ± 4.6 %). A libertação controlada da Naringina 
encapsulada nas nanomicellas exibiu um perfil relativamente rápido a pH 
fisiológico (7.4) e acídico (5.5), atingindo 65 % de libertação às 24 h. As 
nanomicelas de mPEG-MS-PLA demonstraram também capacidade de 
internalização em pré-osteoblastos murinos (MC3T3-E1) e células 
mesenquimais estaminais derivadas do tecido adiposo humano (hASCs) tendo 
sido obtida uma correlação direta entre a dose e internalização. Para além 
destes resultados promissores, os estudos da avaliação da citotoxicidade da 
Naringina em forma livre ou encapsulada em nanomicelas revelou que em 
ambos os casos a viabilidade celular de hASCs foi mantida até 72 h. 
Posteriormente a bioatividade pro-osteogénica da Naringina na forma livre e 
formulada em nanomicelas foi investigada através da quantificação da fosfatase 
alcalina. Os resultados obtidos sugerem que a entrega controlada da Naringina 
promove a diferenciação osteogénica das hASCs e potenciou as suas 
propriedades pro-osteogénicas. No geral, os nanotransportadores micelares 
demonstraram ser um veículo promissor para a entrega controlada de Naringina 
a células reconhecidas pela sua difícil transfeção, estabelecendo-se assim como 
futuros candidatos para utilização em terapias osteogénicas com base em 
células estaminais. 
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abstract 

 
The incidence of musculoskeletal disorders is growing at an alarming rate and 
these diseases already affect a significant portion of the worldwide population. 
Among the therapeutic approaches currently employed in clinical settings for 
skeletal disorders or injuries, stem cell therapies exploring human mesenchymal 
stem cells (hMSCs) represent one of the most promising strategies due to the 
differentiation capacity of hMSCs into skeletal tissue cells. However current 
differentiation strategies into osteoprogenitor cells is hindered by the lack of 
effective pharmaceutic options as well as high costs associated with their use. 
Therefore, in order to overcome these limitations, there has been a shift to 
developing new pharmacological approaches based on natural products such as 
flavonoids or flavanones. Naringin is a natural flavanone typically found in Citrus 
fruits with described bioactivity in several bone disorders and capable of 
promoting osteogenic differentiation of stem cells. However, this hydrophobic 
flavonoid possesses low bioavailability and is extensively metabolized in vivo, 
which can limit its therapeutic effect. Nevertheless, these limitations can be 
overcome by developing specialized nanocarriers such as amphiphilic polymer 
micelles that can alter the pharmacokinetic/pharmacodynamic profile of 
entrapped flavanones. Considering this, the work here presented on this thesis 
focuses on the formulation of diblock copolymer micelles for controlled delivery 
of Naringin to osteoprogenitors, aiming to enhance the pro-osteogenic effect of 
this natural compound. Initially, the amphiphilic copolymer was synthesized in a 
one-pot Michael-type addition reaction between hydrophilic 
methoxypoly(ethylene glycol)-maleimide (mPEG-MAL) and hydrophobic thiol-
poly(L-lactide) (PLA-SH) polymers. Copolymer characterization by proton 
nuclear magnetic resonance and attenuated total reflection Fourier transform 
infrared spectroscopy supported the successful synthesis of the mPEG-MS-PLA 
copolymer. The resulting copolymer self-assembled into monodisperse 
polymeric micelles (70.69 ± 5.48 nm) with a high Naringin encapsulation 
efficiency (87.2 ± 4.6 %) via nanoprecipitation. Naringin controlled release from 
nanomicelles followed a relatively fast release profile at physiological (pH =7.4) 
and acidic (pH = 5.5) conditions, achieving up to 65 % of released drug within 24 
h. Cellular uptake evaluation of nanomicelles in human adipose-derived 
mesenchymal stem cells (hASCs) and murine pre-osteoblasts (MC3T3-E1) 
revealed a direct correlation between micelle dose and uptake. Moreover, 
besides previous promising results, cytotoxicity profile of free Naringin or 
Naringin-loaded nanomicelles in both cell lines showed no significant decrease 
of cell viability up to 72 h. Afterwards, the pro-osteogenic activity of free drug and 
nanomicelle-delivered drug was investigated by alkaline phosphatase assays. 
The obtained results suggest that the controlled delivery of Naringin promotes 
the osteogenic differentiation of hASCs over free drug administration. Overall, 
the nanomicelles demonstrated suitable properties for delivering flavanones into 
hard to transfect hASCs and are envisioned to be used in the future for stem cell-
based osteogenic therapies. 
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Figure 7. (A) In vivo treatment of mice-bearing osteosarcoma with pH-responsive release of Se-HANs. 

Internalized Se-HANs by nonspecific endocytosis are rapidly degraded in acidic lysosomes to release selenium. 
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1.1 Bone Microenvironment 

Bone is a dynamic and integrating tissue comprised of living cells embedded in a 

mineralized connective tissue. It is considered the ultimate biological scaffold, with a 

sophisticated architecture with a nanoscale resolution. In fact, bone is structured from a 

series of hierarchically assembled building blocks, ranging from the macro- to the 

nanostructured intricate patterning (Figure 1) 1. Seven levels of structural organization 

comprise this skeletal hierarchy: (i) bone tissue ~ 50 cm, (ii) osteons and Haversian canals 

~100 mm, (iii) fibre patterns ~ 50 mm, (iv) fibril arrays ~10 mm, (v) mineralized collagen 

fibrils ~1 mm, (vi) tropocollagen ~ 300 nm, and (vii) amino acids ~1 nm 2. At the nanoscale, 

bone is organized from the assembly and interaction of two major nanophases: (i) organic ~ 

300 nm long collagen type I fibrils and (ii) inorganic 50 x 25 nm plate-shaped hydroxyapatite 

(Ca10(PO4)6(OH)2) nanocrystals, which are periodically arranged along the fibrils (Figure 1) 

1. These two intertwined nanophases represent nearly 95 % bone dry weight 1.  

 

Figure 1. Hierarchical structure of bone and respective building blocks. Macroscale arrangements involve 

surface compact/cortical bone and trabecular/spongy bone in the interior. Compact bone is structured in 

lamellar osteons and Haversian canals enclosing blood vessels. The lamellae are mineralized collagen fibrils 

formed from intertwined helical tropocollagen with embedded hydroxyapatite nanocrystals. Adapted from 

reference 1. 

At a molecular level, electrostatic interactions are considered the main driving force 

underlying the nanostructured organization of bone 3. In fact, charged collagen amino acid 

residues determine potential nucleation sites for the binding of superficial Ca2+ and PO4
3- 

ions from hydroxyapatite 3. In addition, the collagen fibrils also rely on nearby water 

molecules to sustain the mechanical load 4. The fine tuning of relatively weak interactions 

governing the macroscopic architecture of bone is responsible for the dynamic 
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physicochemical properties of bone, which results in a tough yet light-weight 

multifunctional material 1,3. In the addition, this biomineralized structure is densely 

populated with a wide variety of cells embedded within its network, which further confers it 

with self-healing capacity, a unique feature that will be described in the following section 1. 

1.2 Bone Remodeling Process and Cellular Mediators 

Apart from its unique structural features, bone possesses an intrinsic capacity for self-

healing with minimal formation of scar tissue 5. Throughout life, bone tissue integrity is 

maintained through constant bone matrix resorption/deposition cycles. Such events prevent 

microcrack propagation and allows the tuning of bone strength and density to the patterns of 

mechanical loading that each individual is subjected to, a process known as bone remodeling 

6. In brief, the remodeling process encompasses a continuous cycle consisting in five main 

stages: (i) resting phase, (ii) resorption phase, (iii) reversal phase, (iv) bone formation phase, 

and (v) mineralization phase (Figure 2). 

 

Figure 2. The physiologic cycle of bone remodeling. In Resting Phase (A), bone surface is covered with 

bone lining cells (1). In response to microdamage (2), neighbouring osteocytes undergo apoptosis (3), 

signalling for bone lining cells detachment by communicating via the lacunocanalicular system, as well as 
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secreting RANKL for osteoclast recruitment (4), hence initiating the Resorption Phase (B). Then, monocytes 

migrating from the marrow stroma differentiate into pre-osteoclasts (5, 6) and subsequently fuse into active 

osteoclasts (7) after exposure to secreted osteoclastogenic factors. Active osteoclasts are responsible for 

digesting the mineral and organic matrix during the bone resorption phase. Upon termination of their resorptive 

action, polarized osteoclasts detach from the bone surface and undergo apoptosis, initiating the Reversal Phase 

(C). In this phase, local macrophages remove the remaining debris from resorbed surfaces, while locally 

secreting platelet-derived growth factor (PDGF) 7,8. This mediator, coupled with other growth factors (e.g. bone 

morphogenetic proteins (BMPs) and transforming growth factor-β (TGF-β)) released from the resorbed matrix 

(10) are responsible for signalling human mesenchymal stem cells (hMSCs) local differentiation (11) into pre-

osteoblasts that continue the release of growth factors for subsequent autocrine and paracrine signalling (12). 

At the beginning of Bone Formation Phase (D), osteoblasts deposit new osteoid and eventually incorporate 

into the new bone matrix as young osteocytes as this process continues (13). Meanwhile, mature osteoblasts 

can also undergo apoptosis (14) or become quiescent bone lining cells after the Mineralization Phase (E). 

Adapted from reference 9. 

From a cellular perspective, the main hotspots of bone tissue remodeling are basic 

multicellular units and are mainly comprised by four different cell types: (i) osteoblasts, (ii) 

bone lining cells, (iii) osteocytes and (iv) osteoclasts 10 (Figure 3). 

 

Figure 3. Bone remodeling process and its main cellular components (Osteoblasts, Bone lining cells, 

Osteocytes and Osteoclasts). (1) Osteocyte communication with bone lining cells forming the cellular canopy. 
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(2) Exposure of pre-osteoclasts to osteoclastogenic factors (e.g. RANKL and OPG) expressed by cells of the 

osteoblastic lineage (bone lining cells, pre- and osteoblasts, as well as osteocytes). (3) OsteoMacs express 

osteoclastogenesis markers such as RANKL and remove the remaining debris from resorbed bone. (4) hMSCs 

from the vicinity can differentiate into pre-osteoblasts and initiate new bone formation. The dynamic 

equilibrium between these cellular activities is responsible for maintaining a constant bone tissue renewal and 

ultimately bone health. Adapted from reference 9. 

During the remodeling process, mature osteoblasts form a monolayer of cuboidal cells 

along the bone surface and are responsible for forming new bone 10. They are mostly derived 

from human mesenchymal stem cells (hMSCs) originating from the hematopoietic stem cell 

niche in the marrow stroma 11. Human bone marrow MSCs (hBM-MSCs) are committed 

towards the osteoprogenitor lineage through exposition to locally secreted factors, such as 

transforming growth factor-β (TGF-β), bone morphogenetic proteins (BMPs) and Wnt 

proteins 12. Consecutively, these pathways trigger the expression of key transcriptional 

regulators of osteoblastic phenotypes, such as master switch Runt-related transcription factor 

2 (RUNX2) and osterix, both of them critical stimuli for osteoblastic differentiation 10. In 

the remodeling process, this event is followed by the upregulation of osteogenic markers, 

such as alkaline phosphatase (ALP), osteocalcin (OC), osteopontin (OPN), collagen type I 

(Col I) and bone sialoprotein (BSP), which establishes osteoprogenitors proliferation phase 

10. Afterwards, matrix vesicles (~300 nm) bud from osteoblasts and serve as nanoscaffolds 

for accumulating Ca2+ and PO4
3- ions, where nucleation occurs and hydroxyapatite 

nanocrystals are subsequently formed 10. Then, rupture occurs and the mineral nanocrystals 

are spread throughout the synthesized matrix. At this point, most (~ 60 %) mature osteoblasts 

undergo apoptosis while the rest differentiates into osteocytes or become quiescent bone 

lining cells 13. 

The other cell type present during natural remodeling are bone lining cells. These cells 

are quiescent flat-shaped osteoblasts that cover bone surface regions where no bone 

formation or resorption takes place. The extent of their role in bone remodeling is not yet 

fully understood, but studies have shown that the thin barrier formed by these cells protects 

newly mineralized bone from osteoclastic resorption 10,13. In addition, these cells can secrete 

OPG and express RANKL to signal osteoclast formation 10. It is also suggested that this 

secretory activity can then initiate local bone resorption, via collagenase-mediated digestion 

of the protective layer and subsequent recruitment of osteoclasts 13. Then, the detached bone 
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lining cells, together with nearby OsteoMacs, are capable of forming a cellular canopy 

delineating the remodeling area 9,13 (Figure 3). 

Osteocytes are differentiated osteoblasts with dendritic-morphology encased within the 

mineralized bone matrix 14. They represent the overwhelming majority of bone cells (~90 

%) and act as mechanosensors as well as orchestrate bone formation/resorption via secretory 

activities of signalling molecules (e.g. sclerostin, nitric oxide or prostaglandins) directly 

delivered to the various bone cells via a vast intra-skeletal network 10,14. Osteocytes extend 

their cytoplasmic processes throughout nanosized channels (canaliculi), forming the 

lacunocanalicular system, which allows for direct communication to other cells in the bone 

remodeling unit 3,10. Microdamage in the skeletal matrix causes neighbouring osteocytes to 

undergo apoptosis, which in turn elicits osteocyte-mediated RANKL production 15. Such 

initiates osteoclastic recruitment and subsequent bone remodeling at the injured site 10. Thus, 

osteocytes play a major role in tightly coordinating remodeling cycles. 

Another major mediator of the remodeling process are osteoclasts. These are bone 

resorbing, multinucleated, giant cells derived from hematopoietic cells, specifically arising 

from the fusion of mononuclear progenitors of the monocyte/macrophage family 16. 

Osteoclastic differentiation is brought about by exposition to macrophage colony-

stimulating factor (M-CSF) or RANKL, secreted by stromal cells or those of osteoblastic 

lineage 16. In addition, osteoclastogenesis is also regulated by OPG secretion, which 

functions as decoy receptor for RANKL, therefore inhibiting osteoclastic formation 13. Upon 

activation, osteoclasts polarize through cytoskeletal reorganization and form four distinct 

membrane domains, namely a ruffled border, sealing zone, functional secretory domain and 

a basolateral domain 3,10. The sealing zone encloses the acidic resorptive microenvironment, 

responsible for digesting the mineral and organic phases of skeletal matrixes, respectively 

by enzymatic activities of carbonic anhydrase II and cathepsin K 16,17. 

Bone remodeling therefore results from the concomitant destruction of old bone by bone-

resorbing osteoclasts and deposition of new osteoid by osteoblasts, in an orchestrated 

communication among all bone cells in the basic multicellular unit, by using locally secreted 

signalling biomolecules (e.g. OPG, BMPs and TGF-β) 9 (Figure 2 and 3). 

From this overview of the skeletal system hallmarks it becomes clear that bone is a tightly 

regulated tissue with important anatomical and physiological features that must be taken into 

consideration. In the following subchapter, different types of bone disorders will be 
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described and their current medical treatments critically discussed in the context of the 

development of advanced therapies for their management. 

1.3 Bone Injuries and Disorders 

1.3.1 Bone Fractures - Hallmarks of Fracture Healing 

Bone tissue health can be affected by several types of injuries including trauma, infection 

or neoplasias 18. Among trauma-related injuries, fractures are by far the most frequent and 

constitute a major cause of morbidity and mortality 19. When a fracture occurs and the 

fracture ends are not in direct contact with each other, bone healing takes place via 

endochondral and intramembranous ossification 18,20. This process is known as indirect 

fracture healing and represents the most common form of fracture healing 20. Overall, this 

process encompasses six main stages: (i) acute inflammatory response, (ii) recruitment of 

progenitor cells, (iii) cartilaginous callus formation, (iv) fracture site revascularization, (v) 

cartilaginous callus resorption/mineralization, and (vi) bone remodeling 20 (Figure 4). 

 

Figure 4. Physiology of femur fracture repair along time. Major metabolic phases of fracture healing, 

anabolic and catabolic (blue bars) are represented in the context of the three major biological stages, (i) 
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inflammatory, (ii) endochondral ossification and (iii) coupled remodeling, that orchestrate bone regeneration. 

Adapted from reference 21. 

Acute inflammatory response (Figure 4, day 0 - 3). Immediately following a traumatic 

event, bone fracture as well as injury to surrounding soft tissues occurs. Blood from the 

neighbouring vasculature fills up the injured site and coagulates, leading to the formation of 

a characteristic hematoma which serves as a template for callus formation 20. During this 

phase, platelets and monocytes/macrophages infiltrate the fracture site and initiate the acute 

inflammatory response by secreting proinflammatory cytokines, such as interleukin 1 and 6 

(IL-1 and IL-6), platelet-derived growth factor (PDGF), TGF-β, prostaglandin E2 and tumor 

necrosis factor-α (TNF-α) 18,22. The coordinated secretion of these bio-mediators peaks 

within the first 24 h post-trauma, and this timing is crucial for initiating bone healing 20,21. 

Recruitment of progenitor cells (Figure 4, day 3 - 5). The cytokines (such as TNF-α 

and IL-6), as well as platelet-secreted chemokine stromal cell-derived factor-1, all play a key 

role in the recruitment of osteo- and chondroprogenitors from surrounding stem cell niches 

18,21,23. Stem cells are mainly recruited from the periosteum, but also from marrow stroma, 

endosteal envelope, from peripheral blood and adjacent myogenic progenitors 18,21. It is 

worth noting that the recruitment from neighbouring or distant locations is known to be 

dependent on the extent and type of trauma 21. For instance, in large open tibial fractures, 

nearly half the cells in the callus are derived from the surrounding muscle tissue 24. 

Moreover, cytokines, as well as recruited hMSCs mediate immune functions by coordinating 

the removal of necrotic tissues and supressing immune cell populations, such as T cells 21. 

A local increase in the number of induced T regulatory cells leads to immunosuppression of 

fracture sites, which is fundamental for the chondroprotection of recruited cells that are 

responsible for forming the cartilaginous template 21. 

Cartilaginous callus formation (Figure 4, day 5 - 10). As aforementioned, the 

hematoma serves as a template for the synthesis of a cartilage scaffold 18. In this region, 

angiogenesis cannot occur and an ischemic microenvironment is established 18. This hypoxic 

gradient favours chondrogenesis over osteogenesis, thereby coordinating cartilage matrix 

formation via release of TGF-β2, -β3 and growth differentiating factor-5 from infiltrating 

platelets 18. Afterwards, chondrocytes proliferate and synthesize the cartilaginous callus by 

secreting Col I and II as well as proteoglycans 18,22. As the production of collagenous matrix 

proceeds, the synthesized template eventually covers the fracture gap, while hypoxia 
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inducible factor-1α (HIF-1α) is continuously secreted by recruited hMSCs 18,20. This causes 

local chondrocytes to undergo hypertrophic differentiation which elicits vascular endothelial 

growth factor (VEGF) and type X collagen production, initiating localized revascularization 

and kickstarting the cartilage degradation process 25. 

Fracture site revascularization (Figure 4, day 10 - 16). Neovascularization is essential 

for vascularizing the fracture callus and reversing cartilage formation 20. This process is 

modulated by VEGF and angiopoietin-1 and -2 secreted by hypertrophic chondrocytes, as 

well as recruited hMSCs differentiating to osteoblastic lineages 20. Irrigation of the avascular 

cartilaginous matrix provides a pathway for accumulation of osteoprogenitor cells and 

multiple factors (e.g. BMPs, TGF-β, insulin-like growth factor, OC, and collagen) signalling 

the conversion of cartilage to immature woven bone by calcifying the matrix 22. 

Cartilaginous callus resorption/mineralization (Figure 4, day 16 - 21). At this stage, 

the anabolic phase is followed by a strong catabolic activity which ultimately reduces callus 

volume 21. For further progressing into bone regeneration, the soft callus needs to be replaced 

by a hard callus 20. As aforementioned, fracture site revascularization promotes the 

repopulation of the template region and originates a coordinated signalling cascade 

comprised by M-CSF, RANKL, OPG and TNF-α mediators that initiate mineralized 

cartilage resorption. Macrophages and osteoclasts are attracted to the soft callus vicinity and 

resorb matrix 18. TNF-α may also be implicated in inducing hypertrophic chondrocyte 

apoptosis, releasing calcium granules to the extracellular matrix 20. In parallel with the bone 

remodeling mineralization stage, these calcium nodes act as nucleation sites for generating 

apatite crystals 20. At this point, while the collagenous template is continuously resorbed, 

additional vascular ingrowth continues as new bone tissue replaces the cartilage matrix, 

solidifying the fracture callus 21. 

Bone remodeling (Figure 4, day 21 - 35). In order to restore original anatomical and 

biomechanical bone properties, a second woven bone remodeling is initiated with the aim of 

reforming lamellar bone with medullary cavity 18,20. Although this process begins as early as 

3 weeks post-trauma and overlaps with hard callus formation, it can take years until bone 

structures are fully regenerated. IL-1 and -6, TNF-α as well as BMPs are highly implicated 

in the biocoordination of this process 18,20. In addition, the aforementioned vascular ingrowth 

is critical for a successful bone remodeling stage. Here, remodeling takes place according to 

Wolff’s law; lamellar bone deposition by osteoblasts in high stress zones and hard callus 
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resorption in low stress regions 18. Over time, the concomitant action of osteoclasts and 

osteoblasts forms a mature lamellar bone with characteristic medullar cavity 21. 

In a holistic analysis, it is clear that bone is capable of regenerating most injuries via the 

complex regeneration cascade described above. However approximately 10 % of all 

fractures do not heal properly 21. Moreover, trauma-related injuries can lead to critical size 

defects that are too large to fully heal and require more advanced treatments 26. Furthermore, 

there are several clinical conditions such as chronic inflammation, diabetes mellitus, 

hypovitaminosis and polytrauma, associated with hindered bone repair 22. In addition, other 

factors such as smoking or ageing incite unbalances in the hematopoietic stem cell niche, 

resulting in delayed responses to fracture injuries 22,27. 

To address these issues, various strategies have been implemented in a clinical setting to 

enhance fracture healing, including (i) biophysical stimulation and (ii) local or systemic 

administration of bone therapeutics 21. The first approach is based on the use of 

electromagnetic stimulation or low-intensity pulsed ultrasonography, however these 

approaches only yield a moderate to very low effect in fracture healing 21.  

Alternatively, local stimulatory strategies have shown significant improvements over the 

previous approaches. Examples of this approach include the use of scaffolds comprised by 

PDGF subunit B embedded in β-tricalcium phosphate matrix, or the surgical implantation of 

Food Drug and Administration (FDA)-approved recombinant BMP-2 embedded in a 

collagen sponge 21. However, some studies do indicate an increased cancer risk associated 

with BMP-2 treatments 21.  

The studies investigating systemic administration of such therapeutics (e.g. Teriparatide 

(recombinant DNA form of parathyroid hormone (PTH)), and BMP-2 administration) 

indicate an improved fracture recovery following treatment, but also that the different 

underlying biological mechanisms lead to highly sensitive therapeutic outcomes, depending 

both on timing and treatment duration 21. In fact, for Teriparatide, unfortunately the treatment 

is ineffective if the endogenous PTH levels are elevated from the normal threshold 18. 

Apart from fractures bone acute bone diseases also contribute for significant patient 

morbidity, such major pathologies will be described in the following section. 
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1.3.2 Chronic Bone Diseases – Incidence and Current Medical 

Approaches 

In the past decades, the increase in life expectancy has resulted in the growing prevalence 

of numerous age-related disorders. This reality is particularly evident for bone-associated 

diseases such as osteoporosis (OP), osteoarthritis (OA), osteomyelitis (OM) and Paget’s 

disease whose prevalence is expected to increase continuously in the future 28. More 

importantly, the prevalence of many of these conditions is already at its historical peak: (i) 

OP – in 2010 approximately 10.2 million adults in the United States aged 50 years and older 

had OP, with another 43.4 million adults under increased risk of developing OP due to low 

bone mass 29; (ii) OA is now one of the leading causes of chronic disability and by the year 

2020, 25% of the adult population in the United States will be affected by this disease 30; 

(iii) OM – the elderly are naturally predisposed to chronic OM due to age-related 

immunodeficiency and increased fracture risk 31,32. Preventing the burden of such disorders 

is important since they significantly impair patient’s quality of life. However, despite several 

decades of progress, no definitive treatment options exist for OP or OA, 33. Currently 

available treatment options for such disorders rely mostly on pharmacological-based 

therapies that are administered under various regimes according to each individual disease 

progression status 34. 

Despite their recognizable therapeutic benefits, these approaches are still undermined by 

deleterious side effects that affect patients general health and daily quality of life. Moreover, 

due to the chronic nature of most of these disorders, frequent and long-term administration 

regimens are required, which can accentuate the appearance of associated side effects along 

time. For example, administration of FDA-approved recombinant PTH is limited to severe 

OP cases and for a maximum period of two years, owing to the increased risk of developing 

osteosarcoma as a side effect 35. Similarly, even bisphosphonates (BPs), the most commonly 

used anti-osteoporotic class of drugs, remain controversial. Concerning this, there are several 

reports in the literature questioning BP long-term usage. In fact, Blum and colleagues 

suggest that there is a risk of atypical femur fractures associated with their long-term usage 

36. Similarly, oral therapy using BPs has been reported to induce gastritis, gastric ulcer and 

osteonecrosis of the jaw 37,38. Apart from these examples, several other pharmaceutic 

formulations and active ingredients for bone pathologies such as OP have drawbacks 

associated with their administration 39,40 (Figure 5). 
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Figure 5. Overview of some of the currently available bone disease therapies and their off-target side-

effects and limitations. 

For OA, the current pharmaceutical treatments involve combinatorial therapy at different 

stages of disease progression with the aim of supressing the exaggerated inflammatory 

response 41. The most common therapeutic approaches include acetaminophen, nonsteroidal 

anti-inflammatory drugs (NSAIDs) or corticosteroids 42. Analgesic acetaminophen is 

considered first-line therapy and can be used for pain relief but does not affect swelling nor 

retard disease progression. Also, high doses of this drug can cause stomach ulcers. NSAIDs 

(e.g. ibuprofen, diclofenac, cyclooxygenase-2 inhibitors) are also considered first-line 

therapy and can reduce pain and swelling. However, there is a serious risk for 

gastrointestinal, renal or cardiovascular toxicity, and this risk increases with age 42. On the 

other hand, the wide variety of side-effects associated with corticosteroid use is well known. 

Therefore, for OA there is also a need for effective disease-modifying agents, rather than 

only relying on pain and inflammation control 41. In this context, studies exploring natural 

substances such as glucosamine, chondroitin sulfate and hyaluronic acid (via intra-articular 

injection) have been reporting beneficial effects, as well as suggesting potential disease-

modifying effects 42. 

In summary, it is clear that current pharmaceutic options for treating various skeletal 

disorders need considerable improvement. To overcome these issues regarding bone 

repair/remodeling disorders and chronic bone diseases, new approaches are exploiting the 

stem cell niche to enhance bone healing either: (i) via biomaterial-based scaffolds, or (ii) via 

induced stem cell differentiation toward osteogenic lineage by action of osteoinductive 

bioactive molecules. Both these approaches represent attractive therapeutic alternatives for 
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bone tissue engineering and regenerative medicine 26,43. These approaches based on the use 

of stem cells will be addressed in the following sections. 

1.4 Stem Cell-based Therapies for Bone Regeneration 

Stem cells are a class of self-renewing progenitor cells capable of differentiating into 

different types of functional cells. They can be classified according to: (i) cell potency for 

differentiation – totipotent, pluripotent and multipotent; and (ii) origin – embryonic or adult 

44. While embryonic stem cells can differentiate into any cell type in the body, adult stem 

cells have limited potency and can be divided into different lineages, including 

hematopoietic, neural, epidermal and mesenchymal 44. 

Mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells, were 

originally discovered in the marrow stroma but currently these cells have been successfully 

isolated from several other tissues, such as trabecular bone, muscle, adipose, periosteum, the 

synovial membrane, articular cartilage, skin, periodontal ligament and umbilical cord 45. 

These multipotent cells possess a fibroblast-like morphology and specifically differentiate 

towards the mesodermal lineage, namely to: (i) adipocytic, (ii) osteocytic and (iii) 

chondrocytic phenotypes (Figure 6) 46. Also, transdifferentiation approaches have 

successfully directed them towards ectodermal (e.g. epithelial and neural), as well as 

endodermal lineages (e.g. muscle and lung) (Figure 6) 46. 

 

Figure 6. The multipotency of MSCs. In the marrow hematopoietic niche, MSCs are capable of self-

renewing (curved arrow) and differentiate (straight, solid arrows) towards the mesodermal lineage. In addition, 
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the transdifferentiation (dashed arrows) capacity of MSCs towards ecto- and endodermal lineages in vivo is 

still controversial. Adapted from reference 46. 

1.4.1 Mesenchymal Stem Cells Potential for Application in Tissue 

Engineering and Regenerative Medicine 

The ubiquitous presence of hMSCs in niches throughout the body evidences their 

importance in providing maintenance and support in what regards the formation of 

mesenchymal tissues. As aforementioned, these cells are also able to migrate to injured sites 

and aid in the regeneration process 47. In fact, systemic or local recruitment of hMSCs has 

been described in the context of myocardial infarction, as well as bone healing scenarios 47. 

Such injury-mediated chemotactic response coupled with their key role in bone healing 

(building blocks for cartilage and bone regeneration), has inspired researchers to exploit their 

potential in tissue engineering and regenerative medicine. Migration to degenerated and 

inflamed sites also suggests that hMSCs-based therapies are promising alternatives not only 

for bone-erosive disorders but also for joint-degenerative disorders such as OA and 

rheumatoid arthritis 47. Indeed, on the latter, in vivo hMSC recruitment to degenerating 

synovium has been demonstrated in osteoarthritic patients. 

In addition, in vitro and in vivo studies suggest that hMSCs capacity to promote tissue 

repair goes beyond merely differentiating into mature osteoblasts or chondrocytes 48. In fact, 

hMSCs are truly ‘living factories’, producing important growth factors and cytokines that 

mediate tissue regeneration or resident tissue precursors (e.g. osteo- and chondroprogenitors) 

differentiation via paracrine action 49. Unsurprisingly, hMSCs have been successfully 

employed in a clinical setting to augment tissue regeneration, with positive outcomes in 

spinal fusion, hip avascular necrosis, non-union fracture healing or distraction osteogenesis 

46,49. Currently, the most used hMSCs for bone regeneration include human BM-MSCs 

(hBM-MSCs) and human adipose-derived MSCs (hASCs). 

1.4.2 Adipose-derived Mesenchymal Stem Cells - An Emerging 

Alternative over hBM-MSC-based Strategies 

So far, hBM-MSCs are the most explored osteoprogenitor cell line, with numerous studies 

upholding its potential for enhancing in vivo bone healing in both animal models and humans 

45. Moreover, some literature reports suggest that BM-MSCs and periosteum-derived MSCs 

exhibit superior osteogenic activity than ASCs, although this phenomenon is controversial 
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in vivo 45,50. In spite of this, the application of these cells in tissue engineering has been 

significantly decaying, with only 2 out of 33 clinical trials involving them in bone repair 

applications 51.  

Hurdles for clinical translation of hBM-MSCs in cell-based therapies can be related to 

several factors. First, harvesting of hBM-MSCs from bone marrow is an invasive procedure 

associated with patient discomfort and donor site morbidity 45. Frequently, general or spinal 

anaesthesia are required to perform this procedure 52. Secondly, harvesting of sufficient 

numbers of viable autologous hBM-MSCs is not always possible, especially considering the 

proportion of these cells in bone marrow (1 in every 104 to 105 mononuclear cells) 53. Such 

scarcity raises the need for an ex vivo expansion in order to obtain sufficient cell titers for 

clinical administration 45. This not only significantly increases the time of the envisioned 

administration to patients, but can also lead to other variabilities, particularly in terms of 

phenotypic changes upon long-term in vitro cell culture 51. Furthermore, ageing is 

characterized with a marrow stromal shift towards adipocyte differentiation of hBM-MSCs, 

as well as a significant decrease in their proliferative and pro-osteogenic potential 45,49. 

Considering the age-related incidence of fractures and musculoskeletal degenerative 

diseases, this represents a significant obstacle for clinical translation, especially taking into 

account the even higher scarcity of these cells in older patients (1 in every 2 x 106 cells, 

approximately a 200-fold reduction) 45,54. 

Considering this reality, autologous human ASCs (hASCs) have been steadily gathering 

attention over the last years as exciting candidates for tissue engineering and regenerative 

medicine. While hBM-MSCs are particularly rare, hASCs are present in significant 

quantities within the stromal vascular fraction of human adipose tissues 48. Therefore, hASCs 

can be harvested in large numbers by means of subcutaneous lipoaspiration, which is also 

less invasive in comparison with the bone marrow aspiration procedure. Moreover, hASCs 

constitute a more valuable option over hBM-MSCs for tissue engineering and regenerative 

medicine applications in younger patients. Such subjects possess an enhanced osteogenic 

activity but with fewer amounts of autologous bone available, whereas adipose tissue is 

readily available 51. In this context, a clinical case report by Lendeckel and colleagues 

described the successful repair of a critical post-traumatic calvarial defect in a 7-year old girl 

by using autologous hASCs 55.  
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In addition, hASCs are characterized by their low immunogenicity, immunosuppresive 

and anti-inflammatory properties, excellent characteristics for posterior implantation in 

injured sites 56. These properties are maintained even after culturing in xeno-free media, 

which are a pre-requisite for future clinical application 57. Regarding their ex vivo expansion, 

hASCs can proliferate faster and for extended periods with lower senescence in comparison 

to hBM-MSCs 50. Furthermore, hASCs maintain comparable osteogenic potential in either 

younger (36 years old), or elderly (71 years old) patients, whereas hBM-MSCs osteogenic 

capacity markedly declines with age, as aforementioned 58. 

Presently, it is important to clarify if the promising results of pre-clinical studies involving 

hASCs for bone regeneration are related to “quantity over quality” in terms of producing 

bone matrix as discussed by Fisher and colleagues 51. Well-designed head-to-head 

comparison studies between hASCs and hBM-MSCs are required to evaluate bone tissues 

anatomy/physiology when produced by each type of osteoprogenitor cells. The superior 

osteogenic capacity of hBM-MSCs is well described and secretomes are markedly different 

between these two cells (e.g. only hASCs express adipokines with bone remodeling 

capacity) 59. Both hBM-MSCs and hASCs secrete the VEGF proangiogenic growth factor 

48,59. However, VEGF expression is much higher in hBM-MSCs than in hASCs 60. 

Considering the importance of angiogenesis in bone healing and effective hard callus 

remodeling, this can lead to important differences in bone biological function over time. 

Such particularities must be taken into consideration during treatment design stages. It is 

clear that in many scenarios, the differences between hASCs/hBM-MSCs biological 

performance can be ascribed to different donor sites, processing method, donor age, gender 

and diet 45,48,51,61. 

Future hASC-based cell therapies should be further optimized in terms of the 

methodologies for osteogenic differentiation to unravel their full potential for application in 

tissue engineering, regenerative medicine and treatment of other bone pathologies. Some of 

the strategies currently employed for stem cells differentiation will be briefly addressed in 

the following subchapter.  

1.4.3 Strategies for Stem Cells Differentiation into Osteogenic Lineage 

Currently glucocorticoid Dexamethasone (Dex) and recombinant BMP-2 are the gold 

standard osteoinductive molecules employed for inducing differentiation into osteogenic 

lineages in cell-based therapies. However, Dex systemic administration is characterized by 
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a plethora of deleterious side-effects and simultaneously induces stem cell adipogenesis even 

in osteogenic conditions 62,63. On the other hand, although BMPs are remarkable candidates 

for eliciting bone formation, they usually require supraphysiological doses to obtain the 

desired osteoinductive effects, which can result in ectopic bone formation.64 Besides, 

recombinant BMPs have high production costs, could be denatured in vivo and are 

partitioned in other tissues not being able to be specifically delivered to the target site, such 

limits their applicability 65. 

Consecutively, the search for safer, cost-effective and more potent osteoinductive agents 

has lead researchers to exploring the potentials of natural-based compounds commonly 

found in nature. The main driving force behind this paradigm shift is the discovery of drugs 

with fewer side-effects and more specific biological targets that induce total osteogenic 

commitment of stem cells, therefore potentially enhancing the therapeutic effect. Also, safer 

drugs can improve patient compliance, which has been a difficult issue to tackle arising from 

the side effects and ineffectiveness associated with the current conventional 

treatment/osteoinducing options.  

In the following section, the potential of a naturally available flavanone compound is 

described in terms of its unique pro-osteoinductive capacity, but also its potential to be used 

for bone disorders such as OP and OA. 
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“Bioinspired Bone Therapies using Naringin – Applications and Advances” 
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Abstract 

The use of natural compounds to develop new treatments for chronic bone diseases and 

injuries is receiving an emerging focus due to their cost-effectiveness, availability and 

unique bioactivity. Among natural-based small molecules, Naringin, a flavanone glycoside, 

represents one of the most promising candidates due to its multifaceted effect on bone tissues 

as recently emphasized by numerous pre-clinical in vitro and in vivo studies. This review 

provides an up-to-date overview on Naringin applications in the treatment of bone disorders, 

such as osteoporosis, and further highlights its potential to be used for stem cell pro-

osteogenic differentiation therapies. A critical perspective on different aspects that still 

hinder Naringin clinical translation is also provided. Such topic is discussed in light of 

recently developed biomaterial-based approaches that potentiate Naringin bioavailability 

and bioactivity. Overall, the reported pro-osteogenic, anti-resorptive and anti-adipogenic 

properties establish this flavanone as an exciting candidate for application in bone tissue 

engineering and regenerative medicine.  

 

Keywords: Biomaterials, bone disorders, Naringin, osteogenic differentiation, tissue 

engineering 
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1. Introduction 

Currently bone diseases and injuries represent a significant healthcare burden at a 

worldwide scale due to the ineffectiveness of currently applied medical treatments for 

various skeletal disorders 1. In fact, to date, a fully curative treatment for diseases such as 

osteoporosis (OP), osteoarthritis (OA), osteomyelitis (OM) or Paget’s disease has yet to be 

developed. Such reality is further accentuated in what concerns critical size bone injuries 

that are unable to self-regenerate 2. For these cases, current strategies involve the use of bone 

grafts with embedded osteogenic growth factors to accelerate bone healing 2. However 

currently used osteogenic molecules are frequently associated with high production costs or 

deleterious side-effects limiting wide applicability and therapeutic efficacy 3. In an effort to 

discover new approaches that increase the toolbox of effective treatments for bone 

pathologies, a great focus has been put on the pursuit of natural-based products due to their 

availability, cost-effectiveness and biological activity. 

Plant-based derivatives and marine-derived compounds represent one of the most cost-

effective sources of new bioactive molecules with promising therapeutic effects for different 

diseases including those of skeletal tissues 4. In this context, various natural formulations 

(e.g. Drynaria fortunei or Erythrina variegata) have presented a remarkable potential for 

improving joint-related (e.g. OA) osteoarticular degradation, or for treating bone injuries and 

bone-related disorders, such as OP 4,5. Typically, these formulations can modulate multiple 

signaling pathways and exert an effect in different cellular targets 6. Such is extremely 

valuable in the context of bone diseases considering their multi-factorial pathogenesis, 

particularly in the case of OA and OP 7. In addition, their capacity for improving osteoporotic 

bone healing is highly related to its pro-osteogenic effect in both osteoprogenitor cells as 

well as stem cells 4. Hence, research interest in this pro-osteogenic potential has been steadily 

growing for applications in stem cell-based therapies for tissue engineering. 

Currently, the application for these naturally small molecules in bone is particularly 

focused in OP and on the pro-osteogenic differentiation of mesenchymal/stromal stem cells. 

Regarding the latter, such bioinspired approaches have recently shown promising pro-

osteogenic potential for tissue engineering and regenerative medicine applications 4. 

For example, a catechin hydrate-coated substrate markedly enhanced the osteogenic 

differentiation and mineralization of hASCs 8. In addition, catechin-coated polycaprolactone 

nanofiber scaffolds implanted in a critical-size calvarial defect prompted a significant 
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improvement in bone formation and density, as well as collagen deposition 8. Another natural 

compound, Icariin, a prenylated flavonol glycoside, has exhibited equally promising 

properties for bone tissue engineering 4. In a mouse calvarial defect model, Icariin was 

transplanted in calcium phosphate cement and resulted in enhanced bone and blood vessel 

formation 9. Other in vivo studies have reported significant cartilage repair in mice bearing 

osteochondral defects, as well as bone formation and anti-adipogenic behavior ameliorating 

osteoporotic status of ovariectomized (OVX) mice 10,11. 

In addition, Resveratrol, Formononetin and Ginsenosides have all markedly improved in 

vivo bone formation and mineralization, in both defect and OVX animal models 4. Also, 

Oleanolic acid as well as green tea polyphenols have exhibited beneficial effects by reducing 

bone erosion and inflammation-induced bone loss in vivo 4,12. Moreover, oral administration 

of Quercetin-loaded solid lipid nanoparticles increased Quercetin levels by 3.5-fold of free 

drug and effectively reversed the osteoporotic status of OVX rats to Sham levels 13.  

Therefore, current research into natural small molecules suggests that they are a desirable 

source of potentially innovative pharmaceutics. In the toolbox of naturally available 

compounds for treatment of bone disorders, Naringin, a flavanone glycoside, is currently 

gathering special attention in pre-clinical studies and represents one of the most promising 

candidates for treating various bone diseases and promoting stem cells differentiation 

towards a pro-osteogenic phenotype. 

2. Naringin - A Flavonoid with Multiple Therapeutic Targets in Bone 

Tissues 

Naringin, also known as Naringenin 7-O-neohesperidose, is a natural flavonoid present 

in several fruits of the Citrus genus. Commercial grapefruit (Citrus paradisi) juice is the 

richest source of Naringin (43.5 mg / 100 mL), where this compound is significantly more 

concentrated than in their hand-squeezed equivalents (23.0 mg / 100 mL) 14. Similarly, 

industrial bergamot (Citrus bergamia) juice represents another valuable source of this 

compound, with Naringin contents around 26.1 mg / 100 mL 14. Furthermore, this compound 

is present in moderate quantity in Citrus aurantium (1.97 mg / mL) and even in certain 

commercial orange juices (2.13 mg / 100 mL) 14. In addition, Naringin is also considered the 

main effective component in the basket fern Drynaria fortunei, a traditional Chinese 

medicine for OP 15. 
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Naringin-enriched natural-sources have been found to hold remarkable potential for 

various biomedical applications. In fact, Citrus paradisi juice has been described to increase 

the bioavailability of various drugs by decreasing first-pass metabolism, either via inhibition 

of cytochrome P-450 3A4 drug-metabolizing intestinal enzyme, or by inhibiting the P-

glycoprotein induced efflux from the enterocytes 16. Industrial bergamot juice has also shown 

antiproliferative activity in human hepatocellular carcinoma (HepG2 cells), and plays a 

protective role in the treatment of rheumatoid arthritis due to its anti-oxidant and anti-

inflammatory activity. Interestingly it is also capable of mimicking the mechanism of statins, 

exerting significant hypolipidemic and hypocholesterolemic effects in humans 17–19.  

Naturally, these findings raised attention towards understanding the molecular effects of 

the main bioactives present in these sources, such as the flavanone Naringin. Numerous pre-

clinical studies investigating Naringin bioactivity support promising applications in different 

diseases (Figure 1) 15,20. 

 

Figure 1. Overview of various conditions in which Naringin has been described to display protective / 

therapeutic effects. For a more general description of the activity of Naringin in these conditions, please see 

reference 20. ROS – reactive oxygen species. CNS – central nervous system. 
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Among the different applications of Naringin, recent research has been focusing on the 

pro-osteogenic effects of Naringin in OP, or as a naturally-inspired compound for directing 

mesenchymal/stromal cells osteogenic differentiation. This unique biological activity in the 

context of bone disorders will be further discussed in the context of recent in vitro and in 

vivo pre-clinical reports. 

2.1 Pre-clinical in vitro Studies 

The pro-osteogenic effect of Naringin is well described in the literature, suggesting 

potential applications as bone therapeutic or as mediator of MSCs osteogenic lineage 

differentiation 15. Different studies have shown that Naringin has a significant effect in the 

proliferation or differentiation of osteoprogenitor cells such as murine pre-osteoblasts 

(MC3T3-E1), and cells with osteoblastic phenotype, including human and murine primary 

fetal osteoblasts (respectively, hOB and pOB) 21,22. Fan and his team found that Naringin 

dose-dependently improved the proliferation of rabbit BM-MSCs, and that Naringin (1 µM) 

significantly increased the mRNA expression of OC, ALP and Col I across studied time 

points (3, 7, 14, 21 days) 23. Moreover, the authors observed that Naringin improved cells 

osteogenic commitment by inhibiting peroxisome proliferator activated receptor ɣ (PPARɣ) 

expression, a key regulator in promoting MSCs adipogenesis. The Naringin-induced 

downregulation of PPARɣ levels was linked to the corresponding upregulation of 

microRNA-20a expression 23. The effect of Naringin on the expression of the previous 

markers (OC and PPARɣ) was effectively reversed by transfecting the BM-MSCs with anti-

microRNA-20a antibody. Alternatively, in rat BM-MSCs, Naringin increased the 

proliferation over 9 days in a dose dependent manner (up to 10 µg/mL) 24. In these cells, the 

highest dose (100 µg/mL) was shown to decrease proliferation over long culture periods (9 

days). After Naringin treatment, there was a 5 to 7-day delay before ALP expression peak 

was observed, where the dose of 10 µg/mL exhibited the best osteogenic performance. These 

findings were supported by OC cell immunostaining after Naringin treatment, in which 10 

µg/mL led to the highest increase in OC expression (Figure 2A). Another study performed 

by Yu and co-workers further expands the knowledge regarding Naringin-mediated 

activation of signaling pathways that are related to proliferation or osteogenesis 25. These 

researchers found that Naringin promotes rat BM-MSCs osteogenesis via activation of the 

Notch signaling pathway 25. Naringin significantly enhanced the mRNA levels of osteogenic 

markers (ALP, BSP and core-binding factor a1), while it decreases adipogenic regulator 
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(PPARɣ2) both in a dose-dependent manner (Figure 2B). In addition, increased calcium 

node deposition in cultured cells also followed a dose-dependent behavior (Figure 2C). 

Interestingly, treatment with Notch-inhibitor DAPT partly reduced Naringin-induced ALP 

activity stimulation, calcium deposits and osteogenic mRNA transcript levels, whilst 

suppressing the inhibitory effect on PPARɣ2. Such findings strongly support the use of 

Naringin as a pro-osteogenic natural compound. This is highly important in the context of 

stem cell-based therapies since up to date the main pharmaceutical approach has been the 

use of Dex to guide lineage differentiation 26. However, this glucocorticoid has been 

described to strongly induce adipogenesis even in osteogenic medium, which can be 

counterproductive for the final application of such therapies 27. The described simultaneous 

anti-adipogenic and osteogenic activity of Naringin, suggest a tremendous potential of this 

natural compound for stem cell-based therapies. 

 

Figure 2. Naringin increases the expression of osteogenic markers, leading to an enhanced mineralization. 

(A) OC immunostaining of rat BM-MSCs after induction with different Naringin doses for 6 days, A1 – control, 

A2 – 1 µg/mL, A3 – 10 µg/mL. (B) RT-PCR gene expression analysis of osteogenic markers after a 14-day 

treatment of rat BM-MSCs with different Naringin doses. Data represented in mean ± s.d. (n=5). ap < 0.05 

versus control group; bp < 0.05 versus the OIM group; cp < 0.01 versus the 1 µg/mL group; dp < 0.01 versus 
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the 10 µg/mL. (C) Alizarin Red S staining of calcium deposits formed in rat BM-MSCs after incubation with 

various doses of Naringin (1, 10 and 50 µg/mL) for 21 days. (D) RT-PCR gene expression analysis of 

osteogenic markers after a 7-day treatment of hBM-MSCs with different Naringin doses. Data represented in 

mean ± s.d. (n=6). *p < 0.05 and **p < 0.01 compared with the control group (n=6). (E) ALP staining of hBM-

MSCs 7 days after drug administration. Adapted from references 24,25,28. 

In the context of stem cell based bone therapies the osteogenic effect of Naringin was also 

assessed in hBM-MSCs. Peng-Zhang and his team observed a dose-dependent proliferative 

and osteogenic activity of Naringin in hBM-MSCs up to 100 µg/mL.28 The effect of the 

highest doses (10 and 100 µg/mL) on ALP activity was significant after only a 24 h 

incubation period and increased over 7 days. In addition, all Naringin-treated groups 

exhibited a remarkable improvement in the expression of osteogenic markers ALP, OC, Col 

I and OPN (Figure 2D). Moreover, Von Kossa staining of calcium nodes and ALP staining 

following Naringin treatment further supported the dose-dependent effect of this flavonoid 

(Figure 2E). 

Numerous studies have investigated the role of different signaling pathways in 

determining the osteogenic activity of Naringin in other cell types, such studies are important 

since different cell types can respond differently to the flavonoid 25,28,29. Liu and co-workers 

found that Naringin-induced osteogenic activity in human amniotic fluid-derived stem cells 

(hAFSCs) was related to stimulation of the BMP and Wnt/β-catenin signaling pathways30. 

These pathways play a crucial role in osteogenesis regulation, adipogenesis repression and 

prevention of osteoblastic apoptosis 31. Similar to previous studies, the authors demonstrated 

a dose-dependent increase in proliferative and osteogenic activities of this flavonoid (1 to 

100 µg/mL), but not at the highest dose (200 µg/mL). Accordingly, calcium content after 28 

days of Naringin treatment was markedly increased at 100 µg/mL. Reverse transcription 

polymerase chain reaction (RT-PCR) gene expression analysis of Naringin-treated cells 

revealed significant upregulation of osteogenic marker genes (OPN and Col I) and a 

remarkable increase in OPG expression, once again suggesting a dual-effect of Naringin in 

both promoting osteogenic proliferation/differentiation while inhibiting osteoclastogenesis. 

Interestingly, the expression levels of BMP-related regulators (RUNX2 and BMP-4), as well 

as Wnt-related genes (β-catenin and cyclin D1) were upregulated in Naringin-treated cells, 

and the ALP activities were significantly reduced in the presence of inhibitors for these 

pathways (accordingly, noggin for BMP and DKK-1 for Wnt-signaling).  
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Also, Pang and colleagues confirmed the significant osteogenic role of Naringin in UMR 

106 osteoblast-like cells via estrogen receptor (ER)-dependent pathways 32. Importantly, this 

study demonstrated that Naringin exerts tissue-selective oestrogenic effects on bone and 

possibly in adipose tissue, but not in the uterus. It was proposed that this selective behavior 

is determined by differential phosphorylation of ERα and ERE-dependent transcriptional 

activity. In addition, the authors observed that Naringin (10 nM) markedly enhanced OPG 

mRNA expression, and that this effect was reversed in the presence of an ER-antagonist (ICI 

182780). OPG secretion is linked to inhibition of osteoclastogenesis, which suggests a 

potential anti-resorptive capacity of Naringin. 

In fact, besides its known pro-osteogenic effect, Naringin is has demonstrated to be 

capable of inhibiting bone resorption in vitro via osteoclasts 29,33. In this case, the anti-

inflammatory effect of Naringin appears to play a role in its anti-resorptive activities. Such 

is supported by OPG and nuclear factor kappa B (NF-κB) pathway involvement in 

osteoclastogenesis 5. 

In this context, Ang and co-workers observed that Naringin inhibits osteoclastogenesis 

and bone resorption by suppressing RANKL-induced NF-κB activation and phosphorylation 

of extracellular receptor kinase (ERK) 29. Notably, the flavonoid was able to reduce the bone 

resorption area whilst maintaining the cell number of osteoclast-like cells (Figure 3A, B). It 

is also worth noting that murine macrophage RAW 264.7 cells, which were used to generate 

osteoclast-like cells, showed a remarkable tolerance against Naringin dosages, with only 

10% apoptosis after a 24 h treatment with 1 mM of Naringin (approximately 580 µg/mL). 

Nevertheless, another study achieved significant bone resorption inhibition at much lower 

dosages of the flavonoid 33. In this study, Xu and colleagues investigated the Naringin effect 

in repressing osteoclastogenesis of a rat calvarial bone culture, after incubation with different 

Naringin doses (1, 10 and 100 mg/L). The tartrate-resistant alkaline phosphatase (TRAP) 

staining of osteoclasts after treatment with different Naringin doses for 10 days revealed a 

dose-dependent inhibition of osteoclastogenesis (Figure 3C). Moreover, Naringin markedly 

suppressed osteoclastogenesis in a time-dependent manner, from 1 to 10 days of in vitro 2D 

culture (Figure 3D). After incubation with different Naringin concentrations, the authors 

observed a 74 % (100 mg/L), 52 % (10 mg/L) and 41 % (1 mg/L) reduction in the number 

of TRAP-stained osteoclasts. 
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Figure 3. Naringin effectively inhibits bone resorption in vitro. (A) Representative scanning electron 

microscopy (SEM) micrographs of bone resorption pits induced by osteoclast-like cells in bovine bone slices 

after incubation with different Naringin doses (0, 0.5 and 1 mM) for 24 h. (B) Total resorption pit areas of each 

treatment group as measured under SEM. (C) Microscopic view of TRAP-stained osteoclasts in rat calvarial 

bone cultures treated with different doses of Naringin for 10 days. (D) Number of TRAP-stained osteoclast 

cells treated with different doses of Naringin for 1, 3,7 and 10 days. *p < 0.05, **p < 0.01, ***p < 0.001. All 

data above is represented in mean ± s.d. (n=3). Adapted from references 29,33. 

The above findings demonstrate that Naringin is capable of significantly repressing 

osteoclastogenesis and reduce bone resorption areas. This is an important finding for 

applications in bone degenerative disorders, such as post-menopausal OP, characterized with 

osteolytic degradation due to markedly increased bone turnover. Taken together, the pre-

clinical in vitro studies highlight a tremendous potential for Naringin applications as a bone 

therapeutic and for committing stem cells into the osteoblastic lineage. 

2.2 Pre-clinical in vivo Studies 

The former examples provide an important body of knowledge regarding the potential of 

Naringin for treating different bone disorders. Adding to this, various in vivo studies that 

will be discussed in the following paragraphs provide further evidence of Naringin realistic 

potential to be used as therapeutic alternative in a foreseeable future. 

In laboratory animal models (such as rat and mouse), Naringin has improved overall bone 

health in both healthy and gonadectomized animal models in vivo. In healthy mice, Naringin 

daily oral administration significantly enhanced femoral bone mass by increasing both 

trabecular and cortical bone 34. In another study in healthy mice, Yin and co-workers 

achieved the first validation of successful stem cell-based therapy involving Naringin for 

improving bone formation in vivo. Initially, human periodontal dental ligament stem cells 



 

 

 

INTRODUCTION 

31 

 

 

 

(hPDLSCs) were seeded in a nanohydroxyapatite scaffold and cultured in Naringin-

containing (1 µM) medium for 1 week, before implantation into healthy mice. The transplant 

was harvested 8 weeks later and Naringin-treated group exhibited improved trabecular bone 

maturity surrounding the scaffold, as well as locally increased OPN and OC expression by 

50 % 35. 

Currently, most in vivo studies involving Naringin have been performed in OVX mice. 

Pang and colleagues demonstrated that treatment of OVX mice with Naringin (200 mg/kg 

and 400 mg/kg per day) for 6 weeks significantly improved bone quality at the distal femur, 

proximal tibia and lumbar spine 32. In addition, Naringin suppressed the OVX-induced 

increase in urinary calcium excretion as well as losses in bone mass and strength. However, 

Naringin treatment failed to significantly decrease urinary deoxypyridoline level in OVX 

mice, a collagen degradation product that reflects bone resorption rate. In another study, 

OVX mice were daily treated with various Naringin doses (60, 300 and 1500 mg/kg) via oral 

gavage, leading to effective recovery of OVX-induced bone loss 24. The authors found that 

Naringin at 300 mg/kg provided an optimal increase in bone mass density (BMD), bone 

volume as well as trabecular thickness, while decreasing trabecular space. Furthermore, 

Naringin treatment did not change the uterus weight significantly, suggesting that Naringin 

did not elicit off-target estrogenic effects. Interestingly, a study by Sun and colleagues 

investigated the effect of a combination regimen of oral Naringin (300 mg/kg) with treadmill 

exercise in OVX rats for 60 days 36. Authors found that Naringin + exercise regime led to 

stronger effects on OP than either monotherapy on bone mass preservation and improved 

bone strength (Figure 4A). In a different report, Wang and colleagues observed an improved 

bone strength in OVX mice even at lower doses (5 mg/kg) of Naringin (Figure 4B1) 
37. This 

dose markedly improved ALP, RUNX2 and Col I expression in vivo (Figure 4B2). In 

particular, the authors observed that co-administration of AMPK and Akt inhibitors partly 

reversed Naringin effects in vivo, suggesting that the osteogenic activity of this flavonoid is 

in part via its stimulation Wnt/β-catenin signaling upon interaction with AMPK and Akt. 

Moreover, OVX mice achieved equally increased cell proliferation when treated with 

Naringin or conventional PTH, but Naringin-treated mice were characterized with the 

highest enhancement in ALP activity (Figure 4B3). Adding to this evident potential, a recent 

study found that Naringin (100 and 200 mg/kg) significantly inhibited the OVX-induced 

reduction in bone marrow microvessels, regulating the function of endothelial cells while 
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promoting angiogenesis in bone (Figure 4C) 38. In parallel, Naringin has recently been shown 

to promote the vascularization of the callus in osteoporotic fractures in OVX rats, by 

significantly improving the expression of VEGF and VEGF receptor-2 39. In turn, this lead 

to an increase in vessel numbers and larger neovascularization areas, therefore resulting in 

accelerated bone healing at 2, 4 and 8 weeks post-fracture, in a dose dependent manner (40, 

100 and 300 mg/kg). The development of bone vasculature is particularly relevant for both 

the treatment of OP but also in the context of tissue engineering and regenerative medicine. 

In particular, angiogenesis is fundamental for engineering a clinically relevant-sized tissue, 

which requires a vascular network for properly supplying cells beyond the diffusional limit 

for oxygen and nutrients 40. 

 

Figure 4. Pro-osteogenic and pro-angiogenic protective activities of Naringin in vivo. (A) 3D 

reconstruction of trabecular microarchitecture within the distal femoral metaphyseal region in Sham, OVX, 

Naringin (NG) or exercise (EX) monotherapy or combination regimen groups. (B1) Optimal Naringin-induced 

osteogenic gene (ALP, RUNX2, Col I) expression at 5 mg/kg (n=5). *p < 0.05; **p < 0.01; ***p <0.001 

compared to control group. (B2, B3) Naringin-induced (5 mg/kg) increase in ALP activity and osteoblastic cell 

proliferation. Data represented in mean ± SEM (n=5 and n=3, respectively). #p < 0.05; ##p < 0.01 compared 
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with the OVX group. (C) Naringin markedly inhibited (100 mg/kg) the OVX-induced reduction in bone 

marrow microvessels (black arrows). Adapted from references 36–38. 

These findings regarding the pro-angiogenic activity of Naringin are supported by the 

previous in vitro study demonstrating Naringin-induced osteogenic differentiation of BM-

MSCs via activation of the Notch signaling pathway 25. Endothelial Notch activity plays a 

key role in simultaneously promoting bone angiogenesis and osteogenesis and therefore, 

could be one of the main mechanisms behind the osteoprotective effect of Naringin 41. 

Alternatively, other studied animal models support the above findings regarding the 

clinical potential of Naringin in improving bone health status. Wei and co-workers 

demonstrated the anti-osteoporotic activity of Naringin in a retinoic acid-induced OP rat 

model 42. Naringin treatment with different doses (20, 40, 100 mg/kg) led to improvement 

in bone weight index, length and diameter of the femur bone, as well as bone ash content 

and levels of calcium and phosphorus. In orchidectomized rats, treatment with Naringin at 

200 ppm for 2 months significantly increased serum IGF-I, femoral bone density and 

calcium content, as well as suppressed plasma TRAP activity, associated with bone 

resorption 43. Alternatively, subcutaneous administered Naringin (10 mg/kg) is also 

described to promote bone formation in a titanium particle-induced diabetic murine calvarial 

osteolytic model 44. Naringin embedded in a collagen bone graft also promoted bone 

formation in a rabbit bone defect model 45. 

Naringin exhibited the most therapeutic potential in disuse-induced OP animal models, 

caused by mechanical unloading and characteristic in bedridden or low-mobility patients, as 

well as astronauts 46. A study by Ma and co-workers investigated Naringin-treatment in 

denervated bone induced by sciatic neurectomy 47. Disuse-induced bone loss in rats was 

induced by sciatic-neurectomy, resulting in reduced BMD and trabecular microarchitecture 

in the distal femur, as well as increased urinary deoxypyridoline levels. The authors 

confirmed the dose-dependent (30, 100, 300 mg/kg) recovery induced by Naringin treatment 

in restoring trabecular microarchitecture as well as bone formation rates to Sham-levels 

(Figure 5A). Moreover, the highest Naringin dose had a profound effect in improving 

osteogenesis and inhibiting osteoclastogenesis in vivo, as indicated by OC and TRAP 

immunohistochemistry analysis in the distal femoral metaphysis (Figure 5B), as well as 

reducing urinary deoxypyridoline. Naringin-treatment also successfully prevented 

biomechanical deterioration of ipsilateral femur in immobilized rats (Figure 5B). This 
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protective effect is thought to be modulated via Naringin-induced increase in Semaphorin 

3A expression in vivo, a local factor of the bone microenvironment that simultaneously 

promotes bone formation while reducing bone resorption 47. These studies suggest that 

Naringin could be a promising therapeutic alternative in treating disuse OP. 

 

Figure 5. Naringin therapeutic activity in disuse OP induced by unilateral sciatic neurectomy (USN) in 

rats. (A) Representative 3D images showing the trabecular microarchitecture in the distal femoral metaphysis 

of each group. (B) Immunohistochemical staining of OC and osteoclasts (via TRAP) in the distal femoral 

metaphysis, as well as histomorphometric analysis of Naringin-prevented deterioration of the ipsilateral femurs 

due to immobilization. Adapted from reference 47. 
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Overall, the above pre-clinical studies evidence that Naringin has a significant 

multifactorial osteostimulative effect on bone fractures healing and overall bone health. It is 

worth noting that bone remodeling is a product of concomitant interaction between bone 

formation and resorption, meaning that disruption of this balance leads to bone dysfunction 

47. In this context, clinically available therapeutics such as antiresorptive BPs and anabolic 

PTH can simultaneously inhibit bone formation and promote bone resorption, which might 

explain why combination therapy approaches between clinical therapeutics or with 

mechanical-loading have been investigated with the aim of improving bone quality 48,49. 

Furthermore, long-term disuse OP has been described as less sensitive to BP treatment than 

other OP 50. Alternatively, bone formation is significantly reduced with ageing, mostly 

attributed to a shift from osteogenesis to predominant adipogenesis in the marrow stroma, 

leading to senile OP 51.  

Taken together, the simultaneous antiresorptive, osteostimulative and antiadipogenic role 

of Naringin ultimately play a role in improving bone health and establish this flavonoid as a 

valuable candidate for pursuing alternative clinical treatment options for some of the most 

common bone disorders or injuries due to fractures. 

3. Current Obstacles in Naringin Clinical Translation 

Despite its promise for therapeutic action in several pathologies, in particular for 

preventing degenerative diseases and improving bone health status, Naringin is yet to be 

approved for clinical administration, either as a single therapy or combination with other 

bioactives. This fact is mainly correlated with flavonoids extensive in vivo metabolism, a 

critical factor that limits their therapeutic efficacy 52. In addition, Naringin exhibits low 

bioavailability (8.8 %) following oral administration due to its poor water solubility and 

dissolution rates 53,54. In fact, the poor water solubility of Naringin is considered the rate-

limiting step for its absorption in the body, thus leading to inferior therapeutic efficacy 54. 

Moreover, this drug is extensively degraded in acidic pH and enzymatically cleaved by β-

glucosidases in the gut, inherent to intestinal microflora 55.  

The effects of Naringin have been mainly explored via oral absorption, however its 

absorption in the gastrointestinal tract is slow and irregular 56. Moreover, the intestinal 

microbiota plays a crucial role in defining the bioavailability of flavonoids such as Naringin. 

It is important to emphasize that this microbiome is characterized by substantial inter-

individual heterogeneity, hence, ultimately the microbiome defines the clinical efficacy of 
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dietary flavonoids 52. On account of these limitations, recently there have been some in vitro 

attempts for improving flavonoids bioavailability and absorption, by increasing its solubility 

and dissolution rates, as well as protection from intestinal degradation upon encapsulation 

in nanoparticles, microparticles or water-soluble fibers 54,56–58. It has been suggested that 

minimal absorption rates of such drugs can severely restrict their clinical applications 13. 

Adding to this, Naringin can also be degraded during blood circulation if administered 

via intravenous (IV) route. Indeed, flavonoids such as Naringin are unstable during 

circulation and easily undergo oxidation both in serum, and in the liver, where they are 

generally degraded by hepatic β-glucosidases 55. It is also reported that Naringin 

spontaneously interacts with bovine serum albumin under physiological conditions, an 

aspect that can play a major role in defining its pharmacokinetic profile, facilitating excretion 

and hence influencing its bioavailability 59. Such parameter is also influenced by the 

decreased solubility of flavanones under physiological conditions (pH = 7.4), due to 

degradation into chalcone structures 54. So far, no attempts have been made towards 

formulating intravenously administrable nanocarriers for the controlled delivery of Naringin. 

As recognized from previously highlighted studies with other natural compounds (e.g. 

Quercetin), controlled delivery via nanocarriers can significantly alter their in vivo 

therapeutic effect 13. There have been some recent developments concerning the formulation 

of Naringin within suitable carriers for oral absorption, but research is still at an early stage 

and studies are yet to validate this approach in vivo. Concerning the parenteral route of 

administration, literature is still scarce and there is a great untapped potential to be exploited 

on this approach. 

Nanotechnology-based drug delivery systems allow for the improvement of solubility, 

bioavailability and pharmacokinetics of entrapped pharmaceutics, protecting them from 

degradation and unspecific interactions while prolonging their circulation times 60. 

Furthermore, these nanocarriers can provide a sustained release profile and can be modified 

with specific targeting moieties for improving accumulation at the desired locations 61. 

Hence, the bioavailability of Naringin could be vastly improved by inclusion in a 

nanocarrier, ultimately leading to locally increased concentrations in the bone 

microenvironment.  

Recognizing the potential of nanotechnology for flavonoid delivery, the following 

chapters will address the development of nanocarriers for drug delivery to bone tissues. A 
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critical discussion regarding the barriers encountered by these nanomedicines upon systemic 

administration and the precision chemistry-based modifications that can be imprinted in their 

structure to endow them with stimuli-responsive cargo release are also provided. 

4. Biomaterial-based Platforms for Naringin Incorporation 

As aforementioned, Naringin has low bioavailability and undergoes extensive 

metabolism in vivo. Such has motivated researchers to explore biomaterial-based platforms 

for immobilizing or protecting Naringin from degradation, and for achieving a sustained 

spatiotemporally controlled release with the aim of improving its therapeutic effect. The 

most relevant examples of such platforms are summarized in Figure 6. 

 

Figure 6. Overview of current strategies for Naringin incorporation into specialized biomaterial-based 

platforms. Representative images of literature reports are presented, except for the electrodeposition coating 

approach which was adapted from the respective reference 62. TIPS – Thermal-induced phase separation. MOF 

– Metal-organic framework. 

Regarding the production of Naringin-biomaterial hybrids Ji and co-workers incorporated 

the flavanone within an electrospun nanoscaffold comprised of polycaprolactone (PCL) and 

poly(ethylene glycol)-b-polycaprolactone (PEG-b-PCL) nanofibers (~ 242 nm) to serve as a 

bone regenerating implant 63. PCL/PEG-b-PCL/Naringin nanoscaffolds elicited an increased 

MC3T3-E1 proliferation, as well as enhanced osteogenic differentiation (evaluated via ALP 

activity) after 14 days of culture in medium with no osteogenic supplements. Moreover, for 

cells cultured in these nanoscaffolds, Alizarin Red S staining showed improved calcium 

mineralization nodules after only 10 days. In addition, the authors studied the effect of the 

Naringin nanoscaffold in suppressing osteoclastogenesis in a critical size defect model of 
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mouse calvarial bone. After 14 days of implantation, the defects treated with PCL/PEG-b-

PCL/Naringin nanoscaffolds showed a significant decrease in TRAP staining when 

compared to treatment with blank PCL nanoscaffolds (Figure 7A). These results corroborate 

Naringin-induced osteoclastogenesis suppression and suggest potential applications of this 

drug-loaded nanofiber scaffold in bone tissue engineering. Regarding this application, Chen 

and co-workers developed a porous biodegradable composite comprised by Genipin 

crosslinked Gelatin, and β-Ca3(PO4)2 ceramic microparticles (GGT) mixed with Naringin 

(10 mg/mL). These composites were formulated with the aim to enhance bone repair in vivo 

in a rabbit calvarial defect model 64. The obtained radiographic analysis (Figure 7B1) and 

histological H&E staining (Figure 7B2) revealed that, 8 weeks post-implantation, Naringin-

loaded GGT composites promoted a significant deposition of new bone formation when 

compared to GGT controls. Moreover, complete osseointegration of the biodegradable 

implant could be readily observed, with newly formed bone replacing a significant amount 

of the Naringin-loaded GGT composites (Figure 7B). 

Recently, Guo and colleagues developed a porous poly(L-lactide) (PLLA) scaffold 

incorporating anti-inflammatory drug Parthenolide and spray-dried Naringin-loaded 

chitosan microspheres in the matrix 65. The regenerative performance of this dual drug 

delivery scaffold was studied in a rat model of periodontal fenestration defects. Analysis of 

µ-CT data revealed that 8 weeks post-implantation, the dual delivery scaffold significantly 

enhanced bone volume and decreased inflammatory response in the defect, when compared 

to the PLLA group (Figure 7C). Histological H&E analysis corroborated the superior 

performance of the dual delivery scaffold in improving periodontal tissue regeneration. Also, 

IL-6 immunostaining showed that the dual delivery scaffold achieved the least positive 

staining areas for the cytokine, highlighting its anti-inflammatory activity. The authors 

therefore suggest a possible application as an adjuvant for the treatment of periodontitis. 

However, it should be noted that MC3T3-E1 cell proliferation assays showed that both the 

dual delivery scaffold and the Parthenolide-loaded group significantly decreased cells 

proliferation in comparison with the Naringin-loaded group. These results suggest that this 

flavanone can partially rescue the observed cytotoxic effect of anti-inflammatory drug 

Parthenolide. 
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Figure 7. Application of Naringin-biomaterial hybrids. (A) TRAP staining of mouse calvarial bone sections 

highlighting the anti-osteoclastogenic activity of Naringin nanoscaffold after 14 days. (B) Radiographic (B1) 

and H&E staining (B2) images showing significant new bone formation surrounding the Naringin-loaded 

porous gelatin composite 8 weeks post-implantation in calvarial bone defects. (C) µCT 3D reconstruction 

images of periodontal bone repair 4 weeks (C1, C3) and 8 weeks (C2, C4) after PLLA scaffold (C1, C2) and 

dual delivery scaffold (C3, C4) implantation. (D) Biological performance of Naringin-loaded pH-responsive 

hydrogel in treating an acute periodontitis mice model. (D1) Change in periodontal bone level (CBL) across 

control (CT), untreated periodontitis (PR), periodontitis treated with blank hydrogel (PH) and periodontitis 

treated with Naringin hydrogel (PN) 7 days after periodontitis induction (n=10). (D2, D3) Degradation of the 

extracellular matrix following inflammatory cell infiltration was evident in PR and PH groups (D2) but was 

significantly halted in the PN group (D3). Adapted from references 63–66. 

In parallel, Chang and colleagues have recently developed a Naringin-loaded (0.85 %) 

pH-responsive hydrogel for periodontitis treatment, taking advantage of the characteristic 

pH reduction hallmark in inflammation sites 66. In this study, the authors formulated a 

hydrogel comprised by carboxymethyl-hexanoyl chitosan, β-glycerophosphate and glycerol 

via a thermally induced sol-to-gel transition. Notably, the hydrogel underwent instant sol-
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to-gel transition at 37 ºC. Interestingly, a 2-fold higher amount Naringin was released in 

acidic conditions (pH = 5.5) when compared to physiological conditions (pH = 7.4), 

accordingly 51 % versus 24 % of total Naringin released in the first 4 h. Here, a silk-induced 

acute periodontitis mice model was used to evaluate the hydrogel biological performance. 

The Naringin-loaded hydrogel markedly attenuated local inflammation and periodontal 

breakdown after 7 days (Figure 7D). Gene expression analysis also showed a remarkable 

downregulation of Toll-like receptor 2, TNF-α and RAGE expression, but not myd88, which 

is why the authors suggested that this therapeutic activity might be achieved via a LPS-

mediated myd88-independent mechanism. Overall, these studies suggest promising future 

applications for Naringin delivered through biomaterials. 

5. Conclusions 

The search for safer and more suitable osteoinductive agents has lead researchers to 

explore the potential of natural-based compounds such as Naringin. As highlighted by the 

numerous pre-clinical studies investigating this flavanone’s therapeutic activities, there is 

unquestionable potential in Naringin application for bone diseases or for instructing stem 

cells osteogenic differentiation. Indeed, Naringin has shown promise for applications in 

skeletal disorders for which current pharmaceutic strategies are lacking, while also providing 

a relatively safe option for osteoinduction, particularly when compared to other commonly 

used osteoinductive drugs. Studies investigating Naringin controlled release formulations 

are rapidly emerging. The studies involving the loading and controlled release of this 

flavanone could pave the way for future biomedical applications. Such could potentially lead 

to the establishment of nature-derived products as valuable sources for new pharmaceutics 

that find application in cell-based therapies for tissue engineering and regenerative medicine. 
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1.6 Classes of Nanocarriers for Bone Drug Delivery 

The bone microenvironment is comprised of a myriad of functional cells, as well as of 

respective precursors, and is surrounded by an extracellular matrix with equal diversity. Each 

of these distinct components represent unique opportunities for targeting of nanocarriers to 

skeletal tissue. Lately, there has been tremendous progress in this area, with development of 

new bone-specific peptides, aptamers or BP-derived moieties that greatly enhance the active 

targeting to bone. Among bone-targeting molecules explored to date, BPs, aptamers and 

peptides (e.g. aspartate-based oligopeptides), have been extensively employed to modify the 

surface of bone-targeted nanocarriers 1–3. Interestingly, some of these peptides even possess 

inherent osteogenic properties, while others are capable of minimizing aggregation in 

biological media 2,4. Readers interested in bone-seeking strategies are pointed to these 

excellent reviews discussing the topic at hand 3,5,6. 

Incorporating small bioactive molecules capable of promoting bone regeneration, 

inhibiting bone resorption or treatment of bone tumors within nanocarriers modified with 

bone-seeking properties, represent attractive possibilities for improving the 

pharmacokinetic/pharmacodynamic profiles of currently available drugs. In addition, 

emerging siRNA therapeutics have recently showed potential for bone regeneration and 

could greatly benefit from enhanced intracellular delivery via nanocarriers 7–9. 

This next section addresses the advances in nanocarriers formulation for bone drug 

delivery, including those with active targeting moieties for this tissue. Amongst several 

nanocarrier classes (Figure 7), one of the most frequently explored for bone are polymeric 

micelles (PMs), and as such, will be the focus of the following section. 

 

Figure 7. Schematic representation of some of the most frequently employed classes of nanocarriers for 

systemic delivery. Some nanocarrier vectors were adapted from references 10,11. 
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Polymeric Micelles as Versatile Nanocarriers for Therapeutic Delivery 

Polymeric micelles (PMs) are promising nanocarriers widely explored in several 

therapeutic areas, with some formulations currently entering clinical trials 12. Typically 

ranging from 10 to 100 nm, PMs are generally comprised of amphiphilic blocks that self-

assemble into core-shell type nanostructures in aqueous media at concentrations above their 

critical micellar concentration (CMC) (Figure 8) 13. Their amphiphilic nature results in a 

unique core-shell type structure where the inner hydrophobic core allows high drug loading 

of hydrophobic pharmaceuticals and the outer hydrophilic shell imprints a water-soluble 

character to these nanocarriers. In addition, the ability to circulate in blood for long periods 

can be assigned to PMs by using hydrophilic polymers such as PEG or poly(2-ethyl-2-

oxazoline) (PEOz) in their shell 14. Such polymers can provide steric hindrance and 

effectively shield PMs by preventing opsonization and limiting non-specific plasma proteins 

adsorption (i.e., limiting the formation of a protein corona) 15. These properties make PMs 

valuable candidates for IV administration.  

 

Figure 8. PMs formation via self-assembly in aqueous solutions. Adapted from reference 16. 

Micelles main advantages for drug delivery stem from their tunable physicochemical 

properties namely: (i) particle size, (ii) surface charge, (iii) biocompatibility and (iv) 

chemical functionalization via inclusion of targeting moieties on the micellar hydrophilic 

shell 17. These properties significantly influence PMs in vivo fate and consequently the 

overall therapeutic effect 18. Small sized and long-circulating nanocarriers such as micelles, 

are important for increasing drug bioavailability in different tissues, such as bone, to which 

pharmaceuticals have generally low affinity.  

To increase bone targeting specificity currently developed PMs are typically surface 

functionalized with osteotropic moieties, such as alendronate. By taking advantage of this 

approach, Mu and his team co-encapsulated Ponatinib and SAR302503 within poly(lactide) 



 

 

 

INTRODUCTION 

46 

 

 

 

(PLA)-PEG-alendronate micelles for treating therapy-resistant chronic myeloid leukaemia 

(CML) 19. Dynamic light scattering (DLS) analysis showed a particle size of 26.4 ± 6.9 nm 

and ζ-potential of -22.8 ± 2.1 mV. The in vivo bone affinity was accessed after injection in 

female BALB/c mice of either DiR or Coumarin-6 (Coum-6) labelled micelles. Interestingly, 

Coum-6 labelled micelles with 40 % alendronate coating were found in bone marrow cavities 

of the mouse femur, but not in cortical bone. Moreover, in vivo pharmacokinetic results show 

that Ponatinib concentrations in the femur after micelle injection (5 mg/kg) were around 2-

fold when compared to the untargeted control. Notably, half the initial dosage (2.5 mg/kg) 

achieved the same drug availability relatively to the untargeted control formulation at a 

higher dosage (5 mg/kg). Interestingly, while SAR302503 concentration rapidly decreased 

in the controls, the PLA-PEG-alendronate formulation enhanced drug accumulation in femur 

by 2- to 3-fold at 2 and 8 h, respectively, after IV injection. The in vivo therapeutic efficacy 

of PLA-PEG-alendronate was studied by an inoculated murine model of leukaemia 

(BaF3/T315I cells) and it was shown that treatment of mice with PLA-PEG-alendronate 

containing both drugs significantly prolonged survival across all groups. Therefore, this IV 

injectable bone-seeking micellar formulation may be a promising therapeutic strategy for 

treating therapy-resistant CML 19. 

Despite of relatively low CMC when compared to surfactant micelles, some classes of PMs 

with low molecular weight hydrophobic moieties still suffer from poor in vivo stability while 

trafficking in the bloodstream, mainly due to dilution after administration, as well as binding 

of block copolymers to plasma serum proteins 20. Concerning these limitations, hydrophobic 

core crosslinking via chemical bonds or hydrophobic interactions can improve micelle 

stability with several methods being employed with success: (i) radical polymerization, (ii) 

bifunctional agents and (iii) disulfide bridges (bioreducible bonds) 20. These delivery 

systems encapsulate bioactive molecules in the crosslinked core, improving nanocarrier in 

vivo stability but simultaneously creating a different dilemma regarding a tight control over 

the spatiotemporal cargo release. In fact, core crosslinking may potentially reduce cargo 

release below the threshold of therapeutic concentration, which is why robust stimuli-

responsive micelles could improve drug delivery by allowing a triggered cargo release under 

relevant physiological conditions 21. This particular topic will be further discussed in the 

following sections. 
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1.7  Stimuli-Responsive Nanocarriers for Delivery of Bone 

Therapeutics – Barriers and Progresses 
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This subchapter is based on the review article entitled 

“Stimuli-Responsive Nanocarriers for Delivery of Bone Therapeutics – Barriers and Progresses” 

currently under revision in Journal of Controlled Release 
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Abstract 

The development of stimuli-responsive nanomedicines with tunable cargo release is 

gathering an increased applicability in bone regeneration and precision biomedicine. Yet, 

the formulation of nanocarriers that explore skeletal-specific stimuli remains remarkably 

challenging to materialize due to several endogenous and disease-specific barriers that must 

be considered during particle design stages. Such anatomo-physiological constrains 

ultimately hinder nanocarriers bioavailability in target bone tissues and impact the overall 

therapeutic outcome. This review aims to showcase and critically discuss the hurdles 

encountered upon responsive nanocarriers delivery in the context of skeletal diseases or 

tissue regeneration scenarios. Such focus is complemented with an in-depth and up-to-date 

analysis of advances in the development of stimuli-responsive, bone-focused delivery 

systems. In a holistic perspective, a deeper knowledge of human osteology combined with 

advances in materials functionalization via simple precision-chemistry is envisioned to incite 

the manufacture of stimuli-triggered nanomedicines with more realistic potential for clinical 

translation. 

Keywords: Bone biological barriers, controlled release, drug delivery, nanocarriers, 

stimuli-responsive 
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1. Introduction 

The continuous improvement in human life-expectancy in the past decades has 

contributed for an increased incidence of numerous skeletal diseases and age-related bone 

abnormalities such as osteoporosis, osteoarthritis, osteomyelitis or bone cancer 1. Regardless 

of several decades of scientific and medical progress, still no definitive treatment options 

exist for any of these pathologies 2. 

Currently available treatment options for such disorders rely mostly on pharmacological-

based therapeutics that are administered under various regimes according to each individuals 

disease progression status 3. Despite their recognizable therapeutic benefits, these 

approaches are still undermined by deleterious side effects that affect patients general health 

and daily quality of life. This issue is clearly evident for various therapies that are currently 

employed in the clinics 4. For example, the administration of FDA-approved recombinant 

parathyroid hormone (PTH) is limited to severe cases of osteoporosis and for a maximum 

period of 2 years, owing to the increased risk of developing osteosarcoma as a side effect 5. 

Likewise, the oral administration of antiresorptive bisphosphonates has been reported to 

induce gastric ulcer and osteonecrosis of the jaw 6,7. In the case of bone diseases that require 

immediate treatment such as osteosarcoma, the access of systemically administered 

pharmaceutics to the tumor is also physically hindered due to the existence of a denser 

osteoid. Such limitation adds on to the common side-effects underlying chemotherapeutics 

systemic administration 8. 

The challenge of administering bioactive molecules to diseased bone tissues lies in 

attaining an optimal compromise between: (i) pharmacokinetic/pharmacodynamic (PK/PD) 

parameters, (ii) the administered dose, (iii) the existence of off-target side-effects (e.g. 

nephrotoxicity, cardiotoxicity, etc), (iv) the overall treatment efficacy and, more importantly, 

(v) the short or long-term therapeutic outcome. 

To overcome such issues, the development of advanced nanosized carriers formulated for 

delivery of bone therapeutics via different administration routes has been extensively 

explored in the past decade 9–12. Such nanocarriers have so far been engineered to modify 

drugs pharmacokinetics to improve their local concentration, whilst reducing unspecific 

tissue partitioning. Ensuing nanoformulated bone therapeutics bioavailability following 

minimally IV administration is a crucial parameter to address during pre-clinical design 

stages, especially considering that some bone sections are poorly perfused and that its highly 
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hierarchic structure naturally restricts particles access 13. Numerous in vitro and in vivo 

studies highlight the potential of nanocarriers for delivery of bioactive molecules to treat 

different bone disorders, but so far, very few have managed to actually reach clinical trials. 

One example is the Phase II trial (NCT03140657 – currently at recruitment stage), which 

aims to evaluate the use of nanoformulated curcumin for the treatment of patients diagnosed 

with Ankylosing spondylitis. Other interesting clinical trial focusing on bone regeneration 

was recently completed in China Medical Hospital (NCT01323894). This study involved the 

use of stem cells transfected with hydroxyapatite-based nanoparticles as a strategy to 

improve human mesenchymal/stromal stem cells (hMSCs) osteoblastogenesis. It is 

important to highlight that both trials employ pristine nanoparticles with no specific 

selectivity for bone tissue or bone tissue progenitor cells. In fact, as the knowledge on the 

complexity of bone disease/remodeling dynamics deepens, there is an ever-increasing notion 

that simply relying on increased drug accumulation in bone tissues and passive diffusion 

from nanocarriers may not be enough to achieve a selective and clinically significant 

therapeutic effect 14,15. 

The functionalization of nanocarriers with bone targeting moieties is particularly valuable 

for improving accumulation in bone-specific cells or in dynamic bone-disease scenarios. 

Among the different molecules explored to date, bisphosphonates, aptamers and peptides 

(e.g. aspartate-based oligopeptides), have been the most used to functionalize nanocarriers 

surface and endow them with bone-targeting properties 16–18. Interestingly, some of these 

peptides are capable of minimizing particle aggregation in biological media, while others 

possess inherent osteogenic properties 17,19. The latter could be interesting to formulate bone 

nanotherapeutics that take advantage of drug-peptide combination therapies as means to 

achieve a synergistic osteo-regenerative effect. 

Apart from the desirable increase in nanomedicines bone selectivity, the controlled 

release of therapeutics is also a major aspect that is yet to be fully controlled in vivo. 

Stimuli responsive nanocarriers have been investigated in the last years as an approach to 

circumvent the characteristic burst-type release profile of nano-formulated therapeutics or 

the residual release during parenteral administration. To achieve this control, these so-termed 

smart delivery systems, can be precisely tailored to respond to internal, external, or 

physiological triggering conditions as means to promote a fine tuning of bioactive molecules 

release 20. Specifically, stimuli-responsive nanocarriers have been engineered to respond to 
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triggers such as: (i) pH gradients, (ii) redox conditions; (iii) light; (iv) ultrasound (v) 

magnetic fields; (vi) temperature or (vii) enzymes 20. The majority of these have significant 

potential to be used in the context of bone regeneration or skeletal diseases. In fact, the 

progression of some chronic bone disorders is characterized by changes in the biological 

microenvironment, resulting in pathophysiological induced shifts (e.g. pH, enzymes, 

temperature) that can activate nanotherapeutics release.  

From this standpoint, this review aims to showcase state-of-the-art stimuli-responsive 

nanocarriers applied in bone-related therapies, as well as their unique designs and properties. 

The different biological barriers encountered during nanosized particles systemic delivery is 

also addressed in a disease-specific mode as this should be a determinant factor during pre-

clinical design and testing stages. As an overarching concept the loading of osteo-

regenerative/resorptive drugs or bone chemotherapeutics within nanocarriers, combined 

with the inclusion of sensitive stimuli-responsive linkages should enhance their efficacy 

while minimizing off-target cytotoxic effects. 

2. Biological Barriers to Nanocarrier-mediated Delivery of Bone 

Therapeutics 

Upon parenteral administration, the accumulation of pristine or targeted stimuli-

responsive delivery systems in bone is hindered by its unique anatomic structure. In essence, 

mature bone is a complex calcified tissue primarily composed of: 50-70 % mineral 

hydroxyapatite (HA), 20 - 40 % collagen matrix, 5-10 % water and 1-5 % lipidic contents 

14. Hierarchically, it consists of: (i) cortical bone, a compact shell with rapid tissue turnover 

that is comprised of well aligned Haversian systems, also termed Osteons, which run in 

parallel along the structure, and (ii) cancellous (trabecular) bone, a highly porous core that 

consists of an intertwined microarchitecture with bone marrow-filled free spaces. Both these 

structures represent 80 % and 20 % of total bone mass, respectively 21–23. The Osteon is 

particularly interesting as it harbors nerves and arterial/venous blood vessels. In this system, 

Haversian canals run longitudinally and Volkmann canals branch out radially, endowing the 

entire osteon with an intricate vascular network 24. The osteon is also comprised by 

concentric lamellae with embedded osteocytes, interconnected through canaliculi channels 

with approximately 100 - 300 nm in diameter 25,26. From a therapeutic perspective such may 
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be an important size threshold for successful delivery of nanomedicines to osteocyte cells in 

different disease scenarios.  

Since bone is a highly complex and dynamic tissue from both at an anatomical and 

physiological level, the question arises as how are nanoparticles capable of accumulating 

within the bone matrix and be internalized in deregulated bone cells. 

Recently, several reports have been detailing nanocarriers in vivo fate and focusing on 

major biological barriers or tissue accumulation issues encountered upon parenteral 

administration 27-29. However, the barriers encountered upon particles IV administration and 

during accumulation in bone tissues have been poorly described so far. Such is evident both 

in the context of non-malignant bone diseases and in bone regeneration scenarios. Having a 

fundamental knowledge about skeletal anatomo-physiological barriers is paramount to 

design more effective bone-specific nanotherapeutics. 

There are several biological barriers that may hinder nanocarriers delivery via systemic 

route to different tissues including bone. In an overview, following IV injection, 

nanotherapeutics must first travel in the bloodstream for sufficient time to promote 

accumulation in bones, either by probabilistic passive accumulation, or by active targeting 

to cell-specific moieties. The latter could be achieved by designing nanocarriers targeted to 

specific bone cell receptors such as Periostin, or neighboring extracellular matrix 

components (reviewed in detail elsewhere 4,30,31). To achieve sufficient circulation time for 

accumulation in the desired tissues, nanocarriers must also be formulated to avoid 

opsonisation and sequestration by the components of the mononuclear phagocyte system 

(MPS) including phagocytic cells of the liver (e.g. Kupffer cells), spleen (e.g. Splenocytes), 

as well as kidney excretion (< ~5 nm) (reviewed in detail in 27). 

Once in the vicinity of skeletal tissues, nanocarriers are transported by the nutrient arteries 

that penetrate the bone cortex and give rise to cortical capillaries that connect to the medullar 

vascular capillaries. These capillaries form a dense blood network inside the bone marrow. 

While vessels in cortical bone are characterized by a continuous lining of endothelial cells 

with no phago-endocytic activity, the microvascular bed in bone marrow sinusoids possesses 

phago-endocytic activity and several intercellular gaps often appearing to have an 

incomplete basement membrane 24,32. 
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Upon reaching the bone marrow vessels, nanocarriers can then transverse it by 

extravasating either via (i) intercellular gaps (paracellular pathway), or (ii) by phago-

endocytic uptake throughout the endothelium (transcellular pathway) 33 (Figure 1). 

 

Figure 1. Schematics of nanocarriers biological barriers and routes of extravasation from the sinusoidal 

vasculature into the extravascular space. Green text represents major barriers to nanocarrier delivery to bone 

cells (bone marrow ECM, macrophage-mediated phagocytosis, unknown fenestration size, bone canopy and 

its osteomacs (generally present in bone remodeling/regeneration stages)). 

In general, the mechanisms of accumulation across the marrow-blood vessel barrier have 

been poorly explored so far and further insights on their influence in nanotherapeutics 

accumulation are necessary for improving their potential.  

To better understand and explore nanoparticle accumulation in bone trough the 

paracellular pathway two main aspects must be discussed. First, the existence of different 

types of gaps throughout the endothelium of bone marrow capillaries is unclear. In a detailed 

review performed by Sarin, the bone marrow endothelium is described as non-fenestrated, 

except when hematopoietic cells are traversing through it and creating transient openings 32. 

The author suggests that the primary route of biomacromolecules transport to marrow 

interstitial space is via phago-endocytic uptake (molecules > 5 nm) and macula occludens 

inter-endothelial junctions (lipid-insoluble molecules ≤ 5 nm in diameter) 32. Other reports 

define bone marrow capillaries as being discontinuous/sinusoidal, with large sinusoidal gaps 

between endothelium cells, but with no diaphragm 34. Therefore, it seems that there is some 

ambiguity regarding the classification of this particular set of capillaries. Providing further 
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insights on these structures could aid in the design of the next-generation of 

nanotherapeutics.  

The presence of diaphragms and their role in the extravasation of nanoparticles via these 

intercellular spaces is also not yet clear. The possible presence of diaphragms in marrow 

fenestrae likely reduces flexibility/permeability and may further constrain therapeutics 

transport. In comparison with other preferential particle accumulation organs such as the 

liver, the boundaries of hepatic open fenestrae lack a considerable amount of glycocalyx 

matrix fibers rendering these fenestrae less restrictive 32. It is unknown whether this pattern 

of glycocalyx is similar in marrow fenestrae 32. Overall, the presence of the diaphragm in 

fenestrae and adjacent patterning of glycocalyx matrix fibers could play a role in delineating 

the physiologic upper limit of pore size and affect particles accumulation. The type of 

capillaries also varies between red (hematopoietic) and yellow (stromal) bone marrow. 

While vessels in red marrow are characterized by flat reticulum cells with many 

diaphragmed fenestrations and no basal membrane, in yellow bone marrow the vessels are 

closed and continuous, akin to those present in other tissues such as the muscle 35. 

Interestingly, this may help explain the biodistribution pattern that Sou and coworkers 

observed after intravenously administration of bone marrow-specific liposomes (216 ± 21 

nm) in non-human primates 36. Besides achieving 70 % of the administered dose 

accumulated in the bone marrow, these researchers observed that liposomes biodistribution 

in rhesus monkeys was similar to that of the pattern of red marrow in humans. Because red 

marrow is highly irrigated with sinusoid capillaries, one can hypothesize that this reflects 

the importance of sinusoids in nanocarriers bone marrow accumulation.  

The second aspect that must be considered in the paracellular accumulation pathway is 

the exact marrow fenestrae dimension in humans, particularly in non-malignant disease, 

since this is currently unknown to the best of our knowledge. The reported size fenestrae 

ranges in the literature are extrapolated from a multitude of studies performed only in animal 

models and should be updated with robust information from human studies. The existing 

differences in bone vascular microarchitecture between species may impact the analysis of 

the biological performance of nanocarriers and impair their successful clinical translation in 

the long run. In fact, there is a clear disparity between the organization of cortical 

vascularization in long bones among species, with rodents lacking well-developed Harvesian 

remodeling systems when compared to larger mammals 37. This type of remodeling is a 
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significant source of cortical porosity and age-related bone loss, being thus important for 

therapeutics delivery in aged individuals 37. Also, rodent marrow and cortical vasculature 

are thought to be in series, contrasting with parallel vascular networks in humans 24. In other 

species, such as rabbit and marmoset (but not humans), perisinal macrophages populate the 

marrow stroma adjacent to bone sinus endothelium, often extending cytoplasmic processes 

into the lumen and monitoring circulation 38. These perisinal macrophages are an active 

component of the marrow-blood barrier and play a key role in the uptake of triglyceride-rich 

macromolecules.  

It is important to emphasize that these vascular and cellular barriers are altered in bone-

specific diseases including bone cancer/metastasis, inflammation or during bone 

remodeling/regeneration processes. In bone regeneration scenarios, after transposing blood 

vessels and entering the marrow stroma/extravascular space nanocarriers encounter a 

complex bone extracellular matrix that hinders diffusion (Figure 1, ECM). Adding to this, 

nanotherapeutics need to subsequently overcome phagocytosis by macrophages and 

unspecific uptake by hematopoietic/mesenchymal stem cells. In bone remodeling areas and 

regeneration scenarios nanocarriers also need to overcome osteomac-based cellular canopy 

isolating bone remodeling pockets from marrow compartments and get internalized for 

example by target osteoblasts (Figure 1, canopy) via the various cellular uptake pathways 

(reviewed in detail by Hillaireau and co-workers 39). All these events depend on the 

dynamics of bone blood perfusion as it will be discussed. 

2.1. Influence of Bone Physiological Blood Flow on Nanocarriers 

Accumulation 

Skeletal perfusion is a fundamental parameter following nanocarriers parenteral 

administration and influences bone therapeutics accumulation dynamics. Interestingly, the 

values of blood flow vary significantly amongst different skeletal regions. For instance, 

trabecular bone experiences approximately 4-fold increased blood perfusion when compared 

to cortical bone 25. This vascular diversity should result in different exposures to 

nanocarriers. Several pathological conditions have been associated with impaired blood flow 

and subsequent bone loss, such as osteonecrosis, postmenopausal-osteoporosis (in both 

women and ovariectomized mice) and glucocorticoid-induced osteoporosis, which may be 

linked with increased conversion of the more vascularized red marrow to yellow marrow 
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37,40,41. The vessels in fatty bone marrow are closed and less vascularized than those of the 

red marrow 42, such can limit nanoparticle extravasation. Patients suffering from 

myelodysplastic syndromes also present an abnormal expansion of sinusoidal compartments. 

Nanotherapeutics could potentially benefit from facilitated access across the bone-marrow 

barrier in these scenarios akin to what is normally proposed by the enhanced permeability 

and retention (EPR) effect in cancer 43. However, the latter should be addressed carefully as 

this phenomenon is quite variable from patient to patient and its true impact in therapeutics 

accumulation is yet to be fully elucidated in a clinical setting 44,45. Strategies to augment the 

EPR through vascular modulators (e.g. nitric oxide, bradykinin 46) have been investigated so 

far for cancer with some promising pre-clinical in vivo data 47. To the best of our knowledge 

such has not been explored for other bone disorders that could benefit from this strategy. 

One can postulate that dynamic studies addressing this may provide important insights to 

increase the performance of disease-specific nanocarriers. 

A recent study performed by Ramasamy and co-workers is one of the few that 

investigated the fundaments of blood flow dynamics in bone by using in vivo fluorescence 

intravital imaging. The reported results indicate that blood velocity in type H capillaries is 

about 6-fold higher than that of sinusoidal type L vessels (Figure 2) 41. 
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Figure 2. Fluorescence microscopy imaging of 4-week-old tibial C57BL/6J mice vasculature. (A) 

Immunostaining of smooth muscle actin containing arteries (α-SMA positive cells, green channel), Endomucin 

(Emcn, red channel) and cell nuclei (DAPI, blue channel). mp-represents metaphyseal plate; gp- represents 

growth plate. White arrows indicate α-SMA cells connection to metaphyseal H-type vessels. (B, C) Confocal 

images proximal to the growth plate (b, top panel) or to diaphysis (c, top). CD31+ and Emcn-arteries terminate 

in type H vessels in metaphysis (CD31+ and Emcn+) and endosteum (es). No interaction with L-type vessels 

in diaphysis was observed. Blue arrows indicate blood flow from metaphyseal vessel columns (B) and 

endosteum (C), respectively. (D) Transversal tibial sections where sinusoidal L-type vessels (arrowheads) 

connect to the large central vein (v). Dashed lines represent compact bone. From these images it is clear that 

CD31+ Emnc-arteries containing multiple smooth muscle cells cross the diaphysis. (E) Schematics of arterial 

(green arrows), H-type (red arrows) and sinusoidal/venous blood flow (blue arrows) of murin long bones. (F) 

Erythrocytes velocity data demonstrating the differences between type H and type L vessels. Adapted from 41 

under Creative Commons Attribution 4.0 International License. 

Considering that osteoporosis and aging diminish bone perfusion, associated with the 

reduction of type H capillaries, these aspects must be taken into consideration during 

particles pre-clinical design and investigation of optimal dose/treatment regime. Age-

induced increase in vascular stiffness and calcification of muscle vessels has also shown to 
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contribute to an impaired vascular function in humans 48. Such is corroborated by ultrasound 

doppler data that indicates a 30 % lower femoral artery blood flow in aged human male 

patients (average of 64 years) in comparison with those of young men in their mid-twenties 

49. It is therefore clear that bone vascular complexity and the blood-marrow interface pose 

significant barriers for nanotherapeutics delivery. To overcome these barriers various 

particles physicochemical parameters should be optimized, including surface charge, shape 

and size. The latter is one of the most important aspects that needs to be considered to 

improve therapeutics pharmacokinetics and performance in the bone blood-marrow 

microenvironment. 

2.2. Nanocarriers Size-dependent Bone Accumulation  

Regarding nanocarriers size-dependent bone accumulation there are some literature 

reports that suggest optimal bone delivery for nanocarriers under 80 nm, motivated by the 

detailed work of Howlett and co-workers on avian tibia microstructures50. It is important to 

emphasize that up-to-date there is a scarcity in human and non-human primate studies 

regarding this topic 50. Considering the disparity between the physiological upper limit of 

pore size in human hepatic sinusoids (180 nm) versus rodents (280 nm), one could expect 

that bone microvasculature could also be slightly different across mammals 32. In fact, 

differences between avian and mammalian erythropoiesis could convey important 

differences in the organization of the bone sinusoids traversing the marrow. In mammals, 

erythropoiesis is extravascular, whereas in birds is intravascular and involves no marrow-

blood barrier 51
. More studies on the ultrastructure of bone microvasculature across species 

are necessary to shed light into the optimal design of nanocarriers. 

The size of rabbit bone marrow fenestrae was reported to range from 85 nm to 150 nm 52. 

This is supported by the work of Porter and colleagues, that studied the accumulation of 

poloxamer 407-coated polystyrene particles (sizes of 60, 150 and 250 nm) in rabbit femoral 

bone marrow 53. The obtained results indicate that nanoparticles with sizes of 150 nm and 

below, effectively avoided liver and spleen clearance and were predominantly located within 

bone marrow sinus endothelial cells after 24 h. Such was evident by the formation of dense 

bodies consisting of particle clusters. Importantly, in this study no evidence of transcytosis 

to the marrow extravascular space was observed 53. However, it was also not clear if the 250 

nm nanoparticles were not efficiently accumulated in bone due to size limitations of the 

nanocarrier or due to increased MPS uptake in spleen and liver, as these particles had less 
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density of stealth polymer coating when compared to smaller formulations. Bone marrow 

targeting by these poloxamer 407-coated nanoparticles is a phenomenon reportedly only in 

rabbit-based animal models 38. This observation is not related to the exclusive perisinal 

macrophage population present in rabbit marrow, because the authors claimed that these 

macrophages were unable to interact with the poloxamer particles, perhaps due to the steric 

barrier provided by the hydrophilic moieties of poloxamer-407. Not only does this 

emphasizes the key role of nanocarrier composition in marrow uptake, but reinforces the 

differences between different animal models. Conversely, non-targeted liposomal 

formulations of several sizes (136 - 318 nm) were unable to significantly accumulate in 

rabbit bone marrow in a biodistribution study following IV administration 52. Another study 

performed by Mann and colleagues exploited the unique expression of E-selectin in bone 

marrow endothelium by using nanoparticle-loaded, E-selectin functionalized, porous silica 

microcarriers administrated intravenously in mice 54. Remarkably, the targeted 

microparticles (~1.6 µm) were capable of delivering Paclitaxel-loaded nanoliposomes (25 - 

35 nm) within bone marrow endothelium, as demonstrated by fluorescence microscopy 

analysis 54. Some studies also suggest that nanocarrier dosage could play a role in bone 

marrow uptake. When administering liposomal dosages above 50 mg/kg in rabbits, the bone 

marrow appears to be the first tissue to become saturated, followed by increased uptake in 

the liver and spleen 52. These reports further highlight the importance of fully characterizing 

nanocarriers surface chemistry and targeting moieties type and density; since these 

parameters play key roles in the outcomes of biodistribution studies 55,56. Ideally, it is 

important to also evaluate nanocarriers protein ‘hard’ and ‘soft’ corona and its influence in 

in vivo particles targeting performance 34. The sole functionalization of stimuli-responsive 

nanocarriers with osteotropic bone moieties may not confer bone selectivity if the bound 

protein corona temporarily or permanently shields these linkers, as it was already observed 

for transferrin functionalized nanoparticles 57,58. 

On this topic, some emerging imaging technologies could prove useful in clarifying 

nanocarriers bone accumulation. Sun and his team developed a bone imaging toolkit 

containing several clinically relevant fluorescent probes, which could be useful for further 

investigation of bone physio-pharmacology (Figure 3A) 59. Using a different strategy, Peck 

and colleagues exploited synthavidin technology to design highly biocompatible pre-

assembled probes with affinity for high turnover living bone regions 60. Notably this probe 
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maintained high stability even after 24 h past administration (Figure 3B). The probe does 

suffer from squaraine self-quenching in aqueous solutions, but binding to bone surfaces 

inhibits this effect, an exciting observation that may be useful in the future for improving 

signal/noise ratio (Figure 3C). 

 

Figure 3. Advanced bone imaging technologies. (A) Pocket of bone marrow surrounded by fluorescently 

labelled bone matrix (red - low HA affinity probe; green - high HA affinity probe) with DAPI (blue) stained 

nuclei. Adapted from 59 with permission from the American Chemical Society. (B) Evidence of probe high 

stability on living mice skeleton. (C) Fluorescence enhancement caused by probe unfolding when binding to 

bone. Adapted from 60 with permission from the American Chemical Society. 

The advances in disease-specific imaging and cell tracking techniques in bone tissues are 

expected to contribute for a more robust pre-clinical validation of nanotherapeutics. These 

techniques will be particularly valuable to follow the release of drugs and 

biomacromolecules from stimuli-responsive nanocarriers in complex in vivo environments. 

Such follow-up remains a challenging aspect in the assessment of smart delivery systems 

biological performance. In the following section, we will present and discuss up-to-date 

reports on stimuli-sensitive nanocarriers that exploit different stimuli in an attempt to 

achieve a therapeutically relevant release of bioactive molecules. 

3. Stimuli-responsive Nanocarriers for the Delivery of Bioactive Molecules 

to Bone Tissues 

Bone is one of the most dynamic tissues being in constant adsorption/remodeling during 

lifetime. Naturally, a myriad of biomolecular cues and hotspot microenvironments render 

bone an interesting organ in which to explore stimuli-responsive delivery at both 

homeostatic or pathological scenarios. The latter is particularly interesting since during the 
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onset and progression of different bone disorders many of skeletal microenvironment 

hallmarks and cellular functions become profoundly deregulated. Each of these disease-

specific features represent unique barriers, but also unique opportunities for nanocarrier-

mediated stimuli-responsive release of therapeutics. To date several types of non-responsive 

nanocarriers have been explored for bone therapeutics delivery, reviewed in detail elsewhere 

30. Yet, the majority is unable to achieve a realistic spatiotemporally controlled release of 

their payload at the target site. This is observed for various types of cargo including small 

molecule drugs, nucleic acids or proteins (e.g. bone morphogenetic proteins).  

In general, there are several interesting biological characteristics within bone tissues and 

alterations found in different skeletal pathologies that can been exploited for stimuli-

responsive delivery of bone therapeutics (Figure 4). 

 

Figure 4. Schematics of different stimuli that can be explored to promote the release of therapeutics from 

nanocarriers engineered for different bone-specific disorders. 

In the context of bone regeneration scenarios, the existence of specific enzymes involved 

in the bone remodeling process, such as cathepsin K (CTSK), certain matrix 

metalloproteinases (e.g. MMPs -2, -9, -13, -14 and -16), vacuolar H+ ATPase (an osteoclastic 

enzyme that contains a unique 116-kD subunit which may also be exploited for specific 

targeting), are valuable triggers to be exploited. Tartrate-resistant acid phosphatase (TRAP), 

normally present within the bone milieu is also an interesting endogenous target for stimuli-

responsive delivery 1,61,62. 
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On the other hand, certain bone disorders are characterized by specific biological 

modifications in the bone vicinity that could trigger cargo release. For example, an hallmark 

of osteomyelitis is the reduction in local pH due to bacterial infection 63. On the other hand, 

in osteoarthritis there is a slight localized temperature increase (~2.0 – 3 ºC), due to joint 

inflammation 64. In osteolytic cancer there is a markedly decreased pH due to exaggerated 

osteoclastic activity that can be explored as trigger, amongst other more common 

exploitations in cancers such as redox-based stimuli within the tumor microenvironment 

65,66. In this context, the following subchapters highlight the different strategies currently 

being explored for the design of stimuli-responsive nanocarriers aimed to be used for 

different bone disorders. 

3.1 Enzyme-responsive Nanocarriers 

Enzyme-responsive nanocarriers take advantage of intrinsic enzymatic activity at the 

target tissues. Such stimuli can be explored in certain pathologies or during tissue 

remodeling/repair where enzyme activity can be upregulated, thus making it an interesting 

biological trigger to promote the release of bioactive molecules from nanocarriers at specific 

sites 20. Typically, the most commonly explored instances of enzyme-responsive delivery 

take advantage of altered expression profiles of proteases, phospholipases and oxireductases 

underlying various scenarios such as wound healing, infectious pathogens, 

neurodegeneration, diabetes or tumor invasion 67. Particularly in the bone milieu, CTSK is 

one of the most valuable enzyme-based stimulus to be explored. 

CTSK production is associated with the bone remodeling dynamics, particularly bone 

catabolism. In this process, osteoclasts (multinucleated cells responsible for resorbing bone), 

are localized within the resorption lacunae, an acidic sealed area (pH ~4), where these cells 

release CTSK and HCl to digest the collagenous organic matrix and HA crystals, 

respectively. Apart from osteoclast-mediated expression, breast cancer skeletal metastases 

are also known to overexpress this specific proteinase 68. Also, CTSK expression has been 

reported in fibrotic lung tissues 69. Hence during pre-clinical analysis of CTSK-responsive 

nanocarriers aimed for bone therapies, one should take into consideration possible unspecific 

particle accumulation in these organs and undesired drug release. Directing CTSK-

responsive particles to target skeletal tissues is therefore crucial to maximize their efficacy 

and reduce side-effects. 
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Various researchers have explored the incorporation of specific peptides as CTSK-

cleavable linkers in the design of stimuli-responsive nanocarriers for delivery to osteoclastic 

bone resorbing zones, including those occurring in osteoporosis. 

Peptide sequences that are CTSK substrates such as the GGP-Nle, GGGMGPSGPWGGK 

and HPGGPQ have been extensively employed for enzyme-responsive delivery in various 

studies 70–72. Clearly, there are immediately two ways to exploit this cleavage-dependent 

delivery: (i) incorporating sensitive moieties in polymeric nanocarrier backbone, eliciting its 

disruption upon enzyme exposure; (ii) or attaching the drug to the nanocarrier through CTSK 

sensitive linkers, prompting drug release from nanoparticles via enzyme cleavage. The latter 

approach has been used with success in a study by Pan and co-workers which showed the 

induction of bone formation in vivo in ovariectomized Sprague-Dawley rats after 

administration of prostaglandin E1 attached to a Asp8-HPMA copolymer via a CTSK-

sensitive oligopeptide sequence (GGP-Nle) 70. Also, a particularly elegant approach by 

Wang and co-workers exploited the CTSK-mediated cleavage to increase the cellular uptake 

of charge shifting nanocarriers and improve chemotherapeutics delivery to bone metastasis 

72. In this study, PEG and poly(trimethylene carbonate) diblock copolymer (PEG-b-PTMC) 

were synthesized via ring-opening polymerization of trimethylene carbonate (TMC) and 

then PEG blocks were functionalized with a chimeric peptide, prior to doxorubicin (DOX) 

anti-cancer drug loading. This multifunctional peptide consisted of three components: i) the 

exposed anionic aspartate repetitions (Asp8), responsible for bone targeting; ii) the CTSK 

substrate (HPGGPQ) sequence linking the two adjacent domains; and iii) the cationic residue 

linked to the surface of the diblock copolymer, responsible for increasing cellular uptake 

upon CSTK-cleavage (Figure 5). This hybrid biomaterial was able to self-assemble into 

micelles in aqueous solution via dialysis under mild conditions (size: 75 ± 10 nm, ζ-potential 

−18.5 ± 1.9 mV). 
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Figure 5. Mechanism of action of CTSK-triggered charge reversal micelles for targeted in vivo bone 

metastasis treatment. Kaplan–Meier survival curves of mice following tumor injection and treatment. Adapted 

from 72 with permission from Royal Society of Chemistry. 

The negatively charged micelles then experience a charge-reversal upon reaching 

osteolytic lesion sites overexpressing CTSK, due to enzymatic cleavage of the anionic block, 

which exposes the cationic moiety and triggers a charge reversal from negative to positive 

(-18.5 mV to +15.2 mV), markedly increasing in vitro cellular uptake in MCF-7 breast 

cancer cells after 30 min incubation with CTSK, when compared to absence of CTSK 

conditions (Figure 5C). Interestingly, following IV injection, these enzyme-sensitive PMs 

prolonged the survival of 4TGM1 mice bearing bone metastatic myeloma in comparison to 

free DOX and non-responsive formulations. In addition, serum IgG 2b levels were the lowest 

for the CTSK-responsive nanomicelles, which correlates with reduced tumor burden across 

all controls.  

Another enzyme-based trigger mechanism that can be explored relies on extracellular 

matrix-degrading enzymes, specifically matrix metalloproteinases (MMPs). These zinc-

dependent proteinases are actively implicated in bone remodeling and are also involved in 

bone cancer dissemination via degradation of the extracellular matrix 73. Osteoclasts are 

known to express various MMPs including MMP-14, MMP-12 and MMP-9 74, while 
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osteoblasts are reported to express MMP-13 75. Regarding MMP-9, some reports describe 

the formulation of smart nanocarriers endowed with MMP-9 sensitivity, however these are 

yet to be applied for bone-specific delivery 76,77. Since MMP-9 is highly expressed in 

regenerating bone tissues (e.g. upon fracture), the stimuli-responsive carriers could enhance 

bone regeneration when loaded with appropriate osteoinductive/pro-regenerative factors 78. 

In the context of bone malignancies, Liu and his team developed MMP-7-sensitive 

photodynamic molecular beacons that achieved tumor reduction in a vertebral model of 

osteolytic bone metastasis 79.  

Hyaluronic acid-based nanocarriers may also be explored for stimuli-responsive release 

in a disease-specific mode since hyaluronidase is present in some bone disorders. This 

enzyme is secreted by Staphylococcus aureus, a bacteria that is the responsible pathogen for 

osteomyelitis. The infectious microenvironment of osteomyelitis is characterized by a 

marked reduction in local pH, as well as the local presence of specific glycosidases, 

phosphatases, lipases and toxins, all inherent to the excessive proliferation of infecting 

bacteria 63,80. To treat this disease, Baier and co-workers developed biocompatible 

hyaluronic acid-based nanocapsules (size: 320 nm, ζ-potential: -17 mV) carrying 

polyhexanide, a known antimicrobial agent. The obtained results indicate that enzyme-

responsive formulations had significantly lower minimal inhibitory concentration against S. 

aureus and methicillin resistant S. aureus (ATCC 29213 and 43300) when compared to non-

hyaluronidase degradable nanocarriers 81. As evidenced by Baier, taking advantage of 

microorganisms hyaluronidase secretion to trigger the release of encapsulated antibiotics is 

a valuable strategy to eradicate bacterial infections not only in bone but also in other tissues.  

Despite being valuable examples, more information regarding the kinetics of enzymes 

under/over-expression in each patient and at each disease progression stage is necessary. 

Adding to this, fundamental in vitro studies regarding the efficacy of enzyme-based release 

at very low colony forming units (CFUs) should also be addressed, as the quantity of 

produced enzymes could be insufficient to prompt bioactive molecules release. Such 

research is envisioned to aid in the determination of the optimal enzyme-sensitive 

nanocarriers administration regime and the adaptation of therapy to each patient and 

bacterial strain in a more personalized mode. 
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3.2 Thermo-responsive Nanocarriers 

Thermo-responsive nanocarriers frequently comprise a thermolabile moiety such as the 

extensively explored material poly(N-isopropyl acrylamide) (PNIPAM) or temperature-

sensitive lipids such as dipalmitoyl phosphatidylcholine and lysolipids 20,33. Temperature 

sensitivity is correlated with materials ability to change their properties with temperature, 

often in a nonlinear and sharp mode. The low critical solution temperature (LCST) of 

different materials used for nanocarriers assembly is as key parameter to tailor the 

temperature-mediated release profile of these delivery systems. Owing to their biological 

characteristics, healthy humans have thermoregulatory mechanisms that guarantee constant 

body temperature over time. However, some pathophysiological scenarios, including 

inflammation and tumors are characterized by higher temperatures than healthy tissues 82. 

This thermal difference between cancer and normal tissues has been extensively explored 

for developing thermo-responsive nanocarriers with application in cancer treatment, as 

shown below. However, because not all tumors behave equally in locally increased 

temperature this selective delivery could be further improved by externally heating the tumor 

site either through ultrasound, alternating magnetic fields or temperature-controlled water 

sacks 20,33. Yet, we should carefully address the validity of such approaches in the context of 

tumors, since the overexpression of heat-shock proteins (e.g. Hsp-70, Hsp-90 83) may further 

contribute for cells thermal resistance along time and counteract the cytotoxic effect of 

released chemotherapeutics. Some combinatorial strategies for silencing HSPs and releasing 

cytotoxic drugs have been under development to circumvent this resistance mechanism 84. 

For the particular case of bone tissues, Staruch and co-workers were able to achieve 

magnetic resonance imaging (MRI)-guided drug deposition in bone through the 

administration of thermo-responsive liposomes containing DOX (ThermoDox®) 85. Focused 

ultrasound heating after liposomal administration in New Zealand white rabbits resulted in 

8.2 and 16.8-fold increased DOX concentration in bone marrow and bone adjacent muscles, 

respectively, in comparison with non-heated tissues. On a similar note, Song and colleagues 

developed thermo-responsive pamidronate (PA)-functionalized liposomes containing DOX 

for treatment of bone tumor metastases 86. These liposomes exhibited a strong binding 

affinity to hydroxyapatite and a complete release of DOX was observed within 10 min at 42 

ºC. Blank liposomes showed relatively low cytotoxicity to A549 cells, regardless of PA-

functionalization. However, it is important to underline that in this study, the heating effect 
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on cell viability with blank liposomes was not explored. For DOX concentrations over 5 µM, 

PA-functionalized liposomes clearly showed higher cytotoxicity than non-targeted 

liposomes. Pre-heating PA-coated liposomes at 42 ºC prior to in vitro administration induced 

higher cytotoxicity than the same formulation at 37 ºC, validating the superior therapeutic 

effect of the thermo-sensitive liposomes. 

Apart from increased temperature in bone cancers, other bone diseases such as 

osteoarthritis present at late stages significant joint inflammation, resulting in a mild increase 

on local temperature 64. Such environment can also be exploited with thermo-responsive 

nanocarriers for improving therapeutics spatiotemporal delivery and the overall therapeutic 

outcome. Current studies on osteoarthritis, such as that of Poh and colleagues exploit (N,N′-

bis(acryloyl)cystamine) disulfide crosslinked, PEGylated poly(N-isopropylacrylamide-2-

acrylamido-2-methyl-1-propanesulfonate) nanoparticles (NGPEGSS) to load the anti-

inflammatory peptide KAFAK (size: 223 ± 9.7 nm, ζ-potential: -3.81 ± 2.01 mV). Particles 

formulation was promoted through temperature and disulfide crosslinking assembly, while 

drug loading was achieved through passive diffusion below the LCST. Such particles then 

rely on intracellular stimuli (pH and redox) for therapeutics spatiotemporally controlled 

release 87. In the context of bone disorders, the KAFAK peptide delivery is promising for 

osteoarthritis due to its suppression of TNF-α and IL-6 production. Despite being already an 

interesting system, the performance of these nanocarriers could be further improved by 

external heating so as to enhance the delivery at intended joints or inflamed areas in the knee 

88. In addition, it is well known that osteoarthritis progression is related with increased 

oxidative stress. For example, previously reported citrate-based thermo-responsive 

nanocarriers with intrinsic antioxidant properties could be used in the future to improve 

osteoarthritis treatment 89. 

From the available body of literature, it is clear that there are still significant challenges 

to be overcome in the development of bone-specific thermo-responsive nanocarriers to 

achieve maximum therapeutic efficacy in vivo. This is particularly challenging for scenarios 

where there is no significant increase of internal temperature, thus requiring external heating 

as stimuli. In this context, one of the most important aspects is the ability to assure an 

externally focused heating to bone disease sites without affecting neighboring healthy 

tissues. 
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3.3 Ultrasound-responsive Nanocarriers 

Ultrasound is based on the use of low or high intensity acoustic energy and is widely used 

in clinic for non-invasive biomedical imaging 90. Ultrasound-responsive systems have been 

widely explored for delivery of bioactive therapeutics, typically by exploiting liposomal and 

micellar nanocarrier 91. In the context of drug delivery, this external stimulus induces 

cavitation microbubble contrast agents (small gas bubbles) loaded within nanocarriers 

hydrophobic reservoirs. The incidence of ultrasound leads to expansion and ultimately can 

fragment carriers structure. 

Echogenic liposomes have been previously designed to allow multiple stimuli-

responsiveness and enhance the release of bioactive molecules. Nahire and co-workers 

developed MMP-9 responsive echogenic liposomes comprised of 1-palmitoyl-2-oleoyl- sn-

glycero-3-phosphocholine with a triple-helical lipopeptide (size: 190 ± 35 nm) 92. In this 

study, an increased payload release from liposomes upon simultaneous application of 

diagnostic-used ultrasound frequency (3 MHz) was obtained. More recently, Crasto and his 

team developed PEGylated liposomes (size: 145 ± 20 nm) that released recombinant human 

BMP-2 (rhBMP-2) upon ultrasound exposure (1 MHz) (Figure 6) 93. By using this strategy, 

the researchers were able to increase localized bone matrix formation in a Swiss Webster 

mice muscle pouch model, representing the first in vivo validation of ultrasound-triggered 

delivery of rhBMP-2 and consequently have issued a patent on this technology 94. 
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Figure 6. Ultrasound-responsive liposomes characterization. (A) Dynamic light scattering analysis of 

PEGylated nanoliposomes loaded with rhBMP-2; (B) ALP assay in C2C12 cell line following rhBMP-2 

released from from nanoparticles for sonodisruptable delivery containing rhBMP-2 (NSD-BMP) exposed to 

increasing ultrasound pressures for 60 s (N=3, n=2); Free refers to an assayed amount of soluble rhBMP-2 

predicted to be contained within NSD-BMP-2 of the same sample size. (C) Evaluation of ultrasound exposure 

in rhBMP-2 release profile, i.e, ultrasound duration dependence of rhBMP-2 release from NSD-BMP in 

phantom tissue (5 – 45 min at 1 MPa), quantified by ELISA (N=3, n=2); (D) Bone volume data acquired from 

µCT; ACS + BMP, standard rhBMP-2 implant (no ultrasound), ACS, implant sponge only (no rhBMP-2, no 

ultrasound), ACS + NSD- BMP, NSD-BMP nanocomplexes with rhBMP-2 payload applied to ACS implant 

(no ultrasound), ACS + NSD, nanoparticles without rhBMP-2 payload, on ACS implant (no ultrasound), ACS 

+ NSD + US, nanoparticles without rhBMP-2 payload, on ACS implant (ultrasound applied 24 h after 

implantation surgery), ACS + NSD-BMP + US, nanocomplexes with rhBMP-2 payload applied to ACS 

implant (ultrasound applied 24 h after implantation surgery) (E) Bone mineral density analysis of different 

formulations. ACS – represents collagen implant. NSD – PEGylated nanoliposomes; NSD-BMP- PEGylated 

nanoliposomes loaded with rhBMP-2. US- ultrasound (applied 24 h following surgery). (F) µCT 

reconstruction, group subjected to ultrasound exposure. This induced bone formation by using the ACS+NSD-

BMP formulation. (G) Masson’s trichrome staining of perifemoral section showing the extent of bone 

induction by using ACS implant with NSD-BMP formulations and administering ultrasound 24 h post-surgery. 

Adapted from 93 with permission from Elsevier. 

Despite achieving promising results, it must be emphasized that this study involved 

liposome impregnation within a collagen sponge, a delivery route that is invasive and may 

entail further surgery associated problems. Apart from standard ultrasound stimulation, low 

intensity pulsed ultrasound stimulation (LIPUS) is also valuable in the scope of bone 

disorders with recent reports from different researchers emphasizing the ability to enhance 

bone regeneration during fracture healing and callus distraction 95. In addition to its pro-

osteogenic potential, Nagao and his team recently investigated the anti-inflammatory effects 

of LIPUS on MC3T3-E1 mouse calvarial cell line, where it was discovered that LIPUS was 

able to suppress the nuclear translocation of NF-kB activation induced by 

lipopolysaccharide, while also inhibiting the upregulation of toll-like receptor 4 and 

inflammatory cytokine IL-1 96. Moreover, this effect was found to be mediated by an 

increased expression of mechanosensitive angiotensin receptor type I upon LIPUS 

application. We thus hypothesize that this stimulus could potentially be used in the future as 

a tool to treat inflammatory bone diseases such as periodontitis or osteoarthritis. Combining 

LIPUS with ultrasound-responsive nanocarriers, could be a valuable strategy to design a 

stimuli-responsive nanomedicine-based therapeutic approach where not only drug release 
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could be spatiotemporally controlled, but also where the triggering stimuli itself has 

therapeutic activity. Despite being a promising approach for the future it should be taken 

into account that LIPUS potential for bone therapy may vary with a multitude of factors, 

ranging from medical history of previous treatments, site of application, type of fracture or 

nature of bone loss, treatment regime and patients age 97. 

3.4 Magnetic-responsive Nanocarriers 

Magnetic-responsive nanoparticles respond to magnetic fields and find application in 

various areas including bioimaging namely through MRI and as guidance systems that allow 

cell or particle magnetic guidance. In this approach, magnetic forces are used to move 

nanocarriers towards the intended anatomical sites 20. Then, the locally increased drug 

concentration due to nanocarrier retention is expected to translate into sustained doses 

released within the therapeutic window. However, this strategy is always dependent on the 

passive release of therapeutics from carriers. Moreover, because this guidance requires a 

localized magnetic force, this approach is not very promising for the treatment of systemic 

bone disorders such as osteoporosis, that logically require a widespread delivery to bone 

tissues. Nevertheless, magnetic delivery systems may be valuable to direct 

chemotherapeutics toward target osteosarcoma tumor hotspots and achieve localized 

malignant cells ablation 98. In the context of bone regeneration particles can be directed to 

localized defects such as fractures and be used to deliver bioactive molecules that prompt 

regeneration and the development of fully functional tissue 99. The design of magnetic-

responsive drug release by nanocarriers is of uttermost importance and highly desirable to 

control the therapeutic effect overtime. Magnetic-responsive nanocarriers span beyond the 

scope of simply being magnetically guided, since external alternating magnetic fields 

(AMFs) can be used to disrupt their colloidal structure, thus providing the possibility to 

spatiotemporally control drug release in an on-demand mode 100. 

An extensive literature analysis revealed that so far only cationic magnetic liposomes 

were explored for magnetic on-demand drug delivery in bone, namely in mouse and hamster 

osteosarcoma models, both with successful outcomes 101,102. These examples take advantage 

of magnetically induced temperature increase. Typically, the diffusion of loaded drugs from 

liposomal carriers core increases with bilayer permeability, which in turn is generally 

dictated by lipids melting temperature (Tm). The value of Tm can be tailored depending on 

the lipid composition, and by tuning the high-frequency AMF pulses. This promotes lipid 
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bilayer disruption by surpassing the intrinsic Tm and thereby prompts cargo release 103,104. 

Despite being an attractive design, the application of these smart-release systems in bone 

regeneration or other bone disorders is still scarce when compared to its use in cancer 

therapy, where there are numerous studies upholding its potential. This could be due to bone 

characteristic anatomic location since its localized deep within the body, constituting a major 

biophysical barrier that is responsible for a rapid drop in magnetic field strength with 

increasing depth. Moreover, the before mentioned intertwining bone vasculature poses a 

major barrier in nanocarriers guidance 105. To overcome the former barrier, recently, a 

magnetic spatial localization strategy has been developed in which magnetic field density 

can be focused at a distance from the pole. This may overcome magnetic attenuation and be 

used for both magnetic guidance and on-demand magnetic-mediated therapeutics release 106. 

3.5 pH-responsive Nanocarriers 

Therapeutics delivery from nanocarriers via pH stimuli can be explored mainly in two 

different modes. The first one involves the design of a nanocarriers with a pH-sensitive 

release profile resulting from existence of carboxylic acids or amines (including tertiary 

amines) within the nanocarrier backbone/structure 14,107. Changes in the medium pH then 

results in different protonation/deprotonation states of these ionizable groups and to a shift 

in nanocarriers properties. This behavior can thus be explored for spatiotemporally 

controlled delivery of entrapped drugs within polymeric nanocarriers in specific 

microenvironments. The second alternative involves drug attachment to pH-sensitive 

moieties such as polyketals, acetals or hydrazide linkers that act as anchoring spots for 

binding the drug to the nanocarrier until pH-mediated hydrolysis occurs 10,90,108. 

To date nanocarriers pH-sensitivity has been mainly explored for cancer therapy due to 

the characteristic acidic pH in tumors microenvironment (pH 6.5 - 7.2) 109,110. The 

characteristic acidic tumor microenvironment is further accentuated in osteolytic cancers 

(e.g. bone Ewing’s sarcoma) due to an excessive osteoclastic activity that acts in concert 

with cancer cells to further contribute to bone tumors acidity 66. Owing to these exploitable 

characteristics it becomes clear why a significant body of literature involves the development 

of pH-responsive carriers for cancer therapy. On this topic, some interesting multifunctional 

pH-responsive delivery systems have been recently developed. Ferreira and colleagues 

prepared alendronate-coated liposomes for pH-responsive release of DOX in female nude 

BALB/c mice bearing bone metastases established through injection of MDA-MB-231 
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breast cancer cells on mice tibia 111. The presence of 1,2-dioleoylglycero-3-

phosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) lipids 

endowed the liposome with pH sensitivity, whereas alendronate-targeting moiety was 

responsible for nanocarriers active binding to hydroxyapatite. The liposome sizes ranged 

from 150 to 185 nm and exhibited a sharp DOX release at pH = 5 when compared to pH = 

7.4, highlighting the pH-responsiveness of the formulation. Furthermore, encapsulated DOX 

maintained its cytotoxicity with a significant dose-dependent effect against the MDA-MB-

231 cell line, while also markedly reducing drug cardiac uptake. Biodistribution studies 

indicated a 4-fold increase in chemotherapeutics accumulation in tumor tissues when 

compared to that of the free drug.  

In a different approach, Wang and his team developed biodegradable and pH-responsive 

selenium-doped hydroxyapatite nanoparticles (Se-HANs) for the treatment of osteosarcoma 

(Figure 7A) 112. These rod-shaped HANs (size: 78.55 ± 0.20 nm, ζ-potential of -37.13 ± 0.63 

mV) elicited 4 to 5-fold increase in selenium release under acidic conditions (pH = 5) when 

compared to that obtained at physiological conditions (Figure 7B). As evidenced by FITC-

labeled nanocarriers the amount of encapsulated selenium significantly affected Se-HANs 

degradation in the lysosome, with higher selenium content resulting in a faster, pH-mediated 

degradation. In vitro results in human MNNG/HOS osteosarcoma cells, showed that the 10 

% Se-HANs formulation had the highest cytotoxic effect on osteosarcoma cells, with their 

administration resulting in 83 % cell death after 18 h. This cytotoxic activity was found to 

be associated with the intracellular generation of reactive oxygen species (ROS) mediated 

by the selenium cargo. More importantly, Se-HANs induced tumor apoptosis and reduced 

systemic toxicity in vivo, in a BALB/c nude mice osteosarcoma model. Following 

nanocarriers intratumoral administration 2- and 3-fold reduction in tumor weight and volume 

was obtained. Additionally, serum biochemical analysis of nanocarrier injected mice found 

that 10 % Se-HANs had the lowest systemic toxicity when compared to a mixture of equal 

selenium content (HANs / 16 mM Na2SeO3), suggesting a controlled release profile at local 

tumor and reduced leakage at normal tissues. However, further studies involving 

nanocarriers parenteral delivery could be performed to fully characterize the biological 

performance of these carriers. 
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Figure 7. (A) In vivo treatment of mice-bearing osteosarcoma with pH-responsive release of Se-HANs. 

Internalized Se-HANs by nonspecific endocytosis are rapidly degraded in acidic lysosomes to release selenium. 

(B) Selenium release from Se-HANs exhibited a pH-responsive release profile at pH = 5.0 versus pH = 7.4. 

(C) CCK-8 assay of MNNG/HOS osteosarcoma cells showed that viability was highly associated with 

selenium content and degradation of Se-HANs. (D) In vivo evaluation of anti-osteosarcoma activity of Se-

HANs after intratumoral injection on a xenograft osteosarcoma model. Compounds with higher selenium 

content, including 10 %Se-HANs and HANs/16 mM Na2SeO3 exhibited efficient inhibition of tumor growth 

as evidenced by the reduction of tumor size (left). Adapted from 112 with permission from the American 

Chemical Society. 

Exploring pH-responsiveness to elicit improved nanocarrier cytotoxicity may also be 

valuable for bone therapy, particularly in bone cancer. Alpaslan and colleagues showcased 

the potential of dextran-coated cerium oxide nanoparticles (nanoceria) (size: 45 nm (pH = 

7) and 29 nm (pH = 6), ζ-potential: 16.68 ± 3.98 mV (pH = 6)), which exhibit antioxidant 

activity at physiological pH values, but shifts to an oxidizing profile at slightly acidic pH 

conditions 113. These nanoceria allow for a selective increase in ROS generation in 

osteosarcoma microenvironment. In this study, nanoceria particles incubated at pH = 6 

showed maximum cytotoxicity against osteosarcoma MG-63 cells. In healthy osteoblasts in 

vitro cultures (pH = 6), no significant ROS generation was observed at any nanoceria 

concentration, thus confirming the proposed ROS-dependent cancer-killing mechanism. 

After 5 days at pH = 6, the osteosarcoma IC50 value was found to be 100 µg/mL, as opposed 

to 500 µg/mL for normal osteoblasts 113. In addition, nanoceria particles maintain their 
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selective cancer-killing effect even at physiological pH, being observed that after a 5-day 

treatment, the IC50 values for healthy osteoblasts were well above 1000 µg/mL, in contrast 

with IC50 values of 250 µg/mL for MG-63 osteosarcoma cells. 

In the context of tissue engineering and regenerative medicine, Gan and co-workers 

developed pH-responsive chitosan-capped MCM-41 mesoporous silica nanoparticles (Chi-

MSNs) (size: 130 nm, ζ-potential: +22.5 mV) for delivery of BMP-2 and Dexamethasone 

(Dex) to enhance bone regeneration (Figure 8) 114. Chitosan (Chi) functionalization of MSNs 

surface endowed the nanocarrier with pH-responsiveness due Chi primary amine protonation 

states at different pH (pKa ~ 6.5). In this sense Chi functioned as a nanovalve for controlled 

release of MCM-41 mesopores-loaded Dex upon intracellular uptake. Dex release followed 

a pH-responsive behavior, achieving 85 % release within 60 min at pH = 6.0, while almost 

no Dex was released at physiological pH conditions (pH = 7.4). In addition, the outer 

chitosan layer also functioned as matrix for BMP-2 incorporation, with results showing that 

BMP-2 release profile is unaffected by the culture medium pH, resulting in an immediate 

release under physiological conditions (80 % BMP-2 release after 6 h). On one hand, this is 

beneficial as BMP-2 requires binding to specific cell-surface receptors, but on the other 

hand, because BMPs have low bioavailability, this release profile is not the most adequate 

for systemic administration, which is why the authors opted for the implantation with 

Gelfoam® (absorbable gelatin sponge). Nevertheless, this nanocarrier has shown particular 

promise in promoting in vitro osteogenesis, with the combinatorial effect of Dex/BMP-2 

dual-loaded chi-MSNs exhibiting significantly higher ALP activity of rat bone mesenchymal 

stem cells (BM-MSCs) than single Dex or BMP-2 MSNs loaded formulations. Moreover, 

Alizarin Red S staining further confirmed that bone marrow mesenchymal stromal/stem cells 

(BM-MSCs) incubated with Dex/BMP-2@chi-MSNs have greater mineralization nodules 

when compared to controls. The in vivo osteogenic capacity of this formulation was 

evaluated via ectopic bone formation in a male mice thigh muscle pouch model. By using 

3D µCT analysis the authors demonstrate that after 4 weeks there is an increase in tissue 

mineral density of both dual-loaded formulations when compared to the free therapeutics 

control groups.  

Even though such nanovehicle has not been formulated for minimally invasive IV 

administration, this example highlights the potential of pH-responsive delivery of 
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pharmaceuticals for bone regeneration, an area where parenteral routes of administration 

have been poorly explored so far. 

 

Figure 8. Physicochemical characterization and biological performance of silica-based pH-responsive 

nanocarriers. (A) Schematic diagram of Dex/BMP-2@chi-MSNs on osteoblast differentiation. First, BMP-2 is 

quickly released and then activates the downstream Smad signaling by binding to specific cell surface BMP 

receptors. Secondly, Dex is delivered intracellularly through a pH-responsive release within lysosomes. (B) 

The capping effect of chitosan in the pH-responsive release of Dex from chi-MSNs. (C) Effect of different 

nanocarriers formulations BM-MSCs ALP activity cultured (D) In vivo ectopic bone formation induced by 

BMP-2 and Dex with different implants after 2 and 4 weeks post-implantation. Quantitative analysis of 

regenerated bone volume from 3D µCT images. Adapted from 114 with reprint permission from Royal Society 

of Chemistry. 

Apart from the former examples, there are also other bone disorders for which pH-

responsive nanocarriers could be valuable as on-demand delivery systems. In osteomyelitis, 

the production of acid by osteoclasts and infecting bacteria metabolism tends to reduce pH 

in the site of inflammation 63. Such acidic environment, could allow for selective release of 

bioactive molecules (e.g. antibiotics) in the affected bone milieu.  

To treat bone bacterial infections Ferreira and co-workers developed a pH-responsive 

liposomal theranostic platform (DOPE, CHEMS, PEG2K-DSPE) containing technetium-
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99m-labeled ceftizoxime, a 3rd generation cephalosporin antibiotic. The liposomal carriers 

(size: 169.1 ± 8.4 nm, ζ potential: 2.2 ± 1.1 mV) were able to accumulate in bone infected 

foci in a male Wistar rat model of acute osteomyelitis following IV administration 115. These 

liposomes undergo structural destabilization in acidic medium, locally releasing the 

radiotracer and thereby allowing accurate infection imaging and treatment. The obtained 

results indicate that radioactivity level in the infected tibia was 1.5-fold higher than in 

healthy tibia. Although this study demonstrated the positive effect of such theranostic 

liposomes, from the perspective of clinical application the use of radiotracers could entail 

some restrictions due to their known toxicity. With the advent of multimodal imaging 

technologies and non-radioactive probes such concept could be further investigated. 

More recently, alendronate-coated PEG-poly(lactic acid-co-glycolic acid) (PLGA) 

micelles targeted to were used for bone-targeted delivery of the antibiotic vancomycin 116. 

These micellar carriers showed faster vancomycin release profiles at pH = 5.0 when 

compared to that obtained under physiological conditions. Interestingly, the binding affinity 

to HA was unaffected by external pH and therefore these micelles may constitute a suitable 

nanocarrier for stimuli-responsive treatment of osteomyelitis. However, it is important to 

emphasize that for early stage osteomyelitis, the acidic environment may not be sufficient to 

be used as a drug release trigger, thus limiting drugs therapeutic efficacy before disease 

progression.  

Such could be overcome by engineering highly sensitive pH-responsive systems as those 

recently developed by Sethuraman and co-workers. These researchers produced a two 

component pH-mediated charge-shifting nanocarrier comprised by: (i) PLA-b-PEG diblock 

co-polymers conjugated to TAT cell penetrating peptide and (ii) pH-sensitive diblock 

copolymer poly(L-cystine bisamide-g-sulfadiazine)-b-PEG (PCBS23K-b-PEG5K) 117. At 

physiological pH, sulfadiazine is negatively charged and shields the TAT-micelle by 

electrostatic interactions. Upon a decrease in pH, sulfadiazine becomes neutral and detaches 

from the TAT-micelle, exposing TAT for interaction with nearby cells, while the PCBS 

moiety is degraded by glutathione (GSH). This PMs markedly enhanced DOX cytotoxicity 

within 0.2 pH units below of pH 7.2 117. This remarkably sensitive block may be an 

interesting design tweak for improving stimuli sensitivity during the initial onset of 

osteomyelitis. 
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3.6 Redox-responsive Nanocarriers 

Redox sensitive nanocarriers are very interesting due to their ability to respond to 

oxidative-reductive environments including those dependent on GSH, thioredoxin, or human 

serum albumin (HAS-SH) concentration 118,119. Redox-responsive nanocarriers are designed 

to disassemble in the cytosol and release their bioactive cargo. Such is an important aspect 

for skeletal disorders considering that some bioactive therapeutics for bone cells have 

intracellular molecular targets 14,120. Human cells intracellular compartments contain a high 

GSH concentration (2-10 mM), which is about 103-fold higher than that found in the 

extracellular matrix and blood plasma (2-20 µM) 121. However, some studies suggest that 

reductive conditions may already be present at the endosome during receptor-mediated 

endocytosis 122. This difference in redox-potential inside cells is typically exploited by 

designing nanocarriers containing reduction-sensitive linkers that are cleaved upon cellular 

uptake, thus releasing cargo only in intracellular conditions. The disulfide bond is the most 

commonly used redox-sensitive linker. However, the library of redox-responsible chemical 

modifications that can be imprinted in nanocarriers structure is increasing with other 

responsive moieties such as diseleinide, ditellurium 123 and maleimide-arylthiol bonds 

gaining increased attention in recent years 124,125. Such chemical imprinting of redox-

responsive moieties in nanocarriers structure can be achieved by three main ways: (i) 

grafting of bioreducible linkers on the repeating monomers of polymeric backbones, which 

readily prompt nanocarrier intracellular disintegration; (ii) grafting disulfide bonds as 

terminal crosslinkers between different polymer blocks in copolymer-based nanocarriers, 

that can lead to micelles disassembly 125 and (iii) precision chemical modification of polymer 

monomeric units with redox-responsive moieties linked to drugs (polymer-drug conjugate), 

which upon the stimulus are promptly released. These strategies have been extensively used 

for formulation of redox-responsive PMs for delivery of pharmaceutics under redox-

conditions, either through core or shell disulfide-based crosslinking, which can greatly 

improve PMs stability 126. However, it is important to emphasize few redox-responsive 

carriers have been used for the treatment of bone diseases other than cancer. 

For treatment of osteosarcoma, Maciel and colleagues designed a facile method for 

preparing redox-responsive alginate nanogels by crosslinking with cystamine through mini-

emulsion 127. Then, cytotoxic drug loading was achieved by incorporating DOX in aqueous 

solution with nanogels, resulting in high encapsulation efficiency (95.2 ± 4.7%). These 
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biocompatible nanogels significantly increased DOX intracellular concentration and 

enhanced cytotoxicity in osteosarcoma cells (CAL-72). Another interesting approach for 

bone cancer is that proposed by Yao and co-workers which designed glutathione-responsive 

self-assembled micelles (size: 169.8 nm, ζ-potential: +20.23 mV) based on disulfide 

crosslinked stearyl cationic polypeptide copolymers containing arginine and histidine for co-

delivery of DOX and microRNA-34a to androgen-independent prostate cancer cells both in 

vitro and in vivo 128. These micelles reduced anthracycline cardiotoxicity and promoted a 

synergistic anti-tumoral effect upon drug-gene co-delivery (DOX/microRNA-34a). In 

particular, because microRNA-34a has shown an important role in myeloid and bone-related 

cancers (namely myeloma, leukemia, osteosarcoma and Ewing’s sarcoma), it might be 

interesting to pursue further studies in bone with these micelles 129. 

For the treatment of osteoarthritis other researchers developed PEGylated poly(N-

isopropylacrylamide-2-acrylamido-2-methyl-1-propanesulfonate) nanoparticles with a 

disulfide crosslinker (N, N’-bis(acryloyl)cystamine) (NGPEGSS)) for delivery of the anti-

inflammatory peptide KAFAK to an ex vivo model 130. These disulfide nanocarriers 

exhibited enhanced extracellular stability and improved KAFAK loading, as well as 

enhanced release under reducing conditions. Strikingly, they selectively infiltrate inflamed 

cartilage and were internalized by chondrocytes, which are recognized as a hard to transfect 

cell type. The KAFAK-loaded NGPEGSS nanoparticles were able to significantly decrease 

cytokine IL-6 production over time both in chondrocytes and macrophages, demonstrating 

its potential to act as an intra-articular injected nanocarrier for the treatment of osteoarthritis 

87,130.  

It is without doubt that the unique reversibility and responsiveness of disulfide linkages 

as a ubiquitous stimulus contributed to the engineering of redox-responsive nanocarriers 

with efficient on-demand release of therapeutics for various bone diseases. Yet, to fulfil their 

potential for clinical translation some aspects such as the effect of cell surface thiols in their 

cellular uptake and intracellular trafficking of such carriers should be further investigated 

and optimized 121. 

5. Conclusion and Perspectives 

From an-in-depth analysis of available literature reports focusing on stimuli-responsive 

nanocarriers it is clear that their overwhelming majority aims for bone cancer treatment and 

takes advantage of cancer-specific stimuli (e.g. redox, pH, temperature). The motivation for 
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such focus stems mostly from tumors increasing prevalence, but also from the relative 

understanding of their major hallmarks and microvasculature 55,82,110,131,132. 

Apart from this pathology, non-regenerating acute bone injuries (e.g. critical size 

fractures), bone diseases (e.g. osteomyelitis, osteoporosis) and joint degeneration problems 

(e.g. osteoarthritis) are increasing in incidence and the development of more effective 

treatments tailored for these disorders is evermore required in a clinical setting. However, 

the translation of stimuli-responsive nanocarriers into clinical practice remains highly 

challenging.  

To date, few stimuli-responsive nanocarriers reached clinical stages across all areas, an 

aspect that is particularly evident for bone disorders. This could be in part assigned to 

insufficient nanocarriers bioavailability and selectivity to bone tissues. But can be mainly 

attributed to our poor understanding of more fundamental aspects regarding the unique 

biological barriers posed by the skeletal architecture. An increased information of how 

intravenously administered nanocarriers can reach bone tissues and what optimal 

characteristics in terms of size, shape, surface charge and blood stability they should possess 

is fundamental and should receive a renewed focus. Intravenous administration is in fact 

highly attractive when compared to localized delivery via micro- or macro-sized implants, 

that while interesting for some bone disorders, do not warrant enough coverage to reach 

every bone tissue in a similar manner 10, a major aspect in osteoporosis. Furthermore, the 

procedures for implant introduction are costly, laborious and highly invasive, not to mention 

the possible complications or infections arising from surgery.  

In a critical perspective, it is clear that a stimuli-mediated control over therapeutics release 

provides significant advances over the current shortcomings regarding premature leakage 

and burst release, yet, future generations of responsive carriers must be rationally 

engineered. Achieving a balance between complexity and biological performance is an 

underlying issue in the drug delivery field since the trend in the past years has been to 

develop perhaps overengineered stimuli-responsive multifunctional carriers in detriment of 

more simple systems as recently emphasized 133. Such trend could be restrictive in the 

context of cost-effectiveness and realistic industrial production. 

Yet, the design of more complex, multifunctional carriers could have an added benefit in 

the context of bone pathologies/injuries that feature more than one 

physicochemical/biochemical features as compared with healthy bone. Hence, the 
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manufacture of dual/multi-stimuli responsive systems (pH+temperatute, pH+redox, 

light+pH, etc) could offer synergistic non-linear responses that could enhance the therapeutic 

outcome of such nanobiomaterials 134. Envisioning future advances, the next-generation of 

such systems could combine also physical and morphological properties such as shape, 

topography and mechanical properties which are known to influence cellular behavior and 

carriers biological performance 135.  

Alongside with this, in the design of multifunctional carriers aimed for parenteral delivery 

different strategies other than the widely used PEGylation as shielding mechanism should 

be encouraged and pursued, particularly following the myriad of recent reports highlighting 

some pitfalls in such approach 136. In fact, with the latest developments regarding alternatives 

to endow nanocarriers with stealth character we will for sure assist to the proposal of smarter 

nanocarriers for systemic bone treatments. However, parallel efforts should be done in order 

to comply with regulatory guidelines to seriously consider the final application of such 

systems. 

We envision that having an open mindset on these fundamental challenges could 

contribute for the formulation of responsive nanocarriers with more potential for future 

commercialization and realistic clinical application. 
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2 Aims 

The global aim of this thesis was to develop monodisperse nanomicelles capable of 

efficiently encapsulating the flavonoid Naringin for controlled intracellular delivery in 

hASCs in order to potentiate or promote their osteogenic differentiation. The specific aims 

of this master thesis were the following: 

• Synthesis and characterization of mPEG-PLA amphiphilic diblock copolymer; 

• Synthesis and characterization of mPEG-MS-PLA amphiphilic diblock copolymer; 

• Preparation of mPEG-PLA and mPEG-MS-PLA nanomicelles via nanoprecipitation; 

• Physicochemical characterization of mPEG-PLA and mPEG-MS-PLA 

nanomicelles; 

• Naringin encapsulation in mPEG-MS-PLA micelles and characterization of in vitro 

drug release profile; 

• Investigation of the intracellular uptake of nanomicelles via fluorescence microscopy 

and flow cytometry studies in MC3T3-E1 and hASCs; 

• Evaluation of the cytotoxic profile of free Naringin, blank and Naringin-loaded 

nanomicelles in MC3T3-E1 and hASCs; 

• Study of the proliferative capacity of free Naringin in hASCs; 

• Evaluation of the pro-osteogenic potential of free Naringin and Naringin-loaded 

nanomicelles in hASCs in different osteogenic conditions; 

• Execution of mineralization assays of free Naringin and Naringin-loaded 

nanomicelles in hASCs. 
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3.1 Materials 

Methoxypoly(ethylene glycol) (mPEG-OH) (Mn 5000), Methoxypoly(ethylene glycol)-

maleimide (mPEG-MAL) (Mn 5000, >90 % purity), thiol-poly(L-lactide) (PLA-SH) (Mn 

5000, PDI < 1.2), 3,6-Dimethyl-1,4-dioxane-2,5-dione (L-Lactide), stannous octoate 

(Sn(Oct)2), anhydrous toluene, dichloromethane, diethanolamine (puriss American 

Chemical Society), 4-Nitrophenyl phosphate disodium salt hexahydrate (4NPhP), 4-

Nitrophenol 10 mM (4NPh), phosphate buffered saline (PBS), formaldehyde, Coumarin-6 

(Coum-6), Naringin ( > 95 % purity), β-glycerophosphate disodium salt hydrate BioUltra 

(β-gly), Alizarin Red S, Triton X-100 BioXtra, dimethylsulfoxide (DMSO, sterile) and 

Amicon® Ultra-4 mL (3000 NMWL) were all purchased from Laborspirit (Lisbon, 

Portugal). Spectra/Por 1 dialysis tubing (6000 - 8000 Da MWCO) and Float-A-Lyzer G2 

(3500 - 5000 Da MWCO) dialysis cassettes were purchased from Reagente 5 (Oporto, 

Portugal). Liquid paraffin (GPR Rectapur®) and L-ascorbic acid 2-phosphate magnesium 

salt (AA) were purchased from VWR (Lisbon, Portugal). Deuterated chloroform (CDCl3), 

methanol (MetOH, 99.8% analytical grade - a.g.), di-Sodium hydrogen phosphate dihydrate 

(a.g.), Sodium di-hydrogen phosphate monohydrate (reagent European Pharmacopeia - Ph. 

Eur.), EDTA disodium salt dihydrate (Ph. Eur.) and diethyl ether (Labsolve®) were all 

purchased from JMGS Lda. (Odivelas, Portugal). Magnesium chloride hexahydrate was 

kindly gifted by Fernando Sá. Acetone (99-100 %) was purchased from Enzymatic S.A. 

(Loures, Portugal). Murine pre-osteoblast cell line subclone-4 (MC3T3-E1, Mus Musculus, 

ATCC® CRL-2593™) and human adipose-derived mesenchymal stem cells (hASCs, Homo 

Sapiens, ATCC® PCS-500-011™) were purchased from LGC Standards S.L.U. (Barcelona, 

Spain). Minimum Essential Medium α-modification (α-MEM, -nucleosides, +L-glutamine), 

fetal bovine serum (FBS, E.U. approved, South American origin), antibiotic mixture 

penicillin-streptomycin (10 000 U/mL penicillin-G and 100 mg/mL streptomycin), TrypLE™ 

Xpress Enzyme with phenol red(1X), Quant-iT™ PicoGreen® dsDNA Assay Kit, 

AlamarBlue™, 1-Step™ NBT/BCIP Substrate Solution, and Wheat germ agglutinin (WGA) 

Alexa Fluor® 594 conjugate dye and DAPI were purchased from Alfagene (Lisbon, 

Portugal). Dexamethasone (Dex, 96% purity, ACROS Organics™) and Dulbecco’s PBS were 

purchased from Thermo Fisher Scientific (Oeiras, Portugal). 
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3.2 Methods 

3.2.1 Synthesis of mPEG-PLA Diblock Copolymer via Ring-opening 

Polymerization 

The synthesis of mPEG(5K)-PLA diblock copolymer was obtained via ring-opening 

polymerization (ROP) of L-Lactide by using Sn(Oct)2 as catalyst and the Ω-end hydroxyl 

group (-OH) of mPEG-OH polymer as the initiator (Figure 9). Prior to ROP-based synthesis 

the L-Lactide monomer and mPEG-OH were dried for 4 days in an oven at 70 ºC and 37 ºC, 

respectively. 

For block co-polymer synthesis L-Lactide (3.469 mmol) and mPEG-OH initiator (0.05 

mmol, 50 % w/w L-Lactide) were added to a three-neck round bottom flask under N2 inert 

atmosphere and dissolved in dry toluene (10 mL). The resulting solution was stirred at 800 

rpm (MR Hei-End with PT1000 sensor, VWR, Lisbon, Portugal) and heated in an oil bath 

to 100 ºC under reflux, before the Sn(Oct)2 catalyst (0.193 mmol, 62.5 µL), in dry toluene 

(2.5 mL), was added to the flask. Following this addition, the polymerization proceeded for 

8 h at 120 ºC, under reflux. Subsequently, the reaction was cooled to room temperature (RT) 

and toluene was evaporated under a N2 gas flow line. The resulting yellowish crude product 

was then dissolved in dichloromethane before being precipitated in excess cold MetOH in 

order to recover the synthesized mPEG-PLA copolymer. The precipitated white product was 

then dialyzed in a dialysis membrane (6000 - 8000 Da MWCO), for 72 h against deionized 

water. Then, it was frozen at -80 ºC and freeze-dried (approximately -74 ºC condenser 

temperature, 0.014 mbar vacuum, Telstar LyoQuest Plus, purchased from VWR, Lisbon, 

Portugal) for storage. 

 

Figure 9. Synthesis route of mPEG-PLA diblock copolymer via ROP of L-Lactide. 

3.2.2 Synthesis of mPEG-MS-PLA Diblock Copolymer 

For the synthesis of amphiphilic block copolymer under more environmentally friendly 

conditions methoxypoly(ethylene glycol)-maleimide (mPEG-MAL, 5000 Da) was 
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conjugated to thiol-poly(L-lactide) (PLA-SH, 5000 Da) via a Michael-type addition 1 (Figure 

10). Maleimides are reported to selectively react with thiols in the pH range of 6.5 - 7.5 to 

afford thiol-ether bonds.2 For copolymer synthesis mPEG-MAL (0.04 mmol) was added by 

molar excess (1.5 mPEG/PLA molar ratio) to a three-neck round bottom flask in order to 

improve the overall reaction yield. After adding PLA-SH (0.0267 mmol), the polymers were 

dissolved in acetone (V = 15 mL, v/v  ratio = 0.43) and sodium phosphate buffer (pH = 7.2, 

100 mM, V = 20 mL, v/v ratio = 0.57) containing EDTA (5 mM) in order to minimize the 

oxidation of free PLA thiols (-SH) before conjugation with the maleimide (-MAL) end group 

3. The mixture was then flushed with a N2 flow and then magnetically stirred at 400 rpm 

under inert conditions for 2 days (400 rpm) at RT. Afterwards, the resulting crude mixture 

was completely dried in a rotary evaporator (Buchi, Rotavapor® R-300, Reagente 5, Oporto, 

Portugal). The dried solid within the flask was dissolved in dichloromethane and precipitated 

in an excess volume of cold (4 ºC) diethyl ether. Following this, the precipitated polymer 

was dried with a N2 gas flow and re-suspended in deionized water before being transferred 

to a dialysis membrane (6000 – 8000 Da MWCO) and exhaustively dialyzed against 

deionized water in sink conditions for 72 h. Then, the product was frozen in -80ºC before 

being freeze-dried for storage. 

 

Figure 10. Synthesis route of mPEG-MS-PLA diblock copolymer via a Michael-type addition. *Phosphate 

buffer 100mM, pH = 7.2, containing 5 mM EDTA. 
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3.2.3 Spectroscopy Characterization 

The successful synthesis of the various copolymers was characterized by different 

spectroscopy techniques. Proton nuclear magnetic resonance (1H NMR) spectra were 

recorded on a Bruker Advance III 400 MHz spectrometer. Prior to spectra acquisition, 

samples were dissolved in 700 µL of CDCl3 and transferred to 300 MHz NMR glass tubes 

(Sigma-Aldrich, Sintra, Portugal). Employed parameters for spectra acquisition consisted in 

18 s relaxation delay, 256 scans and 32 dummy scans. Data processing was performed in the 

MestReNova v6.0.2 software, and spectra were normalized according to the established 

CDCl3 solvent singlet at 7.26 ppm. Fourier Transformed Infrared spectra were collected on 

dried samples by the attenuated total reflectance (ATR-FTIR) method using a Brucker 

Tensor 27 spectrometer. The spectra of all samples were recorded at a 4 cm-1 resolution for 

a total of 256 scans in the spectral width of 4000 to 350 cm-1. The spectra were obtained and 

processed in OPUS software. 

3.2.4 Self-assembly of Nanosized Polymeric Micelles 

Polymeric micelles (PMs) were prepared by the solvent exchange technique, also known 

as nanoprecipitation. For the self-assembly based formulation of mPEG-MS-PLA micelles 

the polymer powder (5 mg) was dissolved in 1.0 mL of freshly prepared acetone containing 

Naringin (10% w/w of copolymer) and placed in an ultrasonic bath for 5 min (80 Hz, pulsed 

mode, 30 ºC, Elmasonic P 120 H model, VWR, Lisbon, Portugal) to achieve full polymer 

dissolution. To improve the accuracy of encapsulation efficiency measurements, this 

Naringin-containing acetone solution was freshly prepared. Then, this solution was slowly 

added dropwise into a 10 mL round-bottom flask containing 5.0 mL deionized water 

(previously filtered through 0.2 µm syringe filter (cellulose acetate, VWR, Lisbon, Portugal) 

and stirred for 90 min at 400 rpm, RT. Afterwards, acetone was evaporated under a rotary 

evaporator during 8 min (37 ºC, 50 mbar). The resultant solution was dialyzed (3500 Da 

MWCO) against deionized water for 1 h (400 rpm) to remove free Naringin. Blank micelles 

were prepared following the same procedure minus the unnecessary dialysis step.  

To investigate the cellular uptake of the produced nanocarriers, the hydrophobic 

fluorescent dye Coum-6 was loaded in PMs hydrophobic core. The Coum-6-loaded micelles 

were prepared according to the above-mentioned nanoprecipitation conditions with minor 

modifications. For the preparation of fluorescent micelles, acetone solution (1 mL) 
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containing Coum-6 at 2 % w/v of copolymer was used instead, and the whole 

nanoprecipitation process was conducted in the dark. 

3.2.5 Micelles Physicochemical Characterization 

The average hydrodynamic particle radius (Hr), size distribution (PDI) and ζ-potential of 

the different PMs (1 mg/mL) were determined through dynamic light scattering (DLS), by 

using a Malvern Zetasizer Nano ZS equipment (Malvern Instruments Ltd., Malvern, United 

Kingdom). All experiments were carried out at 25 ºC with a 173º backscatter angle, and each 

sample measurement was repeated three times. The Hr of the micelles was calculated from 

the Stokes-Einstein equation, while the PDI was obtained by using the cumulants analysis. 

The ζ-potential values were extrapolated from electrophoretic mobility values using 

Smoluchowski’s equation in Zetasizer v7.11 (Malvern, United Kingdom) 4. Either 

disposable capillary cell (DTS1070) for ζ-potential analysis or square polystyrene cuvettes 

(DTS0012) for size analysis were used accordingly. 

 In addition, self-assembled micelles morphology was observed by scanning transmission 

electron microscopy (STEM). The different samples were prepared by careful drop-wise 

addition of 10 µL of freshly prepared micelles (0.2 mg/mL) on a carbon-film copper grid 

(400 mesh, EM Resolutions, United Kingdom). The samples were then left to dry overnight, 

at RT. Nanomicelles micrographs were acquired in a Hitachi SU-70 STEM microscope, 

operated at an accelerating voltage of 20.0 kV, at various magnifications. 

3.2.6 Evaluation of Micelles Colloidal Stability 

The colloidal stability of different PMs was investigated by monitoring changes in size, 

PDI and ζ-potential along time upon storage in solution. For stability studies Naringin-

loaded nanocarrier formulations (n=3), were prepared by nanoprecipitation and maintained 

in deionized water or PBS (pH = 7.4) at 4 ºC. Micelles and their physicochemical properties 

were then analyzed by DLS at different time intervals: 0, 1, 7 and 14 days. 

3.2.7 Drug Loading 

The Naringin content loaded into PMs was determined by ultraviolet-visible (UV-VIS) 

absorbance of the flavanone peak of Naringin (λ= 282 nm) corresponding to the benzoyl 

moiety. This peak is followed by a another region of smaller intensity to higher wavelengths 

(300 – 400 nm), associated with the cinnamoyl moiety and is characteristic of flavanones 
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such as Naringin 5 (Figure 33, Annex I). The UV-VIS absorbance was measured in a 

microplate reader equipped with a tungsten halogen lamp (Synergy HTX Biotek, Izasa 

Scientific, Carnaxide, Portugal) by using a quartz microplate (Hella transparent 96-wellplate, 

VWR, Lisbon, Portugal). 

Briefly, a solution of freshly prepared PMs (1 mg/mL) loaded with Naringin was 

transferred to a dialysis tubing (Float-A-Lyzer G2, 3500 Da MWCO) and dialyzed in sink 

conditions against deionized water for 1 h, under stirring (400 rpm). After free drug removal, 

the remaining Naringin-micelles solution (0.2 mg/mL) was analyzed by UV-VIS at 282 nm. 

Because the mPEG-MS-PLA amphiphilic copolymer contains a slight background signal, 

blank micelles (0.2 mg/mL) were used to establish the blank for UV-VIS quantification of 

drug encapsulation. A standard calibration curve of Naringin in deionized water was used to 

determine the drug encapsulation efficacy (Figure 33, Annex I). Encapsulation efficiency 

was calculated using the above equation: 

Equation 1: Encapsulation Efficiency (%): 

= (
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁𝑎𝑟𝑖𝑛𝑔𝑖𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠)

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁𝑎𝑟𝑖𝑛𝑔𝑖𝑛 𝑎𝑑𝑑𝑒𝑑
) ×  100 

3.2.8 In vitro Drug Release Profile 

The in vitro Naringin release profile from mPEG-MS-PLA micelles was investigated in 

PBS at various pH conditions to mimic different physiological scenarios: pH 7.4 

(physiological pH) and pH 5.5 (endo-lysosomal pH). For this evaluation, 2 mL of freshly 

prepared Naringin-loaded micelles (1 mg/mL in deionized water) were transferred to a 

dialysis tubing (3500 – 5000 Da MWCO) and submerged in 15 mL of PBS at 37 ºC at a 

constant stirring rate (600 rpm). At defined time intervals, 1 mL samples were withdrawn 

from the dialysate and replaced with the same volume of fresh PBS. Samples were 

withdrawn at different time points until the plateau phase was achieved. For this study, the 

standard calibration curve of the drug in water was used (Figure 33, Annex I). 

3.2.9 Cell Culture 

All cells were manipulated in aseptic conditions within a Class II biological safety cabinet 

and maintained as per established guidelines in a humidified 5 % CO2 atmosphere incubator 

(Binder C-170, VWR, Lisbon, Portugal) with 95 % O2 and at 37 ºC 6. MC3T3-E1 and hASCs 

were routinely cultured in α-MEM supplemented with 10 % (v/v) heat-inactivated FBS and 
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1 % of antibiotic mixture (basal growth medium, BM) and media was exchanged every 5 

days. Cells were subcultured before reaching confluence. All plastic adherent well plates 

were made of tissue culture treated polystyrene (Sarstedt, Sintra, Portugal). Cells were 

subcultured before reaching confluence. Culture media was exchanged every 5 days. 

For cellular experiments investigating osteogenic differentiation, AA, β-gly and Dex 

stock solutions were prepared in dPBS and frozen at -20 ºC. Different osteogenic media were 

prepared from such aliquots. Osteogenic supplements were added to BM in the following 

concentrations: (i) reduced osteogenic differentiation medium (rOS) - 50 µg/mL AA and 10 

mM β-gly; and (ii) OS-Dex – rOS and 100 nM Dex. For preparation of free Naringin 

concentrations, the drug was initially dissolved in sterile DMSO (50 mg/mL) and 

subsequently diluted in the respective assay media (basal or osteogenic) and to a final 0.1 % 

(v/v) DMSO content across all concentrations. Osteogenic assays involving ALP activity 

and BMP-2 quantifications, as well as OPN and Alizarin Red S visualization followed the 

below described conditions (Table 1). Osteogenic assays involving Alkaline phosphatase 

(ALP) activity and BMP-2 quantifications, as well as OPN and Alizarin Red S imaging 

assays followed the below described conditions (Table 1). 

Table 1. Overview of the conditions used in osteogenic differentiation assays. 

Assay Culture medium Pharmaceutic 
Dosing 

regime 

Total 

incubation time 

I, OS-Dex 
AA + β-gly + Dex 

(OS) 
Naringin Single 21 d 

II, One dose AA + β-gly (rOS) 
Naringin; Naringin-

loaded micelles 
Single 7 d 

II, Two dose AA + β-gly (rOS) 
Naringin; Naringin-

loaded micelles 
Double 7 d 

Across all experiments, medium was exchanged every 3 days containing the respective osteogenic 

supplements listed above, except for the Two dose assay, where medium with a second dose of pharmaceutic 

was added after 3 days. Please see the respective dose regimen schematics in each result panel. 

3.2.10  In vitro Cellular Uptake Studies 

3.2.10.1 Fluorescence Microscopy 

The kinetics of PMs cellular uptake in MC3T3-E1 pre-osteoblasts and hASCs was 

evaluated by using fluorescence microscopy. For this study, fluorescent Coum-6 loaded PMs 
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were used. Briefly, MC3T3-E1 and hASCs were seeded overnight in µ-Slide 8-well 

chambers (ibidi GmbH) at a density of 8.0 and 25.0 x 103 cells/well, respectively, in 200 µL 

of free-antibiotic BM. Then, cells were incubated with 250 µg/well of Coum-6-loaded 

nanocarriers, in free-antibiotic BM for different time intervals (2, 4 and 6 h). After each 

timepoint, cells were fixed in 4 % formaldehyde solution and washed three times with dPBS. 

Then, the cells cytoplasm was fluorescently labelled with 50 µL of WGA Alexa Fluor® 594 

conjugate dye (0.2 mg/mL) by incubating for 5 min in the dark. Afterwards, the cells were 

washed three times with dPBS to remove excess dye. Cells were maintained in dPBS until 

fluorescence microscopy analysis. Confocal laser scanning microscopy (CLSM) and 

fluorescence microscopy (Axio Imager 2, Carl Zeiss Microscopy GmbH) were used to 

follow the kinetics of intracellular internalization of the nanocarriers. Image processing was 

performed using ZEN v2.3 blue edition software. 

3.2.10.2 Flow Cytometry 

The quantitative measurement of Coum-6 fluorescence intensity was conducted via flow 

cytometry. MC3T3-E1 and hASCs were seeded overnight in 24-well plates at a density of 

50 and 40 x 103 cells/well (n=4) respectively, in 500 µL of free-antibiotic BM. Then, 

medium was replaced with 500 µL of free-antibiotic BM containing the 96-well plate 

equivalent of 25, 50 and 100 µg of Coum-6- nanocarriers per well. Nanocarriers were 

previously concentrated by centrifuging for 30 min in Amicon® ultra centrifugal units (3000 

Da MWCO) at 16600 g. After 4 h incubation, growth media was aspirated and cells were 

washed twice with 1 mL dPBS, before being harvested by trypsinization (500 µL, 5 min 

incubation at 37 ºC), neutralized with equal volume of dPBS and collected by centrifugation 

at 500 g for 5 min. Then, the supernatant was aspirated and the cells were suspended in 200 

µL of dPBS prior to fluorescent intensity measurements. 

3.2.11 Cytotoxicity Assays 

Assessment of cell metabolism of MC3T3-E1 and hASCs was performed by using the 

AlamarBlue® Cell Viability assay. This assay is based on the mitochondrial oxidoredutase 

enzyme metabolic reduction of the blue non-fluorescent resazurin dye to the pink-colored 

highly fluorescent resorufin within the intracellular reducing environment of metabolically 

active cells 7. 
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For evaluation of micelles and free drug possible cell toxicity in MC3T3-E1 cells were 

initially seeded overnight in a 96-well plate at a density of 5 x 103 cells/well, (n=5). Each 

plate well contained 200 µL of BM. Then, cells were treated with BM containing free 

Naringin or Naringin-loaded micelles at a final drug concentration of 0 (K-, negative 

control), 2, 5, 10, 20 and 50 µg/mL of Naringin. For blank and Naringin-loaded micelles 

cytotoxicity evaluation, nanocarriers were concentrated in BM and diluted according to the 

different tested concentrations. For blank micelles experiments, cells were incubated with 

BM containing nanocarrier dosages of 12.5, 25, 50, 75, 100, 200 µg nanocarriers/well. 

In addition, cell cytotoxicity assays were also performed in hASCs as these cells are 

particularly interesting for cell-based therapies, particularly in the bone regeneration context. 

For these assays, hASCs were seeded at a density of 3.5 x 103 cells/well and different 

Naringin concentrations of 0 (K-, negative control), 5, 10, 20 and 50 µg/mL were used. 

During the assays, all cells were incubated for 24, 48 and 72 h. After each timepoint, the 

BM was exchanged to BM containing AlamarBlue according to manufacturer’s instructions. 

Following an overnight incubation period, the media was then transferred to a black clear 

bottom 96-well plate for analysis. AlamarBlue fluorescence was detected at an 

excitation/emission of λex = 540 nm/ λem = 600 nm by using a multi-mode microplate reader. 

All conditions were normalized to the control group (BM) set at 100 % viability. 

3.2.12 Cellular Proliferation Assays 

The samples from the previous cytotoxicity assays were washed twice with dPBS and 

then each well was incubated with 200 µL of 2 % Triton X-100 and sonicated in an 

ultrasound bath for 7 min (37 Hz, sweep field, 60 % potency) before the plates were frozen 

at -20 ºC. This freeze-thaw cycle was repeated one more time before determining the double 

stranded DNA (dsDNA) content of the lysates. Then, in a clear bottom black 96-well plate, 

25 µL of each sample was mixed with 25 µL of Tris-EDTA buffer (10 mM Tris-HCl, 1 mM 

EDTA, pH 7.5) and 50 µL of PicoGreen working solution. DNA content was extrapolated 

from a high range standard curve of bacteriophage lambda DNA (0, 50, 75, 150, 250 and 

500 ng DNA/mL). The plate was gently shaken and incubated for 5 min in the dark at RT. 

Samples were excited at λ = 485 nm and fluorescence intensity was measured at λ = 520 nm 

in a microplate reader. 
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3.2.13 ALP Activity Measurement Assays 

The ability of Naringin to induce osteogenic differentiation of hASCs was evaluated in 

OS-Dex or rOS. hASCs were seeded overnight in a 48-well culture plate at a density of 3.5 

x 103 cells/well (n=5) in 300 µL of BM. After 24 h of cell seeding, medium was replaced 

with BM and OS-Dex containing free Naringin or Naringin-loaded polymeric nanomicelles 

at a concentration of 0 (control), 5, 10, 20 and 50 µg/mL of Naringin, accordingly. All cells 

were incubated for 3, 7, 14 and 21 days and the respective differentiation medium was 

exchanged every 3 to 4 days. 

For ALP quantification cells were initially lysed by using the freeze-thaw technique to 

release ALP enzyme to the extracellular medium. Initially, cells were washed twice with 

dPBS and incubated with 300 µL of 2 % Triton X-100 solution in deionized water in an 

ultrasound bath for 7 min (37 Hz, sweep field, 60 % potency) before being frozen at -20 ºC. 

This freeze-thaw cycle was repeated one more time before determining ALP activity in the 

lysates by using 4NPhP ALP-mediated hydrolysis to quantify 4NPh release. For this 

quantification, 25 µL of each lysate sample were added to 75 µL of a freshly prepared 4NPhP 

solution (2 mg/mL) in 1 M diethanolamine (DEA) buffer (pH 9.8, with 0.5 mM MgCl2). The 

samples were incubated in the dark at 37 ºC for 1 h. Enzyme activity was then quantified by 

UV-VIS analysis at λ = 405 nm. A standard curve of 4NPh was used as reference (0, 15 30, 

50, 75, 95 µM in DEA buffer). The ALP activity was normalized according to the total DNA 

content in cell lysate determined by a PicoGreen® DNA Quantification kit according to the 

aforementioned protocol, and ALP was expressed as nanomole of p-nitrophenol/pg dsDNA. 

3.2.14 ALP Staining Assays 

To visualize the ALP activity in the cell monolayer, cells were stained with 1-Step™ 

NBT/BCIP Substrate Solution. Initially, hASCs were seeded overnight in 48-well plates at 

a density of 3.5 x 103 cells/well (n=3) in 300 µL of BM. After, cells were treated with BM 

and OS-Dex containing free Naringin or Naringin-loaded polymeric nanomicelles at a 

concentration of 0 (K-, negative control), 5, 10, 20 and 50 µg/mL of Naringin. Cells were 

incubated for 14 days and differentiation medium was exchanged every 3 to 4 days. After 

each timepoint, cells were pre-fixed with 4% formaldehyde fixative solution directly added 

into the culture medium. Afterwards, cells were incubated with 300 µL of 4 % formaldehyde 

fixative solution for 20 min, at RT. Then, cells were washed two times with dPBS and 
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incubated with 200 µL of NBT/BCIP for 1 hour at 37 ºC. Stained cells were imaged with a 

Stemi 508 Stereo Microscope (Zeiss, Taper, Sintra, Portugal). 

3.2.15 ELISA Immunoassay Quantification of BMP-2 Secretion 

The production of BMP-2 from hASCs was determined by an Enzyme-Linked 

Immunosorbent Assay (ELISA) kit for human BMP-2 quantification according to the 

manufacturer’s instructions (Thermo Fisher Scientific, Alfagene, Lisbon, Portugal). For this 

assay, culture medium from the ALP activity experiments with OS-Dex at 14 and 21 days 

was collected and frozen at -20 ºC. Then, BMP-2 levels were quantified by UV-VIS analysis 

at λ = 450 nm with the absorbance measured at λ = 550 nm serving as correction factor by 

using a microplate reader. BMP-2 levels were expressed in pg/mL of BMP-2 normalized to 

dsDNA content (pg dsDNA). 

3.2.16 Osteopontin Immunostaining 

Osteopontin (OPN) expression was visualized via fluorescence imaging of the 

extracellular layer formed during in vitro culture. Initially, 13 mm tissue culture polystyrene 

coverslips (TCPS) (Sarstedt, Sintra, Portugal) were punched with a 3.5 mm biopsy punch 

(ZMED) to afford smaller coverslips. The coverslips were washed with absolute ethanol and 

dried in an oven (60 ºC) before undergoing UV sterilization for 30 min. Afterwards, TCPS 

were placed on the bottom of an adherent 48-well plate, where hASCs were seeded overnight 

at a density of 3.5 x 103 cells/well in 300 µL of BM. After, cells were treated with BM and 

OS-Dex containing free Naringin or Naringin-loaded polymeric nanomicelles at different 

concentrations. Cells were incubated for 14 days and differentiation medium was exchanged 

every 3 to 4 days. After each timepoint, cells were fixed as aforementioned and washed three 

times with dPBS. For immunostaining, cells were first incubated with 300 µL of 0.5 % 

Triton-X100 in dPBS for 5 min, at RT. Afterwards, cells were rinsed two times in dPBS and 

incubated in 300 µL of a 5 % FBS/dPBS blocking solution for 45 min, at RT. Afterwards, 

the cells were washed in dPBS and incubated with 20 µL of a mouse anti-human OPN 

antibody solution (dilution 1:100 in 5% FBS/dPBS; Biolegend, Taper, Sintra, Portugal) 

overnight at 4°C, in the dark. Cells were then washed with dPBS and incubated with 20 µL 

of an anti-mouse Alexa Fluor 647 conjugate dye solution (dilution 1:100 in 5 % FBS/dPBS; 

Alfagene, Lisbon, Portugal) for 1 h, at RT, in the dark. Finally, cells were rinsed three times 

in dPBS before incubating for 5 min with 20 µL of a DAPI solution for nuclei staining 
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(dilution 1:500, original aliquot at 5 mg/mL in H2O), in the dark, at RT. Cells were then 

washed three times and the coverslips were transferred into microscopic slides for 

fluorescence microscopy analysis (Axio Imager M2, Carl Zeiss Microscopy GmbH). Image 

processing was performed by using ZEN v2.3 blue edition (Carl Zeiss Microscopy GmbH). 

For OPN quantification, the coverslips were imaged in 8 random regions using the 10x/0.25 

NA Plan-Achromat objective. The OPN mean fluorescence intensity (MFI) of each 

condition was obtained as the mean value across the respective random fluorescence 

micrographs. During sample acquisition, light intensity from the HXP200 metal-halide 

lamp, camera binning and exposure time was maintained constant throughout the entire 

process. 

3.2.17 Alizarin Red S Mineralization Assay 

In order to detect mineral accumulation in osteogenic cells, staining with Alizarin Red S 

dye was performed. Alizarin Red S is an anthraquinone dye commonly used for histological 

characterization of calcium deposits 8. For Alizarin Red S staining, hASCs were seeded 

overnight in 48-well plates on top of punched TCPS coverslips at a density of 3.5 x 103 

cells/well (n=3) in 300 µL of BM. Afterwards, hASCs were treated with BM and OS-Dex 

containing free Naringin or Naringin-loaded polymeric nanomicelles at different 

concentrations. Cells were incubated for 21 days and differentiation medium was exchanged 

every 3 to 4 days. Afterwards, cells were fixed and washed as aforementioned, before being 

incubated with 300 µL of Alizarin Red S (40 mM, pH = 4.2), for 1 h in the dark at RT. After 

incubation, the staining solution was removed and cells were rinsed three times with 

deionized water. Stained monolayers were imaged with a Stemi 508 Stereo Microscope. 

3.2.18 Statistical Analysis 

The data obtained is expressed as the mean ± standard deviation (s.d.). Significant 

differences were analyzed by GraphPad Prism version 6.01. One-way ANOVA was used to 

determine the significant differences among groups, followed by a Newman-Keuls multiple 

comparison test for pairwise comparison. Two-way ANOVA was used for statistical analysis 

between two groups, where P < 0.05 was used for significance. 
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4.1 Synthesis and Characterization of mPEG-PLA Diblock Copolymer 

via ROP 

The diblock copolymer mPEG-PLA aimed to be used as a precursor for the synthesis of 

self-assembled micellar nanocarriers was synthesized by ROP of the six-membered cyclic 

diester L-lactide using stannous octoate (Sn(Oct)2) as a catalyst and mPEG-OH as an initiator 

(Figure 11). Metal alkoxides, such as Sn(Oct)2, contain free d-orbitals and promote lactone 

polymerization through a coordination insertion mechanism resulting in the addition of two 

lactic acid monomers to the growing end of the polymer chain 9. Herein, the Lewis acidic 

metal alkoxide coordinates with the carbonyl oxygen of the lactone and is followed by 

alkoxy insertion into the acyl oxygen bond. Cleavage of this acyl bond results in L-Lactide 

and produces metal alkoxide species that can reinitiate the cycle, this the main reason for the 

polymerization process to be named ‘living polymerization’ 10. 

 

Figure 11. Coordination-insertion mechanism of Sn(Oct)2 for the ROP of L-Lactide. (A) Formation of the 

active species initiator for the coordination-insertion reaction. (B) Opening of the lactide ring and insertion into 

a macroinitiator containing a hydroxyl end group (OR). Adapted from references 10–12. 

(B)

(A)
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The synthesis of mPEG-PLA via ROP proceeded as before described in the Methods 

Section 3.2.1. The resulting mPEG-PLA diblock copolymer and its reaction components 

were then characterized by 1H NMR and ATR-FTIR. The proton NMR characterization is 

presented in Figure 12. As the 1H NMR spectrum demonstrates, all the characteristic peaks 

of the synthesized copolymer are in agreement with those reported in the literature 13–15. In 

detail, the peaks with a chemical shift at δ= 3.65 and δ= 3.38 ppm are assigned to mPEG 

repeating methylene units (c, O-CH2-CH2) and methoxy end group (d, CH3-O), respectively 

14. The multiplet at δ= 5.17 ppm and the singlet at δ= 1.57 ppm are the characteristic protons 

of the PLA backbone and are attributed to the repeating methenyl (a, CH3-CH-O) and methyl 

(b, CH3-CH-O) units, respectively.14 In addition, the characteristic chemical shift of the two 

lactide peaks at δ= 5.03 ppm (CH-CH3) and δ= 1.66 (CH-CH3) to PLA peaks δ= 5.17 and δ= 

1.57 ppm, respectively, are indicative of a successful polymerization and absence of lactide 

monomer in the purified copolymer and thus, provide evidence that the obtained spectra does 

not correspond to a physical mixture of the monomers 16. Moreover, in the mPEG-PLA 

copolymer spectrum it is possible to observe the presence of two peaks corresponding to the 

terminal repeating monomer of the PLA chain. The weak quartet signal obtained at δ= 4.34 

ppm and the multiplet obtained at δ= 1.47 ppm are assigned to the methenyl (e, CH3-CH-

OH) and methyl (f, CH3-CH-OH) protons that are neighbors of the PLA hydroxyl end group 

15. In addition, the characteristic peak of the CDCl3 solvent was present at δ= 7.26 ppm in all 

spectra as expected. 
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Figure 12. 1H NMR spectra of mPEG-PLA diblock copolymer and its respective reaction reagents in 

CDCl3. 

As a complement to NMR characterization data, the ATR-FTIR spectra corroborated the 

successful synthesis of the diblock copolymer (Figure 13). Such is evident in the bands 

observed at 2883 and 2924 cm-1 which are assigned to -C-H stretching vibrations in mPEG 

and mPEG-PLA, respectively 13. In addition, the strong band obtained at 1749 cm-1 

corresponds to the -C=O stretching of lactic acid esters 17. The bands present at 1545, 1454 

and 1186 cm-1 correspond to asymmetric -CH3 bending and -C-O-C- stretching, respectively 

18. Moreover, the ATR-FTIR data obtained for mPEG-OH and mPEG-PLA shows a 

characteristic C-O-C ether asymmetric stretching band at 1095 and 1081 cm-1, respectively 

19. It is important to emphasize that the absorption peak at 930 cm-1 for -CO-O- ring of 

lactide was absent from the FTIR spectrum of mPEG-PLA diblock copolymer. This peak is 

characteristic for the lactide monomer and can be used to differentiate between PLA and 

unreacted lactide monomers 15. Taken together, both characterization techniques confirmed 

the successful synthesis of mPEG-PLA amphiphilic diblock copolymer by ROP. 
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Figure 13. ATR-FTIR spectra of mPEG-PLA diblock copolymer and its respective reaction components. 

The ROP of lactones is a widely-established method to produce aliphatic polyesters due 

to its ease of scale up, yield and cost effectiveness. In addition, its living polymerization 

nature leads to a better control in polymer chain lengths as well as physicochemical 

properties 10. Some drawbacks of this synthesis include the use of toxic solvents (e.g. 

toluene) and heavy metals catalysts and the difficulty associated with their complete removal 

as recommended by regulatory agencies 20,21. 

To overcome such limitations, novel alternatives have been focusing on the use of non-

toxic catalysts containing calcium (e.g. calcium acetylacetonate) or by taking advantage of 

green chemistry-based enzymatic catalysts (e.g. lipase) to mediate the polymerization 

process 12,20. Taking this into consideration, the selected catalyst for mPEG-PLA ROP-based 

synthesis was Sn(Oct)2. This catalyst has a high activity and is approved by FDA-as a food 

additive. The main drawback regarding its use is the requirement for high reaction 

temperatures in order to achieve high monomer-to-polymer conversion rates. Such increases 

both inter- and intramolecular esterification and consequently contributes to polymer 

molecular weight polydispersity 11. 

The molecular weight of the hydrophobic polymer backbone plays an important role in 

the context of amphiphilic micelles self-assembly process and on their final physicochemical 
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properties 22
. The length of the synthesized PLA hydrophobic polymer chain and most 

importantly, the reproducibility of this polymerization was analyzed by 1H NMR 

spectroscopy. The ethylene oxide/lactyl (EO/LA) ratio of the copolymers was determined 

from the integration of NMR proton signals obtained at δ= 3.65 ppm (O-CH2-CH2) assigned 

to the repeating mPEG methylene groups, and from the peaks obtained at δ= 5.2 ppm (CH3-

CH-O) which correspond to repeating PLA methenyl units. The values of the corresponding 

integers were obtained after three measurements in MestReNova software. The number 

average molecular weight (Mn) of the PLA hydrophobic backbone was determined according 

to Equation 2, where 44 and 72 correspond to the molecular weight of the repeating 

monomers 23. 

Equation 2. 𝑀𝑛(𝑃𝐿𝐴) =
72 × 𝑀𝑛(𝑃𝐸𝐺)

44
 ×  

1

𝐸𝑂/𝐿𝐴
 

Self-assembled micelles were prepared as aforementioned in the Methods Section 3.2.4, 

and the corresponding micelle hydrodynamic radius (Hr), PDI and ζ-potential were obtained 

via DLS and electrophoretic mobility measurements. Table 2 showcases the resulting PLA 

hydrophobic block Mn and corresponding Hr, PDI and ζ-potential measurements relatively 

to each synthesis replicate. 

The intra-batch copolymer variation was observed following a ROP synthesis (S2a and 

S2b). Generally, all reaction conditions and purifying steps were maintained for all 

replicates, except for S2a and S2b, in which the recovery rate of the purified polymer in the 

MetOH precipitation step was changed. It is worth noting that both S2a and S2b were 

obtained from the same synthesis replicate (S2). Basically, while S2a represents the polymer 

fraction that rapidly precipitated in cold MetOH, S2b corresponds to the slowest forming 

precipitate recovered after overnight precipitation. In agreement with this, S2a is enriched 

in PLA segments when compared to the slower forming precipitates in S2b, Mn (PLA) 3512 

vs 1719, respectively. These findings may be correlated with mPEG solubility in MetOH 

and PLA insolubility in this polar solvent. Therefore, the longer the PLA block in the 

amphiphilic mPEG-PLA copolymer, the more hydrophobic the copolymer becomes, hence 

leading to faster precipitation rates. These observations show that the Mn range of 

polymerized PLA segments can potentially be reduced by adjusting the time of recovery 

after MetOH precipitation: the faster the recovery rate, the higher Mn of the recovered 

mPEG-PLA diblock copolymer. Regarding the effect of copolymer molecular weight in 
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nanocarrier formulations, Lebouille and colleagues found that final particle size should not 

depend on the polymer molar mass, when producing polycaprolactone nanoparticles with 

different molar masses (2, 4, 8, 25, 37, 50 and 80 kDa), while a theoretical analysis by 

Whitesides and Ross found that initial polymer PDI did not affect the final particle size 24,25. 

Still, one needs to consider the differences between a solid polycaprolactone nanoparticle 

produced in the presence of a surfactant versus the more flexible PMs self-assembled via 

nanoprecipitation. 

 

Table 2. Composition of mPEG-PLA diblock copolymer and respective micelle physicochemical properties 

Synthesis EO/LAa Mn(PLA)b Hr, nmc PDIc ζ-potential, mVc 

S1 5.88 1391 
144.9 ± 0.78 

126.4 ± 0.31 

0.208 ± 0.010 

0.173 ± 0.009 

-10.8 ± 1.15 

-10.6 ± 0.88 

S2a 2.33 3512 150.6 ± 5.80 0.355 ± 0.014 -10.1 ± 0.25 

S2b 4.76 1719 222.2 0.327 - 

S3 4.17 1962 - - - 

a EO/LA ratio calculated from the integration of NMR resonances assigned to repeating mPEG and PLA 

units at δ= 3.65 and δ= 5.20 ppm, respectively. b Mn of PLA segment calculated from Equation 2. c PM 

physicochemical properties determined by DLS. 

The ROP-synthesized mPEG-PLA diblock copolymer was then used for the self-

assembly of polymeric nanomicelles. Blank PMs were prepared by the solvent exchange 

technique, also known as nanoprecipitation. In terms of micelle properties, disparities could 

be observed if micelles were formulated with the different batches of synthesized 

copolymers (Table 2). Initially, the S1 batch mPEG-PLA diblock copolymer was used to 

produce two nanomicelles formulations employing the same nanoprecipitation conditions. 

The results indicate that micelles produced from S1 batch exhibit similar size, PDI and ζ-

potential if nanoprecipitation is performed in the optimized conditions described in detail in 

the Methods Section 3.2.9. However, in comparison to micelles formulated with the other 

synthesized copolymer batches, there are clear size discrepancies. While S1 copolymer 

yielded relatively small micelles (ca. Hr 137 nm, PDI 0.191), the copolymers obtained in the 

second synthesis (S2a and S2b) yielded larger micelles and with a significantly higher PDI. 
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Hydrodynamic particle size dispersity is an important parameter in nanocarrier formulations 

as highly polydisperse formulations can have different biological performances in 

comparison to nanocarrier formulations with narrower size range. Conversely, ζ-potential of 

the PMs was unaffected by variations in PLA Mn, from S1 (1391) to S2a (3518) exhibiting 

values of -10.6 mV and -10.1 mV, respectively, suggesting that this parameter is less 

susceptible to variations in PLA hydrophobic chain length. 

The observed variability between micelles size and polymer synthesis affects 

manufacturing reproducibility and may impair the envisioned use of such nanomicelles for 

bone drug delivery and tissue engineering. In light of these findings, a simple alternative 

synthesis route for the mPEG-PLA copolymer was chosen, with the aim to achieve higher 

reproducibility. 
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4.2  Bioinstructive Naringin Micelles for Guiding Stem Cells 

Osteodifferentiation 

 

 

 

 

 

 

 

 

 

Subchapter 4.2. 
 

This subchapter is based on the article entitled 

“Bioinstructive Naringin-loaded Micelles for Guiding Stem Cells Osteodifferentiation” 

(manuscript in preparation) 

_________________________________________________________________________ 
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Abstract 

Naringin is a naturally occurring hydrophobic flavanone with potential to promote the 

proliferation and osteogenic differentiation of mesenchymal stem cells. In this work, we 

report for the first time the delivery of Naringin through biodegradable mPEG-MS-PLA 

diblock polymeric micelles to human adipose-derived stem cells (hASCs) with the aim to 

explore its pro-osteogenic effect in these cells. The synthesis of the diblock copolymer was 

performed via Michael-type addition reaction between hydrophilic mPEG-MAL and 

hydrophobic PLA-SH and its success was confirmed by 1H NMR and FTIR spectroscopy. 

The resulting mPEG-MS-PLA copolymer self-assembled into monodisperse polymeric 

micelles via nanoprecipitation (84.48 ± 2.44 nm) and a high Naringin encapsulation 

efficiency (87.8 ± 4.6 %) was obtained. The characterization of Naringin-loaded 

nanomicelles in vitro drug release profile revealed a sustained cargo release over time up to 

7 days. Alongside, pre-clinical data revealed that that upon internalization in 2D cultures of 

hASCs, Naringin nanomicellar formulations attained a higher pro-osteogenic effect than that 

of the free drug. Moreover, Naringin-loaded micelles also induced superior osteopontin 

expression and increased matrix mineralization. Overall, these findings support the use of 

nanomicelles for Naringin delivery into hard-to-transfect hASCs, as a valid approach for 

modulating stem cells osteogenic differentiation. 

Keywords: Controlled release, human adipose-derived mesenchymal stem cells, Naringin, 

osteogenic differentiation, polymeric micelles 
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1. Introduction 

The potential of human mesenchymal stem cells (hMSCs) for osteogenic and 

chondrogenic differentiation has been widely explored for the treatment of various disorders 

including those related to bone tissues, heart (e.g. myocardial infarction), skin-grafts and 

hepatic or renal failure 26. 

Among the different types of stem cells, human adipose-derived stem cells (hASCs) have 

been gaining attention as an attractive source of hMSCs for bone tissue engineering and 

regenerative medicine owing to their low immunogenicity, immunosuppressive and anti-

inflammatory activity 27. Adding to this, these cells are readily available due to their 

straightforward isolation from adipose tissue using minimally invasive techniques 27. This 

unique set of features establishes these cells as promising candidates to be used for stem cell-

based therapies. Unfortunately, the success of hASCs as gold standard models for cell-based 

therapies is limited by the technologies used for their osteogenic differentiation, in particular, 

pharmaceutical-based approaches. 

Current approaches for pro-osteogenic differentiation rely on the use of drugs or 

recombinant proteins (e.g. Dexamethasone (Dex) and bone morphogenetic protein 2 (BMP-

2)). These are often associated with deleterious side effects and low effectiveness. In fact, 

the glucocorticoid Dex can increase osteoblast differentiation but simultaneously induce 

adipogenesis even in osteogenic conditions 28. The alternative use of BMPs for eliciting bone 

formation is also not without drawbacks as supraphysiological doses are usually needed to 

obtain the desired osteoinductive outcome 29. Besides, BMPs have high production costs and 

could be denatured in vivo, which limits their applicability 30. 

In light of this, there has been a shift towards the discovery of naturally available 

compounds with potential for modulating the process of stem cells differentiation. One of 

such bioinspired drugs is Naringin, a natural flavanone glycoside that can enhance the 

proliferation and differentiation of osteoprogenitor cells into osteoblasts, as well as inhibit 

osteoclasts maturation 31. Naringin offers several advantages in comparison with synthetic 

pro-osteogenic drugs. For instance, in comparison with Dex, Naringin is capable of 

repressing adipogenesis while promoting the osteogenic commitment of hMSCs 32–34. Also, 

Dex systemic administration is characterized by a plethora of deleterious side-effects 35, 

while Naringin is reported to possess a wide range of anti-oxidant, anti-inflammatory, anti-

cancer and anti-microbial activities 31,36. Moreover, Naringin is reported to enhance the 
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secretion of BMP-2 in osteoprogenitor cells 37. Overall, this makes Naringin a promising 

candidate for inducing the osteodifferentiattion of hASCs. However, this flavanone has poor 

in vivo bioavailability and can be extensively metabolized upon administration, a factor that 

limits its clinical efficacy 38,39. Therefore, Naringin bioactivity could be potentially improved 

by inclusion in a nanocarrier. 

In this study, the potential of mPEG-MS-PLA nanomicelles-mediated Naringin delivery 

was explored for the first time in the context of flavanone-bioinstructed stem cell osteogenic 

differentiation. The obtained results indicate that nanomicelles have a high Naringin 

encapsulation efficacy and achieve a dose-dependent cellular internalization in hard to 

transfect hASCs. Osteogenesis induction assays demonstrated that Naringin intracellular 

delivery and spatiotemporal release improves hASCs commitment to osteogenic lineages, 

with significant calcium mineralization deposits being obtained in nanocarrier transfected 

stem cells in comparison to free drug controls. These results emphasize the valuable potential 

of Naringin nanodelivery as a cell-instructive approach that can then be extrapolated for 

application in bone tissue engineering and regenerative medicine. 

2. Materials and Methods 

2.1 Materials 

Methoxypoly(ethylene glycol)-maleimide (mPEG-MAL) (Mn 5000, > 90 % purity), thiol-

poly(L-lactide) (PLA-SH) (Mn 5000, PDI < 1.2); 4-Nitrophenyl phosphate disodium salt 

hexahydrate (4NPhP), 4-Nitrophenol 10 mM (4NPh), phosphate buffered saline (PBS), 

formaldehyde, Coumarin-6 (Coum-6), Naringin ( > 95 % purity), β-glycerophosphate 

disodium salt hydrate (β-gly), Alizarin Red S, Triton X-100 and Amicon® Ultra-4 mL (3000 

MWCO) were all purchased from Laborspirit (Lisbon, Portugal). Spectra/Por 1 dialysis 

tubing (6000 - 8000 Da MWCO) and Float-A-Lyzer G2 (3500 - 5000 Da MWCO) dialysis 

cassettes were purchased from Reagente 5 (Oporto, Portugal). Murine pre-osteoblast cell 

line subclone-4 (MC3T3-E1, Mus Musculus, ATCC® CRL-2593™) and human adipose-

derived mesenchymal stem cells (hASCs, Homo Sapiens, ATCC® PCS-500-011™) were 

purchased from LGC Standards S.L.U. (Barcelona, Spain). Minimum Essential Medium α-

modification (α-MEM), fetal bovine serum (FBS, E.U. approved, South American origin), 

antibiotic, TrypLE™ Xpress Enzyme with phenol red (1X), Quant-iT™ PicoGreen® 

dsDNA Assay Kit, AlamarBlue™, 1-Step™ NBT/BCIP Substrate Solution, and Wheat 
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Germ Agglutinin (WGA) Alexa Fluor® 594 conjugate dye and DAPI were purchased from 

Alfagene (Lisbon, Portugal). Dexamethasone (Dex, 96% purity) and Dulbecco’s PBS were 

purchased from Thermo Fisher Scientific (Oeiras, Portugal). L-ascorbic acid 2-phosphate 

magnesium salt (AA) was purchased from VWR (Lisbon, Portugal). 

2.2 Synthesis of mPEG-MS-PLA Copolymer 

mPEG-MS-PLA copolymer was synthesized via a Michael-type addition reaction 

between mPEG-MAL and PLA-SH 1 (Figure 14). Briefly, mPEG-MAL (1.5 mPEG/PLA 

molar ratio, 0.04 mmol) and PLA-SH (0.0267 mmol) were dissolved in a mixture of acetone 

(v/v = 0.43) and sodium phosphate buffer (pH = 7.2, 100 mM, v/v = 0.57) containing EDTA 

(5 mM) and mixed under inert conditions (N2) for 2 days at room temperature (RT). 

Afterwards, the resulting crude mixture was completely dried in a rotary evaporator (Buchi, 

Rotavapor® R-300), dissolved in dichloromethane and then precipitated in cold diethyl 

ether. The recovered precipitate was then dialyzed (6000 - 8000 Da MWCO) against 

deionized water for 72 h, before being frozen at -80 ºC and freeze-dried for storage. 

 

Figure 14. Synthesis route of mPEG-MS-PLA diblock copolymer via a Michael-type addition. *Phosphate 

buffer 100 mM, pH = 7.2, containing 5 mM EDTA. 

2.3 Spectroscopy Characterization of mPEG-MS-PLA Copolymer 

The successful synthesis of mPEG-MS-PLA was characterized by different spectroscopy 

techniques. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker 

Advance III 400 MHz spectrometer. Prior to spectra acquisition, samples were dissolved in 

CDCl3 and transferred to 300 MHz NMR glass tubes (Sigma-Aldrich, Sintra, Portugal). 
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NMR spectra were acquired with 18 s relaxation delay, 256 scans and 32 dummy scans. Data 

processing was performed in the MestReNova v6.0.2 software, and spectra were normalized 

according to the established CDCl3 solvent peak at 7.26 ppm. Fourier Transformed Infrared 

spectra were collected on dried powder samples with attenuated total reflectance (ATR-

FTIR) by using a Bruker Tensor 27 spectrometer. The spectra of all samples were recorded 

at a 4 cm-1 resolution with a total of 256 scans in the spectral width of 4000 to 350 cm-1. 

Spectral data was processed in OPUS software. 

2.4 Preparation of mPEG-MS-PLA Nanomicelles 

Self-assembly of Naringin-loaded or blank mPEG-MS-PLA nanomicelles was performed 

by nanoprecipitation. First, the copolymer (5 mg) was dissolved in 1 mL of freshly prepared 

acetone solution containing Naringin (10 % w/w of copolymer) under ultrasound sonication 

for 5 min. Then, the solution was added dropwise into a 10 mL round-bottom flask 

containing 5 mL deionized water and stirred for 90 min at 400 rpm, RT. Afterwards, acetone 

was evaporated under a rotary evaporator during 8 min (37 ºC, 50 mbar). The resultant 

solution was dialyzed (3500 -5000 Da MWCO) against deionized water for 1 h to remove 

free Naringin. Blank micelles were prepared following the above-mentioned procedure 

without dialysis. 

2.5 Physicochemical Characterization of Nanomicelles 

The average hydrodynamic particle radius (Hr), size distribution (PDI) and ζ-potential of 

the different micelles (1 mg/mL) were characterized by dynamic light scattering (DLS) with 

a Zetasizer Nano ZS equipment (Malvern Instruments Ltd., Malvern, UK). All 

measurements were carried out in triplicate at 25 ºC and with a 173º backscatter angle. 

Nanomicelles morphology was observed by scanning transmission electron microscopy 

(STEM). Samples were prepared by drop-wise addition of 10 µL of freshly prepared micelles 

(0.2 mg/mL) on a carbon-film copper grid and left to dry overnight, at RT. STEM 

micrographs were acquired in a Hitachi SU-70 STEM microscope, operated at an 

accelerating voltage of 20.0 kV. 

2.6 Evaluation of Nanomicelles Colloidal Stability 

Nanomicelles colloidal stability was investigated by monitoring changes in size, PDI and 

ζ-potential along time upon storage in solution. For stability studies Naringin-loaded 

nanocarrier formulations (n=3), were prepared by nanoprecipitation and maintained in 
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deionized water or PBS (pH = 7.4) at 4 ºC. Nanomicelles and their physicochemical 

properties were then analyzed by DLS at different time intervals: 0, 1, 7 and 14 days. 

2.7 Drug Loading 

Naringin encapsulation efficiency was determined by ultraviolet-visible (UV-VIS) 

absorbance of the flavanone peak of Naringin (λ= 282 nm) corresponding to the benzoyl 

moiety. This peak is followed by a another region of smaller intensity to higher wavelengths 

(300 – 400 nm), associated with the cinnamoyl moiety and is characteristic of flavanones 

such as Naringin 5 (Figure 33, Annex I). Briefly, after free drug removal, Naringin-loaded 

nanomicelles solution (0.2 mg/mL) was analyzed by UV-VIS at 282 nm. Blank nanomicelles 

(0.2 mg/mL) established the blank for UV-VIS quantification. The UV-VIS absorbance was 

measured in a microplate reader equipped with a tungsten halogen lamp (Synergy HTX 

Biotek, Izasa Scientific, Carnaxide, Portugal) by using a quartz microplate (Hella transparent 

96-wellplate, VWR, Lisbon, Portugal). A standard calibration curve of Naringin in deionized 

water was used to determine the drug encapsulation efficacy (Figure 33, Annex I). 

Encapsulation efficiency was calculated using the above equation:  

Encapsulation Efficiency (%): 

= (
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁𝑎𝑟𝑖𝑛𝑔𝑖𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠)

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁𝑎𝑟𝑖𝑛𝑔𝑖𝑛 𝑎𝑑𝑑𝑒𝑑
) ×  100 

2.8 In vitro Drug Release Profile 

The in vitro Naringin release profile was investigated in PBS at various pH conditions to 

mimic different physiological scenarios: pH 7.4 (physiological pH) and pH 5.5 (endo-

lysosomal pH). Briefly, 2 mL of freshly prepared Naringin-loaded micelles (1 mg/mL) were 

transferred to a dialysis tubing (3500 - 5000 Da MWCO) and submerged in 15 mL of PBS 

at 37 ºC at a constant stirring rate (600 rpm). At defined time intervals, 1 mL samples were 

withdrawn from the dialysate and replaced with the same volume of fresh PBS. Samples 

were withdrawn at different time points until the plateau phase was achieved. For this study, 

the standard calibration curve of the drug in water was used (Figure 33, Annex I). 

2.9 Cell Culture 

All cells were manipulated within a Class II biological safety cabinet and maintained as 

per established guidelines in a humidified 5 % CO2 atmosphere incubator with 95 % O2 and 
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at 37 ºC 6. MC3T3-E1 and hASCs were routinely cultured in α-MEM supplemented with 10 

% (v/v) heat-inactivated FBS and 1 % of antibiotic mixture (basal growth medium, BM) and 

media was exchanged every 5 days. Cells were subcultured before reaching confluence. All 

plastic adherent well plates were made of tissue culture treated polystyrene (Sarstedt, Sintra, 

Portugal). 

For cellular experiments investigating osteogenic differentiation, AA, β-gly and Dex 

stock solutions were prepared in dPBS and frozen at -20ºC. Different osteogenic media were 

prepared from such aliquots. Osteogenic supplements were added to BM in the following 

concentrations: (i) reduced osteogenic differentiation medium (rOS) - 50 µg/mL AA and 10 

mM β-gly; and (ii) OS-Dex – rOS and 100 nM Dex. For preparation of free Naringin 

concentrations, the drug was initially dissolved in sterile dimethylsulfoxide (50 mg/mL) and 

subsequently diluted in the respective assay media (basal or osteogenic) and to a final 0.1 % 

(v/v) dimethylsulfoxide content across all concentrations. Osteogenic assays involving 

alkaline phosphatase (ALP) activity and BMP-2 quantifications, as well as OPN and Alizarin 

Red S visualization followed the below described conditions (Table 3). 

Table 3. Overview of the conditions used in osteogenic differentiation assays. 

Assay Culture medium Pharmaceutic 
Dosing 

regime 

Total 

incubation time 

I, OS-Dex 
AA + β-gly + Dex 

(OS) 
Naringin Single 21 d 

II, One dose AA + β-gly (rOS) 
Naringin; Naringin-

loaded micelles 
Single 7 d 

II, Two dose AA + β-gly (rOS) 
Naringin; Naringin-

loaded micelles 
Double 7 d 

Across all experiments, medium was exchanged every 3 days containing the respective osteogenic 

supplements listed above, except for the Two dose assay, where medium with a second dose of pharmaceutic 

was added after 3 days. Please see the respective dose regimen schematics in each result panel. 

2.10 In vitro Cellular Uptake Studies 

2.10.1 Fluorescence Microscopy 

Nanomicelles cellular uptake kinetics in MC3T3-E1 pre-osteoblasts and hASCs were 

evaluated via fluorescence microscopy. Briefly, MC3T3-E1 and hASCs were seeded in µ-

Slide 8-well chambers (ibidi GmbH) overnight at a density of 8.0 and 25.0 x 103 cells/well, 

respectively, in free-antibiotic BM. Then, cells were incubated with 250 µg/well of Coum-
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6-loaded nanocarriers for different time intervals (2, 4 and 6 h). After each time point, cells 

were fixed in 4% formaldehyde. After 6h, fixed cells were washed three times with dPBS 

and then the cells cytoplasm was labelled with 50 µL of WGA Alexa Fluor® 594 conjugate 

dye (0.2 mg/mL) by incubating for 5 min in the dark. Afterwards, cells were rinsed three 

times in dPBS and maintained in dPBS until fluorescence microscopy analysis. Confocal 

laser scanning microscopy (CLSM) and fluorescence microscopy (Axio Imager 2, Zeiss) 

were used to follow the kinetics of intracellular internalization of the nanocarriers. Image 

processing was performed using ZEN v2.3 blue edition software (Carl Zeiss Microscopy 

GmbH). 

2.10.2 Flow Cytometry 

The quantitative measurement of Coum-6 fluorescence intensity was conducted using a 

flow cytometer. MC3T3-E1 and hASCs were seeded in 24-well plates overnight at a density 

of 50 and 40 x 103 cells/well (n=4) respectively, in free-antibiotic BM. Then, cells were 

incubated with the 96-well plate equivalent of 25, 50 and 100 µg of Coum-6- nanocarriers 

per well. Nanocarriers were previously concentrated by centrifuging for 30 min in Amicon® 

ultra centrifugal units (3000 Da MWCO) at 16600 g. After 4 h incubation, cells were washed 

twice with dPBS, trypsinized (500 µL, 5 min incubation at 37ºC), neutralized with equal 

volume of dPBS and collected by centrifugation at 500g for 5 min. Then, the supernatant 

was aspirated and cells were suspended in 200 µL of dPBS prior to fluorescent intensity 

measurements. 

2.11 Cytotoxicity Assays 

Assessment of MC3T3-E1 and hASCs cell metabolism was performed by using the 

AlamarBlue® Cell Viability assay. Briefly, MC3T3-E1 cells were seeded in a 96-well plate 

overnight at a density of 5 x 103 cells/well (n=5) in BM. Then, cells were incubated with 

BM containing free Naringin or Naringin-loaded micelles at a final drug concentration of 0 

(K-, negative control), 2, 5, 10, 20 and 50 µg/mL of Naringin. For blank and Naringin-loaded 

micelles cytotoxicity evaluation, nanocarriers were concentrated in BM and diluted 

according to the different tested concentrations. For blank micelles experiments, cells were 

incubated with BM containing nanocarrier dosages of 12.5, 25, 50, 75, 100, 200 µg 

nanocarriers/well. In addition, cell cytotoxicity assays were also performed in hASCs as 

these cells are particularly interesting for cell-based therapies, particularly in the bone 
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regeneration context. For these assays, hASCs were seeded at a density of 3.5 x 103 cells/well 

and different Naringin concentrations of 0 (K-, control), 5, 10, 20 and 50 µg/mL were used. 

During the assays, all cells were incubated for 24, 48 and 72 h. After each timepoint, the 

medium was exchanged to BM containing AlamarBlue according to manufacturer’s 

instructions. Following an overnight incubation period, the media was then transferred to a 

black clear bottom 96-well plate for analysis. AlamarBlue fluorescence was detected at an 

excitation/emission of λex = 540 nm/ λem = 600 nm by using a multi-mode microplate reader. 

All conditions were normalized to the control group (BM) set at 100 % viability. 

2.12 Cellular Proliferation Assays 

Samples from the previous cytotoxicity assays were rinsed with dPBS, incubated with 

200 µL of 2 % Triton X-100 in deionized water and sonicated for 7 min before plates were 

frozen at -20 ºC. This freeze-thaw cycle was repeated one more time before determining 

lysates double-stranded DNA (dsDNA) content with the PicoGreen kit according to the 

manufacturer’s instructions. Cell dsDNA content was then determined after incubation for 5 

min in the dark at RT. The samples were excited at λ = 485 nm and fluorescence intensity 

was measured at λ = 520 nm in a microplate reader. 

2.13 ALP Activity Measurement Assays 

The ability of Naringin to induce osteogenic differentiation of hASCs was evaluated in 

OS-Dex or rOS. hASCs were seeded overnight in a 48-well plate at a density of 3.5 x 103 

cells/well (n=5) in BM. Then, medium was replaced with BM and OS-Dex containing free 

Naringin or Naringin-loaded polymeric nanomicelles at a concentration of 0 (control), 5, 10, 

20 and 50 µg/mL of Naringin, accordingly. All cells were incubated for 3, 7, 14 and 21 days 

and the respective differentiation medium was exchanged every 3 to 4 days. After each time 

point, cells were washed twice with dPBS and incubated with 300 µL of 2 % Triton X-100 

solution in an ultrasound bath for 7 min (37 Hz, sweep field, 60% potency) before being 

frozen at -20 ºC. This freeze-thaw cycle was repeated one more time before determining 

ALP activity in the lysates by using 4NPhP ALP-mediated hydrolysis to quantify 4NPh 

release. For this quantification, 25 µL of each lysate sample were added to 75 µL of a freshly 

prepared 4NPhP solution (2 mg/mL) in 1 M diethanolamine (DEA) buffer (pH 9.8, with 0.5 

mM MgCl2). The samples were incubated in the dark at 37ºC for 1 h. Enzyme activity was 

then quantified by UV-VIS analysis at λ = 405 nm. A standard curve of 4NPh was used as 
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reference (0, 15 30, 50, 75, 95 µM in DEA buffer). ALP activity was normalized according 

to the total DNA content in cell lysate determined by a PicoGreen® DNA Quantification kit 

according to the aforementioned protocol, and ALP was expressed as nanomole of p-

nitrophenol/pg DNA. 

2.14 ALP Staining 

To visualize the ALP activity in the cell monolayer, cells were stained with 1-Step™ 

NBT/BCIP Substrate Solution. Briefly, hASCs were seeded overnight in 48-well plates at a 

density of 3.5 x 103 cells/well (n=3) in BM. Then, cells were treated with BM and OS-Dex 

containing free Naringin or Naringin-loaded polymeric nanomicelles at a concentration of 0 

(K-, control), 5, 10, 20 and 50 µg/mL of Naringin. Cells were incubated for 14 days and 

differentiation medium was exchanged every 3 to 4 days. After each timepoint, cells were 

fixed as aforementioned and rinsed in dPBS before adding 200 µL of NBT/BCIP and 

incubating for 1 h at 37 ºC. Stained cells were imaged with a Stemi 508 Stereo Microscope 

(Zeiss, Taper, Sintra, Portugal). 

2.15 ELISA Immunoassay Quantification of BMP-2 Secretion 

BMP-2 secretion from hASCs was determined via ELISA kit for human BMP-2 

according to the manufacturer’s instructions. For this assay, culture medium from the ALP 

activity experiments with OS-Dex at 14 and 21 days was collected and frozen at -20ºC. Then, 

BMP-2 levels were quantified by UV-VIS analysis at λ = 450 nm with the absorbance 

measured at λ = 550 nm serving as correction factor by using a microplate reader. BMP-2 

levels were expressed in pg/mL of BMP-2 normalized to dsDNA content. 

2.16 Osteopontin Immunostaining 

Osteopontin (OPN) expression was visualized via fluorescence imaging of the 

extracellular layer formed during in vitro culture. Initially, hASCs were seeded in TCPS 

coverslips overnight at a density of 3.5 x 103 cells/well in BM. After, cells were treated with 

BM and OS-Dex containing free Naringin or Naringin-loaded polymeric nanomicelles at 

different concentrations. Cells were incubated for 14 days and differentiation medium was 

exchanged every 3 to 4 days. After each timepoint, cells were fixed as aforementioned and 

rinsed in dPBS. 

For immunostaining, cells were first incubated with 0.5 % Triton-X100 in dPBS for 5 

min, at RT. Afterwards, cells were rinsed in dPBS and incubated with a 5 % FBS/dPBS 
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blocking solution for 45 min, at RT. Then, cells were washed in dPBS and incubated with 

20 µL of a mouse anti-human OPN antibody solution (dilution 1:100 in 5% FBS/dPBS; 

Biolegend, Taper, Sintra, Portugal) overnight at 4°C, in the dark. Cells were then washed 

with dPBS and incubated with 20 µL of an anti-mouse Alexa Fluor 647 conjugate dye 

solution (dilution 1:100 in 5 % FBS/dPBS) for 1 h, at RT, in the dark. Finally, cells were 

rinsed three times in dPBS before incubating for 5 min with 20 µL of a DAPI solution for 

nuclei staining (dilution 1:500, original aliquot at 5 mg/mL in H2O), in the dark, at RT. Cells 

fluorescence microscopy analysis was performed in a Axio Imager M2 widefield microscope 

(Carl Zeiss Microscopy GmbH). Image processing was performed by using ZEN v2.3 blue 

edition. For OPN quantification, 8 random coverslip regions were imaged by using the 

10x/0.25 NA Plan-Achromat objective. 

2.17 Alizarin Red S Mineralization Assay 

In order to detect mineral accumulation in osteogenic cells, staining with Alizarin Red S 

dye was performed. For Alizarin Red S staining, hASCs were seeded overnight in 48-well 

TCPS coverslips at a density of 3.5 x 103 cells/well (n=3) in BM. Cells were treated with 

BM and OS-Dex containing free Naringin or Naringin-loaded polymeric nanomicelles at 

different concentrations. Cells were incubated for 21 days and differentiation medium was 

exchanged every 3 to 4 days. Afterwards, cells were fixed and washed as aforementioned, 

before incubation with 300 µL of Alizarin Red S (40 mM, pH = 4.2), for 1 h in the dark at 

RT. After incubation, the staining solution was removed and cells were rinsed three times 

with deionized water. Stained monolayers were imaged with a Stemi 508 Stereo Microscope. 

2.18 Statistical Analysis 

The data obtained is expressed as the mean ± standard deviation (s.d.). Significant 

differences were analyzed by GraphPad Prism version 6.01. One-way ANOVA was used to 

determine the significant differences among groups, followed by a Newman-Keuls multiple 

comparison test for pairwise comparison. Two-way ANOVA was used for statistical analysis 

between two groups, where P < 0.05 was used for significance.  
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3. Results and discussion 

3.1 Synthesis of mPEG-MS-PLA Copolymer 

The conjugation of commercially available copolymers, namely methoxypoly(ethylene 

glycol)-maleimide (mPEG-MAL, 5000 Da, PDI < 1.2) and thiol-poly(L-lactide) (PLA-SH, 

5000 Da, PDI < 1.2) was selected as a valid alternative to improve reproducibility in 

nanomicelles synthesis. By using commercially available polymers the variability associated 

with the chemical synthesis process was reduced. 

A highly selective conjugation was accomplished through Michael-type addition reaction 

between the thiolated polymer (PLA-SH) and the double bond of the N-substituted 

maleimide group in mPEG-MAL, that resulted in a succinimidyl thioether adduct 40. 

Maleimides are capable of selectively conjugating to thiols in the pH range of 6.5 – 7.5 to 

afford thiosuccinimide bonds 2. Whilst at physiological pH the reaction between maleimide 

and sulfhydryl proceeds at several orders of magnitude (103) faster than that with amines, at 

higher pH values (> 8.0) maleimides will also react with amino groups 2,41. In addition, it is 

worth noting that the kinetics of thiol oxidation (15.2 M-1 s-1)3 are several orders of 

magnitude (102) slower than the corresponding rates of Michael-type addition (1.3×103 M-1 

s-1)40, which is why significant formation of PLA-SS-PLA dimers was not expected. 

Nevertheless, since the purification of the synthesized mPEG-MS-PLA copolymer from 

these dimers can be challenging, the reaction protocol was modified to guarantee negligible 

formation of these side species (i.e. molar excess of mPEG-MAL, inert conditions (N2) and 

addition of EDTA to reduce thiol-oxidation). In addition, the maleimide ring can self-

hydrolyze in aqueous buffers to a non-reactive cis-maleimide carboxylic acid derivative over 

long reaction times or moderately basic ( > 8.0) pH conditions (Figure 15). 42 Hence, in order 

to minimize the ring-opening of maleimide prior to thiol-binding, the reaction mixture 

consisted of phosphate buffer with pH = 7.2 to promote dissolution of hydrophilic MAL-

PEG chains, while acetone was subsequently added to slowly promote the dissolution of the 

PLA-SH hydrophobic block. 
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Figure 15. Self-hydrolysis of maleimide ring in aqueous buffer with moderate basic pH (> 8) to a non-

reactive cis-maleimide carboxylic acid derivative. 

mPEG-MS-PLA diblock copolymer and its reaction components were then characterized 

by 1H NMR and ATR-FTIR. The obtained 1H NMR spectrum of the synthesized copolymer 

is in agreement with literature reports and exhibit the characteristic peaks of both hydrophilic 

and hydrophobic blocks (Figure 16). The resonances assigned to mPEG repeating methylene 

units (c, O-CH2-CH2) and methoxy end group (d, CH3-O), respectively at δ= 3.63 and δ= 

3.37 ppm, are present in both mPEG-MAL as well mPEG-MS-PLA diblock copolymer 

spectra 14. The multiplet obtained at δ= 5.16 ppm and the single peak at δ= 1.57 ppm are 

characteristic of the PLA backbone and are present in both PLA-SH as well mPEG-MS-PLA 

spectra 14,15. These peaks correspond to repeating methenyl (a, CH3-CH-O) and methyl (b, 

CH3-CH-O) units, respectively. Regarding the PLA-SH spectrum, two distinct peaks can be 

distinguished between δ= 4.2 - 4.4 ppm: one corresponding to the methenyl (g, CH3-CH-

OH) proton neighbor of the hydroxyl end group at δ= 4.34 ppm, and the other corresponding 

to the methylene protons adjacent to the ester linkage closest to the terminal thiol (f, –O-

CH2-CH2-SH) at δ= 4.25 ppm 43. In addition, the peak around δ= 2.75 ppm corresponds to 

the methylene protons adjacent to the thiol end-group (e, –O-CH2-CH2-SH) confirming that 

PLA-SH was not oxidated to the disulfide form 43. If the disulfide was present a characteristic 

peak of methylene protons adjacent to disulfides would be present instead at δ= 2.9 ppm as 

described by Cunningham and Oh 43. Finally, the singlet observed at δ= 6.70 ppm on the 

mPEG-MAL spectrum is assigned to the alkene protons (CH=CH) present in the maleimide 

ring 44. The successful coupling mPEG-MS-PLA is further supported by the disappearance 

of this characteristic peak assigned to the maleimide moiety as well as the appearance of 

PLA-related resonances on the copolymer spectrum. 
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Figure 16. 1H NMR spectra of mPEG-MS-PLA diblock copolymer and its respective reaction components 

in CDCl3. 

Adding to NMR characterization, the ATR-FTIR spectra also corroborated the successful 

conjugation of mPEG-MAL and PLA-SH polymers (Figure 17). The initial analysis of the 

individual polymers reveals a band at 2883 cm-1, which is assigned to -C-H stretching 

vibrations (CH2 symmetric), and is present in both mPEG-MAL and mPEG-MS-PLA 

spectra 45. In addition, the strong band obtained at 1755 cm-1 corresponds to the carbonyl (-

C=O) stretching of lactic acid esters in the PLA-SH polymer 18. This band shifted to 1751 

cm-1 for the mPEG-MS-PLA copolymer. Regarding mPEG-MAL, the characteristic band 

obtained at 1711 cm-1 is assigned to carbonyl (-C=O) stretching of the imide ring 46. This 

finding was confirmed by performing a comparison between mPEG-MAL and mPEG-OH 

as shown in the inset (Figure 17). This maleimide-related band appears as a small shoulder 

in the copolymer spectrum, corroborating a successful synthesis. Alternatively, the small 

peak obtained at 696 cm-1 in the mPEG-MAL spectrum corresponds to cis-CH=CH imide 

and is reported to be characteristic of unreacted maleimide groups 46,47. Therefore, it could 

be useful for further corroborating the conjugation of the two polymers. However, this weak 
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band is overlapped in the copolymer spectra with the characteristic PLA bands in the region 

of 760-650 cm-1. Moreover, the peak observed in mPEG-MAL at 1466 cm-1 corresponds to 

-C-H deformation (CH2 scissoring), while the peak at 1456 cm-1 is assigned to -CH3 bending 

in the PLA-SH spectrum 18,19. Indeed, both peaks are visibly overlapped in the 1467-1455 

cm-1 region in the copolymer spectrum, hence indicating the presence of both polymers 

(Figure 17). 

 

Figure 17. ATR-FTIR spectra of mPEG-MS-PLA diblock copolymer and its respective reaction 

components. 

Adding to this, the spectra of PLA-SH and mPEG-MS-PLA copolymer exhibit a 

characteristic band at 1184 cm-1 which is assigned to -C-O bending in lactic acid esters 17. 

The -C-O-C ether asymmetric stretching vibrations present in both PEG and PLA overlap 

in the range 1150 to 1040 cm-118,45. Furthermore, the bands at 959 and 962 cm-1 correspond 

to -CH2 rocking (CH2-CH2-O) in mPEG-MAL and mPEG-MS-PLA copolymer, 

respectively, further confirming the presence of the mPEG backbone in the final copolymer 

19. In addition, the band at 529 cm-1 is assigned to the characteristic -C-C vibration in mPEG 

repetitive chains and is present in both the monomer as well as the corresponding copolymer 

45. According to the work of Younes and Cohn, the degree of crystallinity can be roughly 

appreciated by comparing the two bands related with the crystalline (C, ca. 755 cm-1) and 

the amorphous (A, ca. 869 cm-1) phases of PLA.48 In the obtained spectrum, the 

corresponding C and A bands are located at 756 and 870 cm-1 for the copolymer, and at 754 

and 872 cm-1 for the PLA-SH monomer. Because the absorbance ratio of these two bands is 

approximately 1, the polymers are amorphous. Taken together, both characterization 
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techniques establish the successful conjugation of the two monomers, resulting in the mPEG-

MS-PLA copolymer. This synthesis alternative not only allows for facile production of a 

reproducible mPEG-MS-PLA diblock copolymer, but can also be carried out under mild 

reaction conditions. 

3.2 Optimization of Nanomicelles Self-assembly via Nanoprecipitation 

mPEG-MS-PLA core-shell type PMs were produced via the nanoprecipitation technique 

as before described (Methods Section 3.2.5) 49. Micelles physicochemical properties were 

optimized by manipulating different formulation parameters including: (i) stirring time, (ii) 

stirring speed and (iii) type of stirring plate (Table 4). 

Table 4. Different formulations and its respective parameter modifications. 

Stirring 

Plate 
Formulation 

Stirring speed 

(rpm) 

Stirring time 

(min) 

1 
F1 600 120 

F2 500 90 

2 F3 500 90 

Stirring plate used: 1 - magnetic stirrer/hot plate MR Hei-Tec. 2 – Ovan MultiMix D multi-stirrer. 

The physicochemical properties of the different nanocarriers produced during this 

optimization process are shown in Figure 18. The obtained results indicate that mPEG-MS-

PLA micelles size decreased across formulations, ranging from an initial size of 111.9 ± 8.6 

nm to a final size of 83.0 ± 4.8 nm. The obtained results indicate that decreasing stirring 

speed led to the formation of slightly smaller micelles, which is consistent with findings of 

the previous work by Asadi and colleagues studying factors that can influence particle size.50 

Furthermore, by switching to MultiMix D (VWR, Lisbon) multi-stirrer plate consistently 

smaller micelles were obtained (Formulation F3). This size reduction was accomplished 

while maintaining the monodisperse character of micellar formulations below the acceptable 

threshold (PDI < 0.200). 
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Figure 18. Characterization of different blank mPEG-MS-PLA micellar formulations by DLS. Size (left y 

axis, bars) and PDI (right y axis, connected dots). Data is represented as mean ± s.d. (n=3). 

It is important to note that the obtained final particle size is suitable for delivery, because 

nanomaterials smaller than 5 - 6 nm are rapidly eliminated by the kidneys, whereas 

nanoparticles with diameters over 150 - 200 nm accumulate significantly in MPS organs 

such as the spleen and liver, where they are subsequently processed and excreted from the 

body 51,52. Furthermore, the literature review (Introduction Section 1.7) performed on the 

current knowledge of the physiological barriers for bone delivery suggests that maintaining 

a nanocarrier size between 60 - 100 nm might be valuable for improving both para- and 

transcellular uptakes into the marrow stroma. From this standpoint, the subsequent 

experiments to investigate Naringin drug loading were performed with micelles produced 

with the experimental parameters from formulation F3. 

3.3 Formulation of Naringin-loaded Nanomicelles 

Naringin drug loading was promoted during nanoprecipitation mediated self-assembly by 

mixing the drug with the copolymer in the organic phase. Micelles were then formulated as 

before described via drop-wise addition of drug-copolymer mixture into a determined 

amount of aqueous solution (V= 5 mL, RT). Naringin-loaded and blank (control) micelles 

physicochemical properties, such as Hr, PDI and surface charge (ζ-potential) were then 

characterized by DLS and electrophoretic mobility, respectively. The obtained data 

presented in Figure 19 shows that blank micelles (75.15 ± 1.06 nm) are smaller than those 

loaded with Naringin (84.48 ± 2.44 nm). This contrasts with some literature reports which 

indicate that the encapsulation of hydrophobic drugs reduces particle size 53,54. The main 
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driving force for drug loading in micelles is the hydrophobic interaction that is established 

between the drug and polymer blocks of the polymeric micelle core 53. In fact, the physical 

entrapment of lipophilic small molecules generally leads to a decrease in micelle size, but as 

documented by Wang and colleagues an increase in the size of PEG-PLA core-shell 

nanomicelles can be observed after entrapping Doxorubicin hydrochloride salt 55. The 

authors attributed this finding to the presence of Doxorubicin which increased the volume 

of the core. 

 

Figure 19. Physicochemical characterization of blank (A) and Naringin-loaded (B) mPEG-MS-PLA 

micelles via DLS analysis. Each measurement was performed in triplicate and includes at least three different 

replicates (n=3). 

Considering the amphiphilic features of the flavanone glycoside Naringin, this could 

explain the small increase in hydrodynamic size of the drug-loaded micelles over blank 

micelles. Indeed, Naringin’s bulkier non-planar structure comprised by hydrophobic 

(aglycone, Naringenin) and hydrophilic (glycoside, Neohesperidose) domains could 

potentially decrease the hydrophobic interactions with PLA micelles core. This hypothesis 

is supported by the work of Sanver on experimental modelling of flavonoid membrane 

interactions, which suggests that flavonoids such as Naringin may partition in the lipid/water 

interface 56. Moreover, Yan and his team studied Naringin/β-cyclodextrin (β-CD) inclusion 

complexes, where computational and experimental simulations indicated that while the 

benzene ring of Naringin was embedded within the hydrophobic (β-CD) cavity, the 

glycoside domain was on plane with the relatively hydrophilic outer wide rim 57. Moreover, 

it is important to mention that as reported by Kanaze and colleagues, the capacity for PEG 

to form hydrogen bonds with flavanone glycosides such as Naringin is limited 58, whereas 
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the PLA repeating lactide units containing carbonyls (-C=O) may provide more 

opportunities for hydrogen-bonding with the flavonoid hydroxyls (-OH) 59. Therefore, it 

would appear that the amphiphilic character of Naringin could play a role in the interactions 

governing the hydrophobic micelle core, but its specific interaction in this PEG-MS-PLA 

system should be further explored in the future. These insights are extremely important to 

optimize nanocarriers properties when encapsulation of flavonoids such as Naringin or 

others are envisioned. 

Another important factor governing the in-vivo fate of nanocarriers is their surface charge. 

Regarding the ζ-potential of mPEG-MS-PLA micelles, both blank and Naringin-loaded 

displayed similar negative values: -13.2 ± 0.8 mV and -12.7 ± 0.6 mV, respectively. These 

results are consistent with other studies employing PEG-PLA micelles in the literature 13,60. 

The obtained surface charge values are promising for in vivo delivery applications, because 

slightly negative-charged nanoparticles have longer circulation times and are less prone to 

opsonization and subsequent accumulation in the MPS organs 52. 

In addition, it is interesting to note that the ζ-potential of three different replicates of 

Naringin-loaded micelles was analyzed before and after dialysis against deionized water to 

remove free drug. The ζ-potential of a Naringin solution in deionized water (0.1 mg/mL) 

was measured and found to be -25.1 ± 1.3 mV. The initial ζ-potential of the drug-loaded 

micelles changed from -18.2 ± 1.0 mV to -12.7 ± 0.6 mV upon dialysis, which could indicate 

that either free Naringin or adsorbed to the micelle surface was removed from the mPEG-

MS-PLA solution. 

3.4 Morphological Characterization of Nanomicelles 

The morphology of mPEG-MS-PLA core-shell micelles was characterized by STEM due 

to micelles degradation observed in transmission electron microscopy (TEM). Such 

degradation is a result of the higher voltage used by the TEM equipment (~100 kV) that 

promotes a local increase in temperature and micelles disruption. The obtained STEM 

micrographs show that both blank and Naringin-loaded micelles have a spherical 

morphology (Figure 20). 
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Figure 20. Nanomicelles morphological analysis through STEM at 20 kV. (A) blank micelles (30X) and 

(B) Naringin-loaded micelles (50X), with each respective inset (200X). 

The shape of nanocarriers is known to play a key role in their interaction with cell 

membrane at the nano-biointerface thus influencing the cellular uptake rate 61. Typically, for 

nanoparticles greater than 100 nm there is a clear uptake-shape correlation with particles 

achieving a higher uptake in the order of rod-shaped > worms > spheres, all exhibiting an 

increased cellular uptake, especially when compared to cube-shaped nanoparticles 51,62. On 

the other hand, spherical particles have a significant uptake potential over rods for sub-100 

nm nanoparticles 51. All these reports emphasize the effect of shape in the efficacy of 

intracellular therapeutics delivery and may thus influence the overall therapeutic outcome or 

induce cytotoxicity 63. 

It is also important to properly characterize nanocarriers geometry due to its influence in 

particles interaction with serum proteins 51. Circulating serum proteins can adsorb on 

nanocarriers surface, forming a dynamic protein corona (e.g. soft and hard corona)64 which 

can dramatically alter their active targeting and biodistribution profile 61. Therefore, besides 

altering uptake dynamics, particle morphology can affect their kinetics of accumulation and 

excretion within the body. This once again highlights the importance of establishing a well-

defined characterization of the prepared nanocarriers 65. 

3.5 Evaluation of Nanomicelles Colloidal Stability 

The colloidal stability of Naringin-loaded mPEG-MS-PLA micelles in aqueous solutions 

was investigated via DLS by monitoring changes in their physicochemical properties, 

namely particle size, PDI and ζ-potential, up to 14 days (Figure 21). Overall, the obtained 

results indicate that micelles are stable after a two-week storage period at 4ºC in both 

deionized water and PBS buffer at physiological pH =7.4. In particular, the produced 
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micelles maintained a relatively constant particle size and PDI. Regarding the micelles 

dispersed in PBS, they presented a slight increase in the final PDI. In addition, ζ-potential 

remained constant throughout the storage period, which supports the stability of the PEG 

corona in aqueous solutions. Moreover, considering that particle size remained unchanged 

over two weeks, this further corroborates the stability of the maleimide-alkylthiol linkage in 

these conditions. Nevertheless, the above results concerning the stability studies highlight a 

high colloidal stability of mPEG-MS-PLA nanomicelles and suggest that these nanocarriers 

may be suitable for in vivo applications. 

 

Figure 21. Colloidal stability of mPEG-MS-PLA PMs in aqueous conditions: water (sphere, blue) and PBS 

at pH 7.4 (square, black). (A) Particle size (nm), (B) PDI and (C) ζ-potential (mV). 

3.5 Drug Encapsulation Efficiency and In vitro Drug Release 

The Naringin encapsulation efficacy in PMs was determined by UV-VIS analysis of the 

characteristic flavanone peak at λ= 282 nm of Naringin-loaded micelle solutions at a final 

polymer concentration of 0.2 mg/mL. The amount of encapsulated Naringin was 

extrapolated from Naringin calibration curve in water (concentration range from 2 - 100 

µg/mL, located in Figure 33, Annex I) The obtained data shows that mPEG-MS-PLA 

micelles achieved a high encapsulation efficiency of Naringin (87.2 ± 4.6 %) (Figure 22A). 

So far, the delivery of Naringin was only attempted by impregnation in implantable 

scaffolds, porous composites or in surface-coatings 66–69. These works focused on the 

development of bone graft materials either to enhance the repair of osteoporotic bone 

defects, or to provide a multifunctional orthopedic coating with inherent antimicrobial and 

pro-osteogenic properties. In this context, Chang and his team developed a pH-responsive 

Naringin-loaded hydrogel for inhibiting the bacteria-induced inflammation characteristic of 

periodontal diseases, namely periodontitis 70. 

It is important to emphasize that to date a limited number of literature reports have 

focused on the encapsulation of Naringin in nanocarriers. One of the few examples is the 
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recent study performed by Feng and colleagues, in which Naringin establishes an inclusion 

complex with water-soluble ternary nanoparticles (particle size: 212 nm, PDI: 0.252) 71. 

These carriers consisted of amylose, α-linoleic acid and β-lactoglobulin, and the aim of the 

study was to improve Naringin bioavailability using a food grade carrier, as well as study 

the physicochemical properties of this particular inclusion complex. Moreover, Naringin 

encapsulation efficiency within these nanocarriers was 78.7 ± 4.2% as determined via high-

performance liquid chromatography. Considering this, the obtained results with mPEG-MS-

PLA PMs present a higher encapsulation efficiency. Such is paramount to reduce the dose 

of nanocarriers that is required to be administered to MSCs in order to promote their 

osteogenic differentiation as envisioned. 

 

Figure 22. Micelles drug encapsulation efficacy and in vitro release profile. (A) Naringin drug loading 

within self-assembled mPEG-MS-PLA micelles. (B) Cumulative release profile of Naringin from mPEG-MS-

PLA micelles in PBS at pH 7.4 (sphere, blue) and 5.5 (triangle, red). Inset represents the cumulative release 

during the first 4h of the release studies. Data is presented as mean ± s.d. (n=3). 

Afterwards, the in vitro release profile of Naringin from mPEG-MS-PLA micelles was 

investigated by using the dialysis method under sink conditions. (Figure 22B). This study 

was conducted in PBS buffer at different pH values to simulate either physiological 

conditions (pH = 7.4) or the acidic environment within the lysosomal/endosomal 

intracellular compartments 72. The latter was considered important since mPEG-PLA 

micelles are reported to be internalized via dynamin- and caveolin-dependent but also 

clathrin-independent endocytosis which results in the formation of endo-lysosomal vesicles 

73. 
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The release profile of these nanocarriers exhibited a similar release for both acidic and 

physiological conditions. Moreover, the release profile of Naringin from mPEG-MS-PLA 

micelles appears to follow a biphasic release: (i) a fast release during the first hours (ca. 22% 

released drug within 4 h), and then (ii) a slower and sustained release over the following 

days, ca. 65%, 80%, 89%, 89.5% and 93% released drug, respectively for 1, 2, 3, 4 and 7 

days. 

Drug release kinetics are influenced by several factors, including drug solubility, stability 

and interaction with the polymeric matrix, as well nanocarrier polymeric composition, 

structure and biodegradation kinetics 74. The obtained release profile is relatively similar to 

other studies in the literature involving the use of mPEG-PLA PMs 75. In addition, the 

Naringin release profile herein observed is somewhat similar to the release profile of the 

recent work by Yu and colleagues, where Naringin was loaded into a mineralized collagen 

coating, containing or not metal-organic frameworks (MOFs). In this study, the authors 

observed a burst release, obtaining ca. 65% and 85% of released Naringin at 16 hours for the 

Collagen/MOFs and Collagen groups, respectively. Moreover, they determined that the 

Collagen/MOFs coatings could halve the initial burst release. Interestingly, the mPEG-MS-

PLA micelles from this work achieved only 65% of released drug after 24 hours, which 

means that these nanomicelles provide an even more sustained release when compared to 

the reported Collagen/MOFs coatings. The authors underline the importance of both 

preventing an initial burst release and guaranteeing a long-term sustained release of Naringin 

for enhancing its therapeutic potential. One of the main advantages of the PMs here produced 

is the ability to tune this diffusion-based release profile via testing different polymeric 

architectures, such as shell or core crosslinking, or by imparting stimuli-responsiveness to 

the polymeric nanocarrier 76,77. 

3.6 Naringin-loaded Nanomicelles Production Scale-up 

The switch from laboratory scale to larger scale nanomedicines manufacturing (e.g. pilot 

or industrial scale) is often a pre-requisite for their foreseeable translation and represents a 

remarkably challenging task from a technological and logistical perspective 78. Particles size, 

surface charge, morphology, monodispersity and high drug loading efficacy are key 

parameters that need to be maintained following larger scale synthesis. Assuring that the 

optimized parameters for small scale particles manufacture result in the same 
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physicochemical properties (size, charge, morphology) upon scale up is crucial to maintain 

nanocarriers biological performance 79. Even during the stages of pre-clinical analysis, larger 

manufacturing of particles is important for in vivo validation of such carriers, which 

normally involves a higher amount of particles than that used in in vitro assays. 

One of the main advantages of nanoprecipitation is the high throughput potential and 

facile scale-up production 80. Considering this, and because pre-clinical in vitro cell-based 

assays require significant quantities of Naringin-loaded mPEG-MS-PLA micelles, a 5-fold 

scale-up was performed, maintaining all original parameters of formulation F3. 

Monodisperse nanomicelles (Hr: 84.87 ± 2.19 nm, PDI: 0.114 ± 0.035, ζ-potential: -11.1 ± 0.4 

mV), with high Naringin encapsulation efficiency (86.15 ± 4.31%) were obtained (Figure 

34, Annex I). Drug entrapment and physicochemical properties for the scale-up 

nanoprecipitation are in line with previous findings reported for initial formulations (Figure 

19), highlighting the reproducible and scalable nature of the nanoprecipitation method. 

3.7 Preparation for Cellular Assays 

To incubate the formulated mPEG-MS-PLA micelles with cells, they need to be 

sufficiently concentrated to be administered in multi-well testing plates. Different strategies 

have been tested to concentrate nanomicelles. Firstly, Amicon® Ultra centrifugal filters were 

used as an attempt to have a fast concentration procedure. This strategy promoted a reduction 

from 5 mL initial volume to a final 200 µL in under 30 min at 16600 g. However, UV-VIS 

analysis of the filtrate versus the concentrated solution indicated that a very significant 

portion of drug was lost during the process. Possibly, the dynamic stability of the micelles 

was disrupted during high speed centrifugation against the filter wall, dismantling micelles 

and releasing large amounts of Naringin through the filtrate. 

In light of this finding, a different alternative to concentrate the micelle solution was 

tested. Blank micelles were concentrated in the rotary evaporator (25 mbar, 37 ºC) for 20 to 

35 min depending on initial water volume. Afterwards, the concentrated solution was diluted 

and micelle stability during this concentration procedure was evaluated via DLS analysis. 

Pre-rotary evaporation (i) and post-rotary evaporation (ii) samples were analyzed in terms 

of hydrodynamic size and PDI. The findings demonstrate that micelles maintain their initial 

properties even after enduring the concentration process: (i) Initial size of 60.78 ± 1.13 nm, 

PDI: 0.315 ± 0.004; to (ii) Final size of 62.88 ± 0.72 nm, PDI: 0.326 ± 0.035, post-

evaporation. These results suggest that the rotary evaporator-mediated concentration method 
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described is adequate for concentrating nanomicelles suspensions for subsequent cellular 

assays. 

3.8 Nanomicelles Cellular Uptake 

Micelles cellular uptake was evaluated in MC3T3-E1 (Figure 23) and hASCs which can 

be differentiated into bone-resident cells (Figure 24). Nanocarriers cellular uptake kinetics 

were studied by CLSM. For intracellular visualization of micelle uptake, mPEG-MS-PLA 

micelles were loaded with the model fluorescent dye Coum-6, with these micelles 

maintaining similar physicochemical properties than their non-loaded counterparts (Hr of 

63.6 ± 1.6 nm, PDI of 0.176 ± 0.003). The physicochemical characterization of these 

micelles, as well as a fluorescence microscopy image of these micelles in aqueous solution 

is shown in Figure 35, Annex II. 

 

Figure 23. Cellular uptake kinetics of mPEG-MS-PLA micelles in M3C3T3-E1 cells, obtained via CLSM. 

Green channel: Coum-6-loaded micelles (NPs). Red channel: WGA-Alexa Fluor 594. White arrows indicate 

micellar carriers. 

As shown in Figure 23 and 24, Coum-6-loaded mPEG-MS-PLA micelles successfully 

transfected both MC3T3-E1 and hASCs cells, showing visible cellular uptake within only 2 
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hours of micelle incubation. The difficulty of transfecting hASCs is well-known in the scope 

of intracellular delivery of nucleic acids for cell reprogramming 81. Therefore, the obtained 

results show that the developed delivery system has potential in transfecting these cells for 

application of stem cell-based therapies, and in particular, capable of delivering Naringin 

intracellularly. Concerning this, the micelles appear to localize to the perinuclear region but 

not adsorbed on the cells’ surface. This is important because successful internalization of the 

nanocarriers is crucial for increasing the intracellularly available Naringin concentration. 

 

Figure 24. Cellular uptake kinetics of mPEG-MS-PLA micelles in hASCs cells, obtained via CLSM 

imaging. Green channel: Coum-6-loaded micelles. Red channel: WGA-Alexa Fluor 594 stained cell 

membrane. White arrows indicate Coum-6-loaded micellar carriers. 

Moreover, the characteristic localization of nanomicelles in cell nucleus vicinity is well 

reported in the literature 82. The authors suggested that while the endocytosis of nanocarriers 

did not play a key role in the cellular delivery of Coum-6, the release rate of this drug from 

the delivery systems was correlated with the obtained intensities. Furthermore, Zhang and 

his team performed an intracellular trafficking study with PEG-b-PLA micelles loaded with 

Nile Red and found that most of the internalized micelles were localized in the lysosome, 

while only a small fraction was present in the endoplasmic reticulum 73. Overall, these 
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studies suggest that the stained perinuclear region could be attributed to intracellularly-

released Coum-6. Nevertheless, tracking micelles intracellular trafficking into different 

compartments including acidic compartments (e.g. endo-lysosomes) could be useful to 

further evaluate the intracellular fate of such particles 73. 

In addition to CLSM data, the cellular uptake of Coum-6 loaded micelles in both MC3T3-

E1 and hASCs was evaluated by flow cytometry (FCM) analysis. Different nanomicelles 

dosages (25, 50 and 100 µg) were incubated in all in vitro cell models for 4 h prior to analysis. 

The results obtained are presented in Figure 25. 

 

Figure 25. FCM analysis of Coum-6 loaded mPEG-MS-PLA micelles cellular uptake in MC3T3-E1 (A, 

C) and hASCs (B, D). Representative cellular uptake histograms of micelles in MC3T3-E1 (A) and hASCs 

(B). Fluorescent intensity values obtained after transfecting MC3T3-E1 (C) and hASCs (D) with micelles. 

Black color represents cell auto-fluorescence; blue: 25 µg; red: 50 µg; and green: 100 µg of incubated micelle 

dosage. *p < 0.05; **p < 0.01. Data represented in mean ± s.d. (n=3). 
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FCM analysis revealed that micelles cellular uptake increased with increasing 

nanomicelles dose (in the tested range). Regarding the particular case of MC3T3-E1 cells, a 

1.8-fold increase in fluorescence intensity (*p < 0.05) was obtained for the 50 µg dose in 

comparison with the lowest micelle dose (25 µg). Moreover, the highest dose (100 µg) tested 

achieved a 2.6-fold increase in cellular uptake (**p < 0.01). 

Likewise, nanomicelles cellular uptake data obtained in hASCs show a 1.8- and 3.1-fold 

increase in MFI for 50 and 100 µg respectively (**p < 0.01), compared to the lowest dose. 

These findings highlight the transfection capacity of the formulated mPEG-MS-PLA 

micelles in these generally hard to transfect MSCs, thus showing promise for the intracellular 

delivery of bioactive molecules with ability to guide their differentiation to specific lineages. 

3.9 Cellular Viability and Proliferation Assays 

For proper evaluation of the osteogenic potential of the developed delivery system, its 

biocompatibility must be evaluated. Ideally the carriers must not exert a significant toxic 

effect in the tested cells (MC3T3-E1, hASCs) and within the concentrations studied, so that 

no dose-dependent cytotoxicity can influence the interpretation of the obtained results. 

Although PEG-PLA diblock copolymers are considered highly biocompatible, investigating 

a possible cytotoxic response due to the drug dosage is a pre-requisite 13. The Naringin 

flavanone has already been described as a relatively non-toxic compound in various cell lines 

(e.g. MC3T3-E1, human osteoblast, UMR-106, bone marrow stromal cells) when 

administered the range of 1 – 200 µg/mL 31. However, it is important to emphasize that the 

upper limit of cytotoxic Naringin concentrations appears to vary among different cell types 

33,37. The Naringin dose range was selected from a thorough analysis of available literature 

reports in different cells lines (Table 5, Annex III) but since this is the first study to be 

performed in hASCs evaluating its toxicity is a pre-requisite for further osteogenesis 

induction studies. In addition, the biocompatibility profile of blank micelles and free 

Naringin was also evaluated in the MC3T3-E1 cell line and their non-toxic character was 

confirmed and is in accordance with literature reports (Figure 36, Annex II) 83,84. 
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Figure 26. Characterization of blank mPEG-MS-PLA blank micelles (A), free Naringin (B) and Naringin-

loaded micelles (C) effect in hASCs cell viability following incubation at different time points. BM represents 

basal medium negative cytotoxicity (K-) control. n.s. stands for non-significant, *p < 0.05. Data represented in 

mean ± s.d. (n=5). 

The results presented in the cytotoxicity evaluation panel regarding hASCs (Figure 26) 

show that blank mPEG-MS-PLA micelles elicited no cytotoxic effect in this cell line as 

compared to basal medium negative control (BM, K-) (Figure. 26A). Moreover, as shown in 

Figure 26B, the nanocarriers maintained their biocompatible profile upon loading of the 

Naringin flavanone. In parallel, the administration of free Naringin concentrations ranging 

from 5 – 50 µg/mL showed no significant changes in cell viability across all studied time 

points (Figure 26C), suggesting that these doses can be used for osteogenic differentiation 

purposes. Overall, these results highlight the non-toxic features of blank nanocarriers and 

both free Naringin and Naringin-loaded micelles in hASCs. 

Naringin has been described to significantly enhance cell proliferation of osteoprogenitor 

cells (e.g. MC3T3-E1 and human/rat BM-MSCs) or with an osteoblastic phenotype (e.g. 
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osteoblast-like UMR 106 and MG 63 cells or human osteoblasts) 33,37,67,84–87. Overall, these 

studies investigated Naringin-induced cell proliferation by performing metabolic assays 

such as MTT and CCK-8. However, the discrepancy between the metabolic activity and cell 

numbers is well documented on the literature, where it is shown that these assays may 

overestimate cell proliferation when compared to DNA-binding fluorophores 88. Hence 

quantifying DNA content with specific fluorophores is an important complement to these 

metabolic assays. Moreover, flavonoids are reported to dose-dependently reduce tetrazolium 

salts such as MTT even in the absence of cells, which may significantly influence the 

obtained results in metabolic assays 89. In fact, some flavonoids inhibit cell growth but show 

enhanced MTT reduction. As such, to confirm Naringin proliferative properties, the double-

stranded DNA (dsDNA) content was quantified via PicoGreen® in the same samples of 

hASCs used for cytotoxicity assays. By using this strategy, a correlation between metabolic 

activity and DNA content could be extrapolated. The obtained results are presented in Figure 

27. 

 

Figure 27. Effect of free Naringin on the proliferation of hASCs relative to the negative control, basal 

medium (BM). Symbols #, ,  correspond to 24, 48 and 72 h of incubation, respectively. They represent 

statistically significant data relative to control. #: BM vs 10 **p < 0.01, BM vs 20, 50 *p < 0.05. : BM vs 5 

***p < 0.001, BM vs 10, 20, 50 ****p < 0.0001. : BM vs 5 *p < 0.05. BM vs 10, 20, 50 **p < 0.01. Data is 

represented as mean ± s.d. (n=5). 
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Overall, free Naringin increased the proliferation of hASCs relatively to control groups 

on all time points and across the studied concentrations. Interestingly, the obtained data 

seems to suggest that the effect of Naringin on the rate of proliferation increases over time, 

accordingly, ca. 115 ± 6 % (24 h), 122 ± 4 % (48 h) and 141 ± 11 % (72 h), with up to 50 % 

enhanced cell proliferation for 10 µg/mL at the latest time point. However, across the range 

of concentrations herein studied, no dose-dependent effect could be perceived for these time 

points, contrary to some previous reports in the literature for other cell lines (Table 5, Annex 

III) 31. 

From herein forward, hASCs were selected for assessing the osteogenic potential of 

Naringin since to date the effect of this flavanone in these stem cells has not been studied. 

Moreover, in comparison with murine MC3T3-E1 cells, ASCs extracted from human 

adipose tissue represent a valuable source of MSCs for cell-based regenerative therapies. 

Besides their human origin, they can be easily harvested from adult adipose tissue, possess 

low antigenicity and comparatively to hBM-MSCs, exhibit faster proliferation rates and 

increased genetic stability in prolonged culture periods, which establishes these cells as 

promising candidates for driving forward tissue engineering applications 90,91. 

3.10 Naringin Stimulatory Activity in OS-Dex in hASCs 

3.10.1 Naringin-induced Stimulation of ALP Activity 

Alkaline phosphatase (ALP) is widely recognized as an early marker of pre-osteoblastic 

phenotype and plays an important role in bone mineralization 92. This effector protein is 

responsible for providing inorganic phosphate and coordinating bone metabolism towards 

the mineralization of the extracellular matrix 93,94. Currently, measurement of its activity 

represents the most frequently used assay to investigate the progress of stem cells (hBM-

MSCs or hASCs) osteogenic differentiation 92. Typically, in order to induce osteogenesis, 

stem cells are cultured in specific osteoinductive media and the osteogenic potential attained 

is then determined by measuring osteogenic markers such as ALP. However, this 

differentiation potential can vary due to several factors, such as: (i) donor or tissue origin, 

(ii) cell passage number, (iii) different serum conditions (fetal bovine or human), (iv) the 

type of osteogenic supplements used (ascorbic acid (AA) and β-glycerophosphate (β-gly), 

dexamethasone (Dex)), as well as the (v) concentration of these components (i.e., Dex 
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administered dose and frequency of administration), which can all play a key role in 

determining the osteogenic differentiation potential of stem cells 95–98. 

Regarding studies on the osteogenic potential of free Naringin, different literature reports 

indicate different choices for the osteogenic inductive medium. Most of these reports vary 

between osteoinductive (AA + β-gly or AA + β-gly + Dex) or even BM conditions. As 

aforementioned, this can lead to different outcomes in the osteogenic differentiation 

potential of stem cells. Therefore, initially the osteogenic capacity of free Naringin in hASCs 

was evaluated under different medium conditions (Table 3, Methods Section 2.9): i) 

osteogenic medium (AA + β-gly) with Dex (OS-Dex), ii) osteogenic medium (AA + β-gly, 

OS), and iii) basal growth medium (BM). 

For the first experiment, hASCs were incubated with different concentrations of free 

Naringin in OS-Dex medium over 21 days. Throughout the assay, cell culture medium was 

exchanged every 3-4 days with fresh OS-Dex medium with no Naringin addition other than 

that at day 0 (Figure 28A). The ALP activity was then quantified by p-nitrophenylphosphate 

hydrolysis and normalized to dsDNA content by using the PicoGreen® assay. The outcome 

of this  experiment is shown in Figure 28. 
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Figure 28. Naringin-induced ALP stimulation in OS-Dex (OS) differentiation medium. (A) Dose regime 

of Dex and Naringin in this experiment. (B) ALP activity of hASCs over 21 days in OS-Dex, with different 

Naringin concentrations, expressed in nmol p-nitrophenol normalized to DNA content. (C) ALP activity fold 

induction over basal medium (BM) at 14 and 21 days. Differences between Naringin doses and OS-Dex are 

not significant. (D) BCIP/NBT ALP-staining at 14 days. (E) ALP activity fold induction over basal medium 

(BM) at 3 and 7 days. Symbols  and  represent the control group used to perform the statistical analysis of 

each timepoint. Data represented as mean ± s.d. (n=5). 

The results presented in Figure 28A show the increase in hASCs ALP activity along time 

after incubation in OS-Dex control group and with different Naringin doses (Figure 28A). 

The ALP activity is the highest at the final time point of the experiment, i.e., 21 days of 

incubation, which might suggest that continuously exchanging the osteogenic medium with 

a renewed Dex dose (100 nM) might lead to continous stimulation of hASCs populations. 

Alternatively, according to the obtained results shown in Figure 28B, the use of Naringin as 

an initial stimulation factor to promote osteogenesis is limited to the earlier time points, i.e., 
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3 and 7 days of incubation. Indeed, the data presented in Figure 28C shows that, at 14 and 

21 days of incubation, no significant differences in ALP activity can be observed among 

different Naringin doses and the respective OS-Dex control group. Likewise, these findings 

are supported by Figure 28D, which shows the ALP-dependent staining of hASCs at 14 days 

via BCIP/NBT substrate. The visual observation of the ALP-stained cells also cannot discern 

clear differences between the osteogenic control and the various Naringin doses.  

However, for the earlier time points, i.e., 3 and 7 days of incubation, the osteogenic effect 

of Naringin over the OS-Dex control groups is significant, as shown in Figure 28E. At 3 

days, a dose-dependent effect of Naringin can be observed, with the highest dose (50 µg/mL) 

showing a 0.6-fold improved ALP activity induction over the OS-Dex control group (**p < 

0.01) and a 0.3-fold ALP increase across all studied doses, from 5 to 20 µg/mL (*p < 0.05). 

At 7 days, no significant difference across all Naringin doses could be observed indicating 

that lower doses are equally beneficial. In comparison with OS-Dex control group, a 0.2-

fold increase in ALP activity could be observed across all Naringin doses.  

In conclusion, a significant pro-osteogenic effect between different Naringin doses was 

observed at 3 days, while the osteogenic effect between Naringin and OS-Dex control groups 

was observed at 3 and 7 days. These findings suggest that perhaps constant long-term 

stimulation of hASCs with Dex, with only an initial stimulatory dose of Naringin (Figure 

28A), might dillute this flavonoid effect on the promotion of ALP levels over the course of 

the experiment. In fact,  for later time points of the experiment, 14 and 21 days, there was 

no significant difference between the OS-Dex control and different Naringin conditions. 

3.10.2 Naringin-induced Expression of BMP-2 

Despite previous results on long-term ALP-stimulatory activity mediated by Naringin, 

the expression levels of other osteogenesis-related markers were evaluated to further 

investigate the contribution of Naringin in differentiating these stem cells to the osteoblastic 

lineage. 

Naringin has previously been described to promote the secretion of BMPs, extracellularly 

secreted  biomolecules that play a key role in modulating osteogenic differentiation 

pathways and coordinating bone formation 37. The quantification of BMP-2 in the culture 

medium from the previous in vitro assays was performed via ELISA at 14 and 21 days of 

incubation. The obtained results are presented in Figure 29. 
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Figure 29. Naringin-induced BMP-2 secretion in hASCs at 14 and 21 days, after incubation with OS-Dex 

differentiation medium (OS) control group and with Naringin doses. Cumulative BMP-2 levels were 

normalized to DNA content. Symbols  and  represent the control group used to perform the statistical 

analysis of each timepoint. Data is represented as mean ± s.d. (n=3). *p < 0.05, **p < 0.01. 

The results obtained in Figure 29 highlight the contribution of Naringin over the OS-Dex 

group in improving the secretion of BMP-2. At 14 days, a dose-dependent stimulation of 

BMP-2 could be observed, with the highest Naringin dose of 50 µg/mL significantly 

improving BMP-2 levels over OS-Dex and 20 µg/mL dose groups (*p < 0.05). In addition, 

the cumulative BMP-2 levels at 21 days show a 0.4-fold improvement over OS-Dex control 

group. Meanwhile, the differences in BMP-2 levels across the range of Naringin doses 

studied at 21 days are not significant. Overall, these results underline that a single initial 

dose of Naringin was sufficient to elicit an increased BMP-2 production over OS-Dex treated 

hASCs at 14 and 21 days. Furthermore, they showcase the importance of evaluating different 

osteogenic markers, other than ALP activity, because these can convey important findings 

regarding Naringin effect in hASCS. 

It is worth noting that this increased BMP-2 production did not lead to significant 

differences in ALP activity after 14 or 21 days of OS-Dex stimulation. These findings are in 

agreement with a previous study by Cruz and colleagues, where they found that exogenous 

administration of recombinant BMP-2 to hASCs did not increase the levels of ALP 99. 

Nevertheless, the enhanced secretion of BMP-2 by Naringin in hASCs is an important 

finding, in particular because this bone morphogenetic protein is capable of inducing 
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commitment and differentiation of multipotent stem cell lines into an osteoblastic-phenotype 

100. Moreover, Naringin appears to have a synergistic effect with BMP-2 in the total 

osteogenic differentiation of MC3T3-E1 pre-osteoblasts 101. So far, across the literature there 

is currently only one study describing Naringin-induced BMP-2 secretion, and this effect 

was observed in murine pOB, i.e., differentiated cells with an already defined osteoblastic 

phenotype 37. Therefore, the above findings provide validation of this effect for the first time 

in hASCs and its importance is supported by the role of BMP-2 in the osteogenic 

commitment of stem cells. 

3.10.3 Naringin-induced Expression of OPN 

Osteopontin (OPN) is another classical osteogenic marker that is important to evaluate. 

OPN, also known as secreted phosphoprotein 1, is a non-collagenous bone matrix protein 

significantly secreted by MSCs undergoing osteogenic differentation 102. OPN is present 

both intracellularly - regulating cytoskeleton dynamics and signalling transduction pathways 

(e.g. IFNα and MAPK) 103; and extracellularly, being associated with the bone matrix. The 

secreted form of OPN preferentially accumulates in mineralized bone matrix, where it 

influences the cell- and matrix-matrix interactions towards coordinating several cell 

dynamics involving survival, adhesion and migration 104. Moreover, OPN-rich interfacial 

regions have been suggested to mediate mechanical stress response in osteoblasts and 

minimize microcrack propagation in bone, thus improving the osteointegration properties of 

intertwined mineralized matrixes 105. Therefore, more than an osteogenic marker, OPN acts 

as local signalling molecule bewteen osteoblasts and osteoclasts and its interactions with 

integrins are associated with osteoclastogenesis and regulate the bone remodeling process 

106. 

Naringin has been previously described to increase OPN expression in both 

osteoprogenitor (e.g. BM-MSCs, hAFSCs, hPDLSCs, MC3T3-E1) and osteoblastic cell 

lines (e.g. hOB and pOB), reflecting the osteogenic potential of this flavanone for bone tissue 

engineering applications due to the role of OPN in promoting biomechanical 

osteointegration 37,85,107,108. In this experiment, hASCs were incubated with different 

concentrations of free Naringin and also Naringin-loaded nanomicelles in OS-Dex 

containing medium over 14 days. Throughout the assay, cell culture medium was exchanged 

every 3 to 4 days with fresh OS-Dex medium with no Naringin addition other than that at 
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day 0 (Figure 28A). The expression of OPN was then quantified by fluorescence microscopy 

imaging after staining with mouse anti-human OPN antibody conjugated to anti-mouse 

Alexa Fluor 647 dye. The outcome of this experiment is shown in Figure 30. 

 

Figure 30. Naringin-induced OPN expression in hASCs at 14 days, after incubation with BM and OS-Dex 

medium (control groups), and with free Naringin or Naringin-loaded nanomicelles doses. (A) OPN expressed 

as fold-induction in MFI relatively to BM control group. (B) Representative fluorescence microscopy imaging 

of immunostained hASCs at 14 days after incubation with free Naringin or Naringin-loaded nanomicelles at 

various doses. Blue channel: cell nucleus staining with DAPI. Red channel: OPN staining with anti-mouse 

Alexa Fluor 647 fluorescent antibody conjugate. Data represented as mean ± s.d. (n=6). *p < 0.05, ****p < 

0.0001. 

The obtained results in Figure 30A show the remarkable capacity of Naringin to induce 

OPN expression in hASCs. In fact, a single stimulatory dose of Naringin was able to 

significantly enhance OPN expression after 14 days of culture. Regarding stimulation with 

free drug, all tested doses (5, 10, 20 µg/mL) were able to significantly enhance OPN 

expression by aproximately 2-fold when compared to both control groups, BM and OS 

(****p < 0.0001). However, the slight differences among the investigated drug dose range 
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were not statistically significant. On the other hand, incubation with Naringin-loaded 

nanomicelles elicited a 3-fold at 5 µg/mL and a 6.5-fold increase in OPN expression at the 

higher doses, accordingly 10 and 20 µg/mL versus both control groups (****p < 0.0001). 

Moreover, the dose-dependent effect of Naringin was evidenced in the loaded-micelles 

experiment since the highest doses (10 and 20 µg/mL) significantly improved OPN 

expression by 0.4-fold in comparison to that obtained at 5 µg/mL dosage (****p < 0.0001). 

In addition, it is important to highlight that the controlled delivery of Naringin via 

nanomicelles led to a higher OPN secretion when compared to free drug at the same doses. 

The effect of Naringin on OPN expression, as well as the superior performance of the 

Naringin-loaded nanocarriers are also evidenced by the results in Figure 30B.  

The above shown results are in agreement with various literature reports investigating the 

effect of Naringin in OPN expression. For instance, Wu and colleagues investigated the in 

vitro potential of Naringin in promoting OPN secretion over three different cell lines: 

MC3T3-E1, hOB and pOB 37. The authors observed that a 3-day incubation period with 3 

µM of Naringin (1.74 µg/mL) elicited a 3-fold increase in extracellular OPN expression over 

BM control across all cells, as measured via an ELISA immunoassay. Alternatively, Yin and 

his team evaluated the Naringin-induced pro-osteogenic effect in human periodontal dental 

ligament stem cells (hPDLSCs) both in vitro and upon in vivo transplantation of hPDLSCs 

implanted in nanohydroxyapatite 108. A preliminary in vitro RT-PCR screening assay of 

OPN-encoding gene expression was performed. After Naringin-induction for 14 days, RT-

PCR showed a 0.4 to 0.7-fold OPN induction relatively to BM control in a dose-dependent 

manner, from 100 nM to 1 µM drug doses. In addition, in the in vivo study, hPDLSCs were 

incubated in BM medium containing Naringin (1 µM) for 7 days and then transplanted into 

6 week-old immunocompromised Beige micevia a nanohydroxyapatite scaffold. After 8 

weeks, the transplants were harvested and immunohistochemical staining of OPN was 

performed. The treatment group (Naringin-treated cells) exhibited a 50 % increase in OPN 

expression compared to the non-treated cells.  Overall, these results are consistent with 

improved OPN expression due to Naringin stimulatory effect on osteogenesis. 

Another important study that should be mentioned in the context of hASCs lineage 

differentiation, is the relation between OPN secretion and adipogenesis. Concerning this, 

Chen and colleagues investigated the key role of the interaction between OPN and integrin 

αV/β1 in defining MSCs differentiation in both in vitro and in vivo mice models 104. The 
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authors compared the adipogenic and osteogenic differentiation potential of mouse BM-

MSCs derived from wild-type and OPN-/- mice and observed an accelerated adipogenesis in 

OPN-/- BM-MSCs. Moreover, the OPN blockade not only skewed mouse BM-MSC 

differentiation towards the adipocyte lineage in vitro, but also resulted in impaired bone 

formation and led to a higher fat to total body weight ratio in OPN-deficient mice. Therefore, 

this study suggests that increased OPN expression might be valuable for pursuing osteogenic 

commitment of MSCs. Besides significantly increasing OPN expression, Naringin 

modulates other pathways (e.g. inhibition of PPARɣ and activation of Notch signaling) that 

all play a role in ultimately promoting osteogenesis over adipogenesis, which might be 

important considering the donor tissue of the studied stem cells in this thesis 32,33. 

3.10.4 Naringin-induced Mineralization 

Insights into the biology of bone formation have demonstrated that the first step consists 

in MSCs recruitment to target sites, leading to the synthesis of a surrounding cartilaginous 

matrix template 109. Then, this proliferating cluster of MSCs differentiate into 

osteoprogenitor cells which initiates the endochondral ossification process, where the 

cartilaginous template is continuously replaced by bone, followed by subsequent 

longitudinal growth, as described in the introductory section 1.2 110. Matrix vesicles 

constitute the nucleation sites for the onset of calcification to propagate to nearby collagen 

fibrils, both serving as a natural dynamic scaffold responsible for accumulating calcium and 

inorganic phosphate ultimately leading to the formation of hydroxyapatite crystals 111. In in 

vitro pre-clinical assays of novel bone therapies, osteoprogenitor cells are routinely induced 

to form a mineralized monolayer by long-term exposition to osteogenic medium, typically 

after 21 to 28 days of culture. Alizarin Red S staining is generally used to confirm calcium-

rich deposits in these 2D cell cultures. 

In the literature, Naringin has been described to promote mineralization of 

osteoprogenitor cells in a dose-dependent manner, which is ultimately the goal of bone tissue 

engineering applications, i.e., to produce appreciable mineralization in vitro for posterior 

implantation in patients 33,68. 

To evaluate this effect in hASCs, the cells were incubated with different concentrations 

of free Naringin and also Naringin-loaded nanomicelles in OS-Dex containing medium over 

21 days. Throughout the assay, cell culture medium was exchanged every 3 - 4 days with 
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fresh OS-Dex medium with no Naringin addition other than that at day 0 (Please see dose 

regime in Figure 28A). The formation of calcium nodes in the mineralized cell monolayer 

was visualized by Alizarin Red S staining. The outcomes of this experiment are exhibited in 

Figure 31. 

 

Figure 31. Optical microscopy micrographs of Alizarin Red S staining of calcium deposits in Naringin-

treated hASCs cell monolayer after a 21-day induction in OS-Dex medium. BM represents basal medium. 

The obtained results in Figure 31 show the potential of a single stimulatory dose of 

Naringin to induce mineralization in a dose-dependent manner after 21 days of culture. 

These findings are supported by the work of Yu and colleagues who observed a dose-

dependent calcium node deposition from 1, 10 to 50 µg/mL of Naringin in rat BM-MSCs 33. 

Notably, the dose-dependent effect of Naringin appears noticeably visible upon Naringin-

loaded micelles administration. In comparison to free drug, the controlled delivery of 

Naringin markedly improved mineralization of the cell matrix. Mineralization data is 

paramount for pursuing further applications in the future, especially considering the origin 

of the used stem cells (adipose-derived) and the effect of Dex in their pro-adipogenic/pro-

osteogenic differentiation duality. Indeed, a study by Ghali and co-workers found that 
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addition of Dex at as low as 100 nM in osteogenic medium strongly induced adipogenesis, 

even exhibiting a higher lipid droplet accumulation than 500 nM of Dex in adipogenic 

induction medium 28. Taking into consideration that this was the concentration of Dex used 

during these experiments, the above findings provide evidence for significant hASCs 

mineralization elicited by Naringin, with evident matrix osteogenic calcification. Moreover, 

adipogenic regulator PPARɣ is a nuclear receptor which could help explain the improved 

mineralization of Naringin-loaded nanomicelles groups 112. 

3.11 Effect of Dose Regime of Naringin and Naringin-loaded Micelles on the 

Stimulation of ALP Activity 

Collectivelly, the previous experiments investigating different osteogenic markers reveal 

the pro-osteogenic potential of Naringin, either in free form or when delivered by micellar 

carriers as demonstrated by OPN expression and matrix calcium deposition data. However, 

in the previous assays, Naringin was used in combination with osteogenic medium 

containing Dex, which appeared to dilute the flavonoid effect on the stimulation of ALP 

activity. In fact, in OS-Dex experiments quantifying ALP activity, differences among 

Naringin doses were not significant at 7 days.  

Therefore, in this experiment, different dose regimes of free Naringin and drug-loaded 

micelles in reduced osteogenic medium (absent of Dex, rOS) were studied in order to further 

investigate Naringin pro-osteogenic effect in hASCs as well as its ALP stimulatory activties 

(Figure 32A). It was hypothesized that, in rOS induction medium, the addition of a second 

dosage of free Naringin or Naringin-loaded micelles on the ALP activity of hASCs could 

elicit different results. Such are important findings for the development of stem cell-based 

therapies based on the most effective Naringin regime for enhancing osteogenic 

differentiation. 

As such, unlike previous experiments, where only a single initial dose of Naringin was 

given at the initial incubation time point, this study explored the effect of adding a second 

dose of the flavonoid or flavonoid-loaded micelles after 3 days incubation. The obtained 

results are shown in Figure 32. 
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Figure 32. The effect of dose regimen and Naringin-loaded micelles on the stimulation of ALP activity in 

rOS differentiation medium. (A) Dose regime of free Naringin and Naringin-loaded micelles in this 

experiment. (B) Comparison of the effect of Naringin-loaded micelles and free Naringin on the promotion of 

ALP activity of hASCs at 3 days, expressed in fold induction over rOS control group. Comparison of the dose 

regimen effect of free Naringin (C) and Naringin-loaded micelles (D) on the promotion of ALP activity of 

hASCs at 7 days, expressed in fold induction over rOS control group. (E) Comparison of the effect of Naringin-

loaded micelles and free Naringin with respective dose regimen on the promotion of ALP activity of hASCs at 

7 days, expressed in fold induction over rOS control group. Levels of ALP activity were normalized to DNA 
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content prior to normalization to rOS control group. Symbols  and  represent the control group used to 

perform the statistical analysis of each timepoint. Data represented in mean ± s.d. (n=4). *p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001. 

The obtained results in Figure 32B highlight the superior performance of nanomicelles-

delivered Naringin over free drug incubation at 3 days. Naringin-loaded micelles 

significantly improved ALP activity levels ca. 0.3 fold over the OS control group and across 

all doses of free Naringin studied. However, there was no significant differences among the 

various concentrations of Naringin-loaded micelles. 

Regarding the 7 day assays, different performances according to the dose regimen could 

be observed for free drug and drug-loaded micelles. For the free drug assays, a single dose 

of Naringin in rOS promoted ALP activity in a dose-dependent manner, with the highest 

dose (50 µg/mL) showing a 0.15 to 0.20 fold improval over 5 µg/mL and the rOS control 

group. Meanwhile, the administration of a second dose of free Naringin lead to no significant 

differences among Naringin groups (Figure 32C). Collectively, a single dose of Naringin 

lead to a 0.2 to 0.3 fold increase in ALP activity when compared to the two-dose regimen, 

specifically 10, 20 and 50 µg/mL concentrations. 

On the other hand, a single dose of drug-loaded micelles originated a pro-stimulatory 

effect on ALP, with the highest doses (20 and 50 µg/mL) exhibiting a 0.2 to 0.3 fold 

enhancement in ALP activity over the rOS control group (Figure 32D). In addition, while 

the 20 µg/mL group was significantly superior to 5 µg/mL, the highest dose (50 µg/mL) of 

Naringin was significantly 0.15 to 0.3 fold superior across all concentrations tested. 

Alternatively, for nanocarrier dual administration, the lowest dose (5 µg/mL) achieved ALP 

activity stimulation equivalent to higher concentrations. In comparison, the lowest dose 

resulted in a 0.4 fold enhancement in ALP activity relative to the corresponding 

concentration in the one-dose regimen (***p < 0.001). Also, all Naringin concentrations in 

the two-dose nanocarrier regimen were capable of significantly improving the ALP activity 

by 0.3 to 0.4 fold over the rOS control group, which was not observed for the single-dose 

regimen. 

Overall, different performances according to the dose regimen could be observed for free 

drug and drug-loaded micelles. In the free drug assay, a second dose seemed prejudicial for 

ALP stimulation, whereas a second dose of Naringin-loaded nanocarriers significantly 

increased the ALP activity over rOS control group and relatively to the single-dose regimen. 
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These results indicate that a second dose of free drug seems to slightly inhibit ALP 

stimulation in hASCs, whereas the controlled release of Naringin benefits from the two-dose 

regimen leading to increased ALP activity levels. Cytotoxicity inherent to a second dose 

administration was not proposed here because dsDNA quantifications of both assays showed 

no significant changes between the two dose regimens (Figure 37, Annex IV). The above 

findings are supported by the work of Guo and colleagues, where they investigated the 

double directional adjusting estrogenic effect of Naringin 113. The authors concluded that 

Naringin showed estrogenic agonist activity at low concentrations, but acted as estrogenic 

antagonist at high concentrations. The interaction of Naringin with estrogen receptor (ER) 

and its role in osteogenesis is well described in the literature, and the obtained results above 

may suggest that intracellular delivery of Naringin might overcome this limitting effect 

113,114. 

Figure 32D provides an overall comparison between all the tested dose regimen groups, 

with both free drug and drug-loaded groups. For one-dose regimen, free Naringin and 

Naringin-loaded groups exhibited similar enhancements of ALP stimulation at 7 days. 

However, when comparing two-dose regimens, Naringin-loaded groups were significantly 

superior across all concentrations studied. In addition, the obtained results show that dual 

nanocarrier administration requires lower Naringin doses to effectively improve ALP 

activity versus one-dose regimens. 

In summary, for free drug assays, a single initial Naringin dose exhibited improved 

stimulatory activity of ALP when compared to two-dose, while in the drug-loaded assays, a 

two-dose regimen was consistently superior compared to single administration. The obtained 

results indicate the potential of the formulated nanocarriers to deliver Naringin to hASCs 

and significantly enhance its pro-osteogenic effect over free drug administration, especially 

at earlier time points and requiring lower doses. 
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5 General Conclusions and Future Perspectives 

Adult adipose derived stem cell-based therapies have shown great potential for tissue 

engineering applications due the multilineage differentiation potential and facile isolation of 

these cells.  

Throughout this thesis the potential of stem cell-based therapies was explored by using a 

naturally available drug to guide cells differentiation towards an osteoblastic phenotype. The 

inclusion of Naringin in micellar nanocarriers resulted in a high encapsulation efficiency and 

led to a sustained drug release in both physiological and endo-lysosomal conditions. 

Moreover, these nanocarriers were readily internalized by hASCs as demonstrated by 

microscopy imaging. The controlled delivery of Naringin elicited a more pronounced ALP 

expression at the earlier time points over free drug administration. In addition, a single initial 

stimulatory dose of Naringin-loaded nanocarriers significantly increased OPN expression 

over free drug after 14 days. Moreover, Naringin delivery via nanomicelles significantly 

improved hASCs matrix mineralization over free drug at 21 days. Taken together, the 

findings of this thesis provide evidence that the inclusion of Naringin in biocompatible 

nanocarriers effectively promotes the osteogenic differentiation of hASCs in vitro.  

In the foreseeable future, the design of Naringin micellar delivery system could be 

enhanced by inclusion of stimuli-responsive moieties into nanocarriers polymeric backbone 

in order to fine tune the delivery process upon specific stimuli. In fact, there are several 

interesting biophysiological cues within the bone tissue and alterations found in skeletal 

disorders that could potentially be exploited for stimuli-responsive delivery of bioactive 

molecules. The latter is particularly interesting since during the onset and progression of 

different bone disorders many of skeletal microenvironment hallmarks and cellular functions 

become profoundly deregulated. Each of these disease-specific features represent unique 

opportunities for nanocarrier-mediated stimuli-responsive release of therapeutics. This 

spatiotemporally controlled drug release can result in higher stability in vivo and improved 

biodistribution of the drug at skeletal sites upon parenteral administration. 

Envisioning future advances, the next-generation of such systems could combine also 

physical and morphological properties such as shape, topography and mechanical properties 

which are known to influence cellular behavior and nanocarriers biological performance. 

Moreover, endowing nanocarriers with osteotropic targeting moieties could further improve 
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bone accumulation and prove to be useful in directing nanocarriers towards specific skeletal 

surfaces, such as recent fracture sites or high bone turnover regions. A multidisciplinary 

approach is required for considering the final application of such systems, and guide the 

formulation of smarter nanocarriers for systemic bone treatments. The combination of 

bioinspired therapeutics with design advances in nanocarriers performance, will 

undoubtedly pave the future in providing suitable candidates for future commercialization 

and realistic clinical application. 

 



 

 

 

REFERENCES 

 

 

 

 

 

6 References 

1. Northrop, B. H. et al. Thiol–maleimide ‘click’ chemistry: evaluating the influence of solvent, initiator, 

and thiol on the reaction mechanism, kinetics, and selectivity. Polym. Chem. 6, 3415–3430 (2015). 

2. Hermanson, G. T. in Bioconjugate Techniques 229–258 (Academic Press, 2013). 

doi:https://doi.org/10.1016/B978-0-12-382239-0.00003-0 

3. Luo, D., Smith, S. W. & Anderson, B. D. Kinetics and mechanism of the reaction of cysteine and 

hydrogen peroxide in aqueous solution. J. Pharm. Sci. 94, 304–316 (2005). 

4. Varenne, F. et al. Towards quality assessed characterization of nanomaterial: Transfer of validated 

protocols for size measurement by dynamic light scattering and evaluation of zeta potential by 

electrophoretic light scattering. Int. J. Pharm. 528, 299–311 (2017). 

5. Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U. & Caristi, C. Flavonoid composition of citrus juices. 

Molecules 12, 1641–1673 (2007). 

6. Geraghty, R. J. et al. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer 111, 

1021–1046 (2014). 

7. Rampersad, S. N. Multiple applications of alamar blue as an indicator of metabolic function and 

cellular health in cell viability bioassays. Sensors (Switzerland) 12, 12347–12360 (2012). 

8. Gregory, C. A., Grady Gunn, W., Peister, A. & Prockop, D. J. An Alizarin red-based assay of 

mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. 

Biochem. 329, 77–84 (2004). 

9. Khan, J. H., Schue, F. & George, G. A. Heterogeneous ring-opening polymerization of lactones for 

biomedical applications. Polym. Int. 58, 296–301 (2009). 

10. Williams, C. K. Synthesis of functionalized biodegradable polyesters. Chem. Soc. Rev. 36, 1573 

(2007). 

11. Labet, M. & Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 38, 3484 

(2009). 

12. Albertsson, A.-C. & Varma, I. K. Recent Developments in Ring Opening Polymerization of Lactones 

for Biomedical Applications. Biomacromolecules 4, 1466–1486 (2003). 

13. Marques, J. G. et al. Co-delivery of Sildenafil (Viagra®) and Crizotinib for Synergistic and Improved 

Anti-tumoral Therapy. Pharm. Res. 31, 2516–2528 (2014). 

14. Mert, O., Doganci, E., Erbil, H. Y. & Demir,  a S. Surface Characterization of Poly(l-lactic 

acid)−Methoxy Poly(ethylene glycol) Diblock Copolymers by Static and Dynamic Contact Angle 

Measurements, FTIR, and ATR-FTIR. Langmuir 24, 749–757 (2008). 

15. Boua-In, K., Chaiyut, N. & Ksapabutr, B. Preparation of polylactide by ring-opening polymerisation 

of lactide. Optoelectron. Adv. Mater. Rapid Commun. 4, 1404–1407 (2010). 

16. Chumeka, W., Pasetto, P., Pilard, J.-F. & Tanrattanakul, V. Bio-based triblock copolymers from natural 

rubber and poly(lactic acid): Synthesis and application in polymer blending. Polymer (Guildf). 55, 

4478–4487 (2014). 

17. H. Hoidy, W., B. Ahmad, M., Jaffar Al-, E. A. & Bt Ibrahim, N. A. Preparation and Characterization 

of Polylactic Acid/Polycaprolactone Clay Nanocomposites. J. Appl. Sci. 10, 97–106 (2010). 

18. Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 9, 63–84 (2001). 

19. Wang, D. K. et al. FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester 

hydrogels with short PLA segments and a cytocompatibility study. J. Polym. Sci. Part A Polym. Chem. 

51, 5163–5176 (2013). 

20. Chen, H. Y., Tang, H. Y. & Lin, C. C. Ring-opening polymerization of l-lactide catalyzed by a 

biocompatible calcium complex. Polymer (Guildf). 48, 2257–2262 (2007). 

21. Tanzi, M. C. et al. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for 

biomedical use. J. Mater. Sci. Mater. Med. 5, 393–396 (1994). 

22. Allen, C., Maysinger, D. & Eisenberg, A. Nano-engineering block copolymer aggregates for drug 

delivery. Colloids Surfaces B Biointerfaces 16, 3–27 (1999). 

23. Li, F., Li, S., El Ghzaoui, A., Nouailhas, H. & Zhuo, R. Synthesis and gelation properties of PEG-

PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl 

chloride. Langmuir 23, 2778–2783 (2007). 

24. Lebouille, J. G. J. L., Stepanyan, R., Slot, J. J. M., Cohen Stuart, M. A. & Tuinier, R. Nanoprecipitation 

of polymers in a bad solvent. Colloids Surfaces A Physicochem. Eng. Asp. 460, 225–235 (2014). 

25. Whitesides, T. H. & Ross, D. S. Experimental and Theoretical Analysis of the Limited Coalescence 



 

 

 

REFERENCES 

162 

 

 

 

Process: Stepwise Limited Coalescence. J. Colloid Interface Sci. 169, 48–59 (1995). 

26. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. 

Immunol. 8, 726–736 (2008). 

27. Frese, L., Dijkman, P. E. & Hoerstrup, S. P. Adipose Tissue-Derived Stem Cells in Regenerative 

Medicine. Transfus. Med. Hemotherapy 43, 268–274 (2016). 

28. Ghali, O. et al. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of 

mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol. 16, 9 (2015). 

29. Dimitriou, R., Jones, E., McGonagle, D. & Giannoudis, P. V. Bone regeneration: current concepts and 

future directions. BMC Med. 9, 66 (2011). 

30. El Bialy, I., Jiskoot, W. & Reza Nejadnik, M. Formulation, Delivery and Stability of Bone 

Morphogenetic Proteins for Effective Bone Regeneration. Pharm. Res. 34, 1152–1170 (2017). 

31. Chen, R., Qi, Q.-L., Wang, M.-T. & Li, Q.-Y. Therapeutic potential of naringin: an overview. Pharm. 

Biol. 54, 3203–3210 (2016). 

32. Fan, J., Li, J. & Fan, Q. Naringin promotes differentiation of bone marrow stem cells into osteoblasts 

by upregulating the expression levels of microRNA-20a and downregulating the expression levels of 

PPARγ. Mol. Med. Rep. 12, 4759–4765 (2015). 

33. Yu, G. et al. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via 

Activation of the Notch Signaling Pathway. Stem Cells Int. 2016, 1–8 (2016). 

34. Osathanon, T., Subbalekha, K., Sastravaha, P. & Pavasant, P. Notch signalling inhibits the adipogenic 

differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose 

tissue. Cell Biol. Int. 36, 1161–1170 (2012). 

35. Hempen, C., Weiss, E. & Hess, C. F. Dexamethasone treatment in patients with brain metastases and 

primary brain tumors: do the benefits outweigh the side-effects? Support. Care Cancer 10, 322–328 

(2002). 

36. Rao, K. et al. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A 

morphological investigation through AFM. Carbohydr. Polym. 174, 243–252 (2017). 

37. Wu, J. Bin et al. Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-

Jun and AP-1 pathway in osteoblasts. Eur. J. Pharmacol. 588, 333–341 (2008). 

38. Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 36, 829–837 (2004). 

39. Cassidy, A. & Minihane, A.-M. The role of metabolism (and the microbiome) in defining the clinical 

efficacy of dietary flavonoids. Am. J. Clin. Nutr. 105, 10–22 (2017). 

40. Fontaine, S. D., Reid, R., Robinson, L., Ashley, G. W. & Santi, D. V. Long-Term Stabilization of 

Maleimide–Thiol Conjugates. Bioconjug. Chem. 26, 145–152 (2015). 

41. Brewer, C. F. & Riehm, J. P. Evidence for possible nonspecific reactions between N-ethylmaleimide 

and proteins. Anal. Biochem. 18, 248–255 (1967). 

42. Conde, J. et al. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic 

nanoparticles for nanomedicine. Front. Chem. 2, 1–27 (2014). 

43. Cunningham, A. & Oh, J. K. New Design of Thiol-Responsive Degradable Polylactide-Based Block 

Copolymer Micelles. Macromol. Rapid Commun. 34, 163–168 (2013). 

44. Zhou, Y., Nie, W., Zhao, J. & Yuan, X. Rapidly in situ forming adhesive hydrogel based on a PEG-

maleimide modified polypeptide through Michael addition. J. Mater. Sci. Mater. Med. 24, 2277–2286 

(2013). 

45. Pramanik, S., Ataollahi, F., Pingguan-Murphy, B., Oshkour, A. A. & Osman, N. A. A. In Vitro Study 

of Surface Modified Poly(ethylene glycol)-Impregnated Sintered Bovine Bone Scaffolds on Human 

Fibroblast Cells. Sci. Rep. 5, 9806 (2015). 

46. Zeng, C., Seino, H., Ren, J., Hatanaka, K. & Yoshie, N. Bio-Based Furan Polymers with Self-Healing 

Ability. Macromolecules 46, 1794–1802 (2013). 

47. Oishi, T. & Fujimoto, M. Synthesis and Chiroptical Properties of Poly[ N -(4- N ′-(α-Methylbenzyl)-

Aminocarbonylphenyl)-Mamaleimide]. J. Macromol. Sci. Part A 29, 1187–1205 (1992). 

48. Younes, H. & Cohn, D. Phase separation in poly(ethylene glycol)/poly(lactic acid) blends. Eur. Polym. 

J. 24, 765–773 (1988). 

49. Niwa, T., Takeuchi, H., Hino, T., Kunou, N. & Kawashima, Y. Preparations of biodegradable 

nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel 

spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control. 

Release 25, 89–98 (1993). 

50. Asadi, H., Rostamizadeh, K., Salari, D. & Hamidi, M. Preparation of biodegradable nanoparticles of 

tri-block PLA–PEG–PLA copolymer and determination of factors controlling the particle size using 

artificial neural network. J. Microencapsul. 28, 406–416 (2011). 



 

 

 

REFERENCES 

163 

 

 

 

51. Albanese, A., Tang, P. S. & Chan, W. C. W. The Effect of Nanoparticle Size, Shape, and Surface 

Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012). 

52. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers 

to drug delivery. Nat. Biotechnol. 33, 941–951 (2015). 

53. Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: Design, 

characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001). 

54. Shuai, X., Ai, H., Nasongkla, N., Kim, S. & Gao, J. Micellar carriers based on block copolymers of 

poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 98, 415–

426 (2004). 

55. Wang, H. et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with 

amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32, 8281–8290 (2011). 

56. Sanver, D. Experimental Modelling of Flavonoid Membrane Interactions. (The University of Leeds, 

2017). 

57. Yan, H.-H. et al. Experimental and computational studies of naringin/cyclodextrin inclusion 

complexation. J. Incl. Phenom. Macrocycl. Chem. 88, 15–26 (2017). 

58. Kanaze, F. I. et al. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG 

matrixes: A comparative study. J. Appl. Polym. Sci. 102, 460–471 (2006). 

59. Trotta, F., Drioli, E., Baggiani, C. & Lacopo, D. Molecular imprinted polymeric membrane for naringin 

recognition. J. Memb. Sci. 201, 77–84 (2002). 

60. Vila, A., Gill, H., McCallion, O. & Alonso, M. J. Transport of PLA-PEG particles across the nasal 

mucosa: effect of particle size and PEG coating density. J. Control. Release 98, 231–244 (2004). 

61. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 

8, 543–557 (2009). 

62. Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of 

particle shape on the in vivo journey of nanoparticles. Nanomedicine 9, 121–134 (2014). 

63. Pujari-Palmer, S. et al. In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on 

the acute inflammatory response. Biomaterials 90, 1–11 (2016). 

64. Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological 

identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012). 

65. Talamini, L. et al. Influence of Size and Shape on the Anatomical Distribution of Endotoxin-Free Gold 

Nanoparticles. ACS Nano 11, 5519–5529 (2017). 

66. Ji, Y. et al. Controlled-release naringin nanoscaffold for osteoporotic bone healing. Dent. Mater. 30, 

1263–1273 (2014). 

67. Chen, K.-Y., Lin, K., Chen, Y. & Yao, C. A Novel Porous Gelatin Composite Containing Naringin for 

Bone Repair. Evidence-Based Complement. Altern. Med. 2013, 1–10 (2013). 

68. Yu, M. et al. Controlled release of naringin in metal-organic framework-loaded mineralized collagen 

coating to simultaneously enhance osseointegration and antibacterial activity. ACS Appl. Mater. 

Interfaces 9, 19698–19705 (2017). 

69. Guo, Z. et al. Sequential controlled-released dual-drug loaded scaffold for guided bone regeneration 

in a rat fenestration defect model. J. Mater. Chem. B 5, 7701–7710 (2017). 

70. Chang, P.-C. et al. Inhibition of Periodontitis Induction Using a Stimuli-Responsive Hydrogel Carrying 

Naringin. J. Periodontol. 88, 190–196 (2017). 

71. Feng, T. et al. Structural characterization and bioavailability of ternary nanoparticles consisting of 

amylose, α-linoleic acid and β-lactoglobulin complexed with naringin. Int. J. Biol. Macromol. 99, 365–

374 (2017). 

72. Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 

1655–1670 (2006). 

73. Zhang, Z. et al. Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles. 

Biomaterials 33, 7233–7240 (2012). 

74. Fu, Y. & Kao, W. J. Drug release kinetics and transport mechanisms of non-degradable and degradable 

polymeric delivery systems. Expert Opin. Drug Deliv. 7, 429–444 (2010). 

75. Hans, M. L. et al. Evaluation of in vitro release and in vivo efficacy of mPEG-PLA-haloperidol 

conjugate micelle-like structures. J. Biomed. Mater. Res. Part B Appl. Biomater. 83B, 422–430 (2007). 

76. Kedar, U., Phutane, P., Shidhaye, S. & Kadam, V. Advances in polymeric micelles for drug delivery 

and tumor targeting. Nanomedicine Nanotechnology, Biol. Med. 6, 714–729 (2010). 

77. Zhang, Q., Re Ko, N. & Kwon Oh, J. Recent advances in stimuli-responsive degradable block 

copolymer micelles: synthesis and controlled drug delivery applications. Chem. Commun. 48, 7542 

(2012). 



 

 

 

REFERENCES 

164 

 

 

 

78. Desai, N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 14, 282–295 

(2012). 

79. Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine Scale-up Technologies: Feasibilities and 

Challenges. AAPS PharmSciTech 15, 1527–1534 (2014). 

80. Liu, D. et al. A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of 

Homogeneous Nanoparticles with Tunable Properties. Adv. Mater. 27, 2298–2304 (2015). 

81. Park, E., Cho, H.-B. & Takimoto, K. Effective gene delivery into adipose-derived stem cells: 

transfection of cells in suspension with the use of a nuclear localization signal peptide–conjugated 

polyethylenimine. Cytotherapy 17, 536–542 (2015). 

82. Sun, X., Li, F., Wang, Y. & Liang, W. Cellular uptake and elimination of lipophilic drug delivered by 

nanocarriers. Pharmazie 65, 737–742 (2010). 

83. Jeong, J. et al. Stimulative effects of Drynariae Rhizoma extracts on the proliferation and 

differentiation of osteoblastic MC3T3-E1 Cells. J. Ethnopharmacol. 96, 489–495 (2005). 

84. Li, L., Zeng, Z. & Cai, G. Comparison of neoeriocitrin and naringin on proliferation and osteogenic 

differentiation in MC3T3-E1. Phytomedicine 18, 985–989 (2011). 

85. Peng-Zhang et al. Effects of naringin on the proliferation and osteogenic differentiation of human bone 

mesenchymal stem cell. Eur. J. Pharmacol. 607, 1–5 (2009). 

86. Wang, H. et al. Naringin enhances osteogenic differentiation through the activation of ERK signaling 

in human bone marrow mesenchymal stem cells. Iran. J. Basic Med. Sci. 20, 407–413 (2017). 

87. Li, F. et al. Stimulative activity of Drynaria fortunei (Kunze) J. Sm. extracts and two of its flavonoids 

on the proliferation of osteoblastic like cells. Pharmazie 61, 962–965 (2006). 

88. Quent, V. M. C., Loessner, D., Friis, T., Reichert, J. C. & Hutmacher, D. W. Discrepancies between 

metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J. Cell. Mol. 

Med. 14, 1003–1013 (2010). 

89. Talorete, T. P. N., Bouaziz, M., Sayadi, S. & Isoda, H. Influence of medium type and serum on MTT 

reduction by flavonoids in the absence of cells. Cytotechnology 52, 189–198 (2007). 

90. Leto Barone, A. A., Khalifian, S., Lee, W. P. A. & Brandacher, G. Immunomodulatory Effects of 

Adipose-Derived Stem Cells: Fact or Fiction? Biomed Res. Int. 2013, 1–8 (2013). 

91. Zhu, X., Du, J. & Liu, G. The comparison of multilineage differentiation of bone marrow and adipose-

derived mesenchymal stem cells. Clin. Lab. 58, 897–903 (2012). 

92. Granéli, C. et al. Novel markers of osteogenic and adipogenic differentiation of human bone marrow 

stromal cells identified using a quantitative proteomics approach. Stem Cell Res. 12, 153–165 (2014). 

93. Orimo, H. The Mechanism of Mineralization and the Role of Alkaline Phosphatase in Health and 

Disease. J. Nippon Med. Sch. 77, 4–12 (2010). 

94. Marom, R., Shur, I., Solomon, R. & Benayahu, D. Characterization of adhesion and differentiation 

markers of osteogenic marrow stromal cells. J. Cell. Physiol. 202, 41–48 (2005). 

95. Liao, H.-T. Osteogenic potential: Comparison between bone marrow and adipose-derived 

mesenchymal stem cells. World J. Stem Cells 6, 288 (2014). 

96. Wall, M. E., Bernacki, S. H. & Loboa, E. G. Effects of Serial Passaging on the Adipogenic and 

Osteogenic Differentiation Potential of Adipose-Derived Human Mesenchymal Stem Cells. Tissue 

Eng. 13, 1291–1298 (2007). 

97. Kyllönen, L. et al. Effects of different serum conditions on osteogenic differentiation of human adipose 

stem cells in vitro. Stem Cell Res. Ther. 4, 17 (2013). 

98. de Girolamo, L., Sartori, M. F., Albisetti, W. & Brini, A. T. Osteogenic differentiation of human 

adipose-derived stem cells: comparison of two different inductive media. J. Tissue Eng. Regen. Med. 

1, 154–157 (2007). 

99. Cruz, A. C. C., Silva, M. L., Caon, T. & Simões, C. M. O. Addition of bone morphogenetic protein 

type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation 

of human adipose-derived stem cells. J. Appl. Oral Sci. 20, 628–635 (2012). 

100. Wang, E. A., Israel, D. I., Kelly, S. & Luxenberg, D. P. Bone Morphogenetic Protein-2 Causes 

Commitment and Differentiation in C3Hl0T1/2 and 3T3 Cells. Growth Factors 9, 57–71 (1993). 

101. Gaoli, X. et al. Effect of naringin combined with bone morphogenetic protein-2 on the proliferation 

and differentiation of MC3T3-E1 cells. West China J. Stomatol. 35, 275–280 (2017). 

102. Rickard, D. J., Sullivan, T. A., Shenker, B. J., Leboy, P. S. & Kazhdan, I. Induction of Rapid Osteoblast 

Differentiation in Rat Bone Marrow Stromal Cell Cultures by Dexamethasone and BMP-2. Dev. Biol. 

161, 218–228 (1994). 

103. Inoue, M. & Shinohara, M. L. Intracellular osteopontin (iOPN) and immunity. Immunol. Res. 49, 160–

172 (2011). 



 

 

 

REFERENCES 

165 

 

 

 

104. Chen, Q. et al. An Osteopontin-Integrin Interaction Plays a Critical Role in Directing Adipogenesis 

and Osteogenesis by Mesenchymal Stem Cells. Stem Cells 32, 327–337 (2014). 

105. Mckee, M. D. & Nanci, A. Osteopontin: An Interfacial Extracellular Matrix Protein in Mineralized 

Tissues. Connect. Tissue Res. 35, 197–205 (1996). 

106. Uemura, T. et al. Osteopontin involvement in bone remodeling and its effects on in vivo osteogenic 

potential of bone marrow-derived osteoblasts/porous hydroxyapatite constructs. Mater. Sci. Eng. C 17, 

33–36 (2001). 

107. Liu, M., Li, Y. & Yang, S.-T. Effects of naringin on the proliferation and osteogenic differentiation of 

human amniotic fluid-derived stem cells. J. Tissue Eng. Regen. Med. 11, 276–284 (2014). 

108. Yin, L. et al. Effects of Naringin on Proliferation and Osteogenic Differentiation of Human Periodontal 

Ligament Stem Cells In Vitro and In Vivo. Stem Cells Int. 2015, 1–9 (2015). 

109. Milner, P. I., Clegg, P. D. & Stewart, M. C. Stem Cell–based Therapies for Bone Repair. Vet. Clin. 

North Am. Equine Pract. 27, 299–314 (2011). 

110. Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K.-S. & Mirams, M. Endochondral ossification: 

How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 40, 46–62 

(2008). 

111. Golub, E. E. Role of matrix vesicles in biomineralization. Biochim. Biophys. Acta - Gen. Subj. 1790, 

1592–1598 (2009). 

112. Takada, I., Kouzmenko, A. P. & Kato, S. Wnt and PPARγ signaling in osteoblastogenesis and 

adipogenesis. Nat. Rev. Rheumatol. 5, 442–447 (2009). 

113. Guo, D. et al. Double directional adjusting estrogenic effect of naringin from Rhizoma drynariae ( 

Gusuibu ). J. Ethnopharmacol. 138, 451–457 (2011). 

114. Cai, C. et al. Estrogen-related receptor α is involved in the osteogenic differentiation of mesenchymal 

stem cells isolated from human periodontal ligaments. Int. J. Mol. Med. 31, 1195–1201 (2013). 

115. Li, N., Jiang, Y., Wooley, P. H., Xu, Z. & Yang, S. Y. Naringin promotes osteoblast differentiation 

and effectively reverses ovariectomy-associated osteoporosis. J. Orthop. Sci. 18, 478–485 (2013). 

116. Wong, R. W. K. & Rabie, A. B. M. Effect of naringin on bone cells. J. Orthop. Res. 24, 2045–2050 

(2006). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

ANNEXES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 Annexes 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

ANNEXES 

168 

 

 

 

7.1 Annex I 

 

 

Figure 33. (A) Naringin calibration curve in water calculated by measuring the absorbance peak at λ =282 

nm, ranging from 2 – 100 µg/mL. (A1) Inset represents the absorbance spectrum of Naringin within a spectral 

window of 250 to 370 nm. 

 

 

Figure 34. DLS physicochemical characterization of Naringin-loaded mPEG-MS-PLA micelles produced 

upon a 5-fold scale-up of the nanoprecipitation procedure.  
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7.2 Annex II 

 

Figure 35. Characterization of Coum-6 loaded mPEG-MS-PLA micelles. (A) Physicochemical 

characterization of Coum-6 loaded micelles via DLS analysis. (B) Fluorescence microscopy micrographs of 

Coum-6 loaded micelles. Green channel: Coum-6. 

 

 

Figure 36. Characterization of blank mPEG-MS-PLA micelles (A) and free Naringin (B) effect in MC3T3-

E1 cell viability following incubation at different time points. BM represents basal medium negative 

cytotoxicity control (K-). *p < 0.05. Data represents mean ± s.d. (n=5). 
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7.3 Annex III 

 

Table 5. Overview of literature studies investigating the osteogenic potential of Naringin and reported proliferative abilities determined via 

cell viability / metabolic assays (Table continued over next page). 

Assay Cell line Timepoints Naringin Dose Main Results Ref. 

BrdU 
MC3T3-E1, 

pOB, hOB 
72 h 0.3, 1, 3, 10 µM Increased proliferation (180-200 %) across all doses 

Wu et al 

(2008).37 

MTT hBM-MSC 
12, 24, 36, 48, 

60, 72, 96 h 
1, 10, 100, 200 µg/mL 

Dose-dependent increase in proliferation up to 100 µg/mL. After 36 h, 

200 µg/mL was cytotoxic. 

Peng-Zhang et 

al (2009).85 

MTT UMR-106 48 h 0.01, 0.1, 1, 10, 100 µM 
Dose-dependent increase in proliferation (105-130 %) up to 10 µM; 

115% proliferation for 100 µM 

Li et al 

(2006).87 

MTT MG-63 48 h 
0.1, 1, 10, 100 µg/mL; 

1, 10, 20 and 50 mg/mL 

Dose-dependent increase in proliferation (120-160 %) up to 10 mg/mL. 

Proliferation decreased to 110% for 20 mg/mL and was not significant at 

50 mg/mL. 

Chen et al. 

(2013).67 

CCK-8 ratBM-MSC 
12, 24, 48, 72, 

96 h 
1, 10, 50, 100 µg/mL 

Dose-dependent increase in proliferation up to 50 µg/mL. After 48h, 100 

µg/mL group was cytotoxic. 

Yu et al. 

(2016).33 

MTT 
rabbitBM-

MSC 

48h 0.01, 0.1, 1, 10, 100 µM Dose-dependent increase in proliferation (110-125 %) up to 100 µM. Fan et al. 

(2015).32 3, 5, 7, 10 d 0.1, 1, 10 µM 120 % proliferation for 0.1 - 10 µM 

MTT MC3T3-E1 72 h 2, 4, 8, 10, 20 µg/mL 
140 % proliferation for 2 µg/mL, not significant for remaining dose 

groups 

Li et al. 

(2011).84 

MTT ratBM-MSC 1, 3, 5, 7, 9 d 
1, 10; 100 ng/mL; 1, 10, 

100 µg/mL 

Dose-dependent increase in proliferation up to 10 µg/mL. After 9 d, 

proliferation of 100 µg/mL group was superior to control but inferior to 

all other dose groups. 

Li et al. 

(2013).115 

MTT hPDLSC 1, 2, 3, 4, 5 d 0.01; 0.1; 1; 10; 100 µM 
Dose-dependent increase in proliferation (120–140 % at 5 days) up to 1 

µM. After 3 d, both 10 and 100 µM groups were cytotoxic. 

Yin et al. 

(2015).108 
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Assay Cell line Timepoints Naringin Dose Main Results Ref. 

Alamar 

Blue 
hAFSC 1, 2, 3, 4 d 1, 10, 100, 200 µg/mL 

Dose-dependent increase in proliferation up to 100 µg/mL. Across all 

time points, proliferation of 200 µg/mL group was similar or inferior to 

control, indicating a possible cytotoxicity. 

Liu et al. 

(2014).107 

MTT hBM-MSC 1, 3, 7, 14 d 10, 50, 100 µg/mL 
Differences between Naringin groups and controls significant after 3 d of 

culture. Dose-dependent increase in proliferation up to 100 µg/mL. 

Wang et al. 

(2017).86 

MTT UMR-106 24, 48, 72 h 0.001, 0.01, 0.1 µM Dose-dependent increase in proliferation up to 0.1 µM 
Wong et al. 

(2016).116 

Murine pre-osteoblastic (MC3T3-E1), murine primary fetal osteoblastic (pOB), human fetal osteoblastic (hOB), human/rat/rabbit bone marrow stem cells (hBM-

MSC/ratBM-MSC/rabbitBM-MSC), rat osteosarcoma osteoblast-like (UMR-106), human osteosarcoma osteoblast-like (MG-63), human periodontal dental ligament 

stem cells (hPDLSC), human amniotic fluid-derived stem cells (hAFSC). Naringin (C27H32O14) average mass: 580.53 g/mol. Conversion of Naringin concentrations: 1 

µM = 0.58 µg/mL. 
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7.4 Annex IV 

 

 

 

 

Figure 37. Quantification of dsDNA content after One dose and Two dose free Naringin regimen 

experiments, normalized to BM control group. BM represents basal medium. rOS represents the osteogenic 

control group. Data represented in mean ± s.d. (n=4). 
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